WO2018003483A1 - Laser processing head - Google Patents

Laser processing head Download PDF

Info

Publication number
WO2018003483A1
WO2018003483A1 PCT/JP2017/021756 JP2017021756W WO2018003483A1 WO 2018003483 A1 WO2018003483 A1 WO 2018003483A1 JP 2017021756 W JP2017021756 W JP 2017021756W WO 2018003483 A1 WO2018003483 A1 WO 2018003483A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser processing
processing head
cross jet
nozzle
flow path
Prior art date
Application number
PCT/JP2017/021756
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 和隆
準一 齋藤
了 松本
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2018003483A1 publication Critical patent/WO2018003483A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products

Definitions

  • the present invention relates to a laser processing head [laser processing head].
  • laser processing In laser processing, laser light oscillated from a laser oscillator is condensed by a condensing lens provided in a laser processing head and irradiated onto a work piece.
  • a condensing lens provided in a laser processing head and irradiated onto a work piece.
  • spatters may scatter from the laser processing position and enter the laser processing head.
  • the protective glass may be heated and damaged. Therefore, it has been proposed to discharge spatter that has entered the laser processing head to the outside by a cross jet (high-speed air flow) generated in the laser processing head (see, for example, Patent Document 1).
  • the above-mentioned patent document 1 discloses a configuration in which a cross jet forming device for forming a cross jet that blows off spatter that has entered the inside of a laser processing head from the nozzle to the outside is provided between the protective glass and the nozzle.
  • a cross jet nozzle is provided on the ceiling wall of the two upper and lower cross jet passages.
  • the spatter scattered from the laser processing position and entering the laser processing head can be blown out, but sometimes the spatter adheres to the protective glass. Accordingly, further improvements have been desired.
  • a feature of the present invention is that a laser having a condensing lens for condensing laser light oscillated from a laser oscillator, a nozzle at the tip, and a protective glass for protecting the condensing lens inside.
  • a processing head that intersects the optical axis of the laser beam between the protective glass and the nozzle in order to discharge spatter that has entered the nozzle from the laser processing position of the workpiece to the outside.
  • a small laser processing head is provided.
  • the widths of the upper and lower cross jet inflow openings are equal, and the vertical distance between the upper cross jet inflow openings is 1/9 to 8/9 of the vertical distance between the lower cross jet inflow openings. Is preferred. Particularly preferred is 3/9.
  • the upper surface of the nozzle plate for forming a flat high-speed air flow is formed as a planar flow path that is regulated in three directions by a rising surface, and the high-speed air flow
  • the rising surface along the direction is preferably formed in parallel with the flow direction of the high-speed air.
  • the cross-sectional shape of the high-speed air blowing port with respect to the planar flow path of the nozzle plate is a long hole shape, and the size in the longitudinal direction of the blowing port is substantially equal to the interval between the parallel rising surfaces. More preferably, the width dimension in the direction orthogonal to the direction is about half of the planar flow path of the nozzle plate.
  • a ring-shaped aperture is provided on the upper part of the opening block provided with the cross jet former at the lower part, and the inner peripheral surface of the aperture projects inward with respect to the semicircular inner surface provided in the opening block. It is preferable that it is prepared in the state.
  • the laser processing head 1 includes a processing head body 3.
  • a condensing lens (not shown) that collects laser light oscillated from a laser oscillator (not shown) is provided in the processing head body 3.
  • a nozzle 5 is provided at the tip of the processing head body 3 so as to be detachable and replaceable.
  • the processing head body 3 includes an open block 9 (see FIG. 3).
  • the opening block 9 is opened in the vertical direction (laser beam path), and the opening block 9 is directed in one direction [one lateral direction] (for example, the direction opposite to the laser processing progress direction).
  • a large opening 9A is formed.
  • the opening block 9 includes a cross jet former 19 to be described later at the lower part thereof.
  • the opening block 9 has a shape opened in three directions, ie, the vertical direction and the one side direction.
  • the portion of the opening block 9 through which the laser light passes downward is formed as a semicircular (semicircular) hole 9B.
  • the opposite side walls 9C of the opening 9A are connected to both ends of the inner surface 9F of the hole 9B.
  • An aperture holder 11 is formed on the upper surface of the opening block 9.
  • the protective glass 7 is attached to the aperture holder 11 through a glass holder 13 in a replaceable manner.
  • a through hole 15 through which laser light can pass is formed in the vertical direction. That is, the through hole 15 is formed in the upper part of the opening block 9.
  • a ring-shaped aperture 17 is attached in the through hole 15. The center of the aperture 17 coincides with the axis of the semicircular hole 9B. The radius of the aperture 17 is smaller than the radius of the hole 9B.
  • the inner peripheral surface 17A of the aperture 17 protrudes inward from the semicircular inner surface 9F of the hole 9B (is in a protruding state). Therefore, even when fumes and a part of spatter rise along the inner surface 9F of the hole 9B, it is possible to effectively suppress fume and spatter adhesion to the protective glass 7.
  • the aperture 17 also plays a role of reducing spatter directly scattered from the workpiece laser processing position to the protective glass 7. Therefore, it is possible to effectively suppress the adhesion of spatter to the protective glass 7.
  • a cross jet (high-speed air flow) intersecting (orthogonal) with the optical axis of the laser beam (axial center of the hole 9B) is formed below the opening block 9 and on the opposite side to the opening 9A.
  • a cross jet former 19 is provided.
  • the overall configuration of the cross jet former 19 is similar to the configuration of the cross jet former described in Patent Document 1. However, the configuration of the main part of the cross jet former 19 is different from the configuration of the main part of the cross jet former of Patent Document 1.
  • a fluid passage 21 similar to the fluid passage disclosed in Patent Document 1 is formed in the front wall portion 9D of the opening block 9.
  • the fluid passage 21 is formed with a nozzle hole 23 that reaches the lower end surface of the front wall portion 9D.
  • the nozzle hole 23 is formed to have a circular cross-sectional shape due to processing restrictions.
  • a buffer plate 25 is attached to the lower end surface of the front wall portion 9D of the opening block 9 with an attachment screw or the like.
  • the buffer plate 25 changes the cylindrical air flow ejected from the nozzle hole 23 into a uniform flow as a whole.
  • a chamber 25 ⁇ / b> A communicating with the nozzle hole 23 is formed in the buffer plate 25 as a space having a rectangular cross section (long hole shape). If a space corresponding to the chamber 25A is formed on the lower end surface of the front wall 9D of the opening block 9, the buffer plate 25 can be omitted.
  • the nozzle plate 27 is in close contact with the lower surface of the buffer plate 25 so that the air that is ejected from the nozzle hole 23 and ejected through the chamber 25A is ejected as a flat cross jet (see arrow A in FIGS. 2 and 5). It is attached.
  • the size of the nozzle plate 27 is substantially the same as the size of the buffer plate 25.
  • the flat flow path 29 forms a flat high-speed air flow.
  • the rising surfaces 31A and 31C located on both sides of the cross jet flow direction are formed in parallel to the cross jet flow direction.
  • the distance LA between the rising surfaces 31A and 31C (the lateral length of the cross jet nozzle) LA is substantially equal to the longitudinal distance LB of the chamber 25A.
  • the rising surface 31B of the nozzle plate 27 substantially coincides with the inner edge 25B of the chamber 25A.
  • the distance from the rising surface 31B of the nozzle plate 27 to the opening edge 31D is about twice the width W in the direction orthogonal to the longitudinal direction of the chamber 25A. That is, the vertical distance [vertical gap] of the opening is narrowed by the buffer plate 25 in about half of the outlet side (upper side in FIG. 5) of the planar flow path 29. (That is, the width dimension of the ejection port 33 described next is about half of the planar flow path 29 of the nozzle plate 27.) Accordingly, the cross jet ejection port (blowout port) 33 at the opening edge 31D is a planar flow path. 29 is a rectangular shape defined by a bottom surface 29, rising surfaces 31A and 31C on both sides, and a buffer plate 25. The vertical opening dimension of the cross jet outlet 33 is equal to the height of the rising surfaces 31A and 31C and is 1 mm or less.
  • a first flow path plate 37 in which a through-hole 35 through which laser light can pass is formed is provided at an appropriate distance from the nozzle plate 27.
  • a second flow path plate 39 is provided below the first flow path plate 37 with an appropriate interval.
  • a first flow path 41 is formed between the nozzle plate 27 and the first flow path plate 37.
  • a second flow path 43 is formed between the first flow path plate 37 and the second flow path plate 39.
  • a nozzle holder 47 having the nozzle 5 is provided below the second flow path plate 39.
  • the inventors conducted various experiments in order to effectively suck the outside air and blow off the spatter and the like. As a result of the experiment, when the vertical interval of the inlet openings of the upper first flow channel 41 is made smaller than the vertical interval of the inlet openings of the lower second flow channel 43, the cross jet ejected from the cross jet former 19 was found to be faster.
  • the inventors variously change the vertical interval of the inlet opening of the upper first flow path 41 and the vertical interval of the inlet opening of the lower second flow path 43 to change the cross jet former 19
  • the wind speed was measured with an anemometer arranged at a predetermined position on the downstream side. The result is shown in the graph of FIG.
  • the wind speed was 29 m / s or more, which was most preferable.
  • the relationship between the gaps at the inlet openings of the first flow path 41 and the second flow path 43 is preferably 1/9 to 8/9 (desirably) and 3/9 is More preferred (more desirable).
  • the cross jet former 19 is provided with the buffer plate 25, and the chamber 25 A is attached to the buffer plate 25. Therefore, the high-pressure air ejected from the nozzle hole 23 is supplied to the flat flow path 29 with a uniform pressure distribution in the chamber 25A. Therefore, the speed distribution of the cross jet ejected in a flat shape from the cross jet former 19 becomes substantially equal as a whole, and the spatter and fumes scattered toward the protective glass 7 can be effectively blown off.
  • the cross jet former 19 is provided with the buffer plate 25 in which the chamber 25A is formed. Further, the gap between the inlet openings of the upper first flow path 41 that sucks outside air is made smaller than the gap between the inlet openings of the lower second flow path 43. Therefore, the cross jet ejected from the cross jet former 19 can be held at a high speed, and the spatter and the like scattered toward the protective glass 7 in the laser processing head 1 can be effectively blown off.
  • the present invention can also be defined as follows.
  • a laser processing head (1) A nozzle (5) provided at its tip, Protective glass (7) for protecting the condensing lens provided in the interior;
  • a cross jet former (19) provided between the protective glass (7) and the nozzle (5) and forming a cross jet in a direction intersecting the optical axis of the laser beam,
  • the cross jet former (19) includes a lower first flow path (41) and a lower second flow path (43),
  • the laser processing head (1) wherein the vertical distance between the inlet openings of the second flow path (43) is smaller than the vertical distance between the inlet openings of the first flow path (41). 2.
  • the laser processing head (1) according to 1 above The lateral width of the inlet opening of the first channel (41) is equal to the lateral width of the inlet opening of the second channel (43), The laser processing head, wherein the vertical distance of the inlet opening of the first flow path (41) is 1/9 to 8/9 of the vertical distance of the inlet opening of the second flow path (43). (1). 3. The laser processing head (1) according to 2 above, The laser processing head (1), wherein the vertical distance of the inlet opening of the first flow path (41) is 3/9 of the vertical distance of the inlet opening of the second flow path (43). 4).
  • the laser processing head (1) according to any one of the above items 1 to 3,
  • the cross jet former (19) includes a nozzle plate (27) that forms the flat cross jet, On the upper surface of the nozzle plate (27), there is formed a planar channel (29) surrounded on three sides by rising surfaces (31A to 31C), The laser processing head (1), wherein two opposing rising surfaces (31A, 31C) of the three rising surfaces (31A to 31C) are arranged in parallel to the flow of the cross jet. 5.
  • the laser processing head (1) according to 4 above,
  • the cross jet outlet (33) of the planar channel (29) is a slot,
  • the lateral length (LA) of the jet port (33) is equal to the interval between the two rising surfaces (31A, 31C) facing each other, and the length perpendicular to the lateral direction of the jet port (33) is the plane flow.
  • Laser processing head (1) which is half the length of the path (29). 6).
  • the laser processing head (1) according to any one of 1 to 5, wherein An opening block (9) with the cross-jet former (19) at the bottom; A ring-shaped aperture (17) provided on the upper part of the opening block (9); The laser processing head (1), wherein an inner peripheral surface (17A) of the aperture (17) protrudes inward from a semicircular inner surface (9F) of the opening block (9).

Abstract

Provided is a laser processing head comprising: a converging lens that converges laser light oscillated by a laser oscillator and that is provided inside the laser processing head; and a nozzle that is provided at a leading end of the laser processing head. A protective glass 7 that protects the converging lens is also provided inside the laser processing head. A cross-jet former that forms a cross jet that intersects an optical axis of the laser light is provided between the protective glass and the nozzle in order to expel to the outside spattering that enters the inside of the nozzle from a laser processing position on a workpiece. A vertical spacing of upper cross-jet inflow openings is smaller than a vertical spacing of lower cross-jet inflow openings in a cross-jet former 19.

Description

レーザ加工ヘッドLaser processing head
 本発明は、レーザ加工ヘッド[laser processing head]に関する。 The present invention relates to a laser processing head [laser processing head].
 レーザ加工では、レーザ発振器から発振されたレーザ光が、レーザ加工ヘッド内に設けられた集光レンズによって集光されてワーク[workpiece]に照射される。ワークにレーザ光を照射してレーザ加工を行うとき、レーザ加工位置[laser-processed position]からスパッタ[spatters]が飛散してレーザ加工ヘッド内に侵入することがある。レーザ加工ヘッド内に設けられた保護ガラスにスパッタが付着すると、保護ガラスが加熱されて損傷することがある。そこで、レーザ加工ヘッド内に生じさせたクロスジェット(高速エア流)によってレーザ加工ヘッド内に侵入したスパッタを外部に排出することが提案されている(例えば、特許文献1参照)。 In laser processing, laser light oscillated from a laser oscillator is condensed by a condensing lens provided in a laser processing head and irradiated onto a work piece. When laser processing is performed by irradiating a workpiece with laser light, spatters may scatter from the laser processing position and enter the laser processing head. When spatter adheres to the protective glass provided in the laser processing head, the protective glass may be heated and damaged. Therefore, it has been proposed to discharge spatter that has entered the laser processing head to the outside by a cross jet (high-speed air flow) generated in the laser processing head (see, for example, Patent Document 1).
日本国特開2014-200827号公報Japanese Unexamined Patent Publication No. 2014-200247
 上記特許文献1は、ノズルからレーザ加工ヘッドの内部に侵入したスパッタを外部へ吹き飛ばすクロスジェットを形成するクロスジェット形成器が保護ガラスとノズルとの間に設けられた構成を開示している。上記クロスジェット形成器では、上下二段のクロスジェット通路の天井壁にクロスジェットノズルが設けられている。 The above-mentioned patent document 1 discloses a configuration in which a cross jet forming device for forming a cross jet that blows off spatter that has entered the inside of a laser processing head from the nozzle to the outside is provided between the protective glass and the nozzle. In the cross jet former, a cross jet nozzle is provided on the ceiling wall of the two upper and lower cross jet passages.
 上記クロスジェットノズルからクロスジェットガスを噴射することによって、クロスジェット通路の入口側から外気を吸い込む二次流れが発生される。この二次流れによってエアーカーテンが形成され、このエアーカーテンによって、ノズルからレーザ加工ヘッド内に侵入したスパッタが外部に吹き飛ばされる。 ¡By injecting the cross jet gas from the cross jet nozzle, a secondary flow for sucking outside air from the inlet side of the cross jet passage is generated. An air curtain is formed by the secondary flow, and the spatter that has entered the laser processing head from the nozzle is blown out by the air curtain.
 上記構成によれば、レーザ加工位置から飛散してレーザ加工ヘッド内に侵入したスパッタを外部に吹き飛ばすことができるが、ときとして、スパッタが保護ガラスに付着することがある。したがって、さらなる改良が望まれていた。 According to the above configuration, the spatter scattered from the laser processing position and entering the laser processing head can be blown out, but sometimes the spatter adheres to the protective glass. Accordingly, further improvements have been desired.
 本発明の特徴は、レーザ発振器から発振されたレーザ光を集光する集光レンズを内部に備えると共に先端部にノズルを備え、かつ、前記集光レンズを保護する保護ガラスを内部に備えたレーザ加工ヘッドであって、ワークのレーザ加工位置から前記ノズル内に侵入したスパッタを外部へ排出するために、前記保護ガラスと前記ノズルとの間において、前記レーザ光の光軸に対して交差する方向へのクロスジェットを形成するためのクロスジェット形成器を備え、前記クロスジェット形成器に備えた下側のクロスジェット流入開口部の上下間隔寸法よりも上側のクロスジェット流入開口部の上下間隔寸法が小さい、レーザ加工ヘッドを提供する。 A feature of the present invention is that a laser having a condensing lens for condensing laser light oscillated from a laser oscillator, a nozzle at the tip, and a protective glass for protecting the condensing lens inside. A processing head that intersects the optical axis of the laser beam between the protective glass and the nozzle in order to discharge spatter that has entered the nozzle from the laser processing position of the workpiece to the outside. A cross-jet forming device for forming a cross-jet to the top, and a vertical-spaced dimension of an upper cross-jet inflow opening is higher than a vertical-spaced size of a lower cross-jet inflow opening provided in the cross-jet former. A small laser processing head is provided.
 上記特徴によれば、クロスジェットの風速を速くでき、レーザ加工ヘッド内に侵入したスパッタを効果的に外部に排出することができる。 According to the above feature, it is possible to increase the wind speed of the cross jet and to effectively discharge the spatter that has entered the laser processing head to the outside.
 上下のクロスジェット流入開口部の幅は等しく、かつ、上側のクロスジェット流入開口部の上下間隔寸法は、下側のクロスジェット流入開口部の上下間隔寸法の1/9~8/9であることが好ましい。3/9であることが特に好ましい。 The widths of the upper and lower cross jet inflow openings are equal, and the vertical distance between the upper cross jet inflow openings is 1/9 to 8/9 of the vertical distance between the lower cross jet inflow openings. Is preferred. Particularly preferred is 3/9.
 前記クロスジェット形成器において、扁平状の高速エアの流れを形成するためのノズルプレートの上面は三方向を立上り面によって規制された平面流路に形成してあり、かつ、前記高速エアの流れに沿う方向の立上り面は高速エアの流れ方向に平行に形成してあることが好ましい。 In the cross jet former, the upper surface of the nozzle plate for forming a flat high-speed air flow is formed as a planar flow path that is regulated in three directions by a rising surface, and the high-speed air flow The rising surface along the direction is preferably formed in parallel with the flow direction of the high-speed air.
 ここで、前記ノズルプレートの前記平面流路に対する高速エアの吹出し口の断面形状は長穴状であって、この吹出し口の長手方向の寸法は、前記平行な立上り面の間隔にほぼ等しく、長手方向に対して直交する方向の幅寸法は、前記ノズルプレートの前記平面流路の約半分であることがさらに好ましい。 Here, the cross-sectional shape of the high-speed air blowing port with respect to the planar flow path of the nozzle plate is a long hole shape, and the size in the longitudinal direction of the blowing port is substantially equal to the interval between the parallel rising surfaces. More preferably, the width dimension in the direction orthogonal to the direction is about half of the planar flow path of the nozzle plate.
 また、前記クロスジェット形成器を下部に備えた開口ブロックの上部に、リング状のアパーチャを備え、前記開口ブロックに備えた半円形状の内面に対して、前記アパーチャの内周面は内側に突出した状態に備えられている、ことが好ましい。 In addition, a ring-shaped aperture is provided on the upper part of the opening block provided with the cross jet former at the lower part, and the inner peripheral surface of the aperture projects inward with respect to the semicircular inner surface provided in the opening block. It is preferable that it is prepared in the state.
実施形態に係るレーザ加工ヘッドの断面斜視図である。It is a section perspective view of the laser processing head concerning an embodiment. 上記レーザ加工ヘッドの主要部分の拡大断面図である。It is an expanded sectional view of the principal part of the said laser processing head. 上記レーザ加工ヘッドにおける開口ブロック、バッファプレート及びノズルプレートを示す斜視図である。It is a perspective view which shows the opening block, buffer plate, and nozzle plate in the said laser processing head. バッファプレートの平面図である。It is a top view of a buffer plate. ノズルプレートの平面図である。It is a top view of a nozzle plate. 第1流路及び第2流路の入口開口部の隙間と風速との関係を示すグラフである。It is a graph which shows the relationship between the clearance gap between the inlet opening part of a 1st flow path and a 2nd flow path, and a wind speed.
 以下、図面を参照しつつ実施形態に係るレーザ加工ヘッド1を説明する。図1に示されるように、レーザ加工ヘッド1は、加工ヘッド本体[processing head body]3を備えている。加工ヘッド本体3内には、レーザ発振器(図示せず)から発振されたレーザ光を集光する集光レンズ(図示せず)が設けられている。加工ヘッド本体3の先端部にはノズル5が着脱交換自在に設けられている。 Hereinafter, the laser processing head 1 according to the embodiment will be described with reference to the drawings. As shown in FIG. 1, the laser processing head 1 includes a processing head body 3. A condensing lens (not shown) that collects laser light oscillated from a laser oscillator (not shown) is provided in the processing head body 3. A nozzle 5 is provided at the tip of the processing head body 3 so as to be detachable and replaceable.
 加工ヘッド本体3内の集光レンズとノズル5との間には、レーザ加工位置から飛散してノズル5を経てレーザ加工ヘッド1内に侵入したスパッタから集光レンズを保護する保護ガラス7が設けられている。加工ヘッド本体3は、開口ブロック[opened block]9(図3参照)備えている。開口ブロック9は垂直方向に開口されている(レーザ光の経路)と共に、開口ブロック9には、一側方向[one lateral direction](例えば、レーザ加工の進行方向に対して反対方向)に向けて大きく開口された開口部[opening]9Aが形成されている。開口ブロック9は、その下部に後述するクロスジェット形成器19を備えている。 Between the condensing lens in the processing head body 3 and the nozzle 5, a protective glass 7 is provided to protect the condensing lens from spattering from the laser processing position and entering the laser processing head 1 through the nozzle 5. It has been. The processing head body 3 includes an open block 9 (see FIG. 3). The opening block 9 is opened in the vertical direction (laser beam path), and the opening block 9 is directed in one direction [one lateral direction] (for example, the direction opposite to the laser processing progress direction). A large opening 9A is formed. The opening block 9 includes a cross jet former 19 to be described later at the lower part thereof.
 開口ブロック9は、図3に示されるように、垂直方向及び一側方向の三方向に開口された形態を有している。開口ブロック9におけるレーザ光が下方へと透過する部分は、半円状(半円形状)の穴部[hole]9Bとして形成されている。穴部9Bの内面9Fの両端には、それぞれ、対向する開口部9Aの側壁面9Cがそれぞれ接続している。開口ブロック9の上面には、アパーチャホルダ11が形成されている。アパーチャホルダ11には、ガラスホルダ13を介して保護ガラス7が交換可能に取り付けられている。 As shown in FIG. 3, the opening block 9 has a shape opened in three directions, ie, the vertical direction and the one side direction. The portion of the opening block 9 through which the laser light passes downward is formed as a semicircular (semicircular) hole 9B. The opposite side walls 9C of the opening 9A are connected to both ends of the inner surface 9F of the hole 9B. An aperture holder 11 is formed on the upper surface of the opening block 9. The protective glass 7 is attached to the aperture holder 11 through a glass holder 13 in a replaceable manner.
 アパーチャホルダ11の中央には、レーザ光が透過自在な貫通穴15が垂直方向に形成されている。即ち、貫通穴15は、開口ブロック9の上部に形成されている。貫通穴15内には、リング状のアパーチャ17が取り付けられている。アパーチャ17の中心は、半円状の穴部9Bの軸心と一致している。アパーチャ17の半径は、穴部9Bの半径より小さい。 In the center of the aperture holder 11, a through hole 15 through which laser light can pass is formed in the vertical direction. That is, the through hole 15 is formed in the upper part of the opening block 9. A ring-shaped aperture 17 is attached in the through hole 15. The center of the aperture 17 coincides with the axis of the semicircular hole 9B. The radius of the aperture 17 is smaller than the radius of the hole 9B.
 アパーチャ17の内周面17Aは、図2に示されるように、穴部9Bの半円状の内面9Fから内側に突出されている(突出された状態とされている)。よって、穴部9Bの内面9Fに沿ってヒューム[fumes]やスパッタの一部が上昇する場合であっても、ヒュームやスパッタの保護ガラス7への付着を効果的に抑制することができる。また、アパーチャ17は、ワークのレーザ加工位置から保護ガラス7へと直接飛散するスパッタを減じる役割も担っている。したがって、スパッタの保護ガラス7への付着を効果的に抑制できる。 As shown in FIG. 2, the inner peripheral surface 17A of the aperture 17 protrudes inward from the semicircular inner surface 9F of the hole 9B (is in a protruding state). Therefore, even when fumes and a part of spatter rise along the inner surface 9F of the hole 9B, it is possible to effectively suppress fume and spatter adhesion to the protective glass 7. The aperture 17 also plays a role of reducing spatter directly scattered from the workpiece laser processing position to the protective glass 7. Therefore, it is possible to effectively suppress the adhesion of spatter to the protective glass 7.
 開口ブロック9の下方で、かつ、開口部9Aに対しての反対側には、レーザ光の光軸(穴部9Bの軸心)と交差(直交)するクロスジェット(高速エア流)を形成するクロスジェット形成器19が設けられている。クロスジェット形成器19の全体的構成は、特許文献1に記載のクロスジェット形成器の構成と類似している。しかし、クロスジェット形成器19の主要部の構成は特許文献1のクロスジェット形成器の主要部の構成とは相違する。 A cross jet (high-speed air flow) intersecting (orthogonal) with the optical axis of the laser beam (axial center of the hole 9B) is formed below the opening block 9 and on the opposite side to the opening 9A. A cross jet former 19 is provided. The overall configuration of the cross jet former 19 is similar to the configuration of the cross jet former described in Patent Document 1. However, the configuration of the main part of the cross jet former 19 is different from the configuration of the main part of the cross jet former of Patent Document 1.
 開口ブロック9の前壁部[front wall]9Dには、特許文献1開示された流体通路と同様の流体通路21が形成されている。流体通路21には、前壁部9Dの下端面に達するノズル孔23が形成されている。ノズル孔23は、加工上の制約のせいで円形断面形状を有するように形成されている。開口ブロック9の前壁部9Dの下端面には、バッファプレート25が取付ねじ等によって取り付けられている。 A fluid passage 21 similar to the fluid passage disclosed in Patent Document 1 is formed in the front wall portion 9D of the opening block 9. The fluid passage 21 is formed with a nozzle hole 23 that reaches the lower end surface of the front wall portion 9D. The nozzle hole 23 is formed to have a circular cross-sectional shape due to processing restrictions. A buffer plate 25 is attached to the lower end surface of the front wall portion 9D of the opening block 9 with an attachment screw or the like.
 バッファプレート25は、ノズル孔23から噴出された円柱状のエア流れを、全体的に均等な流れに変える。図4に示されるように、バッファプレート25には、ノズル孔23に連通するチャンバー25Aが、断面矩形状(長穴状)の空間として形成されている。なお、開口ブロック9の前壁部9Dの下端面にチャンバー25Aに相当する空間が形成される場合には、バッファプレート25を省略できる。 The buffer plate 25 changes the cylindrical air flow ejected from the nozzle hole 23 into a uniform flow as a whole. As shown in FIG. 4, a chamber 25 </ b> A communicating with the nozzle hole 23 is formed in the buffer plate 25 as a space having a rectangular cross section (long hole shape). If a space corresponding to the chamber 25A is formed on the lower end surface of the front wall 9D of the opening block 9, the buffer plate 25 can be omitted.
 バッファプレート25の下面には、ノズル孔23から噴出されて、チャンバー25Aを経て噴出されるエアを扁平なクロスジェットとして噴出させる(図2,5中の矢印A参照)ノズルプレート27が密着して取り付けられる。ノズルプレート27の大きさは、バッファプレート25の大きさとほぼ同一である。ノズルプレート27の上面には、三方を立上り面31A,31B,31Cによって規制された平面流路29が備えられている。平面流路29によって、扁平状の高速エア流が形成される。 The nozzle plate 27 is in close contact with the lower surface of the buffer plate 25 so that the air that is ejected from the nozzle hole 23 and ejected through the chamber 25A is ejected as a flat cross jet (see arrow A in FIGS. 2 and 5). It is attached. The size of the nozzle plate 27 is substantially the same as the size of the buffer plate 25. On the upper surface of the nozzle plate 27, there is provided a planar flow path 29 that is regulated on three sides by rising surfaces 31A, 31B, 31C. The flat flow path 29 forms a flat high-speed air flow.
 クロスジェットの流れ方向(図2,5の矢印A参照)の両側に位置する立上り面31A及び31Cは、クロスジェットの流れ方向に平行に形成されている。立上り面31A及び31Cの間隔(クロスジェット噴出口の横長さ)LAは、チャンバー25Aの長手距離LBとほぼ等しい。ノズルプレート27の立上り面31Bは、チャンバー25Aの内側縁25Bとほぼ一致している。 The rising surfaces 31A and 31C located on both sides of the cross jet flow direction (see arrows A in FIGS. 2 and 5) are formed in parallel to the cross jet flow direction. The distance LA between the rising surfaces 31A and 31C (the lateral length of the cross jet nozzle) LA is substantially equal to the longitudinal distance LB of the chamber 25A. The rising surface 31B of the nozzle plate 27 substantially coincides with the inner edge 25B of the chamber 25A.
 ノズルプレート27の立上り面31Bから開口端縁31Dまでの距離は、チャンバー25Aの長手方向に直交する方向の幅Wの約2倍である。即ち、平面流路29の出口側(図5中の上側)の約半分では、バッファプレート25によって、開口部の上下間隔[vertical gap]が狭くされている。(即ち、次に説明する噴出口33の幅寸法はノズルプレート27の平面流路29の約半分である。)したがって、開口端縁31Dのクロスジェット噴出口(吹出し口)33は、平面流路29の底面、両側の立上り面31A及び31C、並びに、バッファプレート25によって区画された矩形状である。クロスジェット噴出口33の垂直方向の開口寸法は、立上り面31A及び31Cの高さに等しく、1mm以下である。 The distance from the rising surface 31B of the nozzle plate 27 to the opening edge 31D is about twice the width W in the direction orthogonal to the longitudinal direction of the chamber 25A. That is, the vertical distance [vertical gap] of the opening is narrowed by the buffer plate 25 in about half of the outlet side (upper side in FIG. 5) of the planar flow path 29. (That is, the width dimension of the ejection port 33 described next is about half of the planar flow path 29 of the nozzle plate 27.) Accordingly, the cross jet ejection port (blowout port) 33 at the opening edge 31D is a planar flow path. 29 is a rectangular shape defined by a bottom surface 29, rising surfaces 31A and 31C on both sides, and a buffer plate 25. The vertical opening dimension of the cross jet outlet 33 is equal to the height of the rising surfaces 31A and 31C and is 1 mm or less.
 クロスジェット形成器19の下方には、レーザ光が下方に透過自在な貫通穴35が形成された第1流路板37が、ノズルプレート27と適宜間隔を保持して設けられている。第1流路板37の下方には、適宜間隔を保持して第2流路板39が設けられている。ノズルプレート27と第1流路板37との間には第1流路41が形成されている。第1流路板37と第2流路板39との間には第2流路43が形成されている。 Below the cross jet former 19, a first flow path plate 37 in which a through-hole 35 through which laser light can pass is formed is provided at an appropriate distance from the nozzle plate 27. A second flow path plate 39 is provided below the first flow path plate 37 with an appropriate interval. A first flow path 41 is formed between the nozzle plate 27 and the first flow path plate 37. A second flow path 43 is formed between the first flow path plate 37 and the second flow path plate 39.
 第1流路41及び第2流路43は、第1流路板37を介在させて垂直に離隔されている。第1流路41及び第2流路43は、クロスジェットの流れ方向(矢印A参照)の反対側に入口開口部[inlet opening](クロスジェット流入開口部)を有している。第1流路41及び第2流路43の入口開口部に対応する位置には、外気を吸引するためのガイド板45が上方に向けられて配置されている。そして、入口開口部とは反対側の排出口には排風板46が配置されている。上述した構成において、図2に示されるように、上側の第1流路41の入口開口部の上下間隔(上下間隔寸法)は、下側の第2流路43の入口開口部の上下間隔(上下間隔寸法)よりも小さい。 The first flow path 41 and the second flow path 43 are vertically separated with the first flow path plate 37 interposed therebetween. The first flow path 41 and the second flow path 43 have an inlet opening [inlet opening] (cross jet inflow opening) on the opposite side of the cross jet flow direction (see arrow A). At positions corresponding to the inlet openings of the first flow path 41 and the second flow path 43, a guide plate 45 for sucking outside air is disposed facing upward. And the exhaust plate 46 is arrange | positioned at the discharge port on the opposite side to an entrance opening part. In the configuration described above, as shown in FIG. 2, the vertical distance (vertical distance dimension) of the inlet opening of the upper first flow path 41 is the vertical distance of the inlet opening of the lower second flow path 43 ( Smaller than the vertical spacing dimension).
 第2流路板39の下方には、ノズル5を有するノズルホルダ47が設けられている。 A nozzle holder 47 having the nozzle 5 is provided below the second flow path plate 39.
 上述した構成において、ワークにレーザ光を照射してレーザ加工を行うと、レーザ加工位置で発生したヒュームやスパッタの一部がレーザ加工ヘッド1内に侵入し、保護ガラス7に付着することがある。そこで、ノズル孔23から高圧エアを噴出し、クロスジェット形成器19によって扁平な高速エア流[flat laminar high-speed airflow]を噴出して、スパッタ等を吹き飛ばす。クロスジェット形成器19によって高速エア流を噴出すると、負圧が生成されて第1流路41及び第2流路43に大量の外気が吸引される。吸引された外気によってもスパッタ等が吹き飛ばされる。 In the configuration described above, when laser processing is performed by irradiating a workpiece with laser light, a part of fumes or spatter generated at the laser processing position may enter the laser processing head 1 and adhere to the protective glass 7. . Therefore, high-pressure air is ejected from the nozzle hole 23, and a flat high-speed airflow is ejected by the cross jet former 19 to blow off spatter and the like. When a high-speed air flow is ejected by the cross jet former 19, a negative pressure is generated and a large amount of outside air is sucked into the first flow path 41 and the second flow path 43. Sputters and the like are also blown away by the sucked outside air.
 上述した特許文献1に開示された構成では、丸穴であるノズル孔23からノズルプレート27に高圧エアが噴出される。また、第1流路41及び第2流路43の入口開口部の上下間隔はほぼ等しい。このため、外気の吸引効果が小さく、スパッタ等を吹き飛ばす効果は低かった。 In the configuration disclosed in Patent Document 1 described above, high-pressure air is ejected from the nozzle hole 23 which is a round hole to the nozzle plate 27. Further, the vertical intervals of the inlet openings of the first channel 41 and the second channel 43 are substantially equal. For this reason, the effect of sucking outside air is small, and the effect of blowing off spatter and the like is low.
 発明者らは、外気を効果的に吸引してスパッタ等を確実に吹き飛ばすために種々の実験を行った。実験の結果、上側の第1流路41の入口開口部の垂直間隔を下側の第2流路43の入口開口部の上下間隔よりも小さくすると、クロスジェット形成器19から噴出されるクロスジェットの流速が速くなることが見出された。 The inventors conducted various experiments in order to effectively suck the outside air and blow off the spatter and the like. As a result of the experiment, when the vertical interval of the inlet openings of the upper first flow channel 41 is made smaller than the vertical interval of the inlet openings of the lower second flow channel 43, the cross jet ejected from the cross jet former 19 Was found to be faster.
 すなわち、発明者らは、上側の第1流路41の入口開口部の上下間隔と下側の第2流路43の入口開口部の上下間隔とを種々変更して、クロスジェット形成器19の下流側の所定位置に配置した風速計で風速を計測した。その結果を図6のグラフに示す。 That is, the inventors variously change the vertical interval of the inlet opening of the upper first flow path 41 and the vertical interval of the inlet opening of the lower second flow path 43 to change the cross jet former 19 The wind speed was measured with an anemometer arranged at a predetermined position on the downstream side. The result is shown in the graph of FIG.
 図6のグラフから明らかなように、下側の第2流路43における入口開口部の隙間を0に設定すると、上側の第1流路41の隙間が変化しても、風速は25m/s以下であった。この結果からも、下側の第2流路43と上側の第1流路41の両方を備えることが必要なことが分かる。次に、下側の第2流路43の入口開口部の隙間を3mm,6mm,9mmに変えると共に、上側の第1流路41の入口開口部の隙間を0mm~8mmに調節した。下側の第1流路41の入口開口部の隙間が9mmで、上側の第2流路43の入口開口部の隙間が3mmの場合には、風速が29m/s以上となり最も好ましかった。なお、図6のグラフから明らかなように、第1流路41及び第2流路43の入口開口部の隙間の関係は、1/9~8/9が好ましく(望ましく)、3/9がより好ましい(より望ましい)。 As is apparent from the graph of FIG. 6, when the clearance of the inlet opening in the lower second flow path 43 is set to 0, the wind speed is 25 m / s even if the clearance of the upper first flow path 41 changes. It was the following. This result also shows that it is necessary to provide both the lower second flow path 43 and the upper first flow path 41. Next, the gap at the inlet opening of the lower second flow path 43 was changed to 3 mm, 6 mm, and 9 mm, and the gap at the inlet opening of the upper first flow path 41 was adjusted to 0 mm to 8 mm. When the clearance of the inlet opening of the lower first flow path 41 was 9 mm and the clearance of the inlet opening of the upper second flow path 43 was 3 mm, the wind speed was 29 m / s or more, which was most preferable. . As is apparent from the graph of FIG. 6, the relationship between the gaps at the inlet openings of the first flow path 41 and the second flow path 43 is preferably 1/9 to 8/9 (desirably) and 3/9 is More preferred (more desirable).
 上述した構成では、クロスジェット形成器19にはバッファプレート25が設けられ、バッファプレート25にチャンバー25Aが取り付けられた。したがって、ノズル孔23から噴出された高圧エアは、チャンバー25A内で均等な圧力分布で平面流路29に供給される。したがって、クロスジェット形成器19から扁平状に噴出されるクロスジェットの速度分布は全体的にほぼ等しくなり、保護ガラス7に向けて飛散するスパッタやヒュームを効果的に吹き飛ばすことができる。 In the configuration described above, the cross jet former 19 is provided with the buffer plate 25, and the chamber 25 A is attached to the buffer plate 25. Therefore, the high-pressure air ejected from the nozzle hole 23 is supplied to the flat flow path 29 with a uniform pressure distribution in the chamber 25A. Therefore, the speed distribution of the cross jet ejected in a flat shape from the cross jet former 19 becomes substantially equal as a whole, and the spatter and fumes scattered toward the protective glass 7 can be effectively blown off.
 本実施形態によれば、クロスジェット形成器19にはチャンバー25Aが形成されたバッファプレート25が設けられている。また、外気を吸引する上側の第1流路41の入口開口部の隙間が、下側の第2流路43の入口開口部の隙間より小さくされている。したがって、クロスジェット形成器19から噴出されるクロスジェットを高速に保持でき、レーザ加工ヘッド1内の保護ガラス7に向けて飛散するスパッタ等を効果的に吹き飛ばすことができる。 According to this embodiment, the cross jet former 19 is provided with the buffer plate 25 in which the chamber 25A is formed. Further, the gap between the inlet openings of the upper first flow path 41 that sucks outside air is made smaller than the gap between the inlet openings of the lower second flow path 43. Therefore, the cross jet ejected from the cross jet former 19 can be held at a high speed, and the spatter and the like scattered toward the protective glass 7 in the laser processing head 1 can be effectively blown off.
 本発明は以下のように定義することもできる。
1. レーザ加工ヘッド(1)であって、
 その先端部に設けられたノズル(5)と、
 その内部に設けられた集光レンズを保護する保護ガラス(7)と、
 前記保護ガラス(7)と前記ノズル(5)との間に設けられ、レーザ光の光軸に交差する方向にクロスジェットを形成するクロスジェット形成器(19)と、を備えており、
 前記クロスジェット形成器(19)が、下側の第1流路(41)と下側の第2流路(43)とを備えており、
 前記第1流路(41)の入口開口部の上下間隔よりも前記第2流路(43)の入口開口部の上下間隔が小さい、レーザ加工ヘッド(1)。
2. 上記1に記載のレーザ加工ヘッド(1)であって、
 前記第1流路(41)の前記入口開口部の横幅が前記第2流路(43)の前記入口開口部の横幅と等しく、
 前記第1流路(41)の前記入口開口部の前記上下間隔が、前記第2流路(43)の前記入口開口部の前記上下間隔の1/9~8/9である、レーザ加工ヘッド(1)。
3. 上記2に記載のレーザ加工ヘッド(1)であって、
 前記第1流路(41)の前記入口開口部の前記上下間隔が、前記第2流路(43)の前記入口開口部の前記上下間隔の3/9である、レーザ加工ヘッド(1)。
4. 上記1~3の何れかに記載のレーザ加工ヘッド(1)であって、
 前記クロスジェット形成器(19)が、扁平な前記クロスジェットを形成するノズルプレート(27)を備えており、
 前記ノズルプレート(27)の上面には、三方を立上り面(31A~31C)によって囲まれた平面流路(29)が形成されており、
 三つの前記立上り面(31A~31C)のうちの対向する二つの立上り面(31A,31C)は、前記クロスジェットの流れに平行に配置されている、レーザ加工ヘッド(1)。
5. 上記4に記載のレーザ加工ヘッド(1)であって、
 前記平面流路(29)の前記クロスジェットの噴出口(33)は長穴であり、
 前記噴出口(33)の横長さ(LA)は、対向する二つの前記立上り面(31A,31C)の間隔に等しく、前記噴出口(33)の横方向に直交する長さは、前記平面流路(29)の長さの半分である、レーザ加工ヘッド(1)。
6. 上記1~5の何れかに記載のレーザ加工ヘッド(1)であって、
 前記クロスジェット形成器(19)を下部に備えた開口ブロック(9)と、
 前記開口ブロック(9)の上部に設けられた、リング状のアパーチャ(17)とをさらに備えており、
 前記アパーチャ(17)の内周面(17A)は、前記開口ブロック(9)の半円状の内面(9F)から内側に突出されている、レーザ加工ヘッド(1)。
The present invention can also be defined as follows.
1. A laser processing head (1),
A nozzle (5) provided at its tip,
Protective glass (7) for protecting the condensing lens provided in the interior;
A cross jet former (19) provided between the protective glass (7) and the nozzle (5) and forming a cross jet in a direction intersecting the optical axis of the laser beam,
The cross jet former (19) includes a lower first flow path (41) and a lower second flow path (43),
The laser processing head (1), wherein the vertical distance between the inlet openings of the second flow path (43) is smaller than the vertical distance between the inlet openings of the first flow path (41).
2. The laser processing head (1) according to 1 above,
The lateral width of the inlet opening of the first channel (41) is equal to the lateral width of the inlet opening of the second channel (43),
The laser processing head, wherein the vertical distance of the inlet opening of the first flow path (41) is 1/9 to 8/9 of the vertical distance of the inlet opening of the second flow path (43). (1).
3. The laser processing head (1) according to 2 above,
The laser processing head (1), wherein the vertical distance of the inlet opening of the first flow path (41) is 3/9 of the vertical distance of the inlet opening of the second flow path (43).
4). The laser processing head (1) according to any one of the above items 1 to 3,
The cross jet former (19) includes a nozzle plate (27) that forms the flat cross jet,
On the upper surface of the nozzle plate (27), there is formed a planar channel (29) surrounded on three sides by rising surfaces (31A to 31C),
The laser processing head (1), wherein two opposing rising surfaces (31A, 31C) of the three rising surfaces (31A to 31C) are arranged in parallel to the flow of the cross jet.
5. The laser processing head (1) according to 4 above,
The cross jet outlet (33) of the planar channel (29) is a slot,
The lateral length (LA) of the jet port (33) is equal to the interval between the two rising surfaces (31A, 31C) facing each other, and the length perpendicular to the lateral direction of the jet port (33) is the plane flow. Laser processing head (1), which is half the length of the path (29).
6). The laser processing head (1) according to any one of 1 to 5, wherein
An opening block (9) with the cross-jet former (19) at the bottom;
A ring-shaped aperture (17) provided on the upper part of the opening block (9);
The laser processing head (1), wherein an inner peripheral surface (17A) of the aperture (17) protrudes inward from a semicircular inner surface (9F) of the opening block (9).
 日本国特許出願第2016-127626号(2016年6月28日出願)の全ての内容は、ここに参照されることで本明細書に援用される。本発明の実施形態を参照することで上述のように本発明が説明されたが、本発明は上述した実施形態に限定されるものではない。本発明の範囲は、請求の範囲に照らして決定される。 The entire contents of Japanese Patent Application No. 2016-127626 (filed on June 28, 2016) are incorporated herein by reference. Although the present invention has been described above with reference to embodiments of the present invention, the present invention is not limited to the above-described embodiments. The scope of the invention is determined in light of the claims.

Claims (5)

  1.  レーザ発振器から発振されたレーザ光を集光する集光レンズを内部に備えると共に先端部にノズルを備え、かつ、前記集光レンズを保護する保護ガラスを内部に備えたレーザ加工ヘッドであって、
     ワークのレーザ加工位置から前記ノズル内に侵入したスパッタを外部へ排出するために、前記保護ガラスと前記ノズルとの間において、前記レーザ光の光軸に対して交差する方向へのクロスジェットを形成するためのクロスジェット形成器を備え、前記クロスジェット形成器に備えた下側のクロスジェット流入開口部の上下間隔寸法よりも上側のクロスジェット流入開口部の上下間隔寸法が小さい、レーザ加工ヘッド。
    A laser processing head provided with a condensing lens for condensing laser light oscillated from a laser oscillator and having a nozzle at the tip, and a protective glass for protecting the condensing lens,
    A cross jet is formed between the protective glass and the nozzle in a direction intersecting the optical axis of the laser beam in order to discharge the spatter that has entered the nozzle from the laser processing position of the workpiece to the outside. A laser processing head, comprising: a cross jet forming device for performing the processing, wherein a vertical spacing size of an upper cross jet inflow opening is smaller than a vertical spacing size of a lower cross jet inflow opening provided in the cross jet forming device.
  2.  請求項1に記載のレーザ加工ヘッドであって、
     上下のクロスジェット流入開口部の幅は等しく、かつ、上側のクロスジェット流入開口部の上下間隔寸法は、下側のクロスジェット流入開口部の上下間隔寸法の1/9~8/9であり、望ましくは3/9であることを特徴とするレーザ加工ヘッド。
    The laser processing head according to claim 1,
    The widths of the upper and lower cross jet inflow openings are equal, and the vertical distance between the upper cross jet inflow openings is 1/9 to 8/9 of the vertical distance between the lower cross jet inflow openings, The laser processing head is preferably 3/9.
  3.  請求項1又は2に記載のレーザ加工ヘッドであって、
     前記クロスジェット形成器において、扁平状の高速エアの流れを形成するためのノズルプレートの上面は三方向を立上り面によって規制された平面流路に形成してあり、かつ、前記高速エアの流れに沿う方向の立上り面は高速エアの流れ方向に平行に形成してある、レーザ加工ヘッド。
    The laser processing head according to claim 1 or 2,
    In the cross jet former, the upper surface of the nozzle plate for forming a flat high-speed air flow is formed as a planar flow path that is regulated in three directions by a rising surface, and the high-speed air flow A laser processing head in which the rising surface along the direction is formed in parallel with the flow direction of the high-speed air.
  4.  請求項3に記載のレーザ加工ヘッドであって、
     前記ノズルプレートの前記平面流路に対する高速エアの吹出し口の断面形状は長穴状であって、この吹出し口の長手方向の寸法は、前記平行な立上り面の間隔にほぼ等しく、長手方向に対して直交する方向の幅寸法は、前記ノズルプレートの前記平面流路の約半分である、レーザ加工ヘッド。
    The laser processing head according to claim 3,
    The cross-sectional shape of the high-speed air outlet for the planar flow path of the nozzle plate is an elongated hole, and the longitudinal dimension of the outlet is substantially equal to the interval between the parallel rising surfaces, The laser processing head has a width dimension in a direction perpendicular to each other and is about half of the planar flow path of the nozzle plate.
  5.  請求項1~4のいずれかに記載のレーザ加工ヘッドであって、
     前記クロスジェット形成器を下部に備えた開口ブロックの上部に、リング状のアパーチャを備え、前記開口ブロックに備えた半円形状の内面に対して、前記アパーチャの内周面は内側に突出した状態に備えられている、レーザ加工ヘッド。
    The laser processing head according to any one of claims 1 to 4,
    The upper part of the opening block provided with the cross jet former is provided with a ring-shaped aperture, and the inner peripheral surface of the aperture protrudes inward with respect to the semicircular inner surface provided in the opening block. The laser processing head provided in
PCT/JP2017/021756 2016-06-28 2017-06-13 Laser processing head WO2018003483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-127626 2016-06-28
JP2016127626A JP6205022B1 (en) 2016-06-28 2016-06-28 Laser processing head

Publications (1)

Publication Number Publication Date
WO2018003483A1 true WO2018003483A1 (en) 2018-01-04

Family

ID=59969412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021756 WO2018003483A1 (en) 2016-06-28 2017-06-13 Laser processing head

Country Status (2)

Country Link
JP (1) JP6205022B1 (en)
WO (1) WO2018003483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524285A1 (en) * 2020-10-05 2022-04-15 Trotec Laser Gmbh Protective cone for a laser device and laser device therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110961786A (en) * 2019-12-26 2020-04-07 武汉一本光电有限公司 Multiband laser welding head

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306106A (en) * 2003-04-09 2004-11-04 Babcock Hitachi Kk Laser beam machining head
JP2014024117A (en) * 2012-07-26 2014-02-06 Electro Scientific Industries Inc Material collection method and material collection apparatus
JP2015202511A (en) * 2014-04-15 2015-11-16 株式会社アマダホールディングス Antipollution method for protective glass and laser processing head
JP2016052679A (en) * 2014-09-03 2016-04-14 株式会社アマダホールディングス Laser processing head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306106A (en) * 2003-04-09 2004-11-04 Babcock Hitachi Kk Laser beam machining head
JP2014024117A (en) * 2012-07-26 2014-02-06 Electro Scientific Industries Inc Material collection method and material collection apparatus
JP2015202511A (en) * 2014-04-15 2015-11-16 株式会社アマダホールディングス Antipollution method for protective glass and laser processing head
JP2016052679A (en) * 2014-09-03 2016-04-14 株式会社アマダホールディングス Laser processing head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524285A1 (en) * 2020-10-05 2022-04-15 Trotec Laser Gmbh Protective cone for a laser device and laser device therefor
AT524285B1 (en) * 2020-10-05 2023-07-15 Trotec Laser Gmbh Protective cone for a laser device and laser device therefor

Also Published As

Publication number Publication date
JP2018001180A (en) 2018-01-11
JP6205022B1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
US11420289B2 (en) Methods and systems to keep a work piece surface free from liquid accumulation while performing liquid-jet guided laser based material processing
JP3143457U (en) Dust collector for laser processing machine
JP4904420B2 (en) Wiping apparatus for inkjet and wiping method using the same
CN110153554B (en) Laser processing head
JP2012509181A (en) Method and apparatus for improving the reliability of machining processes
JP6159583B2 (en) Protection method of protective glass and laser processing head
WO2018003483A1 (en) Laser processing head
JP6659745B2 (en) Laser processing head with function to rectify assist gas
JP7430424B2 (en) Gas suction device and laser processing device
JP2007216290A (en) Laser torch
CN109219497B (en) Laser processing apparatus
JP6385119B2 (en) Protection glass contamination prevention method and laser processing head
KR102362753B1 (en) Dust collector and appratus for refining magnetic domains in grain-oriented electrical steel sheet with the same
KR20190049985A (en) Laser apparatus
JP3195668U (en) Dust collection nozzle for laser processing
JP4352920B2 (en) Laser processing head and laser processing method
WO2015068649A1 (en) Dust collection device for thermal processing machine
KR20100113551A (en) Device and method for fluid removal after laser scoring
JP7431601B2 (en) laser processing equipment
JP6035088B2 (en) Nozzle for laser processing head
JP2015217423A (en) Composite welding apparatus
JP5315418B2 (en) Particulate suction hood mouth and laser apparatus for excising the surface layer of a wall having such a hood
WO2018088290A1 (en) Machining room
JP2022158656A (en) Optical instrument protection device and laser processing device
WO2019239974A1 (en) Laser machining head and laser machining device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819847

Country of ref document: EP

Kind code of ref document: A1