WO2018003533A1 - 印画装置及び画像補正方法 - Google Patents

印画装置及び画像補正方法 Download PDF

Info

Publication number
WO2018003533A1
WO2018003533A1 PCT/JP2017/022219 JP2017022219W WO2018003533A1 WO 2018003533 A1 WO2018003533 A1 WO 2018003533A1 JP 2017022219 W JP2017022219 W JP 2017022219W WO 2018003533 A1 WO2018003533 A1 WO 2018003533A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
print
density
correction
print density
Prior art date
Application number
PCT/JP2017/022219
Other languages
English (en)
French (fr)
Inventor
陽平 船津
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/309,815 priority Critical patent/US10759183B2/en
Publication of WO2018003533A1 publication Critical patent/WO2018003533A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/52Arrangement for printing a discrete number of tones, not covered by group B41J2/205, e.g. applicable to two or more kinds of printing or marking process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2139Compensation for malfunctioning nozzles creating dot place or dot size errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0456Control methods or devices therefor, e.g. driver circuits, control circuits detecting drop size, volume or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04593Dot-size modulation by changing the size of the drop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04595Dot-size modulation by changing the number of drops per dot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/205Ink jet for printing a discrete number of tones
    • B41J2/2054Ink jet for printing a discrete number of tones by the variation of dot disposition or characteristics, e.g. dot number density, dot shape
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/027Test patterns and calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/407Control or modification of tonal gradation or of extreme levels, e.g. background level
    • H04N1/4076Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on references outside the picture
    • H04N1/4078Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on references outside the picture using gradational references, e.g. grey-scale test pattern analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/50Picture reproducers
    • H04N1/506Reproducing the colour component signals picture-sequentially, e.g. with reproducing heads spaced apart from one another in the subscanning direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • H04N1/6041Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis for controlling uniformity of color across image area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • H04N1/605Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis for controlling ink amount, strike-through, bleeding soakage or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14403Structure thereof only for on-demand ink jet heads including a filter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/10Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by matrix printers
    • G06K15/102Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by matrix printers using ink jet print heads
    • G06K15/105Multipass or interlaced printing
    • G06K15/107Mask selection

Definitions

  • the present disclosure relates to a printing apparatus and an image correction method.
  • a configuration is known in which the size of dots printed by each printing element is corrected based on a test pattern printing result so that the printing density is uniform (for example, Patent Document 1). reference).
  • a printing apparatus includes a printing unit having a plurality of printing elements for printing dots.
  • the printing apparatus includes a control unit that controls the printing unit based on input image data.
  • the control unit obtains a pre-correction print density based on test pattern data including a uniform pixel arrangement and print characteristics of print positions of dots of the print elements.
  • the control unit calculates a target density obtained by averaging the pre-correction print density.
  • the control unit offsets the target density so that the target density is equal to or higher than the pre-correction print density.
  • the control unit calculates a correction gain of the printing element based on a ratio of the target density to the pre-correction printing density.
  • the control unit controls the printing unit based on the correction gain and the input image data.
  • the image correction method is an image correction method for a printing apparatus.
  • the printing apparatus includes a printing unit having a plurality of printing elements for printing dots.
  • the printing apparatus includes a control unit that controls the printing unit based on input image data.
  • the image correction method includes a step in which the control unit acquires a pre-correction print density based on test pattern data including a uniform pixel arrangement and print characteristics of a print position of a dot of the print element.
  • the image correction method includes a step in which the control unit calculates a target density obtained by averaging the print density before correction.
  • the image correction method includes a step in which the control unit offsets the target density so that the target density is equal to or higher than the pre-correction print density.
  • the image correction method includes a step in which the control unit calculates a correction gain of the print element based on a ratio of the target density to the pre-correction print density.
  • the image correction method includes a step in which the control unit controls the printing unit based on the correction gain and the input image data.
  • FIG. 1 is a functional block diagram illustrating a schematic configuration example of a printing apparatus according to a first embodiment. It is a figure which shows the structural example of a printing head. It is a figure which shows the structural example of a printing head. It is a figure which shows an example of the dot pattern printed on the printing medium in the grid
  • FIG. 10A is a graph illustrating an example of setting a target density of the printing apparatus according to the first embodiment. It is a graph which shows the example of a correction gain setting. It is a graph which shows the example of a setting of the target density
  • concentration of the apparatus which concerns on a comparative example. 5 is a flowchart illustrating an example of an image correction method according to the first embodiment.
  • the dots printed by a printing element having a relatively high print density may be corrected so as to be reduced in size.
  • the graininess of the printed result may increase. This embodiment improves the graininess of the print.
  • the printing apparatus 1 As shown in FIG. 1, the printing apparatus 1 according to the present embodiment includes a control unit 10, a storage unit 12, and a printing unit 14. The printing apparatus 1 prints on the printing medium 20 by the printing unit 14. The printing apparatus 1 causes the reading device 30 to read the printing result on the printing medium 20. The printing apparatus 1 acquires a reading result from the reading device 30.
  • the control unit 10 acquires input image data from the storage unit 12 or an external device.
  • the control unit 10 may store the input image data acquired from the external device in the storage unit 12.
  • the control unit 10 outputs control information for printing on the printing medium 20 to the printing unit 14 based on the input image data.
  • the control unit 10 can be configured by a processor or a microcomputer that can execute application software.
  • the storage unit 12 can be composed of a semiconductor memory or the like.
  • the storage unit 12 stores various information or a program for operating the printing apparatus 1.
  • the storage unit 12 may function as a work memory for the control unit 10.
  • the printing unit 14 includes a printing medium transport unit 16 and a printing head 18.
  • the printing unit 14 controls the printing medium transport unit 16 and the printing head 18 based on the control information from the control unit 10 to print on the printing medium 20.
  • the printing medium transport unit 16 takes the printing medium 20 into the printing apparatus 1 and controls the position of the printing medium 20 according to control information from the control unit 10.
  • the print medium transport unit 16 can be configured to transport the print medium 20 along a predetermined direction.
  • the predetermined direction may be one direction or two or more directions.
  • the printing head 18 prints on the printing medium 20 based on the control information from the control unit 10.
  • the print head 18 includes a print element 181.
  • the printing head 18 controls the printing element 181 to print dots on the printing medium 20.
  • the shape of the dot is, for example, a circle, but is not limited to this, and may be another shape.
  • the printing element 181 prints by ejecting ink onto the printing medium 20.
  • the printing element 181 performs printing by transferring ink to the printing medium 20 by heat.
  • the printing element 181 may print on the printing medium 20 by various other methods.
  • the printing element 181 may print on the printing medium 20 by changing the quality of the printing medium 20.
  • the printing elements 181 are arranged along the longitudinal direction of the printing head 18.
  • the printing elements 181 are arranged over the same range as the width of the printing medium 20, for example.
  • the printing elements 181 may be arranged over a range longer than the width of the printing medium 20.
  • the printing elements 181 may be arranged in a range shorter than the width of the printing medium 20.
  • the printing elements 181 may be arranged in a line as shown in FIG. 2A.
  • the printing elements 181a to 181e are arranged in a line.
  • the printing elements 181a to 181e are simply collectively referred to as the printing elements 181.
  • the number of printing elements 181 is not limited to five, and may be four or less, or may be six or more.
  • the printing elements 181 may be arranged across a plurality of rows and shifted by a predetermined distance in each row.
  • the printing apparatus 1 shifts the relative position of the print head 18 and the print medium 20 in the short direction of the print head 18, and sets the print elements 181a and 181d, the print elements 181b and 181e, and the print elements 181c and 181c. Are operated sequentially. In this way, five dots corresponding to the printing elements 181a to 181e can be printed in a line at a pitch narrower than the arrangement pitch of the printing elements 181.
  • the printing unit 14 sequentially prints on the printing medium 20 while causing the printing head 18 to scan the printing medium 20.
  • the printing unit 14 may fix the position of the printing head 18 and move only the printing medium 20.
  • the print unit 14 may move the print head 18 while fixing the position of the print medium 20.
  • the printing unit 14 may move the printing head 18 and the printing medium 20 together when printing on the printing medium 20.
  • the printing medium 20 can be appropriately selected according to the printing method of the printing head 18.
  • the printing medium 20 is made of, for example, paper, but is not limited thereto, and may be made of other materials such as resin or a plurality of materials.
  • the printing medium 20 may be in the form of a roll or a sheet, or may have another shape.
  • the printing medium 20 may be a rectangle, or may be another shape such as a circle or an ellipse.
  • the reading device 30 includes a light source that irradiates light to the reading object and a sensor that receives reflected light or scattered light from the reading object.
  • the reading device 30 can read the printing result from the printing medium 20.
  • the reading device 30 outputs the reading result to the printing device 1.
  • the read result includes information related to the density distribution of the print result.
  • the printing element 181 has printing characteristics.
  • the printing characteristics of the printing element 181 include data relating to the gradation of density that can be expressed by the dots printed by the printing element 181.
  • the gradation of density is determined by the size of dots, for example.
  • the density gradation may be determined by the dot print arrangement.
  • the print characteristics include correction data indicating a difference between a print result predicted based on control information output from the control unit 10 and an actual print result.
  • the correction data may have a dot printing position.
  • the dot printing position correction data defines how much the dot is printed compared to the dot printing position predicted from the control information.
  • the correction data may have a dot size to be printed.
  • the dot size correction data defines how much different dots are printed compared to the dot size predicted from the control information.
  • the correction data can be acquired from a test pattern printed on the printing medium 20.
  • the printing apparatus 1 acquires test pattern data as input image data, and prints the test pattern on the printing medium 20.
  • the printing apparatus 1 causes the reading device 30 to read the printed test pattern and obtains a test pattern reading result.
  • the printing apparatus 1 analyzes the test pattern reading result and acquires correction data of each printing element 181. It can be said that the correction data of each printing element 181 is inspection data of each printing element 181 acquired from the printing result of the test pattern data.
  • the test pattern includes a printing pattern for acquiring correction data of each printing element 181.
  • the test pattern may include a pattern that can measure the deviation of the printing position of the dots of each printing element 181.
  • the pattern that can measure the deviation of the dot printing position may include, for example, a pattern indicating coordinates.
  • the printing apparatus 1 can calculate the difference between the position of the dot printed by each printing element 181 and the position predicted from the control information from the read result of the pattern that can measure the deviation of the printing position of the dot.
  • the dot printing position may be acquired from the density distribution of the printed dot pattern.
  • the dot printing position may be acquired from the printing result of a pattern having a scale capable of measuring the printing position.
  • Various other methods can be used as a method for acquiring the dot printing position.
  • the test pattern may include a pattern that can measure the dot size of each printing element 181.
  • the pattern capable of measuring the dot size may include, for example, a pattern indicating a scale.
  • the printing apparatus 1 can calculate the difference between the size of the dot printed by each printing element 181 and the size predicted from the control information from the pattern reading result that can measure the dot size.
  • the dot size may be obtained by measuring the density of the printed dot pattern.
  • the dot size may be obtained by directly measuring a dot printed alone with a microscope or the like. Various other methods can be used as the dot size acquisition method.
  • the printing apparatus 1 may be configured to include at least one of the printing medium 20 and the reading apparatus 30. In this case, the printing apparatus 1 can internally execute test pattern printing and printing result reading, and can acquire correction data of the printing element 181 without using an external apparatus.
  • the input image data acquired by the printing apparatus 1 is, for example, in a bitmap format, but may be in other formats.
  • the printing apparatus 1 according to the present embodiment acquires input image data composed of pixels arranged in a grid such as a bitmap format.
  • the printing apparatus 1 according to the present embodiment performs printing so that dots are arranged in a grid pattern on the printing medium 20 based on input image data.
  • the arrangement of dots printed by the printing apparatus 1 is not limited to the lattice arrangement, and may be an arrangement having randomness.
  • the printing apparatus 1 forms a print result corresponding to input image data by printing a set of dots on the print medium 20.
  • the dots may be printed at the intersections of a grid constituted by alternate long and short dash lines extending in the X-axis direction and the Y-axis direction.
  • the X axis direction and the Y axis direction are also referred to as the X direction and the Y direction, respectively.
  • the dot pattern illustrated in FIG. 3 may look different depending on the dot size and arrangement interval when viewed with the human eye. For example, when the arrangement interval is wide with respect to the dot size, each dot may appear to be distinguishable. When the arrangement interval is narrow with respect to the dot size, each dot may not be discernible and may appear as a solid pattern with a uniform density. From the dot size and the array interval, the spatial frequency of the dot pattern is determined. In other words, the dot pattern may look different depending on the spatial frequency when viewed with the human eye.
  • the appearance of the dot pattern with the human eye can be evaluated by the contrast sensitivity characteristics of the human eye.
  • the contrast sensitivity characteristic is also called a CSF (ContrasttraSensitivity Function) characteristic.
  • the CSF characteristic indicates the relationship between the spatial frequency of the dot pattern and the contrast sensitivity of the human eye.
  • the spatial frequency of the dot pattern is in a frequency band where the contrast sensitivity of the human eye is high, fluctuations in print density due to the dot pattern are easily discriminated. In this case, the dots can be easily seen so that they can be individually identified. Such appearance is also expressed as having a graininess.
  • the spatial frequency of the dot pattern When the spatial frequency of the dot pattern is in a frequency band where the contrast sensitivity of the human eye is low, fluctuations in print density due to the dot pattern are difficult to distinguish. In this case, the dot pattern is not distinguishable individually, and is likely to appear as a solid pattern having a uniform density. Such appearance is also expressed as having no graininess or little graininess. In general, when the spatial frequency of a dot pattern is included in a predetermined frequency band, a change in print density due to the dot pattern is easily discriminated.
  • the spatial frequency of the dot pattern is not included in the predetermined frequency band, that is, when the spatial frequency is included in a frequency band lower than the predetermined frequency band or higher than the predetermined frequency band, printing with the dot pattern Concentration variations are difficult to discern.
  • the spatial frequency of the dot pattern may be calculated two-dimensionally, for example, for each of the X direction and the Y direction in FIG.
  • the spatial frequency of the dot pattern may be calculated one-dimensionally for a certain row of dots in the dot pattern.
  • the spatial frequency for the arrangement in the X direction of the dot pattern is calculated from the average print density of the dots arranged in the Y direction in FIG.
  • the average print density in the Y direction changes according to the position in the X direction.
  • the horizontal axis indicates the position in the X direction.
  • the vertical axis represents the average print density in the Y direction.
  • the print density has a distribution corresponding to the dot arrangement.
  • the average print density calculated along the line passing through the center of the dot array in the Y direction shows a maximum value in the graph of FIG.
  • a line passing through the center of the dot arrangement in the Y direction is indicated by a one-dot chain line in FIG.
  • the average print density calculated along the line passing through the portion in which no dot is printed in the Y direction shows a minimum value in the graph of FIG.
  • a line passing through a portion where dots are not printed in the Y direction is not shown in FIG.
  • the average print density of the portion where dots are not printed can be the same minimum value over a predetermined width.
  • the graph in the vicinity of the minimum value of the average print density can be shown as a straight line indicating a constant value.
  • the graph in the vicinity of the minimum value of the average print density is shown as a curve.
  • the spatial frequency in the X direction of the dot pattern of FIG. 3 is calculated by analyzing the frequency spectrum of the waveform of the average print density shown in FIG.
  • the dot and the minimum value corresponding to the maximum value of the average print density in FIG. 4 when viewed with the human eye Can be distinguished from the corresponding dot. That is, in the dot pattern of FIG. 3, each dot appears to be distinguishable.
  • the dot pattern appears to be printed with a solid coating pattern having a uniform printing density, like the apparent density shown by the broken line in FIG.
  • the dot size and the arrangement interval that determine the spatial frequency of the dot pattern may be changed within a predetermined range by the printing apparatus 1.
  • the dot size can be changed by controlling the amount of ink ejected from the printing element 181.
  • the dot arrangement interval can be determined by the arrangement interval of the printing elements 181 provided in the printing head 18.
  • the dot arrangement interval can also be changed by controlling the relative position between the print head 18 and the print medium 20 in the arrangement direction of the print elements 181.
  • the printing apparatus 1 converts the input image data into output image data based on the printing characteristics of the printing element 181 in order to increase the reproducibility of the printing result for the input image data.
  • the printing apparatus 1 When the number of gradations that can be expressed by the dots printed by the printing element 181 is less than the number of gradations of the input image data, the printing apparatus 1 generates output image data by subtractive color reduction that reduces the number of gradations. For color reduction, for example, an error diffusion method or the like may be used. Processing for generating output image data is not limited to color reduction.
  • the printing apparatus 1 may generate output image data that increases the printing speed. The printing speed can be said to be the number of dots printed per unit time.
  • the printing apparatus 1 may generate output image data according to image conversion settings by the user, for example, settings such as brightness or saturation, or image sharpness settings.
  • the control unit 10 may store the generated output image data in the storage unit 12.
  • the number of gradations of black density may be reduced.
  • the image data to be reduced is a color image, for example, the number of gradation levels of each primary color of a print including colors such as cyan, magenta, and yellow may be reduced.
  • the block for converting the image data includes a multiplier 51, a first calculator 52, a quantizer 53, a second calculator 54, and a filter 55.
  • a block for converting image data is also referred to as a conversion block.
  • Each of the first computing unit 52 and the second computing unit 54 may be configured by an adder, for example.
  • the function of each component of the conversion block can be executed by the controller 10.
  • Each component of the transform block may be implemented as an individual component.
  • the controller 10 sequentially converts the pixels of the input image data pixel by pixel into the pixels of the output image data in the conversion block.
  • One pixel of the input image data is indicated as u.
  • one pixel of input image data is also referred to as input pixel data.
  • One pixel of the output image data is indicated as y.
  • one pixel of output image data is also referred to as output pixel data.
  • the control unit 10 sequentially converts pixels from the upper left corner of the input image data to the right. After the conversion to the rightmost pixel, the control unit 10 converts the pixel from the left to the right for the next lower row.
  • the control unit 10 sequentially converts the pixels up to the pixel in the lower right corner.
  • the control unit 10 may convert the pixels in another order.
  • the multiplier 51 multiplies the input pixel data by a predetermined coefficient and outputs it.
  • the predetermined coefficient is represented as a.
  • the predetermined coefficient is also called a correction gain and is a positive real number.
  • the correction gain is determined by density distribution correction described later.
  • the first computing unit 52 outputs the difference between the output of the multiplier 51 and the output of the filter 55.
  • the output of the filter 55 is data that feeds back a quantization error generated by color reduction such as an error diffusion method for other input pixel data processed before the input pixel data input to the multiplier 51.
  • the output of the first computing unit 52 is data including a quantization error generated by other input pixel data.
  • the output of the first computing unit 52 is represented as ⁇ .
  • the quantizer 53 uses the output ( ⁇ ) of the first computing unit 52 as an input value and outputs a value obtained by quantizing the output ( ⁇ ) as an output value. In other words, the quantizer 53 adds the quantization error (n) to the output ( ⁇ ) and outputs the result as output pixel data.
  • the quantizer 53 converts the input value to the output value based on the relationship between the input value and the output value shown in the graph of FIG. 6, for example. In FIG. 6, the relationship between the input value and the output value is indicated by a bold solid line.
  • the output value of the quantizer 53 for an input value of 0 or more and less than 42 is, for example, 0.
  • the output value for the input value of 42 or more and less than 127 of the quantizer 53 is 85, for example.
  • the output value for the input value of 127 or more and less than 212 of the quantizer 53 is 170, for example.
  • the output value of the quantizer 53 for an input value of 212 or more and 255 or less is, for example, 255.
  • the quantization error is ⁇ 15.
  • the second computing unit 54 outputs the difference between the output (y) of the quantizer 53 and the output ( ⁇ ) of the first computing unit 52.
  • the output of the second computing unit 54 corresponds to the quantization error generated when ⁇ is quantized.
  • the filter 55 diffuses the quantization error generated when ⁇ is quantized to other pixels.
  • the circuit including the filter 55 feeds back the conversion result related to one pixel to the conversion of another pixel.
  • the filter 55 diffuses the quantization error to pixels around the pixel that has caused the quantization error, for example, using a diffusion matrix.
  • the diffusion matrix may have a plurality of cells.
  • the arrangement of the diffusion matrix cells corresponds to the arrangement of the pixels of the image data.
  • the cell indicated by * is a diffusion source cell 60 corresponding to the pixel that is the diffusion source of the quantization error.
  • a pixel that is a diffusion source of quantization error is also referred to as a diffusion source pixel.
  • a cell adjacent to the right side of the diffusion source cell 60 corresponds to a pixel adjacent to the right side of the diffusion source pixel.
  • the number of cells constituting the diffusion matrix is not limited to 3 rows ⁇ 5 columns shown in FIG.
  • the number of rows of cells may be 2 or less, or 4 or more.
  • the number of columns of cells may be 4 or less, or 6 or more.
  • the cell arrangement is not limited to a matrix, and may be any arrangement such as a stepped shape or an inverted pyramid shape.
  • the numerical value shown in the cell of the diffusion matrix is the weighting data for diffusing the error.
  • weighting data is assigned to each cell.
  • the weight conversion data is not assigned to the cell already converted on the left side of the diffusion source cell 60.
  • the filter 55 assigns the quantization error of the diffusion source pixel to each cell so as to be proportional to the weighting data given to each cell. That is, the quantization error of the diffusion source pixel is assigned to each cell according to the ratio between the weighted data assigned to each cell and the total value of the weighted data.
  • the total value of the 12 weighted data is 47.
  • a cell adjacent to the right side of the diffusion source cell 60 is assigned 7 as weighting data.
  • a cell adjacent to the right side of the diffusion source cell 60 is also referred to as a first diffusion destination cell 61.
  • the filter 55 assigns 7/47 of the quantization error of the diffusion source pixel to the first diffusion destination cell 61.
  • a cell that is two on the right side and two on the lower side from the diffusion source cell 60 is assigned 1 as the weighting data.
  • the two cells on the right side and two on the lower side from the diffusion source cell 60 are also referred to as second diffusion destination cells 62.
  • the filter 55 assigns 1/47 of the quantization error to the second diffusion destination cell 62.
  • the filter 55 assigns quantization errors to other cells in the same manner. In such a case, the total quantization error assigned to each cell of the diffusion matrix is equal to the quantization error of the diffusion source pixel.
  • the quantization error assigned to that cell may not be fed back to the conversion of the input pixel data.
  • the case where there is a cell in which no corresponding pixel exists is, for example, the case where the diffusion source pixel is the lowermost pixel.
  • the filter 55 may not assign a quantization error to the cell. In this case, the quantization error assigned to other cells can be relatively large.
  • a quantization error is assigned to each pixel from a plurality of diffusion source pixels.
  • the filter 55 accumulates and stores the quantization error assigned to each pixel from a plurality of diffusion source pixels.
  • the filter 55 may store the quantization error assigned to each pixel in the storage unit 12.
  • the filter 55 outputs, to the first computing unit 52, the quantization error assigned to the pixel that is input to the first computing unit 52 to be converted.
  • the filter 55 is also realized by applying a diffusion filter to the image data.
  • the diffusion matrix in FIG. 7 is associated with the diffusion filter having the filter characteristics shown in FIG.
  • the horizontal axis and the vertical axis respectively indicate the horizontal position of the pixel handled in the conversion and the filter coefficient corresponding to each position.
  • the number 3 on the horizontal axis corresponds to the third column including the diffusion source cell 60 in the diffusion matrix.
  • No. 1 corresponds to the first column located on the leftmost side of the diffusion matrix.
  • numbers 2, 4, and 5 correspond to the second, fourth, and fifth columns of the diffusion matrix, respectively.
  • the quantization error related to the diffusion source pixel is diffused in the first to fifth columns according to the filter characteristics shown in FIG. According to FIG. 8, the quantization error related to the diffusion source pixel is diffused more in the fourth column than in the third column. That is, the quantization error diffusion destination is shifted to the right column.
  • the quantization error diffused in the first column or the fifth column is relatively small.
  • the diffusion of quantization error to surrounding pixels can be said to be a cut of high frequency components of the spatial frequency spectrum of image data. That is, the diffusion filter has a frequency characteristic that allows low frequency components to pass therethrough.
  • the frequency characteristic that allows low-frequency components to pass can be said to be the characteristic of a low-pass filter.
  • the low-pass filter is also called LPF (Low (Pass Filter).
  • the image data processed by the diffusion filter is composed of frequency components included in a frequency band with low contrast sensitivity in the CSF characteristic. By doing so, even if the image data has been reduced in color, fluctuations in the print density are less noticeable when viewed with the human eye.
  • the printing apparatus 1 can drive a plurality of printing elements 181 of the printing head 18 in parallel.
  • the printing apparatus 1 can print five dots simultaneously by driving in parallel five printing elements 181 (see FIG. 2A) arranged in a line.
  • the printing apparatus 1 can sequentially print a row of dots by driving the printing element 181 while causing the printing head 18 to scan the printing medium 20.
  • the printing element 181 is driven three times, 3 ⁇ 5 dot patterns as illustrated in FIG. 9A are printed. In this way, the printing speed by the printing apparatus 1 can be increased.
  • the X direction corresponds to the longitudinal direction of the printing head 18. That is, the X direction corresponds to the arrangement direction of the printing elements 181.
  • the Y direction corresponds to the direction in which the print head 18 is scanned with respect to the print medium 20. That is, the Y direction corresponds to the scanning direction of the print head 18.
  • dots are printed sequentially from bottom to top along the Y direction.
  • the dots may be printed sequentially from top to bottom.
  • the rows and columns of the dot pattern may be interchanged.
  • the dot printing order is not limited to the above example, and may be various orders.
  • the number of printing elements 181 is not limited to five, and may be four or less, or may be six or more.
  • scanning lines 182a to 182e indicating the scanning direction are indicated by alternate long and short dash lines in the Y direction.
  • the scan lines 182a to 182e are also referred to as scan lines 182.
  • the dots printed along the scanning line 182a are dots printed by the printing element 181a.
  • Dots printed along the scanning lines 182b to 182e are dots printed by the printing elements 181b to 181e, respectively.
  • the printing lines 183a to 183c are indicated by broken lines.
  • the print lines 183a to 183c are also referred to as print lines 183.
  • the print line 183 is a target for aligning the positions of the print head 18 and the print medium 20.
  • the printing apparatus 1 prints dots at the intersections of the scanning lines 182 and the printing lines 183.
  • the dots exemplified in FIG. 9A are printed without deviation from the intersection of the scanning line 182 and the printing line 183, and have a uniform size. Such a dot pattern can be printed by the printing element 181 having uniform printing characteristics based on uniform input image data.
  • FIG. 9B is a graph plotting the average print density in the scanning direction calculated for the dot pattern in FIG. 9A along the path along the scanning direction (Y direction) of the print head 18.
  • the horizontal axis indicates the position in the X direction.
  • the vertical axis represents the print density.
  • the points A to E on the horizontal axis correspond to the positions in the X direction of the scanning lines 182a to 182e.
  • the average print density in the scanning direction at point A is calculated using the scanning line 182a as a path.
  • the spatial frequency in the X direction of the dot pattern of FIG. 9A is calculated by analyzing the frequency spectrum of the waveform of FIG. 9B.
  • the spatial frequency spectrum in the X direction of the dot pattern of FIG. 9A is composed of, for example, frequency components mainly determined with the interval between the scanning lines 182 as a period, and in a frequency band in which the contrast sensitivity of the human eye in the CSF characteristics is low as a whole included.
  • the dot pattern of FIG. 9A appears as a solid pattern having a uniform density in the X direction, like the apparent density indicated by the broken line in FIG. 9B.
  • the frequency determined with the interval between the print lines 183 as a period is included in a frequency band in which the contrast sensitivity of the human eye is low, it appears as a solid pattern with uniform density.
  • the correction data included in the printing characteristics of each printing element 181 may vary due to various causes.
  • the printing element 181 may cause variation in dot printing positions due to an error in the arrangement position of the printing elements 181.
  • the print density may vary due to dot size variations caused by variations in the amount of ink droplets. The cause of the variation in the correction data is not limited to the above.
  • the printing result may include a variation.
  • the dots to be printed are printed.
  • the print position of is not uniform.
  • the dot printing position in FIG. 10A shifts to the left with respect to the scanning line 182b and approaches the scanning line 182a, and shifts to the right with respect to the scanning line 182d and approaches the scanning line 182e. That is, the print result illustrated in FIG. 10A appears to have a streak defect along the scanning direction.
  • FIG. 10B is a graph in which the average print density in the scanning direction calculated for the dot pattern illustrated in FIG. 10A along the path along the scanning direction (Y direction) of the print head 18 is plotted.
  • the horizontal and vertical axes are the same as in FIG. 9B.
  • the spatial frequency in the X direction of the dot pattern of FIG. 10A is calculated by analyzing the frequency spectrum of the waveform of FIG. 10B.
  • the spatial frequency spectrum in the X direction of the dot pattern in FIG. 10A is a frequency determined by a frequency component determined with the interval between the scanning lines 182 as a period, and a variation caused by variations in the printing position of the dots printed on each scanning line 182. And ingredients.
  • the frequency component determined with the interval between the scanning lines 182 as a period is included in a frequency band in which the contrast sensitivity of the human eye in the CSF characteristic is low.
  • the dot pattern in FIG. 10A appears to be a pattern having a density distribution such as an apparent density indicated by a broken line in FIG. 10B in the X direction. That is, the dot pattern illustrated in FIG. 10A seems to have a relatively high density at points A and E and a relatively low density at points B and D in the X direction.
  • the dot pattern of FIG. 10A appears to have a low density streak defect at a position along the scanning direction between points B and C and between points C and D.
  • the dot pattern in FIG. 10A appears to have a high-density streak defect at a position along the scanning direction between points A and B and between points D and E.
  • the apparent density indicated by the broken line can be calculated by applying an LPF having a frequency characteristic considering the CSF characteristic to the scanning direction average print density indicated by the solid line.
  • an LPF having a frequency characteristic considering the CSF characteristic By applying the LPF to the scanning direction average print density, a noise component included in the scanning direction average print density can be removed.
  • the apparent density can also be calculated by calculating a moving average in which a predetermined section is set for the average print density in the scanning direction.
  • the predetermined interval is set to an interval between the scanning lines 182.
  • the noise component included in the scanning direction average print density can also be removed by calculating the moving average for the scanning direction average print density.
  • the average print density in the scanning direction exemplified in FIG. 10B can be acquired from the print result of the input image data predicted to appear to be a uniform density, for example.
  • the input image data in which the print result is predicted to appear to have a uniform density is, for example, test pattern data including a uniform pixel array.
  • the printing apparatus 1 causes the reading apparatus 30 to read a printing result printed on the printing medium 20 based on input image data including a uniform pixel arrangement.
  • the printing apparatus 1 can calculate the average print density in the scanning direction from the reading result acquired from the reading apparatus 30.
  • the print density measured from the actual print result is also referred to as a print density measurement result.
  • the printing apparatus 1 may predict the printing density of the printing result on the printing medium 20 based on the printing characteristics of each printing element 181 and the input image data.
  • the predicted print density is also called a print density prediction result.
  • the control unit 10 of the printing apparatus 1 can generate control information for each printing element 181 so as to include data for correcting the printing result.
  • the print result may be a print density measurement result or a print density prediction result.
  • the print density measurement result or the print density prediction result is also referred to as a pre-correction print density. If the print result is different from the result predicted from the input image data, for example, the uniform density as shown in FIG. It can correspond to the case where it is not visible.
  • the control unit 10 determines each printing element based on the correction data related to the printing position of the dot of each printing element 181. Control information for 181 may be generated. In this case, the control unit 10 may set the correction gain as the predetermined coefficient (a) of the multiplier 51 in the conversion block of FIG.
  • the correction gain set in the conversion of the pixels printed by the printing element 181 is also referred to as the correction gain of the printing element 181.
  • the dots along the scanning line 182b printed by the printing element 181b are shifted to the left so as to approach the scanning line 182a.
  • the apparent density at point A is relatively high.
  • the apparent density at point B is relatively low.
  • the printing apparatus 1 generates control information that causes the printing element 181b or the printing element 181c to print a dot having a size larger than the dot based on the input pixel data so that the printing result appears to have a uniform density to the human eye. You can do it.
  • the printing apparatus 1 corresponds to the printing element 181b or the printing element 181c by setting a correction gain when inputting input pixel data of the pixel corresponding to the printing element 181b or the printing element 181c to the multiplier 51 as a> 1.
  • Output pixel data of the pixel is generated.
  • the printing apparatus 1 may generate control information that causes the printing element 181a to print dots having a size smaller than the dots based on the input pixel data.
  • the printing apparatus 1 generates output pixel data of the pixel corresponding to the printing element 181a by setting the correction gain when inputting the input pixel data of the pixel corresponding to the printing element 181a to the multiplier 51 as a ⁇ 1. .
  • the dots along the scanning line 182d printed by the printing element 181d are shifted to the right so as to approach the scanning line 182e.
  • the apparent density at point E is relatively high.
  • the apparent density at point D is relatively low.
  • the printing apparatus 1 generates control information that causes the printing element 181c or the printing element 181d to print a dot having a size larger than the dot based on the input pixel data so that the printing result looks uniform in human eyes. You can do it.
  • the printing apparatus 1 corresponds to the printing element 181c or the printing element 181d by setting a correction gain when inputting the input pixel data of the pixel corresponding to the printing element 181c or the printing element 181d to the multiplier 51 as a> 1.
  • Output pixel data of the pixel is generated.
  • the printing apparatus 1 may generate control information that causes the printing element 181e to print dots having a size smaller than the dots based on the input pixel data.
  • the printing apparatus 1 generates output pixel data of a pixel corresponding to the printing element 181e with a correction gain a ⁇ 1 when the input pixel data of the pixel corresponding to the printing element 181e is input to the multiplier 51.
  • the correction gain setting method may be based on the print density caused by the shift of the dot print position.
  • the correction gain is set according to the target value of the print density obtained after correction.
  • the print density target value is also referred to as a target density.
  • the target density may be a print density when there is no difference between a print result predicted based on control information for each print element 181 and an actual print result by each print element 181.
  • the target density may be the average print density in the scanning direction or the average value of the apparent density at each position in the X direction.
  • the target density may be a value that matches the maximum or minimum value of the average print density in the scanning direction or the apparent density.
  • the target density may be set to a value that is equal to or greater than the maximum value of the apparent density.
  • the target density may be an arbitrary value as well as the above value.
  • the target density is set to a value obtained by adding a density offset to the average density obtained by averaging the apparent density at each position in the X direction, as shown in FIG. 11, for example.
  • Adding a density offset to the target density is also referred to as a target density offset.
  • the target density, the average density, and the apparent density are indicated by a solid line, an alternate long and short dash line, and a broken line, respectively.
  • the density offset may be calculated as the maximum value of the difference between the average density and the apparent density before averaging.
  • the target density set in this way is equal to or higher than the apparent density at any position in the X direction.
  • the density offset may be set according to the amplitude of the waveform of the difference between the waveform of the averaged density and the waveform of the apparent density before averaging.
  • the calculation of the apparent density by applying LPF to the average print density in the scanning direction is a kind of averaging.
  • the calculation of the average print density in the scanning direction from the pre-correction print density is a kind of averaging.
  • the calculation of the average density from the apparent density is a kind of averaging. That is, the average density can be calculated by averaging the print density before correction.
  • the printing apparatus 1 sets a correction gain for generating output pixel data of the printing element 181b corresponding to the point B to a value larger than 1. As with point B, the printing apparatus 1 also sets the correction gain to a value greater than 1 for points C and D where the apparent density is lower than the target density.
  • the apparent density at point A is substantially equal to the target density. In this case, the printing apparatus 1 sets the correction gain for generating output pixel data related to the printing element 181a corresponding to the point A to 1. Similarly to the point A, the printing apparatus 1 sets the correction gain to 1 for the point E whose apparent density is substantially equal to the target density.
  • the correction gain can be set as shown in FIG.
  • the horizontal axis of the graph in FIG. 12 indicates the position in the X direction.
  • the vertical axis of the graph in FIG. 12 indicates the correction gain.
  • a line with a correction gain of 1 is indicated by a one-dot chain line.
  • the setting example of the correction gain corresponding to the target density shown in FIG. 11 is indicated by a solid line as a case where there is an offset. In this case, the correction gain is set to a value of 1 or more at any position in the X direction.
  • the correction gain is set to a value of 1 or more for the printing element 181 corresponding to any position in the X direction.
  • the target density is set to the average density.
  • the apparent density at point B is lower than the target density.
  • the apparatus according to the comparative example sets the correction gain of the printing element 181b to a value larger than 1.
  • the apparent density at point A is higher than the target density.
  • the apparatus according to the comparative example sets the correction gain of the printing element 181a to a value smaller than 1.
  • the correction gain set corresponding to the target density shown in FIG. 13 is illustrated with a broken line in FIG. In this case, the correction gain is larger than 1 or smaller than 1 depending on the position in the X direction. In the comparative example, the correction gain is set to a value smaller than 1 for at least a part of the printing element 181.
  • the size of the dots printed by the printing element 181 may be smaller than the size without correction.
  • the dot size is reduced, the interval between adjacent dots printed is increased.
  • the dot pattern printed in this way may have high contrast sensitivity. As a result, graininess tends to appear in the printing result.
  • the printing apparatus 1 can generate output image data that is corrected so that graininess is less likely to appear in the printing result as compared with the apparatus according to the comparative example.
  • the control unit 10 of the printing apparatus 1 prints a test pattern on the printing medium 20 (step S1).
  • the test pattern printing result includes information related to printing characteristics of each printing element 181.
  • the control unit 10 acquires the density distribution of the test pattern printing result from the reading device 30 (step S2).
  • the reading device 30 reads the density distribution of the test pattern printing result from the printing medium 20 and outputs the density distribution to the control unit 10.
  • the control unit 10 may store the acquired concentration distribution in the storage unit 12.
  • the control unit 10 averages the concentration distribution (step S3).
  • the density distribution is represented, for example, as an average print density in the scanning direction shown in FIG. 10B.
  • the average print density in the scanning direction is expressed as a combined waveform of a fluctuation component caused by a variation in the size of dots printed on each scanning line 182 and a fluctuation component having a period between the scanning lines 182 as a cycle.
  • the control unit 10 analyzes the spatial frequency spectrum in the X direction for the average print density in the scanning direction of FIG. 10B, and calculates the apparent density by filtering based on the CSF characteristics. Filtering based on CSF characteristics is a kind of averaging.
  • the control unit 10 averages the apparent density to calculate the average density.
  • the averaging of the apparent density may be, for example, simply calculating an average value of the apparent density over each position in the X direction.
  • the averaging of the apparent density may be a moving average calculation using a predetermined interval.
  • the predetermined section is, for example, an interval between the scanning lines 182, but is not limited thereto, and may be determined as appropriate.
  • the averaging of the apparent density may use other averaging algorithms.
  • the control unit 10 calculates a target density by adding a density offset to the averaged density (step S4).
  • the density offset is set to a predetermined value, for example.
  • the target density is calculated by adding a predetermined value to the average density corresponding to each position in the X direction.
  • the predetermined value is set to a value such that the target density is equal to or higher than the apparent density.
  • the control unit 10 calculates the correction gain of each printing element 181 (step S5).
  • the correction gain of the printing element 181b corresponding to the point B is set to a value larger than 1.
  • the correction gain of the printing element 181a corresponding to the point A is set to 1.
  • the relationship between the correction gains of the printing elements 181a to 181e corresponding to the points A to E is (B point, D point)> (C point)> (A point, E point).
  • the correction gains of the printing elements 181a and 181e are set to 1, the correction gains of the printing elements 181 are all set to 1 or more.
  • the control part 10 complete finishes the procedure of the flowchart of FIG. 14 after step S5.
  • the control unit 10 applies the correction gain of each printing element 181 calculated in the procedure of the flowchart of FIG. 14 to the multiplier 51 of the conversion block of FIG. By applying the correction gain to the generation of the output pixel data, the output image data can be corrected according to the printing characteristics of the printing element 181.
  • the correction gain of each printing element 181 is set to be 1 or more. By doing so, it is difficult for the graininess to appear in the print result obtained by applying the correction gain.
  • the size of the diffusion filter can be indicated by the range affected by the diffusion filter.
  • the diffusion filter illustrated in FIG. 8 affects the first to fifth. It can be said that the size of the diffusion filter illustrated in FIG. 8 is five pixels in the X direction.
  • the LPF considering the size of the diffusion filter is designed to affect the same range as the diffusion filter.
  • the LPF takes into account the size of the diffusion filter of FIG.
  • the LPF is designed to affect five pixels in the X direction when applied to the waveform of the print density before correction.
  • the waveform of the print density before correction indicated by the solid line is a waveform from which the high-frequency noise component has been removed.
  • the influence of the high-frequency noise component affects the averaging of the print density before correction.
  • the density offset can be a large value compared to the case where there is no high frequency noise component. By removing the high frequency noise component from the waveform of the print density before correction, the density offset can be suppressed to a smaller value.
  • the printing apparatus 1 according to the present embodiment can remove high-frequency noise components by applying an LPF that considers the size of the diffusion filter to the waveform of the print density before correction.
  • the printing apparatus 1 according to the present embodiment can suppress the density offset to a smaller value as compared with the case where the density offset is set as in the first embodiment.
  • the application range of the LPF that leads to a reduction in the sharpness of the output image data can be limited by applying the LPF in consideration of the size of the diffusion filter. As a result, the reduction in sharpness can be suppressed.
  • the correction gain applied in the multiplier 51 of the transform block in FIG. 5 can be handled as having a spatial distribution corresponding to each pixel.
  • the LPF considering the size of the diffusion filter can be applied not only to the waveform of the print density before correction but also to the waveform indicating the spatial distribution of the correction gain. By doing so, the noise component can be removed from the correction gain even after the correction gain is calculated while the noise component is included in the waveform of the print density before correction.
  • the correction gain can be represented as a waveform having a spatial distribution in the X direction.
  • a waveform indicated by a broken line is an example of a waveform including a noise component, and is before applying the LPF.
  • the noise component can affect the correction gain applied to the multiplier 51 of the transform block in FIG. 5 and the output pixel data generated by the transform block.
  • a waveform indicated by a solid line is an example of a waveform from which noise components are removed by applying LPF. By removing the noise component, the influence on the output pixel data generated by the transform block can be suppressed.
  • the printing apparatus 1 handles the correction gain applied to the generation of output pixel data by the conversion block as having a spatial distribution corresponding to each pixel.
  • an LPF in consideration of the size of the diffusion filter is applied.
  • the printing apparatus 1 can limit the application range of the LPF that leads to a decrease in the sharpness of the output image data by applying the LPF in consideration of the size of the diffusion filter. As a result, the reduction in sharpness can be suppressed.
  • the correction gain is not applied to high-frequency components above the cutoff frequency of error diffusion filtering even when applied to conversion based on the error diffusion method. For this reason, even if the LPF is applied to the correction gain, the conversion is hardly affected.
  • the correction gain can be set so as to eliminate the distribution of the print density generated according to the shift of the print position of the dots of the print element 181. There are several methods for selecting the printing element 181 for which the correction gain is set.
  • the printing apparatus 1 uses the printing element to eliminate a portion having a low printing density distributed along the scanning direction between the points B and C in FIG. 10B.
  • the weight of the correction gain set to 181c may be increased.
  • the printing apparatus 1 may increase the weight of the correction gain of the printing element 181b.
  • the filter 55 can be realized by applying a diffusion filter to the image data.
  • the LPF considering the size of the diffusion filter can be applied to the waveform of the print density before correction or the waveform indicating the spatial distribution of the correction gain. Similar to the diffusion filter, the LPF has a filter coefficient corresponding to the horizontal position of the pixel in the image data.
  • the distribution of filter coefficients of LPF is illustrated in FIG. In FIG. 17, the horizontal axis indicates the position in the left-right direction of the pixel handled in the conversion. The vertical axis indicates the filter coefficient corresponding to each position.
  • the distribution of the filter coefficients of the LPF is such that the filter coefficient has a maximum value at the center position in the left-right direction, as indicated by a solid diamond and a solid line in FIG. 17, for example.
  • the filter coefficient having the maximum value at the center position is also referred to as a filter coefficient without a center position shift.
  • an LPF having a filter coefficient without a center position shift hardly affects the distribution in the left-right direction of data relating to each pixel.
  • the LPF filter coefficient distribution may be such that the position at which the filter coefficient takes a maximum value is shifted to the left, as shown by the hollow diamond and the broken line in FIG.
  • a filter coefficient having a maximum value at a position shifted from the center position is also referred to as a filter coefficient having a center position shift.
  • an LPF having a filter coefficient with a center position shift can affect the distribution in the left-right direction of data relating to each pixel. For example, as shown in FIG. 17, when an LPF having a filter coefficient having a center position shift is applied to the waveform of the print density before correction, the LPF shifts the waveform to the left as a whole.
  • the waveform of the spatial distribution of the correction gain shifts to the left in accordance with the shift to the left of the waveform of the print density before correction. That is, the correction gain application position shifts to the left.
  • an LPF having a filter coefficient having a center position shift is applied to a waveform indicating the spatial distribution of the correction gain, the application position of the correction gain is shifted to the left side.
  • an LPF having a filter coefficient having a center position shift on the left side as shown in FIG. 17 can be applied to image data.
  • the correction gain for eliminating the print density distribution between the points B and C may be set so that the weight for the print element 181b is increased, or set so that the weight for the print element 181c is increased. May be.
  • the weight of the printing element 181 corresponding to the left pixel increases. That is, the weight for the correction gain set for the left printing element 181b is larger than the correction gain set for the right printing element 181c.
  • the printing apparatus 1 can apply an LPF having a filter coefficient with a center position shift to image data. In this way, when the output image data is corrected, the printing element 181 to which the correction gain is applied can be selected.
  • the position where the filter coefficient takes the maximum value may shift to the right side.
  • an LPF having a filter coefficient having a center position shift on the left side is applied to image data to which such a diffusion filter is applied
  • an error diffusion bias to the right pixel due to the diffusion filter can be compensated. That is, the printing apparatus 1 according to the present embodiment can compensate for the characteristic that error diffusion to the right pixel becomes large in conversion such as an error diffusion method. By doing so, correction of image data by conversion such as an error diffusion method can be performed more appropriately.
  • an increase in graininess can be reduced while correcting the print density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Ink Jet (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

印画装置(1)は、ドットを印画する複数の印画素子(181)を有する印画部(14)と、入力画像データに基づいて、印画部(14)を制御する制御部(10)とを備える。制御部(10)は、一様な画素の配列を含むテストパターンデータと、印画素子(181)のドットの印画位置の印画特性とに基づく補正前印画濃度を取得する。制御部(10)は、補正前印画濃度を平均化した目標濃度を算出し、目標濃度が補正前印画濃度以上となるように目標濃度をオフセットする。制御部(14)は、補正前印画濃度に対する目標濃度の比に基づいて、印画素子(181)の補正ゲインを算出し、補正ゲインと入力画像データとに基づいて印画部(14)を制御する。

Description

印画装置及び画像補正方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2016-127436号(2016年6月28日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、印画装置及び画像補正方法に関する。
 印画素子を備える印画装置において、テストパターン印画結果に基づいて、印画濃度が一様になるように、各印画素子が印画するドットのサイズを補正する構成が知られている(例えば、特許文献1参照)。
特開平4-18363号公報
 本開示の一実施形態に係る印画装置は、ドットを印画する複数の印画素子を有する印画部を備える。前記印画装置は、入力画像データに基づいて、前記印画部を制御する制御部を備える。前記制御部は、一様な画素の配列を含むテストパターンデータと、前記印画素子のドットの印画位置の印画特性とに基づく補正前印画濃度を取得する。前記制御部は、前記補正前印画濃度を平均化した目標濃度を算出する。前記制御部は、前記目標濃度が前記補正前印画濃度以上となるように前記目標濃度をオフセットする。前記制御部は、前記補正前印画濃度に対する前記目標濃度の比に基づいて、前記印画素子の補正ゲインを算出する。前記制御部は、前記補正ゲインと前記入力画像データとに基づいて前記印画部を制御する。
 本開示の一実施形態に係る画像補正方法は、印画装置の画像補正方法である。前記印画装置は、ドットを印画する複数の印画素子を有する印画部を備える。前記印画装置は、入力画像データに基づいて、前記印画部を制御する制御部を備える。前記画像補正方法は、前記制御部が、一様な画素の配列を含むテストパターンデータと、前記印画素子のドットの印画位置の印画特性とに基づく補正前印画濃度を取得するステップを含む。前記画像補正方法は、前記制御部が、前記補正前印画濃度を平均化した目標濃度を算出するステップを含む。前記画像補正方法は、前記制御部が、前記目標濃度が前記補正前印画濃度以上となるように前記目標濃度をオフセットするステップを含む。前記画像補正方法は、前記制御部が、前記補正前印画濃度に対する前記目標濃度の比に基づいて、前記印画素子の補正ゲインを算出するステップを含む。前記画像補正方法は、前記制御部が、前記補正ゲインと前記入力画像データとに基づいて前記印画部を制御するステップを含む。
実施形態1に係る印画装置の概略構成例を示す機能ブロック図である。 印画ヘッドの構成例を示す図である。 印画ヘッドの構成例を示す図である。 印画媒体に格子状に印画されたドットパターンの一例を示す図である。 図3のドットパターンの走査方向平均印画濃度を示すグラフである。 画像データの変換の一例を示すブロック図である。 量子化器の入力値と出力値との関係の一例を示すグラフである。 拡散マトリクスの一例を示す図である。 図7に対応する拡散フィルタのフィルタ係数を示すグラフである。 印画素子が一様な印画特性を有する場合に印画されたドットパターンの一例を示す図である。 図9Aのドットパターンの印画濃度分布を示すグラフである。 印画素子がばらついた印画特性を有する場合に印画されたドットパターンの一例を示す図である。 図10Aのドットパターンの印画濃度分布を示すグラフである。 実施形態1に係る印画装置の目標濃度の設定例を示すグラフである。 補正ゲインの設定例を示すグラフである。 比較例に係る装置の目標濃度の設定例を示すグラフである。 実施形態1に係る画像補正方法の例を示すフローチャートである。 補正前印画濃度の波形に対するLPFの適用例を示すグラフである。 補正ゲインの空間分布を示す波形に対するLPFの適用例を示すグラフである。 LPFのフィルタ係数の一例を示すグラフである。
 印画されるドットのサイズを印画濃度が一様になるように補正すると、印画濃度が相対的に高い印画素子により印画されるドットは、サイズが小さくなるように補正されることがある。印画されるドットのサイズが小さくなると、印画結果の粒状感が増大することがある。本実施形態は、印画の粒状感を改善する。
(実施形態1)
 図1に示されるように、本実施形態に係る印画装置1は、制御部10と、記憶部12と、印画部14とを備える。印画装置1は、印画部14によって印画媒体20に印画する。印画装置1は、読取装置30に、印画媒体20における印画結果を読み取らせる。印画装置1は、読取装置30から読取結果を取得する。
 制御部10は、記憶部12又は外部装置から、入力画像データを取得する。制御部10は、外部装置から取得した入力画像データを記憶部12に格納してよい。制御部10は、入力画像データに基づいて、印画部14に対して、印画媒体20に印画させるための制御情報を出力する。制御部10は、アプリケーションソフトウェアを実行可能なプロセッサまたはマイクロコンピュータ等により構成することができる。
 記憶部12は、半導体メモリ等で構成することができる。記憶部12には、各種情報、又は印画装置1を動作させるためのプログラム等が格納される。記憶部12は、制御部10のワークメモリとして機能してもよい。
 印画部14は、印画媒体搬送部16と、印画ヘッド18とを備える。印画部14は、制御部10からの制御情報に基づいて、印画媒体搬送部16と印画ヘッド18とを制御し、印画媒体20に印画する。
 印画媒体搬送部16は、印画媒体20を印画装置1の内部に取り込み、制御部10からの制御情報に応じて印画媒体20の位置を制御する。印画媒体搬送部16は、印画媒体20を所定の方向に沿って搬送することができるように構成されうる。所定の方向は、1つの方向であってよいし、2つ以上の方向であってよい。
 印画ヘッド18は、制御部10からの制御情報に基づいて、印画媒体20に対して印画する。印画ヘッド18は、印画素子181を備える。印画ヘッド18は、印画素子181を制御して、印画媒体20に対してドットを印画する。ドットの形状は、例えば円であるが、これに限られず、他の形状であってよい。印画素子181は、例えば、印画媒体20に対してインクを吐出して印画する。印画素子181は、例えば、印画媒体20に対して熱によってインクを転写して印画する。印画素子181は、その他の種々の方法により、印画媒体20に対して印画してよい。印画素子181は、印画媒体20を変質させることにより印画媒体20に対して印画してよい。
 印画素子181は、印画ヘッド18の長手方向に沿って配列される。印画素子181は、例えば、印画媒体20の幅と同じ範囲にわたって配列される。印画素子181は、印画媒体20の幅よりも長い範囲にわたって配列されてよい。印画素子181は、印画媒体20の幅よりも短い範囲に配列されてよい。
 印画素子181は、図2Aに示されるように、一列に配列されてよい。図2Aにおいて、印画素子181a~181eは一列に配列される。以下、印画素子181a~181eを区別しない場合、印画素子181a~181eは、単に印画素子181と総称される。印画素子181の数は、5個に限られず、4個以下であってよいし、6個以上であってよい。
 印画素子181は、図2Bに示されるように、複数行にまたがって、各行において所定距離ずつずらして配列されてよい。印画装置1は、印画ヘッド18と印画媒体20との相対位置を印画ヘッド18の短手方向にずらしながら、印画素子181a及び181dの組と、印画素子181b及び181eの組と、印画素子181cとを順次動作させる。このようにすることにより、印画素子181a~181eに対応する5つのドットが、印画素子181の配列ピッチより狭いピッチで一列に印画されうる。
 印画部14は、印画ヘッド18を印画媒体20に対して走査させつつ、印画媒体20に順次印画する。印画部14は、印画媒体20に印画する際、印画ヘッド18の位置を固定して、印画媒体20のみを移動させてよい。印画部14は、印画媒体20に印画する際、印画媒体20の位置を固定して、印画ヘッド18を移動させてよい。または、印画部14は、印画媒体20に印画する際、印画ヘッド18と印画媒体20とを共に移動させてよい。
 印画媒体20は、印画ヘッド18の印画方式に応じて適宜選択されうる。印画媒体20は、例えば紙で構成されるが、これに限られず、樹脂等の他の材質、又は複数の材質で構成されてよい。印画媒体20は、ロール状又はシート状であってよいし、他の形状であってよい。印画媒体20は、矩形であってよいし、円又は楕円等のその他の形状であってよい。
 読取装置30は、読み取り対象物に光を照射する光源と、読み取り対象物からの反射光又は散乱光を受光するセンサとを備える。読取装置30は、印画媒体20から印画結果を読み取ることができる。読取装置30は、読取結果を印画装置1に出力する。読取結果は、印画結果の濃度分布に係る情報を含む。
 印画素子181は、印画特性を有する。印画素子181の印画特性は、印画素子181によって印画されるドットにより表現可能な濃度の階調に係るデータを含む。濃度の階調は、例えばドットの大きさにより定められる。濃度の階調は、ドットの印画配列により定められてよい。
 印画特性は、制御部10から出力される制御情報に基づいて予測される印画結果と、実際の印画結果との差異を示す補正データを含む。補正データは、ドットの印画位置を有してよい。ドットの印画位置の補正データは、制御情報から予測されるドットの印画位置と比較して、どの程度ずれた位置にドットが印画されるかを規定する。補正データは、印画されるドットのサイズを有してよい。ドットサイズの補正データは、制御情報から予測されるドットサイズと比較して、どの程度サイズの異なるドットが印画されるかを規定する。
 補正データは、印画媒体20に印画されたテストパターンから取得されうる。印画装置1は、入力画像データとしてテストパターンデータを取得し、印画媒体20にテストパターンを印画する。印画装置1は、読取装置30に、印画されたテストパターンを読み取らせ、テストパターンの読取結果を取得する。印画装置1は、テストパターンの読取結果を解析して、各印画素子181の補正データを取得する。各印画素子181の補正データは、テストパターンデータの印画結果から取得される、各印画素子181の検査データであるともいえる。
 テストパターンは、各印画素子181の補正データを取得するための印画パターンを含む。例えば、テストパターンは、各印画素子181のドットの印画位置のずれを測定できるパターンを含んでよい。ドットの印画位置のずれを測定できるパターンは、例えば、座標を示すパターンを含んでよい。印画装置1は、ドットの印画位置のずれを測定できるパターンの読取結果から、各印画素子181で印画されるドットの位置と、制御情報から予測される位置との差異を算出しうる。ドットの印画位置は、印画されたドットパターンの濃度分布から取得されてよい。ドットの印画位置は、印画位置を測定可能な目盛りを有するパターンの印画結果から取得されてよい。ドットの印画位置の取得方法としては、他の種々の方法が用いられうる。
 テストパターンは、各印画素子181のドットのサイズを測定できるパターンを含んでよい。ドットのサイズを測定できるパターンは、例えば、目盛りを示すパターンを含んでよい。印画装置1は、ドットのサイズを測定できるパターンの読取結果から、各印画素子181で印画されるドットのサイズと、制御情報から予測されるサイズとの差異を算出しうる。ドットサイズは、印画されたドットパターンの濃度を測定することにより取得されてよい。ドットサイズは、単独で印画されたドットを顕微鏡等で直接測定することにより取得されてよい。ドットサイズの取得方法としては、他の種々の方法が用いられうる。
 印画装置1は、印画媒体20及び読取装置30の少なくとも一方を備える構成とされてよい。この場合、印画装置1は、テストパターンの印画と印画結果の読み取りとを内部で実行でき、外部装置を用いずに、印画素子181の補正データを取得しうる。
 印画装置1が取得する入力画像データは、例えばビットマップ形式であるが、その他の形式であってよい。本実施形態に係る印画装置1は、ビットマップ形式等の格子状に配列された画素からなる入力画像データを取得するものとする。本実施形態に係る印画装置1は、例えば、入力画像データに基づいて、ドットが印画媒体20に格子状に配列されるように印画する。印画装置1により印画されるドットの配列は、格子状の配列に限られず、ランダム性を有する配列であってよい。印画装置1は、印画媒体20にドットの集合を印画することにより、入力画像データに対応する印画結果を形成する。
 図3に示されるように、ドットは、X軸方向及びY軸方向に延在する一点鎖線により構成される格子の交点に印画されてよい。X軸方向及びY軸方向はそれぞれ、X方向及びY方向ともいう。
 図3に例示されるドットパターンは、人間の目で見たときドットのサイズ及び配列間隔に応じて異なるパターンに見えることがある。例えば、ドットのサイズに対して配列間隔が広い場合に、各ドットが判別可能に見えることがある。ドットのサイズに対して配列間隔が狭い場合に、各ドットが判別可能ではなく、一様な濃度のベタ塗りパターンに見えることがある。ドットのサイズ及び配列間隔からは、ドットパターンの空間周波数が定められる。言い換えれば、ドットパターンは、人間の目で見たとき空間周波数に応じて異なるパターンに見えることがある。
 人間の目でのドットパターンの見え方は、人間の目のコントラスト感度特性によって評価可能である。コントラスト感度特性は、CSF(Contrast Sensitivity Function)特性ともいう。CSF特性は、ドットパターンの空間周波数と、人間の目のコントラスト感度との関係を示す。
 ドットパターンの空間周波数が人間の目のコントラスト感度が高くなる周波数帯にある場合、ドットパターンによる印画濃度の変動が判別されやすい。この場合、ドットが個別に判別可能なように見えやすくなる。このような見え方は、粒状感があるとも表現される。
 ドットパターンの空間周波数が人間の目のコントラスト感度が低い周波数帯にある場合、ドットパターンによる印画濃度の変動が判別されにくい。この場合、ドットパターンは、ドットが個別に判別可能ではなく、一様な濃度のベタ塗りパターンに見えやすい。このような見え方は、粒状感がない又は粒状感が少ないとも表される。一般的には、ドットパターンの空間周波数が所定の周波数帯に含まれる場合、ドットパターンによる印画濃度の変動は判別されやすい。一方で、ドットパターンの空間周波数が所定の周波数帯に含まれない場合、つまり、空間周波数が所定の周波数帯より低い周波数帯又は所定の周波数帯より高い周波数帯に含まれる場合、ドットパターンによる印画濃度の変動は判別されにくい。
 ドットパターンの空間周波数は、例えば図3のX方向及びY方向それぞれについて二次元的に算出されてよい。ドットパターンの空間周波数は、ドットパターン内のある一列のドットについて一次元的に算出されてよい。本実施形態においては、図3のY方向に配列されるドットの平均印画濃度から、ドットパターンのX方向の配列に対する空間周波数を算出する。
 図4に示されるように、図3のドットパターンについて、Y方向の平均印画濃度は、X方向の位置に応じて変化する。図4において、横軸はX方向の位置を示す。縦軸はY方向の平均印画濃度を示す。印画濃度は、ドットの配列に対応した分布を有する。ドットの配列の中心をY方向に通過する線に沿って算出される平均印画濃度は、図4のグラフにおいて極大値を示す。ドットの配列の中心をY方向に通過する線は、図3において一点鎖線で示される。一方で、ドットが印画されていない部分をY方向に通過する線に沿って算出される平均印画濃度は、図4のグラフにおいて極小値を示す。ドットが印画されていない部分をY方向に通過する線は、図3で図示されていない。図3によれば、X方向の所定の幅にわたって、ドットが印画されていない部分が存在する。ドットが印画されていない部分の平均印画濃度は、所定の幅にわたって同一の極小値となりうる。平均印画濃度が所定の幅にわたって同一の極小値となる場合、平均印画濃度の極小値の近傍のグラフは、一定値を示す直線として示されうる。読取装置30で印画結果を読み取る際の分解能によっては、図4に示されるように、平均印画濃度の極小値の近傍のグラフは、曲線として示される。
 図4に示される平均印画濃度の波形を周波数スペクトル解析することにより、図3のドットパターンのX方向の空間周波数が算出される。算出された空間周波数が、CSF特性において、人間の目にとってコントラスト感度が高い周波数帯に含まれる場合、人間の目で見たときに図4の平均印画濃度の極大値に対応するドットと極小値に対応するドットとが判別可能である。つまり、図3のドットパターンは、各ドットが判別可能に見える。算出された空間周波数が、CSF特性において、人間の目にとってコントラスト感度が低い周波数帯に含まれる場合、人間の目にとって図4の平均印画濃度の極大値に対応するドットと極小値に対応するドットとが判別可能ではなくなる。この場合、ドットパターンは、図4に破線で示される見かけの濃度のように、一様な印画濃度のベタ塗りパターンが印画されているように見える。
 ドットパターンの空間周波数を定めるドットのサイズ及び配置間隔は、印画装置1によって所定の範囲で変更されてよい。ドットのサイズは、印画素子181から吐出されるインク量等を制御することによって変更されうる。ドットの配置間隔は、印画ヘッド18に設けられる印画素子181の配置間隔によって決定されうる。ドットの配置間隔は、印画ヘッド18と印画媒体20との相対位置を印画素子181の配列方向に制御することによっても変更されうる。
 印画装置1は、入力画像データに対する印画結果の再現度を高めるために、印画素子181の印画特性に基づいて、入力画像データを出力画像データに変換する。印画素子181によって印画されるドットで表現可能な階調数が入力画像データの階調数よりも少ない場合、印画装置1は、階調数を少なくする減色により出力画像データを生成する。減色は、例えば、誤差拡散法等が用いられてよい。出力画像データを生成する際の処理は、減色に限られない。印画装置1は、例えば、印画速度を速くするような出力画像データを生成してよい。印画速度は、単位時間当たりに印画されるドットの数ともいえる。印画装置1は、ユーザによる画像変換の設定、例えば、明度若しくは彩度等の設定、又は、画像の鮮鋭度の設定等に応じて、出力画像データを生成してよい。制御部10は、生成した出力画像データを記憶部12に格納してよい。
 減色の対象となる画像データがモノクロ画像である場合、黒の濃度の階調数が減少されてよい。減色の対象となる画像データがカラー画像である場合、例えば、シアン、マゼンタ、イエロー等の色を含む印画の原色それぞれの濃度の階調数が減少されてよい。
 図5に示されるように、画像データを変換するブロックは、乗算器51と、第1演算器52と、量子化器53と、第2演算器54と、フィルタ55とを備える。画像データを変換するブロックは、変換ブロックともいう。第1演算器52及び第2演算器54はそれぞれ、例えば加算器で構成されてよい。変換ブロックの各構成部の機能は、制御部10で実行されうる。変換ブロックの各構成部は、個別の構成要素として実装されてよい。
 制御部10は、変換ブロックで入力画像データの画素を1画素ずつ順次、出力画像データの画素に変換する。入力画像データの1画素分は、uとして示される。以下、入力画像データの1画素分のことを、入力画素データともいう。出力画像データの1画素分は、yとして示される。以下、出力画像データの1画素分のことを、出力画素データともいう。制御部10は、入力画像データの左上隅の画素から順次右へ向かって画素を変換するものとする。右端の画素まで変換された後、制御部10は、1つ下の行について左から右へ向かって画素を変換する。制御部10は、右下隅の画素まで順次、画素を変換する。制御部10は、他の順番で画素を変換してよい。
 乗算器51は、入力画素データに所定の係数を乗じて出力する。所定の係数は、aとして表される。所定の係数は、補正ゲインともいい、正の実数である。補正ゲインは、後述する濃度分布補正により定められる。
 第1演算器52は、乗算器51の出力と、フィルタ55の出力との差を出力する。フィルタ55の出力は、乗算器51に入力された入力画素データより前に処理された、他の入力画素データに対する誤差拡散法等の減色によって発生した量子化誤差をフィードバックするデータである。第1演算器52の出力は、他の入力画素データで発生した量子化誤差を含むデータとなる。第1演算器52の出力は、φとして表される。
 量子化器53は、第1演算器52の出力(φ)を入力値として、出力(φ)を量子化した値を出力値として出力する。言い換えると、量子化器53は、出力(φ)に量子化誤差(n)を加えて、出力画素データとして出力する。
 量子化器53は、例えば図6のグラフに示される入力値と出力値との関係に基づき、入力値を出力値に変換する。図6において、入力値と出力値との関係は、太実線で示されている。量子化器53の、0以上且つ42未満の入力値に対する出力値は例えば0である。量子化器53の、42以上且つ127未満の入力値に対する出力値は例えば85である。量子化器53の、127以上且つ212未満の入力値に対する出力値は例えば170である。量子化器53の、212以上且つ255以下の入力値に対する出力値は例えば255である。
 図6に例示した関係によれば、例えば量子化器53への入力値が100である場合、量子化器53の出力値は85である。この場合、量子化誤差は、-15である。
 第2演算器54は、量子化器53の出力(y)と、第1演算器52の出力(φ)との差を出力する。第2演算器54の出力は、φを量子化した際に発生した量子化誤差に対応する。
 フィルタ55は、φを量子化した際に発生した量子化誤差を他の画素に拡散させる。フィルタ55を含む回路は、ある1画素に係る変換結果を他の画素の変換にフィードバックする。
 フィルタ55は、例えば拡散マトリクスを用いて、量子化誤差を発生させた画素の周囲の画素に量子化誤差を拡散させる。図7に示されるように、拡散マトリクスは、複数のセルを有してよい。拡散マトリクスのセルの配列は、画像データの画素の配列に対応する。図7の拡散マトリクスにおいて、*印で示されるセルは、量子化誤差の拡散元となる画素に対応する拡散元セル60である。量子化誤差の拡散元となる画素は、拡散元画素ともいう。拡散元セル60の右側に隣接するセルは、拡散元画素の右側に隣接する画素に対応する。拡散マトリクスを構成するセルの数は、図7に示される3行×5列に限られない。セルの行数は、2行以下であってよいし、4行以上であってよい。セルの列数は、4列以下であってよいし、6列以上であってよい。セルの配列は、行列に限られず、例えば階段状又は逆ピラミッド形状等の任意の配列であってよい。
 拡散マトリクスのセルに示される数値は、誤差を拡散させる際の重み付けデータである。図7の拡散マトリクスにおいて、各セルに重み付けデータが付与されている。拡散元セル60の左側にある既に変換が完了したセルには、重み付けデータが付与されていない。フィルタ55は、各セルに付与された重み付けデータに比例させるように、各セルに拡散元画素の量子化誤差を割り当てる。つまり、各セルに付与された重み付けデータと、重み付けデータの合計値との比によって、各セルに拡散元画素の量子化誤差が割り当てられる。
 図7の例では、12個の重み付けデータの合計値は、47である。拡散元セル60の右側に隣接するセルは、重み付けデータとして7が付与されている。拡散元セル60の右側に隣接するセルは、第1拡散先セル61ともいう。フィルタ55は、第1拡散先セル61に、拡散元画素の量子化誤差の7/47を割り当てる。拡散元セル60から右側に2つ、下側に2つ離れたセルは、重み付けデータとして1が付与されている。拡散元セル60から右側に2つ、下側に2つ離れたセルは、第2拡散先セル62ともいう。フィルタ55は、第2拡散先セル62に量子化誤差の1/47を割り当てる。フィルタ55は、他のセルにも同様にして量子化誤差を割り当てる。このようにした場合、拡散マトリクスの各セルに割り当てられる量子化誤差の合計は、拡散元画素の量子化誤差に等しい。
 対応する画素が存在しないセルがある場合、そのセルに割り当てられる量子化誤差は、入力画素データの変換にフィードバックされなくてよい。対応する画素が存在しないセルがある場合は、例えば、拡散元画素が最下段の画素である場合等である。
 対応する画素が存在しないセルがある場合、フィルタ55は、当該セルに量子化誤差を割り当てないようにしてよい。この場合、他のセルに割り当てられる量子化誤差が相対的に大きくなりうる。
 フィルタ55の処理において、複数の拡散元画素から各画素に対して量子化誤差が割り当てられる。フィルタ55は、複数の拡散元画素から各画素に割り当てられる量子化誤差を、各画素で積算して格納する。フィルタ55は、各画素に割り当てられる量子化誤差を記憶部12に格納してよい。フィルタ55は、変換の対象となるために第1演算器52に入力される画素に割り当てられている量子化誤差を、第1演算器52に対して出力する。
 フィルタ55は、画像データに拡散フィルタを適用することによっても実現される。図7の拡散マトリクスは、図8に示されるフィルタ特性を有する拡散フィルタに対応づけられる。図8において、横軸及び縦軸はそれぞれ、変換で取り扱われる画素の左右方向の位置、及び、各位置に対応するフィルタ係数を示す。横軸の3番は、拡散マトリクスにおいて拡散元セル60を含む第3列に対応する。1番は、拡散マトリクスの最も左側に位置する第1列に対応する。同様に、2番、4番及び5番はそれぞれ、拡散マトリクスの第2列、第4列及び第5列に対応する。
 拡散元画素に係る量子化誤差は、図8に示されるフィルタ特性に応じて、第1列~第5列に拡散される。図8によれば、拡散元画素に係る量子化誤差は、第3列よりも第4列の方に大きく拡散される。つまり、量子化誤差の拡散先は、右側の列にシフトする。第1列又は第5列に拡散される量子化誤差は比較的小さい。
 量子化誤差の周囲の画素への拡散は、画像データの空間周波数スペクトルの高周波成分のカットともいえる。つまり、拡散フィルタは、低周波成分を通過させる周波数特性を有する。低周波成分を通過させる周波数特性は、ローパスフィルタの特性ともいえる。ローパスフィルタは、LPF(Low Pass Filter)ともいう。拡散フィルタで処理された画像データは、CSF特性におけるコントラスト感度が低い周波数帯に含まれる周波数成分で構成される。このようにすることにより、減色された画像データであっても、印画濃度の変動が人間の目で見たときに目立ちにくい。
 印画装置1は、印画ヘッド18の複数の印画素子181を並列に駆動できる。例えば印画装置1は、一列に配列された5個の印画素子181(図2A参照)を並列に駆動して、5個のドットを同時に印画できる。印画装置1は、印画ヘッド18を印画媒体20に対して走査させつつ、印画素子181を駆動することにより、ドットの列を順次印画できる。例えば、印画素子181を3回駆動した場合、図9Aに例示されるような3×5個のドットパターンが印画される。このようにすることで、印画装置1による印画速度が大きくされうる。
 図9Aにおいて、ドットが5個並んでいる方向がX方向であるものとする。ドットが3個並んでいる方向がY方向であるものとする。X方向は、印画ヘッド18の長手方向に対応する。つまり、X方向は、印画素子181の配列方向に対応する。Y方向は、印画ヘッド18を印画媒体20に対して走査させる方向に対応する。つまり、Y方向は、印画ヘッド18の走査方向に対応する。
 本実施形態において、ドットは、Y方向に沿って下から上へ順次印画される。ドットは、上から下へ順次印画されてよい。ドットパターンの行と列とは互いに入れ替わってよい。ドットの印画順序は、上述の例に限られず、種々の順序とされうる。印画素子181の数は、5個に限られず、4個以下であってよいし、6個以上であってよい。
 図9Aにおいて、走査方向を示す走査ライン182a~182eがY方向の一点鎖線で示される。走査ライン182a~182eは、走査ライン182ともいう。走査ライン182aに沿って印画されているドットは、印画素子181aにより印画されたドットである。走査ライン182b~182eに沿って印画されているドットはそれぞれ、印画素子181b~181eにより印画されたドットである。
 図9Aにおいて、印画ライン183a~183cが破線で示される。印画ライン183a~183cは、印画ライン183ともいう。印画ライン183は、印画ヘッド18と印画媒体20との位置を合わせる目標である。印画装置1は、走査ライン182と印画ライン183との交点にドットを印画する。
 図9Aに例示されるドットは、走査ライン182と印画ライン183との交点からずれずに印画され、一様なサイズを有する。このようなドットパターンは、一様な入力画像データに基づいて、一様な印画特性を有する印画素子181によって印画されうる。
 図9Bは、図9Aのドットパターンについて、印画ヘッド18の走査方向(Y方向)に沿った経路で算出した走査方向平均印画濃度をプロットしたグラフである。横軸は、X方向の位置を示す。縦軸は、印画濃度を示す。横軸のA点~E点は、走査ライン182a~182eそれぞれのX方向の位置に対応する。例えば、A点の走査方向平均印画濃度は、走査ライン182aを経路として算出されたものである。
 図9Bの波形を周波数スペクトル解析することにより、図9AのドットパターンのX方向の空間周波数が算出される。図9AのドットパターンのX方向の空間周波数スペクトルは、例えば、主に走査ライン182の間隔を周期として定められる周波数成分からなり、全体としてCSF特性における人間の目のコントラスト感度が低くなる周波数帯に含まれる。この場合、図9Aのドットパターンは、X方向について、図9Bにおいて破線で示される見かけの濃度のように、一様な濃度のベタ塗りパターンに見える。Y方向については、印画ライン183の間隔を周期として定められる周波数が人間の目のコントラスト感度が低くなる周波数帯に含まれる場合、一様な濃度のベタ塗りパターンに見える。
 各印画素子181の印画特性に含まれる補正データは、種々の原因によりばらつくことがある。例えば、印画素子181は、印画素子181の配列位置の誤差に起因して、ドットの印画位置にばらつきを発生させることがある。インクの液滴量のばらつきに起因するドットのサイズのばらつきにより、印画濃度がばらつきを有することもある。補正データのばらつきの発生原因は、上述のものに限られない。
 各印画素子181の補正データにばらつきがある場合、印画結果にばらつきが含まれることがある。一様な入力画像データに基づいて印画される場合であっても、例えば、ドットの印画位置に係る補正データが各印画素子181でばらつく場合、図10Aに例示されるように、印画されるドットの印画位置が一様ではなくなる。図10Aにおけるドットの印画位置は、走査ライン182bに対して左側にずれて走査ライン182aに近づき、走査ライン182dに対して右側にずれて走査ライン182eに近づく。つまり、図10Aに例示される印画結果は、走査方向に沿った筋状の欠陥を有するように見える。
 ドットの印画位置に係る補正データのばらつきは、例えば、走査ライン182で示される走査方向に沿った経路で算出した走査方向平均印画濃度を用いて評価される。図10Bは、図10Aに例示されるドットパターンについて、印画ヘッド18の走査方向(Y方向)に沿った経路で算出した走査方向平均印画濃度をプロットしたグラフである。横軸及び縦軸は、図9Bと同様である。
 図10Bの波形を周波数スペクトル解析することによって、図10AのドットパターンのX方向の空間周波数が算出される。図10AのドットパターンのX方向の空間周波数スペクトルは、走査ライン182の間隔を周期として定められる周波数成分と、各走査ライン182に印画されたドットの印画位置のばらつきに起因する変動で定められる周波数成分とを含む。図9Bと同様に、走査ライン182の間隔を周期として定められる周波数成分は、CSF特性における人間の目のコントラスト感度が低くなる周波数帯に含まれる。一方で、ドットの印画位置のばらつきに起因する変動で定められる周波数成分は、コントラスト感度が高くなる周波数帯に含まれるものとする。この場合、図10Aのドットパターンは、X方向について、図10Bにおいて破線で示される見かけの濃度のような濃度分布を有するパターンに見える。つまり、図10Aに例示されるドットパターンは、X方向について、A点及びE点の濃度が相対的に高くなり、B点及びD点の濃度が相対的に低くなるように見える。図10Aのドットパターンは、B点とC点との間及びC点とD点との間に対応する走査方向に沿った位置において、濃度の低い筋状の欠陥を有するように見える。図10Aのドットパターンは、A点とB点との間及びD点とE点との間に対応する走査方向に沿った位置において、濃度の高い筋状の欠陥を有するように見える。
 図9B及び図10Bにおいて、破線で示される見かけの濃度は、実線で示される走査方向平均印画濃度に対し、CSF特性を考慮した周波数特性を有するLPFが適用されることにより算出されうる。走査方向平均印画濃度に対してLPFが適用されることにより、走査方向平均印画濃度に含まれるノイズ成分が除去されうる。
 見かけの濃度は、走査方向平均印画濃度について、所定の区間を設定した移動平均が計算されることによっても算出されうる。所定の区間は、例えば、走査ライン182の間隔に設定される。走査方向平均印画濃度について移動平均が計算されることによっても、走査方向平均印画濃度に含まれるノイズ成分が除去されうる。
 図10Bに例示される走査方向平均印画濃度は、例えば、一様な濃度に見えることが予測される入力画像データの印画結果から取得されうる。印画結果が一様な濃度に見えることが予測される入力画像データは、例えば、一様な画素の配列を含むテストパターンデータである。印画装置1は、一様な画素の配列を含む入力画像データに基づいて印画媒体20に印画された印画結果を読取装置30に読み取らせる。印画装置1は、読取装置30から取得した読取結果から、走査方向平均印画濃度を算出しうる。このように、実際の印画結果から測定される印画濃度のことを印画濃度測定結果ともいう。印画装置1は、各印画素子181の印画特性と、入力画像データとに基づいて、印画媒体20への印画結果の印画濃度を予測してよい。予測された印画濃度は、印画濃度予測結果ともいう。
 印画装置1の制御部10は、印画結果が入力画像データから予測される結果とは異なる場合、印画結果を補正するデータを含めるように各印画素子181に対する制御情報を生成できる。印画結果とは、印画濃度測定結果又は印画濃度予測結果のことであってよい。印画濃度測定結果又は印画濃度予測結果は、補正前印画濃度ともいう。印画結果が入力画像データから予測される結果とは異なる場合は、例えば、一様な濃度のベタ塗りパターンに見えることが予測されるにもかかわらず、図10Bに示されるように一様な濃度に見えない場合に対応しうる。
 ドットの印画位置に係る印画特性に起因して印画結果が予測される結果とは異なった場合、制御部10は、各印画素子181のドットの印画位置に係る補正データに基づいて、各印画素子181に対する制御情報を生成してよい。この場合、制御部10は、図5の変換ブロックにおいて、乗算器51の所定の係数(a)として補正ゲインを設定してよい。印画素子181により印画される画素の変換において設定される補正ゲインは、印画素子181の補正ゲインともいう。
 図10Aにおいて、印画素子181bによって印画された走査ライン182bに沿うドットは、走査ライン182aに近づくように左側にずれている。この結果、図10Bにおいて、A点における見かけの濃度は、相対的に高くなる。B点における見かけの濃度は、相対的に低くなる。印画装置1は、印画結果が人間の目に一様な濃度に見えるように、印画素子181b又は印画素子181cに対し、入力画素データに基づくドットよりも大きいサイズのドットを印画させる制御情報を生成してよい。この場合、印画装置1は、印画素子181b又は印画素子181cに対応する画素の入力画素データを乗算器51に入力する際の補正ゲインをa>1として、印画素子181b又は印画素子181cに対応する画素の出力画素データを生成する。印画装置1は、印画素子181aに対して入力画素データに基づくドットよりも小さいサイズのドットを印画させる制御情報を生成してよい。この場合、印画装置1は、印画素子181aに対応する画素の入力画素データを乗算器51に入力する際の補正ゲインをa<1として、印画素子181aに対応する画素の出力画素データを生成する。
 図10Aにおいて、印画素子181dによって印画された走査ライン182dに沿うドットは、走査ライン182eに近づくように右側にずれている。この結果、図10Bにおいて、E点における見かけの濃度は、相対的に高くなる。D点における見かけの濃度は、相対的に低くなる。印画装置1は、印画結果が人間の目に一様な濃度に見えるように、印画素子181c又は印画素子181dに対し、入力画素データに基づくドットよりも大きいサイズのドットを印画させる制御情報を生成してよい。この場合、印画装置1は、印画素子181c又は印画素子181dに対応する画素の入力画素データを乗算器51に入力する際の補正ゲインをa>1として、印画素子181c又は印画素子181dに対応する画素の出力画素データを生成する。印画装置1は、印画素子181eに対して入力画素データに基づくドットよりも小さいサイズのドットを印画させる制御情報を生成してよい。この場合、印画装置1は、印画素子181eに対応する画素の入力画素データを乗算器51に入力する際の補正ゲインをa<1として、印画素子181eに対応する画素の出力画素データを生成する。以上例示したように、補正ゲインの設定方法は、ドットの印画位置のずれに起因する印画濃度に基づくものであってよい。
 本実施形態において、補正ゲインは、補正後に得られる印画濃度の目標値に応じて設定される。印画濃度の目標値は、目標濃度ともいう。目標濃度は、各印画素子181に対する制御情報に基づいて予測される印画結果と、各印画素子181による実際の印画結果との差異がない場合の印画濃度であってよい。目標濃度は、X方向の各位置における走査方向平均印画濃度又は見かけの濃度の平均値とされてよい。目標濃度は、走査方向平均印画濃度又は見かけの濃度の最大値又は最小値に合わせた値とされてよい。目標濃度は、見かけの濃度の最大値以上の値に設定されてよい。目標濃度は、上述の値だけでなく任意の値とされてよい。
 本実施形態において、目標濃度は、例えば図11に示されるように、X方向の各位置における見かけの濃度を平均化して得られる平均化濃度に濃度オフセットを加えた値に設定される。目標濃度に濃度オフセットを加えることを、目標濃度のオフセットともいう。図11において、目標濃度、平均化濃度及び見かけの濃度はそれぞれ、実線、一点鎖線及び破線で示される。濃度オフセットは、平均化濃度と、平均化する前の見かけの濃度との差分の最大値として算出されてよい。このように設定された目標濃度は、X方向のどの位置においても見かけの濃度以上となる。濃度オフセットは、平均化濃度の波形と、平均化する前の見かけの濃度の波形との差分の波形の振幅に応じて設定されてよい。
 走査方向平均印画濃度にLPFを適用しての見かけの濃度の算出は、平均化の一種といえる。補正前印画濃度からの走査方向平均印画濃度の算出は、平均化の一種といえる。見かけの濃度からの平均化濃度の算出は、平均化の一種といえる。つまり、平均化濃度は、補正前印画濃度を平均化することによって算出されうる。
 図11に示されるように目標濃度が設定された場合、例えばB点における見かけの濃度は、目標濃度よりも低い。この場合、印画装置1は、B点に対応する印画素子181bの出力画素データを生成するための補正ゲインを1より大きい値に設定する。B点と同様に見かけの濃度が目標濃度よりも低いC点及びD点についても、印画装置1は、補正ゲインを1より大きい値に設定する。一方、A点における見かけの濃度は、目標濃度と略等しい。この場合、印画装置1は、A点に対応する印画素子181aに係る出力画素データを生成するための補正ゲインを1に設定する。A点と同様に見かけの濃度が目標濃度と略等しいE点についても、印画装置1は、補正ゲインを1に設定する。
 補正ゲインは、図12に示されるように設定されうる。図12のグラフの横軸は、X方向の位置を示す。図12のグラフの縦軸は、補正ゲインを示す。補正ゲインが1となるラインが一点鎖線で示される。図11に示される目標濃度に対応する補正ゲインの設定例は、オフセット有りの場合として実線で示される。この場合、補正ゲインは、X方向のどの位置においても補正ゲインが1以上の値に設定される。
 本実施形態においては、X方向のどの位置に対応する印画素子181に対しても補正ゲインは1以上の値に設定されるものとする。このようにすることで、印画素子181により印画されるドットのサイズは、補正しない場合のサイズより小さくならないようにされうる。
 比較例に係る装置は、図13に示されるように、目標濃度が平均化濃度に設定される。この場合、例えばB点における見かけの濃度は、目標濃度よりも低い。この場合、比較例に係る装置は、印画素子181bの補正ゲインを1より大きい値に設定する。一方、A点における見かけの濃度は、目標濃度よりも高い。この場合、比較例に係る装置は、印画素子181aの補正ゲインを1より小さい値に設定する。
 図13に示される目標濃度に対応して設定される補正ゲインは、図12において、オフセット無しの場合として破線で例示される。この場合、補正ゲインは、X方向の位置によって、1より大きかったり、1より小さかったりする。比較例においては、印画素子181の少なくとも一部に対して、補正ゲインが1より小さい値に設定される。
 印画素子181に対する補正ゲインが1より小さい値に設定される場合、印画素子181により印画されるドットのサイズは、補正しない場合のサイズより小さくなることがある。ドットのサイズが小さくなる場合、隣接して印画されるドットとの間隔が広くなる。このようにして印画されたドットパターンは、コントラスト感度が高いものとなることがある。結果として、印画結果に粒状感が現れやすくなる。
 以上説明してきたように、本実施形態に係る印画装置1は、比較例に係る装置と比較して、印画結果に粒状感が現れにくいように補正した出力画像データを生成することができる。
 本実施形態に係る印画装置1が実行する画像補正方法の例について、図14に示されるフローチャートを用いて説明する。
 印画装置1の制御部10は、印画媒体20にテストパターンを印画する(ステップS1)。テストパターンの印画結果には、各印画素子181の印画特性に係る情報が含まれる。
 制御部10は、読取装置30からテストパターンの印画結果の濃度分布を取得する(ステップS2)。読取装置30は、印画媒体20からテストパターンの印画結果の濃度分布を読み取り、制御部10に濃度分布を出力する。制御部10は、取得した濃度分布を記憶部12に格納してよい。
 制御部10は、濃度分布を平均化する(ステップS3)。濃度分布は、例えば、図10Bに示される走査方向平均印画濃度として表される。走査方向平均印画濃度は、各走査ライン182に印画されたドットのサイズのばらつきに起因する変動成分と走査ライン182の間隔を周期とする変動成分との合成波形として表される。制御部10は、図10Bの走査方向平均印画濃度について、X方向の空間周波数スペクトルを解析し、CSF特性に基づくフィルタリングにより、見た目の濃度を算出する。CSF特性に基づくフィルタリングは、平均化の一種である。制御部10は、見た目の濃度を平均化して、平均化濃度を算出する。見た目の濃度の平均化は、例えば、単に、X方向の各位置にわたる、見た目の濃度の平均値の算出であってよい。見た目の濃度の平均化は、所定の区間を用いた移動平均の算出であってよい。所定の区間は、例えば走査ライン182の間隔とされるが、これに限られず、適宜定められてよい。見た目の濃度の平均化は、他の平均化アルゴリズムを用いてよい。
 制御部10は、平均化濃度に濃度オフセットを加えて、目標濃度を算出する(ステップS4)。濃度オフセットは、例えば所定の値に設定される。この場合目標濃度は、図11に示されるように、X方向の各位置に対応する平均化濃度に所定の値を加えて算出される。所定の値は、目標濃度が見かけの濃度以上となるような値に設定される。
 制御部10は、各印画素子181の補正ゲインを算出する(ステップS5)。見かけの濃度と目標濃度とが図11に示されるような関係を有する場合、例えばB点に対応する印画素子181bの補正ゲインは、1より大きい値に設定される。例えばA点に対応する印画素子181aの補正ゲインは、1に設定される。A点~E点に対応する印画素子181a~181eの補正ゲインの関係は、(B点、D点)>(C点)>(A点、E点)となる。印画素子181a及び181eの補正ゲインが1に設定される場合、印画素子181の補正ゲインは、全て1以上に設定される。
 制御部10は、ステップS5の後、図14のフローチャートの手順を終了する。制御部10は、図14のフローチャートの手順で算出した各印画素子181の補正ゲインを、図5の変換ブロックの乗算器51に適用する。出力画素データの生成に補正ゲインが適用されることによって、出力画像データは、印画素子181の印画特性に応じて補正されうる。
 以上説明してきたように、本実施形態に係る印画装置1及び画像補正方法によれば、各印画素子181の補正ゲインが1以上となるように設定される。このようにすることで、補正ゲインを適用して得られる印画結果に粒状感が現れにくくなる。
(実施形態2)
 実施形態1における誤差拡散法に基づく減色において、LPFの性質を有する拡散フィルタが用いられうる。実施形態2において、誤差拡散法で用いられる拡散フィルタのサイズを考慮したLPFが、補正前印画濃度の波形に適用されうる。
 拡散フィルタのサイズは、拡散フィルタが影響を及ぼす範囲によって示されうる。図8に例示される拡散フィルタは、1番~5番にわたって影響を及ぼす。図8に例示される拡散フィルタのサイズはX方向の5画素分であるともいえる。
 拡散フィルタのサイズを考慮したLPFは、拡散フィルタと同等の範囲に影響を及ぼすように設計されたものともいえる。本実施形態においては、LPFは、図8の拡散フィルタのサイズを考慮したものであるものとする。LPFは、補正前印画濃度の波形に適用される際に、X方向の5画素分に影響を及ぼすものとして設計される。
 例えば図15に示されるように、破線で示される補正前印画濃度の波形に高周波ノイズ成分が含まれる場合について説明する。高周波ノイズ成分が含まれる波形に拡散フィルタのサイズを考慮したLPFを適用することによって、実線で示されるLPF適用後の補正前印画濃度の波形は、高周波ノイズ成分が除去された波形となっている。
 例えば、補正前印画濃度の波形に、自身の振幅よりも大きい振幅を有する高周波ノイズ成分が重畳されている場合、補正前印画濃度の平均化に高周波ノイズ成分の影響が及ぼされる。濃度オフセットは、高周波ノイズ成分がない場合と比較して、大きい値となりうる。補正前印画濃度の波形から高周波ノイズ成分が除去されることによって、濃度オフセットがより小さい値に抑制されうる。
 本実施形態に係る印画装置1は、補正前印画濃度の波形に拡散フィルタのサイズを考慮したLPFを適用することで、高周波ノイズ成分を除去することができる。本実施形態に係る印画装置1は、実施形態1と同様に濃度オフセットが設定される場合と比較して、濃度オフセットをより小さい値に抑制しうる。
 本実施形態に係る印画装置1は、拡散フィルタのサイズを考慮したLPFを適用することによって、出力画像データの鮮鋭度の低下につながるLPFの適用範囲が限定されうる。結果として、鮮鋭度の低下が抑制されうる。
(実施形態3)
 図5の変換ブロックの乗算器51において適用される補正ゲインは、各画素に対応した空間分布を有するものとして取り扱われうる。この場合、拡散フィルタのサイズを考慮したLPFは、補正前印画濃度の波形だけでなく、補正ゲインの空間分布を示す波形に適用されうる。このようにすることで、補正前印画濃度の波形にノイズ成分が含まれたままで補正ゲインが算出された後でも、補正ゲインからノイズ成分が除去されうる。
 例えば図16に示されるように、補正ゲインは、X方向に空間分布を有する波形として表されうる。破線で示される波形は、ノイズ成分を含む波形の一例であり、LPFを適用する前のものである。ノイズ成分は、図5の変換ブロックの乗算器51に適用される補正ゲイン、及び、変換ブロックで生成される出力画素データに対して影響を及ぼしうる。一方、実線で示される波形は、LPFを適用することによってノイズ成分が除去された波形の一例である。ノイズ成分が除去されたことによって、変換ブロックで生成される出力画素データに対する影響が抑制されうる。
 本実施形態に係る印画装置1は、変換ブロックによる出力画素データの生成に適用される補正ゲインを各画素に対応した空間分布を有するものとして取り扱うものとする。本実施形態に係る印画装置1において、拡散フィルタのサイズを考慮したLPFが適用されるものとする。このようにすることで、本実施形態に係る印画装置1は、補正ゲインからノイズ成分を除去しうる。この結果、濃度オフセットがより小さい値に抑制されうる。
 本実施形態に係る印画装置1は、拡散フィルタのサイズを考慮したLPFを適用することによって、出力画像データの鮮鋭度の低下につながるLPFの適用範囲を限定しうる。結果として、鮮鋭度の低下が抑制されうる。
 補正ゲインは、誤差拡散法に基づく変換に適用される場合であっても、誤差拡散のフィルタリングの遮断周波数以上の高周波成分に対しては適用されない。そのため、補正ゲインにLPFが適用されても、変換に対しては影響が及ぼされにくい。
(実施形態4)
 実施形態1において、印画素子181のドットの印画位置のずれに応じて発生する印画濃度の分布を解消するように補正ゲインが設定されうる。補正ゲインが設定される印画素子181の選択方法として、いくつかの方法が可能である。
 例えば図10Bに示されるドットパターンを参照して、印画装置1は、図10BのB点とC点との間で走査方向に沿って分布する印画濃度が低い部分を解消するために、印画素子181cに設定する補正ゲインの重み付けを大きくしてよい。一方で印画装置1は、印画素子181bの補正ゲインの重み付けを大きくしてよい。
 図5の変換ブロックにおいて、フィルタ55は、画像データに対して拡散フィルタを適用するものとして実現されうる。実施形態2及び3において、拡散フィルタのサイズを考慮したLPFが、補正前印画濃度の波形又は補正ゲインの空間分布を示す波形に適用されうる。LPFは、拡散フィルタと同様に、画像データにおける画素の左右方向の位置に応じたフィルタ係数を有する。
 LPFのフィルタ係数の分布が、図17に例示される。図17において、横軸は、変換で取り扱われる画素の左右方向の位置を示す。縦軸は、各位置に対応するフィルタ係数を示す。LPFのフィルタ係数の分布は、例えば図17において中実ひし形と実線とで示されるように、左右方向の中心位置において、フィルタ係数が極大値をとるものである。中心位置で極大値をとるフィルタ係数は、中心位置シフトのないフィルタ係数ともいう。中心位置シフトのないフィルタ係数を有するLPFは、画像データに適用された場合に、各画素に係るデータの左右方向の分布に影響を及ぼしにくい。
 LPFのフィルタ係数の分布は、図17において中空ひし形と破線とで示されるように、フィルタ係数が極大値をとる位置が左側にシフトしたものであってよい。中心位置からシフトした位置で極大値をとるフィルタ係数は、中心位置シフトのあるフィルタ係数ともいう。中心位置シフトのあるフィルタ係数を有するLPFは、画像データに適用された場合に、各画素に係るデータの左右方向の分布に影響を及ぼしうる。例えば、図17に示されるように中心位置シフトのあるフィルタ係数を有するLPFが補正前印画濃度の波形に適用された場合、LPFは、波形を全体として左側にシフトさせる。補正前印画濃度の波形の左側へのシフトに応じて、補正ゲインの空間分布の波形は、左側へシフトする。つまり、補正ゲインの適用位置が左側にシフトする。中心位置シフトのあるフィルタ係数を有するLPFが補正ゲインの空間分布を示す波形に適用された場合も同様に、補正ゲインの適用位置が左側にシフトする。
 図10A及び図10Bの例において、図17に示されるように左側に中心位置シフトのあるフィルタ係数を有するLPFが画像データに適用されうる。B点とC点との間の印画濃度の分布を解消するための補正ゲインは、印画素子181bに対する重み付けが大きくなるように設定されてよいし、印画素子181cに対する重み付けが大きくなるように設定されてもよい。補正ゲインの適用位置が左側にシフトした場合、印画素子181の中でも左側の画素に対応するものの重み付けが大きくなる。つまり、右側の印画素子181cに設定される補正ゲインよりも左側の印画素子181bに設定される補正ゲインに対する重み付けが大きくなる。逆に、右側に中心位置シフトのあるフィルタ係数を有するLPFが画像データに適用された場合、補正ゲインの適用位置は右側にシフトする。この場合、印画素子181の中でも右側の画素に対応するものの重み付けが大きくなる。
 以上説明してきたように、本実施形態に係る印画装置1は、中心位置シフトのあるフィルタ係数を有するLPFを画像データに適用することができる。このようにすることで、出力画像データの補正に際して、補正ゲインが適用される印画素子181の選択が可能となる。
 拡散フィルタは、例えば図8に示されるように、フィルタ係数が極大値をとる位置が右側にシフトすることがある。このような拡散フィルタが適用された画像データに対して、左側に中心位置シフトのあるフィルタ係数を有するLPFが適用された場合、拡散フィルタによる右側の画素への誤差拡散の偏りが補償されうる。つまり、本実施形態に係る印画装置1は、誤差拡散法等の変換において右側の画素への誤差拡散が大きくなるという特性を補償しうる。このようにすることで、誤差拡散法等の変換による画像データの補正がより適切に行われうる。
 本開示に係る印画装置1及び画像補正方法によれば、印画濃度を補正しつつ粒状感の増大が低減されうる。
 本開示に係る実施形態が諸図面及び実施例に基づき説明された。当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部、又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、本開示に係る実施形態について装置を中心に説明してきたが、本開示に係る実施形態は装置の各構成部が実行するステップを含む方法としても実現し得るものである。また、本開示に係る実施形態は装置が備えるプロセッサにより実行される方法、プログラム、又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。
 1 印画装置
 10 制御部
 12 記憶部
 14 印画部
 16 印画媒体搬送部
 18 印画ヘッド
 181(181a~181e) 印画素子
 182(182a~182e) 走査ライン
 183(183a~183c) 印画ライン
 20 印画媒体
 30 読取装置
 51 乗算器
 52 第1演算器
 53 量子化器
 54 第2演算器
 55 フィルタ
 60 拡散元セル
 61 第1拡散先セル
 62 第2拡散先セル

Claims (14)

  1.  ドットを印画する複数の印画素子を有する印画部と、
     入力画像データに基づいて、前記印画部を制御する制御部と、
    を備え、
     前記制御部は、
     一様な画素の配列を含むテストパターンデータと、前記印画素子のドットの印画位置の印画特性とに基づく補正前印画濃度を取得し、
     前記補正前印画濃度を平均化した目標濃度を算出し、
     前記目標濃度が前記補正前印画濃度以上となるように前記目標濃度をオフセットし、
     前記補正前印画濃度に対する前記目標濃度の比に基づいて、前記印画素子の補正ゲインを算出し、
     前記補正ゲインと前記入力画像データとに基づいて前記印画部を制御する、印画装置。
  2.  前記補正前印画濃度は、前記印画特性と前記テストパターンデータとに基づいて予測される印画濃度予測結果である、請求項1に記載の印画装置。
  3.  前記補正前印画濃度は、前記テストパターンデータの印画結果から取得される印画濃度測定結果である、請求項1に記載の印画装置。
  4.  前記制御部は、拡散フィルタを用いて前記印画部を制御する、請求項1乃至3いずれか一項に記載の印画装置。
  5.  前記制御部は、前記拡散フィルタのサイズを考慮したローパスフィルタを前記補正前印画濃度に適用する、請求項4に記載の印画装置。
  6.  前記制御部は、前記拡散フィルタのサイズを考慮したローパスフィルタを前記補正ゲインに適用する、請求項4に記載の印画装置。
  7.  前記ローパスフィルタは、フィルタ係数が最大となる位置を中心からずらしたものである、請求項5又は6に記載の印画装置。
  8.  ドットを印画する複数の印画素子を有する印画部と、
     入力画像データに基づいて、前記印画部を制御する制御部と、
    を備える印画装置の画像補正方法であって、
     前記制御部が、一様な画素の配列を含むテストパターンデータと、前記印画素子のドットの印画位置の印画特性とに基づく補正前印画濃度を取得するステップと、
     前記制御部が、前記補正前印画濃度を平均化した目標濃度を算出するステップと、
     前記制御部が、前記目標濃度が前記補正前印画濃度以上となるように前記目標濃度をオフセットするステップと、
     前記制御部が、前記補正前印画濃度に対する前記目標濃度の比に基づいて、前記印画素子の補正ゲインを算出するステップと、
     前記制御部が、前記補正ゲインと前記入力画像データとに基づいて前記印画部を制御するステップと
    を含む画像補正方法。
  9.  前記補正前印画濃度は、前記印画特性と前記テストパターンデータとに基づいて予測される印画濃度予測結果である、請求項8に記載の画像補正方法。
  10.  前記補正前印画濃度は、前記テストパターンデータの印画結果から取得される印画濃度測定結果である、請求項8に記載の画像補正方法。
  11.  前記制御部が、拡散フィルタを用いて前記印画部を制御するステップをさらに含む、請求項8乃至10いずれか一項に記載の画像補正方法。
  12.  前記制御部が、前記拡散フィルタのサイズを考慮したローパスフィルタを前記補正前印画濃度に適用するステップをさらに含む、請求項11に記載の画像補正方法。
  13.  前記制御部が、前記拡散フィルタのサイズを考慮したローパスフィルタを前記補正ゲインに適用するステップをさらに含む、請求項11に記載の画像補正方法。
  14.  前記ローパスフィルタは、フィルタ係数が最大となる位置を中心からずらしたものである、請求項12又は13に記載の画像補正方法。
PCT/JP2017/022219 2016-06-28 2017-06-15 印画装置及び画像補正方法 WO2018003533A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/309,815 US10759183B2 (en) 2016-06-28 2017-06-15 Printing apparatus and image correction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016127436A JP6335224B2 (ja) 2016-06-28 2016-06-28 印画装置及び画像補正方法
JP2016-127436 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003533A1 true WO2018003533A1 (ja) 2018-01-04

Family

ID=60786653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022219 WO2018003533A1 (ja) 2016-06-28 2017-06-15 印画装置及び画像補正方法

Country Status (3)

Country Link
US (1) US10759183B2 (ja)
JP (1) JP6335224B2 (ja)
WO (1) WO2018003533A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306646B2 (ja) * 2016-06-28 2018-04-04 京セラ株式会社 印画装置及び画像補正方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038853A1 (en) * 2000-06-16 2003-02-27 Fujitsu Limited Image forming apparatus and method of forming image
JP2007237398A (ja) * 2006-03-03 2007-09-20 Fujifilm Corp 画像記録システム及び方法
JP2011218565A (ja) * 2010-04-02 2011-11-04 Olympus Corp 画像記録装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040425B2 (ja) 1990-05-11 2000-05-15 キヤノン株式会社 画像形成装置
JP6306646B2 (ja) * 2016-06-28 2018-04-04 京セラ株式会社 印画装置及び画像補正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038853A1 (en) * 2000-06-16 2003-02-27 Fujitsu Limited Image forming apparatus and method of forming image
JP2007237398A (ja) * 2006-03-03 2007-09-20 Fujifilm Corp 画像記録システム及び方法
JP2011218565A (ja) * 2010-04-02 2011-11-04 Olympus Corp 画像記録装置

Also Published As

Publication number Publication date
JP2018001451A (ja) 2018-01-11
JP6335224B2 (ja) 2018-05-30
US20190329567A1 (en) 2019-10-31
US10759183B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP6927344B2 (ja) インク堆積均一性補償機構
US7038816B2 (en) Macro uniformity correction for x-y separable non-uniform
US11192386B2 (en) Image processing apparatus, image processing method and storage medium
EP2629978B1 (en) Image processing apparatus and image processing method
EP3100862A1 (en) Image-processing apparatus and method, program, print medium, and inkjet printing system
JP2022034526A (ja) 反復均一性補償メカニズム
US7375740B2 (en) Method and apparatus for adjusting printbar uniformity
US11090932B2 (en) Image processing apparatus, image processing method and storage medium
JP2016066987A5 (ja)
WO2018003534A1 (ja) 印画装置及び画像補正方法
JP2009234014A (ja) テーブル設定方法、液体噴射装置、及び印刷システム
US10850543B2 (en) Recording control device, recording apparatus, and recording control method
JP5142884B2 (ja) 画像処理装置及び画像処理方法
WO2018003533A1 (ja) 印画装置及び画像補正方法
JP2010166563A (ja) 高アドレス指定能力を有する電子写真プリンタにおける、ハーフトーンに依存しない時間的色ずれ補正のためのシステム及び方法
JP2013115714A (ja) 印刷装置、色変換テーブルの作成方法、および、コンピュータプログラム
WO2018003535A1 (ja) 印画装置及び画像補正方法
US6721061B1 (en) Method and apparatus for display of banding
JP2018043403A (ja) 画像処理装置、画像形成装置及びプログラム
JP2009302608A (ja) 補正値算出方法及び印刷方法
US11936835B2 (en) Image processing apparatus, image processing method, and storage medium which reduce a color difference and a frequency difference between two images
JP6310877B2 (ja) 印刷システム及び管理装置並びに管理方法
JP7258600B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2021109366A (ja) 画像処理装置および画像処理方法
JP2006074638A (ja) ハーフトーン処理に用いられるパターンセットの決定

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819893

Country of ref document: EP

Kind code of ref document: A1