WO2018003748A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2018003748A1
WO2018003748A1 PCT/JP2017/023420 JP2017023420W WO2018003748A1 WO 2018003748 A1 WO2018003748 A1 WO 2018003748A1 JP 2017023420 W JP2017023420 W JP 2017023420W WO 2018003748 A1 WO2018003748 A1 WO 2018003748A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil
oil tank
tank
refrigerant
Prior art date
Application number
PCT/JP2017/023420
Other languages
French (fr)
Japanese (ja)
Inventor
直也 三吉
上田 憲治
長谷川 泰士
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to US16/081,612 priority Critical patent/US20190078811A1/en
Priority to CN201780016599.XA priority patent/CN108779946B/en
Publication of WO2018003748A1 publication Critical patent/WO2018003748A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21155Temperatures of a compressor or the drive means therefor of the oil

Definitions

  • the present invention relates to a refrigerator.
  • the turbo compressor installed in the turbo refrigerator is composed of a compression mechanism, a speed increasing mechanism, and the like.
  • the lubricating oil system includes an oil tank and an oil pump, and the lubricating oil stored in the oil tank is supplied to the bearings and gears of the turbo compressor by the oil pump.
  • the lubricating oil supplied to the bearings and gears is returned to the oil tank and repeatedly circulates through the lubricating oil system.
  • the refrigerant system and the lubricating oil system are not completely independent, the refrigerant is dissolved in the lubricating oil. Since the viscosity of the lubricating oil decreases when the refrigerant dissolves, the inside of the oil tank is maintained at a low pressure in order to reduce the amount of refrigerant dissolved in the oil tank. Therefore, for example, a pressure equalizing pipe that communicates with a low-pressure portion (for example, an evaporator or a compressor suction port) of the refrigerant system is connected to the oil tank.
  • a low-pressure portion for example, an evaporator or a compressor suction port
  • Patent Document 1 since the pressure in the oil tank is reduced when the turbo chiller is started, and the refrigerant dissolved in the lubricating oil is gasified and formed, the refrigerant passing through the turbo compressor is started at the start.
  • Patent Document 2 discloses a technique for equalizing the oil tank internal pressure and the economizer internal pressure by connecting the other end of the pressure equalizing pipe whose one end is connected to the oil tank to an economizer instead of an evaporator. ing.
  • the internal pressure decreases at the start-up or transition of the turbo refrigerator where the pressure of the refrigerant system decreases.
  • the time of transition is when changing the operating state, for example, when lowering the output of the turbo chiller.
  • the oil level rises compared to the normal time when the forming phenomenon does not occur.
  • the amount of lubricating oil that can be supplied to bearings, gears, and the like in the lubricating oil system decreases.
  • a low-pressure refrigerant for example, R1233zd
  • a high-pressure refrigerant for example, R134a
  • the gas volume generated in the forming phenomenon is large. Therefore, in the low-pressure refrigerant, the difference from the normal time is further increased with respect to the increase in the oil level and the decrease in the amount of oil supply.
  • the pressure equalizing pipe connected to the oil tank is connected to the upper part of the oil tank.
  • the formed lubricating oil flows into the pressure equalizing pipe, and the lubricating oil is connected to the destination of the pressure equalizing pipe.
  • the oil pump on the bottom of the oil tank while increasing the depth of the oil tank so that the oil pump does not suck the refrigerant gas at the time of forming, the position of the oil surface and the oil pump at the time of forming is changed. They are also being released.
  • This invention is made
  • the refrigerator of the present invention employs the following means. That is, the refrigerator according to the present invention includes an electric compressor having a compression mechanism driven by a motor, a condenser, an evaporator, a refrigeration cycle in which refrigerant circulates, an oil tank in which lubricating oil is stored, A heater installed in the oil tank for heating the lubricating oil; and connected to the oil tank for supplying the lubricating oil from the oil tank to a housing for housing the motor; An oil circulation pipe for returning the lubricating oil to the tank, and one end connected to the oil tank separately from the oil circulation pipe, the other end is installed in the pressure equalization pipe connected to the refrigeration cycle, and the pressure equalization pipe, A buffer tank for receiving the refrigerant and the lubricating oil flowing out from the oil tank and storing the lubricating oil.
  • an electric compressor having a compression mechanism driven by a motor, a condenser, an evaporator, a refrigeration cycle in which refrigerant circulates, an oil tank in
  • the motor that drives the compression mechanism is housed in the housing, and the lubricating oil is supplied from the oil tank to the housing, so that the lubricating oil lubricates the bearings that support the rotating shaft of the motor.
  • the lubricating oil lubricates the bearings that support the rotating shaft of the motor.
  • one end of the pressure equalizing pipe is connected to the oil tank, and the other end of the pressure equalizing pipe is connected to the refrigeration cycle, so that the pressure at the connection portion with the refrigeration cycle is substantially equal to the pressure in the oil tank.
  • the part to which the pressure equalizing pipe is connected in the refrigeration cycle is a part where the pressure is low in the refrigeration cycle such as an evaporator and a compressor suction port.
  • the refrigerant and lubricating oil that have flowed out of the oil tank are supplied to the buffer tank via the pressure equalizing pipe, and are temporarily stored in the buffer tank.
  • the lubricating oil is stored in the buffer tank and does not flow to the refrigeration cycle, but only the refrigerant goes to the refrigeration cycle.
  • one end is connected to the buffer tank, and the other end is connected to the oil tank separately from the pressure equalizing pipe, and a return pipe for returning the lubricating oil stored in the buffer tank to the oil tank is further provided. You may prepare.
  • one end of the return pipe is connected to the buffer tank, and the other end of the return pipe is connected to the oil tank, so that the lubricating oil stored in the buffer tank is returned to the oil tank.
  • the lubricating oil that has flowed out of the oil tank and accumulated in the buffer tank is returned to the oil tank without flowing into the refrigerant cycle.
  • the position where the return pipe is connected to the oil tank may be close to the position where the oil circulation pipe is connected in the oil tank.
  • the lubricating oil returned from the buffer tank is returned to the vicinity of the position where the oil circulation pipe is connected in the oil tank, the lubricating oil returned from the buffer tank is formed in the oil tank 23. Even if it occurs, it is mixed with lubricating oil that is not affected by forming.
  • the oil tank may be divided by a partition plate into a separation region where the lubricating oil returned from the housing flows and a discharge region where the lubricating oil is supplied to the housing.
  • the lubricating oil in which the refrigerant is dissolved is supplied to the separation region, and the lubricating oil in which the refrigerant is dissolved in the separation region is separated into the lubricating oil and the refrigerant. Then, the separated lubricating oil is supplied from the separation region to the discharge region and is supplied into the housing. Since the separation region and the discharge region are partitioned by a partition plate, the lubricating oil flowing into the oil tank is efficiently separated in the separation region by utilizing the difference between the lubricating oil and the refrigerant and the closed space. . Further, even if the forming phenomenon occurs in the separation region, it is possible to prevent the foamed lubricating oil from flowing into the discharge region.
  • a flow forming plate for directing the flow of the lubricating oil stored in the oil tank from the upper part to the lower part or from the lower part to the upper part may be installed in the separation region.
  • the partition plate may be installed separately from the bottom surface of the oil tank.
  • the lubricating oil in which the refrigerant has melted flows downstream without staying at the bottom in the divided region.
  • turbo refrigerator 1 concerning one embodiment of the present invention is explained with reference to drawings.
  • the turbo refrigerator 1 includes a turbo compressor 2 that compresses the refrigerant, a condenser 3 that cools and condenses the refrigerant, and further cools and supercools the refrigerant condensed in the condenser 3.
  • a sub-cooler 4 that gives the refrigerant, a first pressure-reducing valve 5 that depressurizes the high-pressure refrigerant to an intermediate pressure, an intermediate cooler 6 that gives supercooling to the refrigerant, a second pressure-reducing valve 7 that depressurizes the refrigerant to low pressure, and a low-pressure refrigerant
  • An evaporator 8 for evaporating is provided.
  • the turbo compressor 2, the condenser 3, the subcooler 4, the first pressure reducing valve 5, the intermediate cooler 6, the second pressure reducing valve 7 and the evaporator 8 constitute a refrigeration cycle, and the refrigerant is the turbo compressor 2, the condenser. 3, the subcooler 4, the first pressure reducing valve 5, the intermediate cooler 6, the second pressure reducing valve 7, and the evaporator 8 are circulated in this order. Further, the refrigerant is supplied from the intercooler 6 to the turbo compressor 2 by bypass without passing through the evaporator 8.
  • the turbo compressor 2 includes a housing 30 configured by integrally connecting a motor housing 31, a speed increaser housing 32, and a compressor housing 33.
  • the motor housing 31 incorporates a motor 9 that is driven at a variable speed by an inverter device.
  • One end 10 a of the motor shaft 10 of the motor 9 protrudes from the motor housing 31 to the speed increaser housing 32.
  • the motor 9 includes a stator 20 and a rotor 21.
  • a rotor 21 is fixed to the motor shaft 10, and the rotor 21 rotates inside the stator 20.
  • the motor shaft 10 is supported by the rolling bearing 14 on the speed increaser housing 32 side.
  • the rolling bearing 14 is composed of, for example, a plurality of angular ball bearings.
  • the rolling bearing 14 is installed in the motor housing 31 via a bearing box (not shown).
  • the compressor housing 33 accommodates a compression mechanism 15 having a first stage compression stage and a second stage compression stage.
  • the refrigerant sucked into the first stage compression stage from the outside and compressed by the first stage compression stage is sent to the second stage compression stage. Then, the refrigerant sucked into the second stage compression stage and compressed by the second stage compression stage is discharged to the outside.
  • a rotary shaft 11 is rotatably installed in the compressor housing 33.
  • a first stage impeller 12 for the first stage compression stage and a second stage compression stage are disposed on one end 11a side of the rotary shaft 11.
  • the second stage impeller 13 is provided.
  • the rotating shaft 11 is supported by the rolling bearing 14 on the speed increaser housing 32 side.
  • the rolling bearing 14 is composed of, for example, a plurality of angular ball bearings.
  • the rolling bearing 14 is installed in the compressor housing 33 via a bearing box (not shown).
  • a small-diameter gear 17 is provided on the other end 11b side of the rotary shaft 11 supported by the rolling bearing 14.
  • the gear 17 is meshed with a large-diameter gear 18 provided at one end 10 a of the motor shaft 10, and a speed increasing mechanism 19 is configured by these gears 17 and 18.
  • the speed increasing mechanism 19 is accommodated in the speed increasing device housing 32.
  • Lubricating oil is supplied to the rolling bearing 14 and the gears 17 and 18 for each component.
  • the lubricating oil system includes a lubricating oil supply line 22 and a lubricating oil discharge line 25.
  • the lubricating oil supply line 22 is a pipe connecting the oil tank 23 and the turbo compressor 2.
  • the lubricating oil is supplied from the oil tank 23 to the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2 by an oil pump 36 provided in the lubricating oil supply line 22.
  • the lubricating oil that has passed through the motor 9 and the speed increasing mechanism 19 is returned to the oil tank 23 via the lubricating oil discharge line 25.
  • An oil cooler 24 is installed in the lubricating oil supply line 22 and the lubricating oil discharge line 25 according to the present embodiment.
  • a lubricating oil inlet connected to the lubricating oil supply line 22 is formed, and the lubricating oil is supplied from the lubricating oil supply line 22 to the turbo compressor 2.
  • the turbo compressor 2 is supplied with the refrigerant extracted from the condenser 3 constituting the refrigeration cycle.
  • a liquid refrigerant inlet connected to the refrigerant supply line 34 is formed in the motor housing 31 and the speed increaser housing 32, and the liquid refrigerant is supplied from the refrigerant supply line 34.
  • the lubricating oil that has passed through the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2 is discharged to the oil tank 23.
  • the motor housing 31 and the speed increaser housing 32 are formed with a lubricating oil outlet connected to the lubricating oil discharge line 25, and the motor housing 31 and the speed increaser housing 32 are connected to the oil tank 23 via the lubricating oil discharge line 25. Refrigerant and lubricating oil are discharged.
  • the lubricating oil discharged to the oil tank 23 has a refrigerant dissolved therein and diluted with the refrigerant.
  • the oil tank 23 is provided with a heater 27 (see FIG. 3) that evaporates the refrigerant in order to increase the concentration of the diluted lubricating oil. As the refrigerant evaporates, the lubricating oil returns to the state before dilution and can be repeatedly used as lubricating oil for lubricating the gears 17 and 18 and the rolling bearing 14.
  • the oil tank 23 is a container that can contain lubricating oil, and the lubricating oil is stored in a lower portion inside the oil tank 23.
  • the oil tank 23 can be roughly divided into a separation region 41 and a discharge region 42.
  • the oil tank 23 is formed with a lubricant / refrigerant inlet connected to the lubricant discharge line 25.
  • the heater 27 is installed, for example, below the separation region 41 of the oil tank 23, heats the refrigerant and lubricating oil in the oil tank 23, and evaporates the refrigerant.
  • the refrigerant gas generated by evaporation moves upward of the oil tank 23, and the lubricating oil having a reduced content of the refrigerant evaporated from the refrigerant flows downstream of the oil tank 23.
  • a lubricant outlet connected to the lubricant supply line 22 is formed below the oil tank 23.
  • an oil pump 36 is installed at the lubricating oil outlet. Lubricating oil is supplied from the oil tank 23 to the turbo compressor 2 via the lubricating oil supply line 22.
  • a refrigerant gas outlet connected to the pressure equalizing pipe 29 is formed above the oil tank 23, and the refrigerant gas is supplied from the oil tank 23 to the evaporator 8 through the pressure equalizing pipe 29.
  • coolant supplied to the turbo compressor 2 from the condenser 3 or the subcooler 4 is returned to a refrigerating cycle.
  • one end of a pressure equalizing pipe 29 is connected to the oil tank 23, and the other end of the pressure equalizing pipe 29 is connected to the evaporator 8 of the refrigeration cycle.
  • the pressure and the pressure in the oil tank 23 are almost equal.
  • the connection destination of the pressure equalizing pipe 29 is not limited to the evaporator 8 and may be, for example, the suction port of the turbo compressor 2.
  • the lubricating oil stored in the oil tank 23 is preferably adjusted so as to be maintained within a predetermined temperature range.
  • the temperature of the lubricating oil is determined based on, for example, the temperature at which appropriate lubrication is exerted in the gears 17 and 18 of the turbo compressor 2 and the rolling bearing 14 that are lubricated by the lubricating oil.
  • the temperature of the lubricating oil stored in the oil tank 23 is adjusted by heating with the heater 27, for example. Heating by the heater 27 is controlled based on the temperature detected by the temperature detection unit 35 installed in the lower part of the oil tank 23.
  • the heater 27 may be controlled to be turned on / off based on the detected temperature to adjust the heating to the refrigerant or the lubricating oil, or the set temperature of the heater 27 may be adjusted based on the detected temperature. Good.
  • the oil tank 23 is partitioned by a partition plate 43 and divided into a separation region 41 and a discharge region 42.
  • the partition plate 43 is a plate-like member, and the side end portion contacts the inner side surface of the oil tank 23. As a result, the oil tank 23 is divided into two regions with the partition plate 43 as a boundary.
  • On the lubricating oil discharge line 25 side of the partition plate 43 is a separation region 41 into which the lubricating oil returned from the housing 30 flows. Further, the lubricating oil supply line 22 side of the partition plate 43 is a discharge region 42 where the lubricating oil is supplied to the housing 30.
  • the separation region 41 is supplied with the lubricating oil in which the refrigerant is dissolved from the lubricating oil discharge line 25.
  • the lubricating oil in which the refrigerant has dissolved has a higher specific gravity than the refrigerant alone or the lubricating oil alone, and has a high concentration at the bottom surface of the separation region 41.
  • coolant is heated and gasified by the heater 27 arrange
  • the space in which the lubricating oil is stored is limited by the partition plate 43, so that the lubricating oil can be efficiently heated by the heater 27.
  • a plurality of flow forming plates 44 other than the partition plate 43 described above may be provided.
  • the flow forming plate 44 By installing the flow forming plate 44 in the separation region 41, the flow of the lubricating oil from the upper part to the lower part or the flow from the lower part to the upper part can be formed in the stored lubricating oil. Thereby, the lubricating oil can be efficiently brought into contact with the heater 27, or the separated and gasified refrigerant can be raised upward.
  • the heated and gasified refrigerant rises above the lubricating oil stored in the oil tank 23. Even when the forming phenomenon occurs, the foamed lubricating oil rises along the partition plate 43 and the flow forming plate 44, and then the foam floats on the liquid lubricating oil. Therefore, in the present embodiment, unlike the case where there is no partition plate 43 or flow forming plate 44, bubbles due to the refrigerant gas hardly flow to the downstream side inside the liquid lubricating oil. As a result, it is possible to prevent bubbles from being sucked into the oil tank 23.
  • the lubricating oil stored in the oil tank 23 is caused to flow in one direction by the oil pump 36, that is, from the lubricating oil / refrigerant inlet side to the lubricating oil outlet side.
  • the oil pump 36 that is, from the lubricating oil / refrigerant inlet side to the lubricating oil outlet side.
  • the lubricating oil whose refrigerant concentration is reduced due to the separation of the refrigerant flows toward the lubricating oil outlet side.
  • bubbles floating on the lubricating oil also flow toward the downstream side along the flow of the lubricating oil.
  • the lower end part of the partition plate 43 or the flow forming plate 44 may be in contact with the bottom surface of the oil tank 23 or may be separated from the bottom surface.
  • a flow from the lower part to the upper part is formed in the lubricating oil.
  • the lubricating oil in which the refrigerant has melted flows downstream without staying at the bottom in the separation region 41. At this time, the lubricating oil in which the refrigerant is dissolved flows along the heater 27, whereby the refrigerant can be efficiently gasified.
  • one partition plate 43 and two flow forming plates 44 are installed is illustrated, but the present invention is not limited to this example.
  • one partition plate 43 and one flow forming plate 44 may be installed.
  • an oil pump 36 is installed in the discharge area 42.
  • the oil pump 36 is an immersion pump, for example, and is installed on the bottom surface of the oil tank 23.
  • the oil pump 36 sucks the lubricating oil at the bottom of the oil tank 23 and supplies the lubricating oil to the outside, that is, the housing 30.
  • the bubbles rise in the separation region 41, so that the oil pump 36 installed in the discharge region 42 is difficult to suck the refrigerant gas.
  • the heater 27 may be installed only in the upstream separation region 41, or may be installed in the downstream discharge region 42 as shown in FIG. In addition, by installing the heater 27 in the discharge region 42, the amount of refrigerant separated from the lubricating oil can be increased. However, if there is a possibility that a forming phenomenon may occur due to heating by the heater 27 in the discharge area 42, it is better not to install the heater 27 in the discharge area 42.
  • the buffer tank 28 is installed in the pressure equalizing pipe 29.
  • the buffer tank 28 can store foamy lubricating oil flowing out from the oil tank 23 and has a capacity that prevents the lubricating oil from flowing out to the pressure equalizing pipe 29 on the downstream side.
  • An inlet portion connected to a pressure equalizing pipe 29 connected to the oil tank 23 is formed in the upper portion of the buffer tank 28. Further, an outlet portion is formed at a portion different from the inlet portion at the upper portion of the buffer tank 28, and the outlet portion is connected to a pressure equalizing pipe 29 connected to the evaporator 8.
  • the refrigerant and lubricating oil that have flowed out of the oil tank 23 are supplied to the buffer tank 28 via the pressure equalizing pipe 29. Then, the lubricating oil flowing out from the oil tank 23 is temporarily stored in the buffer tank 28. In addition, the gasified refrigerant dissolved in the lubricating oil flows from the buffer tank 28 to the evaporator 8.
  • the lubricating oil is stored in the buffer tank 28 and does not flow to the refrigeration cycle, but only the refrigerant. Heads for the refrigeration cycle.
  • a return pipe 26 is connected below the oil tank 23.
  • One end of the return pipe 26 is connected to the bottom surface of the buffer tank 28, for example, and the other end is connected to the oil tank 23.
  • the return pipe 26 is provided separately from the pressure equalizing pipe 29 and returns the lubricating oil stored in the buffer tank 28 to the oil tank 23. As a result, the lubricating oil that has flowed out of the oil tank 23 and accumulated in the buffer tank 28 is returned to the oil tank 23 without flowing into the refrigerant cycle.
  • the position where the return pipe 26 is connected to the oil tank 23 is the side close to the position where the lubricating oil supply line 22 is connected in the oil tank 23. Thereby, the lubricating oil returned from the buffer tank 28 is returned to the vicinity of the position where the lubricating oil supply line 22 is connected in the oil tank 23, for example, to the discharge region 42. Even when forming occurs in the oil tank 23, it is mixed with lubricating oil not affected by the forming.
  • Lubricating oil is stored in the oil tank 23 and is supplied from the oil tank 23 to the turbo compressor 2 by the oil pump 36.
  • the lubricating oil supplied to the turbo compressor 2 is supplied to the gears 17 and 18 and the rolling bearing 14 inside the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2.
  • Lubricating oil supplied to the gears 17 and 18 and the rolling bearing 14 rises in temperature due to friction loss while lubricating the gears 17 and 18 and the rolling bearing 14.
  • the lubricating oil that has passed through the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2 passes through the oil cooler 24 and is cooled.
  • the lubricating oil that has passed through the gears 17 and 18 and the rolling bearing 14 in the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2 is cooled by the oil cooler 24.
  • the lubricating oil and refrigerant discharged to the oil tank 23 flow downward in the separation region 41 and are heated by the heater 27 installed in the lower part of the oil tank 23, and the refrigerant evaporates. As a result, the kinematic viscosity of the lubricating oil diluted with the refrigerant is restored.
  • Lubricating oil in which the refrigerant has evaporated and the refrigerant content has decreased flows to the downstream side of the oil tank 23. Further, the refrigerant gas evaporated by the heater 27 is directed upward of the oil tank 23, and is supplied from the oil tank 23 through the pressure equalizing pipe 29 to the evaporator 8 through the pressure equalizing pipe 29 and the buffer tank 28.
  • the refrigerant and the lubricating oil flowing out from the oil tank 23 are supplied to the buffer tank 28 via the pressure equalizing pipe 29, and the lubricating oil is temporarily stored in the buffer tank 28.
  • the lubricating oil is stored in the buffer tank 28 and does not flow to the refrigeration cycle, but only the refrigerant enters the refrigeration cycle. Head.
  • the lubricating oil in which the refrigerant is dissolved is supplied to the separation region 41 of the oil tank 23, and the lubricating oil in which the refrigerant is dissolved in the separation region 41 is separated into the lubricating oil and the refrigerant.
  • the separated lubricating oil is supplied from the separation region 41 to the discharge region 42 and supplied into the housing 30. Since the separation region 41 and the discharge region 42 are partitioned by the partition plate 43, the lubricating oil that has flowed into the oil tank 23 in the separation region 41 is different in the specific gravity of the lubricating oil and the refrigerant and the lubricating oil in a narrow space. It is efficiently separated by utilizing the temperature rise of Further, by installing the partition plate 43, it is possible to prevent the foamed lubricating oil from flowing toward the discharge region 42 even if the forming phenomenon occurs in the separation region 41.
  • the amount of lubricating oil flowing out to the refrigeration cycle such as the evaporator 8 can be reduced. Further, the amount of refrigerant sucked by the oil pump 36 can be reduced, and the amount of lubricating oil circulating in the lubricating oil system can be prevented from being reduced.

Abstract

The purpose of the present invention is to provide a refrigerator in which the capacity of an oil tank can be made smaller than in the prior art while a foaming phenomenon is addressed. The refrigerator is provided with: a refrigeration cycle which includes a condenser, an evaporator, and an electric compressor having a compression mechanism to be driven by a motor and in which a refrigerant circulates; an oil tank (23) in which a lubricating oil is stored; a heater (27) which is set in the oil tank (23) and which heats the lubricating oil; a lubricating oil supply line (22) which is connected to the oil tank (23) and which supplies the lubricating oil from the oil tank (23) into a housing having the motor housed therein; a lubricating oil discharge line (25) which returns the lubricating oil from the housing back to the oil tank (23); a pressure equalizing pipe (29) which has one end connected to the oil tank (23) and the other end connected to the refrigeration cycle; and a buffer tank (28) which is set to the pressure equalizing pipe (29), which receives the refrigerant and the lubricating oil flowing out from the oil tank (23), and in which the lubricating oil is stored.

Description

冷凍機refrigerator
 本発明は、冷凍機に関するものである。 The present invention relates to a refrigerator.
 ターボ冷凍機に設置されるターボ圧縮機は、圧縮機構、増速機構などから構成される。ターボ圧縮機が安定して運転するためには、圧縮機構の羽根車を支持する軸受や、増速機構の歯車などに対して潤滑油が適切に供給され続ける必要がある。潤滑油系統は、油タンク、油ポンプを備え、油タンクに貯蔵された潤滑油が、油ポンプによってターボ圧縮機の軸受や歯車などへ供給される。軸受や歯車へ供給された潤滑油は、油タンクへ戻され、潤滑油系統を繰り返し循環する。 The turbo compressor installed in the turbo refrigerator is composed of a compression mechanism, a speed increasing mechanism, and the like. In order for the turbo compressor to operate stably, it is necessary to continue to properly supply the lubricating oil to the bearings that support the impeller of the compression mechanism, the gears of the speed increasing mechanism, and the like. The lubricating oil system includes an oil tank and an oil pump, and the lubricating oil stored in the oil tank is supplied to the bearings and gears of the turbo compressor by the oil pump. The lubricating oil supplied to the bearings and gears is returned to the oil tank and repeatedly circulates through the lubricating oil system.
 圧縮機構において、冷媒系統と潤滑油系統は完全に独立していないため、潤滑油の中に冷媒が溶け込んでいる。潤滑油は、冷媒が溶け込むと、粘度が低下することから、油タンクでの冷媒の溶け込み量を少なくするため、油タンク内は低圧で維持される。そのため、油タンクには、例えば冷媒系統の低圧部分(例えば蒸発器や圧縮機吸込み口)と連通する均圧管が接続される。 In the compression mechanism, since the refrigerant system and the lubricating oil system are not completely independent, the refrigerant is dissolved in the lubricating oil. Since the viscosity of the lubricating oil decreases when the refrigerant dissolves, the inside of the oil tank is maintained at a low pressure in order to reduce the amount of refrigerant dissolved in the oil tank. Therefore, for example, a pressure equalizing pipe that communicates with a low-pressure portion (for example, an evaporator or a compressor suction port) of the refrigerant system is connected to the oil tank.
 下記の特許文献1では、ターボ冷凍機の起動時に、油タンク内の圧力が低下して、潤滑油に溶け込んだ冷媒がガス化してフォーミングすることから、起動時に、ターボ圧縮機を通過する冷媒の容量を制御する吸入容量制御部を目標開度にする技術が開示されている。また、下記の特許文献2では、一端が油タンクに接続される均圧管の他端を、蒸発器ではなく、エコノマイザに接続して、油タンク内圧とエコノマイザ内圧を均圧にする技術が開示されている。 In the following Patent Document 1, since the pressure in the oil tank is reduced when the turbo chiller is started, and the refrigerant dissolved in the lubricating oil is gasified and formed, the refrigerant passing through the turbo compressor is started at the start. A technique for setting a suction volume control unit for controlling a volume to a target opening degree is disclosed. Patent Document 2 below discloses a technique for equalizing the oil tank internal pressure and the economizer internal pressure by connecting the other end of the pressure equalizing pipe whose one end is connected to the oil tank to an economizer instead of an evaporator. ing.
特開2009-186030号公報JP 2009-186030 A 特開2009-293901号公報JP 2009-293901 A
 冷媒系統と連通している油タンクは、冷媒系統の圧力が下がるターボ冷凍機の起動時や過渡時において、内部の圧力が低下する。ここで、過渡時とは、例えば、ターボ冷凍機の出力を下げる場合など運転状態を変更するときである。油タンク内部の圧力が低下するなど、潤滑油系統内の圧力が低下すると、潤滑油に溶け込んでいた冷媒が飽和状態を超えて溶けきれなくなり、冷媒ガスが発生して潤滑油が泡立つフォーミング現象が起きる。 In the oil tank communicating with the refrigerant system, the internal pressure decreases at the start-up or transition of the turbo refrigerator where the pressure of the refrigerant system decreases. Here, the time of transition is when changing the operating state, for example, when lowering the output of the turbo chiller. When the pressure in the lubricating oil system decreases, such as when the pressure inside the oil tank decreases, the refrigerant that has melted into the lubricating oil cannot be melted beyond the saturation state, and a refrigerant gas is generated and the lubricating oil foams. Get up.
 フォーミング現象が生じた油タンク内では、フォーミング現象が発生していない通常時に比べて、油面が上昇する。また、フォーミング現象が生じると、潤滑油系統において軸受や歯車などに対して供給可能な潤滑油の給油量が減少する。低圧冷媒(例えばR1233zdなど)の場合、高圧冷媒(例えばR134aなど)と比べて、冷媒ガス比容積が大きいため、フォーミング現象において発生するガス体積量も多い。そのため、低圧冷媒では、油面の上昇や給油量の減少について、通常時との差が一層大きくなる。 In the oil tank where the forming phenomenon has occurred, the oil level rises compared to the normal time when the forming phenomenon does not occur. In addition, when the forming phenomenon occurs, the amount of lubricating oil that can be supplied to bearings, gears, and the like in the lubricating oil system decreases. In the case of a low-pressure refrigerant (for example, R1233zd), since the specific volume of the refrigerant gas is larger than that of a high-pressure refrigerant (for example, R134a), the gas volume generated in the forming phenomenon is large. Therefore, in the low-pressure refrigerant, the difference from the normal time is further increased with respect to the increase in the oil level and the decrease in the amount of oil supply.
 油タンクに接続される均圧管は、油タンクの上部に接続されるが、フォーミング時の油面上昇によって、均圧管内にフォーミングした潤滑油が流入し、潤滑油が、均圧管の接続先の蒸発器等へ流れてしまうおそれがある。そこで、従来、フォーミング時の油面上昇に対応するため、油タンクの高さを高くすることが行われている。 The pressure equalizing pipe connected to the oil tank is connected to the upper part of the oil tank. However, when the oil level rises during forming, the formed lubricating oil flows into the pressure equalizing pipe, and the lubricating oil is connected to the destination of the pressure equalizing pipe. There is a risk of flowing to an evaporator or the like. Therefore, conventionally, in order to cope with the oil level rise during forming, the height of the oil tank has been increased.
 また、フォーミング時に油ポンプが冷媒ガスを吸い込まないように、油タンクの深さを深くしつつ、油ポンプを油タンクの底面に配置することによって、フォーミング発生時の油面と油ポンプの位置を離すことも行われている。 In addition, by arranging the oil pump on the bottom of the oil tank while increasing the depth of the oil tank so that the oil pump does not suck the refrigerant gas at the time of forming, the position of the oil surface and the oil pump at the time of forming is changed. They are also being released.
 いずれの場合も、油タンクの高さ方向のサイズを大きくする必要があり、フォーミング現象に対応するために油タンクの容量を大きく設定しておかなければならない。 In either case, it is necessary to increase the size of the oil tank in the height direction, and the capacity of the oil tank must be set large in order to cope with the forming phenomenon.
 本発明は、このような事情に鑑みてなされたものであって、フォーミング現象に対応しつつ、従来に比べて油タンクの容量を小さくすることが可能な冷凍機を提供することを目的とする。 This invention is made | formed in view of such a situation, Comprising: It aims at providing the refrigerator which can make the capacity | capacitance of an oil tank small compared with the past, corresponding to a forming phenomenon. .
 上記課題を解決するために、本発明の冷凍機は以下の手段を採用する。
 すなわち、本発明に係る冷凍機は、モータによって駆動する圧縮機構を有する電動圧縮機と、凝縮器と、蒸発器を備え、冷媒が循環する冷凍サイクルと、潤滑油が貯留された油タンクと、前記油タンクの内部に設置され、前記潤滑油を加熱するヒータと、前記油タンクに接続されて、前記油タンクから前記モータを収容するハウジング内部へ前記潤滑油を供給し、前記ハウジングから前記油タンクへ前記潤滑油を戻す油循環管と、前記油循環管とは別に一端が前記油タンクに接続されて、他端が前記冷凍サイクルと接続される均圧管と、前記均圧管に設置され、前記油タンクから流出する前記冷媒及び前記潤滑油を受け入れ、前記潤滑油を貯留するバッファタンクとを備える。
In order to solve the above problems, the refrigerator of the present invention employs the following means.
That is, the refrigerator according to the present invention includes an electric compressor having a compression mechanism driven by a motor, a condenser, an evaporator, a refrigeration cycle in which refrigerant circulates, an oil tank in which lubricating oil is stored, A heater installed in the oil tank for heating the lubricating oil; and connected to the oil tank for supplying the lubricating oil from the oil tank to a housing for housing the motor; An oil circulation pipe for returning the lubricating oil to the tank, and one end connected to the oil tank separately from the oil circulation pipe, the other end is installed in the pressure equalization pipe connected to the refrigeration cycle, and the pressure equalization pipe, A buffer tank for receiving the refrigerant and the lubricating oil flowing out from the oil tank and storing the lubricating oil.
 この構成によれば、圧縮機構を駆動するモータがハウジングに収容されており、潤滑油が、油タンクからハウジングへ供給されることによって、潤滑油は、モータの回転軸を支持する軸受等を潤滑させることができる。また、油タンクには、均圧管の一端が接続され、均圧管の他端は、冷凍サイクルと接続されることから、冷凍サイクルとの接続部分の圧力と油タンク内の圧力がほぼ等しくなる。冷凍サイクルにおいて均圧管が接続される部分は、例えば蒸発器や圧縮機吸込口など冷凍サイクルにおいて圧力が低い部分である。
 さらに、油タンクから流出した冷媒及び潤滑油は、均圧管を介して、バッファタンクへ供給され、バッファタンクに一時的に貯留される。これにより、油タンク内部でフォーミングが発生し、冷媒及び潤滑油が油タンクから流出したとしても、潤滑油がバッファタンクに貯留され、冷凍サイクルへは流れず、冷媒のみが冷凍サイクルへ向かう。
According to this configuration, the motor that drives the compression mechanism is housed in the housing, and the lubricating oil is supplied from the oil tank to the housing, so that the lubricating oil lubricates the bearings that support the rotating shaft of the motor. Can be made. In addition, one end of the pressure equalizing pipe is connected to the oil tank, and the other end of the pressure equalizing pipe is connected to the refrigeration cycle, so that the pressure at the connection portion with the refrigeration cycle is substantially equal to the pressure in the oil tank. The part to which the pressure equalizing pipe is connected in the refrigeration cycle is a part where the pressure is low in the refrigeration cycle such as an evaporator and a compressor suction port.
Furthermore, the refrigerant and lubricating oil that have flowed out of the oil tank are supplied to the buffer tank via the pressure equalizing pipe, and are temporarily stored in the buffer tank. Thereby, even if forming occurs inside the oil tank and the refrigerant and the lubricating oil flow out of the oil tank, the lubricating oil is stored in the buffer tank and does not flow to the refrigeration cycle, but only the refrigerant goes to the refrigeration cycle.
 上記発明において、一端が前記バッファタンクに接続され、前記均圧管とは別に他端が前記油タンクに接続されて、前記バッファタンクに貯留された前記潤滑油を前記油タンクへ戻す戻し管を更に備えてもよい。 In the above invention, one end is connected to the buffer tank, and the other end is connected to the oil tank separately from the pressure equalizing pipe, and a return pipe for returning the lubricating oil stored in the buffer tank to the oil tank is further provided. You may prepare.
 この構成によれば、バッファタンクには、戻し管の一端が接続され、戻し管の他端は、油タンクと接続されて、バッファタンクに貯留された潤滑油が、油タンクへ戻される。これにより、油タンクから流出してバッファタンクに溜まった潤滑油は、冷媒サイクルへ流れずに、油タンクへ戻される。 According to this configuration, one end of the return pipe is connected to the buffer tank, and the other end of the return pipe is connected to the oil tank, so that the lubricating oil stored in the buffer tank is returned to the oil tank. Thus, the lubricating oil that has flowed out of the oil tank and accumulated in the buffer tank is returned to the oil tank without flowing into the refrigerant cycle.
 上記発明において、前記戻し管が前記油タンクと接続される位置は、前記油タンクにおいて前記油循環管が接続される位置に近い側でもよい。 In the above invention, the position where the return pipe is connected to the oil tank may be close to the position where the oil circulation pipe is connected in the oil tank.
 この構成によれば、バッファタンクから戻される潤滑油は、油タンクにおいて、油循環管が接続される位置の近傍に戻されるため、バッファタンクから戻される潤滑油は、油タンク23内でフォーミングが発生した場合でも、フォーミングの影響を受けていない潤滑油と混合される。 According to this configuration, since the lubricating oil returned from the buffer tank is returned to the vicinity of the position where the oil circulation pipe is connected in the oil tank, the lubricating oil returned from the buffer tank is formed in the oil tank 23. Even if it occurs, it is mixed with lubricating oil that is not affected by forming.
 上記発明において、前記油タンクは、仕切板によって仕切られて、前記ハウジングから戻される前記潤滑油が流入する分離領域と、前記ハウジングへ前記潤滑油が供給される排出領域に分けられてもよい。 In the above invention, the oil tank may be divided by a partition plate into a separation region where the lubricating oil returned from the housing flows and a discharge region where the lubricating oil is supplied to the housing.
 この構成によれば、分離領域に冷媒が溶け込んだ潤滑油が供給され、分離領域において冷媒が溶け込んだ潤滑油が、潤滑油と冷媒とに分離される。そして、分離された潤滑油は、分離領域から排出領域へ供給されて、ハウジング内部へ供給される。分離領域と排出領域は、仕切板で仕切られていることから、分離領域において、油タンクへ流入した潤滑油が、潤滑油と冷媒の違いや閉鎖空間を利用して、効率的に分離される。また、分離領域でフォーミング現象が発生したとしても、排出領域へ泡立った潤滑油が流入することを防止できる。 According to this configuration, the lubricating oil in which the refrigerant is dissolved is supplied to the separation region, and the lubricating oil in which the refrigerant is dissolved in the separation region is separated into the lubricating oil and the refrigerant. Then, the separated lubricating oil is supplied from the separation region to the discharge region and is supplied into the housing. Since the separation region and the discharge region are partitioned by a partition plate, the lubricating oil flowing into the oil tank is efficiently separated in the separation region by utilizing the difference between the lubricating oil and the refrigerant and the closed space. . Further, even if the forming phenomenon occurs in the separation region, it is possible to prevent the foamed lubricating oil from flowing into the discharge region.
 上記発明において、分離領域には、前記油タンクに貯留された前記潤滑油の流れを上部から下部、又は、下部から上部に向ける流れ形成板が設置されてもよい。 In the above invention, a flow forming plate for directing the flow of the lubricating oil stored in the oil tank from the upper part to the lower part or from the lower part to the upper part may be installed in the separation region.
 この構成によれば、貯留された潤滑油内で上部から下部へ向かう流れや、反対に下部から上部へ向かう流れが形成される。 According to this configuration, a flow from the upper part to the lower part in the stored lubricating oil, or a flow from the lower part to the upper part is formed.
 上記発明において、前記仕切板は、前記油タンクの底面から離隔して設置されてもよい。 In the above invention, the partition plate may be installed separately from the bottom surface of the oil tank.
 この構成によれば、冷媒が溶け込んだ潤滑油が分割領域内の底部に滞留することなく、下流側へ流れていく。 According to this configuration, the lubricating oil in which the refrigerant has melted flows downstream without staying at the bottom in the divided region.
 本発明によれば、フォーミング現象に対応しつつ、従来に比べて油タンクの容量を小さくすることができる。 According to the present invention, it is possible to reduce the capacity of the oil tank as compared with the conventional one while accommodating the forming phenomenon.
本発明の一実施形態に係るターボ冷凍機を示す構成図である。It is a lineblock diagram showing a turbo refrigerator concerning one embodiment of the present invention. 本発明の一実施形態に係るターボ冷凍機のターボ圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the turbo compressor of the turbo refrigerator based on one Embodiment of this invention. 本発明の一実施形態に係るターボ冷凍機の油タンクを示す斜視図である。It is a perspective view which shows the oil tank of the turbo refrigerator which concerns on one Embodiment of this invention. 本発明の一実施形態に係るターボ冷凍機の油タンクの変形例を示す斜視図である。It is a perspective view which shows the modification of the oil tank of the turbo refrigerator based on one Embodiment of this invention.
 以下に、本発明の一実施形態に係るターボ冷凍機1について、図面を参照して説明する。
 ターボ冷凍機1は、図1に示すように、冷媒を圧縮するターボ圧縮機2と、冷媒を冷却して凝縮させる凝縮器3と、凝縮器3において凝縮された冷媒を更に冷却して過冷却を付与するサブクーラ4と、高圧冷媒を中間圧に減圧する第1減圧弁5と、冷媒に過冷却を与える中間冷却器6と、冷媒を低圧に減圧する第2減圧弁7と、低圧冷媒を蒸発させる蒸発器8などを備える。
Below, turbo refrigerator 1 concerning one embodiment of the present invention is explained with reference to drawings.
As shown in FIG. 1, the turbo refrigerator 1 includes a turbo compressor 2 that compresses the refrigerant, a condenser 3 that cools and condenses the refrigerant, and further cools and supercools the refrigerant condensed in the condenser 3. A sub-cooler 4 that gives the refrigerant, a first pressure-reducing valve 5 that depressurizes the high-pressure refrigerant to an intermediate pressure, an intermediate cooler 6 that gives supercooling to the refrigerant, a second pressure-reducing valve 7 that depressurizes the refrigerant to low pressure, and a low-pressure refrigerant An evaporator 8 for evaporating is provided.
 ターボ圧縮機2、凝縮器3、サブクーラ4、第1減圧弁5、中間冷却器6、第2減圧弁7及び蒸発器8は、冷凍サイクルを構成し、冷媒が、ターボ圧縮機2、凝縮器3、サブクーラ4、第1減圧弁5、中間冷却器6、第2減圧弁7及び蒸発器8の順に循環する。また、冷媒は、中間冷却器6からターボ圧縮機2へ、蒸発器8を通過せずにバイパスして供給される。 The turbo compressor 2, the condenser 3, the subcooler 4, the first pressure reducing valve 5, the intermediate cooler 6, the second pressure reducing valve 7 and the evaporator 8 constitute a refrigeration cycle, and the refrigerant is the turbo compressor 2, the condenser. 3, the subcooler 4, the first pressure reducing valve 5, the intermediate cooler 6, the second pressure reducing valve 7, and the evaporator 8 are circulated in this order. Further, the refrigerant is supplied from the intercooler 6 to the turbo compressor 2 by bypass without passing through the evaporator 8.
 ターボ圧縮機2は、モータハウジング31と、増速器ハウジング32と、圧縮機ハウジング33とを一体に結合して構成されるハウジング30を備えている。
 モータハウジング31には、図2に示すように、インバータ装置によって可変速駆動されるモータ9が組み込まれる。このモータ9のモータ軸10の一端10aは、モータハウジング31から増速器ハウジング32に突出されている。モータ9は、ステータ20と、ロータ21などを備える。モータ軸10には、ロータ21が固定され、ロータ21は、ステータ20の内部で回転する。モータ軸10は、増速器ハウジング32側で、転がり軸受14によって支持される。転がり軸受14は、例えば複数のアンギュラ玉軸受からなる。転がり軸受14は、軸受箱(図示せず。)を介してモータハウジング31に設置される。
The turbo compressor 2 includes a housing 30 configured by integrally connecting a motor housing 31, a speed increaser housing 32, and a compressor housing 33.
As shown in FIG. 2, the motor housing 31 incorporates a motor 9 that is driven at a variable speed by an inverter device. One end 10 a of the motor shaft 10 of the motor 9 protrudes from the motor housing 31 to the speed increaser housing 32. The motor 9 includes a stator 20 and a rotor 21. A rotor 21 is fixed to the motor shaft 10, and the rotor 21 rotates inside the stator 20. The motor shaft 10 is supported by the rolling bearing 14 on the speed increaser housing 32 side. The rolling bearing 14 is composed of, for example, a plurality of angular ball bearings. The rolling bearing 14 is installed in the motor housing 31 via a bearing box (not shown).
 圧縮機ハウジング33の内部には、第1段圧縮ステージと、第2段圧縮ステージを有する圧縮機構15が収容される。外部から第1段圧縮ステージに吸い込まれて、第1段圧縮ステージによって圧縮された冷媒は、第2段圧縮ステージに送られる。そして、第2段圧縮ステージに吸い込まれて、第2段圧縮ステージによって圧縮された冷媒は、外部へ吐出される。 The compressor housing 33 accommodates a compression mechanism 15 having a first stage compression stage and a second stage compression stage. The refrigerant sucked into the first stage compression stage from the outside and compressed by the first stage compression stage is sent to the second stage compression stage. Then, the refrigerant sucked into the second stage compression stage and compressed by the second stage compression stage is discharged to the outside.
 圧縮機ハウジング33内には、回転軸11が回転自在に設置され、この回転軸11の一端11a側には、第1段圧縮ステージ用の第1段羽根車12と、第2段圧縮ステージ用の第2段羽根車13とが設けられる。回転軸11は、増速器ハウジング32側で、転がり軸受14によって支持される。転がり軸受14は、例えば複数のアンギュラ玉軸受からなる。転がり軸受14は、軸受箱(図示せず。)を介して圧縮機ハウジング33に設置される。 A rotary shaft 11 is rotatably installed in the compressor housing 33. A first stage impeller 12 for the first stage compression stage and a second stage compression stage are disposed on one end 11a side of the rotary shaft 11. The second stage impeller 13 is provided. The rotating shaft 11 is supported by the rolling bearing 14 on the speed increaser housing 32 side. The rolling bearing 14 is composed of, for example, a plurality of angular ball bearings. The rolling bearing 14 is installed in the compressor housing 33 via a bearing box (not shown).
 転がり軸受14によって支持される回転軸11の他端11b側には、小径の歯車17が設けられる。この歯車17は、モータ軸10の一端10aに設けられる大径の歯車18と噛み合わされ、これらの歯車17,18によって、増速機構19が構成される。増速機構19は、増速器ハウジング32に収容される。 A small-diameter gear 17 is provided on the other end 11b side of the rotary shaft 11 supported by the rolling bearing 14. The gear 17 is meshed with a large-diameter gear 18 provided at one end 10 a of the motor shaft 10, and a speed increasing mechanism 19 is configured by these gears 17 and 18. The speed increasing mechanism 19 is accommodated in the speed increasing device housing 32.
 転がり軸受14や、歯車17,18には、それぞれの部品に対して潤滑油が供給される。 Lubricating oil is supplied to the rolling bearing 14 and the gears 17 and 18 for each component.
 潤滑油系統は、潤滑油供給ライン22と潤滑油排出ライン25によって構成される。
 潤滑油供給ライン22は、油タンク23及びターボ圧縮機2を結ぶ配管である。潤滑油は、潤滑油供給ライン22に設けられた油ポンプ36によって、油タンク23からターボ圧縮機2のモータハウジング31や増速器ハウジング32へ供給される。モータ9及び増速機構19を通過した潤滑油は、潤滑油排出ライン25を介して油タンク23へ戻される。本実施形態に係る潤滑油供給ライン22や潤滑油排出ライン25には、オイルクーラ24が設置される。
The lubricating oil system includes a lubricating oil supply line 22 and a lubricating oil discharge line 25.
The lubricating oil supply line 22 is a pipe connecting the oil tank 23 and the turbo compressor 2. The lubricating oil is supplied from the oil tank 23 to the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2 by an oil pump 36 provided in the lubricating oil supply line 22. The lubricating oil that has passed through the motor 9 and the speed increasing mechanism 19 is returned to the oil tank 23 via the lubricating oil discharge line 25. An oil cooler 24 is installed in the lubricating oil supply line 22 and the lubricating oil discharge line 25 according to the present embodiment.
 モータハウジング31や増速器ハウジング32には、潤滑油供給ライン22と接続される潤滑油入口が形成され、潤滑油供給ライン22からターボ圧縮機2へ潤滑油が供給される。ターボ圧縮機2には、冷凍サイクルを構成している凝縮器3から抽出された冷媒が供給される。モータハウジング31や増速器ハウジング32には、冷媒供給ライン34と接続される液冷媒入口が形成され、冷媒供給ライン34から液冷媒が供給される。 In the motor housing 31 and the speed increaser housing 32, a lubricating oil inlet connected to the lubricating oil supply line 22 is formed, and the lubricating oil is supplied from the lubricating oil supply line 22 to the turbo compressor 2. The turbo compressor 2 is supplied with the refrigerant extracted from the condenser 3 constituting the refrigeration cycle. A liquid refrigerant inlet connected to the refrigerant supply line 34 is formed in the motor housing 31 and the speed increaser housing 32, and the liquid refrigerant is supplied from the refrigerant supply line 34.
 ターボ圧縮機2のモータハウジング31内や増速器ハウジング32内を通過した潤滑油は、油タンク23へ排出される。モータハウジング31や増速器ハウジング32には、潤滑油排出ライン25と接続される潤滑油出口が形成され、潤滑油排出ライン25を介してモータハウジング31や増速器ハウジング32から油タンク23へ冷媒及び潤滑油が排出される。 The lubricating oil that has passed through the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2 is discharged to the oil tank 23. The motor housing 31 and the speed increaser housing 32 are formed with a lubricating oil outlet connected to the lubricating oil discharge line 25, and the motor housing 31 and the speed increaser housing 32 are connected to the oil tank 23 via the lubricating oil discharge line 25. Refrigerant and lubricating oil are discharged.
 油タンク23へ排出される潤滑油は、冷媒が溶け込み、冷媒によって希釈されている。油タンク23には、希釈された潤滑油の濃度を高めるため冷媒を蒸発させるヒータ27(図3参照)が設置されている。冷媒が蒸発することによって、潤滑油は、動粘度が希釈前の状態に戻り、歯車17,18や転がり軸受14を潤滑させる潤滑油として繰り返し用いることができる。 The lubricating oil discharged to the oil tank 23 has a refrigerant dissolved therein and diluted with the refrigerant. The oil tank 23 is provided with a heater 27 (see FIG. 3) that evaporates the refrigerant in order to increase the concentration of the diluted lubricating oil. As the refrigerant evaporates, the lubricating oil returns to the state before dilution and can be repeatedly used as lubricating oil for lubricating the gears 17 and 18 and the rolling bearing 14.
 油タンク23は、図3に示すように、潤滑油を収容可能な容器であり、油タンク23の内部の下部に潤滑油が貯留される。
 油タンク23は、大きく分離領域41と、排出領域42に分けることができる。
As shown in FIG. 3, the oil tank 23 is a container that can contain lubricating oil, and the lubricating oil is stored in a lower portion inside the oil tank 23.
The oil tank 23 can be roughly divided into a separation region 41 and a discharge region 42.
 油タンク23には、潤滑油排出ライン25と接続された潤滑油・冷媒入口が形成される。ヒータ27は、例えば、油タンク23の分離領域41の下部に設置され、油タンク23内の冷媒及び潤滑油を加熱し、冷媒を蒸発させる。これにより、蒸発して生成された冷媒ガスは油タンク23の上方へ向かい、冷媒が蒸発した冷媒の含有量が低下した潤滑油は、油タンク23の下流側へ流れる。 The oil tank 23 is formed with a lubricant / refrigerant inlet connected to the lubricant discharge line 25. The heater 27 is installed, for example, below the separation region 41 of the oil tank 23, heats the refrigerant and lubricating oil in the oil tank 23, and evaporates the refrigerant. As a result, the refrigerant gas generated by evaporation moves upward of the oil tank 23, and the lubricating oil having a reduced content of the refrigerant evaporated from the refrigerant flows downstream of the oil tank 23.
 油タンク23の下方には、潤滑油供給ライン22と接続された潤滑油出口が形成される。本実施形態では、潤滑油出口に油ポンプ36が設置される。潤滑油供給ライン22を介して油タンク23からターボ圧縮機2へ潤滑油が供給される。 A lubricant outlet connected to the lubricant supply line 22 is formed below the oil tank 23. In the present embodiment, an oil pump 36 is installed at the lubricating oil outlet. Lubricating oil is supplied from the oil tank 23 to the turbo compressor 2 via the lubricating oil supply line 22.
 また、油タンク23の上方には、均圧管29と接続された冷媒ガス出口が形成され、均圧管29を介して油タンク23から蒸発器8へ冷媒ガスが供給される。これにより、凝縮器3やサブクーラ4からターボ圧縮機2へ供給された冷媒が冷凍サイクルへ戻される。
 また、油タンク23には、均圧管29の一端が接続され、均圧管29の他端は、冷凍サイクルの蒸発器8と接続されることから、冷凍サイクルとの接続部分である蒸発器8の圧力と油タンク23内の圧力がほぼ等しくなる。なお、均圧管29の接続先は、蒸発器8に限られず、例えばターボ圧縮機2の吸込み口等でもよい。
A refrigerant gas outlet connected to the pressure equalizing pipe 29 is formed above the oil tank 23, and the refrigerant gas is supplied from the oil tank 23 to the evaporator 8 through the pressure equalizing pipe 29. Thereby, the refrigerant | coolant supplied to the turbo compressor 2 from the condenser 3 or the subcooler 4 is returned to a refrigerating cycle.
Further, one end of a pressure equalizing pipe 29 is connected to the oil tank 23, and the other end of the pressure equalizing pipe 29 is connected to the evaporator 8 of the refrigeration cycle. The pressure and the pressure in the oil tank 23 are almost equal. The connection destination of the pressure equalizing pipe 29 is not limited to the evaporator 8 and may be, for example, the suction port of the turbo compressor 2.
 油タンク23の内部に貯留されている潤滑油は、所定の温度範囲に維持されるように調節されることが好ましい。潤滑油の温度は、例えば、潤滑油によって潤滑されるターボ圧縮機2の歯車17,18や転がり軸受14において、適切な潤滑が発揮される温度に基づいて決定される。 The lubricating oil stored in the oil tank 23 is preferably adjusted so as to be maintained within a predetermined temperature range. The temperature of the lubricating oil is determined based on, for example, the temperature at which appropriate lubrication is exerted in the gears 17 and 18 of the turbo compressor 2 and the rolling bearing 14 that are lubricated by the lubricating oil.
 油タンク23の内部に貯留されている潤滑油の温度は、例えば、ヒータ27による加熱によって調節される。ヒータ27による加熱は、油タンク23の下部に設置された温度検出部35で検出される温度に基づいて制御される。ヒータ27は、検出された温度に基づいてON/OFFが制御されて、冷媒や潤滑油に対する加熱を調整してもよいし、検出された温度に基づいてヒータ27の設定温度が調整されてもよい。 The temperature of the lubricating oil stored in the oil tank 23 is adjusted by heating with the heater 27, for example. Heating by the heater 27 is controlled based on the temperature detected by the temperature detection unit 35 installed in the lower part of the oil tank 23. The heater 27 may be controlled to be turned on / off based on the detected temperature to adjust the heating to the refrigerant or the lubricating oil, or the set temperature of the heater 27 may be adjusted based on the detected temperature. Good.
 油タンク23は、仕切板43によって仕切られて、分離領域41と、排出領域42に分けられている。仕切板43は、板状部材であって、側端部が油タンク23の内側面に接触する。これにより、油タンク23は、仕切板43を境界にして二つの領域に分けられる。仕切板43よりも潤滑油排出ライン25側は、ハウジング30から戻される潤滑油が流入する分離領域41である。また、仕切板43よりも潤滑油供給ライン22側は、ハウジング30へ潤滑油が供給される排出領域42である。 The oil tank 23 is partitioned by a partition plate 43 and divided into a separation region 41 and a discharge region 42. The partition plate 43 is a plate-like member, and the side end portion contacts the inner side surface of the oil tank 23. As a result, the oil tank 23 is divided into two regions with the partition plate 43 as a boundary. On the lubricating oil discharge line 25 side of the partition plate 43 is a separation region 41 into which the lubricating oil returned from the housing 30 flows. Further, the lubricating oil supply line 22 side of the partition plate 43 is a discharge region 42 where the lubricating oil is supplied to the housing 30.
 分離領域41には、潤滑油排出ライン25から、冷媒が溶け込んだ潤滑油が供給される。冷媒が溶け込んだ潤滑油は、冷媒単体や潤滑油単体に比べて比重が高く、分離領域41の底面で濃度が高い。そして、冷媒濃度の高い分離領域41の底面近くに配置されたヒータ27によって、冷媒が加熱されてガス化され、潤滑油と冷媒とに分離される。油タンク23内では、仕切板43によって潤滑油が貯留される空間が限定されるため、ヒータ27によって潤滑油を効率良く加熱できる。 The separation region 41 is supplied with the lubricating oil in which the refrigerant is dissolved from the lubricating oil discharge line 25. The lubricating oil in which the refrigerant has dissolved has a higher specific gravity than the refrigerant alone or the lubricating oil alone, and has a high concentration at the bottom surface of the separation region 41. And the refrigerant | coolant is heated and gasified by the heater 27 arrange | positioned near the bottom face of the separation area | region 41 with a high refrigerant | coolant density | concentration, and it isolate | separates into lubricating oil and a refrigerant | coolant. In the oil tank 23, the space in which the lubricating oil is stored is limited by the partition plate 43, so that the lubricating oil can be efficiently heated by the heater 27.
 分離領域41には、上述した仕切板43以外の複数枚の流れ形成板44が設けられてもよい。分離領域41に流れ形成板44が設置されることで、貯留された潤滑油内で、潤滑油が上部から下部へ向かう流れや、反対に下部から上部へ向かう流れを形成できる。これにより、ヒータ27へ潤滑油を効率良く接触させたり、分離してガス化した冷媒を上方へ上昇させりすることができる。 In the separation region 41, a plurality of flow forming plates 44 other than the partition plate 43 described above may be provided. By installing the flow forming plate 44 in the separation region 41, the flow of the lubricating oil from the upper part to the lower part or the flow from the lower part to the upper part can be formed in the stored lubricating oil. Thereby, the lubricating oil can be efficiently brought into contact with the heater 27, or the separated and gasified refrigerant can be raised upward.
 加熱されてガス化した冷媒は、油タンク23に貯留された潤滑油の上方へ上昇していく。フォーミング現象が生じる場合でも、泡立った潤滑油が仕切板43や流れ形成板44に沿って上昇し、その後、泡は液状の潤滑油上に浮いた状態となる。したがって、本実施形態では、仕切板43や流れ形成板44がない場合と異なり、冷媒ガスによる泡は、液状の潤滑油の内部で下流側へは流れにくい。その結果、油タンク23に泡が吸い込まれることを防止できる。 The heated and gasified refrigerant rises above the lubricating oil stored in the oil tank 23. Even when the forming phenomenon occurs, the foamed lubricating oil rises along the partition plate 43 and the flow forming plate 44, and then the foam floats on the liquid lubricating oil. Therefore, in the present embodiment, unlike the case where there is no partition plate 43 or flow forming plate 44, bubbles due to the refrigerant gas hardly flow to the downstream side inside the liquid lubricating oil. As a result, it is possible to prevent bubbles from being sucked into the oil tank 23.
 油タンク23内に貯留した潤滑油は、油ポンプ36によって、一方向の流れ、すなわち、潤滑油・冷媒入口側から潤滑油出口側への流れが生じている。これにより、冷媒が分離されて冷媒濃度が低下した潤滑油は、潤滑油出口側へ向かって流れていく。また、フォーミング現象が生じている場合、潤滑油上に浮いた泡も、潤滑油の流れに沿って下流側に向かって流れる。 The lubricating oil stored in the oil tank 23 is caused to flow in one direction by the oil pump 36, that is, from the lubricating oil / refrigerant inlet side to the lubricating oil outlet side. As a result, the lubricating oil whose refrigerant concentration is reduced due to the separation of the refrigerant flows toward the lubricating oil outlet side. Further, when the forming phenomenon occurs, bubbles floating on the lubricating oil also flow toward the downstream side along the flow of the lubricating oil.
 フォーミング現象によって、泡による油面が上昇していくと、均圧管29内を泡が通過していき、バッファタンク28内へ泡状の潤滑油が落下される。 When the oil level rises due to foaming due to the foaming phenomenon, the foam passes through the pressure equalizing pipe 29 and the foamed lubricating oil falls into the buffer tank 28.
 なお、仕切板43又は流れ形成板44の下端部は、油タンク23の底面と接触してもよいし、底面から離隔してもよい。底面と接触している場合、潤滑油において下部から上部への流れが形成される。底面から離隔している場合、冷媒が溶け込んだ潤滑油が分離領域41内の底部に滞留することなく、下流側へ流れていく。このとき、冷媒が溶け込んだ潤滑油がヒータ27に沿って流れることで、冷媒を効率良くガス化させることができる。 In addition, the lower end part of the partition plate 43 or the flow forming plate 44 may be in contact with the bottom surface of the oil tank 23 or may be separated from the bottom surface. When in contact with the bottom surface, a flow from the lower part to the upper part is formed in the lubricating oil. When separated from the bottom surface, the lubricating oil in which the refrigerant has melted flows downstream without staying at the bottom in the separation region 41. At this time, the lubricating oil in which the refrigerant is dissolved flows along the heater 27, whereby the refrigerant can be efficiently gasified.
 また、図3に示す例では、1枚の仕切板43と、2枚の流れ形成板44が設置される場合について図示したが本発明はこの例に限定されない。例えば、図4に示すように、1枚の仕切板43と、1枚の流れ形成板44が設置されてもよい。 In the example shown in FIG. 3, the case where one partition plate 43 and two flow forming plates 44 are installed is illustrated, but the present invention is not limited to this example. For example, as shown in FIG. 4, one partition plate 43 and one flow forming plate 44 may be installed.
 排出領域42には、油ポンプ36が設置される。油ポンプ36は、例えば浸漬式ポンプであり、油タンク23の底面に設置される。油ポンプ36は、油タンク23の底部の潤滑油を吸い込んで、外部、すなわち、ハウジング30へ潤滑油を供給する。本実施形態では、フォーミング現象が生じた場合、分離領域41で泡が上昇するため、排出領域42に設置された油ポンプ36は冷媒ガスを吸い込みにくい。 In the discharge area 42, an oil pump 36 is installed. The oil pump 36 is an immersion pump, for example, and is installed on the bottom surface of the oil tank 23. The oil pump 36 sucks the lubricating oil at the bottom of the oil tank 23 and supplies the lubricating oil to the outside, that is, the housing 30. In the present embodiment, when the foaming phenomenon occurs, the bubbles rise in the separation region 41, so that the oil pump 36 installed in the discharge region 42 is difficult to suck the refrigerant gas.
 なお、ヒータ27は、上流側の分離領域41のみに設置されてもよいし、図3に示すように、下流側の排出領域42にも設置されてもよい。なお、排出領域42にヒータ27が設置されることで、潤滑油から分離される冷媒の量を上昇させることができる。ただし、排出領域42でヒータ27による加熱によってフォーミング現象が生じる可能性がある場合は、排出領域42にヒータ27を設置しないほうがよい。 In addition, the heater 27 may be installed only in the upstream separation region 41, or may be installed in the downstream discharge region 42 as shown in FIG. In addition, by installing the heater 27 in the discharge region 42, the amount of refrigerant separated from the lubricating oil can be increased. However, if there is a possibility that a forming phenomenon may occur due to heating by the heater 27 in the discharge area 42, it is better not to install the heater 27 in the discharge area 42.
 バッファタンク28は、均圧管29に設置される。バッファタンク28は、油タンク23から流出する泡状の潤滑油を貯留でき、下流側の均圧管29へ潤滑油を流れ出させない容量を有する。バッファタンク28の上部には、油タンク23と接続された均圧管29に接続された入口部が形成される。また、バッファタンク28の上部には、入口部とは別の部分に出口部が形成され、出口部は、蒸発器8と接続された均圧管29に接続される。 The buffer tank 28 is installed in the pressure equalizing pipe 29. The buffer tank 28 can store foamy lubricating oil flowing out from the oil tank 23 and has a capacity that prevents the lubricating oil from flowing out to the pressure equalizing pipe 29 on the downstream side. An inlet portion connected to a pressure equalizing pipe 29 connected to the oil tank 23 is formed in the upper portion of the buffer tank 28. Further, an outlet portion is formed at a portion different from the inlet portion at the upper portion of the buffer tank 28, and the outlet portion is connected to a pressure equalizing pipe 29 connected to the evaporator 8.
 バッファタンク28には、油タンク23から流出した冷媒及び潤滑油が、均圧管29を介して供給される。そして、油タンク23から流出した潤滑油がバッファタンク28に一時的に貯留される。また、潤滑油に溶け込んでいたガス化した冷媒は、バッファタンク28から蒸発器8へ流れる。 The refrigerant and lubricating oil that have flowed out of the oil tank 23 are supplied to the buffer tank 28 via the pressure equalizing pipe 29. Then, the lubricating oil flowing out from the oil tank 23 is temporarily stored in the buffer tank 28. In addition, the gasified refrigerant dissolved in the lubricating oil flows from the buffer tank 28 to the evaporator 8.
 これにより、油タンク23の内部でフォーミングが発生し、泡状の冷媒及び潤滑油が油タンク23から流出したとしても、潤滑油がバッファタンク28に貯留され、冷凍サイクルへは流れず、冷媒のみが冷凍サイクルへ向かう。 As a result, even if foaming occurs inside the oil tank 23 and the foam-like refrigerant and lubricating oil flow out of the oil tank 23, the lubricating oil is stored in the buffer tank 28 and does not flow to the refrigeration cycle, but only the refrigerant. Heads for the refrigeration cycle.
 油タンク23の下方には、戻し管26が接続される。戻し管26は、一端が、例えばバッファタンク28の底面に接続され、他端が、油タンク23に接続される。戻し管26は、均圧管29とは別に設けられ、バッファタンク28に貯留された潤滑油を油タンク23へ戻す。これにより、油タンク23から流出してバッファタンク28に溜まった潤滑油は、冷媒サイクルへ流れずに、油タンク23へ戻される。 A return pipe 26 is connected below the oil tank 23. One end of the return pipe 26 is connected to the bottom surface of the buffer tank 28, for example, and the other end is connected to the oil tank 23. The return pipe 26 is provided separately from the pressure equalizing pipe 29 and returns the lubricating oil stored in the buffer tank 28 to the oil tank 23. As a result, the lubricating oil that has flowed out of the oil tank 23 and accumulated in the buffer tank 28 is returned to the oil tank 23 without flowing into the refrigerant cycle.
 戻し管26が油タンク23と接続される位置は、油タンク23において潤滑油供給ライン22が接続される位置に近い側である。これにより、バッファタンク28から戻される潤滑油は、油タンク23において、潤滑油供給ライン22が接続される位置の近傍、例えば排出領域42に戻されるため、バッファタンク28から戻される潤滑油は、油タンク23内でフォーミングが発生した場合でも、フォーミングの影響を受けていない潤滑油と混合される。 The position where the return pipe 26 is connected to the oil tank 23 is the side close to the position where the lubricating oil supply line 22 is connected in the oil tank 23. Thereby, the lubricating oil returned from the buffer tank 28 is returned to the vicinity of the position where the lubricating oil supply line 22 is connected in the oil tank 23, for example, to the discharge region 42. Even when forming occurs in the oil tank 23, it is mixed with lubricating oil not affected by the forming.
 次に、本実施形態に係るターボ冷凍機1における潤滑油の供給方法や冷却方法について説明する。 Next, a lubricating oil supply method and a cooling method in the turbo refrigerator 1 according to the present embodiment will be described.
 潤滑油は、油タンク23に貯留されており、油ポンプ36によって油タンク23からターボ圧縮機2へ供給される。ターボ圧縮機2へ供給された潤滑油は、ターボ圧縮機2のモータハウジング31内部や増速器ハウジング32内部で歯車17,18や転がり軸受14へ供給される。 Lubricating oil is stored in the oil tank 23 and is supplied from the oil tank 23 to the turbo compressor 2 by the oil pump 36. The lubricating oil supplied to the turbo compressor 2 is supplied to the gears 17 and 18 and the rolling bearing 14 inside the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2.
 歯車17,18や転がり軸受14へ供給された潤滑油は、歯車17,18や転がり軸受14を潤滑させつつ、摩擦損失によって温度上昇する。 Lubricating oil supplied to the gears 17 and 18 and the rolling bearing 14 rises in temperature due to friction loss while lubricating the gears 17 and 18 and the rolling bearing 14.
 ターボ圧縮機2のモータハウジング31や増速器ハウジング32を通過した潤滑油は、オイルクーラ24を通過して冷却される。これにより、ターボ圧縮機2のモータハウジング31内や増速器ハウジング32内の歯車17,18や転がり軸受14を通過した潤滑油は、オイルクーラ24によって冷却される。 The lubricating oil that has passed through the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2 passes through the oil cooler 24 and is cooled. As a result, the lubricating oil that has passed through the gears 17 and 18 and the rolling bearing 14 in the motor housing 31 and the speed increaser housing 32 of the turbo compressor 2 is cooled by the oil cooler 24.
 その後、オイルクーラ24で冷却された潤滑油と、潤滑油に溶け込んだ冷媒は、油タンク23へ排出される。 Thereafter, the lubricating oil cooled by the oil cooler 24 and the refrigerant dissolved in the lubricating oil are discharged to the oil tank 23.
 油タンク23へ排出された潤滑油と冷媒は、分離領域41において下部へ流れ、油タンク23内の下部に設置されたヒータ27によって加熱され、冷媒が蒸発する。その結果、冷媒によって希釈されていた潤滑油の動粘度が回復する。 The lubricating oil and refrigerant discharged to the oil tank 23 flow downward in the separation region 41 and are heated by the heater 27 installed in the lower part of the oil tank 23, and the refrigerant evaporates. As a result, the kinematic viscosity of the lubricating oil diluted with the refrigerant is restored.
 冷媒が蒸発し冷媒の含有量が低下した潤滑油は、油タンク23の下流側へ流れていく。また、ヒータ27によって蒸発された冷媒ガスは、油タンク23の上方へ向かい、均圧管29を介して油タンク23から、均圧管29及びバッファタンク28を経て、蒸発器8へ冷媒ガスが供給される。 Lubricating oil in which the refrigerant has evaporated and the refrigerant content has decreased flows to the downstream side of the oil tank 23. Further, the refrigerant gas evaporated by the heater 27 is directed upward of the oil tank 23, and is supplied from the oil tank 23 through the pressure equalizing pipe 29 to the evaporator 8 through the pressure equalizing pipe 29 and the buffer tank 28. The
 冷凍サイクルにおいて圧力が低下するなどの原因によって、油タンク23内の圧力が低下して、ガス化する冷媒によって潤滑油が泡立つフォーミング現象が生じた場合、冷媒及び潤滑油による泡は、仕切板43又は流れ形成板44に沿って上昇する。さらに、液状の潤滑油上に浮いた泡は、潤滑油の流れに沿って、下流側に向かって流れる。 When the pressure in the oil tank 23 decreases due to a decrease in pressure in the refrigeration cycle and a foaming phenomenon occurs in which the lubricating oil bubbles due to the gasified refrigerant, the bubbles due to the refrigerant and the lubricating oil are separated from the partition plate 43. Alternatively, it rises along the flow forming plate 44. Further, the bubbles floating on the liquid lubricating oil flow toward the downstream side along the flow of the lubricating oil.
 フォーミング現象によって、泡による油面が上昇していくと、均圧管29内を泡が通過していき、バッファタンク28内へ冷媒及び潤滑油による泡が落下される。その結果、バッファタンク28内の下部には潤滑油が貯留され、ガス化した冷媒は、均圧管29を介して蒸発器8へ流れる。 When the oil level due to the foam rises due to the foaming phenomenon, the foam passes through the pressure equalizing pipe 29, and the foam due to the refrigerant and the lubricating oil falls into the buffer tank 28. As a result, lubricating oil is stored in the lower part of the buffer tank 28, and the gasified refrigerant flows to the evaporator 8 through the pressure equalizing pipe 29.
 以上、本実施形態によれば、油タンク23から流出した冷媒及び潤滑油は、均圧管29を介して、バッファタンク28へ供給され、潤滑油は、バッファタンク28に一時的に貯留される。これにより、油タンク23内部でフォーミングが発生し、冷媒及び潤滑油が油タンク23から流出したとしても、潤滑油がバッファタンク28に貯留され、冷凍サイクルへは流れず、冷媒のみが冷凍サイクルへ向かう。 As described above, according to the present embodiment, the refrigerant and the lubricating oil flowing out from the oil tank 23 are supplied to the buffer tank 28 via the pressure equalizing pipe 29, and the lubricating oil is temporarily stored in the buffer tank 28. Thereby, even if foaming occurs in the oil tank 23 and the refrigerant and the lubricating oil flow out of the oil tank 23, the lubricating oil is stored in the buffer tank 28 and does not flow to the refrigeration cycle, but only the refrigerant enters the refrigeration cycle. Head.
 また、油タンク23の分離領域41に冷媒が溶け込んだ潤滑油が供給され、分離領域41において冷媒が溶け込んだ潤滑油が、潤滑油と冷媒とに分離される。そして、分離された潤滑油は、分離領域41から排出領域42へ供給されて、ハウジング30内部へ供給される。分離領域41と排出領域42は、仕切板43で仕切られていることから、分離領域41において、油タンク23へ流入した潤滑油は、潤滑油と冷媒の比重の違いや狭い空間での潤滑油の温度上昇を利用して、効率的に分離される。また、仕切板43が設置されることによって、分離領域41でフォーミング現象が発生したとしても、排出領域42のほうへ泡立った潤滑油が流入することを防止できる。 Further, the lubricating oil in which the refrigerant is dissolved is supplied to the separation region 41 of the oil tank 23, and the lubricating oil in which the refrigerant is dissolved in the separation region 41 is separated into the lubricating oil and the refrigerant. The separated lubricating oil is supplied from the separation region 41 to the discharge region 42 and supplied into the housing 30. Since the separation region 41 and the discharge region 42 are partitioned by the partition plate 43, the lubricating oil that has flowed into the oil tank 23 in the separation region 41 is different in the specific gravity of the lubricating oil and the refrigerant and the lubricating oil in a narrow space. It is efficiently separated by utilizing the temperature rise of Further, by installing the partition plate 43, it is possible to prevent the foamed lubricating oil from flowing toward the discharge region 42 even if the forming phenomenon occurs in the separation region 41.
 以上より、蒸発器8等の冷凍サイクルへ流出する潤滑油の量を低減できる。また、油ポンプ36が吸い込む冷媒の量を減少させて、潤滑油系統を循環する潤滑油の量の低減を防止できる。 From the above, the amount of lubricating oil flowing out to the refrigeration cycle such as the evaporator 8 can be reduced. Further, the amount of refrigerant sucked by the oil pump 36 can be reduced, and the amount of lubricating oil circulating in the lubricating oil system can be prevented from being reduced.
1   :ターボ冷凍機
2   :ターボ圧縮機
3   :凝縮器
4   :サブクーラ
5   :第1減圧弁
6   :中間冷却器
7   :第2減圧弁
8   :蒸発器
9   :モータ
10  :モータ軸
10a :一端
11  :回転軸
11a :一端
11b :他端
12  :第1段羽根車
13  :第2段羽根車
14  :転がり軸受
15  :圧縮機構
17  :歯車
18  :歯車
19  :増速機構
20  :ステータ
21  :ロータ
22  :潤滑油供給ライン
23  :油タンク
24  :オイルクーラ
25  :潤滑油排出ライン
26  :戻し管
27  :ヒータ
28  :バッファタンク
29  :均圧管
30  :ハウジング
31  :モータハウジング
32  :増速器ハウジング
33  :圧縮機ハウジング
34  :冷媒供給ライン
35  :温度検出部
36  :油ポンプ
41  :分離領域
42  :排出領域
43  :仕切板
44  :流れ形成板
1: Turbo refrigerator 2: Turbo compressor 3: Condenser 4: Subcooler 5: First pressure reducing valve 6: Intermediate cooler 7: Second pressure reducing valve 8: Evaporator 9: Motor 10: Motor shaft 10a: One end 11: Rotating shaft 11a: one end 11b: other end 12: first stage impeller 13: second stage impeller 14: rolling bearing 15: compression mechanism 17: gear 18: gear 19: speed increasing mechanism 20: stator 21: rotor 22: Lubricating oil supply line 23: Oil tank 24: Oil cooler 25: Lubricating oil discharge line 26: Return pipe 27: Heater 28: Buffer tank 29: Pressure equalizing pipe 30: Housing 31: Motor housing 32: Booster housing 33: Compressor Housing 34: Refrigerant supply line 35: Temperature detector 36: Oil pump 41: Separation area 42: Discharge area 43: Partition Plate 44: Flow forming plate

Claims (6)

  1.  モータによって駆動する圧縮機構を有する電動圧縮機と、凝縮器と、蒸発器を備え、冷媒が循環する冷凍サイクルと、
     潤滑油が貯留された油タンクと、
     前記油タンクの内部に設置され、前記潤滑油を加熱するヒータと、
     前記油タンクに接続されて、前記油タンクから前記モータを収容するハウジング内部へ前記潤滑油を供給し、前記ハウジングから前記油タンクへ前記潤滑油を戻す油循環管と、
     前記油循環管とは別に一端が前記油タンクに接続されて、他端が前記冷凍サイクルと接続される均圧管と、
     前記均圧管に設置され、前記油タンクから流出する前記冷媒及び前記潤滑油を受け入れ、前記潤滑油を貯留するバッファタンクと、
    を備える冷凍機。
    An electric compressor having a compression mechanism driven by a motor, a condenser, an evaporator, and a refrigeration cycle in which refrigerant circulates;
    An oil tank in which lubricating oil is stored;
    A heater installed inside the oil tank for heating the lubricating oil;
    An oil circulation pipe connected to the oil tank, supplying the lubricating oil from the oil tank to a housing containing the motor, and returning the lubricating oil from the housing to the oil tank;
    Separate from the oil circulation pipe, one end is connected to the oil tank and the other end is connected to the refrigeration cycle.
    A buffer tank that is installed in the pressure equalizing pipe, receives the refrigerant flowing out of the oil tank and the lubricating oil, and stores the lubricating oil;
    A refrigerator equipped with.
  2.  一端が前記バッファタンクに接続され、前記均圧管とは別に他端が前記油タンクに接続されて、前記バッファタンクに貯留された前記潤滑油を前記油タンクへ戻す戻し管を更に備える請求項1に記載の冷凍機。 2. The apparatus further comprises a return pipe having one end connected to the buffer tank and the other end connected to the oil tank separately from the pressure equalizing pipe to return the lubricating oil stored in the buffer tank to the oil tank. The refrigerator as described in.
  3.  前記戻し管が前記油タンクと接続される位置は、前記油タンクにおいて前記油循環管が接続される位置の近傍である請求項2に記載の冷凍機。 The refrigerator according to claim 2, wherein the position where the return pipe is connected to the oil tank is in the vicinity of the position where the oil circulation pipe is connected to the oil tank.
  4.  前記油タンクは、仕切板によって仕切られて、前記ハウジングから戻される前記潤滑油が流入する分離領域と、前記ハウジングへ前記潤滑油が供給される排出領域に分けられている請求項1から3のいずれか1項に記載の冷凍機。 4. The oil tank according to claim 1, wherein the oil tank is divided by a partition plate, and is divided into a separation region where the lubricating oil returned from the housing flows and a discharge region where the lubricating oil is supplied to the housing. The refrigerator according to any one of the above.
  5.  分離領域には、前記油タンクに貯留された前記潤滑油の流れを上部から下部、又は、下部から上部に向ける流れ形成板が設置される請求項4に記載の冷凍機。 5. The refrigerator according to claim 4, wherein a flow forming plate that directs the flow of the lubricating oil stored in the oil tank from the upper part to the lower part or from the lower part to the upper part is installed in the separation region.
  6.  前記仕切板は、前記油タンクの底面から離隔して設置される請求項4に記載の冷凍機。 The refrigerator according to claim 4, wherein the partition plate is installed separately from the bottom surface of the oil tank.
PCT/JP2017/023420 2016-06-30 2017-06-26 Refrigerator WO2018003748A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/081,612 US20190078811A1 (en) 2016-06-30 2017-06-26 Refrigerator
CN201780016599.XA CN108779946B (en) 2016-06-30 2017-06-26 Refrigerating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016130103A JP2018004142A (en) 2016-06-30 2016-06-30 Refrigeration machine
JP2016-130103 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003748A1 true WO2018003748A1 (en) 2018-01-04

Family

ID=60785295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023420 WO2018003748A1 (en) 2016-06-30 2017-06-26 Refrigerator

Country Status (4)

Country Link
US (1) US20190078811A1 (en)
JP (1) JP2018004142A (en)
CN (1) CN108779946B (en)
WO (1) WO2018003748A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6736357B2 (en) * 2016-05-31 2020-08-05 三菱重工サーマルシステムズ株式会社 Turbo refrigerator and start control method thereof
CN111854231A (en) 2019-04-26 2020-10-30 荏原冷热系统(中国)有限公司 Oil tank for centrifugal refrigerator and centrifugal refrigerator
US11898571B2 (en) 2021-12-30 2024-02-13 Trane International Inc. Compressor lubrication supply system and compressor thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282958U (en) * 1975-12-16 1977-06-21
JPS5318042A (en) * 1976-08-02 1978-02-18 Hitachi Plant Eng & Constr Co Ltd Oil collecting system in refrigeration cycle
JPS59132060U (en) * 1983-02-23 1984-09-04 株式会社日立製作所 Oil separation equipment for turbo chillers
JPH02178579A (en) * 1988-12-29 1990-07-11 Daikin Ind Ltd Lubrication device for turbo freezer
JPH0363476A (en) * 1989-08-02 1991-03-19 Hitachi Ltd Oil recovery device of freezer
WO2002006740A1 (en) * 2000-07-13 2002-01-24 Mitsubishi Heavy Industries, Ltd. Ejector and refrigerating machine
JP2008082622A (en) * 2006-09-27 2008-04-10 Ebara Corp Compression type refrigerating device
JP2012163262A (en) * 2011-02-07 2012-08-30 Mitsubishi Heavy Ind Ltd Rod-shaped heater and turbo refrigerating machine
JP2014145345A (en) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd Turbo compressor and turbo refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282958A (en) * 1975-12-30 1977-07-11 Toyoda Gosei Kk Heating disque of molding machine
US5724821A (en) * 1996-06-28 1998-03-10 Carrier Corporation Compressor oil pressure control method
CN104896989A (en) * 2014-03-05 2015-09-09 珠海格力电器股份有限公司 Oil cooling system and oil cooler

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282958U (en) * 1975-12-16 1977-06-21
JPS5318042A (en) * 1976-08-02 1978-02-18 Hitachi Plant Eng & Constr Co Ltd Oil collecting system in refrigeration cycle
JPS59132060U (en) * 1983-02-23 1984-09-04 株式会社日立製作所 Oil separation equipment for turbo chillers
JPH02178579A (en) * 1988-12-29 1990-07-11 Daikin Ind Ltd Lubrication device for turbo freezer
JPH0363476A (en) * 1989-08-02 1991-03-19 Hitachi Ltd Oil recovery device of freezer
WO2002006740A1 (en) * 2000-07-13 2002-01-24 Mitsubishi Heavy Industries, Ltd. Ejector and refrigerating machine
JP2008082622A (en) * 2006-09-27 2008-04-10 Ebara Corp Compression type refrigerating device
JP2012163262A (en) * 2011-02-07 2012-08-30 Mitsubishi Heavy Ind Ltd Rod-shaped heater and turbo refrigerating machine
JP2014145345A (en) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd Turbo compressor and turbo refrigerator

Also Published As

Publication number Publication date
JP2018004142A (en) 2018-01-11
US20190078811A1 (en) 2019-03-14
CN108779946A (en) 2018-11-09
CN108779946B (en) 2020-09-18

Similar Documents

Publication Publication Date Title
US10941967B2 (en) Lubrication and cooling system
CN114111113B (en) Lubricant Management for HVACR Systems
CA2342909C (en) Oil-free liquid chiller
KR100991345B1 (en) Refrigerating apparatus
KR100990570B1 (en) Refrigerating apparatus
KR100990782B1 (en) Refrigeration device
WO2018003748A1 (en) Refrigerator
WO2002066872A1 (en) Self-contained regulating valve, and compression type refrigerating machine having the same
JP2008082623A (en) Compression type refrigerating device
JP5543093B2 (en) Compressive refrigerator and operation method thereof
US11898571B2 (en) Compressor lubrication supply system and compressor thereof
WO2018180225A1 (en) Refrigeration machine
JP2009186030A (en) Turbo refrigerator
JP5959373B2 (en) Refrigeration equipment
JP2001050601A (en) Refrigerator
WO2024077250A1 (en) Refrigeration system with reduced compressor thrust load
CN116336699A (en) Refrigerating system
JP2007285676A (en) Refrigerating appliance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820103

Country of ref document: EP

Kind code of ref document: A1