WO2016190378A1 - Heat storage pack, heat exchange unit, and method for manufacturing heat storage pack - Google Patents
Heat storage pack, heat exchange unit, and method for manufacturing heat storage pack Download PDFInfo
- Publication number
- WO2016190378A1 WO2016190378A1 PCT/JP2016/065526 JP2016065526W WO2016190378A1 WO 2016190378 A1 WO2016190378 A1 WO 2016190378A1 JP 2016065526 W JP2016065526 W JP 2016065526W WO 2016190378 A1 WO2016190378 A1 WO 2016190378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat storage
- storage material
- heat
- temperature
- housing portion
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G23/00—Other table equipment
- A47G23/02—Glass or bottle holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/18—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present invention relates to a heat storage pack that performs temperature management of food and drink, a heat exchange unit, and a method for manufacturing the heat storage pack.
- a storage temperature suitable for each of the heat retaining materials in particular, alcohols such as wine, beer and sake, beverages such as juice and water, foods, and pharmaceuticals.
- alcohols such as wine, beer and sake
- beverages such as juice and water, foods, and pharmaceuticals.
- a cold storage container that can reach a desired storage temperature more quickly and can be maintained at the desired temperature for a long time.
- a wine cooler with iced water is used to cool a wine bottle for wine or the like that requires a drinking temperature.
- Patent Document 1 proposes a wine cooler provided with a fixing means that allows a cold insulation material to be detachably attached to the inner wall of the cold insulation container.
- FIG. 31A is a diagram illustrating an outline of a wine cooler
- FIG. 31B is a cross-sectional view of the wine cooler.
- a step portion (rib) is provided in the cold storage container, and a cold insulating material is provided in the step portion.
- FIG. 32 is a diagram illustrating these problems.
- the cold insulation material can be frozen at a proper temperature by completely freezing the cold insulation material, it takes time to reach the proper temperature because of insufficient adhesion.
- the cold insulating material is not completely frozen, it cannot reach an appropriate temperature.
- FIG. 33A and FIG. 33B are diagrams showing a form in which the cold insulating material is divided into three parts and each cold insulating material is connected by a joint mechanism.
- FIG. 33A shows a Bordeaux-type bottle, and this Bordeaux-type bottle has a shape in which the diameter of the body rapidly increases with respect to the diameter of the neck at the connection portion between the neck of the bottle and the body.
- FIG. 33B shows a burgundy type bottle, and this burgundy type bottle has a shape in which the diameter of the bottle gradually increases from the neck of the bottle to the body. Even if it is such a bottle, since the cold-retaining material divided
- the number of divisions of the cold insulation material increases, the types of molds for producing the cold insulation material case increase, the production process increases, and the cost increases.
- the joint mechanism (connection portion) increases, the area where the cold insulation material comes into contact with food and drinks decreases, and the performance as a heat storage pack decreases. For this reason, it is desirable that the number of divisions of the cold insulating material is as small as possible.
- This invention is made
- the heat storage pack of the present invention is a heat storage pack that performs temperature management of food and drink, the first storage portion filled with the first heat storage material that changes phase at a predetermined temperature, and the first
- the second housing portion is filled with a second heat storage material that is stacked in the housing portion and is maintained in a liquid phase state at the phase change temperature of the first heat storage material, and the first housing portion is closed.
- a lid member, and the second storage portion contacts food and drink.
- the second heat storage material since the second heat storage material maintains a liquid phase state at the phase change temperature of the first heat storage material, and the second storage portion comes into contact with food and drink as the heat receiving body, the second storage It becomes possible to make a part adhere to food and drink.
- the sensible heat stored by the second heat storage material can be reliably transmitted to the food and drink so that the food and drink can quickly reach the desired temperature.
- the sensible heat stored by the first heat storage material and the latent heat are surely transmitted to the food and drink through the second heat storage material, thereby assisting the food and drink to reach the desired temperature quickly and further.
- FIG. 1 shows the concept of the 1st heat storage material used for the heat storage pack which concerns on this embodiment. It is a figure which shows the concept in case there is no viscosity in a thermal storage material. It is a top view of a heat exchange unit. It is a conceptual diagram which shows the usage example of a heat exchange unit. It is a figure which shows the mode of manufacture of the 1st deep drawing container. It is a figure which shows the mode of manufacture of the 1st deep drawing container. It is a figure which shows the mode of manufacture of the 2nd deep draw container 5. FIG. It is a figure which shows the mode of manufacture of the 2nd deep draw container 5. FIG. It is a conceptual diagram which shows the process of filling a 2nd thermal storage material.
- thermocompression bonding a film It is a conceptual diagram which shows the process of thermocompression bonding a film. It is a key map showing the process of filling up the 1st heat storage material. It is a conceptual diagram which shows the process of thermocompression bonding a film. It is a figure which shows an experiment procedure. It is a figure which shows the evaluation method of an experimental result. 3 is a table showing the configurations of heat storage materials of Comparative Examples 1 to 3 and Examples 1 to 3. It is a figure which shows the outline
- FIG. 10 is a plan view of Comparative Example 3.
- FIG. 10 is a side view of Comparative Example 3.
- FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about the comparative example 3.
- FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about Example 1.
- FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about Example 2.
- FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about Example 3.
- FIG. It is the table
- FIG. 24B is a sectional view taken along line BB in FIG. 24A. It is a top view of the cold ice mask which concerns on the modification 2 of this embodiment. It is DD sectional drawing in FIG. 25A. It is a figure which shows the outline
- FIG. 1 It is a side view of the outer tray which concerns on 2nd Embodiment. It is a perspective view of the outer tray which concerns on 2nd Embodiment. It is a figure which shows schematic structure of the heat storage pack 200 which concerns on 2nd Embodiment. It is a figure which shows a heat exchange unit. It is a figure which shows the form of a heat exchange unit. It is a figure which shows the form of a heat exchange unit. It is a figure which shows the form of a heat exchange unit. It is the figure which showed the use condition of the heat exchange unit which concerns on 2nd Embodiment in steps. It is a figure which shows a temperature measurement point. FIG.
- FIG. 7 is a diagram showing the configurations of antifreeze materials and latent heat materials of Comparative Examples 4 to 6 and Examples 4 to 7 in a comparative control experiment of the second embodiment. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about the comparative example 4. FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about the comparative example 5. FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about the comparative example 6. FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about Example 4. FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about Example 5. FIG.
- FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about Example 6.
- FIG. It is a figure which shows the result of having measured the temperature of the liquid temperature of wine about Example 7.
- FIG. It is the table
- the present inventors quickly cool the cold insulation object because the adhesion between the cold insulation material and the cold insulation object is insufficient when the cold insulation material is completely frozen.
- the cold insulation material has a double structure, the first layer is filled with a heat storage material having a sufficient amount of heat, and the second layer is provided with a flexible heat storage material to provide a cold insulation object. It has been found that the adhesion can be increased, and thereby the object to be kept cold can quickly reach an appropriate temperature, and the present invention has been achieved.
- the heat storage pack of the present invention is a heat storage pack that performs temperature management of food and drink, the first storage portion filled with the first heat storage material that changes phase at a predetermined temperature, and the first
- the second housing portion is filled with a second heat storage material that is stacked in the housing portion and is maintained in a liquid phase state at the phase change temperature of the first heat storage material, and the first housing portion is closed.
- a lid member, and the second storage portion contacts food and drink.
- FIG. 1 is a cross-sectional view showing a usage state of a heat storage pack according to an embodiment of the present invention.
- This heat storage pack 1 has a double structure composed of a first deep-drawn container 3 as a first housing part and a second deep-drawn container 5 as a second housing part.
- the first deep-drawn container 3 is filled with a first heat storage material 3a
- the second deep-drawn container 5 is filled with a second heat storage material 5a as an antifreeze material.
- the second heat storage material 5a maintains a liquid phase state at the phase change temperature of the first heat storage material 3a.
- the second heat storage material 5a is in close contact with the wine bottle 10 as a beverage, and the lid material 7 closes the first deep-drawn container 3.
- the first deep-drawn container 3, the second deep-drawn container 5, and the lid member 7 are welded at the bonding portion 9.
- the 2nd heat storage material 5a maintains a liquid phase state with the phase change temperature of the 1st heat storage material 3a, and the 2nd deep drawing container 5 contacts the wine bottle 10, 2nd deep drawing
- the container 5 can be brought into close contact with the wine bottle 10.
- the sensible heat stored by the second heat storage material 5a can be reliably transmitted to the wine bottle 10 so that the wine bottle 10 can quickly reach the desired temperature.
- the sensible heat stored by the first heat storage material 3a and the latent heat are surely transmitted to the wine bottle 10 via the second heat storage material 5a, thereby assisting the wine bottle 10 to quickly reach a desired temperature.
- the wine bottle 10 can be held at a desired temperature for a long time by reliably transmitting the latent heat stored in the first heat storage material 3a to the wine bottle 10.
- FIG. 2A is a cross-sectional view showing the use state of the heat storage pack according to the present embodiment
- FIG. 2B is a cross-sectional view showing the use state of the conventional heat storage pack.
- the position of the 1st heat storage material 3a may become vertically downward by gravity at the time of use.
- a region where the heat storage material 3a does not exist on the upper side of the bottle becomes prominent, and heat may escape from the region where the heat storage material 3a does not exist, and the wine bottle may not be able to quickly reach a desired temperature.
- the heat storage pack 1 is filled with the first deep-drawn container 3 filled with the first heat storage material 3a and the second heat storage material 5a. Since the second deep-drawn container 5 is fixed by the flange portion and the flange portion, it is possible to always maintain the positional relationship of the respective heat storage materials regardless of the influence of the weight. As a result, the sensible heat stored in the second heat storage material 5a can be reliably transmitted to the wine bottle 10 so that the wine bottle 10 can quickly reach a desired temperature.
- the sensible heat stored by the first heat storage material 3a and the latent heat are surely transmitted to the wine bottle 10 via the second heat storage material 5a, thereby assisting the wine bottle 10 to quickly reach a desired temperature.
- the wine bottle 10 can be held at a desired temperature for a long time by reliably transmitting the latent heat stored in the first heat storage material 3a to the wine bottle 10.
- first deep-drawn container 3 is formed with a first plastic film.
- second deep-drawn container 5 is formed of a second plastic film. This second plastic film is more flexible than the first plastic film.
- the first heat storage material 3a prevents deformation or the like that occurs in the process of storing latent heat, that is, in the process of changing from the liquid phase to the solid phase. At the same time, the shape can be maintained even in the liquid phase.
- the first plastic film preferably has a Young's modulus of 3,000 MPa or more
- the second plastic film has a Young's modulus of at least 3,000 MPa, preferably 600 MPa or less. More preferred.
- the Young's modulus is often used as an index indicating the hardness of a plastic film, particularly the strength of the waist.
- Examples of the plastic film having low waist and flexibility and having a Young's modulus of 3,000 MPa or less include polyethylene, polypropylene, and nylon, but the present invention is not limited to these.
- examples of the plastic film having strong stiffness and having a Young's modulus of 3,000 MPa or more include polyethylene terephthalate, but the present invention is not limited thereto.
- the film “NY # 100 um // PE # 15 um” selected as the second deep-drawn container was cut into a width of 15 mm and a length of 100 mm.
- FIG. 3A is a cross-sectional view of the heat storage pack according to the present embodiment.
- the flange portion 3b of the first deep-drawn container 3 and the flange of the second deep-drawn container 5 The part 5b is joined.
- the flange portion 3b of the first deep-drawn container 3 and the lid member 7 are joined.
- a gap layer 9 exists between the lid member 7 and the first heat storage material 3a.
- the flange portion 3b of the first deep-drawn container 3 and the flange portion 5b of the second deep-drawn container 5 are joined, whereby the first deep-drawn container 3 and the second deep-drawn container.
- the positional relationship of 5 is fixed, so that the performance can be improved and the repetition performance can be improved.
- the second deep-drawn container 5 may have a shape having bottom surfaces with different depths.
- the heat receiving body is formed by forming the second deep-drawn container 5 so that the depth is gradually increased in the height direction.
- the joining means include ultrasonic welding, vibration welding, induction welding, high frequency welding, semiconductor laser welding, thermal welding, spin welding, and the like, but the present invention is not limited to these.
- a through-hole 8 is provided in an arbitrary part of the flange portion 3b of the first deep-drawn container 3, and the second depth
- the flange portion 5b of the squeeze container 5 and the lid member 7 are directly joined.
- the following joining methods are used for joining each part of the heat storage pack 1.
- FIG. 3B is a diagram illustrating a concept of a film bonding method according to the present embodiment
- FIG. 3C is a plan view illustrating a film bonding state
- FIG. 3D is a cross-sectional view illustrating a film bonding state.
- FIG. 3E is a view showing a concept of a conventional film bonding method
- FIG. 3F is a diagram showing a heat seal strength of the bonding method according to the present embodiment and the conventional bonding method measured based on “JIS Z 0238”. It is a table
- the package strength is improved and the heat storage material filled therein is leaked to the outside. Can be prevented.
- the length of the flange portion 3 b of the first deep-drawn container 3 may be shorter than the length of the flange portion 5 b of the second deep-drawn container 5 and the lid member 7. This also allows the flange portion 5b of the second deep-drawn container 5 and the lid member 7 to be directly joined.
- Drawing 4A is a figure showing the concept of the 1st heat storage material used for the heat storage pack concerning this embodiment
- Drawing 4B is a figure showing the concept in case there is no viscosity in the heat storage material.
- the first heat storage material 3a and the second heat storage material 5a have a viscosity capable of maintaining a shape with respect to their own weight.
- the shape can be maintained without being affected by gravity.
- the heat storage material changes as the heat storage material changes from a solid phase to a liquid phase. Displaces vertically downward under the influence of gravity. As a result, the temperature of the upper part of the cold insulation object cannot be sufficiently controlled.
- the heat storage material being displaced vertically downward, a gap is generated in the vertical information of the heat storage material, and heat inflow and outflow are generated in the gap, thereby reducing the cooling effect.
- the first heat storage material and the second heat storage material are given viscosity.
- thickeners used include thickening polysaccharides and gelling agents. Specifically, locust bean gum, guar gum, guar gum dielectrics (cationized guar gum, hydroxypropyl guar gum, hydrolyzed guar gum), Examples thereof include carrageenan, pectin, xanthan gum, gellan gum, diyutan gum, starch, dextrin, cellulose dielectric (CMC, HEC, HPMC), and emulsifier.
- the thickener is not limited to these. Thereby, as shown to FIG. 4A, even if it is a case where the temperature control of a cold storage object is performed by standing a heat storage pack, it becomes possible to fully temperature-control a cold storage object.
- the viscosity of the first heat storage material 3a and the second heat storage material 5a is 1000 cP or more.
- the shape can be maintained without being affected by gravity.
- the arrival time is said to be about 10 to 30 minutes.
- the amount of the heat storage material mounted on such a beverage is practically about half of the weight of the beverage.
- the present inventors when mounting (wrapping) 500 g of a heat storage material on a 750 mL wine bottle (total weight: about 1 kg), the shape maintenance property of the heat storage material and the viscosity of the heat storage material. The relationship was evaluated.
- the heat storage material is not viscous and is a complete liquid
- the liquid may bounce back and spill out of the container.
- the heat storage material is filled while the liquid is filled, there is a possibility that the liquid filled by vibrations overflows during the process, and thus the filling amount is limited.
- the first heat storage material 3a includes a hydrocarbon compound that forms clathrate hydrate with water and a part of water at a temperature of 0 ° C. or higher, and another part of water. It is comprised with the inorganic compound which hardens the phase change temperature of less than 0 degreeC.
- This configuration can increase the amount of heat stored.
- the food or drink as the heat receiving body can be quickly reached the desired temperature and kept at the desired temperature for a long time.
- the material used is safe and secure.
- heat storage refers to a technique for temporarily storing heat and extracting the heat as needed.
- Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like, but in this embodiment, latent heat storage is exclusively used.
- Latent heat storage uses the latent heat of a substance to store the thermal energy of the phase change of the substance.
- the latent heat storage has a high heat storage density and a constant output temperature.
- the heat storage material utilizing the latent heat storage ice (water), paraffins (general formula generic term for C n H 2n + 2 represented by saturated chain hydrocarbon), aqueous inorganic salt solution, inorganic salt hydrates, clathrate water
- a latent heat storage member such as a Japanese product is used.
- aqueous inorganic salt solution used for heat storage materials an aqueous solution of potassium chloride (KCl) and ammonium chloride (NH 4 Cl) dissolved in water, sodium chloride (NaCl) and ammonium chloride (NH 4 Cl) dissolved in water
- KCl potassium chloride
- NH 4 Cl ammonium chloride
- NaCl sodium chloride
- NH 4 Cl ammonium chloride
- Inorganic salt hydrates used in heat storage materials include sodium sulfate decahydrate (Na 2 SO 4 ⁇ 10H 2 O), sodium acetate trihydrate, sodium thiosulfate pentahydrate, disodium hydrogen phosphate twelve Binary composition of hydrate and dipotassium hydrogen phosphate hexahydrate (melting point 5 ° C), lithium nitrate trihydrate and lithium chloride hexahydrate mainly composed of lithium nitrate trihydrate Binary composition (melting point 8-12 ° C) or ternary composition of lithium nitrate trihydrate-magnesium chloride hexahydrate-magnesium bromide hexahydrate (melting point 5.8-9.7)
- the heat storage material is not limited to these inorganic salt hydrates.
- the second heat storage material 5a can be composed of, for example, an aqueous sodium chloride solution and CMC (carboxymethylcellulose).
- the heat storage pack according to this embodiment includes a gap layer 9 between the first heat storage material 3a filled in the first deep-drawn container 3 and the lid material 7.
- the void layer 9 plays the role of a heat insulating material,
- the holding time of the 1st heat storage material 3a can be lengthened.
- a liquid here, a heat storage material
- the filling rate of the liquid with respect to the volume of the deep-drawn container is said to be at most about 70 to 80% in the manufacturing process.
- a heat storage pack in which a deep-drawn container is filled with about 70 to 80% is phase-changed (that is, changed from a liquid phase to a solid phase) with the bottom of the container placed flat downward.
- this heat storage pack When this heat storage pack is brought into contact with food or drink serving as a heat receiving body, heat is conducted in the order of the heat receiving body, the bottom of the deep-drawn container, the heat storage material, the void layer, the lid material, and the outside air.
- the void layer exhibits a heat insulating effect from the outside air for the heat storage material, and as a result, the holding time of the heat storage material can be extended.
- the heat storage material has a viscosity capable of maintaining the shape, the above-described positional relationship is maintained even after the phase change (that is, from the solid phase to the liquid phase), so that the holding time can be further extended.
- the first deep-drawn container 3 may include a heat insulating material on the opposite side of the second deep-drawn container 5.
- the first deep-drawn container 3 can further enhance the cold insulation performance or the thermal insulation performance by further including a heat insulating material on the opposite side of the second deep-drawn container 5.
- a heat insulating material natural materials, plastic materials, mineral materials such as glass fibers are used.
- natural systems include cellulose fibers and lightweight soft wood fiber boards.
- plastics include polystyrene foam, rigid urethane foam, highly foamed polyethylene, and phenol foam.
- the mineral system include glass wool, rock wool, and foamed glass, but the present invention is not limited to these.
- FIG. 5A is a plan view of the heat exchange unit
- FIG. 5B is a conceptual diagram showing an example of use of the heat exchange unit. That is, the heat exchange unit 20 according to the present embodiment includes a plurality of the heat storage packs 1 described above and a joint mechanism 9 between adjacent heat storage packs.
- the heat storage packs 1 are connected via the joint mechanism 9, it is possible to follow the shape of the food or drink as the heat receiving body, and as a result, the adhesion can be improved.
- the heat receiving body is a beverage bottle such as wine
- the heat storage pack can be brought into close contact with the curved surface by using a heat exchange unit in which a plurality of heat storage packs are connected in the circumferential direction of the beverage bottle.
- wine bottles and beer bottles may have a constricted shape in which the cross-sectional area gradually decreases in the height direction.
- the heat storage packs can be brought into close contact with each other along the constricted shape. Furthermore, rapid cooling performance or cold insulation performance can be improved by filling different kinds of heat storage materials in the height direction.
- the method for manufacturing a heat storage pack is a method for manufacturing a heat storage pack for managing the temperature of food and drink, and is a first deep-drawn container (first housing portion) having a concave shape by a first mold. And a step of molding a second deep-drawn container (second housing portion) having a concave shape larger than at least the concave shape of the first deep-drawn container by the second mold, Filling the first deep-drawn container with a first heat storage material that changes phase at a predetermined temperature; and filling the second deep-drawn container with a liquid phase state at the phase change temperature of the first heat storage material.
- the step of filling the second heat storage material to be maintained and the second deep drawn container filled with the second heat storage material are stacked with the first deep drawn container filled with the first heat storage material. Joining the flange portion of the first deep-drawn container and the flange portion of the second deep-drawn container, Including even without.
- the following manufacturing method may be used. That is, the step of molding the first deep-drawn container (first housing portion) having a concave shape with the first mold and the second mold at least than the concave shape of the first deep-drawn container.
- a step of molding a second deep-drawn container (second housing portion) having a large concave shape, and a second step of maintaining a liquid phase state at the phase change temperature of the first heat storage material in the second deep-drawn container A step of filling the heat storage material, a step of stacking the first deep-drawn container on the second deep-drawn container filled with the second heat storage material, and a first deep-drawn container. At least a step of filling the first heat storage material that changes in phase at a high temperature and a step of joining the lid member, the flange portion of the first deep-drawn container, and the flange portion of the second deep-drawn container.
- PVC soft
- PVC hard
- PE non-stretched
- OPP stretched
- PET NY, etc.
- NY // PE and NY // PP configurations are common.
- the filling material is a liquid and the contents may be leaked
- a NY // PE configuration that is softer than PP and excellent in weldability is more preferable.
- FIG. 6A and FIG. 6B are views showing a state of manufacturing the first deep-drawn container 3.
- the hard film 61 is installed in the vacuum molding die 60 as a 1st metal mold
- the hard film material used for molding the first deep-drawn container 3 is preferably a film having a PP configuration from the viewpoint of moldability.
- the shape retention property is important for the first deep-drawn container 3, it is preferable to select a film made of PVC (hard) or PP.
- the first deep-drawn container is present between the lid material and the second deep-drawn container
- the first deep-drawn container is composed of a three-layer film such as PE // NY // PP. Is common.
- the three-layer film has a weak heat seal strength
- the two-layer film configuration is used, and a through-hole is provided in an arbitrary part of the film.
- the first deep-drawn container 3 (first housing portion) having a concave shape is formed.
- FIG. 7A and FIG. 7B are diagrams showing a state of manufacturing the second deep-drawn container 5.
- a soft film 71 is placed in a vacuum forming mold 70 as a second mold, and vacuum forming is performed using a vacuum forming machine.
- the second deep-drawn container is preferably selected from a film made of PVC (soft) or PE because the adhesion to the cold object is important.
- PVC soft
- PE polyvinylene
- FIG. 8 is a conceptual diagram showing a process of filling the second heat storage material.
- the second heat storage material 5a as the antifreeze material is quantitatively filled into the second deep-drawn container 5 formed as described above using a liquid filling machine.
- a pump type filling machine for the liquid filling machine.
- the second heat storage material has a minimum viscosity that does not affect the material rebounding or jumping out, and a minimum viscosity that maintains shape against its own weight in the filling process. For example, it preferably has a viscosity of about 1000 to 10000 cP.
- FIG. 9 is a conceptual diagram showing a process of thermocompression bonding a film.
- the first deep-drawn container 3 formed as described above is positioned on the second deep-drawn container 5 filled with the second heat storage material 5a as the antifreeze material, and the first depth-drawn container 3 is positioned.
- the film material forming the squeezed container 3 and the film material forming the second deep-drawn container 5 are thermally welded.
- a heat sealer is preferably used for thermocompression bonding of the film.
- An ultrasonic welder may be used.
- FIG. 10 is a conceptual diagram showing a process of filling the first heat storage material.
- the first heat storage material 3a is quantitatively filled into the first deep-drawn container 3 formed as described above using a liquid filling machine.
- a pump type filling machine for the liquid filling machine.
- the 1st heat storage material 3a has a viscosity with shape maintenance property with respect to own weight. For example, a viscosity of about 1000 to 10000 cP is more preferable.
- the filling rate of the heat storage material with respect to the volume of the container is preferably about 70 to 90%, and a state in which a void layer is formed between the top surface of the container is preferable.
- FIG. 11 is a conceptual diagram showing a process of thermocompression bonding a film.
- the lid member 7 is positioned on the second deep-drawn container 5, and the film material forming the second deep-drawn container 5 and the lid material 7 are heat-welded.
- a heat sealer is preferably used for thermocompression bonding of the film.
- An ultrasonic welder may be used.
- a through-hole 8 is provided in a part of the top surface of the film forming the second deep-drawn container 5, and at the time of welding in this step, the first deep-drawn container 3 is placed through the through-hole 8.
- the film to be formed and the lid member 7 are preferably welded.
- the second deep-drawn container 5 may have a shape having bottom surfaces with different depths.
- the bonding means include ultrasonic welding, vibration welding, induction welding, high frequency welding, semiconductor laser welding, thermal welding, spin welding, and the like, but the present invention is not limited to these.
- the second heat storage material 5a maintains a liquid phase state at the phase change temperature of the first heat storage material 3a, and the second deep-drawn container 5 is a food or drink as a heat receiver. It becomes possible to manufacture the heat storage pack which contacts.
- FIG. 12 is a diagram showing an experimental procedure.
- FIG. 13 is a diagram showing an evaluation method of the experimental results, and the following method is used.
- FIG. 14 is a table showing the configurations of the heat storage materials of Comparative Examples 1 to 3 and Examples 1 to 3. As shown in this table, a heat storage material was prepared and evaluated according to the above experimental procedure. In addition, as shown in Comparative Examples 1 to 3 and Examples 1 to 3, the forms of the heat storage packs are different.
- FIG. 15 is a diagram showing an outline of filling and packaging of the heat storage material.
- FIG. 16 is a diagram showing the results of measuring the temperature of the wine liquid temperature for Comparative Example 1 shown in FIG. 14 according to the experimental procedure shown in FIG. Since the adhesiveness with the bottle is good, the cooling gradient ( ⁇ t / ⁇ T) is good, but the amount of heat is not enough, so that the ultimate temperature is insufficient.
- FIG. 17 is a diagram showing a result of measuring the temperature of the wine liquid temperature in Comparative Example 2 shown in FIG. 14 according to the experimental procedure shown in FIG.
- a heat storage material of KCl (potassium chloride) _21 wt% aqueous solution + CMC_5 wt% was generated, and a heat storage pack was prepared using a stirring / packaging machine. Since it was a frozen material, it had latent heat, and a result that satisfied the ultimate temperature as compared with Comparative Example 1 was obtained. On the other hand, since the adhesion was insufficient, the cooling gradient was inferior to that of Comparative Example 1.
- FIG. 18A is a diagram showing an outline for producing a heat storage pack according to Comparative Example 3
- FIG. 18B is a plan view of Comparative Example 3
- FIG. 18C is a side view of Comparative Example 3. That is, an antifreeze material [NaCl (sodium chloride) _23 wt% aqueous solution + CMC_5 wt%] was prepared in the same manner as in Comparative Example 1, and a heat storage material [KCl (potassium chloride) _21 wt% aqueous solution was prepared in the same manner as in Comparative Example 2. + CMC — 5 wt%] was produced.
- a pack-in-pack heat storage pack in which a film pack was filled with an antifreeze material and a heat storage material formed into a film pack was produced.
- FIG. 19 is a diagram showing the results of measuring the temperature of the wine liquid temperature in Comparative Example 3 produced as described above according to the experimental procedure shown in FIG. In Comparative Example 3, a sufficient ultimate temperature could be obtained while maintaining a cooling rate equivalent to that of Comparative Example 1 with a pack-in-pack configuration filled with an antifreeze material and a heat storage pack.
- the optimum temperature range here is the optimum temperature range for white wine, and is not sufficient to realize the specifications for sparkling wine (2 to 6 ° C.), which is even lower.
- FIG. 20 is a diagram showing the results of measuring the temperature of the wine liquid for Example 1 manufactured by the method described with reference to FIGS. 6A to 11 in accordance with the experimental procedure shown in FIG.
- the first heat storage material 3 a is “KCl (potassium chloride) — 21 wt% aqueous solution + CMC — 5 wt%”
- the second heat storage material 5 a as an antifreeze is “NaCl (sodium chloride). ) _23 wt% aqueous solution + CMC_5 wt% ”.
- Example 1 is composed of a soft film, and is composed of a hard film in the second deep-drawn container 5 filled with the second heat storage material 5a (antifreeze material), and is filled with the first heat storage material 3a.
- the first deep-drawn container 3 was thermally welded, it was possible to realize a configuration that quickly reached the appropriate temperature range (2 to 6 ° C.) of sparkling wine.
- FIG. 21 is a diagram showing the results of the temperature measurement of the wine liquid temperature in Example 2 manufactured by the method described with reference to FIGS. 6A to 11 according to the experimental procedure shown in FIG.
- the first heat storage material 3 a is “NH 4 Cl (ammonium chloride) —18 wt% aqueous solution + CMC — 5 wt%”
- the second heat storage material 5 a as an antifreeze is “NaCl ( Sodium chloride) _23 wt% aqueous solution + CMC_5 wt% ”.
- the second deep-drawn container 5 made of a soft film and filled with the second heat storage material 5a is made of a hard film and filled with the first heat storage material 3a.
- FIG. 22 is a diagram showing the results of measuring the temperature of the wine liquid for Example 3 manufactured by the method described with reference to FIGS. 6A to 11 according to the experimental procedure shown in FIG.
- the first heat storage material 3a is “TBAB (tetrabutylammonium bromide) _40 wt% aqueous solution + CMC_5 wt%”
- the second heat storage material 5a as the antifreeze material is “NaCl ( Sodium chloride) _23 wt% aqueous solution + CMC_5 wt% ”.
- a first deep heat-contained material 3a filled with a first heat storage material 3a is formed in a second deep-drawn container 5 made of a soft film and filled with a second heat storage material 5a (antifreeze material).
- FIG. 23 is a table summarizing the experimental results. Comparative Example 1 was effective only for red wine, Comparative Example 2 and Comparative Example 3 were effective only for red wine and white wine, but Comparative Examples 1 to 3 were not effective for sparkling wine. In contrast, Example 1 and Example 2 were found to be effective for all of red wine, white wine and sparkling wine. Moreover, about Example 3, about red wine, while showing sufficient rapid cooling characteristic, it turned out that suitable temperature can be maintained for 2 hours or more.
- the heat storage pack according to the present embodiment can be applied to an icing pack.
- 24A is a plan view of an icing pack according to Modification 1 of the present embodiment
- FIG. 24B is a cross-sectional view taken along the line BB in FIG. 24A.
- the icing pack 240 includes a pack body 241, a peripheral portion 241a, and a storage portion 241b.
- the icing pack 240 includes band portions 242R, 242L, a hook portion 243R, and a loop portion 243L. With this configuration, the object to be kept cold can be quickly reached the desired temperature.
- FIG. 25A is a plan view of a cold ice mask according to the second modification of the present embodiment
- FIG. 25B is a DD cross-sectional view in FIG. 25A.
- the cold insulation ice mask 30 includes a right eye cold insulation part 31R, a left eye cold insulation part 31L, a connection part 32, and rubber bands 34R and 34L. This configuration allows the eye to quickly reach the desired temperature.
- FIG. 26 is a diagram illustrating an outline of an ice pillow according to the third modification of the present embodiment.
- the surface of the ice pillow is formed into a fine pleated configuration using a bubble-containing cushioning material. That is, the ice pillow 260 includes a first housing portion 261 having the first heat storage material 3a and a second housing portion 262 having the second heat storage material 5a. Thereby, it becomes possible to increase a contact area with a human body (head) and obtain a remarkable rapid cooling feeling.
- FIG. 27 is an exploded view of the cold storage mat according to the fourth modification
- FIG. 28 is a diagram illustrating a state where the cold storage mat 280 is completed.
- the cold storage mat 280 includes a lid member 7, a first deep-drawn container 3, and a second deep-drawn container 5, and the first deep-drawn container 3 is filled with the first heat storage material 3a. Yes.
- the second deep-drawn container 5 is filled with a second heat storage material 5a.
- the first deep-drawing container 3 uses “co-pressed multilayer film“ F116_350 um ”manufactured by Mitsubishi Plastics, Inc.”, and the second deep-drawn container 5 a uses “co-pressed manufactured by Mitsubishi Plastics, Inc.”
- a multilayer film “C131_200 um” is used.
- the lid material “commercially available NY / LL — 75 ⁇ m” was used.
- the first heat storage material 3a is “KCl (potassium chloride) _20 wt% aqueous solution”
- the second heat storage material 5a is “NaCl (sodium chloride) _23 wt% aqueous solution + CMC_5 wt%”.
- the mounting amount of the 2nd heat storage material 5a was 350g.
- the cold storage mat 280 is cooled in the freezer compartment (around ⁇ 18 ° C.), and a commercially available aluminum dish 282 is placed on the cold storage mat 280 as shown in FIG. Next, water (500 g) is poured onto the aluminum dish 282. This water should be kept in a refrigerator (4-5 ° C). And the time-dependent change of water temperature was measured. Moreover, as a control experiment, the case where the cold storage mat 280 was not used was also measured.
- FIG. 30 is a graph showing the measurement results in Modification 4.
- the ambient temperature (1) is maintained at a little less than 30 ° C. and does not change.
- the temperature change (2) of the water temperature in the aluminum dish 282 increased rapidly in about 30 minutes from the start of measurement, and reached about 22 degrees after 60 minutes.
- the temperature change (3) of the water temperature in the aluminum dish 282 slightly increased for about 30 minutes from the start of measurement to 8 ° C. to 9 ° C. Until about 60 minutes, the temperature was maintained and then increased.
- the surface temperature of the cold storage mat 280 slightly increased for about 30 minutes from the start of measurement and reached ⁇ 5 ° C., but the temperature was maintained until about 60 minutes, and then increased. In this case, it is considered that the regenerator material in the regenerator mat 280 was changed in phase until about 60 minutes later.
- the cold insulation object (water in Modification 4) placed on the cold storage mat 280 can be held at a constant temperature for about 60 minutes.
- the heat storage pack according to the present embodiment maintains the temperature at the time of eating by placing an appetizer or fruit on a cold storage mat as in the fourth modification, such as a use scene that cools the temperature at the time of drinking such as wine or sake. It is suitable for various use scenes. In addition to these scenes, frozen foods such as frozen meat and frozen fish can be quickly and high-quality thawed, cooked dishes such as curry and stew, and heat from infants' milk. It is also preferable to be used in a rough heat remover that can be quickly taken.
- FIG. 34A to 34D are views showing the inner tray according to the second embodiment
- FIG. 34A is a top view of the inner tray
- FIG. 34B is a front view of the inner tray
- FIG. 34C is a view of the inner tray
- FIG. 34D is a perspective view of the inner tray.
- the inner tray 100 corresponds to a first deep drawn container.
- the first inner tray 102 is relatively shallow and has a certain depth
- the second inner tray 104 is deepened from one side to the other.
- three first inner trays 102 are connected in the width direction
- three second inner trays 104 are connected in the width direction
- the first inner tray 102 and the second inner tray 102 are connected in the second direction.
- the tray 104 is connected in the longitudinal direction.
- the first inner tray 102 has a certain depth, but the second inner tray 104 becomes deeper from the left toward the right as viewed in the drawing. Yes.
- the bottom portion 106 of the inner tray 100 may be formed to be convex toward the opening side. Thereby, the bottom part 106 of the inner tray 100 can be further enhanced along the outer surface of the bottle.
- the manufacturing procedure of the inner tray 100 is as follows. That is, a packaging material is installed in a cavity mold, and an inner tray 100 as a first deep-drawn container is formed using a vacuum molding machine. It is preferable to use a hard plastic film for the packaging material, and more specifically, the following specifications are more preferable. That is, the configuration is “PE / PA / PE, PP / PA / PP”, the total thickness is “300 to 500 ⁇ m”, and the hardness is “Young's modulus ⁇ 3000 Mpa”. Examples of the packaging material satisfying such specifications include “co-pressed multilayer film“ F116_350 um ”manufactured by Mitsubishi Plastics, Inc.”.
- PE single layer / 300 to 500 um is preferably used. As a result, the packaging material cost can be suppressed and the moldability of the container can be improved.
- FIG. 35A to 35D are views showing the outer tray according to the second embodiment
- FIG. 35A is a top view of the outer tray
- FIG. 35B is a front view of the outer tray
- FIG. 35C is a view of the outer tray
- FIG. 35D is a perspective view of the outer tray.
- the outer tray 110 corresponds to a second deep drawn container.
- the first outer tray 112 is relatively shallow and has a certain depth, and the second outer tray 114 is deepened from one side to the other. For this reason, the capacity of the outer tray 110 is larger than the capacity of the inner tray 100.
- the capacity of the outer tray 110 is larger than the capacity of the inner tray 100, more antifreeze material as the second heat storage material can be used. Further, since the outer tray 110 is flexible, the degree of freedom of deformation is high. For this reason, it becomes possible to make the outer tray 110 follow the outer shape of the food and drink, and to improve the adhesion with the food and drink.
- the capacity of the outer tray 110 is preferably 2 to 10 times the capacity of the inner tray 100.
- first outer trays 112 are connected in the width direction
- second outer trays 114 are connected in the width direction
- these first outer tray 112 and the second outer tray 112 are connected to each other.
- a tray 114 is connected in the longitudinal direction.
- the first outer tray 112 has a certain depth, but the second outer tray 114 becomes deeper from the left to the right toward the paper surface. Yes.
- the bottom 116 of the outer tray 110 may be formed to be convex toward the opening side. Thereby, the bottom part 116 of the outer tray 110 can be further enhanced along the outer surface of the bottle.
- the manufacturing procedure of the outer tray 110 is as follows. That is, a packaging material is installed in a cavity mold, and an outer tray 110 as a second deep-drawn container is formed using a vacuum molding machine. It is preferable to use a soft plastic film as the packaging material, and more specifically, the following specifications are more preferable. That is, the constitution is “PA / PE, PA / PP”, the total thickness is “100 to 300 ⁇ m”, and the hardness is “Young's modulus is 3000 Mpa or less, preferably 600 Mpa or less”. Examples of the packaging material satisfying such specifications include “co-pressed multilayer film“ C131_200 um ”manufactured by Mitsubishi Plastics, Inc.”.
- PE single layer / 100 to 300 ⁇ m is preferably used.
- the packaging material cost can be suppressed and the moldability of the container can be improved.
- the heat exchange unit of the present invention cooled / frozen in a freezer compartment or the like is taken out and used, there is a difference between the temperature of the heat exchange unit immediately after taking out (the temperature in the freezer compartment) and the external environmental temperature. Largely, condensation may occur on the surface of the heat exchange unit. In such a case, it is preferable to use a non-woven fabric packaging material or a packaging material having a surface coated with a surfactant. Thereby, the occurrence of condensation can be suppressed.
- “LLDPE special grade“ TNF ”manufactured by Mitsui Chemicals, Inc.” may be used.
- the heat exchange unit according to the present invention adopts a configuration for covering the wine bottle.
- the first outer tray 112 and the second outer tray 114 of the heat exchange unit are mounted while being crushed.
- “giving slidability” is important.
- nylon, polyethylene, polypropylene, polystyrene, etc. are generally used as the inner tray packaging material, and the friction coefficients thereof are 0.37 for nylon, 0.18 for polyethylene, and 0. 0 for polypropylene. 3.
- Polystyrene is about 0.5.
- the surface of these packaging materials having a low friction coefficient for example, a packaging material coated with Teflon (registered trademark) or a fluororesin (PTFE, PFA, FEP, etc.) having a friction coefficient of 0.04 to 0.10, Alternatively, the detachability can be improved by applying the packaging material as it is.
- the outer tray 110 is maintained while maintaining the strength of the inner tray 100. Can be flexibly deformed.
- FIG. 36 is a diagram illustrating a schematic configuration of a heat storage pack 200 according to the second embodiment.
- the inner tray 100 formed by the above-described method is filled with the latent heat material 108 as the first heat storage material by using a liquid constant quantity filling machine.
- the latent heat material 108 a latent heat storage material that changes phase at least below the temperature required by the beverage object is preferable.
- it may be a potassium chloride aqueous solution, an ammonium chloride aqueous solution, a tetrabutylammonium bromide aqueous solution, a paraffin heat storage material, or the like.
- the latent heat material 108 may be given viscosity.
- the viscosity is 100 cP or more, preferably 200 cP or less. This viscosity will be described later.
- examples of the thickening material include locust bean gum, guar gum, carrageenan, gellan gum, water-absorbing polymer, acrylic acid polymer and the like.
- the outer tray 110 formed by the above-described method is filled with the antifreeze material 118 as the second heat storage material by using a liquid quantitative filling machine.
- a material that maintains a liquid phase state at least at a temperature at which the latent heat material 108 is frozen is preferable.
- a sodium chloride aqueous solution, a calcium chloride aqueous solution, ethylene glycol, polypropylene glycol, silicon oil, or the like may be used.
- the antifreeze material 118 may be given viscosity. The viscosity is 100 cP or more, preferably 200 cP or less. This viscosity will be described later.
- the thickening material include locust bean gum, guar gum, carrageenan, gellan gum, water-absorbing polymer, and acrylic acid polymer.
- the “inner tray 100 filled with the latent heat material 108 (referred to as a latent heat layer)” manufactured as described above, and the “outer tray 110 (filled with the antifreeze material 118) manufactured as described above (referred to as a latent heat layer).
- These three-layer members are thermally welded to a lid member 120 having a heat insulating function or attached with a heat insulating material by using a blister seal / packaging machine.
- the lid itself has a heat insulating property, it is possible to prevent heat from entering and exiting from the opposite side of the food and drink, and to improve the temperature management of the food and drink.
- “PA / PE, PA / PP configuration” is generally used.
- a film having a CPP configuration or an EVOH configuration may be selected.
- the performance required for the packaging material such as an oxygen barrier or a water vapor barrier is not so high, it is preferable to use a PE single layer. As a result, the packaging material cost can be reduced.
- Examples of blister seal / packaging machines include “TB5060” and “TB6090” manufactured by Taisei Techno Co., Ltd.
- Examples of the heat insulating material include rigid urethane foam, highly foamed polyethylene, and polyolefin foam (Pef).
- FIG. 37 is a diagram showing a heat exchange unit. Here, a state in which the two heat storage packs 200 manufactured as described above are connected via the elastic connection rubber 122 to configure the heat exchange unit 202 is shown.
- FIG. 37 shows the heat exchange unit 202 as viewed from the outer tray 110 side.
- the two heat storage packs 200 are connected using the elastic connection rubber 122.
- the elastic connection rubber 122 When the elastic connection rubber 122 is selected, natural rubber, synthetic rubber, silicon rubber, urethane rubber, or the like can be used.
- the tightening force of the elastic connecting rubber 122 is preferably 15 N or more. By applying a tightening force equal to or greater than the above weight, the adhesion between the beverage object such as a wine bottle and the heat storage pack 200 can be further improved, and an improvement in the rapid cooling performance can be expected.
- an annular rubber band corresponds to the pressing portion.
- the pressing force of the pressing portion is 25 N or more. If it is 25N or more, it becomes possible to make the outer tray 110 adhere to food and drink strongly.
- FIG. 38A to 38C are views showing the form of the heat exchange unit.
- 38A shows a state in which the heat exchange unit 202 is laid down
- FIG. 38B shows a state in which the heat exchange unit 202 is leaned
- FIG. 38C shows a state in which the heat exchange unit 202 is completed.
- FIG. 38A when the heat exchanging unit 202 is laid down, the first outer tray 112 is not changed, but the second outer tray 114 is in a state where the left side becomes higher toward the paper surface.
- FIG. 38B when the heat exchanging unit 202 is stood up, the second outer tray 114 is made of a soft packaging material filled with antifreeze material, and is surrounded by a dotted line in the figure. Thus, it will be in a state of sagging under its own weight.
- the second outer tray 114 when it is set in the standing state, the second outer tray 114 is in a state of hanging vertically downward.
- the heat storage packs 200 are connected so as to be arranged concentrically, so that food and drink can be surrounded. Moreover, since a joint mechanism has a stretching property, a joint mechanism expands / contracts according to the external shape of food and drink, and it becomes possible to make each heat storage pack 200 adhere more closely to food and drink. As a result, it is possible to improve the efficiency of temperature management of food and drink.
- the first outer tray 112 and the second outer tray as the antifreeze layer in a suspended state are placed.
- the tray 114 comes into contact with the beverage, the tray 114 is pushed up, follows the shape of the beverage having an irregular shape, and closely contacts without any gap.
- a container constituting a beverage has a thin neck on the upper side and a relatively thick body on the lower side.
- the first outer tray 112 and the second outer tray 114 are deformed so as to follow the outer shape thereof.
- the adhesiveness it becomes possible to improve the adhesiveness. That is, from the viewpoint of rapid cooling, it is very important how to cool the upper side of the beverage, but according to the heat exchange unit according to the second embodiment, the shape of the beverage is particularly high. Regardless, since the first outer tray 112 and the second outer tray 114 can follow, the adhesion is improved, and it is possible to deal with a plurality of types of beverage objects.
- FIG. 39 is a diagram showing the usage state of the heat exchange unit according to the second embodiment step by step.
- the state changes from left to right as viewed on the paper.
- a burgundy wine bottle 10 is mounted with a heat exchange unit.
- (1) the first outer tray 112 on the lower side is brought into contact with the wine bottle 10.
- the second outer tray 114 on the upper side is deformed along the bottle shape.
- (3) The latent heat material layer adheres closely to the wine bottle 10 via the antifreeze material layer on both the upper side and the lower side. In this way, it is possible to realize a heat exchange unit capable of closely contacting the wine bottle 10 having a different diameter depending on the place without any gap.
- the gap can be reduced as compared with the case where many relatively small heat storage packs are connected, and the outer tray 110 and the food and drink can be reduced. It becomes possible to improve adhesiveness.
- the outer tray 110 of the upper stage part is relatively large, even if the food and drink has a shape in which the vertical upper part is thin and the vertical lower part is thick like a bottle, for example, the outer tray 110 is food and drink. It is possible to increase the efficiency of temperature management.
- the heat exchange unit is frozen in the freezer of the refrigerator or in a low temperature thermostat set at -18 to -20 ° C.
- the heat exchange unit that has undergone the procedure 2 is put into a constant temperature and constant temperature bath set to about 25 to 30 ° C., and the change (cooling characteristics) of the liquid temperature (two points) of the beverage is measured. As shown in FIG. 40, the temperature measurement points were a place 100 mm from the bottom of the beverage and a place 200 mm from the bottom.
- FIG. 41 is a diagram showing the structures of the antifreeze material and the latent heat material of Comparative Examples 4 to 6 and Examples 4 to 7 in the comparative experiment of the second embodiment.
- Comparative Example 4 a method is adopted in which the heat exchange unit is brought into contact with the wine bottle with a drawstring structure on the upper side of the wine bottle.
- Comparative Example 5 the heat exchange unit is simply wrapped around the wine bottle.
- the comparative example 6 in anticipation of the improvement over the comparative example 5, a configuration in which the cold insulating material (antifreezing material / latent heat material) is divided into three in the height direction is adopted.
- an antifreeze material and a latent heat material were produced and evaluated according to the above experimental procedure.
- the prototype used for this comparative control experiment was produced as follows. (1) Tap water and NaCl (sodium chloride) were placed in a first stirring tank, and stirred and dissolved with a stirrer to prepare a NaCl — 23% aqueous solution. Here, the stirring conditions were 150 rpm / 10 min. (2) Similarly, tap water and KCl (potassium chloride) were placed in the second stirring tank, and stirred and dissolved with a stirrer to prepare a KCl — 20% aqueous solution. Here, the stirring conditions were 150 rpm / 10 min.
- a tray formed by vacuum forming was quantitatively filled with the NaCl — 23% aqueous solution prepared in (1) and the KCl — 20% aqueous solution prepared in (2) using a pump filling machine.
- the tray and the lid were sealed to produce a heat exchange unit.
- FIG. 42 is a diagram showing the result of measuring the temperature of the wine liquid temperature in Comparative Example 4 shown in FIG.
- Comparative Example 4 a method is adopted in which the heat exchange unit is brought into contact with the wine bottle with a drawstring structure on the upper side of the wine bottle.
- the wine bottle is a burgundy type.
- Comparative Example 4 the adhesion on the upper side of the wine bottle was ensured, and as a result, the beverage could reach the temperature of drinking white wine (5-8 ° C.).
- it was confirmed that the degree of tightening of the purse varies from measurement to measurement, and the measurement results also vary.
- FIG. 43 is a diagram showing the results of measuring the temperature of the wine liquid for Comparative Example 5 shown in FIG.
- the wine bottle is of Bordeaux type.
- a heat exchange unit similar to the prototype used in Comparative Example 4 was attached to a Bordeaux-type wine bottle, and measurement was performed.
- the heat exchange unit is simply wrapped around the wine bottle.
- the shape of the wine bottle is different from that of Comparative Example 4, the adhesion on the upper side is particularly bad, and achieved in Comparative Example 4. The result was that the optimum temperature of white wine was not reached.
- FIG. 44 is a diagram showing the results of measuring the temperature of the wine liquid for Comparative Example 6 shown in FIG.
- the wine bottle is of Bordeaux type.
- a configuration in which the cold insulating material (antifreezing material / latent heat material) is divided into three in the height direction is adopted.
- a joint mechanism was provided to improve the adhesion on the upper stage side, thereby obtaining a result that the temperature reached was lower than that of Comparative Example 5.
- the total contact area with the container is reduced by the provision of the joint mechanism, and as a result, the performance is lowered.
- FIG. 45 is a diagram showing the results of measuring the temperature of the wine liquid for Example 4 shown in FIG.
- the wine bottle is a burgundy type.
- the heat exchange unit can be uniformly attached to the wine bottle, has a rapid cooling rate compared to Comparative Examples 4 to 6, and has a desired temperature. The performance which can be kept cold was obtained below.
- FIG. 46 is a diagram showing the results of the temperature measurement of the wine liquid temperature in Example 5 shown in FIG.
- the wine bottle is of Bordeaux type.
- the configuration of the present invention enables the heat exchange unit to be in close contact with the wine bottle, and the rapid cooling rate is higher than in Comparative Examples 4-5. The performance which can be kept cold quickly and below the desired temperature was obtained.
- FIG. 47 is a diagram showing the results of measuring the temperature of the wine liquid for Example 6 shown in FIG.
- the wine bottle is a burgundy type.
- the heat exchange unit is in a state of being able to uniformly adhere to the wine bottle, quickly reaches the temperature (12 to 15 ° C.) at which red wine is consumed, and The performance which can be kept cold was obtained.
- FIG. 48 is a diagram showing the results of measuring the temperature of the wine liquid for Example 7 shown in FIG.
- the wine bottle is of Bordeaux type.
- the configuration of the present invention allows the heat exchange unit to be in close contact with the wine bottle, and the rapid cooling rate is higher than in Comparative Examples 4-5. The performance which can be kept cold quickly and below the desired temperature was obtained.
- FIG. 49 is a table summarizing the experimental results.
- Comparative Example 4 When applied to white wine, Comparative Example 4 was effective, but Comparative Example 5 was not effective. Moreover, although the comparative example 4 was also favorable, since the tightening degree of the purse varies depending on the measurement, it was confirmed that the measurement result varied when measured several times under the same conditions. Although Comparative Example 6 can be said to be more effective than Comparative Example 5, it cannot be said to be sufficiently effective. In contrast to these Comparative Examples 4 to 6, Examples 4 to 7 were effective regardless of whether the wine bottle was a burgundy type or a Bordeaux type. Thereby, according to this embodiment, it can be said that it is possible to make wine into desired temperature irrespective of the shape of a wine bottle.
- Viscosity of heat storage materials There are two purposes for imparting viscosity to the heat storage material.
- the heat storage material When the heat storage material is filled in the tray and then transported to the sealing step, the heat storage material may be spilled from the tray due to the shaking caused by the transport. There is a trade-off relationship between the conveyance speed Down and the tact UP. In order to improve this, the fluctuation of the liquid level is reduced by imparting viscosity to the heat storage material.
- the inventors of the present invention have confirmed by calculation that, as a guide, about 100 cP or more is sufficient when 80% of the tray volume is filled.
- FIG. 50 is a diagram illustrating the amount of change in the liquid level with respect to the viscosity of the heat storage material.
- the viscosity of the heat storage material is defined as 100 to 200 cP from the viewpoint of reducing liquid spillage during conveyance.
- FIG. 1 [Material of second deep-drawn container] As shown in FIG. 1, the second deep-drawn container 5 directly contacts a wine bottle 10 as a beverage. In order to quickly reach the desired temperature of the cold object such as the wine bottle 10, a packaging material having high thermal conductivity is selected for the second deep-drawn container 5 that is in direct contact with the cold object. It is preferable.
- This packaging material is generally made of plastic, and its thermal conductivity is as shown in FIG. That is, polyethylene (low density) is 0.33 [W / m ⁇ K], polyethylene (high density) is 0.46 to 0.52 [W / m ⁇ K], and polypropylene is 0.12 [W / m ⁇ K].
- polystyrene is 0.10 to 0.14 [W / m ⁇ K]
- polycarbonate is 0.19 [W / m ⁇ K]
- polyethylene terephthalate is 0.14 [W / m ⁇ K]
- polyamide 6 Nylon 6 is 0.35 to 0.43 [W / m ⁇ K].
- the resin to be selected is preferably high density polyethylene (LDPE), low density polyethylene (HDPE), or polymethyl methacrylate (PMMA). More preferably, a packaging material made of a composite plastic in which particles (fillers) having high thermal conductivity are dispersed is selected. Specific particles (fillers) include silica, alumina, silicon nitride, silicon carbide, aluminum nitride, boron nitride, and the like. The thermal conductivity of each filler is as shown in FIG.
- the thermal conductivity [W / m ⁇ K] of each filler is 2 to 4 [W / m ⁇ K] for silica as an oxide filler, and 3 to 7 for alumina as an oxide filler.
- [W / m ⁇ K] silicon nitride 5 to 10 [W / m ⁇ K]
- Boron nitride is 12 to 45 [W / m ⁇ K].
- the thermal conductivity increases to approximately 3.0 W / m ⁇ K.
- FIG. 53 is a diagram showing the relationship between the filler addition amount (vol%) and the thermal conductivity [W / m ⁇ K]. As shown in FIG. 53, the thermal conductivity tends to increase as the amount of filler added increases. That is, it becomes possible to select a film having a necessary thermal conductivity according to the application.
- FIG. 54 is a diagram showing a concept of selecting a heat storage material.
- the heat storage material preferably has physical properties with high specific heat and high thermal conductivity. That is, since the heat storage material having a high specific heat property has a larger amount of heat stored at the same temperature than the heat storage material having a low specific heat property, the object to be cooled can be cooled more quickly.
- most of the components of the heat storage material shown herein are water.
- the specific heat of water is very high, about 4200 J / kg ⁇ ° C., although it depends on temperature.
- the specific heat of paraffin which is a typical example of an organic heat storage material
- the specific heat is about 2180 J / kg ⁇ ° C.
- the specific heat is about 2400 J / kg ⁇ ° C. It is about half.
- the water-based heat storage material having a large specific heat is superior in cooling capacity compared to other heat storage materials.
- a heat storage material composed of physical properties with high thermal conductivity can absorb cold from the outside more quickly than a heat storage material composed of physical properties with low thermal conductivity. Can be frozen more quickly.
- the cold energy stored in the heat storage material can be quickly exchanged with the object to be cooled, as a result, the object to be cooled can be cooled more quickly.
- FIG. 55 is a diagram showing a model used in verification by simulation.
- the heat storage material has a size of 135 mm ⁇ 80 mm ⁇ t25 mm
- the ambient environment has a constant temperature of ⁇ 18 ° C.
- the deep-drawn container has an expected temperature of 25 ° C.
- thermal conductivity be given by parameter A.
- the heat storage material is assumed to have an expected temperature of 25 ° C. and a thermal conductivity of parameter B.
- the setting parameters are as follows.
- the parameter A is (1) 230 W / m ⁇ K (corresponding to AL) and (2) 0.33 W / m ⁇ K (corresponding to PE).
- the parameters B are (1) 0.57 to 0.62 W / m ⁇ K (equivalent to water) and (2) 0.1 W / m ⁇ K (equivalent to paraffin).
- the cooling target is set to water (334 J / g) that changes phase at 0 ° C. Also, in FIG.
- the measurement point I is the center in the left-right direction of the heat storage material and is located at a position 18.75 mm from the bottom, and the measurement point II is the center in the left-right direction of the heat storage material, 12.5 mm from the bottom.
- the measurement point III was the center in the left-right direction of the heat storage material, and was 6.25 mm from the bottom.
- FIG. 56 is a diagram showing a verification result by simulation
- FIG. 57 is a diagram schematically showing a temperature measurement result by simulation.
- 56 and 57 in any case, there is no change after one minute from the measurement, and both indicate 0 ° C.
- the setting parameters are A (1) and B (2)
- the measurement point I is -3.1 ° C
- the measurement point II is 0 ° C
- the measurement point III is -3.5 ° C. changed.
- a minus temperature region is distributed with a slight thickness in the peripheral portion of the object to be cooled, but the portion including the center remains at 0 ° C.
- the setting parameters were A (2) and B (1) and when the setting parameters were A (2) and B (2).
- the measurement point I is ⁇ 13.5 ° C.
- the measurement point II is ⁇ 9.8 ° C.
- the measurement point III is ⁇ 14.1. It changes to ° C., which is remarkable as compared with other cases.
- FIG. 57 when the setting parameters are A (1) and B (1), lower temperatures are widely distributed compared to other cases.
- the measurement point I is ⁇ 6.7 ° C.
- the measurement point II is 0 ° C.
- the measurement point III is ⁇ 8.3 ° C. Changed.
- a negative temperature region is distributed with a certain thickness in the peripheral portion of the cooling target, but the portion including the center remains at 0 ° C.
- the measurement point I is -18.0 ° C.
- the measurement point II is ⁇ 17.6 ° C.
- the measurement point III is ⁇ 18.0. It changes to ° C., which is remarkable as compared with other cases.
- the temperature of the object to be cooled is -18 ° C., which is almost the same as the ambient temperature in all portions. Yes.
- the heat storage material can shorten the freezing time of the heat storage material by adopting a configuration with high thermal conductivity and high specific heat.
- the heat storage material has a high thermal conductivity and a high specific heat in order to efficiently and quickly exchange the amount of heat of the frozen heat storage material with the object to be cooled. Also suggested.
- the object to be kept cold can be quickly reached at a suitable temperature. It becomes possible.
- the present invention can take the following configurations. That is, (1)
- the heat storage pack of the present invention is a heat storage pack that performs temperature management of food and drink, and is filled with a first heat storage material that changes phase at a predetermined temperature;
- a second housing portion that is stacked in the first housing portion and filled with a second heat storage material that maintains a liquid phase state at a phase change temperature of the first heat storage material; and the first housing portion.
- a lid member that closes the container, and the second storage portion contacts food and drink.
- the first storage portion is formed of a first plastic film
- the second storage portion is formed of a second plastic film
- the second plastic film is more flexible than the first plastic film
- the first housing portion and the second housing portion are deep-drawn molded containers, and the flange portion of the first housing portion and the second housing The flange portion of the first portion is joined, and the flange portion of the first housing portion and the lid member are joined.
- a through hole is provided in an arbitrary part of the flange portion of the first housing portion, and the flange portion of the second housing portion and the lid are provided at the through port. The material is directly joined.
- the first heat storage material and the second heat storage material have a viscosity capable of maintaining a shape with respect to their own weight.
- the viscosity of the first heat storage material and the second heat storage material is 1000 cP or more.
- the heat storage pack of the present invention has a void layer between the first heat storage material filled in the first housing portion and the lid material.
- the first housing portion further includes a heat insulating material on the opposite side of the second housing portion.
- the first heat storage material includes a hydrocarbon compound that forms clathrate hydrate with water and a part of the water at a temperature of 0 ° C. or higher, and the water. Are made of an inorganic compound that cures a part of the phase change temperature to less than 0 ° C.
- the first heat storage material and the second heat storage material have a viscosity of 100 to 200 cP.
- the capacity of the second accommodating part is larger than the capacity of the first accommodating part.
- the lid member is formed of a heat insulating material.
- the Young's modulus of the first plastic film is 3000 MPa or more, and the Young's modulus of the second plastic film is less than 3000 MPa.
- the surface of the second housing portion that contacts the food or drink has a relatively smaller coefficient of friction than the other surfaces.
- the heat storage packs are connected so as to be arranged concentrically, and the joint mechanism has elasticity.
- the upper stage portion connected so that the plurality of heat storage packs having the relatively large second accommodating portion are arranged concentrically and the relatively small second portion
- Each said 2nd accommodating part contacts food and drink.
- the heat exchange unit of the present invention further includes a pressing portion that presses each of the heat storage packs toward the center of a concentric circle.
- the pressing force of the pressing portion is 25 N or more.
- the manufacturing method of the heat storage pack of this invention is a manufacturing method of the heat storage pack which performs temperature control of food and drink, Comprising: The process of shape
- the first housing part filled with the first heat storage material is stacked on the second housing part filled with the second heat storage material, and the lid member and the flange of the first housing part are stacked. And a step of joining the flange portion of the second accommodating portion.
- the manufacturing method of the heat storage pack of this invention is a manufacturing method of the heat storage pack which performs temperature control of food and drink, Comprising: The process of shape
- the manufacturing method of the heat storage pack of the present invention further includes a step of providing a through-hole in an arbitrary part of the flange portion of the first housing portion, and the second housing portion at the through-hole.
- the flange portion and the lid member are directly joined.
- the second heat storage material 5a maintains the liquid phase at the phase change temperature of the first heat storage material 3a, and the second deep-drawn container 5 serves as the heat receiving body. Since it comes into contact with food and drink, the second deep-drawn container 5 can be brought into close contact with the food and drink at a desired temperature. Thereby, the sensible heat stored by the second heat storage material 5a can be reliably transmitted to the food and drink so that the food and drink can quickly reach the desired temperature.
- the food and drink can be held at a desired temperature for a long time.
- the heat exchange unit according to the present embodiment is characterized in that it is configured to be mounted over the wine bottle.
- a beverage cooler having a so-called drawstring mechanism in which it is necessary to squeeze the tip of the wine bottle after being attached to the wine bottle.
- drawstring mechanism in which it is necessary to squeeze the tip of the wine bottle after being attached to the wine bottle.
- the present invention since there is no work of “tightening after mounting”, there is an excellent effect that the occurrence of the above-mentioned concern is extremely small.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Packages (AREA)
Abstract
In order to cause an object for cold storage to reach a suitable temperature quickly, this heat storage pack 1 carries out temperature control of food and drink, and is provided with: a first deep-drawn container filled with a first heat storage material, a phase of which changes at a predetermined temperature; a second deep-drawn container stacked on the first deep-drawn container and filled with a second heat storage material, a liquid phase state of which is maintained at the phase change temperature of the first heat storage material; and a lid material for closing the first deep-drawn container, wherein the second deep-drawn container comes into contact with a wine bottle.
Description
本発明は、飲食物の温度管理を行なう蓄熱パック、熱交換ユニットおよび蓄熱パックの製造方法に関する。
The present invention relates to a heat storage pack that performs temperature management of food and drink, a heat exchange unit, and a method for manufacturing the heat storage pack.
従来から、保温物、特に、ワイン、ビール、日本酒等のアルコール類、またはジュース、水等の飲料、或いは食品類、更には医薬品類には、それぞれに適した保存温度が存在し、保温物を所望の保管温度に、より素早く到達させ、且つ、所望の温度で長時間維持が可能な保冷容器が求められている。例えば、飲みごろの温度が求められるワイン等については、ワインボトルを冷やすために氷水を張ったワインクーラーが使用されている。
Conventionally, there is a storage temperature suitable for each of the heat retaining materials, in particular, alcohols such as wine, beer and sake, beverages such as juice and water, foods, and pharmaceuticals. There is a need for a cold storage container that can reach a desired storage temperature more quickly and can be maintained at the desired temperature for a long time. For example, a wine cooler with iced water is used to cool a wine bottle for wine or the like that requires a drinking temperature.
しかしながら、上記ワインクーラーではワインクーラーからワインボトルを取り出す毎にワインボトルに付着した水滴等を取り除く必要があった。このような煩わしさを解消させるため、特許文献1では、保冷容器の内壁に保冷材を着脱自在に取付け可能とする固定手段を備えたワインクーラーが提案されている。図31Aは、ワインクーラーの概要を示す図であり、図31Bは、ワインクーラーの断面図である。保冷容器内に、段部(リブ)が設けられており、段部に保冷材が設けられている。この構成により、従来のワインクーラーに比べ、簡単な構造で、ワインボトルに水滴が付着しにくく、ワインボトルを挿入し易くしている。
However, in the above wine cooler, it is necessary to remove water droplets and the like attached to the wine bottle every time the wine bottle is taken out from the wine cooler. In order to eliminate such annoyance, Patent Document 1 proposes a wine cooler provided with a fixing means that allows a cold insulation material to be detachably attached to the inner wall of the cold insulation container. FIG. 31A is a diagram illustrating an outline of a wine cooler, and FIG. 31B is a cross-sectional view of the wine cooler. A step portion (rib) is provided in the cold storage container, and a cold insulating material is provided in the step portion. With this configuration, compared to a conventional wine cooler, water droplets are less likely to adhere to the wine bottle, making it easier to insert the wine bottle.
しかしながら、特許文献1で開示されているワインクーラーでは、保冷材が完全に凍結している状態では、保冷材と保冷対象物の密着性が不十分となり、保冷対象物を所望の温度に、素早く到達させることができない(課題1)。また、保冷材が未凍結状態または半凍結状態である場合は、保冷材が蓄えた熱量が不十分であるため、保冷対象物を所望の温度に到達させることができない(課題2)。図32は、これらの課題を示す図である。保冷材が完全に凍結することによって、保冷対象物を適温にすることはできるが、密着性が不十分であるため、適温に到達するまでに時間がかかってしまう。一方、保冷材が完全に凍結していない場合は、適温に到達することができない。
However, in the wine cooler disclosed in Patent Document 1, in a state where the cold insulation material is completely frozen, the adhesion between the cold insulation material and the cold insulation object becomes insufficient, and the cold insulation object is quickly brought to a desired temperature. It cannot be reached (Problem 1). Further, when the cold insulation material is in an unfrozen state or a semi-frozen state, the amount of heat stored in the cold insulation material is insufficient, so that the cold insulation object cannot reach a desired temperature (Problem 2). FIG. 32 is a diagram illustrating these problems. Although the cold insulation material can be frozen at a proper temperature by completely freezing the cold insulation material, it takes time to reach the proper temperature because of insufficient adhesion. On the other hand, when the cold insulating material is not completely frozen, it cannot reach an appropriate temperature.
このように、密着性および急冷性の向上が必要とされている。ここで、ワインボトルには、複数種類の形状があるが、ワインボトルがどのような形状を有していても、密着性および急冷性を確保させるため、保冷材を複数に分割して密着性を高めようとする考え方もある。図33A、図33Bは、保冷材を3つの部分に分割して、各保冷材を関節機構で接続する形態を示す図である。図33Aは、ボルドータイプのボトルを示しており、このボルドータイプのボトルは、ボトルのネックとボディとの接続部分において、ネックの直径に対するボディの直径が急激に増加する形状を有する。このようなボトルであっても、3分割された保冷材が、ボトルの外面に沿うように接触するため、保冷効果が高まることが期待される。また、図33Bは、ブルゴーニュタイプのボトルを示しており、このブルゴーニュタイプのボトルは、ボトルのネックからボディにかけて、ボトルの直径がなだらかに増加する形状を有する。このようなボトルであっても、3分割された保冷材が、ボトルの外面に沿うように接触するため、保冷効果が高まることが期待される。
Thus, there is a need for improved adhesion and rapid cooling. Here, there are multiple types of wine bottles, but whatever the shape of the wine bottle, the cold insulation material is divided into multiple pieces to ensure adhesion and rapid cooling. There is also a way of thinking to raise it. FIG. 33A and FIG. 33B are diagrams showing a form in which the cold insulating material is divided into three parts and each cold insulating material is connected by a joint mechanism. FIG. 33A shows a Bordeaux-type bottle, and this Bordeaux-type bottle has a shape in which the diameter of the body rapidly increases with respect to the diameter of the neck at the connection portion between the neck of the bottle and the body. Even if it is such a bottle, since the cold-retaining material divided | segmented into 3 contacts so that the outer surface of a bottle may be followed, it is anticipated that a cold-retaining effect improves. FIG. 33B shows a burgundy type bottle, and this burgundy type bottle has a shape in which the diameter of the bottle gradually increases from the neck of the bottle to the body. Even if it is such a bottle, since the cold-retaining material divided | segmented into 3 contacts so that the outer surface of a bottle may be followed, it is anticipated that a cold-retaining effect improves.
しかしながら、保冷材の分割数が増加すると、保冷材のケースを生産するための金型の種類が増加すると共に生産工程が増加し、コストが増加してしまう。また、保冷材の分割数が増加すると、関節機構(接続部分)が増加し、保冷材が飲食物に接触する面積が減少してしまい、蓄熱パックとしての性能が減少してしまう。このため、保冷材の分割数は極力小さいことが望ましい。
However, when the number of divisions of the cold insulation material increases, the types of molds for producing the cold insulation material case increase, the production process increases, and the cost increases. In addition, when the number of divisions of the cold insulation material increases, the joint mechanism (connection portion) increases, the area where the cold insulation material comes into contact with food and drinks decreases, and the performance as a heat storage pack decreases. For this reason, it is desirable that the number of divisions of the cold insulating material is as small as possible.
本発明は、このような事情に鑑みてなされたものであり、保冷対象物を適した温度に素早く到達させることができる蓄熱パック、熱交換ユニットおよび蓄熱パックの製造方法を提供することを目的とする。
This invention is made | formed in view of such a situation, and it aims at providing the manufacturing method of the heat storage pack which can make a cold storage object reach | attain to the suitable temperature quickly, a heat exchange unit, and a heat storage pack. To do.
上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の蓄熱パックは、飲食物の温度管理を行なう蓄熱パックであって、予め定められた温度で相変化する第1の蓄熱材が充填された第1の収容部と、前記第1の収容部に積重され、前記第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材が充填された第2の収容部と、前記第1の収容部を閉塞する蓋材と、を備え、前記第2の収容部が飲食物に接触する。
In order to achieve the above object, the present invention has taken the following measures. That is, the heat storage pack of the present invention is a heat storage pack that performs temperature management of food and drink, the first storage portion filled with the first heat storage material that changes phase at a predetermined temperature, and the first The second housing portion is filled with a second heat storage material that is stacked in the housing portion and is maintained in a liquid phase state at the phase change temperature of the first heat storage material, and the first housing portion is closed. A lid member, and the second storage portion contacts food and drink.
本発明によれば、第2の蓄熱材が第1の蓄熱材の相変化温度で液相状態を維持し、第2の収容部が受熱体としての飲食物に接触するので、第2の収容部を飲食物に密着させることが可能となる。これにより、第2の蓄熱材が蓄えた顕熱を飲食物に確実に伝え、飲食物を所望の温度に素早く到達させることが可能となる。さらに、第2の蓄熱材を介して第1の蓄熱材が蓄えた顕熱、および潜熱を飲食物に確実に伝えることで、飲食物を所望の温度に素早く到達させるアシストをすると共に、さらに第1の蓄熱材が蓄えた潜熱を飲食物に確実に伝えることで、飲食物を所望の温度で長時間保持させることが可能となる。
According to the present invention, since the second heat storage material maintains a liquid phase state at the phase change temperature of the first heat storage material, and the second storage portion comes into contact with food and drink as the heat receiving body, the second storage It becomes possible to make a part adhere to food and drink. Thereby, the sensible heat stored by the second heat storage material can be reliably transmitted to the food and drink so that the food and drink can quickly reach the desired temperature. Furthermore, the sensible heat stored by the first heat storage material and the latent heat are surely transmitted to the food and drink through the second heat storage material, thereby assisting the food and drink to reach the desired temperature quickly and further. By reliably transmitting the latent heat stored by the heat storage material 1 to the food and drink, the food and drink can be held at a desired temperature for a long time.
本発明者らは、保冷対象物の温度を管理するに際し、保冷材が完全に凍結した状態では、保冷材と保冷対象物との密着性が不十分であるため、保冷対象物を素早く冷却することができない点、および、保冷材が未凍結状態または半凍結状態である場合は、保冷材が蓄えた熱量が不十分であるため、保冷対象物を所望の温度に冷却させることができない点に着目し、保冷材を二重構造とし、第1の層には熱量が十分である蓄熱材を充填し、第2の層には柔軟性を有する蓄熱材を配置することによって保冷対象物への密着性を高め、これにより、保冷対象物を適温に素早く到達させることができることを見出し、本発明をするに至った。
When managing the temperature of the cold insulation object, the present inventors quickly cool the cold insulation object because the adhesion between the cold insulation material and the cold insulation object is insufficient when the cold insulation material is completely frozen. In the case that the cold insulation material is in an unfrozen state or a semi-frozen state, the amount of heat stored in the cold insulation material is insufficient, so that the cold insulation object cannot be cooled to a desired temperature. Paying attention, the cold insulation material has a double structure, the first layer is filled with a heat storage material having a sufficient amount of heat, and the second layer is provided with a flexible heat storage material to provide a cold insulation object. It has been found that the adhesion can be increased, and thereby the object to be kept cold can quickly reach an appropriate temperature, and the present invention has been achieved.
すなわち、本発明の蓄熱パックは、飲食物の温度管理を行なう蓄熱パックであって、予め定められた温度で相変化する第1の蓄熱材が充填された第1の収容部と、前記第1の収容部に積重され、前記第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材が充填された第2の収容部と、前記第1の収容部を閉塞する蓋材と、を備え、前記第2の収容部が飲食物に接触する。
That is, the heat storage pack of the present invention is a heat storage pack that performs temperature management of food and drink, the first storage portion filled with the first heat storage material that changes phase at a predetermined temperature, and the first The second housing portion is filled with a second heat storage material that is stacked in the housing portion and is maintained in a liquid phase state at the phase change temperature of the first heat storage material, and the first housing portion is closed. A lid member, and the second storage portion contacts food and drink.
これにより、本発明者らは、第2の収容部を飲食物に密着させることを可能とした。以下、本発明の実施形態について、図面を参照しながら具体的に説明する。
Thereby, the present inventors made it possible to make the second housing portion adhere to food and drink. Embodiments of the present invention will be specifically described below with reference to the drawings.
[第1の実施形態]
[蓄熱パックの構成]
図1は、本発明の実施形態に係る蓄熱パックの使用状態を示す断面図である。この蓄熱パック1は、第1の収容部としての第1の深絞り容器3と、第2の収容部としての第2の深絞り容器5から構成される二重構造を有する。図1において、第1の深絞り容器3には、第1の蓄熱材3aが充填されており、第2の深絞り容器5には、不凍材としての第2の蓄熱材5aが充填されている。第2の蓄熱材5aは、第1の蓄熱材3aの相変化温度において、液相状態を維持する。第2の蓄熱材5aは、飲料物としてのワインボトル10に密着し、蓋材7は、第1の深絞り容器3を閉塞する。上記の第1の深絞り容器3、第2の深絞り容器5および蓋材7は、接着部9において溶着されている。 [First Embodiment]
[Configuration of heat storage pack]
FIG. 1 is a cross-sectional view showing a usage state of a heat storage pack according to an embodiment of the present invention. Thisheat storage pack 1 has a double structure composed of a first deep-drawn container 3 as a first housing part and a second deep-drawn container 5 as a second housing part. In FIG. 1, the first deep-drawn container 3 is filled with a first heat storage material 3a, and the second deep-drawn container 5 is filled with a second heat storage material 5a as an antifreeze material. ing. The second heat storage material 5a maintains a liquid phase state at the phase change temperature of the first heat storage material 3a. The second heat storage material 5a is in close contact with the wine bottle 10 as a beverage, and the lid material 7 closes the first deep-drawn container 3. The first deep-drawn container 3, the second deep-drawn container 5, and the lid member 7 are welded at the bonding portion 9.
[蓄熱パックの構成]
図1は、本発明の実施形態に係る蓄熱パックの使用状態を示す断面図である。この蓄熱パック1は、第1の収容部としての第1の深絞り容器3と、第2の収容部としての第2の深絞り容器5から構成される二重構造を有する。図1において、第1の深絞り容器3には、第1の蓄熱材3aが充填されており、第2の深絞り容器5には、不凍材としての第2の蓄熱材5aが充填されている。第2の蓄熱材5aは、第1の蓄熱材3aの相変化温度において、液相状態を維持する。第2の蓄熱材5aは、飲料物としてのワインボトル10に密着し、蓋材7は、第1の深絞り容器3を閉塞する。上記の第1の深絞り容器3、第2の深絞り容器5および蓋材7は、接着部9において溶着されている。 [First Embodiment]
[Configuration of heat storage pack]
FIG. 1 is a cross-sectional view showing a usage state of a heat storage pack according to an embodiment of the present invention. This
このように、第2の蓄熱材5aが第1の蓄熱材3aの相変化温度で液相状態を維持し、第2の深絞り容器5がワインボトル10に接触するので、第2の深絞り容器5をワインボトル10に密着させることが可能となる。これにより、第2の蓄熱材5aが蓄えた顕熱をワインボトル10に確実に伝え、ワインボトル10を所望の温度に素早く到達させることが可能となる。さらに、第2の蓄熱材5aを介して第1の蓄熱材3aが蓄えた顕熱、および潜熱をワインボトル10に確実に伝えることで、ワインボトル10を所望の温度に素早く到達させるアシストをすると共に、さらに第1の蓄熱材3aが蓄えた潜熱をワインボトル10に確実に伝えることで、ワインボトル10を所望の温度で長時間保持させることが可能となる。
Thus, since the 2nd heat storage material 5a maintains a liquid phase state with the phase change temperature of the 1st heat storage material 3a, and the 2nd deep drawing container 5 contacts the wine bottle 10, 2nd deep drawing The container 5 can be brought into close contact with the wine bottle 10. As a result, the sensible heat stored by the second heat storage material 5a can be reliably transmitted to the wine bottle 10 so that the wine bottle 10 can quickly reach the desired temperature. Furthermore, the sensible heat stored by the first heat storage material 3a and the latent heat are surely transmitted to the wine bottle 10 via the second heat storage material 5a, thereby assisting the wine bottle 10 to quickly reach a desired temperature. At the same time, the wine bottle 10 can be held at a desired temperature for a long time by reliably transmitting the latent heat stored in the first heat storage material 3a to the wine bottle 10.
図2Aは、本実施形態に係る蓄熱パックの使用状態を示す断面図であり、図2Bは、従来の蓄熱パックの使用状態を示す断面図である。図2Bに示すように、第1の蓄熱材3aが第2の蓄熱材5a中に含まれている場合は、使用時に重力によって第1の蓄熱材3aの位置が鉛直下方となる場合がある。この場合、ボトル上部側に蓄熱材3aが存在しない領域が顕著となり、この蓄熱材3aが存在しない領域から熱が逃げ、ワインボトルを所望の温度に素早く到達させることができなくなる可能性がある。
FIG. 2A is a cross-sectional view showing the use state of the heat storage pack according to the present embodiment, and FIG. 2B is a cross-sectional view showing the use state of the conventional heat storage pack. As shown to FIG. 2B, when the 1st heat storage material 3a is contained in the 2nd heat storage material 5a, the position of the 1st heat storage material 3a may become vertically downward by gravity at the time of use. In this case, a region where the heat storage material 3a does not exist on the upper side of the bottle becomes prominent, and heat may escape from the region where the heat storage material 3a does not exist, and the wine bottle may not be able to quickly reach a desired temperature.
これに対し、図2Aに示すように、本実施形態に係る蓄熱パック1は、第1の蓄熱材3aが充填された第1の深絞り容器3と、第2の蓄熱材5aが充填された第2の深絞り容器5とがフランジ部とフランジ部で固定されているため、それぞれの蓄熱材の位置関係を重量の影響に依らず常に維持することが可能となる。その結果、第2の蓄熱材5aが蓄えた顕熱をワインボトル10に確実に伝え、ワインボトル10を所望の温度に素早く到達させることが可能となる。さらに、第2の蓄熱材5aを介して第1の蓄熱材3aが蓄えた顕熱、および潜熱をワインボトル10に確実に伝えることで、ワインボトル10を所望の温度に素早く到達させるアシストをすると共に、さらに第1の蓄熱材3aが蓄えた潜熱をワインボトル10に確実に伝えることで、ワインボトル10を所望の温度で長時間保持させることが可能となる。
On the other hand, as shown in FIG. 2A, the heat storage pack 1 according to the present embodiment is filled with the first deep-drawn container 3 filled with the first heat storage material 3a and the second heat storage material 5a. Since the second deep-drawn container 5 is fixed by the flange portion and the flange portion, it is possible to always maintain the positional relationship of the respective heat storage materials regardless of the influence of the weight. As a result, the sensible heat stored in the second heat storage material 5a can be reliably transmitted to the wine bottle 10 so that the wine bottle 10 can quickly reach a desired temperature. Furthermore, the sensible heat stored by the first heat storage material 3a and the latent heat are surely transmitted to the wine bottle 10 via the second heat storage material 5a, thereby assisting the wine bottle 10 to quickly reach a desired temperature. At the same time, the wine bottle 10 can be held at a desired temperature for a long time by reliably transmitting the latent heat stored in the first heat storage material 3a to the wine bottle 10.
また、第1の深絞り容器3は、第1のプラスチックフィルムで成形される。また、第2の深絞り容器5は、第2のプラスチックフィルムで成形される。この第2のプラスチックフィルムは、第1のプラスチックフィルムよりも柔軟である。
Also, the first deep-drawn container 3 is formed with a first plastic film. The second deep-drawn container 5 is formed of a second plastic film. This second plastic film is more flexible than the first plastic film.
このように、第2のプラスチックフィルムに軟質性を有するフィルムを選定することによって、ワインボトル10との密着性をより高めることが可能となる。一方、第1のプラスチックフィルムに硬質性を有するフィルムを選定することによって、第1の蓄熱材3aが潜熱を蓄える過程、すなわち、液相から固相に変化する過程において発生する変形等を防止すると共に、液相状態でも形状を保持することが可能となる。
Thus, by selecting a flexible film as the second plastic film, it is possible to further improve the adhesion with the wine bottle 10. On the other hand, by selecting a film having rigidity as the first plastic film, the first heat storage material 3a prevents deformation or the like that occurs in the process of storing latent heat, that is, in the process of changing from the liquid phase to the solid phase. At the same time, the shape can be maintained even in the liquid phase.
具体的には、第1のプラスチックフィルムは、ヤング率が3,000MPa以上であることが好ましく、第2のプラスチックフィルムは、ヤング率が少なくとも3,000MPa以下、好ましくは、600MPa以下であることがより好ましい。ヤング率は、プラスチックフィルムの硬さ、特に腰の強さを示す指標として用いられることが多い。腰が弱く柔軟性を有し、ヤング率が3,000MPa以下のプラスチックフィルムとしては、ポリエチレン、ポリプロピレン、ナイロンなどが挙げられるが、本発明は、これらに限定されない。一方、腰が強く硬質性を有し、ヤング率が3,000MPa以上のプラスチックフィルムとしては、ポリエチレン・テレフタラートなどが挙げられるが、本発明は、これらに限定されない。
Specifically, the first plastic film preferably has a Young's modulus of 3,000 MPa or more, and the second plastic film has a Young's modulus of at least 3,000 MPa, preferably 600 MPa or less. More preferred. The Young's modulus is often used as an index indicating the hardness of a plastic film, particularly the strength of the waist. Examples of the plastic film having low waist and flexibility and having a Young's modulus of 3,000 MPa or less include polyethylene, polypropylene, and nylon, but the present invention is not limited to these. On the other hand, examples of the plastic film having strong stiffness and having a Young's modulus of 3,000 MPa or more include polyethylene terephthalate, but the present invention is not limited thereto.
本発明者らは、第1の深絞り容器として好ましいプラスチックフィルムとして、PET150um/PE15umから構成されたフィルム、第2の深絞り容器として好ましいプラスチックフィルムとして、NY100um/PE15umから構成されたフィルムの引張強度(JIS K 7161に基づく)を測定し、ヤング率を算出した。まず、第1の深絞り容器に選択したフィルム“PET#50um//PE#15um”を幅:15mm、長さ:100mmにカットした。「イマダ社製デジタルフォースゲージ“ZTA-1000N”」を用いて該フィルムの引張応力を測定したところ、約70Nで約1mmフィルムが弾性変形することが分かった。この結果からヤング率({荷重値×フィルム長さ}/{フィルム断面積×フィルム伸び量})=約3,000N/mm2となる。
The inventors of the present invention have a tensile strength of a film composed of PET 150 um / PE 15 um as a plastic film preferable as the first deep-drawn container and a film composed of NY 100 um / PE 15 um as a preferable plastic film as the second deep-drawn container. (Based on JIS K 7161) was measured, and Young's modulus was calculated. First, the film “PET # 50um // PE # 15um” selected as the first deep-drawn container was cut into a width of 15 mm and a length of 100 mm. When the tensile stress of the film was measured using “Imada Digital Force Gauge“ ZTA-1000N ””, it was found that the film was elastically deformed by about 1 mm at about 70 N. From this result, Young's modulus ({load value × film length} / {film cross-sectional area × film elongation}) = approximately 3,000 N / mm 2 .
一方、第2の深絞り容器に選択したフィルム“NY#100um//PE#15um”を幅:15mm、長さ:100mmにカットした。「イマダ社製デジタルフォースゲージ“ZTA-1000N”」を用いて該フィルムの引張応力を測定したところ、約20Nで約1mmフィルムが弾性変形することが分かった。この結果からヤング率({荷重値×フィルム長さ}/{フィルム断面積×フィルム伸び量})=約600N/mm2となる。
On the other hand, the film “NY # 100 um // PE # 15 um” selected as the second deep-drawn container was cut into a width of 15 mm and a length of 100 mm. When the tensile stress of the film was measured using “Imada Digital Force Gauge“ ZTA-1000N ””, it was found that the film was elastically deformed by about 1 mm at about 20 N. From this result, Young's modulus ({load value × film length} / {film cross-sectional area × film elongation}) = approximately 600 N / mm 2 .
図3Aは、本実施形態に係る蓄熱パックの断面図である。図3Aに示すように、蓄熱パック1において、第1の深絞り容器3および第2の深絞り容器5において、第1の深絞り容器3のフランジ部3bと第2の深絞り容器5のフランジ部5bとが接合される。また、それと共に、第1の深絞り容器3のフランジ部3bと蓋材7とが接合される。また、蓋材7と第1の蓄熱材3aとの間には、空隙層9が存在する。
FIG. 3A is a cross-sectional view of the heat storage pack according to the present embodiment. As shown in FIG. 3A, in the heat storage pack 1, in the first deep-drawn container 3 and the second deep-drawn container 5, the flange portion 3b of the first deep-drawn container 3 and the flange of the second deep-drawn container 5 The part 5b is joined. At the same time, the flange portion 3b of the first deep-drawn container 3 and the lid member 7 are joined. A gap layer 9 exists between the lid member 7 and the first heat storage material 3a.
このように、第1の深絞り容器3のフランジ部3bと、第2の深絞り容器5のフランジ部5bとが接合されることによって、第1の深絞り容器3と第2の深絞り容器5の位置関係が固定され、性能を向上させること、並びに繰返し性能を向上させることができる。ここで、第2の深絞り容器5は、深さの異なる底面を有する形状であっても良い。例えば、ワインボトルのような高さ方向にくびれ形状を有する受熱体の場合、第2の深絞り容器5を高さ方向に深さが段階的に深くなるような形状とすることによって、受熱体としての飲食物との密着性を向上させることができる。接合手段としては、超音波溶着、振動溶着、誘導溶着、高周波溶着、半導体レーザー溶着、熱溶着、スピン溶着などが挙げられるが、本発明は、これらに限定されない。
As described above, the flange portion 3b of the first deep-drawn container 3 and the flange portion 5b of the second deep-drawn container 5 are joined, whereby the first deep-drawn container 3 and the second deep-drawn container. The positional relationship of 5 is fixed, so that the performance can be improved and the repetition performance can be improved. Here, the second deep-drawn container 5 may have a shape having bottom surfaces with different depths. For example, in the case of a heat receiving body having a constricted shape in the height direction, such as a wine bottle, the heat receiving body is formed by forming the second deep-drawn container 5 so that the depth is gradually increased in the height direction. As a result, it is possible to improve the adhesion to food and drink. Examples of the joining means include ultrasonic welding, vibration welding, induction welding, high frequency welding, semiconductor laser welding, thermal welding, spin welding, and the like, but the present invention is not limited to these.
[プラスチックフィルムの接合]
図3Aに示すように、本実施形態に係る蓄熱パック1において、第1の深絞り容器3のフランジ部3bの任意の一部に貫通口8が設けられ、貫通口8において、第2の深絞り容器5のフランジ部5bと蓋材7とが直接接合する。このような蓄熱パック1の各部位の接合には、以下のような接合方法を用いる。 [Plastic film bonding]
As shown in FIG. 3A, in theheat storage pack 1 according to this embodiment, a through-hole 8 is provided in an arbitrary part of the flange portion 3b of the first deep-drawn container 3, and the second depth The flange portion 5b of the squeeze container 5 and the lid member 7 are directly joined. The following joining methods are used for joining each part of the heat storage pack 1.
図3Aに示すように、本実施形態に係る蓄熱パック1において、第1の深絞り容器3のフランジ部3bの任意の一部に貫通口8が設けられ、貫通口8において、第2の深絞り容器5のフランジ部5bと蓋材7とが直接接合する。このような蓄熱パック1の各部位の接合には、以下のような接合方法を用いる。 [Plastic film bonding]
As shown in FIG. 3A, in the
図3Bは、本実施形態に係るフィルムの接合方法の概念を示す図であり、図3Cは、フィルムの接合状態を示す平面図であり、図3Dは、フィルムの接合状態を示す断面図である。また、図3Eは、従来のフィルムの接合方法の概念を示す図であり、図3Fは、「JIS Z 0238」に基づいて測定した本実施形態に係る接合方法と従来の接合方法のヒートシール強さを比較する表である。
FIG. 3B is a diagram illustrating a concept of a film bonding method according to the present embodiment, FIG. 3C is a plan view illustrating a film bonding state, and FIG. 3D is a cross-sectional view illustrating a film bonding state. . FIG. 3E is a view showing a concept of a conventional film bonding method, and FIG. 3F is a diagram showing a heat seal strength of the bonding method according to the present embodiment and the conventional bonding method measured based on “JIS Z 0238”. It is a table | surface which compares thickness.
図3Bに示すように、本実施形態に係る接合方法では、下側から、ナイロン、ポリエチレン、ナイロン、ポリエチレン、ポリエチレン、ナイロンと重ねて、ヒートシーラーで溶着する。その際、貫通口8があるため、ポリエチレン同士が溶着される。その結果、溶着強度が高くなる。本実施形態では、図3Cおよび図3Dに示すように、蓄熱パックが複数連設されるように、深絞り容器の真空成型および溶着を行なう(製造方法については、後述する)。一方、図3Eに示すように、従来の溶着方法では、いわゆる三層構造を採る。このような三層構造は、コストが高く、溶着強度が低いことが知られている。図3Fに示すように、本実施形態に係る接合方法は、シール強さの平均値が従来技術の5倍近く強くなっていることが分かる。
As shown in FIG. 3B, in the joining method according to this embodiment, nylon, polyethylene, nylon, polyethylene, polyethylene, and nylon are overlapped from below and welded with a heat sealer. At that time, since there is a through-hole 8, polyethylenes are welded together. As a result, the welding strength is increased. In this embodiment, as shown in FIG. 3C and FIG. 3D, the deep-drawn container is vacuum-formed and welded so that a plurality of heat storage packs are connected (the manufacturing method will be described later). On the other hand, as shown in FIG. 3E, the conventional welding method adopts a so-called three-layer structure. Such a three-layer structure is known to have high cost and low welding strength. As shown in FIG. 3F, it can be seen that in the joining method according to the present embodiment, the average value of the seal strength is nearly five times that of the prior art.
このように、第2の深絞り容器5のフランジ部5bと蓋材7とを直接接合する構成とすることによって、パッケージ強度を向上させ、中に充填された蓄熱材が外部に漏洩するのを防止することができる。さらに、第1の深絞り容器3のフランジ部3bの長さが、第2の深絞り容器5のフランジ部5bの長さ、および蓋材7よりも短い構成であっても良い。これによっても、第2の深絞り容器5のフランジ部5bと蓋材7とを、直接接合することができる。
In this way, by adopting a structure in which the flange portion 5b of the second deep-drawn container 5 and the lid member 7 are directly joined, the package strength is improved and the heat storage material filled therein is leaked to the outside. Can be prevented. Further, the length of the flange portion 3 b of the first deep-drawn container 3 may be shorter than the length of the flange portion 5 b of the second deep-drawn container 5 and the lid member 7. This also allows the flange portion 5b of the second deep-drawn container 5 and the lid member 7 to be directly joined.
[蓄熱材]
図4Aは、本実施形態に係る蓄熱パックに用いる第1の蓄熱材の概念を示す図であり、図4Bは、蓄熱材に粘性が無い場合の概念を示す図である。本実施形態に係る蓄熱パックは、第1の蓄熱材3aおよび第2の蓄熱材5aが、自重に対して形状維持可能な粘性を有する。 [Heat storage material]
Drawing 4A is a figure showing the concept of the 1st heat storage material used for the heat storage pack concerning this embodiment, and Drawing 4B is a figure showing the concept in case there is no viscosity in the heat storage material. In the heat storage pack according to the present embodiment, the firstheat storage material 3a and the second heat storage material 5a have a viscosity capable of maintaining a shape with respect to their own weight.
図4Aは、本実施形態に係る蓄熱パックに用いる第1の蓄熱材の概念を示す図であり、図4Bは、蓄熱材に粘性が無い場合の概念を示す図である。本実施形態に係る蓄熱パックは、第1の蓄熱材3aおよび第2の蓄熱材5aが、自重に対して形状維持可能な粘性を有する。 [Heat storage material]
Drawing 4A is a figure showing the concept of the 1st heat storage material used for the heat storage pack concerning this embodiment, and Drawing 4B is a figure showing the concept in case there is no viscosity in the heat storage material. In the heat storage pack according to the present embodiment, the first
このように、第1の蓄熱材3aおよび第2の蓄熱材5aに粘性を持たせることによって、重力の影響を受けず形状を維持することができる。例えば、図4Bに示すように、蓄熱パックを立掛けて保冷対象物の温度管理を行なう場合、蓄熱材に粘性がないと、蓄熱材が固相から液相に相変化するにつれて、蓄熱材が重力の影響を受け鉛直下方に変位する。これによって、保冷対象物の上部を十分に温度管理することができなくなってしまう。また、蓄熱材が鉛直下方に変位した結果、蓄熱材の鉛直情報に空隙が生じ、その空隙で熱の流入および流出が生じ、保冷効果が減じられてしまう。
Thus, by giving the first heat storage material 3a and the second heat storage material 5a viscous, the shape can be maintained without being affected by gravity. For example, as shown in FIG. 4B, when the temperature management of the cold insulation object is performed by standing the heat storage pack, if the heat storage material is not viscous, the heat storage material changes as the heat storage material changes from a solid phase to a liquid phase. Displaces vertically downward under the influence of gravity. As a result, the temperature of the upper part of the cold insulation object cannot be sufficiently controlled. In addition, as a result of the heat storage material being displaced vertically downward, a gap is generated in the vertical information of the heat storage material, and heat inflow and outflow are generated in the gap, thereby reducing the cooling effect.
これを回避するため、本実施形態では、第1の蓄熱材および第2の蓄熱材に粘性を持たせた。使用する増粘材としては、増粘多糖類やゲル化剤などが挙げられ、具体的には、ローカストビーンガム、グァーガム、グァーガム誘電体(カチオン化グァーガム、ヒドロキシプロピルグァーガム、グァーガム加水分解品)、カラギーナン、ペクチン、キサンタンガム、ジェランガム、ダイユータンガム、デンプン、デキストリン、セルロース誘電体(CMC、HEC、HPMC)、乳化剤等が挙げられる。ただし、本発明において、増粘材はこれらに限定されない。これにより、図4Aに示すように、蓄熱パックを立掛けて保冷対象物の温度管理を行なう場合であっても、保冷対象物を十分に温度管理することが可能となる。
In order to avoid this, in this embodiment, the first heat storage material and the second heat storage material are given viscosity. Examples of thickeners used include thickening polysaccharides and gelling agents. Specifically, locust bean gum, guar gum, guar gum dielectrics (cationized guar gum, hydroxypropyl guar gum, hydrolyzed guar gum), Examples thereof include carrageenan, pectin, xanthan gum, gellan gum, diyutan gum, starch, dextrin, cellulose dielectric (CMC, HEC, HPMC), and emulsifier. However, in the present invention, the thickener is not limited to these. Thereby, as shown to FIG. 4A, even if it is a case where the temperature control of a cold storage object is performed by standing a heat storage pack, it becomes possible to fully temperature-control a cold storage object.
また、本実施形態に係る蓄熱パックは、第1の蓄熱材3aおよび第2の蓄熱材5aの粘度が、1000cP以上である。
Further, in the heat storage pack according to the present embodiment, the viscosity of the first heat storage material 3a and the second heat storage material 5a is 1000 cP or more.
このように、第1の蓄熱材3aおよび第2の蓄熱材5aに1000cP以上の粘性を持たせることによって、重力の影響を受けずに形状を維持することができる。例えば、ワイン等の飲料物を所望の温度に到達させる場合、その到達時間は10~30分程度と言われている。また、そのような飲料物に搭載する蓄熱材の量としては、飲料物の重量のせいぜい半分程度が現実的である。これらを鑑みて、本発明者らは、750mLのワイン入りボトル(総重量:約1kg)に500gの蓄熱材を搭載する(巻き付ける)場合において、蓄熱材の形状維持持性と蓄熱材の粘度の関係性を評価した。具体的には、面積S、厚みL、粘度ρの蓄熱材において、蓄熱材の厚み方向に力Fを与えた場合の力Fと、蓄熱材内を通過する速度Vの関係は、F={(ρ×S)/L}×Vと表すことができる。本式から、粘度ρと速度Vの関係を求め、さらに速度Vから蓄熱材が長さ方向に完全に潰れてしまうまでの時間が10分以上となる粘度ρを求めたところ、1000cP程度であることを確認した。つまり、蓄熱材に1000cP以上の粘性を持たせることによって、受熱体を所望の温度に素早く、且つ、ムラ無く到達させることが可能となる。さらに、製造工程においても、蓄熱材に粘性がなく、完全な液体である場合は、深絞り容器に充填する際、充填時に液体が跳ね返り、容器外にこぼれる恐れがあり、また、容器全体を進行させながら蓄熱材を充填する場合は、進行中に振動で充填された液体があふれる恐れがあるため、充填量に制約が生ずる。蓄熱材に粘性を持たせることによって、これらの不具合を解消させることが可能となる。
Thus, by giving the first heat storage material 3a and the second heat storage material 5a a viscosity of 1000 cP or more, the shape can be maintained without being affected by gravity. For example, when a beverage such as wine is allowed to reach a desired temperature, the arrival time is said to be about 10 to 30 minutes. In addition, the amount of the heat storage material mounted on such a beverage is practically about half of the weight of the beverage. In view of these, the present inventors, when mounting (wrapping) 500 g of a heat storage material on a 750 mL wine bottle (total weight: about 1 kg), the shape maintenance property of the heat storage material and the viscosity of the heat storage material. The relationship was evaluated. Specifically, in the heat storage material having the area S, the thickness L, and the viscosity ρ, the relationship between the force F when the force F is applied in the thickness direction of the heat storage material and the speed V passing through the heat storage material is F = { (Ρ × S) / L} × V. From this equation, the relationship between the viscosity ρ and the speed V is obtained, and the viscosity ρ at which the time until the heat storage material is completely crushed in the length direction is obtained from the speed V is about 1000 cP. It was confirmed. That is, by giving the heat storage material a viscosity of 1000 cP or more, it is possible to make the heat receiving body reach the desired temperature quickly and without unevenness. Furthermore, in the manufacturing process, if the heat storage material is not viscous and is a complete liquid, when filling a deep-drawn container, the liquid may bounce back and spill out of the container. In the case where the heat storage material is filled while the liquid is filled, there is a possibility that the liquid filled by vibrations overflows during the process, and thus the filling amount is limited. By giving viscosity to the heat storage material, it is possible to eliminate these problems.
また、本実施形態に係る蓄熱パックにおいて、第1の蓄熱材3aは、水と0℃以上の温度で水の一部と包接水和物を形成する炭化水素化合物および水の他の一部の相変化温度を0℃未満に硬化させる無機化合物で構成される。
Moreover, in the heat storage pack according to the present embodiment, the first heat storage material 3a includes a hydrocarbon compound that forms clathrate hydrate with water and a part of water at a temperature of 0 ° C. or higher, and another part of water. It is comprised with the inorganic compound which hardens the phase change temperature of less than 0 degreeC.
この構成により、蓄える熱量を大きくすることができる。その結果、受熱体としての飲食物を所望の温度に素早く到達させ、且つ長時間所望の温度に保持することができる。また、飲食物の温度管理をするため、使用する材料としては安全、安心であることが望ましい。水と包接水和物を形成する炭化水素化合物、或いは無機化合物で蓄熱材を構成することによって、不燃性で安全性の高い構成を構築できる。
This configuration can increase the amount of heat stored. As a result, the food or drink as the heat receiving body can be quickly reached the desired temperature and kept at the desired temperature for a long time. Moreover, in order to control the temperature of food and drink, it is desirable that the material used is safe and secure. By configuring the heat storage material with a hydrocarbon compound or an inorganic compound that forms clathrate hydrate with water, a nonflammable and highly safe configuration can be constructed.
ここで、蓄熱とは、熱を一時的に蓄え、必要に応じてその熱を取り出す技術をいう。蓄熱方式としては、顕熱蓄熱、潜熱蓄熱、化学蓄熱等があるが、本実施形態では、専ら潜熱蓄熱を利用する。潜熱蓄熱は、物質の潜熱を利用して、物質の相変化の熱エネルギーを蓄える。潜熱蓄熱は、蓄熱密度が高く、出力温度が一定である。潜熱蓄熱を利用する蓄熱材には、氷(水)、パラフィン(一般式CnH2n+2で表される飽和鎖式炭化水素の総称)、無機塩水溶液、無機塩水和物、包接水和物などの潜熱蓄熱部材が用いられる。蓄熱材に用いられる無機塩水溶液として、塩化カリウム(KCl)と塩化アンモニウム(NH4Cl)とを水に溶解した水溶液、塩化ナトリウム(NaCl)と塩化アンモニウム(NH4Cl)とを水に溶解した水溶液等が挙げられるが、本発明において蓄熱材はこれらの水溶液に限定されない。蓄熱材に用いられる無機塩水和物として、硫酸ナトリウム十水和物(Na2SO4・10H2O)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム十二水和物とリン酸水素二カリウム六水和物との二元系組成物(融解点5℃)、硝酸リチウム三水和物を主成分とする硝酸リチウム三水和物と塩化マグネシウム六水和物との二元系組成物(融解点8~12℃)または硝酸リチウム三水和物-塩化マグネシウム六水和物-臭化マグネシウム六水和物の三元系組成物(融解点5.8~9.7℃)等が挙げられるが、本発明において蓄熱材はこれらの無機塩水和物に限定されない。
Here, heat storage refers to a technique for temporarily storing heat and extracting the heat as needed. Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like, but in this embodiment, latent heat storage is exclusively used. Latent heat storage uses the latent heat of a substance to store the thermal energy of the phase change of the substance. The latent heat storage has a high heat storage density and a constant output temperature. The heat storage material utilizing the latent heat storage, ice (water), paraffins (general formula generic term for C n H 2n + 2 represented by saturated chain hydrocarbon), aqueous inorganic salt solution, inorganic salt hydrates, clathrate water A latent heat storage member such as a Japanese product is used. As an aqueous inorganic salt solution used for heat storage materials, an aqueous solution of potassium chloride (KCl) and ammonium chloride (NH 4 Cl) dissolved in water, sodium chloride (NaCl) and ammonium chloride (NH 4 Cl) dissolved in water Although aqueous solution etc. are mentioned, in this invention, a thermal storage material is not limited to these aqueous solutions. Inorganic salt hydrates used in heat storage materials include sodium sulfate decahydrate (Na 2 SO 4 · 10H 2 O), sodium acetate trihydrate, sodium thiosulfate pentahydrate, disodium hydrogen phosphate twelve Binary composition of hydrate and dipotassium hydrogen phosphate hexahydrate (melting point 5 ° C), lithium nitrate trihydrate and lithium chloride hexahydrate mainly composed of lithium nitrate trihydrate Binary composition (melting point 8-12 ° C) or ternary composition of lithium nitrate trihydrate-magnesium chloride hexahydrate-magnesium bromide hexahydrate (melting point 5.8-9.7) In the present invention, the heat storage material is not limited to these inorganic salt hydrates.
また、第2の蓄熱材5aは、例えば、塩化ナトリウム水溶液およびCMC(カルボキシメチルセルロース)から構成することが可能である。
The second heat storage material 5a can be composed of, for example, an aqueous sodium chloride solution and CMC (carboxymethylcellulose).
[空隙層]
また、図3Aおよび図4Aに示すように、本実施形態に係る蓄熱パックは、第1の深絞り容器3に充填された第1の蓄熱材3aと、蓋材7との間に空隙層9を有する。 [Void layer]
3A and 4A, the heat storage pack according to this embodiment includes agap layer 9 between the first heat storage material 3a filled in the first deep-drawn container 3 and the lid material 7. Have
また、図3Aおよび図4Aに示すように、本実施形態に係る蓄熱パックは、第1の深絞り容器3に充填された第1の蓄熱材3aと、蓋材7との間に空隙層9を有する。 [Void layer]
3A and 4A, the heat storage pack according to this embodiment includes a
このように、第1の深絞り容器3に充填された第1の蓄熱材3aと、蓋材7との間に空隙層9を形成することによって、空隙層9が断熱材の役割を担い、第1の蓄熱材3aの保持時間を長くすることができる。深絞り容器内に液体(ここでは蓄熱材)を充填する場合、深絞り容器の容積に対する液体の充填率は、製造プロセス上、多くとも70~80%程度と言われている。例えば、深絞り容器に70~80%程度充填された蓄熱パックを、容器底面を下向きに平に置いて相変化(すなわち、液相から固相へ変化)させる。この蓄熱パックを受熱体としての飲食物に接触させると、熱は、受熱体、深絞り容器底面、蓄熱材、空隙層、蓋材、外気の順に伝導する。これによって、空隙層は蓄熱材にとって外気から断熱効果を示し、結果として蓄熱材の保持時間を長くすることができる。さらに、蓄熱材は形状維持可能な粘性を有していることから、相変化後(すなわち、固相から液相)も上記の位置関係を維持するため、より保持時間を長くすることができる。
Thus, by forming the void layer 9 between the first heat storage material 3a filled in the first deep-drawn container 3 and the lid member 7, the void layer 9 plays the role of a heat insulating material, The holding time of the 1st heat storage material 3a can be lengthened. When a liquid (here, a heat storage material) is filled in the deep-drawn container, the filling rate of the liquid with respect to the volume of the deep-drawn container is said to be at most about 70 to 80% in the manufacturing process. For example, a heat storage pack in which a deep-drawn container is filled with about 70 to 80% is phase-changed (that is, changed from a liquid phase to a solid phase) with the bottom of the container placed flat downward. When this heat storage pack is brought into contact with food or drink serving as a heat receiving body, heat is conducted in the order of the heat receiving body, the bottom of the deep-drawn container, the heat storage material, the void layer, the lid material, and the outside air. As a result, the void layer exhibits a heat insulating effect from the outside air for the heat storage material, and as a result, the holding time of the heat storage material can be extended. Furthermore, since the heat storage material has a viscosity capable of maintaining the shape, the above-described positional relationship is maintained even after the phase change (that is, from the solid phase to the liquid phase), so that the holding time can be further extended.
[断熱材]
本実施形態に係る蓄熱パックにおいて、第1の深絞り容器3は、第2の深絞り容器5の反対側に断熱材を備えていても良い。 [Insulation]
In the heat storage pack according to the present embodiment, the first deep-drawncontainer 3 may include a heat insulating material on the opposite side of the second deep-drawn container 5.
本実施形態に係る蓄熱パックにおいて、第1の深絞り容器3は、第2の深絞り容器5の反対側に断熱材を備えていても良い。 [Insulation]
In the heat storage pack according to the present embodiment, the first deep-drawn
このように、第1の深絞り容器3は、第2の深絞り容器5の反対側に断熱材をさらに備えることによって、保冷性能または保温性能をさらに高めることができる。断熱材としては、自然系、プラスチック系、ガラス繊維などの鉱物系が用いられる。自然系としては、セルロースファイバーや軽量軟質木質繊維ボード等が挙げられる。プラスチック系としては、ポリスチレンフォーム、硬質ウレタンフォーム、高発泡ポリエチレン、フェノールフォーム等が挙げられる。鉱物系としては、グラスウール、ロックウール、発泡ガラス等が挙げられるが、本発明は、これらに限定されるものではない。
Thus, the first deep-drawn container 3 can further enhance the cold insulation performance or the thermal insulation performance by further including a heat insulating material on the opposite side of the second deep-drawn container 5. As the heat insulating material, natural materials, plastic materials, mineral materials such as glass fibers are used. Examples of natural systems include cellulose fibers and lightweight soft wood fiber boards. Examples of plastics include polystyrene foam, rigid urethane foam, highly foamed polyethylene, and phenol foam. Examples of the mineral system include glass wool, rock wool, and foamed glass, but the present invention is not limited to these.
[熱交換ユニット]
以上説明した蓄熱パックを連設することによって、熱交換ユニットを構成することができる。図5Aは、熱交換ユニットの平面図であり、図5Bは、熱交換ユニットの使用例を示す概念図である。すなわち、本実施形態に係る熱交換ユニット20は、上記のいずれかに記載の蓄熱パック1が複数接続され、隣接する蓄熱パック間に関節機構9を有する。 [Heat exchange unit]
A heat exchange unit can be configured by connecting the heat storage packs described above. FIG. 5A is a plan view of the heat exchange unit, and FIG. 5B is a conceptual diagram showing an example of use of the heat exchange unit. That is, theheat exchange unit 20 according to the present embodiment includes a plurality of the heat storage packs 1 described above and a joint mechanism 9 between adjacent heat storage packs.
以上説明した蓄熱パックを連設することによって、熱交換ユニットを構成することができる。図5Aは、熱交換ユニットの平面図であり、図5Bは、熱交換ユニットの使用例を示す概念図である。すなわち、本実施形態に係る熱交換ユニット20は、上記のいずれかに記載の蓄熱パック1が複数接続され、隣接する蓄熱パック間に関節機構9を有する。 [Heat exchange unit]
A heat exchange unit can be configured by connecting the heat storage packs described above. FIG. 5A is a plan view of the heat exchange unit, and FIG. 5B is a conceptual diagram showing an example of use of the heat exchange unit. That is, the
このように、蓄熱パック1が関節機構9を介して複数接続されているため、受熱体としての飲食物の形状に追従させることができ、結果として密着性を向上させることができる。例えば、受熱体がワイン等の飲料ボトルである場合、飲料ボトルの円周方向に蓄熱パックが複数接続された熱交換ユニットとすることで、蓄熱パックを曲面上に密着させることができる。また、ワインボトルやビール瓶などにおいては、高さ方向に断面積が段階的に小さくなるくびれ形状を有する場合がある。このような場合には、ワインボトルやビール瓶の高さ方向に蓄熱パックが複数接続することによって、蓄熱パックをくびれ形状に沿って密着させることができる。さらに、高さ方向に種類の異なる蓄熱材を充填することによって、急冷性能、或いは保冷性能を向上させることができる。
Thus, since a plurality of the heat storage packs 1 are connected via the joint mechanism 9, it is possible to follow the shape of the food or drink as the heat receiving body, and as a result, the adhesion can be improved. For example, when the heat receiving body is a beverage bottle such as wine, the heat storage pack can be brought into close contact with the curved surface by using a heat exchange unit in which a plurality of heat storage packs are connected in the circumferential direction of the beverage bottle. In addition, wine bottles and beer bottles may have a constricted shape in which the cross-sectional area gradually decreases in the height direction. In such a case, by connecting a plurality of heat storage packs in the height direction of the wine bottle or beer bottle, the heat storage packs can be brought into close contact with each other along the constricted shape. Furthermore, rapid cooling performance or cold insulation performance can be improved by filling different kinds of heat storage materials in the height direction.
[蓄熱パックの製造方法]
本実施形態に係る蓄熱パックの製造方法は、飲食物の温度管理を行なう蓄熱パックの製造方法であって、第1の金型によって凹形状を有する第1の深絞り容器(第1の収容部)を成型する工程と、第2の金型によって、少なくとも第1の深絞り容器の凹形状よりも大きい凹形状を有する第2の深絞り容器(第2の収容部)を成型する工程と、第1の深絞り容器に、予め定められた温度で相変化する第1の蓄熱材を充填する工程と、第2の深絞り容器に、第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材を充填する工程と、第2の蓄熱材が充填された第2の深絞り容器に、第1の蓄熱材が充填された第1の深絞り容器を積重させて、蓋材、第1の深絞り容器のフランジ部および第2の深絞り容器のフランジ部を接合する工程と、を少なくとも含む。 [Method of manufacturing heat storage pack]
The method for manufacturing a heat storage pack according to the present embodiment is a method for manufacturing a heat storage pack for managing the temperature of food and drink, and is a first deep-drawn container (first housing portion) having a concave shape by a first mold. And a step of molding a second deep-drawn container (second housing portion) having a concave shape larger than at least the concave shape of the first deep-drawn container by the second mold, Filling the first deep-drawn container with a first heat storage material that changes phase at a predetermined temperature; and filling the second deep-drawn container with a liquid phase state at the phase change temperature of the first heat storage material. The step of filling the second heat storage material to be maintained and the second deep drawn container filled with the second heat storage material are stacked with the first deep drawn container filled with the first heat storage material. Joining the flange portion of the first deep-drawn container and the flange portion of the second deep-drawn container, Including even without.
本実施形態に係る蓄熱パックの製造方法は、飲食物の温度管理を行なう蓄熱パックの製造方法であって、第1の金型によって凹形状を有する第1の深絞り容器(第1の収容部)を成型する工程と、第2の金型によって、少なくとも第1の深絞り容器の凹形状よりも大きい凹形状を有する第2の深絞り容器(第2の収容部)を成型する工程と、第1の深絞り容器に、予め定められた温度で相変化する第1の蓄熱材を充填する工程と、第2の深絞り容器に、第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材を充填する工程と、第2の蓄熱材が充填された第2の深絞り容器に、第1の蓄熱材が充填された第1の深絞り容器を積重させて、蓋材、第1の深絞り容器のフランジ部および第2の深絞り容器のフランジ部を接合する工程と、を少なくとも含む。 [Method of manufacturing heat storage pack]
The method for manufacturing a heat storage pack according to the present embodiment is a method for manufacturing a heat storage pack for managing the temperature of food and drink, and is a first deep-drawn container (first housing portion) having a concave shape by a first mold. And a step of molding a second deep-drawn container (second housing portion) having a concave shape larger than at least the concave shape of the first deep-drawn container by the second mold, Filling the first deep-drawn container with a first heat storage material that changes phase at a predetermined temperature; and filling the second deep-drawn container with a liquid phase state at the phase change temperature of the first heat storage material. The step of filling the second heat storage material to be maintained and the second deep drawn container filled with the second heat storage material are stacked with the first deep drawn container filled with the first heat storage material. Joining the flange portion of the first deep-drawn container and the flange portion of the second deep-drawn container, Including even without.
また、次のような製造方法であっても良い。すなわち、第1の金型によって凹形状を有する第1の深絞り容器(第1の収容部)を成型する工程と、第2の金型によって、少なくとも第1の深絞り容器の凹形状よりも大きい凹形状を有する第2の深絞り容器(第2の収容部)を成型する工程と、第2の深絞り容器に、第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材を充填する工程と、第2の蓄熱材が充填された第2の深絞り容器に、第1の深絞り容器を積重させる工程と、第1の深絞り容器に、予め定められた温度で相変化する第1の蓄熱材を充填する工程と、蓋材、第1の深絞り容器のフランジ部および第2の深絞り容器のフランジ部を接合する工程と、を少なくとも含む。
Also, the following manufacturing method may be used. That is, the step of molding the first deep-drawn container (first housing portion) having a concave shape with the first mold and the second mold at least than the concave shape of the first deep-drawn container. A step of molding a second deep-drawn container (second housing portion) having a large concave shape, and a second step of maintaining a liquid phase state at the phase change temperature of the first heat storage material in the second deep-drawn container A step of filling the heat storage material, a step of stacking the first deep-drawn container on the second deep-drawn container filled with the second heat storage material, and a first deep-drawn container. At least a step of filling the first heat storage material that changes in phase at a high temperature and a step of joining the lid member, the flange portion of the first deep-drawn container, and the flange portion of the second deep-drawn container.
ここで、蓋材、第1の深絞り容器、第2の深絞り容器を構成するフィルム材としては、PVC(軟質)、PVC(硬質)、PE、CPP(無延伸)、OPP(延伸)、PET、NY等が、単独、或いは複数の構成にて用いられる。
Here, as a film material constituting the lid member, the first deep drawn container, and the second deep drawn container, PVC (soft), PVC (hard), PE, CPP (non-stretched), OPP (stretched), PET, NY, etc. are used alone or in a plurality of configurations.
蓋材としては、NY//PE、NY//PP構成が一般的である。なお、本実施形態では、充填物が液体であり、内容物の漏洩が懸念されるため、PPよりも柔らかく溶着性に優れているNY//PE構成がより好ましい。なお、ガスバリア性が求められる場合には、CPP構成から成るフィルムを選定しても良い。
As a cover material, NY // PE and NY // PP configurations are common. In the present embodiment, since the filling material is a liquid and the contents may be leaked, a NY // PE configuration that is softer than PP and excellent in weldability is more preferable. In addition, when a gas barrier property is calculated | required, you may select the film which consists of a CPP structure.
図6Aおよび図6Bは、第1の深絞り容器3の製造の様子を示す図である。図6Aに示すように、第1の金型としての真空成型金型60に、硬質フィルム61を設置し、真空成型機を用いて真空成型を行なう。第1の深絞り容器3を成型するために用いる硬質フィルム材には、成型性の観点から、PP構成から成るフィルムが好ましい。本実施形態では、第1の深絞り容器3は、形状保持性が重要であることから、PVC(硬質)、PP構成から成るフィルムを選定することが好ましい。
FIG. 6A and FIG. 6B are views showing a state of manufacturing the first deep-drawn container 3. As shown to FIG. 6A, the hard film 61 is installed in the vacuum molding die 60 as a 1st metal mold | die, and vacuum molding is performed using a vacuum molding machine. The hard film material used for molding the first deep-drawn container 3 is preferably a film having a PP configuration from the viewpoint of moldability. In this embodiment, since the shape retention property is important for the first deep-drawn container 3, it is preferable to select a film made of PVC (hard) or PP.
ここで、第1の深絞り容器は、蓋材と第2の深絞り容器との間に存在することから、例えば、PE//NY//PPのような3層から成るフィルムで構成するのが一般的である。しかしながら、上述したように、3層フィルムはヒートシール強度が弱いため、本実施形態では、敢えて、2層フィルム構成とし、フィルムの任意の一部に貫通口を設ける構成とした。
Here, since the first deep-drawn container is present between the lid material and the second deep-drawn container, the first deep-drawn container is composed of a three-layer film such as PE // NY // PP. Is common. However, as described above, since the three-layer film has a weak heat seal strength, in the present embodiment, the two-layer film configuration is used, and a through-hole is provided in an arbitrary part of the film.
このような工程により、図6Bに示すように、凹形状を有する第1の深絞り容器3(第1の収容部)が成形される。
By such a process, as shown in FIG. 6B, the first deep-drawn container 3 (first housing portion) having a concave shape is formed.
図7Aおよび図7Bは、第2の深絞り容器5の製造の様子を示す図である。図7Aに示すように、第2の金型としての真空成型金型70に、軟質フィルム71を設置し、真空成型機を用いて真空成型を行なう。本実施形態においては、第2の深絞り容器は、保冷対象物との密着性が重要であることから、PVC(軟質)、PE構成から成るフィルムを選定することが好ましい。さらに、溶着する相手方がPE構成から成るフィルムの場合、同様にPE構成から成るフィルムを選定することがより好ましい。
FIG. 7A and FIG. 7B are diagrams showing a state of manufacturing the second deep-drawn container 5. As shown in FIG. 7A, a soft film 71 is placed in a vacuum forming mold 70 as a second mold, and vacuum forming is performed using a vacuum forming machine. In the present embodiment, the second deep-drawn container is preferably selected from a film made of PVC (soft) or PE because the adhesion to the cold object is important. Furthermore, when the other party to be welded is a film having a PE structure, it is more preferable to select a film having a PE structure.
図8は、第2の蓄熱材を充填する工程を示す概念図である。この工程では、上記のように形成した第2の深絞り容器5内に、液体充填機を用いて、不凍材としての第2の蓄熱材5aを定量充填する。なお、液体充填機にはポンプ式充填機を使用することが好ましい。第2の蓄熱材としては、充填プロセス上、材料の跳返り・飛出し等の影響が無い最低限の粘性、且つ自重に対して形状維持性のある最低限の粘性を有することが好ましい。例えば、1000~10000cP程度の粘度を有することが好ましい。
FIG. 8 is a conceptual diagram showing a process of filling the second heat storage material. In this step, the second heat storage material 5a as the antifreeze material is quantitatively filled into the second deep-drawn container 5 formed as described above using a liquid filling machine. In addition, it is preferable to use a pump type filling machine for the liquid filling machine. It is preferable that the second heat storage material has a minimum viscosity that does not affect the material rebounding or jumping out, and a minimum viscosity that maintains shape against its own weight in the filling process. For example, it preferably has a viscosity of about 1000 to 10000 cP.
図9は、フィルムを熱圧着する工程を示す概念図である。この工程では、上記のように形成した第1の深絞り容器3を、不凍材としての第2の蓄熱材5aが充填された第2の深絞り容器5上に位置決めし、第1の深絞り容器3を形成するフィルム材と第2の深絞り容器5を形成するフィルム材とを熱溶着する。このフィルムの熱圧着には、ヒートシーラーを用いることが好ましい。また、超音波溶着機を用いても良い。
FIG. 9 is a conceptual diagram showing a process of thermocompression bonding a film. In this step, the first deep-drawn container 3 formed as described above is positioned on the second deep-drawn container 5 filled with the second heat storage material 5a as the antifreeze material, and the first depth-drawn container 3 is positioned. The film material forming the squeezed container 3 and the film material forming the second deep-drawn container 5 are thermally welded. A heat sealer is preferably used for thermocompression bonding of the film. An ultrasonic welder may be used.
図10は、第1の蓄熱材を充填する工程を示す概念図である。この工程では、上記のように形成した第1の深絞り容器3内に、液体充填機を用いて、第1の蓄熱材3aを定量充填する。なお、液体充填機にはポンプ式充填機を使用することが好ましい。また、第1の蓄熱材3aは、自重に対して形状維持性のある粘性を有することが好ましい。例えば、1000~10000cP程度の粘度がより好ましい。また、容器の容積に対する蓄熱材の充填率は70~90%程度とし、容器天面との間に空隙層が形成されている状態が好ましい。
FIG. 10 is a conceptual diagram showing a process of filling the first heat storage material. In this step, the first heat storage material 3a is quantitatively filled into the first deep-drawn container 3 formed as described above using a liquid filling machine. In addition, it is preferable to use a pump type filling machine for the liquid filling machine. Moreover, it is preferable that the 1st heat storage material 3a has a viscosity with shape maintenance property with respect to own weight. For example, a viscosity of about 1000 to 10000 cP is more preferable. The filling rate of the heat storage material with respect to the volume of the container is preferably about 70 to 90%, and a state in which a void layer is formed between the top surface of the container is preferable.
図11は、フィルムを熱圧着する工程を示す概念図である。この工程では、第2の深絞り容器5上に蓋材7を位置決めし、第2の深絞り容器5を形成するフィルム材と蓋材7とを熱溶着する。このフィルムの熱圧着には、ヒートシーラーを用いることが好ましい。また、超音波溶着機を用いても良い。蓋材7には、軟質プラスチックフィルムを使用することが好ましい。
FIG. 11 is a conceptual diagram showing a process of thermocompression bonding a film. In this step, the lid member 7 is positioned on the second deep-drawn container 5, and the film material forming the second deep-drawn container 5 and the lid material 7 are heat-welded. A heat sealer is preferably used for thermocompression bonding of the film. An ultrasonic welder may be used. For the lid member 7, it is preferable to use a soft plastic film.
ここで、第2の深絞り容器5を形成するフィルムの天面の一部には貫通口8が設けられ、本工程における溶着時には、貫通口8を介して、第1の深絞り容器3を形成するフィルムと蓋材7とが溶着されることが好ましい。
Here, a through-hole 8 is provided in a part of the top surface of the film forming the second deep-drawn container 5, and at the time of welding in this step, the first deep-drawn container 3 is placed through the through-hole 8. The film to be formed and the lid member 7 are preferably welded.
このように、第1の深絞り容器3と、第2の深絞り容器5が接合されることによって、第1の深絞り容器3と第2の深絞り容器5の位置関係が固定され、性能を向上させること、並びに繰返し性能を向上させることができる。ここで、第2の深絞り容器5は、図7A~図11に示されるように、深さの異なる底面を有する形状であっても良い。例えば、ワインボトルのような高さ方向にくびれ形状を有する受熱体の場合、第2の深絞り容器5を高さ方向に深さが段階的に深くなるような形状とすることによって、受熱体としての飲食物との密着性を向上させることができる。接合手段としては、上記のような溶着として、超音波溶着、振動溶着、誘導溶着、高周波溶着、半導体レーザー溶着、熱溶着、スピン溶着などが挙げられるが、本発明は、これらに限定されない。
As described above, the first deep-drawn container 3 and the second deep-drawn container 5 are joined, so that the positional relationship between the first deep-drawn container 3 and the second deep-drawn container 5 is fixed, and the performance is improved. As well as repeatability can be improved. Here, as shown in FIGS. 7A to 11, the second deep-drawn container 5 may have a shape having bottom surfaces with different depths. For example, in the case of a heat receiving body having a constricted shape in the height direction, such as a wine bottle, the heat receiving body is formed by forming the second deep-drawn container 5 so that the depth is gradually increased in the height direction. As a result, it is possible to improve the adhesion to food and drink. Examples of the bonding means include ultrasonic welding, vibration welding, induction welding, high frequency welding, semiconductor laser welding, thermal welding, spin welding, and the like, but the present invention is not limited to these.
以上のような製造方法を採ることにより、第2の蓄熱材5aが第1の蓄熱材3aの相変化温度で液相状態を維持し、第2の深絞り容器5が受熱体としての飲食物に接触する蓄熱パックを製造することが可能となる。
By adopting the above manufacturing method, the second heat storage material 5a maintains a liquid phase state at the phase change temperature of the first heat storage material 3a, and the second deep-drawn container 5 is a food or drink as a heat receiver. It becomes possible to manufacture the heat storage pack which contacts.
[比較対照実験]
次に、本実施形態に係る蓄熱パックの効果を検証するために行なった比較対照実験について説明する。図12は、実験手順を示す図である。 [Comparative control experiment]
Next, a comparative experiment conducted to verify the effect of the heat storage pack according to the present embodiment will be described. FIG. 12 is a diagram showing an experimental procedure.
次に、本実施形態に係る蓄熱パックの効果を検証するために行なった比較対照実験について説明する。図12は、実験手順を示す図である。 [Comparative control experiment]
Next, a comparative experiment conducted to verify the effect of the heat storage pack according to the present embodiment will be described. FIG. 12 is a diagram showing an experimental procedure.
(手順1)
液温が常温(25℃近辺)に保たれたワインボトルを準備する。 (Procedure 1)
Prepare a wine bottle whose liquid temperature is kept at room temperature (around 25 ° C).
液温が常温(25℃近辺)に保たれたワインボトルを準備する。 (Procedure 1)
Prepare a wine bottle whose liquid temperature is kept at room temperature (around 25 ° C).
(手順2)
ワインボトル周囲に冷却した蓄熱材、 或いは不凍材、或いはその両方を巻きつける。 (Procedure 2)
Wrap a cool heat storage material, antifreeze material, or both around the wine bottle.
ワインボトル周囲に冷却した蓄熱材、 或いは不凍材、或いはその両方を巻きつける。 (Procedure 2)
Wrap a cool heat storage material, antifreeze material, or both around the wine bottle.
(手順3)
蓄熱材の外周に発泡断熱材を巻きつける。 (Procedure 3)
Wrap foam insulation around the heat storage material.
蓄熱材の外周に発泡断熱材を巻きつける。 (Procedure 3)
Wrap foam insulation around the heat storage material.
(手順4)
ワインボトルを25℃環境下の保温庫に入れ、ボトル中央部のワイン液温の変化を測定する。 (Procedure 4)
The wine bottle is put in a heat-reservoir under an environment of 25 ° C., and the change in the wine liquid temperature at the center of the bottle is measured.
ワインボトルを25℃環境下の保温庫に入れ、ボトル中央部のワイン液温の変化を測定する。 (Procedure 4)
The wine bottle is put in a heat-reservoir under an environment of 25 ° C., and the change in the wine liquid temperature at the center of the bottle is measured.
図13は、実験結果の評価方法を示す図であり、以下の手法を用いる。
FIG. 13 is a diagram showing an evaluation method of the experimental results, and the following method is used.
(評価方法)
冷却開始後の「到達温度」と「到達時間」を実測する。また、冷却スピードを評価するため、急冷速度を下記と定義する。この指標を用いて、以下の各実施例における急冷性能を評価する。
急冷度=(T初期-T10min)/10min (Evaluation methods)
Measure the “arrival temperature” and “arrival time” after the start of cooling. In order to evaluate the cooling speed, the rapid cooling speed is defined as follows. Using this index, the rapid cooling performance in the following examples is evaluated.
Rapid cooling = (T initial stage−T10 min) / 10 min
冷却開始後の「到達温度」と「到達時間」を実測する。また、冷却スピードを評価するため、急冷速度を下記と定義する。この指標を用いて、以下の各実施例における急冷性能を評価する。
急冷度=(T初期-T10min)/10min (Evaluation methods)
Measure the “arrival temperature” and “arrival time” after the start of cooling. In order to evaluate the cooling speed, the rapid cooling speed is defined as follows. Using this index, the rapid cooling performance in the following examples is evaluated.
Rapid cooling = (T initial stage−T10 min) / 10 min
図14は、比較例1~3および実施例1~3の蓄熱材の構成を示す表である。この表に示されるように、蓄熱材を作製し、上記の実験手順に従って評価を実施した。なお、比較例1~3および実施例1~3に示すように、蓄熱パックの形態がそれぞれ異なっている。
FIG. 14 is a table showing the configurations of the heat storage materials of Comparative Examples 1 to 3 and Examples 1 to 3. As shown in this table, a heat storage material was prepared and evaluated according to the above experimental procedure. In addition, as shown in Comparative Examples 1 to 3 and Examples 1 to 3, the forms of the heat storage packs are different.
図15は、蓄熱材の充填および包装の概要を示す図である。
FIG. 15 is a diagram showing an outline of filling and packaging of the heat storage material.
(1)撹拌槽に水道水とNaCl(塩化ナトリウム)を入れ、150rpm/10min撹拌・溶解させ、NaCl_23wt%水溶液を作製する。
(1) Tap water and NaCl (sodium chloride) are put into a stirring tank and stirred and dissolved at 150 rpm / 10 min to prepare a NaCl — 23 wt% aqueous solution.
(2)水溶液中に、CMCを添加し、300rpm/15min撹拌・溶解させ、CMC_5wt%が添加されたNaCl水溶液を作製する。
(2) CMC is added to the aqueous solution and stirred and dissolved at 300 rpm / 15 min to prepare an NaCl aqueous solution to which CMC — 5 wt% is added.
(3)ポンプを動作させ、上記(2)で作製した水溶液を、縦ピロー型包装機にてフィルム包装し、合計300gのパッケージを作製する。
(3) The pump is operated, and the aqueous solution prepared in (2) above is film-wrapped with a vertical pillow type packaging machine to produce a total package of 300 g.
[比較例1」
図16は、図12で示した実験手順に従って、図14に示した比較例1について、ワインの液温の温度測定を行なった結果を示す図である。ボトルとの密着性が良いため、冷却の傾き(△t/△T)は良好であるが、熱量が十分でないため、到達温度が不十分であるという結果を得た。 [Comparative Example 1]
FIG. 16 is a diagram showing the results of measuring the temperature of the wine liquid temperature for Comparative Example 1 shown in FIG. 14 according to the experimental procedure shown in FIG. Since the adhesiveness with the bottle is good, the cooling gradient (Δt / ΔT) is good, but the amount of heat is not enough, so that the ultimate temperature is insufficient.
図16は、図12で示した実験手順に従って、図14に示した比較例1について、ワインの液温の温度測定を行なった結果を示す図である。ボトルとの密着性が良いため、冷却の傾き(△t/△T)は良好であるが、熱量が十分でないため、到達温度が不十分であるという結果を得た。 [Comparative Example 1]
FIG. 16 is a diagram showing the results of measuring the temperature of the wine liquid temperature for Comparative Example 1 shown in FIG. 14 according to the experimental procedure shown in FIG. Since the adhesiveness with the bottle is good, the cooling gradient (Δt / ΔT) is good, but the amount of heat is not enough, so that the ultimate temperature is insufficient.
[比較例2]
図17は、図12で示した実験手順に従って、図14に示した比較例2について、ワインの液温の温度測定を行なった結果を示す図である。比較例2では、KCl(塩化カリウム)_21wt%水溶液+CMC_5wt%の蓄熱材を生成し、撹拌・包装機にて、蓄熱パックを作製した。凍結材のため潜熱を有しており、比較例1に比べて到達温度を満たす結果を得た。一方、密着性が不十分であるため、冷却の傾きは比較例1よりも劣る結果を得た。 [Comparative Example 2]
FIG. 17 is a diagram showing a result of measuring the temperature of the wine liquid temperature in Comparative Example 2 shown in FIG. 14 according to the experimental procedure shown in FIG. In Comparative Example 2, a heat storage material of KCl (potassium chloride) _21 wt% aqueous solution + CMC_5 wt% was generated, and a heat storage pack was prepared using a stirring / packaging machine. Since it was a frozen material, it had latent heat, and a result that satisfied the ultimate temperature as compared with Comparative Example 1 was obtained. On the other hand, since the adhesion was insufficient, the cooling gradient was inferior to that of Comparative Example 1.
図17は、図12で示した実験手順に従って、図14に示した比較例2について、ワインの液温の温度測定を行なった結果を示す図である。比較例2では、KCl(塩化カリウム)_21wt%水溶液+CMC_5wt%の蓄熱材を生成し、撹拌・包装機にて、蓄熱パックを作製した。凍結材のため潜熱を有しており、比較例1に比べて到達温度を満たす結果を得た。一方、密着性が不十分であるため、冷却の傾きは比較例1よりも劣る結果を得た。 [Comparative Example 2]
FIG. 17 is a diagram showing a result of measuring the temperature of the wine liquid temperature in Comparative Example 2 shown in FIG. 14 according to the experimental procedure shown in FIG. In Comparative Example 2, a heat storage material of KCl (potassium chloride) _21 wt% aqueous solution + CMC_5 wt% was generated, and a heat storage pack was prepared using a stirring / packaging machine. Since it was a frozen material, it had latent heat, and a result that satisfied the ultimate temperature as compared with Comparative Example 1 was obtained. On the other hand, since the adhesion was insufficient, the cooling gradient was inferior to that of Comparative Example 1.
[比較例3]
図18Aは、比較例3に係る蓄熱パックを作製する概要を示す図であり、図18Bは、比較例3の平面図であり、図18Cは、比較例3の側面図である。すなわち、比較例1と同様の方法で、不凍材[NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%]を作製し、比較例2と同様の方法で、蓄熱材[KCl(塩化カリウム)_21wt%水溶液+CMC_5wt%]を作製した。図18Aに示す縦ピロー型包装機を用いて、フィルムパックの中に、不凍材とフィルムパック化された蓄熱材が充填されたパックinパック蓄熱パックを作製した。 [Comparative Example 3]
FIG. 18A is a diagram showing an outline for producing a heat storage pack according to Comparative Example 3, FIG. 18B is a plan view of Comparative Example 3, and FIG. 18C is a side view of Comparative Example 3. That is, an antifreeze material [NaCl (sodium chloride) _23 wt% aqueous solution + CMC_5 wt%] was prepared in the same manner as in Comparative Example 1, and a heat storage material [KCl (potassium chloride) _21 wt% aqueous solution was prepared in the same manner as in Comparative Example 2. + CMC — 5 wt%] was produced. Using a vertical pillow type packaging machine shown in FIG. 18A, a pack-in-pack heat storage pack in which a film pack was filled with an antifreeze material and a heat storage material formed into a film pack was produced.
図18Aは、比較例3に係る蓄熱パックを作製する概要を示す図であり、図18Bは、比較例3の平面図であり、図18Cは、比較例3の側面図である。すなわち、比較例1と同様の方法で、不凍材[NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%]を作製し、比較例2と同様の方法で、蓄熱材[KCl(塩化カリウム)_21wt%水溶液+CMC_5wt%]を作製した。図18Aに示す縦ピロー型包装機を用いて、フィルムパックの中に、不凍材とフィルムパック化された蓄熱材が充填されたパックinパック蓄熱パックを作製した。 [Comparative Example 3]
FIG. 18A is a diagram showing an outline for producing a heat storage pack according to Comparative Example 3, FIG. 18B is a plan view of Comparative Example 3, and FIG. 18C is a side view of Comparative Example 3. That is, an antifreeze material [NaCl (sodium chloride) _23 wt% aqueous solution + CMC_5 wt%] was prepared in the same manner as in Comparative Example 1, and a heat storage material [KCl (potassium chloride) _21 wt% aqueous solution was prepared in the same manner as in Comparative Example 2. + CMC — 5 wt%] was produced. Using a vertical pillow type packaging machine shown in FIG. 18A, a pack-in-pack heat storage pack in which a film pack was filled with an antifreeze material and a heat storage material formed into a film pack was produced.
図19は、図12で示した実験手順に従って、上記のように作製した比較例3について、ワインの液温の温度測定を行なった結果を示す図である。比較例3では、不凍材と蓄熱パックを充填したパックinパック構成により、比較例1同等の冷却速度を維持しつつ、十分な到達温度を得ることができた。しかしながら、ここで言う適温範囲は、白ワインの適温範囲であって、更に適温の低い、スパークリングワイン(2~6℃)の仕様を実現するには十分ではない。
FIG. 19 is a diagram showing the results of measuring the temperature of the wine liquid temperature in Comparative Example 3 produced as described above according to the experimental procedure shown in FIG. In Comparative Example 3, a sufficient ultimate temperature could be obtained while maintaining a cooling rate equivalent to that of Comparative Example 1 with a pack-in-pack configuration filled with an antifreeze material and a heat storage pack. However, the optimum temperature range here is the optimum temperature range for white wine, and is not sufficient to realize the specifications for sparkling wine (2 to 6 ° C.), which is even lower.
[実施例1]
図20は、図12で示した実験手順に従って、図6A~図11を用いて説明した方法で作製した実施例1について、ワインの液温の温度測定を行なった結果を示す図である。実施例1では、図14に示すように、第1の蓄熱材3aを「KCl(塩化カリウム)_21wt%水溶液+CMC_5wt%」とし、不凍材としての第2の蓄熱材5aを「NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%」とした。実施例1は、軟質フィルムから構成され、第2の蓄熱材5a(不凍材)が充填された第2の深絞り容器5内に、硬質フィルムから構成され、第1の蓄熱材3aが充填された第1の深絞り容器3が熱溶着された構成を取ることで、スパークリングワインの適温範囲(2~6℃)に素早く到達する構成を実現することができた。 [Example 1]
FIG. 20 is a diagram showing the results of measuring the temperature of the wine liquid for Example 1 manufactured by the method described with reference to FIGS. 6A to 11 in accordance with the experimental procedure shown in FIG. In Example 1, as shown in FIG. 14, the firstheat storage material 3 a is “KCl (potassium chloride) — 21 wt% aqueous solution + CMC — 5 wt%”, and the second heat storage material 5 a as an antifreeze is “NaCl (sodium chloride). ) _23 wt% aqueous solution + CMC_5 wt% ”. Example 1 is composed of a soft film, and is composed of a hard film in the second deep-drawn container 5 filled with the second heat storage material 5a (antifreeze material), and is filled with the first heat storage material 3a. By adopting a configuration in which the first deep-drawn container 3 was thermally welded, it was possible to realize a configuration that quickly reached the appropriate temperature range (2 to 6 ° C.) of sparkling wine.
図20は、図12で示した実験手順に従って、図6A~図11を用いて説明した方法で作製した実施例1について、ワインの液温の温度測定を行なった結果を示す図である。実施例1では、図14に示すように、第1の蓄熱材3aを「KCl(塩化カリウム)_21wt%水溶液+CMC_5wt%」とし、不凍材としての第2の蓄熱材5aを「NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%」とした。実施例1は、軟質フィルムから構成され、第2の蓄熱材5a(不凍材)が充填された第2の深絞り容器5内に、硬質フィルムから構成され、第1の蓄熱材3aが充填された第1の深絞り容器3が熱溶着された構成を取ることで、スパークリングワインの適温範囲(2~6℃)に素早く到達する構成を実現することができた。 [Example 1]
FIG. 20 is a diagram showing the results of measuring the temperature of the wine liquid for Example 1 manufactured by the method described with reference to FIGS. 6A to 11 in accordance with the experimental procedure shown in FIG. In Example 1, as shown in FIG. 14, the first
[実施例2]
図21は、図12で示した実験手順に従って、図6A~図11を用いて説明した方法で作製した実施例2について、ワインの液温の温度測定を行なった結果を示す図である。実施例2では、図14に示すように、第1の蓄熱材3aを「NH4Cl(塩化アンモニウム)_18wt%水溶液+CMC_5wt%」とし、不凍材としての第2の蓄熱材5aを「NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%」とした。実施例2では、軟質フィルムから構成され、第2の蓄熱材5a(不凍材)が充填された第2の深絞り容器5内に、硬質フィルムから構成され、第1の蓄熱材3aが充填された第1の深絞り容器3が熱溶着された構成を取ることで、スパークリングワインの適温範囲(2~6℃)に素早く到達する構成を実現することができた。 [Example 2]
FIG. 21 is a diagram showing the results of the temperature measurement of the wine liquid temperature in Example 2 manufactured by the method described with reference to FIGS. 6A to 11 according to the experimental procedure shown in FIG. In Example 2, as shown in FIG. 14, the firstheat storage material 3 a is “NH 4 Cl (ammonium chloride) —18 wt% aqueous solution + CMC — 5 wt%”, and the second heat storage material 5 a as an antifreeze is “NaCl ( Sodium chloride) _23 wt% aqueous solution + CMC_5 wt% ”. In Example 2, the second deep-drawn container 5 made of a soft film and filled with the second heat storage material 5a (antifreeze material) is made of a hard film and filled with the first heat storage material 3a. By adopting a configuration in which the first deep-drawn container 3 was thermally welded, it was possible to realize a configuration that quickly reached the appropriate temperature range (2 to 6 ° C.) of sparkling wine.
図21は、図12で示した実験手順に従って、図6A~図11を用いて説明した方法で作製した実施例2について、ワインの液温の温度測定を行なった結果を示す図である。実施例2では、図14に示すように、第1の蓄熱材3aを「NH4Cl(塩化アンモニウム)_18wt%水溶液+CMC_5wt%」とし、不凍材としての第2の蓄熱材5aを「NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%」とした。実施例2では、軟質フィルムから構成され、第2の蓄熱材5a(不凍材)が充填された第2の深絞り容器5内に、硬質フィルムから構成され、第1の蓄熱材3aが充填された第1の深絞り容器3が熱溶着された構成を取ることで、スパークリングワインの適温範囲(2~6℃)に素早く到達する構成を実現することができた。 [Example 2]
FIG. 21 is a diagram showing the results of the temperature measurement of the wine liquid temperature in Example 2 manufactured by the method described with reference to FIGS. 6A to 11 according to the experimental procedure shown in FIG. In Example 2, as shown in FIG. 14, the first
[実施例3]
図22は、図12で示した実験手順に従って、図6A~図11を用いて説明した方法で作製した実施例3について、ワインの液温の温度測定を行なった結果を示す図である。実施例3では、図14に示すように、第1の蓄熱材3aを「TBAB(テトラブチルアンモニウムブロミド)_40wt%水溶液+CMC_5wt%」とし、不凍材としての第2の蓄熱材5aを「NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%」とした。軟質フィルムから構成され、第2の蓄熱材5a(不凍材)が充填された第2の深絞り容器5内に、硬質フィルムから構成され、第1の蓄熱材3aが充填された第1の深絞り容器3が熱溶着された構成を取ることで、赤ワインの適温範囲(14~18℃)に素早く到達し、且つ2時間以上、適温を維持可能な構成を実現することができた。 [Example 3]
FIG. 22 is a diagram showing the results of measuring the temperature of the wine liquid for Example 3 manufactured by the method described with reference to FIGS. 6A to 11 according to the experimental procedure shown in FIG. In Example 3, as shown in FIG. 14, the firstheat storage material 3a is “TBAB (tetrabutylammonium bromide) _40 wt% aqueous solution + CMC_5 wt%”, and the second heat storage material 5a as the antifreeze material is “NaCl ( Sodium chloride) _23 wt% aqueous solution + CMC_5 wt% ”. A first deep heat-contained material 3a filled with a first heat storage material 3a is formed in a second deep-drawn container 5 made of a soft film and filled with a second heat storage material 5a (antifreeze material). By adopting a configuration in which the deep-drawn container 3 is heat-welded, it was possible to achieve a configuration that can quickly reach the appropriate temperature range (14 to 18 ° C.) of red wine and maintain the appropriate temperature for 2 hours or more.
図22は、図12で示した実験手順に従って、図6A~図11を用いて説明した方法で作製した実施例3について、ワインの液温の温度測定を行なった結果を示す図である。実施例3では、図14に示すように、第1の蓄熱材3aを「TBAB(テトラブチルアンモニウムブロミド)_40wt%水溶液+CMC_5wt%」とし、不凍材としての第2の蓄熱材5aを「NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%」とした。軟質フィルムから構成され、第2の蓄熱材5a(不凍材)が充填された第2の深絞り容器5内に、硬質フィルムから構成され、第1の蓄熱材3aが充填された第1の深絞り容器3が熱溶着された構成を取ることで、赤ワインの適温範囲(14~18℃)に素早く到達し、且つ2時間以上、適温を維持可能な構成を実現することができた。 [Example 3]
FIG. 22 is a diagram showing the results of measuring the temperature of the wine liquid for Example 3 manufactured by the method described with reference to FIGS. 6A to 11 according to the experimental procedure shown in FIG. In Example 3, as shown in FIG. 14, the first
図23は、実験結果をまとめた表である。比較例1は赤ワインに対してのみ有効であり、比較例2および比較例3は赤ワインと白ワインついてのみ有効であったが、比較例1~3は、スパークリングワインについては有効ではなかった。これに対し、実施例1および実施例2は、赤ワイン、白ワインおよびスパークリングワインのすべてについて有効であることが分かった。また、実施例3については、赤ワインについて、十分な急冷特性を示すと共に、適温を2時間以上維持できることが分かった。
FIG. 23 is a table summarizing the experimental results. Comparative Example 1 was effective only for red wine, Comparative Example 2 and Comparative Example 3 were effective only for red wine and white wine, but Comparative Examples 1 to 3 were not effective for sparkling wine. In contrast, Example 1 and Example 2 were found to be effective for all of red wine, white wine and sparkling wine. Moreover, about Example 3, about red wine, while showing sufficient rapid cooling characteristic, it turned out that suitable temperature can be maintained for 2 hours or more.
[変形例1]
本実施形態に係る蓄熱パックは、アイシングパックに適用することが可能である。図24Aは、本実施形態の変形例1に係るアイシングパックの平面図であり、図24Bは、図24A中のB-B断面図である。アイシングパック240は、パック本体241、周辺部241a、収容部241bを備えている。また、アイシングパック240は、バンド部242R、242L、フック部243R、ループ部243Lを備えている。この構成により、保冷対象物を、所望の温度に素早く到達させることが可能となる。 [Modification 1]
The heat storage pack according to the present embodiment can be applied to an icing pack. 24A is a plan view of an icing pack according toModification 1 of the present embodiment, and FIG. 24B is a cross-sectional view taken along the line BB in FIG. 24A. The icing pack 240 includes a pack body 241, a peripheral portion 241a, and a storage portion 241b. The icing pack 240 includes band portions 242R, 242L, a hook portion 243R, and a loop portion 243L. With this configuration, the object to be kept cold can be quickly reached the desired temperature.
本実施形態に係る蓄熱パックは、アイシングパックに適用することが可能である。図24Aは、本実施形態の変形例1に係るアイシングパックの平面図であり、図24Bは、図24A中のB-B断面図である。アイシングパック240は、パック本体241、周辺部241a、収容部241bを備えている。また、アイシングパック240は、バンド部242R、242L、フック部243R、ループ部243Lを備えている。この構成により、保冷対象物を、所望の温度に素早く到達させることが可能となる。 [Modification 1]
The heat storage pack according to the present embodiment can be applied to an icing pack. 24A is a plan view of an icing pack according to
[変形例2]
本実施形態に係る蓄熱パックは、保冷アイスマスクに適用することが可能である。図25Aは、本実施形態の変形例2に係る保冷アイスマスクの平面図であり、図25Bは、図25A中のD-D断面図である。保冷アイスマスク30は、右眼保冷部31Rと、左眼保冷部31Lと、接続部32と、ゴムバンド34R、34Lを備えている。この構成により、眼を、所望の温度に素早く到達させることが可能となる。 [Modification 2]
The heat storage pack according to the present embodiment can be applied to a cold ice mask. FIG. 25A is a plan view of a cold ice mask according to the second modification of the present embodiment, and FIG. 25B is a DD cross-sectional view in FIG. 25A. The coldinsulation ice mask 30 includes a right eye cold insulation part 31R, a left eye cold insulation part 31L, a connection part 32, and rubber bands 34R and 34L. This configuration allows the eye to quickly reach the desired temperature.
本実施形態に係る蓄熱パックは、保冷アイスマスクに適用することが可能である。図25Aは、本実施形態の変形例2に係る保冷アイスマスクの平面図であり、図25Bは、図25A中のD-D断面図である。保冷アイスマスク30は、右眼保冷部31Rと、左眼保冷部31Lと、接続部32と、ゴムバンド34R、34Lを備えている。この構成により、眼を、所望の温度に素早く到達させることが可能となる。 [Modification 2]
The heat storage pack according to the present embodiment can be applied to a cold ice mask. FIG. 25A is a plan view of a cold ice mask according to the second modification of the present embodiment, and FIG. 25B is a DD cross-sectional view in FIG. 25A. The cold
[変形例3]
本実施形態に係る蓄熱パックは、アイス枕に適用することが可能である。図26は、本実施形態の変形例3に係るアイス枕の概要を示す図である。図26に示すように、気泡入緩衝材を用いて、アイス枕の表面を細かいひだ状の構成とする。すなわち、アイス枕260は、第1の蓄熱材3aを有する第1の収容部261と、第2の蓄熱材5aを有する第2の収容部262と、を備える。これにより、人体(頭)との接触面積を増やし、顕著な急冷感を得ることが可能となる。 [Modification 3]
The heat storage pack according to the present embodiment can be applied to an ice pillow. FIG. 26 is a diagram illustrating an outline of an ice pillow according to the third modification of the present embodiment. As shown in FIG. 26, the surface of the ice pillow is formed into a fine pleated configuration using a bubble-containing cushioning material. That is, the ice pillow 260 includes afirst housing portion 261 having the first heat storage material 3a and a second housing portion 262 having the second heat storage material 5a. Thereby, it becomes possible to increase a contact area with a human body (head) and obtain a remarkable rapid cooling feeling.
本実施形態に係る蓄熱パックは、アイス枕に適用することが可能である。図26は、本実施形態の変形例3に係るアイス枕の概要を示す図である。図26に示すように、気泡入緩衝材を用いて、アイス枕の表面を細かいひだ状の構成とする。すなわち、アイス枕260は、第1の蓄熱材3aを有する第1の収容部261と、第2の蓄熱材5aを有する第2の収容部262と、を備える。これにより、人体(頭)との接触面積を増やし、顕著な急冷感を得ることが可能となる。 [Modification 3]
The heat storage pack according to the present embodiment can be applied to an ice pillow. FIG. 26 is a diagram illustrating an outline of an ice pillow according to the third modification of the present embodiment. As shown in FIG. 26, the surface of the ice pillow is formed into a fine pleated configuration using a bubble-containing cushioning material. That is, the ice pillow 260 includes a
[変形例4]
変形例4において、図6A~図11に示した方法で以下に記載の蓄冷マットを作製した。図27は、変形例4に係る蓄冷マットの分解図であり、図28は、蓄冷マット280が完成した様子を示す図である。この蓄冷マット280は、蓋材7、第1の深絞り容器3、および第2の深絞り容器5を有し、第1の深絞り容器3には、第1の蓄熱材3aが充填されている。また、第2の深絞り容器5には、第2の蓄熱材5aが充填されている。変形例4では、第1の深絞り容器3は、「三菱樹脂株式会社製の共押多層フィルム“F116_350um”」を用い、第2の深絞り容器5aは、「三菱樹脂株式会社製の共押多層フィルム“C131_200um”」を用いる。蓋材には、「市販のNY/LL_75um」を用いた。 [Modification 4]
InModification 4, the cold storage mat described below was manufactured by the method shown in FIGS. 6A to 11. FIG. 27 is an exploded view of the cold storage mat according to the fourth modification, and FIG. 28 is a diagram illustrating a state where the cold storage mat 280 is completed. The cold storage mat 280 includes a lid member 7, a first deep-drawn container 3, and a second deep-drawn container 5, and the first deep-drawn container 3 is filled with the first heat storage material 3a. Yes. The second deep-drawn container 5 is filled with a second heat storage material 5a. In the modified example 4, the first deep-drawing container 3 uses “co-pressed multilayer film“ F116_350 um ”manufactured by Mitsubishi Plastics, Inc.”, and the second deep-drawn container 5 a uses “co-pressed manufactured by Mitsubishi Plastics, Inc.” A multilayer film “C131_200 um” is used. As the lid material, “commercially available NY / LL — 75 μm” was used.
変形例4において、図6A~図11に示した方法で以下に記載の蓄冷マットを作製した。図27は、変形例4に係る蓄冷マットの分解図であり、図28は、蓄冷マット280が完成した様子を示す図である。この蓄冷マット280は、蓋材7、第1の深絞り容器3、および第2の深絞り容器5を有し、第1の深絞り容器3には、第1の蓄熱材3aが充填されている。また、第2の深絞り容器5には、第2の蓄熱材5aが充填されている。変形例4では、第1の深絞り容器3は、「三菱樹脂株式会社製の共押多層フィルム“F116_350um”」を用い、第2の深絞り容器5aは、「三菱樹脂株式会社製の共押多層フィルム“C131_200um”」を用いる。蓋材には、「市販のNY/LL_75um」を用いた。 [Modification 4]
In
また、第1の蓄熱材3aは、「KCl(塩化カリウム)_20wt%水溶液」であり、第2の蓄熱材5aは、「NaCl(塩化ナトリウム)_23wt%水溶液+CMC_5wt%」とする。また、第1の蓄熱材3aの搭載量は、40g×6=240gとし、第2の蓄熱材5aの搭載量は、350gとした。
Further, the first heat storage material 3a is “KCl (potassium chloride) _20 wt% aqueous solution”, and the second heat storage material 5a is “NaCl (sodium chloride) _23 wt% aqueous solution + CMC_5 wt%”. Moreover, the mounting amount of the 1st heat storage material 3a was 40gx6 = 240g, and the mounting amount of the 2nd heat storage material 5a was 350g.
次に、変形例4における測定方法について説明する。冷凍室内(-18℃前後)で蓄冷マット280を冷却し、図29に示すように、蓄冷マット280の上に市販のアルミ製皿282を載せる。次に、アルミ製皿282の上に水(500g)を注ぐ。この水は、冷蔵室(4~5℃)で保冷したものを用いる。そして、水温の経時変化を測定した。また、対照実験として、蓄冷マット280を用いない場合を併せて測定した。
Next, a measurement method in Modification 4 will be described. The cold storage mat 280 is cooled in the freezer compartment (around −18 ° C.), and a commercially available aluminum dish 282 is placed on the cold storage mat 280 as shown in FIG. Next, water (500 g) is poured onto the aluminum dish 282. This water should be kept in a refrigerator (4-5 ° C). And the time-dependent change of water temperature was measured. Moreover, as a control experiment, the case where the cold storage mat 280 was not used was also measured.
図30は、変形例4における測定結果を示すグラフである。図30において、周囲温度(1)は、30℃弱を維持しており、変化はない。蓄冷マット280を用いない場合、アルミ製皿282中の水温の温度変化(2)は、測定開始から約30分の間で急上昇し、60分後には約22度に到達した。これに対し、蓄冷マット280を用いた場合、アルミ製皿282中の水温の温度変化(3)は、測定開始から約30分の間はやや上昇して、8℃~9℃となったが、60分を過ぎるころまで、その温度が維持され、その後、上昇した。また、蓄冷マット280の表面温度は、測定開始から約30分の間はやや上昇して、-5℃なったが、60分を過ぎるころまで、その温度が維持され、その後、上昇した。この場合、蓄冷マット280中の蓄冷材は、約60分後まで相変化していたと考えられる。
FIG. 30 is a graph showing the measurement results in Modification 4. In FIG. 30, the ambient temperature (1) is maintained at a little less than 30 ° C. and does not change. When the cold storage mat 280 was not used, the temperature change (2) of the water temperature in the aluminum dish 282 increased rapidly in about 30 minutes from the start of measurement, and reached about 22 degrees after 60 minutes. On the other hand, when the cold storage mat 280 was used, the temperature change (3) of the water temperature in the aluminum dish 282 slightly increased for about 30 minutes from the start of measurement to 8 ° C. to 9 ° C. Until about 60 minutes, the temperature was maintained and then increased. Further, the surface temperature of the cold storage mat 280 slightly increased for about 30 minutes from the start of measurement and reached −5 ° C., but the temperature was maintained until about 60 minutes, and then increased. In this case, it is considered that the regenerator material in the regenerator mat 280 was changed in phase until about 60 minutes later.
この結果により、蓄冷マット280を用いることによって、蓄冷マット280上に載置した保冷対象物(変形例4では、水)を、約60分、一定温度に保持できることが分かった。
From this result, it was found that by using the cold storage mat 280, the cold insulation object (water in Modification 4) placed on the cold storage mat 280 can be held at a constant temperature for about 60 minutes.
なお、本実施形態に係る蓄熱パックは、ワインや日本酒などの飲み頃温度を保冷する使用シーン、或いは変形例4のような蓄冷マットの上に前菜や果物などを載せて食べ頃温度を保持するような使用シーンに好適である。さらに、これらのシーン以外にも、冷凍肉や冷凍魚などの冷凍食品類を、急速、且つ高品位に解凍可能な解凍機や、カレーやシチューなど作り立ての料理や、乳幼児のミルクなどの熱を素早く取ることが可能な粗熱取り機に用いられることも好ましい。
Note that the heat storage pack according to the present embodiment maintains the temperature at the time of eating by placing an appetizer or fruit on a cold storage mat as in the fourth modification, such as a use scene that cools the temperature at the time of drinking such as wine or sake. It is suitable for various use scenes. In addition to these scenes, frozen foods such as frozen meat and frozen fish can be quickly and high-quality thawed, cooked dishes such as curry and stew, and heat from infants' milk. It is also preferable to be used in a rough heat remover that can be quickly taken.
[第2の実施形態]
第2の実施形態では、保冷材の分割数を増やすことなく、保冷材と飲食物との密着性を向上させるため、第2の深絞り容器に「形状追従性」を付与する。第2の深絞り容器に「形状追従性」を付与するために、第2の深絞り容器を軟質性材料で形成すると共に、第2の深絞り容器の容量を増大すると共に、第2の深絞り容器に充填する不凍材の量を増加する。これにより、飲食物の形状に追従するように、第2の深絞り容器が自由に変形し、第2の深絞り容器に充填されている不凍材がボトルに隙間なく密着させることが可能となる。 [Second Embodiment]
In 2nd Embodiment, in order to improve the adhesiveness of a cold insulating material and food and drink, without increasing the division | segmentation number of a cold insulating material, "shape followability" is provided to a 2nd deep-drawn container. In order to impart “shape followability” to the second deep-drawn container, the second deep-drawn container is formed of a soft material, the capacity of the second deep-drawn container is increased, and the second depth-drawn container is increased. Increase the amount of antifreeze filling the squeeze container. As a result, the second deep-drawn container can be freely deformed so as to follow the shape of the food and drink, and the antifreeze material filled in the second deep-drawn container can be brought into close contact with the bottle without any gap. Become.
第2の実施形態では、保冷材の分割数を増やすことなく、保冷材と飲食物との密着性を向上させるため、第2の深絞り容器に「形状追従性」を付与する。第2の深絞り容器に「形状追従性」を付与するために、第2の深絞り容器を軟質性材料で形成すると共に、第2の深絞り容器の容量を増大すると共に、第2の深絞り容器に充填する不凍材の量を増加する。これにより、飲食物の形状に追従するように、第2の深絞り容器が自由に変形し、第2の深絞り容器に充填されている不凍材がボトルに隙間なく密着させることが可能となる。 [Second Embodiment]
In 2nd Embodiment, in order to improve the adhesiveness of a cold insulating material and food and drink, without increasing the division | segmentation number of a cold insulating material, "shape followability" is provided to a 2nd deep-drawn container. In order to impart “shape followability” to the second deep-drawn container, the second deep-drawn container is formed of a soft material, the capacity of the second deep-drawn container is increased, and the second depth-drawn container is increased. Increase the amount of antifreeze filling the squeeze container. As a result, the second deep-drawn container can be freely deformed so as to follow the shape of the food and drink, and the antifreeze material filled in the second deep-drawn container can be brought into close contact with the bottle without any gap. Become.
[内トレイ]
図34A~図34Dは、第2の実施形態に係る内トレイを示す図であり、図34Aは内トレイの上面図であり、図34Bは内トレイの正面図であり、図34Cは内トレイの側面図であり、図34Dは内トレイの斜視図である。内トレイ100は、第1の深絞り容器に相当する。そして、相対的に浅く一定の深さを有する第1の内トレイ102と、一方から他方へ向けて深くなっていく第2の内トレイ104とから構成されている。第2の実施形態では、第1の内トレイ102が幅方向に3つ連接され、第2の内トレイ104が幅方向に3つ連接され、これらの第1の内トレイ102と第2の内トレイ104とが長手方向に接続されている。図34Cの側面図に示すように、第1の内トレイ102は、一定の深さを有しているが、第2の内トレイ104は、紙面に向かって左から右に行くに従って深くなっている。また、図34Bの正面図に示すように、内トレイ100の底部106を、開口側に凸となるように形成しても良い。これにより、内トレイ100の底部106が、ボトルの外面に沿い、密着性をより高めることが可能となる。 [Inner tray]
34A to 34D are views showing the inner tray according to the second embodiment, FIG. 34A is a top view of the inner tray, FIG. 34B is a front view of the inner tray, and FIG. 34C is a view of the inner tray. FIG. 34D is a perspective view of the inner tray. Theinner tray 100 corresponds to a first deep drawn container. The first inner tray 102 is relatively shallow and has a certain depth, and the second inner tray 104 is deepened from one side to the other. In the second embodiment, three first inner trays 102 are connected in the width direction, and three second inner trays 104 are connected in the width direction, and the first inner tray 102 and the second inner tray 102 are connected in the second direction. The tray 104 is connected in the longitudinal direction. As shown in the side view of FIG. 34C, the first inner tray 102 has a certain depth, but the second inner tray 104 becomes deeper from the left toward the right as viewed in the drawing. Yes. Further, as shown in the front view of FIG. 34B, the bottom portion 106 of the inner tray 100 may be formed to be convex toward the opening side. Thereby, the bottom part 106 of the inner tray 100 can be further enhanced along the outer surface of the bottle.
図34A~図34Dは、第2の実施形態に係る内トレイを示す図であり、図34Aは内トレイの上面図であり、図34Bは内トレイの正面図であり、図34Cは内トレイの側面図であり、図34Dは内トレイの斜視図である。内トレイ100は、第1の深絞り容器に相当する。そして、相対的に浅く一定の深さを有する第1の内トレイ102と、一方から他方へ向けて深くなっていく第2の内トレイ104とから構成されている。第2の実施形態では、第1の内トレイ102が幅方向に3つ連接され、第2の内トレイ104が幅方向に3つ連接され、これらの第1の内トレイ102と第2の内トレイ104とが長手方向に接続されている。図34Cの側面図に示すように、第1の内トレイ102は、一定の深さを有しているが、第2の内トレイ104は、紙面に向かって左から右に行くに従って深くなっている。また、図34Bの正面図に示すように、内トレイ100の底部106を、開口側に凸となるように形成しても良い。これにより、内トレイ100の底部106が、ボトルの外面に沿い、密着性をより高めることが可能となる。 [Inner tray]
34A to 34D are views showing the inner tray according to the second embodiment, FIG. 34A is a top view of the inner tray, FIG. 34B is a front view of the inner tray, and FIG. 34C is a view of the inner tray. FIG. 34D is a perspective view of the inner tray. The
内トレイ100の製作手順は以下の通りである。すなわち、キャビティー金型に包材を設置し、真空成型機を用いて、第1の深絞り容器としての内トレイ100を形成する。包材には、硬質プラスチックフィルムを使用することが好ましく、具体的には、次のような仕様がより好ましい。すなわち、構成が「PE/PA/PE、PP/PA/PP」であり、総厚が「300~500um」であり、硬さが「ヤング率≧3000Mpa」である。このような仕様を満たす包材としては、例えば、「三菱樹脂株式会社製の共押多層フィルム“F116_350um”」などが挙げられる。また、酸素バリアや水蒸気バリアなど、包材に求める性能がそれほど高くない場合には、PE単層/300~500umを用いるのが良い。これによって、包材コストを抑えること、ならびに容器の成型性を向上させることが可能となる。
The manufacturing procedure of the inner tray 100 is as follows. That is, a packaging material is installed in a cavity mold, and an inner tray 100 as a first deep-drawn container is formed using a vacuum molding machine. It is preferable to use a hard plastic film for the packaging material, and more specifically, the following specifications are more preferable. That is, the configuration is “PE / PA / PE, PP / PA / PP”, the total thickness is “300 to 500 μm”, and the hardness is “Young's modulus ≧ 3000 Mpa”. Examples of the packaging material satisfying such specifications include “co-pressed multilayer film“ F116_350 um ”manufactured by Mitsubishi Plastics, Inc.”. If the performance required for the packaging material is not so high, such as an oxygen barrier or a water vapor barrier, PE single layer / 300 to 500 um is preferably used. As a result, the packaging material cost can be suppressed and the moldability of the container can be improved.
一方、冷凍室等で冷却/凍結させた本発明の熱交換ユニットを外に取出して使用する場合、取出した直後の該熱交換ユニットの温度(冷凍室内の温度)と外の環境温度の差が大きく、該熱交換ユニットの表面に結露が発生する場合がある。そのような場合には、不織布素材の包材や表面に界面活性剤が塗布された包材を用いるのが良い。これによって、結露の発生を抑えることができる。例えば、「三井化学東セロ株式会社製のLLDPE特殊グレード“TNF”」などが挙げられる。
On the other hand, when the heat exchange unit of the present invention cooled / frozen in a freezer compartment or the like is taken out and used, there is a difference between the temperature of the heat exchange unit immediately after taking out (the temperature in the freezer compartment) and the external environmental temperature. Largely, condensation may occur on the surface of the heat exchange unit. In such a case, it is preferable to use a non-woven fabric packaging material or a packaging material having a surface coated with a surfactant. Thereby, the occurrence of condensation can be suppressed. For example, “LLDPE special grade“ TNF ”manufactured by Mitsui Chemicals, Inc.” may be used.
[外トレイ]
図35A~図35Dは、第2の実施形態に係る外トレイを示す図であり、図35Aは外トレイの上面図であり、図35Bは外トレイの正面図であり、図35Cは外トレイの側面図であり、図35Dは外トレイの斜視図である。外トレイ110は、第2の深絞り容器に相当する。そして、相対的に浅く一定の深さを有する第1の外トレイ112と、一方から他方へ向けて深くなっていく第2の外トレイ114とから構成されている。このため、外トレイ110の容量は、内トレイ100の容量よりも大きい。 [Outer tray]
35A to 35D are views showing the outer tray according to the second embodiment, FIG. 35A is a top view of the outer tray, FIG. 35B is a front view of the outer tray, and FIG. 35C is a view of the outer tray. FIG. 35D is a perspective view of the outer tray. Theouter tray 110 corresponds to a second deep drawn container. The first outer tray 112 is relatively shallow and has a certain depth, and the second outer tray 114 is deepened from one side to the other. For this reason, the capacity of the outer tray 110 is larger than the capacity of the inner tray 100.
図35A~図35Dは、第2の実施形態に係る外トレイを示す図であり、図35Aは外トレイの上面図であり、図35Bは外トレイの正面図であり、図35Cは外トレイの側面図であり、図35Dは外トレイの斜視図である。外トレイ110は、第2の深絞り容器に相当する。そして、相対的に浅く一定の深さを有する第1の外トレイ112と、一方から他方へ向けて深くなっていく第2の外トレイ114とから構成されている。このため、外トレイ110の容量は、内トレイ100の容量よりも大きい。 [Outer tray]
35A to 35D are views showing the outer tray according to the second embodiment, FIG. 35A is a top view of the outer tray, FIG. 35B is a front view of the outer tray, and FIG. 35C is a view of the outer tray. FIG. 35D is a perspective view of the outer tray. The
このように、外トレイ110の容量は、内トレイ100の容量よりも大きいので、第2の蓄熱材としての不凍材をより多く使用することができる。また、外トレイ110は柔軟であるため、変形の自由度が高い。このため、外トレイ110を飲食物の外形に追従させ、飲食物との密着性を高めることが可能となる。なお、外トレイ110の容量は、好ましくは内トレイ100の容量の2倍~10倍である。
Thus, since the capacity of the outer tray 110 is larger than the capacity of the inner tray 100, more antifreeze material as the second heat storage material can be used. Further, since the outer tray 110 is flexible, the degree of freedom of deformation is high. For this reason, it becomes possible to make the outer tray 110 follow the outer shape of the food and drink, and to improve the adhesion with the food and drink. The capacity of the outer tray 110 is preferably 2 to 10 times the capacity of the inner tray 100.
第2の実施形態では、第1の外トレイ112が幅方向に3つ連接され、第2の外トレイ114が幅方向に3つ連接され、これらの第1の外トレイ112と第2の外トレイ114とが長手方向に接続されている。図35Cの側面図に示すように、第1の外トレイ112は、一定の深さを有しているが、第2の外トレイ114は、紙面に向かって左から右に行くに従って深くなっている。また、図35Bの正面図に示すように、外トレイ110の底部116を、開口側に凸となるように形成しても良い。これにより、外トレイ110の底部116が、ボトルの外面に沿い、密着性をより高めることが可能となる。
In the second embodiment, three first outer trays 112 are connected in the width direction, and three second outer trays 114 are connected in the width direction, and these first outer tray 112 and the second outer tray 112 are connected to each other. A tray 114 is connected in the longitudinal direction. As shown in the side view of FIG. 35C, the first outer tray 112 has a certain depth, but the second outer tray 114 becomes deeper from the left to the right toward the paper surface. Yes. Further, as shown in the front view of FIG. 35B, the bottom 116 of the outer tray 110 may be formed to be convex toward the opening side. Thereby, the bottom part 116 of the outer tray 110 can be further enhanced along the outer surface of the bottle.
外トレイ110の製作手順は以下の通りである。すなわち、キャビティー金型に包材を設置し、真空成型機を用いて第2の深絞り容器としての外トレイ110を形成する。包材には、軟質プラスチックフィルムを使用することが好ましく、具体的には、次のような仕様がより好ましい。すなわち、構成が「PA/PE、PA/PP」であり、総厚が「100~300um」であり、硬さが「ヤング率が3000Mpa以下、好ましくは、600Mpa以下」である。このような仕様を満たす包材としては、例えば、「三菱樹脂株式会社製の共押多層フィルム“C131_200um”」などが挙げられる。
The manufacturing procedure of the outer tray 110 is as follows. That is, a packaging material is installed in a cavity mold, and an outer tray 110 as a second deep-drawn container is formed using a vacuum molding machine. It is preferable to use a soft plastic film as the packaging material, and more specifically, the following specifications are more preferable. That is, the constitution is “PA / PE, PA / PP”, the total thickness is “100 to 300 μm”, and the hardness is “Young's modulus is 3000 Mpa or less, preferably 600 Mpa or less”. Examples of the packaging material satisfying such specifications include “co-pressed multilayer film“ C131_200 um ”manufactured by Mitsubishi Plastics, Inc.”.
また、酸素バリアや水蒸気バリアなど、包材に求める性能がそれほど高くない場合には、PE単層/100~300umを用いるのが良い。これによって、包材コストを抑えること、ならびに容器の成型性を向上させることが可能となる。一方、冷凍室等で冷却/凍結させた本発明の熱交換ユニットを外に取出して使用する場合、取出した直後の該熱交換ユニットの温度(冷凍室内の温度)と外の環境温度の差が大きく、該熱交換ユニットの表面に結露が発生する場合がある。そのような場合には、不織布素材の包材や表面に界面活性剤が塗布された包材を用いるのが良い。これによって、結露の発生を抑えることができる。例えば、「三井化学東セロ株式会社製のLLDPE特殊グレード“TNF”」などが挙げられる。
Also, when the performance required for the packaging material is not so high, such as an oxygen barrier or a water vapor barrier, PE single layer / 100 to 300 μm is preferably used. As a result, the packaging material cost can be suppressed and the moldability of the container can be improved. On the other hand, when the heat exchange unit of the present invention cooled / frozen in a freezer compartment or the like is taken out and used, there is a difference between the temperature of the heat exchange unit immediately after taking out (the temperature in the freezer compartment) and the external environmental temperature. Largely, condensation may occur on the surface of the heat exchange unit. In such a case, it is preferable to use a non-woven fabric packaging material or a packaging material having a surface coated with a surfactant. Thereby, the occurrence of condensation can be suppressed. For example, “LLDPE special grade“ TNF ”manufactured by Mitsui Chemicals, Inc.” may be used.
また、図39で示したように、本発明に係る熱交換ユニットは、ワインボトルの上から被せるための構成を採っている。ユーザが熱交換ユニットをワインボトルに被せる過程においては、熱交換ユニットの第1の外トレイ112および第2の外トレイ114を押し潰しながら装着させるため、特に、ワインボトルと接触する上段側の第2の外トレイ114を構成する包材については、「摺動性の付与」が重要となる。
Further, as shown in FIG. 39, the heat exchange unit according to the present invention adopts a configuration for covering the wine bottle. In the process of placing the heat exchange unit on the wine bottle by the user, the first outer tray 112 and the second outer tray 114 of the heat exchange unit are mounted while being crushed. For the packaging material constituting the second outer tray 114, “giving slidability” is important.
内トレイ用包材としては、前述のように、ナイロン、ポリエチレン、ポリプロピレン、ポリスチレン等が一般的であるが、それらの摩擦係数は、ナイロンが0.37、ポリエチレンが0.18、ポリプロピレンが0.3、ポリスチレンが0.5程度である。これらの包材の表面に、摩擦係数が小さいもの、例えば、摩擦係数が0.04~0.10であるテフロン(登録商標)やフッ素樹脂(PTFE、PFA、FEPなど)をコーティングした包材、或いは、同包材をそのまま適用することによって、脱着性を向上させることが可能となる。
As described above, nylon, polyethylene, polypropylene, polystyrene, etc. are generally used as the inner tray packaging material, and the friction coefficients thereof are 0.37 for nylon, 0.18 for polyethylene, and 0. 0 for polypropylene. 3. Polystyrene is about 0.5. The surface of these packaging materials having a low friction coefficient, for example, a packaging material coated with Teflon (registered trademark) or a fluororesin (PTFE, PFA, FEP, etc.) having a friction coefficient of 0.04 to 0.10, Alternatively, the detachability can be improved by applying the packaging material as it is.
このように、内トレイ100の包材のヤング率は、3000MPa以上であると共に、外トレイ110の包材ヤング率は、3000MPa未満であるので、内トレイ100の強度を維持しつつ、外トレイ110を柔軟に変形させることが可能となる。
Thus, since the Young's modulus of the packaging material of the inner tray 100 is 3000 MPa or more and the Young's modulus of the packaging material of the outer tray 110 is less than 3000 MPa, the outer tray 110 is maintained while maintaining the strength of the inner tray 100. Can be flexibly deformed.
[蓄熱パックの構成]
図36は、第2の実施形態に係る蓄熱パック200の概略構成を示す図である。上述した方法で形成した内トレイ100内に、液体定量充填機を用いて、第1の蓄熱材としての潜熱材108を充填する。潜熱材108を選定する場合、少なくとも飲料対象物が必要とする温度以下で相変化する潜熱蓄熱材が好ましい。具体的には、塩化カリウム水溶液、塩化アンモニウム水溶液、テトラブチルアンモニウムブロミド水溶液、或いはパラフィン系蓄熱材等であっても良い。また、潜熱材108には、粘性が付与されていても良い。粘度としては、100cP以上、好ましくは200cP以下が望ましい。この粘度については、後述する。また、増粘材としては、ローカストビーンガム、グァーガム、カラギーナン、ジェランガムや吸水ポリマー、アクリル酸ポリマーなどが挙げられる。 [Configuration of heat storage pack]
FIG. 36 is a diagram illustrating a schematic configuration of aheat storage pack 200 according to the second embodiment. The inner tray 100 formed by the above-described method is filled with the latent heat material 108 as the first heat storage material by using a liquid constant quantity filling machine. When the latent heat material 108 is selected, a latent heat storage material that changes phase at least below the temperature required by the beverage object is preferable. Specifically, it may be a potassium chloride aqueous solution, an ammonium chloride aqueous solution, a tetrabutylammonium bromide aqueous solution, a paraffin heat storage material, or the like. Further, the latent heat material 108 may be given viscosity. The viscosity is 100 cP or more, preferably 200 cP or less. This viscosity will be described later. Further, examples of the thickening material include locust bean gum, guar gum, carrageenan, gellan gum, water-absorbing polymer, acrylic acid polymer and the like.
図36は、第2の実施形態に係る蓄熱パック200の概略構成を示す図である。上述した方法で形成した内トレイ100内に、液体定量充填機を用いて、第1の蓄熱材としての潜熱材108を充填する。潜熱材108を選定する場合、少なくとも飲料対象物が必要とする温度以下で相変化する潜熱蓄熱材が好ましい。具体的には、塩化カリウム水溶液、塩化アンモニウム水溶液、テトラブチルアンモニウムブロミド水溶液、或いはパラフィン系蓄熱材等であっても良い。また、潜熱材108には、粘性が付与されていても良い。粘度としては、100cP以上、好ましくは200cP以下が望ましい。この粘度については、後述する。また、増粘材としては、ローカストビーンガム、グァーガム、カラギーナン、ジェランガムや吸水ポリマー、アクリル酸ポリマーなどが挙げられる。 [Configuration of heat storage pack]
FIG. 36 is a diagram illustrating a schematic configuration of a
次に、上述した方法で形成した外トレイ110内に、液体定量充填機を用いて、第2の蓄熱材としての不凍材118を充填する。不凍材118を選定する場合、少なくとも上記潜熱材108が凍結する温度で液相状態を保つ材料が好ましい。具体的には、塩化ナトリウム水溶液、塩化カルシウム水溶液、或いはエチレングリコールやポリプロピレングリコール、シリコンオイル等であっても良い。また、不凍材118には、粘性が付与されていても良い。粘度としては、100cP以上、好ましくは200cP以下が望ましい。この粘度については、後述する。増粘材としては、ローカストビーンガム、グァーガム、カラギーナン、ジェランガムや吸水ポリマー、アクリル酸ポリマーなどが挙げられる。
Next, the outer tray 110 formed by the above-described method is filled with the antifreeze material 118 as the second heat storage material by using a liquid quantitative filling machine. When the antifreeze material 118 is selected, a material that maintains a liquid phase state at least at a temperature at which the latent heat material 108 is frozen is preferable. Specifically, a sodium chloride aqueous solution, a calcium chloride aqueous solution, ethylene glycol, polypropylene glycol, silicon oil, or the like may be used. Further, the antifreeze material 118 may be given viscosity. The viscosity is 100 cP or more, preferably 200 cP or less. This viscosity will be described later. Examples of the thickening material include locust bean gum, guar gum, carrageenan, gellan gum, water-absorbing polymer, and acrylic acid polymer.
次に、上記のように製作した「潜熱材108が充填された内トレイ100(これを潜熱層と呼ぶ)」と、上記のように製作した「不凍材118が充填された外トレイ110(これを不凍層と呼ぶ)」と、断熱機能を有し、或いは断熱材を貼り付けた蓋材120とをブリスターシール/包装機を用いて、これらの三層部材を熱溶着する。
Next, the “inner tray 100 filled with the latent heat material 108 (referred to as a latent heat layer)” manufactured as described above, and the “outer tray 110 (filled with the antifreeze material 118) manufactured as described above (referred to as a latent heat layer). These three-layer members are thermally welded to a lid member 120 having a heat insulating function or attached with a heat insulating material by using a blister seal / packaging machine.
このように、蓋材自体が断熱性を有するため、飲食物の反対側から熱が出入りすることを防止し、飲食物の温度管理の効率化を図ることが可能となる。
Thus, since the lid itself has a heat insulating property, it is possible to prevent heat from entering and exiting from the opposite side of the food and drink, and to improve the temperature management of the food and drink.
ここで、蓋材120を選定する場合、「PA/PE、PA/PP構成」が一般的である。なお、ガスバリア性が求められる場合には、CPP構成、或いはEVOH構成から成るフィルムを選定しても良い。また、酸素バリアや水蒸気バリアなど、包材に求める性能がそれほど高くない場合には、PE単層を用いるのが良い。これによって、包材コストを抑えることが可能となる。
Here, when selecting the lid 120, “PA / PE, PA / PP configuration” is generally used. When gas barrier properties are required, a film having a CPP configuration or an EVOH configuration may be selected. Further, when the performance required for the packaging material such as an oxygen barrier or a water vapor barrier is not so high, it is preferable to use a PE single layer. As a result, the packaging material cost can be reduced.
一方、冷凍室等で冷却/凍結させた本発明の熱交換ユニットを外に取出して使用する場合、取出した直後の該熱交換ユニットの温度(冷凍室内の温度)と外の環境温度の差が大きく、該熱交換ユニットの表面に結露が発生する場合がある。そのような場合には、不織布素材の包材や表面に界面活性剤が塗布された包材を用いるのが良い。これによって、結露の発生を抑えることができる。例えば、「三井化学東セロ株式会社製のLLDPE特殊グレード“TNF”」などが挙げられる。
On the other hand, when the heat exchange unit of the present invention cooled / frozen in a freezer compartment or the like is taken out and used, there is a difference between the temperature of the heat exchange unit immediately after taking out (the temperature in the freezer compartment) and the external environmental temperature. Largely, condensation may occur on the surface of the heat exchange unit. In such a case, it is preferable to use a non-woven fabric packaging material or a packaging material having a surface coated with a surfactant. Thereby, the occurrence of condensation can be suppressed. For example, “LLDPE special grade“ TNF ”manufactured by Mitsui Chemicals, Inc.” may be used.
ブリスターシール/包装機としては、「株式会社タイセイテクノ社製“TB5060”、“TB6090”」などが挙げられる。断熱材としては、硬質ウレタンフォーム、高発泡ポリエチレン、ポリオレフィンフォーム(ペフ)などが挙げられる。
Examples of blister seal / packaging machines include “TB5060” and “TB6090” manufactured by Taisei Techno Co., Ltd. Examples of the heat insulating material include rigid urethane foam, highly foamed polyethylene, and polyolefin foam (Pef).
[熱交換ユニットの構成]
図37は、熱交換ユニットを示す図である。ここでは、上記のように製作した2つの蓄熱パック200を、伸縮性接続ゴム122を介して連接し、熱交換ユニット202を構成した様子を示す。図37では、熱交換ユニット202を、外トレイ110側から見た様子を示している。図37に示すように、2つの蓄熱パック200を、伸縮性接続ゴム122を用いて接続する。伸縮性接続ゴム122を選定する場合、天然ゴム、合成ゴム、シリコンゴム、ウレタンゴムなどが挙げられる。また、伸縮性接続ゴム122の締付け力としては、15N以上であることが好ましい。上記加重以上の締付力を与えることによって、ワインボトル等の飲料対象物と蓄熱パック200との密着性を更に向上させることができ、急冷性能の向上が期待できる。 [Configuration of heat exchange unit]
FIG. 37 is a diagram showing a heat exchange unit. Here, a state in which the two heat storage packs 200 manufactured as described above are connected via theelastic connection rubber 122 to configure the heat exchange unit 202 is shown. FIG. 37 shows the heat exchange unit 202 as viewed from the outer tray 110 side. As shown in FIG. 37, the two heat storage packs 200 are connected using the elastic connection rubber 122. When the elastic connection rubber 122 is selected, natural rubber, synthetic rubber, silicon rubber, urethane rubber, or the like can be used. Further, the tightening force of the elastic connecting rubber 122 is preferably 15 N or more. By applying a tightening force equal to or greater than the above weight, the adhesion between the beverage object such as a wine bottle and the heat storage pack 200 can be further improved, and an improvement in the rapid cooling performance can be expected.
図37は、熱交換ユニットを示す図である。ここでは、上記のように製作した2つの蓄熱パック200を、伸縮性接続ゴム122を介して連接し、熱交換ユニット202を構成した様子を示す。図37では、熱交換ユニット202を、外トレイ110側から見た様子を示している。図37に示すように、2つの蓄熱パック200を、伸縮性接続ゴム122を用いて接続する。伸縮性接続ゴム122を選定する場合、天然ゴム、合成ゴム、シリコンゴム、ウレタンゴムなどが挙げられる。また、伸縮性接続ゴム122の締付け力としては、15N以上であることが好ましい。上記加重以上の締付力を与えることによって、ワインボトル等の飲料対象物と蓄熱パック200との密着性を更に向上させることができ、急冷性能の向上が期待できる。 [Configuration of heat exchange unit]
FIG. 37 is a diagram showing a heat exchange unit. Here, a state in which the two heat storage packs 200 manufactured as described above are connected via the
なお、各蓄熱パック200を同心円の中心方向に押圧する押圧部をさらに備えても良い。押圧部としては、例えば、円環状のゴムバンドが該当する。これにより、外トレイ110を飲食物により強く密着させることが可能となる。また、押圧部の押圧力は、25N以上であることが望ましい。25N以上であれば、外トレイ110を飲食物に強く密着させることが可能となる。
In addition, you may further provide the press part which presses each heat storage pack 200 to the center direction of a concentric circle. For example, an annular rubber band corresponds to the pressing portion. Thereby, it becomes possible to make the outer tray 110 adhere more strongly to food and drink. Moreover, it is desirable that the pressing force of the pressing portion is 25 N or more. If it is 25N or more, it becomes possible to make the outer tray 110 adhere to food and drink strongly.
[熱交換ユニットの形態]
図38A~図38Cは、熱交換ユニットの形態を示す図である。図38Aは熱交換ユニット202を寝かせた状態を示し、図38Bは熱交換ユニット202を立て掛けた状態を示し、図38Cは熱交換ユニット202が完成した状態を示している。図38Aに示すように、熱交換ユニット202を寝かせた状態にすると、第1の外トレイ112は変化しないが、第2の外トレイ114は紙面に向かって左側が高くなった状態となる。次に、図38Bに示すように、熱交換ユニット202を立て掛けた状態にすると、第2の外トレイ114は、不凍材が充填された軟質包材からなるため、図中、点線で囲んだように、自重で垂れ下がった状態となる。図38Cに示す完成体においても、立てた状態にすると、第2の外トレイ114は、鉛直下方に垂れ下がった状態となっている。 [Configuration of heat exchange unit]
38A to 38C are views showing the form of the heat exchange unit. 38A shows a state in which theheat exchange unit 202 is laid down, FIG. 38B shows a state in which the heat exchange unit 202 is leaned, and FIG. 38C shows a state in which the heat exchange unit 202 is completed. As shown in FIG. 38A, when the heat exchanging unit 202 is laid down, the first outer tray 112 is not changed, but the second outer tray 114 is in a state where the left side becomes higher toward the paper surface. Next, as shown in FIG. 38B, when the heat exchanging unit 202 is stood up, the second outer tray 114 is made of a soft packaging material filled with antifreeze material, and is surrounded by a dotted line in the figure. Thus, it will be in a state of sagging under its own weight. Also in the completed body shown in FIG. 38C, when it is set in the standing state, the second outer tray 114 is in a state of hanging vertically downward.
図38A~図38Cは、熱交換ユニットの形態を示す図である。図38Aは熱交換ユニット202を寝かせた状態を示し、図38Bは熱交換ユニット202を立て掛けた状態を示し、図38Cは熱交換ユニット202が完成した状態を示している。図38Aに示すように、熱交換ユニット202を寝かせた状態にすると、第1の外トレイ112は変化しないが、第2の外トレイ114は紙面に向かって左側が高くなった状態となる。次に、図38Bに示すように、熱交換ユニット202を立て掛けた状態にすると、第2の外トレイ114は、不凍材が充填された軟質包材からなるため、図中、点線で囲んだように、自重で垂れ下がった状態となる。図38Cに示す完成体においても、立てた状態にすると、第2の外トレイ114は、鉛直下方に垂れ下がった状態となっている。 [Configuration of heat exchange unit]
38A to 38C are views showing the form of the heat exchange unit. 38A shows a state in which the
このように、蓄熱パック200を、伸縮性接続ゴム122で接続することにより、各蓄熱パック200は、同心円上に配列するように接続されるので、飲食物を包囲することができる。また、関節機構が伸縮性を有するため、飲食物の外形に応じて関節機構が伸縮し、各蓄熱パック200を飲食物により強く密着させることが可能となる。その結果、飲食物の温度管理の効率化を図ることが可能となる。
Thus, by connecting the heat storage packs 200 with the elastic connection rubber 122, the heat storage packs 200 are connected so as to be arranged concentrically, so that food and drink can be surrounded. Moreover, since a joint mechanism has a stretching property, a joint mechanism expands / contracts according to the external shape of food and drink, and it becomes possible to make each heat storage pack 200 adhere more closely to food and drink. As a result, it is possible to improve the efficiency of temperature management of food and drink.
図38Cに示す完成体を、ワインボトル等の飲料物の上からを被せると、図38Bに示したように、垂れ下がった状態の不凍材層としての第1の外トレイ112および第2の外トレイ114は、飲料物と接触すると押上げられ、異形状を有する飲料物の形状に追従し、隙間なく密着する。飲料物を構成する容器は、例えば、ワインボトルに代表されるように、上段側が細いネックを有し、下段側に相対的に太いボディを有する。このように、場所によって太さ(径)の異なる飲料物用容器であっても、第1の外トレイ112および第2の外トレイ114がその外形に追従するように変形するため、飲料物への密着性を向上させることが可能となる。すなわち、急冷という観点においては、飲料物の上段側を如何に冷却させるかが非常に重要であるが、第2の実施形態に係る熱交換ユニットによれば、飲料物の特に上段部の形状に依らず、第1の外トレイ112および第2の外トレイ114が追従可能であるため、密着性が高まり、複数種の飲料対象物に対応が可能となる。
When the finished product shown in FIG. 38C is placed on top of a beverage such as a wine bottle, as shown in FIG. 38B, the first outer tray 112 and the second outer tray as the antifreeze layer in a suspended state are placed. When the tray 114 comes into contact with the beverage, the tray 114 is pushed up, follows the shape of the beverage having an irregular shape, and closely contacts without any gap. As represented by a wine bottle, for example, a container constituting a beverage has a thin neck on the upper side and a relatively thick body on the lower side. As described above, even if the beverage container has a different thickness (diameter) depending on the location, the first outer tray 112 and the second outer tray 114 are deformed so as to follow the outer shape thereof. It becomes possible to improve the adhesiveness. That is, from the viewpoint of rapid cooling, it is very important how to cool the upper side of the beverage, but according to the heat exchange unit according to the second embodiment, the shape of the beverage is particularly high. Regardless, since the first outer tray 112 and the second outer tray 114 can follow, the adhesion is improved, and it is possible to deal with a plurality of types of beverage objects.
図39は、第2の実施形態に係る熱交換ユニットの使用状態を段階的に示した図である。図39中、紙面に向かって左から右に向かって状態が変化している。図39では、ブルゴーニュタイプのワインボトル10に熱交換ユニットを装着させた。図39に示すように、(1)下段側の第1の外トレイ112をワインボトル10に接触させる。(2)次に、上段側の第2の外トレイ114がボトル形状に沿って変形する。(3)上段側および下段側ともに、潜熱材層が不凍材層を介してワインボトル10に隙間なく密着する。このように、場所に応じて径が異なるワインボトル10に、隙間なく密着可能な熱交換ユニットを実現することが可能となる。
FIG. 39 is a diagram showing the usage state of the heat exchange unit according to the second embodiment step by step. In FIG. 39, the state changes from left to right as viewed on the paper. In FIG. 39, a burgundy wine bottle 10 is mounted with a heat exchange unit. As shown in FIG. 39, (1) the first outer tray 112 on the lower side is brought into contact with the wine bottle 10. (2) Next, the second outer tray 114 on the upper side is deformed along the bottle shape. (3) The latent heat material layer adheres closely to the wine bottle 10 via the antifreeze material layer on both the upper side and the lower side. In this way, it is possible to realize a heat exchange unit capable of closely contacting the wine bottle 10 having a different diameter depending on the place without any gap.
このように、上段部と下段部の2つの部分が飲食物に接触するため、相対的に小さい蓄熱パックを多数接続する場合よりも、隙間を減らすことができ、外トレイ110と飲食物との密着性を高めることが可能となる。また、上段部の外トレイ110が相対的に大きいため、飲食物が、例えば、瓶のように、鉛直上方が細く、鉛直下方が太い形状を有する場合であっても、外トレイ110が飲食物に密着し、温度管理の効率を高めることが可能となる。
In this way, since the two parts of the upper stage part and the lower stage part are in contact with food and drink, the gap can be reduced as compared with the case where many relatively small heat storage packs are connected, and the outer tray 110 and the food and drink can be reduced. It becomes possible to improve adhesiveness. Moreover, since the outer tray 110 of the upper stage part is relatively large, even if the food and drink has a shape in which the vertical upper part is thin and the vertical lower part is thick like a bottle, for example, the outer tray 110 is food and drink. It is possible to increase the efficiency of temperature management.
[第2の実施形態の比較対照実験]
次に、第2の実施形態に係る熱交換ユニットの効果を検証するために行なった比較対照実験について説明する。 [Comparative Experiment of Second Embodiment]
Next, a comparative experiment conducted to verify the effect of the heat exchange unit according to the second embodiment will be described.
次に、第2の実施形態に係る熱交換ユニットの効果を検証するために行なった比較対照実験について説明する。 [Comparative Experiment of Second Embodiment]
Next, a comparative experiment conducted to verify the effect of the heat exchange unit according to the second embodiment will be described.
(手順1)
熱交換ユニットを冷蔵庫の冷凍室、或いは、-18~-20℃に設定した低温恒温槽で凍結させる。 (Procedure 1)
The heat exchange unit is frozen in the freezer of the refrigerator or in a low temperature thermostat set at -18 to -20 ° C.
熱交換ユニットを冷蔵庫の冷凍室、或いは、-18~-20℃に設定した低温恒温槽で凍結させる。 (Procedure 1)
The heat exchange unit is frozen in the freezer of the refrigerator or in a low temperature thermostat set at -18 to -20 ° C.
(手順2)
潜熱材が凍結した熱交換ユニットを恒温槽から取出し、飲料対象物に装着させる。 (Procedure 2)
The heat exchange unit in which the latent heat material is frozen is taken out of the thermostatic bath and attached to the beverage object.
潜熱材が凍結した熱交換ユニットを恒温槽から取出し、飲料対象物に装着させる。 (Procedure 2)
The heat exchange unit in which the latent heat material is frozen is taken out of the thermostatic bath and attached to the beverage object.
(手順3)
手順2を経た熱交換ユニットを、25~30℃程度に設定した定温恒温槽内に投入し、飲料物の液温(2点)の変化(冷却特性)を測定する。温度測定ポイントは、図40に示すように、飲料物の下から100mmの箇所と、下から200mmの箇所とした。 (Procedure 3)
The heat exchange unit that has undergone theprocedure 2 is put into a constant temperature and constant temperature bath set to about 25 to 30 ° C., and the change (cooling characteristics) of the liquid temperature (two points) of the beverage is measured. As shown in FIG. 40, the temperature measurement points were a place 100 mm from the bottom of the beverage and a place 200 mm from the bottom.
手順2を経た熱交換ユニットを、25~30℃程度に設定した定温恒温槽内に投入し、飲料物の液温(2点)の変化(冷却特性)を測定する。温度測定ポイントは、図40に示すように、飲料物の下から100mmの箇所と、下から200mmの箇所とした。 (Procedure 3)
The heat exchange unit that has undergone the
(評価方法)
図13は、実験結果の評価方法を示す図であり、以下の手法を用いる。すなわち、冷却開始後の「到達温度/時間」を実測する。また、冷却スピードを評価するため、急冷速度を下記と定義する。
急冷度=(T初期-T30min)/30min (Evaluation methods)
FIG. 13 is a diagram showing an evaluation method of experimental results, and the following method is used. That is, the “arrival temperature / time” after the start of cooling is measured. In order to evaluate the cooling speed, the rapid cooling speed is defined as follows.
Rapid cooling = (T initial stage−T30 min) / 30 min
図13は、実験結果の評価方法を示す図であり、以下の手法を用いる。すなわち、冷却開始後の「到達温度/時間」を実測する。また、冷却スピードを評価するため、急冷速度を下記と定義する。
急冷度=(T初期-T30min)/30min (Evaluation methods)
FIG. 13 is a diagram showing an evaluation method of experimental results, and the following method is used. That is, the “arrival temperature / time” after the start of cooling is measured. In order to evaluate the cooling speed, the rapid cooling speed is defined as follows.
Rapid cooling = (T initial stage−T30 min) / 30 min
図41は、第2の実施形態の比較対照実験における比較例4~6および実施例4~7の不凍材および潜熱材の構成を示す図である。比較例4では、熱交換ユニットを、ワインボトルの上段側において、巾着構造でワインボトルに接触させる手法を採っている。比較例5では、熱交換ユニットを、ワインボトルに単に巻き付けた状態となっている。比較例6では、比較例5に対する改善を期待して、保冷材(不凍材・潜熱材)を、高さ方向に3分割した構成を採る。
FIG. 41 is a diagram showing the structures of the antifreeze material and the latent heat material of Comparative Examples 4 to 6 and Examples 4 to 7 in the comparative experiment of the second embodiment. In Comparative Example 4, a method is adopted in which the heat exchange unit is brought into contact with the wine bottle with a drawstring structure on the upper side of the wine bottle. In Comparative Example 5, the heat exchange unit is simply wrapped around the wine bottle. In the comparative example 6, in anticipation of the improvement over the comparative example 5, a configuration in which the cold insulating material (antifreezing material / latent heat material) is divided into three in the height direction is adopted.
図41の表に示されるように、不凍材および潜熱材を作製し、上記の実験手順に従って評価を実施した。なお、この比較対照実験に使用する試作品は、以下のように作製した。
(1)第1の撹拌槽に水道水とNaCl(塩化ナトリウム)を入れ、攪拌機にて攪拌・溶解させ、NaCl_23%水溶液を作製した。ここで、攪拌条件は、150rpm/10minとした。
(2)同様に、第2の撹拌槽に水道水とKCl(塩化カリウム)を入れ、攪拌機にて攪拌・溶解させ、KCl_20%水溶液を作製した。ここで、攪拌条件は、150rpm/10minとした。
(3)真空成型で成型したトレイに、ポンプ充填機を用いて、(1)で作製したNaCl_23%水溶液、(2)で作製したKCl_20%水溶液を定量充填した。
(4)ブリスターシール機にて、トレイと蓋材をシールし、熱交換ユニットを作製した。 As shown in the table of FIG. 41, an antifreeze material and a latent heat material were produced and evaluated according to the above experimental procedure. In addition, the prototype used for this comparative control experiment was produced as follows.
(1) Tap water and NaCl (sodium chloride) were placed in a first stirring tank, and stirred and dissolved with a stirrer to prepare a NaCl — 23% aqueous solution. Here, the stirring conditions were 150 rpm / 10 min.
(2) Similarly, tap water and KCl (potassium chloride) were placed in the second stirring tank, and stirred and dissolved with a stirrer to prepare a KCl — 20% aqueous solution. Here, the stirring conditions were 150 rpm / 10 min.
(3) A tray formed by vacuum forming was quantitatively filled with the NaCl — 23% aqueous solution prepared in (1) and the KCl — 20% aqueous solution prepared in (2) using a pump filling machine.
(4) Using a blister sealing machine, the tray and the lid were sealed to produce a heat exchange unit.
(1)第1の撹拌槽に水道水とNaCl(塩化ナトリウム)を入れ、攪拌機にて攪拌・溶解させ、NaCl_23%水溶液を作製した。ここで、攪拌条件は、150rpm/10minとした。
(2)同様に、第2の撹拌槽に水道水とKCl(塩化カリウム)を入れ、攪拌機にて攪拌・溶解させ、KCl_20%水溶液を作製した。ここで、攪拌条件は、150rpm/10minとした。
(3)真空成型で成型したトレイに、ポンプ充填機を用いて、(1)で作製したNaCl_23%水溶液、(2)で作製したKCl_20%水溶液を定量充填した。
(4)ブリスターシール機にて、トレイと蓋材をシールし、熱交換ユニットを作製した。 As shown in the table of FIG. 41, an antifreeze material and a latent heat material were produced and evaluated according to the above experimental procedure. In addition, the prototype used for this comparative control experiment was produced as follows.
(1) Tap water and NaCl (sodium chloride) were placed in a first stirring tank, and stirred and dissolved with a stirrer to prepare a NaCl — 23% aqueous solution. Here, the stirring conditions were 150 rpm / 10 min.
(2) Similarly, tap water and KCl (potassium chloride) were placed in the second stirring tank, and stirred and dissolved with a stirrer to prepare a KCl — 20% aqueous solution. Here, the stirring conditions were 150 rpm / 10 min.
(3) A tray formed by vacuum forming was quantitatively filled with the NaCl — 23% aqueous solution prepared in (1) and the KCl — 20% aqueous solution prepared in (2) using a pump filling machine.
(4) Using a blister sealing machine, the tray and the lid were sealed to produce a heat exchange unit.
[比較例4]
図42は、図41で示した比較例4について、ワインの液温の温度測定を行なった結果を示す図である。比較例4では、熱交換ユニットを、ワインボトルの上段側において、巾着構造でワインボトルに接触させる手法を採っている。ワインボトルは、ブルゴーニュタイプである。比較例4では、ワインボトルの上段側の密着性が確保され、その結果、飲料物を白ワインの飲み頃の温度(5~8℃)に到達させることができた。しかしながら、巾着の締付け具合が測定毎に異なり、測定結果にもバラつきが発生することを確認した。 [Comparative Example 4]
FIG. 42 is a diagram showing the result of measuring the temperature of the wine liquid temperature in Comparative Example 4 shown in FIG. In Comparative Example 4, a method is adopted in which the heat exchange unit is brought into contact with the wine bottle with a drawstring structure on the upper side of the wine bottle. The wine bottle is a burgundy type. In Comparative Example 4, the adhesion on the upper side of the wine bottle was ensured, and as a result, the beverage could reach the temperature of drinking white wine (5-8 ° C.). However, it was confirmed that the degree of tightening of the purse varies from measurement to measurement, and the measurement results also vary.
図42は、図41で示した比較例4について、ワインの液温の温度測定を行なった結果を示す図である。比較例4では、熱交換ユニットを、ワインボトルの上段側において、巾着構造でワインボトルに接触させる手法を採っている。ワインボトルは、ブルゴーニュタイプである。比較例4では、ワインボトルの上段側の密着性が確保され、その結果、飲料物を白ワインの飲み頃の温度(5~8℃)に到達させることができた。しかしながら、巾着の締付け具合が測定毎に異なり、測定結果にもバラつきが発生することを確認した。 [Comparative Example 4]
FIG. 42 is a diagram showing the result of measuring the temperature of the wine liquid temperature in Comparative Example 4 shown in FIG. In Comparative Example 4, a method is adopted in which the heat exchange unit is brought into contact with the wine bottle with a drawstring structure on the upper side of the wine bottle. The wine bottle is a burgundy type. In Comparative Example 4, the adhesion on the upper side of the wine bottle was ensured, and as a result, the beverage could reach the temperature of drinking white wine (5-8 ° C.). However, it was confirmed that the degree of tightening of the purse varies from measurement to measurement, and the measurement results also vary.
[比較例5]
図43は、図41で示した比較例5について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ボルドータイプである。比較例4で用いた試作品同様の熱交換ユニットを、ボルドータイプのワインボトルに装着し、測定を実施した。比較例5では、熱交換ユニットをワインボトルに単に巻き付けた状態となっており、さらに、比較例4とワインボトルの形状が異なることから、特に上段側の密着性が悪く、比較例4で達成していた白ワインの適温に到達しないという結果を得た。 [Comparative Example 5]
FIG. 43 is a diagram showing the results of measuring the temperature of the wine liquid for Comparative Example 5 shown in FIG. The wine bottle is of Bordeaux type. A heat exchange unit similar to the prototype used in Comparative Example 4 was attached to a Bordeaux-type wine bottle, and measurement was performed. In Comparative Example 5, the heat exchange unit is simply wrapped around the wine bottle. Furthermore, since the shape of the wine bottle is different from that of Comparative Example 4, the adhesion on the upper side is particularly bad, and achieved in Comparative Example 4. The result was that the optimum temperature of white wine was not reached.
図43は、図41で示した比較例5について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ボルドータイプである。比較例4で用いた試作品同様の熱交換ユニットを、ボルドータイプのワインボトルに装着し、測定を実施した。比較例5では、熱交換ユニットをワインボトルに単に巻き付けた状態となっており、さらに、比較例4とワインボトルの形状が異なることから、特に上段側の密着性が悪く、比較例4で達成していた白ワインの適温に到達しないという結果を得た。 [Comparative Example 5]
FIG. 43 is a diagram showing the results of measuring the temperature of the wine liquid for Comparative Example 5 shown in FIG. The wine bottle is of Bordeaux type. A heat exchange unit similar to the prototype used in Comparative Example 4 was attached to a Bordeaux-type wine bottle, and measurement was performed. In Comparative Example 5, the heat exchange unit is simply wrapped around the wine bottle. Furthermore, since the shape of the wine bottle is different from that of Comparative Example 4, the adhesion on the upper side is particularly bad, and achieved in Comparative Example 4. The result was that the optimum temperature of white wine was not reached.
[比較例6]
図44は、図41で示した比較例6について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ボルドータイプである。比較例6では、比較例5に対する改善を期待して、保冷材(不凍材・潜熱材)を、高さ方向に3分割した構成を採る。また、比較例6では、関節機構を設け、上段側の密着性を改善することで比較例5に対し到達温度が下がる結果を得た。しかしながら、関節機構付与により容器に対する総接触面積が小さくなり、結果として性能が低下するという懸念がある。 [Comparative Example 6]
FIG. 44 is a diagram showing the results of measuring the temperature of the wine liquid for Comparative Example 6 shown in FIG. The wine bottle is of Bordeaux type. In the comparative example 6, in anticipation of the improvement over the comparative example 5, a configuration in which the cold insulating material (antifreezing material / latent heat material) is divided into three in the height direction is adopted. In Comparative Example 6, a joint mechanism was provided to improve the adhesion on the upper stage side, thereby obtaining a result that the temperature reached was lower than that of Comparative Example 5. However, there is a concern that the total contact area with the container is reduced by the provision of the joint mechanism, and as a result, the performance is lowered.
図44は、図41で示した比較例6について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ボルドータイプである。比較例6では、比較例5に対する改善を期待して、保冷材(不凍材・潜熱材)を、高さ方向に3分割した構成を採る。また、比較例6では、関節機構を設け、上段側の密着性を改善することで比較例5に対し到達温度が下がる結果を得た。しかしながら、関節機構付与により容器に対する総接触面積が小さくなり、結果として性能が低下するという懸念がある。 [Comparative Example 6]
FIG. 44 is a diagram showing the results of measuring the temperature of the wine liquid for Comparative Example 6 shown in FIG. The wine bottle is of Bordeaux type. In the comparative example 6, in anticipation of the improvement over the comparative example 5, a configuration in which the cold insulating material (antifreezing material / latent heat material) is divided into three in the height direction is adopted. In Comparative Example 6, a joint mechanism was provided to improve the adhesion on the upper stage side, thereby obtaining a result that the temperature reached was lower than that of Comparative Example 5. However, there is a concern that the total contact area with the container is reduced by the provision of the joint mechanism, and as a result, the performance is lowered.
[実施例4]
図45は、図41で示した実施例4について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ブルゴーニュタイプである。図45に示すように、本発明によれば、熱交換ユニットが、ワインボトルに対して一様に密着可能な状態となり、比較例4~6に比べて、急冷速度が早く、且つ所望の温度以下で保冷可能な性能を得た。 [Example 4]
FIG. 45 is a diagram showing the results of measuring the temperature of the wine liquid for Example 4 shown in FIG. The wine bottle is a burgundy type. As shown in FIG. 45, according to the present invention, the heat exchange unit can be uniformly attached to the wine bottle, has a rapid cooling rate compared to Comparative Examples 4 to 6, and has a desired temperature. The performance which can be kept cold was obtained below.
図45は、図41で示した実施例4について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ブルゴーニュタイプである。図45に示すように、本発明によれば、熱交換ユニットが、ワインボトルに対して一様に密着可能な状態となり、比較例4~6に比べて、急冷速度が早く、且つ所望の温度以下で保冷可能な性能を得た。 [Example 4]
FIG. 45 is a diagram showing the results of measuring the temperature of the wine liquid for Example 4 shown in FIG. The wine bottle is a burgundy type. As shown in FIG. 45, according to the present invention, the heat exchange unit can be uniformly attached to the wine bottle, has a rapid cooling rate compared to Comparative Examples 4 to 6, and has a desired temperature. The performance which can be kept cold was obtained below.
[実施例5]
図46は、図41で示した実施例5について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ボルドータイプである。図46に示すように、実施例4同様に、本発明の構成によって、熱交換ユニットが、ワインボトルに対して一様に密着可能な状態となり、比較例4~5に比べて、急冷速度が早く、且つ所望の温度以下で保冷可能な性能を得た。 [Example 5]
FIG. 46 is a diagram showing the results of the temperature measurement of the wine liquid temperature in Example 5 shown in FIG. The wine bottle is of Bordeaux type. As shown in FIG. 46, as in Example 4, the configuration of the present invention enables the heat exchange unit to be in close contact with the wine bottle, and the rapid cooling rate is higher than in Comparative Examples 4-5. The performance which can be kept cold quickly and below the desired temperature was obtained.
図46は、図41で示した実施例5について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ボルドータイプである。図46に示すように、実施例4同様に、本発明の構成によって、熱交換ユニットが、ワインボトルに対して一様に密着可能な状態となり、比較例4~5に比べて、急冷速度が早く、且つ所望の温度以下で保冷可能な性能を得た。 [Example 5]
FIG. 46 is a diagram showing the results of the temperature measurement of the wine liquid temperature in Example 5 shown in FIG. The wine bottle is of Bordeaux type. As shown in FIG. 46, as in Example 4, the configuration of the present invention enables the heat exchange unit to be in close contact with the wine bottle, and the rapid cooling rate is higher than in Comparative Examples 4-5. The performance which can be kept cold quickly and below the desired temperature was obtained.
[実施例6]
図47は、図41で示した実施例6について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ブルゴーニュタイプである。図47に示すように、実施例6では、熱交換ユニットが、ワインボトルに対して一様に密着可能な状態となり、赤ワインの飲み頃である温度(12~15℃)に素早く到達し、且つ保冷可能な性能を得た。 [Example 6]
FIG. 47 is a diagram showing the results of measuring the temperature of the wine liquid for Example 6 shown in FIG. The wine bottle is a burgundy type. As shown in FIG. 47, in Example 6, the heat exchange unit is in a state of being able to uniformly adhere to the wine bottle, quickly reaches the temperature (12 to 15 ° C.) at which red wine is consumed, and The performance which can be kept cold was obtained.
図47は、図41で示した実施例6について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ブルゴーニュタイプである。図47に示すように、実施例6では、熱交換ユニットが、ワインボトルに対して一様に密着可能な状態となり、赤ワインの飲み頃である温度(12~15℃)に素早く到達し、且つ保冷可能な性能を得た。 [Example 6]
FIG. 47 is a diagram showing the results of measuring the temperature of the wine liquid for Example 6 shown in FIG. The wine bottle is a burgundy type. As shown in FIG. 47, in Example 6, the heat exchange unit is in a state of being able to uniformly adhere to the wine bottle, quickly reaches the temperature (12 to 15 ° C.) at which red wine is consumed, and The performance which can be kept cold was obtained.
[実施例7]
図48は、図41で示した実施例7について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ボルドータイプである。図48に示すように、実施例6同様に、本発明の構成によって、熱交換ユニットが、ワインボトルに対して一様に密着可能な状態となり、比較例4~5に比べて、急冷速度が早く、且つ所望の温度以下で保冷可能な性能を得た。 [Example 7]
FIG. 48 is a diagram showing the results of measuring the temperature of the wine liquid for Example 7 shown in FIG. The wine bottle is of Bordeaux type. As shown in FIG. 48, as in Example 6, the configuration of the present invention allows the heat exchange unit to be in close contact with the wine bottle, and the rapid cooling rate is higher than in Comparative Examples 4-5. The performance which can be kept cold quickly and below the desired temperature was obtained.
図48は、図41で示した実施例7について、ワインの液温の温度測定を行なった結果を示す図である。ワインボトルは、ボルドータイプである。図48に示すように、実施例6同様に、本発明の構成によって、熱交換ユニットが、ワインボトルに対して一様に密着可能な状態となり、比較例4~5に比べて、急冷速度が早く、且つ所望の温度以下で保冷可能な性能を得た。 [Example 7]
FIG. 48 is a diagram showing the results of measuring the temperature of the wine liquid for Example 7 shown in FIG. The wine bottle is of Bordeaux type. As shown in FIG. 48, as in Example 6, the configuration of the present invention allows the heat exchange unit to be in close contact with the wine bottle, and the rapid cooling rate is higher than in Comparative Examples 4-5. The performance which can be kept cold quickly and below the desired temperature was obtained.
図49は、実験結果をまとめた表である。白ワインに適用した場合、比較例4は有効であったが、比較例5は有効ではなかった。また、比較例4も良好であったものの、巾着の締付け具合が測定毎に異なるため、同じ条件で何度か測定したところ、測定結果にバラつきが発生することが確認された。比較例6は、比較例5よりは有効と言えるが、十分に有効であるとは言えない。これらの比較例4~6に対し、実施例4~7は、ワインボトルがブルゴーニュタイプであってもボルドータイプであっても有効であった。これにより、本実施形態によれば、ワインボトルの形状を問わず、ワインを所望の温度にすることが可能であると言える。
FIG. 49 is a table summarizing the experimental results. When applied to white wine, Comparative Example 4 was effective, but Comparative Example 5 was not effective. Moreover, although the comparative example 4 was also favorable, since the tightening degree of the purse varies depending on the measurement, it was confirmed that the measurement result varied when measured several times under the same conditions. Although Comparative Example 6 can be said to be more effective than Comparative Example 5, it cannot be said to be sufficiently effective. In contrast to these Comparative Examples 4 to 6, Examples 4 to 7 were effective regardless of whether the wine bottle was a burgundy type or a Bordeaux type. Thereby, according to this embodiment, it can be said that it is possible to make wine into desired temperature irrespective of the shape of a wine bottle.
[蓄熱材(不凍材および潜熱材)の粘性について]
蓄熱材に粘性を付与させる目的は二点ある。
(1)重力の影響を受けない形状維持性を付与すること。
図4Aおよび図4Bで示したように、蓄熱材の保持状態が、置き方によって変わってしまう。例えば、蓄熱材に粘性が無い場合、同ユニットを立掛けると、蓄熱材が垂れ下がり、熱のパスが発生してしまう。この課題を解決するためには、上述したように、蓄熱材の粘度を1000cP以上とする。
(2)搬送時の液こぼれを低減すること。
蓄熱材をトレイに充填後、シール工程まで搬送する際に、搬送による揺れによってトレイから蓄熱材がこぼれてしまう恐れがある。搬送速度DownとタクトUPはトレードオフの関係がある。これを改善させるため、蓄熱材に粘性を付与させることによって液面の揺れを低減させる。本発明者らは、一つの目安として、トレイの容積に対して、80%充填する場合には約100cP以上あれば良いことを計算で確認した。 [Viscosity of heat storage materials (antifreeze and latent heat materials)]
There are two purposes for imparting viscosity to the heat storage material.
(1) To provide shape maintainability that is not affected by gravity.
As shown in FIG. 4A and FIG. 4B, the holding state of the heat storage material changes depending on how it is placed. For example, if the heat storage material is not viscous, if the unit is set up, the heat storage material hangs down and a heat path is generated. In order to solve this problem, as described above, the viscosity of the heat storage material is set to 1000 cP or more.
(2) To reduce liquid spillage during transportation.
When the heat storage material is filled in the tray and then transported to the sealing step, the heat storage material may be spilled from the tray due to the shaking caused by the transport. There is a trade-off relationship between the conveyance speed Down and the tact UP. In order to improve this, the fluctuation of the liquid level is reduced by imparting viscosity to the heat storage material. The inventors of the present invention have confirmed by calculation that, as a guide, about 100 cP or more is sufficient when 80% of the tray volume is filled.
蓄熱材に粘性を付与させる目的は二点ある。
(1)重力の影響を受けない形状維持性を付与すること。
図4Aおよび図4Bで示したように、蓄熱材の保持状態が、置き方によって変わってしまう。例えば、蓄熱材に粘性が無い場合、同ユニットを立掛けると、蓄熱材が垂れ下がり、熱のパスが発生してしまう。この課題を解決するためには、上述したように、蓄熱材の粘度を1000cP以上とする。
(2)搬送時の液こぼれを低減すること。
蓄熱材をトレイに充填後、シール工程まで搬送する際に、搬送による揺れによってトレイから蓄熱材がこぼれてしまう恐れがある。搬送速度DownとタクトUPはトレードオフの関係がある。これを改善させるため、蓄熱材に粘性を付与させることによって液面の揺れを低減させる。本発明者らは、一つの目安として、トレイの容積に対して、80%充填する場合には約100cP以上あれば良いことを計算で確認した。 [Viscosity of heat storage materials (antifreeze and latent heat materials)]
There are two purposes for imparting viscosity to the heat storage material.
(1) To provide shape maintainability that is not affected by gravity.
As shown in FIG. 4A and FIG. 4B, the holding state of the heat storage material changes depending on how it is placed. For example, if the heat storage material is not viscous, if the unit is set up, the heat storage material hangs down and a heat path is generated. In order to solve this problem, as described above, the viscosity of the heat storage material is set to 1000 cP or more.
(2) To reduce liquid spillage during transportation.
When the heat storage material is filled in the tray and then transported to the sealing step, the heat storage material may be spilled from the tray due to the shaking caused by the transport. There is a trade-off relationship between the conveyance speed Down and the tact UP. In order to improve this, the fluctuation of the liquid level is reduced by imparting viscosity to the heat storage material. The inventors of the present invention have confirmed by calculation that, as a guide, about 100 cP or more is sufficient when 80% of the tray volume is filled.
[蓄熱材の粘性と液面の揺れ]
上記の手法で求めた搬送速度でトレイを「搬送から停止」とした場合における充填材液面の揺れを、ANSYS-CFXを用いて計算した。その結果、粘度が「1.0cP」である場合は、液面が大きく揺れたが、粘度が「100cP」である場合は、液面は揺れなかった。 [Viscosity of heat storage material and shaking of liquid level]
The shaking of the filler liquid level was calculated using ANSYS-CFX when the tray was set to “stop from conveyance” at the conveyance speed determined by the above method. As a result, when the viscosity was “1.0 cP”, the liquid level was greatly shaken, but when the viscosity was “100 cP”, the liquid level was not shaken.
上記の手法で求めた搬送速度でトレイを「搬送から停止」とした場合における充填材液面の揺れを、ANSYS-CFXを用いて計算した。その結果、粘度が「1.0cP」である場合は、液面が大きく揺れたが、粘度が「100cP」である場合は、液面は揺れなかった。 [Viscosity of heat storage material and shaking of liquid level]
The shaking of the filler liquid level was calculated using ANSYS-CFX when the tray was set to “stop from conveyance” at the conveyance speed determined by the above method. As a result, when the viscosity was “1.0 cP”, the liquid level was greatly shaken, but when the viscosity was “100 cP”, the liquid level was not shaken.
図50は、蓄熱材の粘度に対する液面変化量を表す図である。図50に示されるように、充填率が70±0.1%の状態では、トレイの高さを10mmとすると、液面の高さは約7mmとなる。そこで、液面変化量が3mmを超えると蓄熱材が溢れることとなる。液面変化量が2mm以下に抑えられれば、蓄熱材の溢れを抑制することが可能となる。図49によれば、蓄熱材の粘度が100cPであれば、液面変化量が2mm未満となり、実用に耐え得ると言える。そこで、本実施形態では、搬送時の液こぼれを低減するという観点で、蓄熱材の粘度を100~200cPと規定した。
FIG. 50 is a diagram illustrating the amount of change in the liquid level with respect to the viscosity of the heat storage material. As shown in FIG. 50, in a state where the filling rate is 70 ± 0.1%, if the height of the tray is 10 mm, the height of the liquid level is about 7 mm. Therefore, when the liquid level change amount exceeds 3 mm, the heat storage material overflows. If the liquid level change amount is suppressed to 2 mm or less, it is possible to suppress overflow of the heat storage material. According to FIG. 49, when the viscosity of the heat storage material is 100 cP, it can be said that the amount of change in the liquid level is less than 2 mm and can be practically used. Therefore, in this embodiment, the viscosity of the heat storage material is defined as 100 to 200 cP from the viewpoint of reducing liquid spillage during conveyance.
[第3の実施形態]
[第2の深絞り容器の材料について]
図1に示したように、第2の深絞り容器5は、飲料物としてのワインボトル10に直接接触する。ワインボトル10などの保冷対象物の温度を、所望の温度に素早く到達させるためには、保冷対象物と直接接触する第2の深絞り容器5に、高い熱伝導率を有する包材を選定することが好ましい。この包材は、プラスチックから構成されることが一般的であるが、その熱伝導率は、図51に示す通りである。すなわち、ポリエチレン(低密度)は0.33[W/m・K]、ポリエチレン(高密度)は0.46~0.52[W/m・K]、ポリプロピレンは0.12[W/m・K]、ポリスチレンは0.10~0.14[W/m・K]、ポリカーボネートは0.19[W/m・K]、ポリエチレンテレフタレートは0.14[W/m・K]、ポリアミド6(ナイロン6)は0.35~0.43[W/m・K]である。 [Third Embodiment]
[Material of second deep-drawn container]
As shown in FIG. 1, the second deep-drawncontainer 5 directly contacts a wine bottle 10 as a beverage. In order to quickly reach the desired temperature of the cold object such as the wine bottle 10, a packaging material having high thermal conductivity is selected for the second deep-drawn container 5 that is in direct contact with the cold object. It is preferable. This packaging material is generally made of plastic, and its thermal conductivity is as shown in FIG. That is, polyethylene (low density) is 0.33 [W / m · K], polyethylene (high density) is 0.46 to 0.52 [W / m · K], and polypropylene is 0.12 [W / m · K]. K], polystyrene is 0.10 to 0.14 [W / m · K], polycarbonate is 0.19 [W / m · K], polyethylene terephthalate is 0.14 [W / m · K], polyamide 6 ( Nylon 6) is 0.35 to 0.43 [W / m · K].
[第2の深絞り容器の材料について]
図1に示したように、第2の深絞り容器5は、飲料物としてのワインボトル10に直接接触する。ワインボトル10などの保冷対象物の温度を、所望の温度に素早く到達させるためには、保冷対象物と直接接触する第2の深絞り容器5に、高い熱伝導率を有する包材を選定することが好ましい。この包材は、プラスチックから構成されることが一般的であるが、その熱伝導率は、図51に示す通りである。すなわち、ポリエチレン(低密度)は0.33[W/m・K]、ポリエチレン(高密度)は0.46~0.52[W/m・K]、ポリプロピレンは0.12[W/m・K]、ポリスチレンは0.10~0.14[W/m・K]、ポリカーボネートは0.19[W/m・K]、ポリエチレンテレフタレートは0.14[W/m・K]、ポリアミド6(ナイロン6)は0.35~0.43[W/m・K]である。 [Third Embodiment]
[Material of second deep-drawn container]
As shown in FIG. 1, the second deep-drawn
図51に示した包材のうち、選定すべき樹脂としては、高密度ポリエチレン(LDPE)、低密度ポリエチレン(HDPE)、または、ポリメチルメタクリレート(PMMA)が好ましい。さらに好ましくは、高熱伝導率の粒子(フィラー)を分散した複合プラスチックからなる包材を選定するのが良い。具体的な粒子(フィラー)としては、シリカ、アルミナ、窒化ケイ素、炭化ケイ素、窒化アルミニウム、窒化ホウ素、などが挙げられる。各フィラーの熱伝導率は、図52に示すとおりである。
51. Of the packaging materials shown in FIG. 51, the resin to be selected is preferably high density polyethylene (LDPE), low density polyethylene (HDPE), or polymethyl methacrylate (PMMA). More preferably, a packaging material made of a composite plastic in which particles (fillers) having high thermal conductivity are dispersed is selected. Specific particles (fillers) include silica, alumina, silicon nitride, silicon carbide, aluminum nitride, boron nitride, and the like. The thermal conductivity of each filler is as shown in FIG.
図52に示すように、各フィラーの熱伝導率[W/m・K]は、酸化物フィラーとしてのシリカは2~4[W/m・K]、酸化物フィラーとしてのアルミナは3~7[W/m・K]、窒化ケイ素は5~10[W/m・K]、炭化ケイ素は7~12[W/m・K]、窒化アルミニウムは5~13[W/m・K]、窒化ホウ素は12~45[W/m・K]である。そして、例えば、ポリアミドフィルムに、30vol%の窒化ホウ素フィラーを添加すると、熱伝導率は、およそ3.0W/m・Kに上昇する。
As shown in FIG. 52, the thermal conductivity [W / m · K] of each filler is 2 to 4 [W / m · K] for silica as an oxide filler, and 3 to 7 for alumina as an oxide filler. [W / m · K], silicon nitride 5 to 10 [W / m · K], silicon carbide 7 to 12 [W / m · K], aluminum nitride 5 to 13 [W / m · K], Boron nitride is 12 to 45 [W / m · K]. For example, when 30 vol% boron nitride filler is added to a polyamide film, the thermal conductivity increases to approximately 3.0 W / m · K.
図53は、フィラー添加量(vol%)と熱伝導率[W/m・K]との関係を示す図である。図53に示すように、フィラーの添加量の増加に伴って、熱伝導率は上昇する傾向にある。すなわち、用途に応じて必要な熱伝導率のフィルムを選定することが可能となる。
FIG. 53 is a diagram showing the relationship between the filler addition amount (vol%) and the thermal conductivity [W / m · K]. As shown in FIG. 53, the thermal conductivity tends to increase as the amount of filler added increases. That is, it becomes possible to select a film having a necessary thermal conductivity according to the application.
[蓄熱材の選定について]
図54は、蓄熱材の選定の概念を示す図である。蓄熱材は、比熱が高く、且つ熱伝導率が高い物性を有することが好ましい。すなわち、比熱が高い物性を有する蓄熱材は、比熱が低い物性を有する蓄熱材よりも同温度において蓄えている熱量が多いため、冷却対象物をより早く冷却することを可能にする。例えば、本明細書で示している蓄熱材の構成要素の大半は水である。水の比熱は、温度依存もあるが、4200J/kg・℃程度と非常に高い。 [Selection of heat storage material]
FIG. 54 is a diagram showing a concept of selecting a heat storage material. The heat storage material preferably has physical properties with high specific heat and high thermal conductivity. That is, since the heat storage material having a high specific heat property has a larger amount of heat stored at the same temperature than the heat storage material having a low specific heat property, the object to be cooled can be cooled more quickly. For example, most of the components of the heat storage material shown herein are water. The specific heat of water is very high, about 4200 J / kg · ° C., although it depends on temperature.
図54は、蓄熱材の選定の概念を示す図である。蓄熱材は、比熱が高く、且つ熱伝導率が高い物性を有することが好ましい。すなわち、比熱が高い物性を有する蓄熱材は、比熱が低い物性を有する蓄熱材よりも同温度において蓄えている熱量が多いため、冷却対象物をより早く冷却することを可能にする。例えば、本明細書で示している蓄熱材の構成要素の大半は水である。水の比熱は、温度依存もあるが、4200J/kg・℃程度と非常に高い。 [Selection of heat storage material]
FIG. 54 is a diagram showing a concept of selecting a heat storage material. The heat storage material preferably has physical properties with high specific heat and high thermal conductivity. That is, since the heat storage material having a high specific heat property has a larger amount of heat stored at the same temperature than the heat storage material having a low specific heat property, the object to be cooled can be cooled more quickly. For example, most of the components of the heat storage material shown herein are water. The specific heat of water is very high, about 4200 J / kg · ° C., although it depends on temperature.
一方、有機系蓄熱材の代表例であるパラフィンの比熱は2180J/kg・℃程度であり、一般の保冷剤等に使用されているエチレングリコールでも、比熱は2400J/kg・℃程度と、水の半分程度である。つまり、比熱の大きい水系蓄熱材は、他の蓄熱材に比べて冷却能力が優位であると言える。
On the other hand, the specific heat of paraffin, which is a typical example of an organic heat storage material, is about 2180 J / kg · ° C. Even with ethylene glycol used as a general cooling agent, the specific heat is about 2400 J / kg · ° C. It is about half. In other words, it can be said that the water-based heat storage material having a large specific heat is superior in cooling capacity compared to other heat storage materials.
次に、熱伝導率について考察する。熱伝導率が高い物性で構成された蓄熱材は、熱伝導率が低い物性で構成された蓄熱材よりも、より早く外部からの冷熱を吸収することができるため、例えば、蓄熱材を冷凍室で凍結させる場合、より素早く凍結させることができる。また、蓄熱材が蓄えた冷熱をより素早く冷却対象物に熱交換することができるため、結果として、冷却対象物をより早く冷却することが可能になる。
Next, let us consider the thermal conductivity. A heat storage material composed of physical properties with high thermal conductivity can absorb cold from the outside more quickly than a heat storage material composed of physical properties with low thermal conductivity. Can be frozen more quickly. In addition, since the cold energy stored in the heat storage material can be quickly exchanged with the object to be cooled, as a result, the object to be cooled can be cooled more quickly.
図54に示す通り、熱伝導率の低いパラフィン系蓄熱材から構成された蓄熱材の場合、蓄熱材内部での熱交換が悪く、冷却対象物に近い領域の冷熱量のみが冷却対象物に熱交換され、冷却対象物から遠い領域に在る冷熱量は冷却対象物に熱交換されない。つまり、蓄熱材が有する全冷熱量を効率的に冷却対象物に熱交換できない。また、パラフィン系の場合、可燃性を有するため、パッケージからの漏洩等に対する安全対策として、蓄熱材自体を増粘化、或いはゲル化することが多い。この場合、蓄熱材内部での対流が妨げられ、結果としてさらに熱交換が悪くなる可能性がある。一方、熱伝導率の高い水系から構成された蓄熱材の場合、有する冷熱量を冷却対象物への効率的に熱交換することが可能となる。また、水系の場合、安全性の観点で増粘化、ゲル化する必要がないため、パラフィン系の蓄熱材に比べ熱交換性が優位であると言える。
As shown in FIG. 54, in the case of a heat storage material composed of a paraffin-based heat storage material with low thermal conductivity, heat exchange inside the heat storage material is poor, and only the amount of cold in the region close to the cooling target is heated to the cooling target. The amount of cold heat that is exchanged and is in a region far from the object to be cooled is not heat exchanged with the object to be cooled. That is, the total amount of cold heat that the heat storage material has cannot be efficiently exchanged with the object to be cooled. In the case of a paraffin type, since it is flammable, the heat storage material itself is often thickened or gelled as a safety measure against leakage from the package. In this case, convection inside the heat storage material is hindered, and as a result, heat exchange may be further deteriorated. On the other hand, in the case of a heat storage material composed of an aqueous system having a high thermal conductivity, it is possible to efficiently exchange heat with the amount of cold heat to be cooled. In the case of aqueous systems, it is not necessary to thicken or gelate from the viewpoint of safety, so it can be said that heat exchange is superior to paraffin-based heat storage materials.
[検証]
図55は、シミュレーションによる検証で用いたモデルを示す図である。図55に示すように、このモデルは蓄熱材が135mm×80mm×t25mmのサイズとし、周囲環境は、温度が一定の-18℃であるとし、深絞り容器は、所期温度が25℃で、熱伝導率がパラメータAで与えられるものとする。また、蓄熱材は、所期温度が25℃で、熱伝導率がパラメータBで与えられるものとする。また、設定パラメータは、以下の通りである。 [Verification]
FIG. 55 is a diagram showing a model used in verification by simulation. As shown in FIG. 55, in this model, the heat storage material has a size of 135 mm × 80 mm × t25 mm, the ambient environment has a constant temperature of −18 ° C., and the deep-drawn container has an expected temperature of 25 ° C. Let thermal conductivity be given by parameter A. The heat storage material is assumed to have an expected temperature of 25 ° C. and a thermal conductivity of parameter B. The setting parameters are as follows.
図55は、シミュレーションによる検証で用いたモデルを示す図である。図55に示すように、このモデルは蓄熱材が135mm×80mm×t25mmのサイズとし、周囲環境は、温度が一定の-18℃であるとし、深絞り容器は、所期温度が25℃で、熱伝導率がパラメータAで与えられるものとする。また、蓄熱材は、所期温度が25℃で、熱伝導率がパラメータBで与えられるものとする。また、設定パラメータは、以下の通りである。 [Verification]
FIG. 55 is a diagram showing a model used in verification by simulation. As shown in FIG. 55, in this model, the heat storage material has a size of 135 mm × 80 mm × t25 mm, the ambient environment has a constant temperature of −18 ° C., and the deep-drawn container has an expected temperature of 25 ° C. Let thermal conductivity be given by parameter A. The heat storage material is assumed to have an expected temperature of 25 ° C. and a thermal conductivity of parameter B. The setting parameters are as follows.
この様なモデルを用いて、パラメータA~Bを変動させた場合の冷却対象物の時間に対する温度変化を計算した。パラメータAは、(1)230W/m・K(AL相当)、(2)0.33W/m・K(PE相当)とする。パラメータBは、(1)0.57~0.62W/m・K(水相当)、(2)0.1W/m・K(パラフィン相当)とする。なお、冷却対象物は、0℃で相変化する水(334J/g)を設定している。また、図55中、測定ポイントIは、蓄熱材の左右方向の中心で、最下部から18.75mmの位置とし、測定ポイントIIは、蓄熱材の左右方向の中心で、最下部から12.5mmの位置とし、測定ポイントIIIは、蓄熱材の左右方向の中心で、最下部から6.25mmの位置とした。
Using such a model, the temperature change with respect to time of the object to be cooled when the parameters A to B were varied was calculated. The parameter A is (1) 230 W / m · K (corresponding to AL) and (2) 0.33 W / m · K (corresponding to PE). The parameters B are (1) 0.57 to 0.62 W / m · K (equivalent to water) and (2) 0.1 W / m · K (equivalent to paraffin). The cooling target is set to water (334 J / g) that changes phase at 0 ° C. Also, in FIG. 55, the measurement point I is the center in the left-right direction of the heat storage material and is located at a position 18.75 mm from the bottom, and the measurement point II is the center in the left-right direction of the heat storage material, 12.5 mm from the bottom. The measurement point III was the center in the left-right direction of the heat storage material, and was 6.25 mm from the bottom.
[検証結果]
図56は、シミュレーションによる検証結果を示す図であり、図57は、シミュレーションによる温度測定結果を模式的に表した図である。図56および図57において、どの場合も、測定してから1分後は変化がなく、いずれも0℃を示している。5分経過すると、設定パラメータを、A(1)およびB(2)としたときは、測定ポイントIでは-3.1℃、測定ポイントIIでは0℃、測定ポイントIIIでは-3.5℃に変化した。この場合、図57に示すように、冷却対象物の周辺部分において、わずかな厚みを持ってマイナスの温度領域が分布しているが、中心を含む部分は依然として0℃のままである。また、設定パラメータを、A(2)およびB(1)としたときと、設定パラメータを、A(2)およびB(2)としたときは、全く変化がなかった。 [inspection result]
FIG. 56 is a diagram showing a verification result by simulation, and FIG. 57 is a diagram schematically showing a temperature measurement result by simulation. 56 and 57, in any case, there is no change after one minute from the measurement, and both indicate 0 ° C. After 5 minutes, when the setting parameters are A (1) and B (2), the measurement point I is -3.1 ° C, the measurement point II is 0 ° C, and the measurement point III is -3.5 ° C. changed. In this case, as shown in FIG. 57, a minus temperature region is distributed with a slight thickness in the peripheral portion of the object to be cooled, but the portion including the center remains at 0 ° C. Further, there was no change when the setting parameters were A (2) and B (1) and when the setting parameters were A (2) and B (2).
図56は、シミュレーションによる検証結果を示す図であり、図57は、シミュレーションによる温度測定結果を模式的に表した図である。図56および図57において、どの場合も、測定してから1分後は変化がなく、いずれも0℃を示している。5分経過すると、設定パラメータを、A(1)およびB(2)としたときは、測定ポイントIでは-3.1℃、測定ポイントIIでは0℃、測定ポイントIIIでは-3.5℃に変化した。この場合、図57に示すように、冷却対象物の周辺部分において、わずかな厚みを持ってマイナスの温度領域が分布しているが、中心を含む部分は依然として0℃のままである。また、設定パラメータを、A(2)およびB(1)としたときと、設定パラメータを、A(2)およびB(2)としたときは、全く変化がなかった。 [inspection result]
FIG. 56 is a diagram showing a verification result by simulation, and FIG. 57 is a diagram schematically showing a temperature measurement result by simulation. 56 and 57, in any case, there is no change after one minute from the measurement, and both indicate 0 ° C. After 5 minutes, when the setting parameters are A (1) and B (2), the measurement point I is -3.1 ° C, the measurement point II is 0 ° C, and the measurement point III is -3.5 ° C. changed. In this case, as shown in FIG. 57, a minus temperature region is distributed with a slight thickness in the peripheral portion of the object to be cooled, but the portion including the center remains at 0 ° C. Further, there was no change when the setting parameters were A (2) and B (1) and when the setting parameters were A (2) and B (2).
これに対し、設定パラメータを、A(1)およびB(1)としたときは、測定ポイントIでは-13.5℃、測定ポイントIIでは-9.8℃、測定ポイントIIIでは-14.1℃に変化しており、その他の場合と比較して顕著である。また、図57に示すように、設定パラメータを、A(1)およびB(1)としたときは、他の場合と比較して低い温度が広く分布している。
On the other hand, when the setting parameters are A (1) and B (1), the measurement point I is −13.5 ° C., the measurement point II is −9.8 ° C., and the measurement point III is −14.1. It changes to ° C., which is remarkable as compared with other cases. As shown in FIG. 57, when the setting parameters are A (1) and B (1), lower temperatures are widely distributed compared to other cases.
10分が経過すると、設定パラメータを、A(1)およびB(2)としたときは、測定ポイントIでは-6.7℃、測定ポイントIIでは0℃、測定ポイントIIIでは-8.3℃に変化した。この場合は、図57に示すように、冷却対象物の周辺部分において、一定の厚みを持ってマイナスの温度領域が分布しているが、中心を含む部分は依然として0℃のままである。
After 10 minutes, when the setting parameters are A (1) and B (2), the measurement point I is −6.7 ° C., the measurement point II is 0 ° C., and the measurement point III is −8.3 ° C. Changed. In this case, as shown in FIG. 57, a negative temperature region is distributed with a certain thickness in the peripheral portion of the cooling target, but the portion including the center remains at 0 ° C.
また、設定パラメータを、A(2)およびB(1)としたときは、測定ポイントIでは-2.2℃、測定ポイントIIでは0℃、測定ポイントIIIでは-3.7℃に変化した。この場合、図57に示すように、冷却対象物の周辺部分において、わずかな厚みを持ってマイナスの温度領域が分布しているが、中心を含む部分は依然として0℃のままである。設定パラメータを、A(2)およびB(2)としたときは、全く変化がなかった。
In addition, when the setting parameters were A (2) and B (1), they changed to -2.2 ° C. at measurement point I, 0 ° C. at measurement point II, and −3.7 ° C. at measurement point III. In this case, as shown in FIG. 57, a minus temperature region is distributed with a slight thickness in the peripheral portion of the object to be cooled, but the portion including the center remains at 0 ° C. When the setting parameters were A (2) and B (2), there was no change at all.
これに対し、設定パラメータを、A(1)およびB(1)としたときは、測定ポイントIでは-18.0℃、測定ポイントIIでは-17.6℃、測定ポイントIIIでは-18.0℃に変化しており、その他の場合と比較して顕著である。また、図57に示すように、設定パラメータを、A(1)およびB(1)としたときは、冷却対象物の温度が、すべての部分において、周囲温度とほぼ同じ-18℃となっている。
On the other hand, when the setting parameters are A (1) and B (1), the measurement point I is -18.0 ° C., the measurement point II is −17.6 ° C., and the measurement point III is −18.0. It changes to ° C., which is remarkable as compared with other cases. As shown in FIG. 57, when the setting parameters are A (1) and B (1), the temperature of the object to be cooled is -18 ° C., which is almost the same as the ambient temperature in all portions. Yes.
以上の検証結果によれば、蓄熱材をより早く凍結させるという観点においては、蓄熱材、並びに該蓄熱材を包装する深絞り容器ともに、その熱伝導率は、高い方が優位であると言える。一方、モデルの上方部よりも下方部の方が、温度が低い傾向が確認されるが、これは密度の温度依存によるものであり、冷たい領域が下部に、温かい領域が上部に移動する特性が現われたものであると推察される。
According to the above verification results, in terms of freezing the heat storage material faster, it can be said that both the heat storage material and the deep-drawn container for packaging the heat storage material have higher thermal conductivity. On the other hand, there is a tendency that the temperature is lower in the lower part than in the upper part of the model, but this is due to the temperature dependence of the density, and the characteristic is that the cold region moves to the lower part and the warm region moves to the upper part. It is inferred that it appeared.
以上のように、本シミュレーションによる検証結果から、蓄熱材は、熱伝導率が高く、比熱が高い構成とすることによって、蓄熱材の凍結時間を短縮することが可能であることが分かった。一方、この結果より、凍結した蓄熱材が有する冷熱量を効率的に素早く冷却対象物に熱交換させるためには、蓄熱材を、熱伝導率が高く、比熱が高い構成とすることが望ましいことも示唆された。
As described above, from the verification results by this simulation, it was found that the heat storage material can shorten the freezing time of the heat storage material by adopting a configuration with high thermal conductivity and high specific heat. On the other hand, from this result, it is desirable that the heat storage material has a high thermal conductivity and a high specific heat in order to efficiently and quickly exchange the amount of heat of the frozen heat storage material with the object to be cooled. Also suggested.
以上説明したように、本実施形態によれば、熱伝導率の高い包材を用いると共に、比熱が高く熱伝導率も高い蓄熱材を用いることによって、保冷対象物を適した温度に素早く到達させることが可能となる。
As described above, according to the present embodiment, by using a packaging material having a high thermal conductivity, and using a heat storage material having a high specific heat and a high thermal conductivity, the object to be kept cold can be quickly reached at a suitable temperature. It becomes possible.
本発明は、以下のような構成を採ることができる。すなわち、(1)本発明の蓄熱パックは、飲食物の温度管理を行なう蓄熱パックであって、予め定められた温度で相変化する第1の蓄熱材が充填された第1の収容部と、前記第1の収容部に積重され、前記第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材が充填された第2の収容部と、前記第1の収容部を閉塞する蓋材と、を備え、前記第2の収容部が飲食物に接触する。
The present invention can take the following configurations. That is, (1) The heat storage pack of the present invention is a heat storage pack that performs temperature management of food and drink, and is filled with a first heat storage material that changes phase at a predetermined temperature; A second housing portion that is stacked in the first housing portion and filled with a second heat storage material that maintains a liquid phase state at a phase change temperature of the first heat storage material; and the first housing portion. A lid member that closes the container, and the second storage portion contacts food and drink.
(2)また、本発明の蓄熱パックにおいて、前記第1の収容部は、第1のプラスチックフィルムで成形される一方、前記第2の収容部は、第2のプラスチックフィルムで成形され、前記第2のプラスチックフィルムは、前記第1のプラスチックフィルムよりも柔軟である。
(2) Further, in the heat storage pack of the present invention, the first storage portion is formed of a first plastic film, while the second storage portion is formed of a second plastic film, The second plastic film is more flexible than the first plastic film.
(3)また、本発明の蓄熱パックにおいて、前記第1の収容部および前記第2の収容部は、深絞り成型容器であって、前記第1の収容部のフランジ部と前記第2の収容部のフランジ部とが接合されると共に、前記第1の収容部のフランジ部と前記蓋材とが接合されている。
(3) Moreover, in the heat storage pack of the present invention, the first housing portion and the second housing portion are deep-drawn molded containers, and the flange portion of the first housing portion and the second housing The flange portion of the first portion is joined, and the flange portion of the first housing portion and the lid member are joined.
(4)また、本発明の蓄熱パックにおいて、前記第1の収容部のフランジ部の任意の一部に貫通口が設けられ、前記貫通口で、前記第2の収容部のフランジ部と前記蓋材とが直接接合している。
(4) Further, in the heat storage pack of the present invention, a through hole is provided in an arbitrary part of the flange portion of the first housing portion, and the flange portion of the second housing portion and the lid are provided at the through port. The material is directly joined.
(5)また、本発明の蓄熱パックは、前記第1の蓄熱材および第2の蓄熱材が、自重に対して形状維持可能な粘性を有する。
(5) Further, in the heat storage pack of the present invention, the first heat storage material and the second heat storage material have a viscosity capable of maintaining a shape with respect to their own weight.
(6)また、本発明の蓄熱パックは、前記第1の蓄熱材および第2の蓄熱材の粘度が、1000cP以上である。
(6) Further, in the heat storage pack of the present invention, the viscosity of the first heat storage material and the second heat storage material is 1000 cP or more.
(7)また、本発明の蓄熱パックは、前記第1の収容部に充填された前記第1の蓄熱材と、前記蓋材との間に空隙層を有する。
(7) Further, the heat storage pack of the present invention has a void layer between the first heat storage material filled in the first housing portion and the lid material.
(8)また、本発明の蓄熱パックにおいて、前記第1の収容部は、前記第2の収容部の反対側に断熱材を更に備える。
(8) Further, in the heat storage pack of the present invention, the first housing portion further includes a heat insulating material on the opposite side of the second housing portion.
(9)また、本発明の蓄熱パックにおいて、前記第1の蓄熱材は、水と0℃以上の温度で前記水の一部と包接水和物を形成する炭化水素化合物および前記水の他の一部の相変化温度を0℃未満に硬化させる無機化合物で構成されている。
(9) Further, in the heat storage pack of the present invention, the first heat storage material includes a hydrocarbon compound that forms clathrate hydrate with water and a part of the water at a temperature of 0 ° C. or higher, and the water. Are made of an inorganic compound that cures a part of the phase change temperature to less than 0 ° C.
(10)また、本発明の蓄熱パックにおいて、前記第1の蓄熱材および第2の蓄熱材の粘度が、100~200cPである。
(10) In the heat storage pack of the present invention, the first heat storage material and the second heat storage material have a viscosity of 100 to 200 cP.
(11)また、本発明の蓄熱パックにおいて、前記第2の収容部の容量は、前記第1の収容部の容量よりも大きい。
(11) Further, in the heat storage pack of the present invention, the capacity of the second accommodating part is larger than the capacity of the first accommodating part.
(12)また、本発明の蓄熱パックにおいて、前記蓋材は、断熱材で形成されている。
(12) In the heat storage pack of the present invention, the lid member is formed of a heat insulating material.
(13)また、本発明の蓄熱パックにおいて、前記第1のプラスチックフィルムのヤング率は、3000MPa以上であると共に、前記第2のプラスチックフィルムのヤング率は、3000MPa未満である。
(13) In the heat storage pack of the present invention, the Young's modulus of the first plastic film is 3000 MPa or more, and the Young's modulus of the second plastic film is less than 3000 MPa.
(14)また、本発明の蓄熱パックにおいて、前記第2の収容部の飲食物に接触する面は、他の面よりも相対的に小さい摩擦係数を有する。
(14) Moreover, in the heat storage pack of the present invention, the surface of the second housing portion that contacts the food or drink has a relatively smaller coefficient of friction than the other surfaces.
(15)また、本発明の熱交換ユニットは、上記(1)~(14)のいずれかに記載の蓄熱パックが複数接続され、隣接する蓄熱パック間に関節機構を有する。
(15) Further, in the heat exchange unit of the present invention, a plurality of the heat storage packs described in any one of (1) to (14) are connected, and a joint mechanism is provided between adjacent heat storage packs.
(16)また、本発明の熱交換ユニットにおいて、前記各蓄熱パックは、同心円上に配列するように接続され、前記関節機構は、伸縮性を有する。
(16) In the heat exchange unit of the present invention, the heat storage packs are connected so as to be arranged concentrically, and the joint mechanism has elasticity.
(17)また、本発明の熱交換ユニットにおいて、相対的に大きい第2の収容部を有する複数の蓄熱パックが同心円上に配列するように接続された上段部と、相対的に小さい第2の収容部を有する複数の蓄熱パックが同心円上に配列するように接続された下段部と、を備え、使用時に、前記上段部が鉛直上方に位置する一方、前記下段部が鉛直下方に位置することで前記各第2の収容部が飲食物に接触する。
(17) Further, in the heat exchange unit of the present invention, the upper stage portion connected so that the plurality of heat storage packs having the relatively large second accommodating portion are arranged concentrically and the relatively small second portion A plurality of heat storage packs having storage portions connected to be concentrically arranged, and in use, the upper step portion is positioned vertically upward, while the lower step portion is positioned vertically downward Each said 2nd accommodating part contacts food and drink.
(18)また、本発明の熱交換ユニットにおいて、前記各蓄熱パックを同心円の中心方向に押圧する押圧部をさらに備える。
(18) The heat exchange unit of the present invention further includes a pressing portion that presses each of the heat storage packs toward the center of a concentric circle.
(19)また、本発明の熱交換ユニットにおいて、前記押圧部の押圧力は、25N以上である。
(19) Moreover, in the heat exchange unit of the present invention, the pressing force of the pressing portion is 25 N or more.
(20)また、本発明の蓄熱パックの製造方法は、飲食物の温度管理を行なう蓄熱パックの製造方法であって、第1の金型によって凹形状を有する第1の収容部を成型する工程と、第2の金型によって、少なくとも前記第1の収容部の凹形状よりも大きい凹形状を有する第2の収容部を成形する工程と、前記第1の収容部に、予め定められた温度で相変化する第1の蓄熱材を充填する工程と、前記第2の収容部に、前記第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材を充填する工程と、前記第2の蓄熱材が充填された第2の収容部に、前記第1の蓄熱材が充填された第1の収容部を積重させて、蓋材、前記第1の収容部のフランジ部および前記第2の収容部のフランジ部を接合する工程と、を少なくとも含む。
(20) Moreover, the manufacturing method of the heat storage pack of this invention is a manufacturing method of the heat storage pack which performs temperature control of food and drink, Comprising: The process of shape | molding the 1st accommodating part which has a concave shape with a 1st metal mold | die. And a step of forming a second housing portion having a concave shape larger than at least the concave shape of the first housing portion by the second mold, and a predetermined temperature in the first housing portion. Filling the second heat storage material with the phase change temperature of the first heat storage material and filling the second heat storage material with the second heat storage material that maintains the liquid phase state at the phase change temperature of the first heat storage material; The first housing part filled with the first heat storage material is stacked on the second housing part filled with the second heat storage material, and the lid member and the flange of the first housing part are stacked. And a step of joining the flange portion of the second accommodating portion.
(21)また、本発明の蓄熱パックの製造方法は、飲食物の温度管理を行なう蓄熱パックの製造方法であって、第1の金型によって凹形状を有する第1の収容部を成型する工程と、第2の金型によって、少なくとも前記第1の収容部の凹形状よりも大きい凹形状を有する第2の収容部を成形する工程と、前記第2の収容部に、第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材を充填する工程と、前記第2の蓄熱材が充填された第2の収容部に、前記第1の収容部を積重させる工程と、前記第1の収容部に、予め定められた温度で相変化する前記第1の蓄熱材を充填する工程と、蓋材、前記第1の収容部のフランジ部および前記第2の収容部のフランジ部を接合する工程と、を少なくとも含む。
(21) Moreover, the manufacturing method of the heat storage pack of this invention is a manufacturing method of the heat storage pack which performs temperature control of food and drink, Comprising: The process of shape | molding the 1st accommodating part which has a concave shape with a 1st metal mold | die. And forming a second housing portion having a concave shape larger than at least the concave shape of the first housing portion by the second mold, and a first heat storage material in the second housing portion. Filling a second heat storage material that maintains a liquid phase state at a phase change temperature of the second, and stacking the first housing portion on a second housing portion filled with the second heat storage material A step of filling the first housing part with the first heat storage material that changes phase at a predetermined temperature; a lid member; a flange part of the first housing part; and the second housing part. Joining at least the flange portion.
(22)また、本発明の蓄熱パックの製造方法は、前記第1の収容部のフランジ部の任意の一部に貫通口を設ける工程を更に備え、前記貫通口で、前記第2の収容部のフランジ部と前記蓋材とが直接接合している。
(22) Moreover, the manufacturing method of the heat storage pack of the present invention further includes a step of providing a through-hole in an arbitrary part of the flange portion of the first housing portion, and the second housing portion at the through-hole. The flange portion and the lid member are directly joined.
以上説明したように、本実施形態によれば、第2の蓄熱材5aが第1の蓄熱材3aの相変化温度で液相状態を維持し、第2の深絞り容器5が受熱体としての飲食物に接触するので、所望の温度において、第2の深絞り容器5を飲食物に密着させることが可能となる。これにより、第2の蓄熱材5aが蓄えた顕熱を飲食物に確実に伝え、飲食物を所望の温度に素早く到達させることが可能となる。さらに、第2の蓄熱材5aを介して第1の蓄熱材3aが蓄えた顕熱、および潜熱を飲食物に確実に伝えることで、飲食物を所望の温度に素早く到達させるアシストをすると共に、さらに第1の蓄熱材3aが蓄えた潜熱を飲食物に確実に伝えることで、飲食物を所望の温度で長時間保持させることが可能となる。
As described above, according to the present embodiment, the second heat storage material 5a maintains the liquid phase at the phase change temperature of the first heat storage material 3a, and the second deep-drawn container 5 serves as the heat receiving body. Since it comes into contact with food and drink, the second deep-drawn container 5 can be brought into close contact with the food and drink at a desired temperature. Thereby, the sensible heat stored by the second heat storage material 5a can be reliably transmitted to the food and drink so that the food and drink can quickly reach the desired temperature. Furthermore, while reliably transmitting the sensible heat stored in the first heat storage material 3a and the latent heat to the food and drink via the second heat storage material 5a, assisting the food and drink to reach the desired temperature quickly, Furthermore, by reliably transmitting the latent heat stored by the first heat storage material 3a to the food and drink, the food and drink can be held at a desired temperature for a long time.
また、本実施形態に係る熱交換ユニットは、ワインボトルの上から被せて装着するように構成されていることが特徴である。従来は、ワインボトルに装着した後に、ワインボトルの先端部分を絞る必要があった、いわゆる巾着機構を有する飲料クーラーが提案されていたが、そのような構成の場合、巾着部の締付け力のバラつきによって、特に、急冷性能に大きな差異が発生する懸念がある。これに対し、本発明では、「装着後に締付ける」という作業がないため上記懸念の発生は極めて少ないという優れた効果を奏する。
Further, the heat exchange unit according to the present embodiment is characterized in that it is configured to be mounted over the wine bottle. Conventionally, there has been proposed a beverage cooler having a so-called drawstring mechanism in which it is necessary to squeeze the tip of the wine bottle after being attached to the wine bottle. In particular, there is a concern that a large difference occurs in the quenching performance. On the other hand, in the present invention, since there is no work of “tightening after mounting”, there is an excellent effect that the occurrence of the above-mentioned concern is extremely small.
なお、本国際出願は、2015年5月28日に出願した日本国特許出願第2015-109143号、2015年10月27日に出願した日本国特許出願第2015-211316号、および2016年2月5日に出願した日本国特許出願第2016-020573号に基づく優先権を主張するものであり、日本国特許出願第2015-109143号、日本国特許出願第2015-211316号、および日本国特許出願第2016-020573号の全内容を本国際出願に援用する。
This international application includes Japanese Patent Application No. 2015-109143 filed on May 28, 2015, Japanese Patent Application No. 2015-2111316 filed on October 27, 2015, and February 2016. Claims priority based on Japanese Patent Application No. 2016-020573 filed on the 5th, Japanese Patent Application No. 2015-109143, Japanese Patent Application No. 2015-212316, and Japanese Patent Application The entire content of 2016-020573 is incorporated herein by reference.
1 蓄熱パック
3 第1の深絞り容器
3a 第1の蓄熱材
3b フランジ部
5 第2の深絞り容器
5a 第2の蓄熱材
5b フランジ部
7 蓋材
8 貫通口
9 接着部
10 ワインボトル
20 熱交換ユニット
30 保冷アイスマスク
31L 左眼保冷部
31R 右眼保冷部
32 接続部
34L ゴムバンド
34R ゴムバンド
60 真空成型金型
61 硬質フィルム
70 真空成型金型
71 軟質フィルム
100 内トレイ
102 第1の内トレイ
104 第2の内トレイ
106 底部
108 潜熱材
110 外トレイ
112 第1の外トレイ
114 第2の外トレイ
116 底部
118 不凍材
120 蓋材(断熱材)
122 伸縮性接続ゴム
200 蓄熱パック
202 熱交換ユニット
240 アイシングパック
241 パック本体
241a 周辺部
241b 収容部
242R バンド部
243L ループ部
243R フック部
260 アイス枕
261 第1の収容部
262 第2の収容部
280 蓄冷マット
282 アルミ製皿 DESCRIPTION OFSYMBOLS 1 Heat storage pack 3 1st deep drawing container 3a 1st heat storage material 3b Flange part 5 2nd deep drawing container 5a 2nd heat storage material 5b Flange part 7 Cover material 8 Through-hole 9 Adhesion part 10 Wine bottle 20 Heat exchange Unit 30 Cooling Ice Mask 31L Left Eye Cooling Unit 31R Right Eye Cooling Unit 32 Connection Unit 34L Rubber Band 34R Rubber Band 60 Vacuum Molding Mold 61 Hard Film 70 Vacuum Molding Mold 71 Soft Film 100 Inner Tray 102 First Inner Tray 104 Second inner tray 106 Bottom portion 108 Latent heat material 110 Outer tray 112 First outer tray 114 Second outer tray 116 Bottom portion 118 Antifreeze material 120 Lid (heat insulating material)
122elastic connection rubber 200 heat storage pack 202 heat exchange unit 240 icing pack 241 pack body 241a peripheral portion 241b storage portion 242R band portion 243L loop portion 243R hook portion 260 ice pillow 261 first storage portion 262 second storage portion 280 cold storage Mat 282 Aluminum dish
3 第1の深絞り容器
3a 第1の蓄熱材
3b フランジ部
5 第2の深絞り容器
5a 第2の蓄熱材
5b フランジ部
7 蓋材
8 貫通口
9 接着部
10 ワインボトル
20 熱交換ユニット
30 保冷アイスマスク
31L 左眼保冷部
31R 右眼保冷部
32 接続部
34L ゴムバンド
34R ゴムバンド
60 真空成型金型
61 硬質フィルム
70 真空成型金型
71 軟質フィルム
100 内トレイ
102 第1の内トレイ
104 第2の内トレイ
106 底部
108 潜熱材
110 外トレイ
112 第1の外トレイ
114 第2の外トレイ
116 底部
118 不凍材
120 蓋材(断熱材)
122 伸縮性接続ゴム
200 蓄熱パック
202 熱交換ユニット
240 アイシングパック
241 パック本体
241a 周辺部
241b 収容部
242R バンド部
243L ループ部
243R フック部
260 アイス枕
261 第1の収容部
262 第2の収容部
280 蓄冷マット
282 アルミ製皿 DESCRIPTION OF
122
Claims (22)
- 飲食物の温度管理を行なう蓄熱パックであって、
予め定められた温度で相変化する第1の蓄熱材が充填された第1の収容部と、
前記第1の収容部に積重され、前記第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材が充填された第2の収容部と、
前記第1の収容部を閉塞する蓋材と、を備え、
前記第2の収容部が飲食物に接触する蓄熱パック。 A heat storage pack for managing the temperature of food and drink,
A first housing portion filled with a first heat storage material that changes phase at a predetermined temperature;
A second housing portion that is stacked in the first housing portion and filled with a second heat storage material that maintains a liquid phase state at the phase change temperature of the first heat storage material;
A lid that closes the first accommodating portion,
A heat storage pack in which the second housing portion comes into contact with food and drink. - 前記第1の収容部は、第1のプラスチックフィルムで成形される一方、前記第2の収容部は、第2のプラスチックフィルムで成形され、前記第2のプラスチックフィルムは、前記第1のプラスチックフィルムよりも柔軟である請求項1記載の蓄熱パック。 The first housing portion is formed of a first plastic film, while the second housing portion is formed of a second plastic film, and the second plastic film is formed of the first plastic film. The heat storage pack according to claim 1, which is more flexible.
- 前記第1の収容部および前記第2の収容部は、深絞り成型容器であって、前記第1の収容部のフランジ部と前記第2の収容部のフランジ部とが接合されると共に、前記第1の収容部のフランジ部と前記蓋材とが接合されている請求項2記載の蓄熱パック。 The first housing portion and the second housing portion are deep-drawn containers, and the flange portion of the first housing portion and the flange portion of the second housing portion are joined together, and The heat storage pack according to claim 2, wherein the flange portion of the first housing portion and the lid member are joined.
- 前記第1の収容部のフランジ部の任意の一部に貫通口が設けられ、前記貫通口で、前記第2の収容部のフランジ部と前記蓋材とが直接接合している請求項3記載の蓄熱パック。 The through-hole is provided in an arbitrary part of the flange portion of the first housing portion, and the flange portion of the second housing portion and the lid member are directly joined at the through-hole. Heat storage pack.
- 前記第1の蓄熱材および第2の蓄熱材が、自重に対して形状維持可能な粘性を有する請求項1記載の蓄熱パック。 The heat storage pack according to claim 1, wherein the first heat storage material and the second heat storage material have a viscosity capable of maintaining a shape with respect to their own weight.
- 前記第1の蓄熱材および第2の蓄熱材の粘度が、1000cP以上である請求項5記載の蓄熱パック。 The heat storage pack according to claim 5, wherein the viscosity of the first heat storage material and the second heat storage material is 1000 cP or more.
- 前記第1の収容部に充填された前記第1の蓄熱材と、前記蓋材との間に空隙層を有する請求項6記載の蓄熱パック。 The heat storage pack according to claim 6, wherein a gap layer is provided between the first heat storage material filled in the first housing portion and the lid material.
- 前記第1の収容部は、前記第2の収容部の反対側に断熱材を更に備える請求項1記載の蓄熱パック。 The heat storage pack according to claim 1, wherein the first housing portion further includes a heat insulating material on the opposite side of the second housing portion.
- 前記第1の蓄熱材は、水と0℃以上の温度で前記水の一部と包接水和物を形成する炭化水素化合物および前記水の他の一部の相変化温度を0℃未満に硬化させる無機化合物で構成されている請求項1記載の蓄熱パック。 The first heat storage material has a hydrocarbon compound that forms clathrate hydrate with water and a part of the water at a temperature of 0 ° C. or higher, and the phase change temperature of the other part of the water is less than 0 ° C. The heat storage pack according to claim 1, which is composed of an inorganic compound to be cured.
- 前記第1の蓄熱材および第2の蓄熱材の粘度が、100~200cPである請求項1記載の蓄熱パック。 The heat storage pack according to claim 1, wherein the first heat storage material and the second heat storage material have a viscosity of 100 to 200 cP.
- 前記第2の収容部の容量は、前記第1の収容部の容量よりも大きい請求項2記載の蓄熱パック。 The heat storage pack according to claim 2, wherein a capacity of the second housing part is larger than a capacity of the first housing part.
- 前記蓋材は、断熱材で形成されている請求項1記載の蓄熱パック。 The heat storage pack according to claim 1, wherein the lid member is formed of a heat insulating material.
- 前記第1のプラスチックフィルムのヤング率は、3000MPa以上であると共に、
前記第2のプラスチックフィルムのヤング率は、3000MPa未満である請求項2記載の蓄熱パック。 The Young's modulus of the first plastic film is 3000 MPa or more,
The heat storage pack according to claim 2, wherein the Young's modulus of the second plastic film is less than 3000 MPa. - 前記第2の収容部の飲食物に接触する面は、他の面よりも相対的に小さい摩擦係数を有する請求項1記載の蓄熱パック。 The heat storage pack according to claim 1, wherein a surface of the second housing portion that comes into contact with food or drink has a friction coefficient relatively smaller than that of other surfaces.
- 請求項1から請求項14のいずれかに記載の蓄熱パックが複数接続され、隣接する蓄熱パック間に関節機構を有する熱交換ユニット。 A heat exchange unit in which a plurality of heat storage packs according to any one of claims 1 to 14 are connected and has a joint mechanism between adjacent heat storage packs.
- 前記各蓄熱パックは、同心円上に配列するように接続され、
前記関節機構は、伸縮性を有する請求項15記載の熱交換ユニット。 Each of the heat storage packs is connected to be arranged concentrically,
The heat exchange unit according to claim 15, wherein the joint mechanism has elasticity. - 相対的に大きい第2の収容部を有する複数の蓄熱パックが同心円上に配列するように接続された上段部と、
相対的に小さい第2の収容部を有する複数の蓄熱パックが同心円上に配列するように接続された下段部と、を備え、
使用時に、前記上段部が鉛直上方に位置する一方、前記下段部が鉛直下方に位置することで前記各第2の収容部が飲食物に接触する請求項15記載の熱交換ユニット。 A plurality of heat storage packs having a relatively large second storage portion connected to be arranged in a concentric circle; and
A plurality of heat storage packs having a relatively small second storage portion connected to be arranged on a concentric circle, and
The heat exchange unit according to claim 15, wherein, when in use, each of the second accommodation portions comes into contact with food and drink because the upper step portion is positioned vertically upward and the lower step portion is positioned vertically downward. - 前記各蓄熱パックを同心円の中心方向に押圧する押圧部をさらに備える請求項17記載の熱交換ユニット。 The heat exchange unit according to claim 17, further comprising a pressing portion that presses each of the heat storage packs toward the center of a concentric circle.
- 前記押圧部の押圧力は、25N以上である請求項18記載の熱交換ユニット。 The heat exchange unit according to claim 18, wherein the pressing force of the pressing portion is 25N or more.
- 飲食物の温度管理を行なう蓄熱パックの製造方法であって、
第1の金型によって凹形状を有する第1の収容部を成型する工程と、
第2の金型によって、少なくとも前記第1の収容部の凹形状よりも大きい凹形状を有する第2の収容部を成形する工程と、
前記第1の収容部に、予め定められた温度で相変化する第1の蓄熱材を充填する工程と、
前記第2の収容部に、前記第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材を充填する工程と、
前記第2の蓄熱材が充填された第2の収容部に、前記第1の蓄熱材が充填された第1の収容部を積重させて、蓋材、前記第1の収容部のフランジ部および前記第2の収容部のフランジ部を接合する工程と、を少なくとも含む蓄熱パックの製造方法。 A method for producing a heat storage pack for temperature control of food and drink,
Molding a first housing part having a concave shape with a first mold;
Forming a second container having a concave shape larger than at least the concave shape of the first container by a second mold;
Filling the first housing part with a first heat storage material that changes phase at a predetermined temperature; and
Filling the second housing part with a second heat storage material that maintains a liquid phase at the phase change temperature of the first heat storage material;
The first housing part filled with the first heat storage material is stacked on the second housing part filled with the second heat storage material, and the lid member, the flange part of the first housing part And a step of joining the flange portions of the second housing portion. - 飲食物の温度管理を行なう蓄熱パックの製造方法であって、
第1の金型によって凹形状を有する第1の収容部を成型する工程と、
第2の金型によって、少なくとも前記第1の収容部の凹形状よりも大きい凹形状を有する第2の収容部を成形する工程と、
前記第2の収容部に、第1の蓄熱材の相変化温度で液相状態を維持する第2の蓄熱材を充填する工程と、
前記第2の蓄熱材が充填された第2の収容部に、前記第1の収容部を積重させる工程と、
前記第1の収容部に、予め定められた温度で相変化する前記第1の蓄熱材を充填する工程と、
蓋材、前記第1の収容部のフランジ部および前記第2の収容部のフランジ部を接合する工程と、を少なくとも含む蓄熱パックの製造方法。 A method for producing a heat storage pack for temperature control of food and drink,
Molding a first housing part having a concave shape with a first mold;
Forming a second container having a concave shape larger than at least the concave shape of the first container by a second mold;
Filling the second housing part with a second heat storage material that maintains a liquid phase at the phase change temperature of the first heat storage material;
A step of stacking the first housing portion on the second housing portion filled with the second heat storage material;
Filling the first housing part with the first heat storage material that undergoes a phase change at a predetermined temperature;
A method of manufacturing a heat storage pack, comprising: a lid member, a step of joining the flange portion of the first housing portion and the flange portion of the second housing portion. - 前記第1の収容部のフランジ部の任意の一部に貫通口を設ける工程を更に備え、前記貫通口で、前記第2の収容部のフランジ部と前記蓋材とが直接接合している請求項20または請求項21記載の蓄熱パックの製造方法。 The method further comprises a step of providing a through-hole in an arbitrary part of the flange portion of the first housing portion, wherein the flange portion of the second housing portion and the lid member are directly joined at the through-hole. Item 22. A method for producing a heat storage pack according to Item 20 or Item 21.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/577,682 US10919683B2 (en) | 2015-05-28 | 2016-05-26 | Thermal energy storage pack, thermal exchange unit, and manufacturing method of thermal energy storage pack |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-109143 | 2015-05-28 | ||
JP2015109143 | 2015-05-28 | ||
JP2015211316 | 2015-10-27 | ||
JP2015-211316 | 2015-10-27 | ||
JP2016020573A JP6221144B2 (en) | 2015-05-28 | 2016-02-05 | Heat storage pack, heat exchange unit, and method of manufacturing heat storage pack |
JP2016-020573 | 2016-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016190378A1 true WO2016190378A1 (en) | 2016-12-01 |
Family
ID=57393507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065526 WO2016190378A1 (en) | 2015-05-28 | 2016-05-26 | Heat storage pack, heat exchange unit, and method for manufacturing heat storage pack |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016190378A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220010185A1 (en) * | 2019-03-29 | 2022-01-13 | Kaneka Corporation | Latent heat storage material |
CN114166057A (en) * | 2021-12-30 | 2022-03-11 | 海南大学 | Container carrying phase-change material for obtaining cold energy in deep sea and deep sea cold accumulation rod bundle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968376A (en) * | 1995-08-30 | 1997-03-11 | Sun Lex Kogyo Kk | Constant temperature box |
JP2009168303A (en) * | 2008-01-15 | 2009-07-30 | Agri Soken:Kk | Room temperature heat retaining agent bag maintaining room temperature over long hours, heat retaining box, and heat retaining method |
WO2015045029A1 (en) * | 2013-09-25 | 2015-04-02 | トッパン・フォームズ株式会社 | Thermal insulating storage box |
-
2016
- 2016-05-26 WO PCT/JP2016/065526 patent/WO2016190378A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968376A (en) * | 1995-08-30 | 1997-03-11 | Sun Lex Kogyo Kk | Constant temperature box |
JP2009168303A (en) * | 2008-01-15 | 2009-07-30 | Agri Soken:Kk | Room temperature heat retaining agent bag maintaining room temperature over long hours, heat retaining box, and heat retaining method |
WO2015045029A1 (en) * | 2013-09-25 | 2015-04-02 | トッパン・フォームズ株式会社 | Thermal insulating storage box |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220010185A1 (en) * | 2019-03-29 | 2022-01-13 | Kaneka Corporation | Latent heat storage material |
CN114166057A (en) * | 2021-12-30 | 2022-03-11 | 海南大学 | Container carrying phase-change material for obtaining cold energy in deep sea and deep sea cold accumulation rod bundle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6221144B2 (en) | Heat storage pack, heat exchange unit, and method of manufacturing heat storage pack | |
US5329778A (en) | Thermally insulated bottle and method of assembly thereof | |
US10717591B2 (en) | Container for icecream | |
US20170153054A1 (en) | Cold insulation member | |
WO2016190378A1 (en) | Heat storage pack, heat exchange unit, and method for manufacturing heat storage pack | |
JP5710172B2 (en) | Liquid food container opening device and liquid food container | |
JP2016211750A (en) | Heat storage pack and heat exchange unit | |
WO2014067927A1 (en) | Container for temperature sensitive materials | |
JP4951875B2 (en) | Plastic container | |
CN206871675U (en) | A kind of fresh packing case | |
WO2018003768A2 (en) | Cooler container, cold tray, and red wine server | |
KR20200000823U (en) | Packing box | |
KR200396806Y1 (en) | A Bag for Cold Storage | |
US20170088337A1 (en) | Method and Apparatus for Providing an Insulated Shipping Container | |
US9907421B2 (en) | Container insulating and cooling system | |
KR101569517B1 (en) | Plastic packaging with Fork storage and method. | |
CN206593358U (en) | A kind of cold storing bag | |
CN211365673U (en) | Frozen dessert packaging container | |
KR101411601B1 (en) | Ice pack for food | |
CN214548694U (en) | Be applied to lightweight heat sink that holds household utensils | |
CN220448607U (en) | Novel environment-friendly corrugated case with cushioning capability | |
CN210285339U (en) | Fresh-keeping foam box capable of adding ice blocks | |
KR102682844B1 (en) | Multi-layered film-structured packaging bag with cooling function | |
JP2008281251A (en) | Cooling storage agent container | |
CN209279465U (en) | A kind of Self-water absorption type ice bag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16800082 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15577682 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16800082 Country of ref document: EP Kind code of ref document: A1 |