WO2019239974A1 - Laser machining head and laser machining device - Google Patents

Laser machining head and laser machining device Download PDF

Info

Publication number
WO2019239974A1
WO2019239974A1 PCT/JP2019/022266 JP2019022266W WO2019239974A1 WO 2019239974 A1 WO2019239974 A1 WO 2019239974A1 JP 2019022266 W JP2019022266 W JP 2019022266W WO 2019239974 A1 WO2019239974 A1 WO 2019239974A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
flow
gas
laser processing
protective glass
Prior art date
Application number
PCT/JP2019/022266
Other languages
French (fr)
Japanese (ja)
Inventor
俊英 加藤
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2019239974A1 publication Critical patent/WO2019239974A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products

Definitions

  • the present disclosure relates to a laser processing head and a laser processing apparatus.
  • the laser processing head included in the laser processing apparatus includes a focusing lens and a protective glass disposed closer to the nozzle than the focusing lens.
  • the protective glass is arranged to prevent the focusing lens from being contaminated by fumes or spatters generated by laser processing.
  • Patent Document 1 describes a technique of providing a flow path in a laser processing head for assist gas that is ejected from a nozzle during laser processing so that the assist gas flows along a lower surface that is a nozzle side surface of the protective glass. ing.
  • the laser processing head described in Patent Document 1 has an annular swirl flow path, a swirl flow generation flow path, and a gas rectifier.
  • the assist gas passes through the gas rectifier after being turned into a swirl flow that flows in one direction in the annular swirl flow path.
  • the assist gas is rectified so that the swirl component is reduced by the gas rectifying means and has a uniform velocity distribution in the circumferential direction, and flows through the lower surface of the protective glass.
  • the protective glass is also contaminated. Therefore, it is desired to more effectively prevent contamination of the protective glass and reduce the number of steps for cleaning the protective glass.
  • the laser processing head described in Patent Document 1 in order to effectively prevent contamination of the protective glass, it is considered to rectify a larger flow rate of assist gas and flow it along the lower surface of the protective glass. .
  • the swirling flow path and the gas rectifying means are disposed adjacent to each other in the radial direction below the protective glass.
  • the outer diameter of the laser processing head is increased, which causes a problem that space saving is difficult and measures for avoiding interference with other members are required.
  • an object of the embodiment is to provide a laser processing head and a laser processing apparatus that can more effectively prevent contamination of the protective glass while suppressing an increase in size of the laser processing head.
  • a swirl flow path section that swirls the filter, a filter formed of a porous material and housed in the swirl flow path section, and the protection of the gas flow that has passed through the filter along the optical axis of the focusing lens.
  • a laser processing head comprising a path portion is provided.
  • the laser processing device includes a laser oscillator, a gas supply device, and a laser processing head, and the laser processing head focuses the laser light supplied from the laser oscillator into a desired light beam.
  • a lens, a nozzle that emits the laser light, a protective glass that is disposed between the focusing lens and the nozzle and through which the laser light passes, and an optical axis of the focusing lens that supplies the gas supplied from the gas supply device A swirl flow path section that swirls around, a filter formed of a porous material and housed inside the swirl flow path section, and the flow of the gas that has passed through the filter along the optical axis of the focusing lens
  • An axial flow path section that directs the protective glass, and an inward direction toward the optical axis along the surface of the protective glass near the nozzle of the gas flow that has passed through the axial flow path section
  • the laser processing apparatus is provided which has a deflection channel portion to.
  • contamination of the protective glass can be more effectively prevented while suppressing an increase in the size of the laser processing head.
  • FIG. 1 is a diagram illustrating an overall configuration of a laser welding apparatus 51 that is an example of the laser welding apparatus according to the embodiment.
  • FIG. 2 is a longitudinal sectional view showing the nozzle holder 8 and the nozzle 9 of the laser processing head 1 provided in the laser welding apparatus 51.
  • FIG. 3 is a partial longitudinal sectional view showing the structure of the rectifying unit 10 in the nozzle holder 8.
  • FIG. 4 is a cross-sectional view for explaining the gas flow G2 flowing through the swirl flow path portion 82a in the rectifying unit 10.
  • FIG. 5 is a partial longitudinal sectional view showing the state of the rectifying unit 10 with the inner sleeve 84 removed.
  • FIG. 6 is a longitudinal sectional view showing the inner sleeve 84.
  • FIG. 7 is a schematic longitudinal sectional view for explaining the flow of the assist gas in the nozzle holder 8.
  • FIG. 8 is a schematic longitudinal sectional view for explaining the flow of the assist gas in the nozzle holder 8P with the filter 85 of the rectifying unit 10 removed.
  • FIG. 9 is a cross-sectional view illustrating a rectifying unit 10A that is a modification of the rectifying unit 10.
  • FIG. 10 is a schematic longitudinal sectional view for explaining the flow of the assist gas in the nozzle holder 8A having the rectifying unit 10A.
  • 10 is a plan view showing a filter 851 which is a modification of the filter 85.
  • the laser processing apparatus according to the embodiment will be described with reference to a laser processing apparatus 51 as an example.
  • FIG. 1 is a configuration diagram showing a laser processing apparatus 51.
  • the laser processing device 51 includes a laser processing head 1, a control device 2, a laser oscillator 3, and a gas supply device 4.
  • the laser processing device 51 performs processing such as cutting or punching on the workpiece W by irradiating the laser beam Ls from the tip of the laser processing head 1.
  • the laser processing head 1 includes a main body portion 7, a nozzle holder 8 attached to the tip of the main body portion 7, and a nozzle 9 attached to the tip of the nozzle holder 8 in a detachable manner.
  • a collimating lens 7a, a focusing lens 7b, and a protective glass 7c are arranged from the side far from the nozzle 9. That is, the protective glass 7 c is disposed between the focusing lens 7 b and the nozzle 9.
  • the protective glass 7c prevents fumes or spatters coming from the nozzle 9 side from adhering to the focusing lens 7b.
  • the laser oscillator 3 is a fiber laser oscillator, for example, and generates and emits laser light.
  • the emitted laser light is supplied to the laser processing head 1 through the fiber cable 5.
  • the gas supply device 4 uses a nitrogen cylinder as a gas source, and supplies high purity nitrogen gas as an assist gas to the laser processing head 1 through a gas supply hose 6.
  • the gas supply device 4 may be a device in which a gas source is air instead of a nitrogen cylinder, oxygen is separated by a separation filter such as a hollow fiber membrane to generate a nitrogen rich gas, and the gas is supplied to the laser processing head 1.
  • a gas G the gas supplied from the gas supply device 4 to the laser processing head 1 is referred to as a gas G.
  • the laser processing head 1 shapes the laser beam supplied from the laser oscillator 3 into a luminous flux having a desired characteristic by the collimating lens 7a and the focusing lens 7b disposed therein, and an opening at the tip of the nozzle 9 through the protective glass 7c.
  • the laser beam Ls is emitted from 9a to the outside.
  • the laser processing head 1 injects the supplied gas G from the opening 9a of the nozzle 9 through the internal flow path.
  • the control device 2 controls the operation of the laser oscillator 3, the operation of the gas supply device 4, and the operation for beam shaping by the focusing lens 7 b of the laser processing head 1.
  • FIG. 2 is a longitudinal sectional view showing a detailed structure of the nozzle holder 8 of the laser processing head 1.
  • 3 is an enlarged longitudinal sectional view of the base 82 in FIG. 2
  • FIG. 4 is a transverse sectional view at the position S4-S4 in FIG.
  • FIG. 5 is a longitudinal sectional view showing a state in which a filter 85 (described later) is removed from the nozzle holder 8 shown in FIG. 3
  • FIG. 6 is a longitudinal sectional view showing an inner sleeve 84 (described later).
  • the vertical direction is defined as the direction of the arrow shown in FIG.
  • the nozzle holder 8 includes a rectifying unit 10, a relay unit 81, and a plate 83.
  • the rectifying unit 10 includes a base 82, a protective glass 7 c attached to the base 82, an inner sleeve 84, and a filter 85.
  • the relay part 81 has a flange 811 at the upper part, and the nozzle 9 is attached to the lower end of the relay part 81 so as to be replaceable with screws.
  • the relay part 81 is fixed to the base part 82 with screws N1 in a state where the flange 811 is sandwiched between the base part 82 and the plate 83.
  • the base 82 has a through hole 821 whose center is the axis line CL7, and has a substantially prismatic appearance.
  • the axis CL7 coincides with the optical axis of the focusing lens 7b.
  • a shelf 822 is formed as a peripheral shelf on the upper portion of the through hole 821.
  • the protective glass 7 c is held on the shelf 822 by the presser plate 87 in a state where the O-ring 86 is compressed with respect to the shelf 822.
  • the through hole 821 has a reduced diameter portion 82c having a small inner diameter Da (see FIG. 5) just below the shelf portion 822.
  • the through-hole 821 has an axial flow path portion 82b whose diameter increases as it goes downward from the reduced diameter portion 82c, and a swirl flow path portion 82a that extends with the same inner diameter along the axis CL7. Further, the through hole 821 has an inner flange portion 82d having a smaller diameter than the reduced diameter portion 82c on the lower side of the swirl flow passage portion 82a.
  • the inner sleeve 84 includes a base portion 84a having an outer diameter Db and a small-diameter protruding portion 84c having a smaller diameter than the base portion 84a.
  • the small-diameter protruding portion 84c fits into the inner flange portion 82d of the base portion 82 without a gap.
  • the inner peripheral surface 84b of the inner sleeve 84 is an inclined peripheral surface whose diameter decreases from the base portion 84a side toward the small-diameter protruding portion 84c.
  • the outer diameter Db is set slightly smaller than the inner diameter Da of the reduced diameter portion 82c of the base portion 82.
  • the inner sleeve 84 is attached to the base 82 by being inserted into the through hole 821 of the base 82 from above and fitting the small-diameter protruding portion 84c into the inner flange portion 82d. Between the reduced diameter portion 82c of the base portion 82 and the outer peripheral surface 84a1 of the base portion 84a of the inner sleeve 84, an orifice space Vc is formed as an annular gap having a distance d1 in the radial direction.
  • the reduced diameter portion 82c and the base portion 84a form an orifice 89 having a cross-sectional area in a plane orthogonal to the axis CL7 that is smaller than the cross-sectional area of the swirling space Va formed by the swirling flow passage portion 82a and the base portion 84a.
  • a top space Vd having a distance ta in the vertical direction is formed between the tip 84d above the inner sleeve 84 and the protective glass 7c.
  • a swirl space Va is formed as a space surrounded by the base portion 84a of the inner sleeve 84 and the swirl flow passage portion 82a of the base portion 82, and an introduction space Vb is formed as a space surrounded by the base portion 84a and the axial flow passage portion 82b.
  • the swirl space Va is formed in an annular shape having a longitudinal cross-sectional shape of a rectangle, and the introduction space Vb has a right-angled triangle with the vertical cross-sectional shape having the top at the top.
  • the inner space of the inner sleeve 84 is a frustoconical space upside down and is referred to as a base inner space Ve.
  • a filter 85 formed in an annular shape is accommodated in the swirl space Va.
  • the filter 85 is filled with no gap at least in the radial direction below the swirl space Va.
  • the filter 85 is formed such that the length L2 in the axial direction is larger than the thickness d2 in the radial direction in the longitudinal sectional shape.
  • the filter 85 is formed of a so-called porous material such as a porous metal or a porous resin, or a material corresponding thereto.
  • the porous material is, for example, sintered metal or sintered resin, and the corresponding material is, for example, glass wool or wire mesh.
  • An example of the porous metal is “Celmet (registered trademark)” manufactured by Sumitomo Electric Industries, Ltd.
  • the base 82 has a gas introduction path 88 that extends at right angles to the axis CL ⁇ b> 7 at an axial position corresponding to the swirl flow path portion 82 a.
  • the gas introduction path 88 is a bottomed hole that opens as a connection port 824 on the side surface 823 of the base portion 82, and the back side communicates with the swirl flow path portion 82 a through the gas introduction port 88 a.
  • the position P1 in the vertical direction of the gas inlet port 88a in the swirling channel portion 82a is closer to the lower side.
  • the gas supply hose 6 shown in FIG. 1 is connected to the connection port 824 of the gas introduction path 88.
  • the gas G supplied from the gas supply device 4 via the gas supply hose 6 passes through the connection port 824 and enters the swirl flow channel portion 82a from the gas introduction port 88a of the gas introduction channel 88 as the gas flow G1.
  • the gas introduction path 88 is formed so as to extend substantially in the tangential direction with respect to the swirling flow path portion 82a. Therefore, the gas flow G1 entering from the gas introduction port 88a flows in the swirl flow path portion 82a so as to swirl around the axis CL7 along the annular shape. This flow is referred to as swirl flow G2.
  • the swirl direction of the swirl flow G2 is the counterclockwise direction in FIG.
  • the swirling flow G2 tends to flow in the counterclockwise direction of FIG. 4 through the inside of the filter 85 housed in the swirling flow path portion 82a.
  • the filter 85 is formed of a porous material, the resistance to the flow is large. Therefore, as the swirl flow G2 flows while swirling upward, which becomes the outlet of the swirl flow path portion 82a, the flow velocity is made uniform in the circumferential direction and the swirl component decreases.
  • the filter 85 has a cylindrical shape in which the length L2 in the direction of the axis CL7 is longer than the radial thickness d2 in the cross-sectional shape. For this reason, when the swirling flow G2 passes upward from the filter 85, the flow velocity is sufficiently uniformed to become the upward flow G3 shown in FIG. 3 having no swirling component.
  • the upward flow G3 is a flow that rises in parallel without turning and faces the protective glass 7c.
  • the upward flow G3 that escapes upward from the filter 85 and faces the protective glass 7c flows from the introduction space Vb to the orifice space Vc. That is, the axial flow path portion 82b that forms the introduction space Vb directs the flow of the gas G to the protective glass 7c as the upward flow G3.
  • the cross-sectional area of the flow path through which the upward flow G3 flows rapidly decreases from the introduction space Vb to the orifice 89. Therefore, the velocity of the upward flow G3 increases rapidly and passes through the orifice space Vc of the orifice 89.
  • a protective glass 7c is disposed oppositely to block the upward path, the outer side in the radial direction of the channel is blocked by an O-ring 86, and the inner side in the radial direction communicates with the base inner space Ve. . Therefore, the upward flow G3 that has passed through the orifice 89 strikes the protective glass 7c and is deflected radially inward to become an inward flow G4.
  • the inward flow G4 passes through the top space Vd, which is a space between the tip portion 84d above the inner sleeve 84 and the protective glass 7c, and is centered along the surface 7c1 on the side close to the nozzle 9 of the protective glass 7c. Heading to the axis CL7. That is, the base portion 82, the inner sleeve 84, and the protective glass 7c that form the top space Vd serve as a deflection flow path portion 82e that deflects the upward flow G3 to the inward flow G4.
  • the inward flow G4 does not substantially have a swirl component as described above, the inward flow G4 becomes a downward flow G5 that travels downward along the axis CL7 after traveling toward the center in the radial direction.
  • the orifice 89 is provided in the gas G channel between the swirl channel unit 82a and the deflection channel unit 82e.
  • FIG. 7 is a schematic diagram showing the result of simulating the flow of the downward flow G5 in the base inner space Ve and the relay inner space Vf.
  • the relay part internal space Vf is a space in the nozzle holder 8 and the nozzle 9.
  • FIG. 7 shows only a typical flow at the center.
  • the inward flow G4 does not have a swirl component and there is no variation in the speed in the circumferential direction
  • the downward flow G5 descends the base inner space Ve and the relay inner space Vf substantially linearly in parallel with the axis CL7. It becomes a flow.
  • the assist gas Ga ejected to the outside from the opening 9a of the nozzle 9 becomes a converged flow that does not diffuse.
  • FIG. 8 is a schematic diagram showing a simulation result under the same conditions as a nozzle holder 8P obtained by removing the filter 85 from the nozzle holder 8 instead of the nozzle holder 8 as a comparative example with respect to FIG. Since the filter 85 is not attached to the nozzle holder 8P of the comparative example, the flow corresponding to the downward flow G5 is generated as the downward flow G5P having a swirling component, and swirls through the base inner space Ve and the relay inner space Vf. Descend. Thereby, the assist gas GaP from which the downward flow G5P is ejected to the outside from the opening 9a of the nozzle 9 becomes a flow that swirls and diffuses, and directionality may occur in the surface quality of the cut surface in the cutting process.
  • the nozzle holder 8 does not have a swirl component or generates a downward flow G5 with a small swirl component. Therefore, the assist gas Ga becomes a flow that converges, and in the cutting process using the laser processing head 1 provided with the nozzle holder 8, directionality is hardly generated in the surface quality of the cut surface.
  • the nozzle holder 8 of the laser processing head 1 has the annular swirl flow path so that the gas flow G1 of the gas G supplied from the gas supply device 4 is swung in one direction in the swirl flow path portion 82a. It has a gas introduction path 88 that is introduced in the tangential direction of the portion 82a. Moreover, the nozzle holder 8 has a filter 85 formed of a porous material and extending long in the direction of the axis CL7 inside the annular swirl flow passage portion 82a.
  • the swirl flow G2 that enters the swirl flow path portion 82a and initially swirls gradually removes the swirl component as the flow flows upward with the outlet due to the resistance of the filter 85, and the flow velocity in the circumferential direction is uniform.
  • the downward flow G5 descending the relay portion internal space Vf that is the internal space of the nozzle holder 8 becomes a substantially parallel flow without a swirl component, and the assist gas Ga ejected from the nozzle 9 is a converged flow that does not diffuse. Become. Therefore, directionality is hardly generated in the surface quality of the cut surface, and good surface quality is obtained.
  • the nozzle holder 8 has an annular orifice 89 above the swirling flow path portion 82a.
  • the upward flow G3 is increased in speed and becomes an inward flow G4, and the adhesion of dirt to the protective glass 7c is more effectively prevented.
  • the assist gas Ga ejected from the nozzle 9 is also increased in speed, the amount of gas consumed by the gas supply device 4 is reduced, and a cost suppressing effect is obtained.
  • the rectifying unit 10 sets the flow direction passing through the filter 85 as the axial direction instead of the conventional radial direction. As a result, the laser processing head 1 is not increased in size, space is saved, and it is difficult to interfere with other members, so that the degree of freedom in designing the laser processing apparatus 51 is improved.
  • the example of the embodiment is not limited to the above-described configuration, and may be modified without departing from the gist of the present invention.
  • FIG. 9 is a cross-sectional view showing an example of the rectifying unit 10A in which an arc-shaped filter 85A having a spread angle of 135 ° is attached to the swirling flow path unit 82a instead of the filter 85.
  • FIG. 9 corresponds to FIG. 4 and can be compared.
  • the filter 85A when the filter 85A is mounted so as to block the gas introduction port 88a that opens to the swirling flow path portion 82a, the swirling component of the swirling flow G2 may be reduced satisfactorily.
  • FIG. 10 is a schematic diagram showing the result of simulating the gas flow flowing inside the nozzle holder 8A having the filter 85A.
  • FIG. 10 only the central representative flow is shown.
  • the downward flow G5A flowing through the base inner space Ve and the relay inner space Vf inside the nozzle holder 8A is slight because the nozzle holder 8A has a smaller reduction in the swirl component than the nozzle holder 8.
  • it ejects outside as assist gas GaA from the opening part 9a of the nozzle 9.
  • the filters 85 and 85A are not limited to those integrally formed in a 360 ° annular shape and a 135 ° arc shape, respectively.
  • a plurality of filters formed in a small-angle arc shape may be connected in the circumferential direction, and the plurality of filters may be spaced apart in the circumferential direction.
  • a plurality of filters 851 and one filter 852 may be used instead of the filter 85 to form an approximately 360 ° annular filter.
  • the base portion 82 of the nozzle holder 8 is divided into a vertical structure at the position P1 shown in FIG. 82a.
  • the filter 851 is set such that the length L2 corresponding to the chord of the arc is smaller than the inner diameter Da of the reduced diameter portion 82c of the base portion 82. By doing so, it can be mounted on the swirling flow path portion 82a.
  • a filter 852 having a width that can be mounted in the remaining gap is mounted. In this case, between the filter 852 and the adjacent filter 851.
  • the number of gas inlets 88a is not limited to one, and a plurality of gas inlets 88a may be provided.
  • the gas introduction paths 88 may be provided corresponding to the respective gas introduction ports 88a, or one gas introduction path 88 is shared and branched to and connected to each gas introduction port 88a. You may make it the structure to do.
  • the plurality of gas introduction ports 88a may be provided at equiangular intervals in the circumferential direction from the viewpoint of uniformizing the swirling flow G2 in the swirling flow path portion 82a. For example, when two gas introduction ports 88a are provided, they may be provided at positions separated by 180 ° (positions opposed in the radial direction).
  • the type of the laser oscillator 3 is not limited to the fiber laser.
  • a carbon dioxide laser, a disk laser, a YAG laser, a diode laser, an excimer laser, or the like may be used.
  • the control device 2 may not be provided integrally with the laser processing device 51 as a structure.
  • the control device 2 may be provided separately from the laser processing head 1, the laser oscillator 3, and the gas supply device 4 so as to be able to communicate with them wirelessly or by wire.

Abstract

In the present invention, a protective glass (7c) is disposed between a condenser lens (7b) and a nozzle (9). A swirling flow-channel part (82a) causes gas (G) supplied from the outside to swirl around an optical axis (CL7) of the condenser lens (7b). A filter (85) is formed of a porous material and is housed in the swirling flow-channel part (82a). An axial flow-channel part (82b) directs the flow of gas (G) that has passed through the filter (85) toward the protective glass (7c) along the optical axis (CL7) of the condenser lens (7b). A deflecting flow-channel part (82e) turns the flow of gas (G) that has passed through the axial flow-channel part (82b) into an inward flow (G4) directed to the optical axis (CL7) along a surface (7c1), of the protective glass (7c), on the near side of the nozzle (9).

Description

レーザ加工ヘッド及びレーザ加工装置Laser processing head and laser processing apparatus
 本開示は、レーザ加工ヘッド及びレーザ加工装置に関する。 The present disclosure relates to a laser processing head and a laser processing apparatus.
 レーザ加工装置が備えるレーザ加工ヘッドは、内部に、集束レンズ及び集束レンズよりもノズル側に配置された保護ガラスを有する。保護ガラスは、レーザ加工で生じたヒューム又はスパッタによる集束レンズの汚染を防止するために配置されている。 The laser processing head included in the laser processing apparatus includes a focusing lens and a protective glass disposed closer to the nozzle than the focusing lens. The protective glass is arranged to prevent the focusing lens from being contaminated by fumes or spatters generated by laser processing.
 保護ガラスが汚染した場合には清掃が必要になる。そこで、保護ガラスの清掃工数を低減すべく保護ガラスの汚染抑制が検討されている。
 特許文献1には、レーザ加工時にノズルから噴出させるアシストガスのレーザ加工ヘッド内の流路を、アシストガスが保護ガラスのノズル側の表面である下表面に沿って流れるように設ける技術が記載されている。
If the protective glass is contaminated, it must be cleaned. Therefore, suppression of contamination of the protective glass has been studied to reduce the man-hours for cleaning the protective glass.
Patent Document 1 describes a technique of providing a flow path in a laser processing head for assist gas that is ejected from a nozzle during laser processing so that the assist gas flows along a lower surface that is a nozzle side surface of the protective glass. ing.
 特許文献1に記載されたレーザ加工ヘッドは、環状の旋回流路と、旋回流生起流路と、ガス整流手段とを有している。
 この構成を有するレーザ加工ヘッドにおいて、アシストガスは、環状の旋回流路内を一方向に流れる旋回流とされた後にガス整流手段を通過する。アシストガスは、ガス整流手段により旋回成分が減少し、周方向に均一な速度分布を有するよう整流されて、保護ガラスの下表面を流れる。
The laser processing head described in Patent Document 1 has an annular swirl flow path, a swirl flow generation flow path, and a gas rectifier.
In the laser processing head having this configuration, the assist gas passes through the gas rectifier after being turned into a swirl flow that flows in one direction in the annular swirl flow path. The assist gas is rectified so that the swirl component is reduced by the gas rectifying means and has a uniform velocity distribution in the circumferential direction, and flows through the lower surface of the protective glass.
特許第6159583号公報Japanese Patent No. 6159583
 レーザ加工ヘッドを長時間使用すると、保護ガラスも汚染する。そのため、保護ガラスの汚染をより効果的に防止して保護ガラスのクリーニング工数を減らすことが望まれている。
 特許文献1に記載されたレーザ加工ヘッドにおいて、保護ガラスの汚染を効果的に防止するためには、より大流量のアシストガスを整流して保護ガラスの下表面に沿って流すことが検討される。
When the laser processing head is used for a long time, the protective glass is also contaminated. Therefore, it is desired to more effectively prevent contamination of the protective glass and reduce the number of steps for cleaning the protective glass.
In the laser processing head described in Patent Document 1, in order to effectively prevent contamination of the protective glass, it is considered to rectify a larger flow rate of assist gas and flow it along the lower surface of the protective glass. .
 特許文献1に記載されたレーザ加工ヘッドは、旋回流路とガス整流手段とが、保護ガラスの下側において径方向に隣接して配置されている。
 大流量のアシストガスを整流するには、ガス整流手段内のアシストガスが通過する距離を、より長くする必要がある。すなわち、ガス整流手段の径方向の厚さを厚くする必要がある。
 その場合、レーザ加工ヘッドの外径が大型化し、省スペース化が難しく他部材との干渉回避の措置が必要になる、という問題が生じる。
In the laser processing head described in Patent Document 1, the swirling flow path and the gas rectifying means are disposed adjacent to each other in the radial direction below the protective glass.
In order to rectify the assist gas having a large flow rate, it is necessary to make the distance through which the assist gas passes through the gas rectifying means longer. That is, it is necessary to increase the radial thickness of the gas rectifying means.
In this case, the outer diameter of the laser processing head is increased, which causes a problem that space saving is difficult and measures for avoiding interference with other members are required.
 そこで、実施形態は、レーザ加工ヘッドの大型化を抑制しつつ、保護ガラスの汚染をより効果的に防止することができるレーザ加工ヘッド及びレーザ加工装置を提供することを目的とする。 Therefore, an object of the embodiment is to provide a laser processing head and a laser processing apparatus that can more effectively prevent contamination of the protective glass while suppressing an increase in size of the laser processing head.
 実施形態の第1の態様によれば、集束レンズと、ノズルと、前記集束レンズと前記ノズルとの間に配置された保護ガラスと、外部から供給されたガスを前記集束レンズの光軸の回りに旋回させる旋回流路部と、多孔質材料で形成され前記旋回流路部の内部に収容されたフィルタと、前記フィルタを通過した前記ガスの流れを前記集束レンズの光軸に沿って前記保護ガラスに指向させる軸方向流路部と、前記軸方向流路部を通過した前記ガスの流れを前記保護ガラスの前記ノズルに近い側の表面に沿って前記光軸に向かう内向流とする偏向流路部とを備えるレーザ加工ヘッドが提供される。
 実施形態の第2の態様によれば、レーザ発振器と、ガス供給装置と、レーザ加工ヘッドとを備え、前記レーザ加工ヘッドは、前記レーザ発振器から供給されたレーザ光を所望の光束に整形する集束レンズと、前記レーザ光を射出するノズルと、前記集束レンズと前記ノズルとの間に配置され前記レーザ光が通過する保護ガラスと、前記ガス供給装置から供給されたガスを前記集束レンズの光軸の回りに旋回させる旋回流路部と、多孔質材料で形成され前記旋回流路部の内部に収容されたフィルタと、前記フィルタを通過した前記ガスの流れを前記集束レンズの光軸に沿って前記保護ガラスに指向させる軸方向流路部と、前記軸方向流路部を通過した前記ガスの流れを前記保護ガラスの前記ノズルに近い側の表面に沿って前記光軸に向かう内向流とする偏向流路部と、を有しているレーザ加工装置が提供される。
According to the first aspect of the embodiment, the focusing lens, the nozzle, the protective glass disposed between the focusing lens and the nozzle, and the gas supplied from the outside around the optical axis of the focusing lens. A swirl flow path section that swirls the filter, a filter formed of a porous material and housed in the swirl flow path section, and the protection of the gas flow that has passed through the filter along the optical axis of the focusing lens. An axial flow path portion directed to glass, and a deflection flow in which the flow of the gas that has passed through the axial flow path portion is an inward flow toward the optical axis along the surface of the protective glass that is closer to the nozzle. A laser processing head comprising a path portion is provided.
According to the second aspect of the embodiment, the laser processing device includes a laser oscillator, a gas supply device, and a laser processing head, and the laser processing head focuses the laser light supplied from the laser oscillator into a desired light beam. A lens, a nozzle that emits the laser light, a protective glass that is disposed between the focusing lens and the nozzle and through which the laser light passes, and an optical axis of the focusing lens that supplies the gas supplied from the gas supply device A swirl flow path section that swirls around, a filter formed of a porous material and housed inside the swirl flow path section, and the flow of the gas that has passed through the filter along the optical axis of the focusing lens An axial flow path section that directs the protective glass, and an inward direction toward the optical axis along the surface of the protective glass near the nozzle of the gas flow that has passed through the axial flow path section The laser processing apparatus is provided which has a deflection channel portion to.
 実施形態のレーザ加工ヘッド及びレーザ加工装置によれば、レーザ加工ヘッドの大型化を抑制しつつ、保護ガラスの汚染をより効果的に防止できる。 According to the laser processing head and laser processing apparatus of the embodiment, contamination of the protective glass can be more effectively prevented while suppressing an increase in the size of the laser processing head.
図1は、実施形態に係るレーザ溶接装置の実施例であるレーザ溶接装置51の全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of a laser welding apparatus 51 that is an example of the laser welding apparatus according to the embodiment. 図2は、レーザ溶接装置51が備えるレーザ加工ヘッド1のノズルホルダ8及びノズル9を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the nozzle holder 8 and the nozzle 9 of the laser processing head 1 provided in the laser welding apparatus 51. 図3は、ノズルホルダ8における整流部10の構造を示す部分縦断面図である。FIG. 3 is a partial longitudinal sectional view showing the structure of the rectifying unit 10 in the nozzle holder 8. 図4は、整流部10における旋回流路部82aを流れるガス流G2を説明するための横断面図である。FIG. 4 is a cross-sectional view for explaining the gas flow G2 flowing through the swirl flow path portion 82a in the rectifying unit 10. 図5は、整流部10の、インナースリーブ84を取り外した状態を示す部分縦断面図である。FIG. 5 is a partial longitudinal sectional view showing the state of the rectifying unit 10 with the inner sleeve 84 removed. 図6は、インナースリーブ84を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing the inner sleeve 84. 図7は、ノズルホルダ8におけるアシストガスの流れを説明するための模式的縦断面図である。FIG. 7 is a schematic longitudinal sectional view for explaining the flow of the assist gas in the nozzle holder 8. 図8は、整流部10のフィルタ85を外したノズルホルダ8Pにおけるアシストガスの流れを説明するための模式的縦断面図である。FIG. 8 is a schematic longitudinal sectional view for explaining the flow of the assist gas in the nozzle holder 8P with the filter 85 of the rectifying unit 10 removed. 図9は、整流部10の変形例である整流部10Aを示す横断面図である。FIG. 9 is a cross-sectional view illustrating a rectifying unit 10A that is a modification of the rectifying unit 10. 図10は、整流部10Aを有するノズルホルダ8Aにおけるアシストガスの流れを説明するための模式的縦断面図である。FIG. 10 is a schematic longitudinal sectional view for explaining the flow of the assist gas in the nozzle holder 8A having the rectifying unit 10A. フィルタ85の変形例であるフィルタ851を示す平面図である。10 is a plan view showing a filter 851 which is a modification of the filter 85. FIG.
 実施形態に係るレーザ加工装置を、一実施例であるレーザ加工装置51により説明する。 The laser processing apparatus according to the embodiment will be described with reference to a laser processing apparatus 51 as an example.
(実施例)
 図1は、レーザ加工装置51を示す構成図である。レーザ加工装置51は、レーザ加工ヘッド1、制御装置2、レーザ発振器3、及びガス供給装置4を含んで構成されている。レーザ加工装置51は、ワークWに対し、レーザ加工ヘッド1の先端からレーザ光Lsを照射して切断又は穴開けなどの加工を行う。
(Example)
FIG. 1 is a configuration diagram showing a laser processing apparatus 51. The laser processing device 51 includes a laser processing head 1, a control device 2, a laser oscillator 3, and a gas supply device 4. The laser processing device 51 performs processing such as cutting or punching on the workpiece W by irradiating the laser beam Ls from the tip of the laser processing head 1.
 レーザ加工ヘッド1は、本体部7と、本体部7の先端に取り付けられたノズルホルダ8と、ノズルホルダ8の先端に着脱自在に取り付けられたノズル9とを有する。
 レーザ加工ヘッド1の内部には、ノズル9に対し遠い側から、コリメートレンズ7a、集束レンズ7b、及び保護ガラス7cが配置されている。すなわち、保護ガラス7cは集束レンズ7bとノズル9との間に配置されている。
 保護ガラス7cは、ノズル9側から到来するヒューム又はスパッタが集束レンズ7bに付着することを防止する。
The laser processing head 1 includes a main body portion 7, a nozzle holder 8 attached to the tip of the main body portion 7, and a nozzle 9 attached to the tip of the nozzle holder 8 in a detachable manner.
Inside the laser processing head 1, a collimating lens 7a, a focusing lens 7b, and a protective glass 7c are arranged from the side far from the nozzle 9. That is, the protective glass 7 c is disposed between the focusing lens 7 b and the nozzle 9.
The protective glass 7c prevents fumes or spatters coming from the nozzle 9 side from adhering to the focusing lens 7b.
 レーザ発振器3は、例えばファイバレーザ発振器であって、レーザ光を生成して射出する。射出されるレーザ光は、ファイバケーブル5を通してレーザ加工ヘッド1に供給される。
 ガス供給装置4は、ガス源に窒素ボンベを用い、アシストガスとする高純度の窒素ガスをガス供給ホース6を通してレーザ加工ヘッド1に供給する。
 ガス供給装置4は、ガス源を窒素ボンベではなく空気とし、中空糸膜などの分離フィルタにより酸素を分離して窒素リッチガスを生成し、レーザ加工ヘッド1に供給するものであってもよい。以下、ガス供給装置4からレーザ加工ヘッド1に供給されるガスを、ガスGと称する。
The laser oscillator 3 is a fiber laser oscillator, for example, and generates and emits laser light. The emitted laser light is supplied to the laser processing head 1 through the fiber cable 5.
The gas supply device 4 uses a nitrogen cylinder as a gas source, and supplies high purity nitrogen gas as an assist gas to the laser processing head 1 through a gas supply hose 6.
The gas supply device 4 may be a device in which a gas source is air instead of a nitrogen cylinder, oxygen is separated by a separation filter such as a hollow fiber membrane to generate a nitrogen rich gas, and the gas is supplied to the laser processing head 1. Hereinafter, the gas supplied from the gas supply device 4 to the laser processing head 1 is referred to as a gas G.
 レーザ加工ヘッド1は、レーザ発振器3から供給されたレーザ光を、内部に配置されたコリメートレンズ7a及び集束レンズ7bによって所望の特性の光束に整形し、保護ガラス7cを通してノズル9の先端の開口部9aから外部にレーザ光Lsとして射出する。
 レーザ加工ヘッド1は、供給されたガスGを、内部の流路を通してノズル9の開口部9aから噴射する。
The laser processing head 1 shapes the laser beam supplied from the laser oscillator 3 into a luminous flux having a desired characteristic by the collimating lens 7a and the focusing lens 7b disposed therein, and an opening at the tip of the nozzle 9 through the protective glass 7c. The laser beam Ls is emitted from 9a to the outside.
The laser processing head 1 injects the supplied gas G from the opening 9a of the nozzle 9 through the internal flow path.
 制御装置2は、レーザ発振器3の動作、ガス供給装置4の動作、及びレーザ加工ヘッド1の集束レンズ7bによる光束整形のための動作を制御する。 The control device 2 controls the operation of the laser oscillator 3, the operation of the gas supply device 4, and the operation for beam shaping by the focusing lens 7 b of the laser processing head 1.
 次に、図2~図6を参照して、レーザ加工ヘッド1におけるノズルホルダ8の構造を詳述する。
 図2は、レーザ加工ヘッド1のノズルホルダ8の詳細構造を示す縦断面図である。図3は、図2における基部82の拡大縦断面図であり、図4は、図3におけるS4-S4位置での横断面図である。図5は、図3に示されたノズルホルダ8からフィルタ85(後述)を外した状態を示す縦断面図であり、図6は、インナースリーブ84(後述)を示す縦断面図である。上下方向を図2に示された矢印の方向に規定する。
Next, the structure of the nozzle holder 8 in the laser processing head 1 will be described in detail with reference to FIGS.
FIG. 2 is a longitudinal sectional view showing a detailed structure of the nozzle holder 8 of the laser processing head 1. 3 is an enlarged longitudinal sectional view of the base 82 in FIG. 2, and FIG. 4 is a transverse sectional view at the position S4-S4 in FIG. FIG. 5 is a longitudinal sectional view showing a state in which a filter 85 (described later) is removed from the nozzle holder 8 shown in FIG. 3, and FIG. 6 is a longitudinal sectional view showing an inner sleeve 84 (described later). The vertical direction is defined as the direction of the arrow shown in FIG.
 図2に示されるように、ノズルホルダ8は、整流部10、中継部81、及びプレート83を有する。
 整流部10は、基部82、基部82に取り付けられた保護ガラス7c、インナースリーブ84、及びフィルタ85を有する。
 中継部81は、上部にフランジ811を有し、下端にノズル9がねじなどにより交換可能に装着されている。中継部81は、基部82とプレート83との間にフランジ811を挟み込んだ状態で、ねじN1によって基部82に固定されている。
As shown in FIG. 2, the nozzle holder 8 includes a rectifying unit 10, a relay unit 81, and a plate 83.
The rectifying unit 10 includes a base 82, a protective glass 7 c attached to the base 82, an inner sleeve 84, and a filter 85.
The relay part 81 has a flange 811 at the upper part, and the nozzle 9 is attached to the lower end of the relay part 81 so as to be replaceable with screws. The relay part 81 is fixed to the base part 82 with screws N1 in a state where the flange 811 is sandwiched between the base part 82 and the plate 83.
 図2又は図3に示されるように、基部82は、中心が軸線CL7なる貫通孔821を有し、概ね角柱状の外観を呈する。軸線CL7は集束レンズ7bの光軸と一致している。
 貫通孔821の上部には周縁の棚段として棚部822が形成されている。棚部822には、押さえプレート87によって、保護ガラス7cが、棚部822に対しOリング86を圧縮した状態で保持されている。
 貫通孔821は、棚部822のすぐ下側に、小さい内径Da(図5参照)となっている縮径部82cを有する。また、貫通孔821は、縮径部82cから下側へ向かうに従って径が拡大する軸方向流路部82b及び軸線CL7に沿って同じ内径で延びる旋回流路部82aを有する。
 また、貫通孔821は、旋回流路部82aの下側に縮径部82cよりも小径の内フランジ部82dを有する。
As shown in FIG. 2 or FIG. 3, the base 82 has a through hole 821 whose center is the axis line CL7, and has a substantially prismatic appearance. The axis CL7 coincides with the optical axis of the focusing lens 7b.
A shelf 822 is formed as a peripheral shelf on the upper portion of the through hole 821. The protective glass 7 c is held on the shelf 822 by the presser plate 87 in a state where the O-ring 86 is compressed with respect to the shelf 822.
The through hole 821 has a reduced diameter portion 82c having a small inner diameter Da (see FIG. 5) just below the shelf portion 822. The through-hole 821 has an axial flow path portion 82b whose diameter increases as it goes downward from the reduced diameter portion 82c, and a swirl flow path portion 82a that extends with the same inner diameter along the axis CL7.
Further, the through hole 821 has an inner flange portion 82d having a smaller diameter than the reduced diameter portion 82c on the lower side of the swirl flow passage portion 82a.
 図6に示されるように、インナースリーブ84は、外径Dbの基部84aと基部84aよりも小径の小径突出部84cとを有する。小径突出部84cは、基部82の内フランジ部82dに隙間なく嵌合する。
 インナースリーブ84の内周面84bは、基部84a側から小径突出部84cに向かうに従って径が縮小する傾斜周面となっている。
 外径Dbは、基部82の縮径部82cの内径Daよりも僅かに小さく設定されている。
As shown in FIG. 6, the inner sleeve 84 includes a base portion 84a having an outer diameter Db and a small-diameter protruding portion 84c having a smaller diameter than the base portion 84a. The small-diameter protruding portion 84c fits into the inner flange portion 82d of the base portion 82 without a gap.
The inner peripheral surface 84b of the inner sleeve 84 is an inclined peripheral surface whose diameter decreases from the base portion 84a side toward the small-diameter protruding portion 84c.
The outer diameter Db is set slightly smaller than the inner diameter Da of the reduced diameter portion 82c of the base portion 82.
 インナースリーブ84は、基部82の貫通孔821に対し、上方から挿入し、小径突出部84cを内フランジ部82dに嵌め込むことで基部82に取り付けられている。基部82の縮径部82cと、インナースリーブ84の基部84aの外周面84a1との間に、半径方向で距離d1の環状の隙間としてのオリフィス空間Vcが形成されている。
 すなわち、縮径部82cと基部84aとにより、軸線CL7に直交する面における断面積が旋回流路部82aと基部84aとにより形成される旋回空間Vaの横断面積よりも小さいオリフィス89が形成されている。
The inner sleeve 84 is attached to the base 82 by being inserted into the through hole 821 of the base 82 from above and fitting the small-diameter protruding portion 84c into the inner flange portion 82d. Between the reduced diameter portion 82c of the base portion 82 and the outer peripheral surface 84a1 of the base portion 84a of the inner sleeve 84, an orifice space Vc is formed as an annular gap having a distance d1 in the radial direction.
That is, the reduced diameter portion 82c and the base portion 84a form an orifice 89 having a cross-sectional area in a plane orthogonal to the axis CL7 that is smaller than the cross-sectional area of the swirling space Va formed by the swirling flow passage portion 82a and the base portion 84a. Yes.
 インナースリーブ84の上方の先端部84dと、保護ガラス7cとの間に、上下方向の距離が距離taの頂上空間Vdが形成されている。
 インナースリーブ84の基部84aと基部82の旋回流路部82aとにより囲まれた空間として旋回空間Vaが形成され、基部84aと軸方向流路部82bとにより囲まれた空間として導入空間Vbが形成されている。
 旋回空間Vaは、縦断面形状が矩形となる環状に形成され、導入空間Vbは、縦断面形状が上方を頂点とする直角三角形を呈する。
 インナースリーブ84の内部空間は、上下逆の円錐台状形状の空間であって、基部内空間Veと称する。
A top space Vd having a distance ta in the vertical direction is formed between the tip 84d above the inner sleeve 84 and the protective glass 7c.
A swirl space Va is formed as a space surrounded by the base portion 84a of the inner sleeve 84 and the swirl flow passage portion 82a of the base portion 82, and an introduction space Vb is formed as a space surrounded by the base portion 84a and the axial flow passage portion 82b. Has been.
The swirl space Va is formed in an annular shape having a longitudinal cross-sectional shape of a rectangle, and the introduction space Vb has a right-angled triangle with the vertical cross-sectional shape having the top at the top.
The inner space of the inner sleeve 84 is a frustoconical space upside down and is referred to as a base inner space Ve.
 旋回空間Vaには、環状に形成されたフィルタ85が収容されている。フィルタ85は、旋回空間Vaの下側において、少なくとも径方向には隙間なく充填されている。この例において、フィルタ85は、縦断面形状において、径方向の厚さd2よりも軸方向の長さL2の方が大きく形成されている。
 フィルタ85は、多孔質金属もしくは多孔質樹脂などのいわゆる多孔質材料又はそれに相当する材料で形成されている。多孔質材料は、例えば焼結金属又は焼結樹脂であり、それに相当する材料は、例えばグラスウール又は金網である。多孔質金属の例として、住友電気工業株式会社製の「セルメット(登録商標)」がある。
A filter 85 formed in an annular shape is accommodated in the swirl space Va. The filter 85 is filled with no gap at least in the radial direction below the swirl space Va. In this example, the filter 85 is formed such that the length L2 in the axial direction is larger than the thickness d2 in the radial direction in the longitudinal sectional shape.
The filter 85 is formed of a so-called porous material such as a porous metal or a porous resin, or a material corresponding thereto. The porous material is, for example, sintered metal or sintered resin, and the corresponding material is, for example, glass wool or wire mesh. An example of the porous metal is “Celmet (registered trademark)” manufactured by Sumitomo Electric Industries, Ltd.
 図4に示されるように、基部82は、旋回流路部82aに対応した軸方向位置に、軸線CL7に直交して延びるガス導入路88を有する。
 ガス導入路88は、基部82の側面823に接続口824として開口する有底孔であり、奥側が旋回流路部82aに対しガス導入口88aにより連通している。
 図5に示されるように、旋回流路部82aにおけるガス導入口88aの上下方向の位置P1は、下方側に寄っている。
As shown in FIG. 4, the base 82 has a gas introduction path 88 that extends at right angles to the axis CL <b> 7 at an axial position corresponding to the swirl flow path portion 82 a.
The gas introduction path 88 is a bottomed hole that opens as a connection port 824 on the side surface 823 of the base portion 82, and the back side communicates with the swirl flow path portion 82 a through the gas introduction port 88 a.
As shown in FIG. 5, the position P1 in the vertical direction of the gas inlet port 88a in the swirling channel portion 82a is closer to the lower side.
 図4に戻り、ガス導入路88の接続口824には、図1に示されるガス供給ホース6が接続されている。これによりガス供給装置4からガス供給ホース6を介して供給されたガスGは、接続口824を通りガス導入路88のガス導入口88aから旋回流路部82aにガス流G1として進入する。
 ガス導入路88は、旋回流路部82aに対し概ね接線方向に延びるように形成されている。そのため、ガス導入口88aから進入したガス流G1は、旋回流路部82a内をその環状形状に沿って軸線CL7を中心として旋回するように流れる。この流れを旋回流G2と称する。旋回流G2の旋回方向は、図4における反時計回り方向である。
Returning to FIG. 4, the gas supply hose 6 shown in FIG. 1 is connected to the connection port 824 of the gas introduction path 88. As a result, the gas G supplied from the gas supply device 4 via the gas supply hose 6 passes through the connection port 824 and enters the swirl flow channel portion 82a from the gas introduction port 88a of the gas introduction channel 88 as the gas flow G1.
The gas introduction path 88 is formed so as to extend substantially in the tangential direction with respect to the swirling flow path portion 82a. Therefore, the gas flow G1 entering from the gas introduction port 88a flows in the swirl flow path portion 82a so as to swirl around the axis CL7 along the annular shape. This flow is referred to as swirl flow G2. The swirl direction of the swirl flow G2 is the counterclockwise direction in FIG.
 旋回流G2は、旋回流路部82aに収められたフィルタ85の内部を図4の反時計回り方向に流れようとする。既述のようにフィルタ85は多孔質材料で形成されているため、流れに対する抵抗は大きい。
 そのため、旋回流G2は、旋回流路部82aの出口となる上方に向かって旋回しながら流れるに従い、流速が周方向で均一化されると共に旋回成分は減少する。
The swirling flow G2 tends to flow in the counterclockwise direction of FIG. 4 through the inside of the filter 85 housed in the swirling flow path portion 82a. As described above, since the filter 85 is formed of a porous material, the resistance to the flow is large.
Therefore, as the swirl flow G2 flows while swirling upward, which becomes the outlet of the swirl flow path portion 82a, the flow velocity is made uniform in the circumferential direction and the swirl component decreases.
 フィルタ85は、横断面形状における半径上の厚さd2よりも軸線CL7方向の長さL2が長い筒状形状とされている。そのため、旋回流G2がフィルタ85から上方へ抜けるときには、その流速は十分に均一化され、旋回成分のない図3に示される上方流G3となる。上方流G3は、旋回することなく平行に上昇して保護ガラス7cを指向する流れである。
 フィルタ85から上方へ抜け出て保護ガラス7cを指向する上方流G3は、導入空間Vbからオリフィス空間Vcへと流れる。すなわち、導入空間Vbを形成する軸方向流路部82bは、ガスGの流れを、上方流G3として保護ガラス7cに指向させる。
The filter 85 has a cylindrical shape in which the length L2 in the direction of the axis CL7 is longer than the radial thickness d2 in the cross-sectional shape. For this reason, when the swirling flow G2 passes upward from the filter 85, the flow velocity is sufficiently uniformed to become the upward flow G3 shown in FIG. 3 having no swirling component. The upward flow G3 is a flow that rises in parallel without turning and faces the protective glass 7c.
The upward flow G3 that escapes upward from the filter 85 and faces the protective glass 7c flows from the introduction space Vb to the orifice space Vc. That is, the axial flow path portion 82b that forms the introduction space Vb directs the flow of the gas G to the protective glass 7c as the upward flow G3.
 上方流G3が流れる流路の断面積は、導入空間Vbからオリフィス89に至るまでに急激に減少する。そのため、上方流G3の速度は急激に大きくなってオリフィス89のオリフィス空間Vcを通過する。
 オリフィス89の上方には、保護ガラス7cが対向配置されて上進する進路を塞ぎ、流路の径方向外側はOリング86によって塞がれ、径方向内側が基部内空間Veに連通している。そのため、オリフィス89を通過した上方流G3は、保護ガラス7cに当たって径方向内側へ偏向して内向流G4となる。
 内向流G4は、インナースリーブ84の上方の先端部84dと保護ガラス7cとの間の空間である頂上空間Vdを通過して、保護ガラス7cのノズル9に近い側の表面7c1に沿って中心の軸線CL7に向かう。すなわち、頂上空間Vdを形成する基部82とインナースリーブ84と保護ガラス7cとは、上方流G3を内向流G4に偏向する偏向流路部82eとなる。
 この内向流G4は、既述のように旋回成分を実質的に有していないので、径方向で中心に向かって進行したのち軸線CL7に沿って下方へ向かう下方流G5となる。
 上述のように、オリフィス89は、ガスGの流路において、旋回流路部82aと偏向流路部82eとの間に設けられている。
The cross-sectional area of the flow path through which the upward flow G3 flows rapidly decreases from the introduction space Vb to the orifice 89. Therefore, the velocity of the upward flow G3 increases rapidly and passes through the orifice space Vc of the orifice 89.
Above the orifice 89, a protective glass 7c is disposed oppositely to block the upward path, the outer side in the radial direction of the channel is blocked by an O-ring 86, and the inner side in the radial direction communicates with the base inner space Ve. . Therefore, the upward flow G3 that has passed through the orifice 89 strikes the protective glass 7c and is deflected radially inward to become an inward flow G4.
The inward flow G4 passes through the top space Vd, which is a space between the tip portion 84d above the inner sleeve 84 and the protective glass 7c, and is centered along the surface 7c1 on the side close to the nozzle 9 of the protective glass 7c. Heading to the axis CL7. That is, the base portion 82, the inner sleeve 84, and the protective glass 7c that form the top space Vd serve as a deflection flow path portion 82e that deflects the upward flow G3 to the inward flow G4.
Since the inward flow G4 does not substantially have a swirl component as described above, the inward flow G4 becomes a downward flow G5 that travels downward along the axis CL7 after traveling toward the center in the radial direction.
As described above, the orifice 89 is provided in the gas G channel between the swirl channel unit 82a and the deflection channel unit 82e.
 図7は、基部内空間Ve及び中継部内空間Vfにおける下方流G5の流れをシミュレーションした結果を示す模式図である。中継部内空間Vfは、ノズルホルダ8及びノズル9内の空間である。図7では中心の代表的な流れのみを示してある。 FIG. 7 is a schematic diagram showing the result of simulating the flow of the downward flow G5 in the base inner space Ve and the relay inner space Vf. The relay part internal space Vf is a space in the nozzle holder 8 and the nozzle 9. FIG. 7 shows only a typical flow at the center.
 内向流G4が、旋回成分を有さず周方向での速度のばらつきもないことから、下方流G5は、基部内空間Ve及び中継部内空間Vfを、軸線CL7に平行にほぼ直線状に下降する流れとなる。
 これにより、ノズル9の開口部9aから外部に噴出するアシストガスGaは、拡散しない収束した流れとなる。
Since the inward flow G4 does not have a swirl component and there is no variation in the speed in the circumferential direction, the downward flow G5 descends the base inner space Ve and the relay inner space Vf substantially linearly in parallel with the axis CL7. It becomes a flow.
As a result, the assist gas Ga ejected to the outside from the opening 9a of the nozzle 9 becomes a converged flow that does not diffuse.
 図8は、図7に対する比較例として、ノズルホルダ8の替わりにノズルホルダ8からフィルタ85を取り除いたノズルホルダ8Pとして、他は同じ条件でシミュレーションした結果を示す模式図である。
 比較例のノズルホルダ8Pは、フィルタ85が取り付けられていないことから、下方流G5に相当する流れは旋回成分を有する下方流G5Pとして生成され、基部内空間Ve及び中継部内空間Vfを旋回して下降する。
 これにより、下方流G5Pがノズル9の開口部9aから外部に噴出するアシストガスGaPは、旋回して拡散する流れとなり、切断加工において切断面の面品質に方向性が生じ得る。
 これに対し、ノズルホルダ8は、旋回成分を有していないか、旋回成分が僅かな下方流G5を生成する。そのため、アシストガスGaは収束する流れとなりノズルホルダ8を備えたレーザ加工ヘッド1を用いた切断加工では、切断面の面品質に方向性が生じにくい。
FIG. 8 is a schematic diagram showing a simulation result under the same conditions as a nozzle holder 8P obtained by removing the filter 85 from the nozzle holder 8 instead of the nozzle holder 8 as a comparative example with respect to FIG.
Since the filter 85 is not attached to the nozzle holder 8P of the comparative example, the flow corresponding to the downward flow G5 is generated as the downward flow G5P having a swirling component, and swirls through the base inner space Ve and the relay inner space Vf. Descend.
Thereby, the assist gas GaP from which the downward flow G5P is ejected to the outside from the opening 9a of the nozzle 9 becomes a flow that swirls and diffuses, and directionality may occur in the surface quality of the cut surface in the cutting process.
On the other hand, the nozzle holder 8 does not have a swirl component or generates a downward flow G5 with a small swirl component. Therefore, the assist gas Ga becomes a flow that converges, and in the cutting process using the laser processing head 1 provided with the nozzle holder 8, directionality is hardly generated in the surface quality of the cut surface.
 上述のように、レーザ加工ヘッド1のノズルホルダ8は、ガス供給装置4から供給されたガスGのガス流G1を、旋回流路部82aにおいて一方向に旋回させるように、環状の旋回流路部82aの接線方向に導入するガス導入路88を有している。
 また、ノズルホルダ8は、環状の旋回流路部82aの内部に、多孔質材料で形成され軸線CL7方向に長く延びるフィルタ85を有している。
As described above, the nozzle holder 8 of the laser processing head 1 has the annular swirl flow path so that the gas flow G1 of the gas G supplied from the gas supply device 4 is swung in one direction in the swirl flow path portion 82a. It has a gas introduction path 88 that is introduced in the tangential direction of the portion 82a.
Moreover, the nozzle holder 8 has a filter 85 formed of a porous material and extending long in the direction of the axis CL7 inside the annular swirl flow passage portion 82a.
 これにより、旋回流路部82aに進入して当初旋回する旋回流G2は、フィルタ85による抵抗によって出口のある上方に向かって流れるに従い、徐々に旋回成分が除去され、周方向での流速が均一化する。
 そのため、ノズルホルダ8の内部空間である中継部内空間Vfを下降する下方流G5は、旋回成分のない実質的に平行な流れとなり、ノズル9から噴出するアシストガスGaは、拡散しない収束した流れとなる。従って、切断面の面品質に方向性が生じにくく、良好な面品質が得られる。
As a result, the swirl flow G2 that enters the swirl flow path portion 82a and initially swirls gradually removes the swirl component as the flow flows upward with the outlet due to the resistance of the filter 85, and the flow velocity in the circumferential direction is uniform. Turn into.
Therefore, the downward flow G5 descending the relay portion internal space Vf that is the internal space of the nozzle holder 8 becomes a substantially parallel flow without a swirl component, and the assist gas Ga ejected from the nozzle 9 is a converged flow that does not diffuse. Become. Therefore, directionality is hardly generated in the surface quality of the cut surface, and good surface quality is obtained.
 また、ノズルホルダ8は、旋回流路部82aの上方に環状のオリフィス89を有する。これにより、上方流G3は高速化して内向流G4となり、保護ガラス7cへの汚れの付着をより効果的に防止する。また、ノズル9から噴出するアシストガスGaも高速化するのでガス供給装置4で消費するガス量が低減し、コスト抑制効果が得られる。 Further, the nozzle holder 8 has an annular orifice 89 above the swirling flow path portion 82a. As a result, the upward flow G3 is increased in speed and becomes an inward flow G4, and the adhesion of dirt to the protective glass 7c is more effectively prevented. Further, since the assist gas Ga ejected from the nozzle 9 is also increased in speed, the amount of gas consumed by the gas supply device 4 is reduced, and a cost suppressing effect is obtained.
 また、整流部10は、フィルタ85を通過する流路方向を、従来の径方向ではなく軸方向としている。これにより、レーザ加工ヘッド1が大型化することはなく、省スペース化が図られ、他部材と干渉しにくくなることからレーザ加工装置51の設計自由度が向上する。 Further, the rectifying unit 10 sets the flow direction passing through the filter 85 as the axial direction instead of the conventional radial direction. As a result, the laser processing head 1 is not increased in size, space is saved, and it is difficult to interfere with other members, so that the degree of freedom in designing the laser processing apparatus 51 is improved.
 実施形態の実施例は、上述した構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において変形してもよい。 The example of the embodiment is not limited to the above-described configuration, and may be modified without departing from the gist of the present invention.
 上述のレーザ加工装置51におけるフィルタ85として、環状のものを説明したが、弧状としても旋回成分の減少効果が得られる。
 図9は、フィルタ85の替わりに広がり角度135°の弧状のフィルタ85Aを旋回流路部82aに装着した整流部10Aの例を示す横断面図である。図9は図4に対応し比較可能な図である。
Although an annular filter 85 has been described in the laser processing apparatus 51 described above, the effect of reducing the swirling component can be obtained even in an arc shape.
FIG. 9 is a cross-sectional view showing an example of the rectifying unit 10A in which an arc-shaped filter 85A having a spread angle of 135 ° is attached to the swirling flow path unit 82a instead of the filter 85. FIG. 9 corresponds to FIG. 4 and can be compared.
 図9に示されるように、フィルタ85Aは、旋回流路部82aに開口するガス導入口88aを塞ぐように装着されていると、旋回流G2の旋回成分が良好に低減できるのでよい。 As shown in FIG. 9, when the filter 85A is mounted so as to block the gas introduction port 88a that opens to the swirling flow path portion 82a, the swirling component of the swirling flow G2 may be reduced satisfactorily.
 図10は、フィルタ85Aを有するノズルホルダ8Aの、内部を流れるガス流をシミュレーションした結果を示す模式図である。図10には、中心の代表的な流れのみが示されている。
 図10に示されるように、ノズルホルダ8Aの内部の基部内空間Ve及び中継部内空間Vfを流れる下方流G5Aは、ノズルホルダ8Aがノズルホルダ8よりも旋回成分の減少程度が少ないことからわずかな旋回を伴って下方に流れる。そして、ノズル9の開口部9aからアシストガスGaAとして外部に噴出する。下方流G5Aの旋回成分はわずかであるので、噴出したアシストガスGaAは実質的に拡散せず、概ね収束した流れとなる。
FIG. 10 is a schematic diagram showing the result of simulating the gas flow flowing inside the nozzle holder 8A having the filter 85A. In FIG. 10, only the central representative flow is shown.
As shown in FIG. 10, the downward flow G5A flowing through the base inner space Ve and the relay inner space Vf inside the nozzle holder 8A is slight because the nozzle holder 8A has a smaller reduction in the swirl component than the nozzle holder 8. Flows downward with a turn. And it ejects outside as assist gas GaA from the opening part 9a of the nozzle 9. FIG. Since the swirl component of the downward flow G5A is small, the ejected assist gas GaA does not substantially diffuse and becomes a generally converged flow.
 フィルタ85及び85Aは、それぞれ360°の環状、135°の円弧状に一体形成されているものに限定されない。小さい角度の円弧状に形成された複数のフィルタを周方向に繋げてもよく、複数のフィルタを周方向に離隔して配置してもよい。
 例えば、図11に示されるように、フィルタ85の替わりに複数のフィルタ851と一つのフィルタ852とを用いて、概ね360°の環状のフィルタとしてもよい。
The filters 85 and 85A are not limited to those integrally formed in a 360 ° annular shape and a 135 ° arc shape, respectively. A plurality of filters formed in a small-angle arc shape may be connected in the circumferential direction, and the plurality of filters may be spaced apart in the circumferential direction.
For example, as shown in FIG. 11, a plurality of filters 851 and one filter 852 may be used instead of the filter 85 to form an approximately 360 ° annular filter.
 環状のフィルタ85が一体形成されている場合には、ノズルホルダ8の基部82を、例えば、図3に示される位置P1で上下に分割して組み合わせる構造とすることでフィルタ85を旋回流路部82aに収めることができる。
 基部82が上下分割しない構造とした場合は、図11に示されるように、フィルタ851を、その円弧の弦に相当する長さL2を、基部82の縮径部82cの内径Daよりも小さく設定することで、旋回流路部82aに装着することができる。
 また、図11の例では、フィルタ851を4個装着したのち、残りの隙間に装着可能な幅のフィルタ852を装着する。この場合、フィルタ852と両隣のフィルタ851との間に。平面視で三角形状の隙間が生じるが、フィルタの全体に対する隙間の割合はわずかであるため、下方流G5は、実質的に旋回性をもたない良好な流れとなる。
When the annular filter 85 is integrally formed, for example, the base portion 82 of the nozzle holder 8 is divided into a vertical structure at the position P1 shown in FIG. 82a.
When the base portion 82 is structured not to be divided into upper and lower parts, as shown in FIG. 11, the filter 851 is set such that the length L2 corresponding to the chord of the arc is smaller than the inner diameter Da of the reduced diameter portion 82c of the base portion 82. By doing so, it can be mounted on the swirling flow path portion 82a.
In the example of FIG. 11, after four filters 851 are mounted, a filter 852 having a width that can be mounted in the remaining gap is mounted. In this case, between the filter 852 and the adjacent filter 851. Although a triangular gap is generated in a plan view, since the ratio of the gap to the entire filter is small, the downward flow G5 is a good flow having substantially no swirlability.
 ガス導入口88aは、1つに限らず複数設けてもよい。ガス導入口88aを複数設ける場合、ガス導入路88は、ガス導入口88aそれぞれに対応して設けてもよいし、一つのガス導入路88を共有し、各ガス導入口88aに分岐して接続する構造にしてもよい。
 また、複数のガス導入口88aは、旋回流路部82aにおける旋回流G2の均一化の観点から、周方向に等角度間隔で設けるとよい。例えば、ガス導入口88aを2つ設ける場合は、180°離隔した位置(径方向で対向した位置)に設けるとよい。
The number of gas inlets 88a is not limited to one, and a plurality of gas inlets 88a may be provided. When a plurality of gas introduction ports 88a are provided, the gas introduction paths 88 may be provided corresponding to the respective gas introduction ports 88a, or one gas introduction path 88 is shared and branched to and connected to each gas introduction port 88a. You may make it the structure to do.
The plurality of gas introduction ports 88a may be provided at equiangular intervals in the circumferential direction from the viewpoint of uniformizing the swirling flow G2 in the swirling flow path portion 82a. For example, when two gas introduction ports 88a are provided, they may be provided at positions separated by 180 ° (positions opposed in the radial direction).
 レーザ発振器3の種類は、ファイバレーザに限定されるものではない。炭酸ガスレーザ、ディスクレーザ、YAGレーザ、ダイオードレーザ、エキシマレーザなどであってもよい。
 制御装置2は、レーザ加工装置51に構造として一体的に備えていなくてもよい。制御装置2を、レーザ加工ヘッド1、レーザ発振器3、及びガス供給装置4に対して別体とし、これらと無線又は有線で通信可能なように設けてもよい。
The type of the laser oscillator 3 is not limited to the fiber laser. A carbon dioxide laser, a disk laser, a YAG laser, a diode laser, an excimer laser, or the like may be used.
The control device 2 may not be provided integrally with the laser processing device 51 as a structure. The control device 2 may be provided separately from the laser processing head 1, the laser oscillator 3, and the gas supply device 4 so as to be able to communicate with them wirelessly or by wire.
 本願の開示は、2018年6月15日に出願された特願2018-114519号に記載の主題と関連しており、それらの全ての開示内容は引用によりここに援用される。
 
The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2018-114519 filed on Jun. 15, 2018, the entire disclosures of which are incorporated herein by reference.

Claims (5)

  1.  集束レンズと、
     ノズルと、
     前記集束レンズと前記ノズルとの間に配置された保護ガラスと、
     外部から供給されたガスを前記集束レンズの光軸の回りに旋回させる旋回流路部と、
     多孔質材料で形成され前記旋回流路部の内部に収容されたフィルタと、
     前記フィルタを通過した前記ガスの流れを前記集束レンズの光軸に沿って前記保護ガラスに指向させる軸方向流路部と、
     前記軸方向流路部を通過した前記ガスの流れを前記保護ガラスの前記ノズルに近い側の表面に沿って前記光軸に向かう内向流とする偏向流路部と、
     を備えるレーザ加工ヘッド。
    A focusing lens;
    A nozzle,
    A protective glass disposed between the focusing lens and the nozzle;
    A swirl flow path section for swirling the gas supplied from the outside around the optical axis of the focusing lens;
    A filter formed of a porous material and housed inside the swirl flow path portion;
    An axial flow path section for directing the flow of the gas that has passed through the filter to the protective glass along the optical axis of the focusing lens;
    A deflection flow path section that makes the flow of the gas that has passed through the axial flow path section an inward flow toward the optical axis along the surface of the protective glass near the nozzle; and
    A laser processing head comprising:
  2.  前記旋回流路部と前記偏向流路部との間にオリフィスを有する請求項1に記載のレーザ加工ヘッド。 The laser processing head according to claim 1, wherein an orifice is provided between the swirl flow path portion and the deflection flow path portion.
  3.  前記フィルタは、前記光軸の方向からみて環状又は円弧状に形成され、縦断面形状において径方向の厚さよりも軸方向の長さの方が長い請求項1又は2に記載のレーザ加工ヘッド。 3. The laser processing head according to claim 1, wherein the filter is formed in an annular shape or an arc shape when viewed from the direction of the optical axis, and the length in the axial direction is longer than the radial thickness in the longitudinal sectional shape.
  4.  レーザ発振器と、
     ガス供給装置と、
     レーザ加工ヘッドと、
     を備え、
     前記レーザ加工ヘッドは、
     前記レーザ発振器から供給されたレーザ光を所望の光束に整形する集束レンズと、
     前記レーザ光を射出するノズルと、
     前記集束レンズと前記ノズルとの間に配置され前記レーザ光が通過する保護ガラスと、
     前記ガス供給装置から供給されたガスを前記集束レンズの光軸の回りに旋回させる旋回流路部と、
     多孔質材料で形成され前記旋回流路部の内部に収容されたフィルタと、
     前記フィルタを通過した前記ガスの流れを前記集束レンズの光軸に沿って前記保護ガラスに指向させる軸方向流路部と、
     前記軸方向流路部を通過した前記ガスの流れを前記保護ガラスの前記ノズルに近い側の表面に沿って前記光軸に向かう内向流とする偏向流路部と、
     を有するレーザ加工装置。
    A laser oscillator;
    A gas supply device;
    A laser processing head;
    With
    The laser processing head is
    A focusing lens that shapes the laser beam supplied from the laser oscillator into a desired light beam;
    A nozzle for emitting the laser beam;
    A protective glass that is disposed between the focusing lens and the nozzle and through which the laser beam passes;
    A swirl flow path section for swirling the gas supplied from the gas supply device around the optical axis of the focusing lens;
    A filter formed of a porous material and housed inside the swirl flow path portion;
    An axial flow path section for directing the flow of the gas that has passed through the filter to the protective glass along the optical axis of the focusing lens;
    A deflecting flow path section that makes the flow of the gas that has passed through the axial flow path section an inward flow toward the optical axis along the surface of the protective glass close to the nozzle;
    A laser processing apparatus.
  5.  前記旋回流路部と前記偏向流路部との間にオリフィスを有する請求項4に記載のレーザ加工装置。
     
    The laser processing apparatus of Claim 4 which has an orifice between the said turning flow path part and the said deflection flow path part.
PCT/JP2019/022266 2018-06-15 2019-06-05 Laser machining head and laser machining device WO2019239974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-114519 2018-06-15
JP2018114519A JP6589016B1 (en) 2018-06-15 2018-06-15 Laser processing head and laser processing apparatus

Publications (1)

Publication Number Publication Date
WO2019239974A1 true WO2019239974A1 (en) 2019-12-19

Family

ID=68159657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022266 WO2019239974A1 (en) 2018-06-15 2019-06-05 Laser machining head and laser machining device

Country Status (2)

Country Link
JP (1) JP6589016B1 (en)
WO (1) WO2019239974A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024010426A1 (en) * 2022-07-08 2024-01-11 주식회사 엘지에너지솔루션 Welding device, battery manufacturing device, and vehicle manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202511A (en) * 2014-04-15 2015-11-16 株式会社アマダホールディングス Antipollution method for protective glass and laser processing head
JP6159583B2 (en) * 2013-06-07 2017-07-05 株式会社アマダホールディングス Protection method of protective glass and laser processing head
WO2017209086A1 (en) * 2016-05-30 2017-12-07 本田技研工業株式会社 Laser processing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159583B2 (en) * 2013-06-07 2017-07-05 株式会社アマダホールディングス Protection method of protective glass and laser processing head
JP2015202511A (en) * 2014-04-15 2015-11-16 株式会社アマダホールディングス Antipollution method for protective glass and laser processing head
WO2017209086A1 (en) * 2016-05-30 2017-12-07 本田技研工業株式会社 Laser processing device

Also Published As

Publication number Publication date
JP2019217509A (en) 2019-12-26
JP6589016B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
CN110153554B (en) Laser processing head
CN217253758U (en) Air wall device for laser processing equipment and laser processing equipment
JP6174891B2 (en) Laser processing head
JP4896457B2 (en) Nozzle device for laser irradiation of laser processing machine and blowing method by this irradiation nozzle.
US10814424B2 (en) Laser machining head having function of rectifying assist gas
JP2007216290A (en) Laser torch
WO2015125522A1 (en) Laser welding head, laser welding device, and gas nozzle for laser welding head
CN217253757U (en) Gas conveying gas circuit device for laser processing equipment
JP5933853B1 (en) Processing nozzle and laser processing apparatus
WO2019239974A1 (en) Laser machining head and laser machining device
CN109219497B (en) Laser processing apparatus
US20080257976A1 (en) Nozzle for industrial processing
JP2008114275A (en) Laser beam machining head and laser beam machining method
JP2016030264A (en) Laser machining head
CN217253597U (en) Nozzle holder for laser machining apparatus
JP6035088B2 (en) Nozzle for laser processing head
CN217253596U (en) Nozzle device for laser processing equipment
CN217253606U (en) Laser processing apparatus
CN114346486A (en) Gun barrel seat for laser processing equipment
CN114346416A (en) Nozzle assembly for laser processing equipment
US20220143750A1 (en) Nozzle for laser machining and laser machining apparatus
CN210209056U (en) Laser welding head
JPS62118995A (en) High-output beam cutter
JPH1190672A (en) Machining nozzle of laser beam machine and method of distributing assist gas
JPH04313485A (en) Laser beam processing head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818536

Country of ref document: EP

Kind code of ref document: A1