WO2018003408A1 - 管理方法、管理装置、分散電源及び管理システム - Google Patents

管理方法、管理装置、分散電源及び管理システム Download PDF

Info

Publication number
WO2018003408A1
WO2018003408A1 PCT/JP2017/020765 JP2017020765W WO2018003408A1 WO 2018003408 A1 WO2018003408 A1 WO 2018003408A1 JP 2017020765 W JP2017020765 W JP 2017020765W WO 2018003408 A1 WO2018003408 A1 WO 2018003408A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
distributed power
message
power source
ems
Prior art date
Application number
PCT/JP2017/020765
Other languages
English (en)
French (fr)
Inventor
一尊 中村
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP17819773.7A priority Critical patent/EP3477815A4/en
Priority to US16/313,463 priority patent/US10840709B2/en
Priority to CN201780040154.5A priority patent/CN109417306A/zh
Priority to JP2018524986A priority patent/JP6794445B2/ja
Publication of WO2018003408A1 publication Critical patent/WO2018003408A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to a technique relating to a management method, a management device, a distributed power source, and a management system.
  • the management system may be, for example, HEMS (Home Energy Management System), SEMS (Store Energy Management System), BEMS (Building Energy Management System, Fem Management System). (Energy Management System).
  • HEMS Home Energy Management System
  • SEMS Store Energy Management System
  • BEMS Building Energy Management System
  • Fem Management System Fem Management System
  • the first feature relates to the management method.
  • the management method sends a permission message permitting the distributed power source operating in the first state where the reverse power flow from the facility to the power system is not permitted to operate in the second state where the reverse power flow is permitted.
  • Step A transmitted from the management device, Step B after the distributed power supply receives the permission message, Step B for switching the operation in the first state to the operation in the second state, and the operation from the second state to the first
  • the distributed power source includes a step C for switching the operation in the second state to the operation in the first state when a predetermined condition is satisfied even if switching to the operation in the one state is not instructed.
  • the second feature relates to the management device.
  • the management device sends a permission message permitting the distributed power source operating in the first state where the reverse power flow from the facility to the power system is not permitted to operate in the second state where the reverse power flow is permitted.
  • a transmitting unit for transmitting is provided.
  • the distributed power supply is configured to switch the operation in the first state to the operation in the second state after receiving the permission message. Even if the distributed power supply is not instructed to switch from the operation in the second state to the operation in the first state, the operation of the second state is performed when the predetermined condition is satisfied. It is configured to switch to.
  • the third feature relates to a distributed power source that operates in the first state where reverse power flow from the facility to the power system is not permitted.
  • the distributed power source receives a permission message that permits operation in the second state in which the reverse power flow is permitted, and after receiving the permission message, the distributed power source performs the operation in the first state in the second state.
  • a control unit that switches to the state operation. Even if the control unit is not instructed to switch from the second state operation to the first state operation, the control unit changes the second state operation to the first state operation when a predetermined condition is satisfied. Switch to.
  • the fourth feature relates to a management system including a distributed power source and a management device.
  • the management device permits the distributed power source that operates in the first state in which the reverse power flow from the facility to the power system is not permitted to operate in the second state in which the reverse power flow is permitted. Send.
  • the distributed power supply switches the operation in the first state to the operation in the second state after receiving the permission message. Even if the distributed power supply is not instructed to switch from the operation in the second state to the operation in the first state, the operation of the second state is performed when the predetermined condition is satisfied. Switch to.
  • FIG. 1 is a diagram illustrating a management system 1 according to the embodiment.
  • FIG. 2 is a diagram illustrating the communication device 132 according to the embodiment.
  • FIG. 3 is a diagram illustrating the EMS 160 according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of a SET command according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of a SET response command according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of a GET command according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a GET response command according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of the INF command according to the embodiment.
  • FIG. 9 is a sequence diagram illustrating a management method according to the embodiment.
  • FIG. 9 is a sequence diagram illustrating a management method according to the embodiment.
  • FIG. 10 is a sequence diagram illustrating a management method according to the embodiment.
  • FIG. 11 is a sequence diagram illustrating a management method according to the first modification.
  • FIG. 12 is a sequence diagram illustrating a management method according to the first modification.
  • FIG. 13 is a sequence diagram illustrating a management method according to the second modification.
  • FIG. 14 is a sequence diagram illustrating a management method according to the second modification.
  • FIG. 15 is a sequence diagram illustrating a management method according to the third modification.
  • the management system 1 includes a facility 100, an external server 400, and a user terminal 500.
  • the facility 100 has a router 200.
  • the router 200 is connected to the external server 400 via the network 300.
  • the router 200 forms a local area network and is connected to each device (for example, the communication device 132 of the PCS 130, the load 150, the EMS 160, the display device 170, and the like).
  • a solid line indicates a power line
  • a dotted line indicates a signal line. Note that the present invention is not limited to this, and a signal may be transmitted through a power line.
  • the facility 100 includes a solar battery 110, a storage battery 120, a PCS 130, a distribution board 140, a load 150, an EMS 160, and a display device 170.
  • the solar cell 110 is a device that generates power in response to light reception.
  • the solar cell 110 outputs the generated DC power.
  • the amount of power generated by the solar cell 110 changes according to the amount of solar radiation irradiated on the solar cell 110.
  • the solar battery 110 operates with a part of the function of the PCS 130 and a distributed power source that operates in a state where power is allowed to flow in the first direction from the facility 100 to the power system 10 (reverse power flow).
  • the first direction is defined as a direction different from the second direction (tidal current) in which power is purchased from the power system 10.
  • Storage battery 120 is a device that stores electric power.
  • the storage battery 120 outputs the accumulated DC power.
  • the storage battery 120 configures, for example, a distributed power source that operates in a state where reverse power flow from the facility 100 to the power system 10 is not permitted, together with a part of the function of the PCS 130. However, the storage battery 120 may operate in a state where reverse power flow is temporarily permitted.
  • the PCS 130 is an example of a power conversion system (PCS; Power Conditioning System) that converts at least one of output power from the distributed power source and input power to the distributed power source into AC power or DC power.
  • PCS Power Conditioning System
  • the PCS 130 includes a conversion device 131 and a communication device 132.
  • the PCS 130 is an example of a unit including the conversion device 131.
  • the conversion device 131 converts DC power from the solar battery 110 into AC power, and converts DC power from the storage battery 120 into AC power. Furthermore, the converter 131 converts AC power from the power system 10 into DC power.
  • the converter 131 is connected to the main power line 10L (here, the main power line 10LA and the main power line 10LB) connected to the power system 10 via the first distribution board 140A, and both the solar battery 110 and the storage battery 120 are connected. Connected to.
  • the main power line 10LA is a power line that connects the power system 10 and the first distribution board 140A
  • the main power line 10LB is a power line that connects the first distribution board 140A and the second distribution board 140B.
  • the conversion device 131 is described as a hybrid power conversion device connected to the solar cell 110 and the storage battery 120, but the power conversion device is connected to each of the solar cell 110 and the storage battery 120. It may be configured. When it is the structure by which a power converter device is connected to each of the solar cell 110 and the storage battery 120, each power converter device can perform control similar to the hybrid type power converter device of this embodiment.
  • the communication device 132 is connected to the conversion device 131, receives various messages to the conversion device 131, and transmits various messages from the conversion device 131.
  • a protocol for example, a unique protocol
  • PCS 130 In communication between the communication device 132 and the conversion device 131, a protocol (for example, a unique protocol) applied to the PCS 130 is used.
  • the communication device 132 is connected to the router 200 by wire or wireless.
  • the communication device 132 is connected to the external server 400 via the router 200, and receives an output suppression message from the external server 400 that instructs to suppress the output of the distributed power supply.
  • the communication device 132 is connected to the EMS 160 via the router 200, and performs communication of a predetermined command having a predetermined format with the EMS 160.
  • the predetermined format is not particularly limited, and for example, the ECHONET system, the ECHONET Lite system, the SEP2.0 system, the KNX system, or the like can be used.
  • the predetermined command can be roughly classified into, for example, a request command, a request response command that is a response to the request command, or an information notification command.
  • the request command is, for example, a SET command or a GET command.
  • the request response command is, for example, a SET response command that is a response to the SET command, a GET response command that is a response to the GET command, or the like.
  • the information notification command is, for example, an INF command.
  • the SET command is a command including a property for instructing setting or operation for the PCS 130.
  • the SET response command is a command indicating that the SET command has been received.
  • the GET command includes a property indicating the state of the PCS 130, and is a command for acquiring the state of the PCS 130.
  • the GET response command includes a property indicating the state of the PCS 130 and includes information requested by the GET command.
  • the INF command includes a property indicating the state of the PCS 130 and is a command for notifying the state of the PCS 130.
  • the distribution board 140 is connected to the main power line 10L.
  • the distribution board 140 includes a first distribution board 140A and a second distribution board 140B.
  • the first distribution board 140A is connected to the power system 10 via the main power line 10LA and is connected to the solar battery 110 and the storage battery 120 via the converter 131. Further, the first distribution board 140A controls the power output from the converter 131 and the power supplied from the power system 10 to flow to the main power line 10LB.
  • the power flowing from the main power line 10LB is distributed to each device (here, the load 150 and the EMS 160) by the second distribution board 140B.
  • the load 150 is a device that consumes power supplied through the power line.
  • the load 150 includes devices such as an air conditioner, a lighting device, a refrigerator, and a television.
  • the load 150 may be a single device or may include a plurality of devices.
  • the EMS 160 is an apparatus (EMS; Energy Management System) that manages power information indicating power in the facility 100.
  • the power in the facility 100 refers to power flowing through the facility 100, power purchased by the facility 100, power sold from the facility 100, and the like. Therefore, for example, the EMS 160 manages at least the PCS 130.
  • the EMS 160 may control the power generation amount of the solar battery 110, the charge amount of the storage battery 120, and the discharge amount of the storage battery 120.
  • the EMS 160 may be configured integrally with the distribution board 140.
  • the EMS 160 is a device connected to the network 300, and the function of the EMS 160 may be provided by a cloud service via the network 300.
  • the EMS 160 is connected to each device (for example, the communication device 132 and the load 150 of the PCS 130) via the router 200, and performs communication of a predetermined command having a predetermined format with each device.
  • the EMS 160 is connected to the display device 170 via the router 200 and communicates with the display device 170.
  • the EMS 160 may perform communication of a predetermined command having a predetermined format with the display device 170.
  • the predetermined format is, for example, a format that conforms to the ECHONET Lite system.
  • the display device 170 displays the state of the PCS 130.
  • the display device 170 may display power information indicating the power in the facility 100.
  • the display device 170 is, for example, a smartphone, a tablet, a television, a personal computer, or a dedicated terminal.
  • the display device 170 is connected to the EMS 160 by wire or wireless and communicates with the EMS 160.
  • the display device 170 may perform communication of a predetermined command having a predetermined format with the EMS 160.
  • the display device 170 receives data necessary for displaying various information from the EMS 160.
  • the network 300 is a communication network that connects the EMS 160 and the external server 400.
  • the network 300 may be a public communication line such as the Internet.
  • the network 300 may include a mobile communication network.
  • the network 300 may be a dedicated communication line or a general communication line. For example, when the output of the solar battery 110 is greater than or equal to a predetermined output, the output can be more reliably suppressed by using a dedicated communication line as the network 300.
  • the external server 400 is a server managed by a business operator such as a power generation business, a power transmission / distribution business, or a retail business.
  • the operator designates the output suppression of the distributed power source, and is, for example, a business operator such as a power generation company, a power transmission / distribution company, a retailer, or a group management company of distributed power sources.
  • the external server 400 transmits an output suppression message that instructs to suppress output of the distributed power supply.
  • the external server 400 may transmit a tidal flow suppression message (DR; Demand Response) instructing suppression of the tidal flow to the facility 100 from the power system 10.
  • DR Demand Response
  • the output suppression message includes a target output suppression level indicating the level of output suppression of the distributed power supply (in this case, the solar battery 110).
  • the target output suppression level is determined according to an output (hereinafter, facility-accredited output [kW]) that is certified as an output capability (for example, rated output) of the PCS that controls the distributed power supply.
  • the distributed power source may be the storage battery 120 and the fuel cell.
  • the output suppression message may include calendar information indicating a schedule of output suppression of the distributed power source. In the calendar information, the schedule for suppressing output of the distributed power supply can be set in units of 30 minutes.
  • the calendar information may include a schedule for one day, a schedule for January, or a schedule for one year.
  • the external server 400 transmits a power control message for controlling the conversion device 131 to the PCS 130 via the EMS 160.
  • the power control message may be a message for controlling the conversion device 131, may be a message for instructing increase / decrease in the output of the solar battery 110, or may be a message for instructing storage or discharge of the storage battery 120.
  • the power control message may be an output suppression message and a tidal flow suppression message, but the output suppression message or the tidal flow suppression message may be transmitted from the external server 400 to the PCS 130 without going through the EMS 160.
  • the user terminal 500 transmits a power control message for controlling the conversion device 131 via the EMS 160.
  • the user terminal 500 is, for example, a smartphone, a tablet, or a dedicated terminal.
  • the user terminal 500 may be a terminal possessed by a user who uses the solar battery 110, the storage battery 120 or the PCS 130, or may be a terminal possessed by a contractor responsible for the maintenance of the solar battery 110, the storage battery 120 or the PCS 130.
  • the power control message may be a message for controlling the conversion device 131, may be a message for instructing increase / decrease in the output of the solar battery 110, or may be a message for instructing storage or discharge of the storage battery 120.
  • the user terminal 500 is connected to the EMS 160 via the network 300 and the router 200, but the embodiment is not limited to this.
  • the user terminal 500 is located in the facility 100 and may be connected to the EMS 160 via the router 200 without going through the network 300.
  • the user terminal 500 may be the display device 170 described above.
  • the user terminal 500 may be connected to the EMS 160 via the network 300 and the router 200.
  • the distributed power source provided in the facility 100 is not limited to the distributed power source (for example, the solar battery 110) that is allowed to reverse flow from the facility 100 to the power system 10, but also from the facility 100 to the power system 10. It may include a distributed power source (eg, storage battery 120) that does not allow reverse power flow. Under such circumstances, depending on the power supply / demand balance of the power system 10, not only the distributed power source in which the reverse flow from the facility 100 to the power system 10 is permitted, but also the reverse power flow from the facility 100 to the power system 10 is permitted. There is a need to use an undistributed distributed power source as a distributed power source capable of reverse power flow.
  • the distributed power source owned by the facility 100 is used as a virtual power plant that collectively uses the plurality of facilities 100.
  • various ideas are necessary for the communication standard used in the management system 1 described above.
  • a permission message that permits operation in a state where reverse power flow is permitted is newly defined under limited conditions.
  • ECHONET Lite system for example, one of the SET commands described above can be used as a permission message.
  • the EMS 160 transmits a permission message permitting operation in the second state in which the reverse power flow is permitted to the storage battery 120 operating in the first state in which the reverse power flow is not permitted.
  • transmission of a message to the storage battery 120 may be considered synonymous with transmission of a message to the PCS 130.
  • the message to the storage battery 120 will be described as being transmitted to the PCS 130.
  • the EMS 160 may transmit a permission message to the PCS 130 when the power demand in the power system 10 is greater than the power supply.
  • the EMS 160 may transmit a permission message to the PCS 130 when receiving a tidal flow suppression message from the external server 400.
  • the storage battery 120 switches the operation in the first state to the operation in the second state after receiving the permission message under the control of the PCS 130.
  • the permission message may include a time, start time or end time that can be switched to the operation of the second state, and if such a time or time is included in the permission message, within the switchable time or time The operation in the first state is switched to the operation in the second state.
  • the storage battery 120 may switch the operation in the first state to the operation in the second state in response to receiving the permission message.
  • the storage battery 120 may switch the operation in the first state to the operation in the second state in response to reception of a message instructing the discharge of the storage battery 120 after receiving the permission message.
  • the storage battery 120 changes the operation of the second state to the operation of the first state by the control of the PCS 130 when a predetermined condition is satisfied even if the switching from the operation of the second state to the operation of the first state is not instructed.
  • Switch that is, stop the operation in the second state. That is, the storage battery 120 autonomously stops the operation in the second state without receiving a special instruction from the EMS 160.
  • the EMS 160 may transmit a message designating a predetermined condition (hereinafter, a condition designating message) to the PCS 130.
  • the predetermined condition may be that the time for which the storage battery 120 continues to operate in the second state reaches a predetermined time, and the condition designation message includes information indicating the predetermined time.
  • the predetermined condition may be that the accumulated output of the storage battery 120 reaches a predetermined output, and the condition designation message includes information indicating the predetermined output.
  • “Output” is represented by, for example, Wh or kWh.
  • the timing for transmitting the condition specifying message from the EMS 160 may be the same timing as the permission message or before the permission message.
  • the condition specifying message and the permission message may be one message.
  • the permission message may include information specifying a predetermined condition.
  • the communication device 132 includes a first communication unit 132A, a second communication unit 132B, an interface 132C, and a control unit 132D.
  • the communication device 132 (that is, the PCS 130) is an example of a device.
  • the first communication unit 132A receives an output suppression message or a tidal flow suppression message from the external server 400.
  • the first communication unit 132A may receive the output suppression message or the tidal flow suppression message without passing through the EMS 160, and receive the output suppression message or the tidal flow suppression message via the EMS 160. May be.
  • the second communication unit 132B performs communication of a predetermined command having a predetermined format with the EMS 160.
  • the predetermined format is, for example, a format that conforms to the ECHONET Lite system.
  • the predetermined format used in communication between the communication device 132 (second communication unit 132B) and the EMS 160 may be different from the format used in communication between the communication device 132 (first communication unit 132A) and the external server 400. Good.
  • the predetermined format used for communication between the second communication unit 132B (second communication unit 132B) and the EMS 160 may be different from the format used for communication between the communication device 132 (interface 132C) and the conversion device 131.
  • the interface 132C is an interface with the conversion device 131.
  • the interface 132C may be a wired interface or a wireless interface.
  • a protocol for example, a unique protocol applied to the PCS 130 is used.
  • the control unit 132D includes a memory and a CPU, and controls the communication device 132.
  • the control unit 132D controls the output of the distributed power source according to the output suppression message by controlling the conversion device 131 using the interface 132C.
  • Control part 132D acquires the state (For example, the electric power generation amount of the solar cell 110, the electrical storage amount of the storage battery 120, the discharge amount of the storage battery 120) from the conversion device 131 using the interface 132C.
  • the control unit 132D generates a command for controlling the conversion device 131 based on the command received from the EMS 160, and outputs the command to the conversion device 131 using the interface 132C.
  • the EMS 160 includes a communication unit 161 and a control unit 162.
  • the communication unit 161 communicates a predetermined command having a predetermined format with the communication device 132 and the display device 170.
  • the predetermined format is, for example, a format that conforms to the ECHONET Lite system.
  • the control unit 162 includes a memory and a CPU, and controls the EMS 160.
  • the controller 162 may control the power generation amount of the solar battery 110, the charge amount of the storage battery 120, and the discharge amount of the storage battery 120.
  • the SET command M510 includes a header M511, a code M512, and a target property M513.
  • the SET command M510 is an example of a command for instructing the operation of the PCS 130 according to the power control message, and is a command transmitted from the EMS 160 to the PCS 130. That is, the SET command M510 may be considered as an example of a power control message.
  • the header M511 is information indicating the destination of the SET command M510.
  • the code M512 is information indicating the type of message including the code M512.
  • the code M512 is information indicating that the message including the code M512 is a SET command.
  • the target property M513 includes a property indicating an operation that the EMS 160 instructs the PCS 130.
  • the SET response command M520 includes a header M521, a code M522, and a response content M523.
  • the SET response command M520 is an example of a command transmitted from the PCS 130 to the EMS 160 in response to a command received from the EMS 160.
  • the header M521 is information indicating the destination of the SET response command M520.
  • the code M522 is information indicating the type of message including the code M522.
  • the code M522 is information indicating that the message including the code M522 is a SET response command.
  • the response content M523 includes information indicating that the SET command has been received. Such information may be a copy of the property included in the SET command, or may be an acknowledgment (ACK). Such information is not limited to this, and may be a response (Selective ACK) intended to correctly receive only a part of the data.
  • the GET command M610 includes a header M611, a code M612, and a target property M613.
  • the GET command M610 is an example of a command requesting the state of the PCS 130, and is an example of a command transmitted from the EMS 160 to the PCS 130.
  • the header M611 is information indicating the destination of the GET command M610.
  • the code M612 is information indicating the type of message including the code M612.
  • the code M612 is information indicating that the message including the code M612 is a GET command.
  • the target property M613 includes properties that the EMS 160 wants to know.
  • the GET response command M620 includes a header M621, a code M622, and a response content M623.
  • the GET response command M620 is an example of a command transmitted from the PCS 130 to the EMS 160 in response to a command received from the EMS 160.
  • the header M621 is information indicating the destination of the GET response command M620.
  • the code M622 is information indicating the type of message including the code M622.
  • the code M622 is information indicating that the message including the code M622 is a GET response command.
  • the response content M623 includes the property requested by the GET command.
  • the INF command M710 includes a header M711, a code M712, and a target property M713.
  • the INF command M710 is an example of a command for notifying the display device 170 of a transmission source, and is an example of a transmission source message transmitted from the EMS 160 to the display device 170.
  • the header M711 is information indicating the destination of the INF command M710.
  • the code M712 is information indicating the type of message including the code M712.
  • the code M712 is information indicating that the message including the code M712 is an INF command.
  • the target property M713 includes a property notified by the EMS 160.
  • Management method a management method according to the embodiment will be described.
  • the predetermined format used in communication between the PCS 130 (communication device 132) and the EMS 160 is a format that conforms to the ECHONET Lite system is illustrated.
  • step S10 the EMS 160 receives a power control message (here, a tidal flow suppression message) from the external server 400.
  • a power control message here, a tidal flow suppression message
  • step S10 is not essential and this step may be omitted.
  • Step S10 may be a step in which EMS 160 determines that reverse flow from storage battery 120 to power system 10 is temporarily permitted.
  • step S11 the EMS 160 transmits a SET command to the PCS 130.
  • the SET command is the permission message described above.
  • the SET command may include the condition specifying message described above.
  • the EMS 160 may transmit the permission message and the condition designation message using different SET commands.
  • step S12 the PCS 130 transmits a SET response command to the EMS 160 in response to the SET command.
  • step S13 the PCS 130 switches the operation of the storage battery 120 from the operation in the first state to the operation in the second state.
  • step S14 the PCS 130 detects that the predetermined condition is satisfied, regardless of whether or not an instruction to switch from the second state operation to the first state operation is instructed.
  • the predetermined condition may be that the time during which the storage battery 120 continues to operate in the second state reaches a predetermined time, or that the accumulated output of the storage battery 120 reaches a predetermined output.
  • step S15 the PCS 130 switches the operation of the storage battery 120 from the second state operation to the first state operation.
  • the EMS 160 transmits a GET command to the PCS 130.
  • the GET command includes the operation state of the storage battery 120 as a property.
  • the operating state may be whether the storage battery 120 is operating in the first state or operating in the second state.
  • the operating state may be a state where charging / discharging criteria are different, such as rapid charging, charging, discharging, standby, and testing.
  • step S17A the PCS 130 transmits a GET response command to the GET command to the EMS 160.
  • the GET response command includes the operation state of the storage battery 120 as a property.
  • the EMS 160 can obtain information for determining whether or not the storage battery 120 is operating in the first state.
  • the EMS 160 obtains information for determining whether or not the storage battery 120 is operating in the first state by transmitting a GET command and receiving a GET response command.
  • the embodiment is not limited to this.
  • step S16B the PCS 130 may transmit an INF command to the EMS 160 when the operation of the storage battery 120 is switched from the operation in the second state to the operation in the first state.
  • the INF command includes the operation state of the storage battery 120 as a property.
  • the processing from step S10 to step S15 is the same as that in FIG.
  • the PCS 130 switches the operation of the storage battery 120 from the operation in the first state to the operation in the second state in response to reception of the permission message.
  • the embodiment is not limited to this.
  • the PCS 130 may switch the operation of the storage battery 120 from the operation in the first state to the operation in the second state in response to reception of a message instructing the discharge of the storage battery 120.
  • the EMS 160 sends a permission message to the PCS 130. According to such a configuration, reverse power flow from the storage battery 120 to the power system 10 can be temporarily permitted.
  • the storage battery 120 stops the operation in the second state by the control of the PCS 130 when the predetermined condition is satisfied even if the switching from the operation in the second state to the operation in the first state is not instructed. According to such a configuration, it is possible to reduce the situation in which the second state in which the reverse power flow is permitted is inappropriately continued when the storage battery 120 that is not permitted to perform the reverse power flow is used. For example, even when the operation from the second state to the operation in the first state is not performed for some reason, the operation in the second state can be appropriately stopped.
  • the storage battery 120 stops the operation in the second state by the control of the PCS 130 when the predetermined condition is satisfied even if the switching from the operation in the second state to the operation in the first state is not instructed.
  • the storage battery 120 is controlled by the control of the PCS 130 when switching from the second state operation to the first state operation is instructed even if the predetermined condition is not satisfied. Stop the two-state operation.
  • Management method a management method according to the first modification will be described.
  • the predetermined format used in communication between the PCS 130 (communication device 132) and the EMS 160 is a format that conforms to the ECHONET Lite system is illustrated.
  • step S20 the EMS 160 receives a power control message (here, a tidal flow suppression message) from the external server 400.
  • a power control message here, a tidal flow suppression message
  • step S20 is an option, and step S20 may be a step in which EMS 160 determines that reverse flow from storage battery 120 to power system 10 is temporarily permitted.
  • step S21 the EMS 160 transmits a SET command to the PCS 130.
  • the SET command is the permission message described above.
  • the SET command may include the condition specifying message described above.
  • the EMS 160 may transmit the permission message and the condition designation message using different SET commands.
  • step S22 the PCS 130 transmits a SET response command for the SET command to the EMS 160.
  • step S23 the PCS 130 switches the operation of the storage battery 120 from the operation in the first state to the operation in the second state.
  • step S24 the EMS 160 transmits a SET command to the PCS 130.
  • the SET command is a message instructing switching from the operation in the second state to the operation in the first state.
  • step S25 the PCS 130 transmits a SET response command to the EMS 160 in response to the SET command.
  • step S26 even if the predetermined condition is not satisfied, the PCS 130 switches the operation of the storage battery 120 from the operation in the second state to the operation in the first state.
  • the EMS 160 transmits a GET command to the PCS 130.
  • the GET command includes the operation state of the storage battery 120 as a property.
  • the operating state may be whether the storage battery 120 is operating in the first state or operating in the second state.
  • the operating state may be a state where charging / discharging criteria are different, such as rapid charging, charging, discharging, standby, and testing.
  • step S28A the PCS 130 transmits a GET response command for the GET command to the EMS 160.
  • the GET response command includes the operation state of the storage battery 120 as a property.
  • the EMS 160 can obtain information for determining whether or not the storage battery 120 is operating in the first state.
  • the EMS 160 obtains information for determining whether or not the storage battery 120 is operating in the first state by transmitting a GET command and receiving a GET response command.
  • the first modification is not limited to this.
  • step S27B the PCS 130 may transmit an INF command to the EMS 160 when the operation of the storage battery 120 is switched from the operation in the second state to the operation in the first state.
  • the INF command includes the operation state of the storage battery 120 as a property.
  • the processing from step S20 to step S26 is the same as that in FIG.
  • an instruction to switch from the second state operation to the first state operation is performed by a message transmitted from the EMS 160 to the PCS 130.
  • the instruction to switch from the operation in the second state to the operation in the first state may be performed by a user operation.
  • the switching instruction from the second state operation to the first state operation may be an instruction to change to an operation mode in which the distributed power supply does not output power from itself, or a change to an operation mode to wait. It may be an instruction.
  • the storage battery 120 may interpret an instruction to change the operation mode such as charging or standby of the storage battery 120 as an instruction to switch from the operation in the second state to the operation in the first state.
  • a condition designation message for designating a predetermined condition for stopping the operation in the second state is transmitted from the EMS 160 to the PCS 130.
  • the permission message is associated with the time for which the storage battery 120 continues the operation in the second state.
  • the EMS 160 repeats the transmission of the permission message according to the time associated with the permission message. Therefore, it is not necessary to send a condition designation message.
  • step S30 the EMS 160 receives a power control message (here, a tidal flow suppression message) from the external server 400.
  • a power control message here, a tidal flow suppression message
  • step S30 is an option, and step S30 may be a step in which EMS 160 determines that reverse flow from storage battery 120 to power system 10 is temporarily permitted.
  • step S31 the EMS 160 transmits a SET command to the PCS 130.
  • the SET command is the permission message described above.
  • step S32 the PCS 130 transmits a SET response command to the EMS 160 in response to the SET command.
  • step S33 the PCS 130 switches the operation of the storage battery 120 from the operation in the first state to the operation in the second state.
  • step S34 the EMS 160 transmits a SET command to the PCS 130 before the time associated with the permission message expires.
  • the SET command is the permission message described above.
  • step S35 the PCS 130 transmits a SET response command to the EMS 160 in response to the SET command.
  • the EMS 160 repeats transmission of a permission message (SET command) before the time associated with the permission message expires.
  • the transmission of the permission message (SET command) is stopped.
  • step S36 the PCS 130 switches the operation of the storage battery 120 from the operation in the second state to the operation in the first state in response to the expiration of the time associated with the permission message.
  • the EMS 160 transmits a GET command to the PCS 130.
  • the GET command includes the operation state of the storage battery 120 as a property.
  • the operating state may be whether the storage battery 120 is operating in the first state or operating in the second state.
  • the operating state may be a state where charging / discharging criteria are different, such as rapid charging, charging, discharging, standby, and testing.
  • step S38A the PCS 130 transmits a GET response command for the GET command to the EMS 160.
  • the GET response command includes the operation state of the storage battery 120 as a property.
  • the EMS 160 can obtain information for determining whether or not the storage battery 120 is operating in the first state.
  • the EMS 160 obtains information for determining whether or not the storage battery 120 is operating in the first state by transmitting a GET command and receiving a GET response command.
  • the modified example 2 is not limited to this.
  • step S37B the PCS 130 may transmit an INF command to the EMS 160 when the operation of the storage battery 120 is switched from the operation in the second state to the operation in the first state.
  • the INF command includes the operation state of the storage battery 120 as a property.
  • the processing from step S30 to step S36 is the same as that in FIG.
  • the PCS 130 and the EMS 160 have a timer that counts the time associated with the permission message.
  • the PCS 130 starts a timer in response to receiving a SET command (permission message)
  • the EMS 160 starts a timer in response to transmission of a SET command (permission message).
  • the modified example 2 is not limited to this.
  • the PCS 130 may start a timer in response to switching to the second state operation.
  • the EMS 160 may start a timer in response to receiving the SET response command.
  • the predetermined condition is that the n + 1th permission message is not received until the time associated with the nth permission message expires.
  • a message indicating whether switching between the first state and the second state is permitted from the PCS 130 to the EMS 160 (hereinafter, switching capability).
  • switching capability a message indicating whether switching between the first state and the second state is permitted from the PCS 130 to the EMS 160 (hereinafter, switching capability).
  • switching capability a message indicating whether switching between the first state and the second state is permitted from the PCS 130 to the EMS 160.
  • an instance list can be used as a switching capability message. Whether switching between the first state and the second state is allowed is determined by one of the capacity of the storage battery 120 and the contract of the storage battery 120.
  • the capacity of the storage battery 120 is information indicating whether or not it has a voltage increase suppression function (AVR; Automatic Voltage Regulator) necessary for allowing reverse power flow.
  • AVR Automatic Voltage Regulator
  • the EMS 160 transmits a permission message for the storage battery 120 having the AVR function.
  • the EMS 160 does not have an AVR function and does not transmit a permission message for the storage battery 120 having only a reverse power prevention function (RPR; Reverse Power Relay).
  • RPR Reverse Power Relay
  • the contract for the storage battery 120 is a contract between an operator such as a power generation company, a power transmission / distribution company, or a retailer, and a user of the storage battery 120.
  • the EMS 160 transmits a permission message for the storage battery 120 having a contract that allows temporary permission of reverse power flow.
  • the EMS 160 does not transmit a permission message for the storage battery 120 that does not have a contract that allows temporary permission for reverse power flow.
  • the EMS 160 receives the instance list from the PCS 130.
  • the instance list includes the switching capability message described above.
  • the timing at which the PCS 130 transmits the instance list may be the timing at which the PCS 130 is connected to the EMS 160, the timing at which the PCS 130 is turned on, or the storage battery 120. It may be the timing when the power is turned on.
  • FIG. 15 illustrates the processing shown in FIG. 9 as processing after transmission of the SET command (permission message). However, processing after transmission of the SET command (permission message) is the processing shown in FIGS. There may be.
  • the predetermined format used in communication between the communication device 132 and the EMS 160 is a format conforming to the ECHONET Lite system.
  • the predetermined format may be a format standardized as a format used in the facility 100.
  • the PCS 130 (multi-PCS) that controls the outputs of the solar battery 110 and the storage battery 120 is exemplified.
  • the PCS 130 may be a PCS that controls the solar battery 110 or a PCS that controls the output of the storage battery 120.
  • the display device 170 is, for example, a smartphone, a tablet, a television, or a dedicated terminal. However, the embodiment is not limited to this.
  • the display device 170 may be a remote controller that operates the conversion device 131.
  • the remote controller may be considered part of the PCS 130.
  • the first communication unit 132A and the second communication unit 132B have different configurations has been described, but the first communication unit 132A and the second communication unit 132B may be integrated. That is, the first communication unit 132A may also serve as the second communication unit 132B.
  • the storage battery 120 is illustrated as a distributed power source that operates in a state where reverse power flow from the facility 100 to the power system 10 is not permitted.
  • the distributed power source that operates in a state where reverse power flow is not permitted may be a distributed power source other than the storage battery 120 such as the solar cell 110 and the fuel cell.
  • the output suppression state can be assumed as the first state in which the reverse power flow is not permitted, and the output power suppression state is relaxed according to the situation of the power system 10, and the reverse power flow It is assumed that some of the facilities 100 are changed to the second state in which permission is granted. In this case, it is possible to set the second state so as to exceptionally allow reverse power flow while maintaining the output suppression state of the facility 100.
  • a permission message or a condition setting message can be used for changing from the first state to the second state.
  • the storage battery 120 in the first state where reverse power flow is not permitted in principle may be switched to the second state.
  • various messages are transmitted from the EMS 160 to the PCS 130.
  • the embodiment is not limited to this.
  • Various messages may be directly transmitted from the EMS 160 to the storage battery 120.
  • the second state is merely a state in which the reverse power flow is permitted
  • the reverse power flow is not always performed in the second state. For example, when the remaining amount of electricity stored in the storage battery 120 is less than the threshold value, the storage battery 120 may not be discharged even in the second state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

管理方法は、施設から電力系統への逆潮流が許可されていない第1状態で動作する分散電源に対して、前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを管理装置から送信するステップAと、前記許可メッセージを受信した後において、前記分散電源が前記第1状態の動作を前記第2状態の動作に切り替えるステップBと、前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記分散電源が前記第2状態の動作を前記第1状態の動作に切り替えるステップCとを備える。

Description

管理方法、管理装置、分散電源及び管理システム
 本発明は、管理方法、管理装置、分散電源及び管理システムに関する技術である。
 近年、施設に設けられる分散電源を利用することによって、電力系統の電力需給バランスを調整する技術が注目を集めている。このような分散電源としては、例えば、自然エネルギーを利用する電源(太陽光発電装置、風力発電装置及び水力発電装置)が挙げられる。
 また、機器と、機器を管理する管理装置とを有する管理システムが提案されている。管理システムは、管理する対象に応じて、例えば、HEMS(Home Energy Management System)、SEMS(Store Energy Management System)、BEMS(Building Energy Management System)、FEMS(Factory Energy Management System)、CEMS(Cluster/Community Energy Management System)などと称される。
 上述した管理システムの普及には、機器と管理装置との間の通信規格を共通化することが効果的であり、このような通信規格の共通化が試みられている。
 ところで、施設から電力系統への逆潮流が許可されていない状態で動作する分散電源を一時的に利用したいというニーズが存在するが、このようなニーズを実現するためには、上述した管理システムで用いる通信規格に様々な工夫が必要である。
特開2010-128810号公報
 第1の特徴は、管理方法に関する。前記管理方法は、施設から電力系統への逆潮流が許可されていない第1状態で動作する分散電源に対して、前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを管理装置から送信するステップAと、前記許可メッセージを受信した後において、前記分散電源が前記第1状態の動作を前記第2状態の動作に切り替えるステップBと、前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記分散電源が前記第2状態の動作を前記第1状態の動作に切り替えるステップCとを備える。
 第2の特徴は、管理装置に関する。前記管理装置は、施設から電力系統への逆潮流が許可されていない第1状態で動作する分散電源に対して、前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを送信する送信部を備える。前記分散電源は、前記許可メッセージを受信した後において、前記第1状態の動作を前記第2状態の動作に切り替えるように構成されている。前記分散電源は、前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記第2状態の動作を前記第1状態の動作に切り替えるように構成されている。
 第3の特徴は、施設から電力系統への逆潮流が許可されていない第1状態で動作する分散電源に関する。前記分散電源は、前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを受信する受信部と、前記許可メッセージを受信した後において、前記第1状態の動作を前記第2状態の動作に切り替える制御部とを備える。前記制御部は、前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記第2状態の動作を前記第1状態の動作に切り替える。
 第4の特徴は、分散電源と管理装置とを備える管理システムに関する。前記管理装置は、施設から電力系統への逆潮流が許可されていない第1状態で動作する前記分散電源に対して、前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを送信する。前記分散電源は、前記許可メッセージを受信した後において、前記第1状態の動作を前記第2状態の動作に切り替える。前記分散電源は、前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記第2状態の動作を前記第1状態の動作に切り替える。
図1は、実施形態に係る管理システム1を示す図である。 図2は、実施形態に係る通信装置132を示す図である。 図3は、実施形態に係るEMS160を示す図である。 図4は、実施形態に係るSETコマンドの一例を示す図である。 図5は、実施形態に係るSET応答コマンドの一例を示す図である。 図6は、実施形態に係るGETコマンドの一例を示す図である。 図7は、実施形態に係るGET応答コマンドの一例を示す図である。 図8は、実施形態に係るINFコマンドの一例を示す図である。 図9は、実施形態に係る管理方法を示すシーケンス図である。 図10は、実施形態に係る管理方法を示すシーケンス図である。 図11は、変更例1に係る管理方法を示すシーケンス図である。 図12は、変更例1に係る管理方法を示すシーケンス図である。 図13は、変更例2に係る管理方法を示すシーケンス図である。 図14は、変更例2に係る管理方法を示すシーケンス図である。 図15は、変更例3に係る管理方法を示すシーケンス図である。
 以下において、実施形態について図面を参照しながら説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合がある。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
 [実施形態]
 (管理システム)
 以下において、実施形態に係る管理システムについて説明する。図1に示すように、管理システム1は、施設100と、外部サーバ400と、ユーザ端末500とを有する。施設100は、ルータ200を有する。ルータ200は、ネットワーク300を介して外部サーバ400と接続される。ルータ200は、ローカルエリアネットワークを構成しており、各装置(例えば、PCS130の通信装置132、負荷150、EMS160及び表示装置170など)と接続される。図1において、実線は電力線を示しており、点線は信号線を示している。なお、これに限定されるものではなく、電力線で信号を送信してもよい。
 施設100は、太陽電池110と、蓄電池120と、PCS130と、分電盤140と、負荷150と、EMS160と、表示装置170とを有する。
 太陽電池110は、受光に応じて発電を行う装置である。太陽電池110は、発電されたDC電力を出力する。太陽電池110の発電量は、太陽電池110に照射される日射量に応じて変化する。実施形態では、太陽電池110は、例えば、PCS130の機能の一部とともに、施設100から電力系統10への第1方向へ電力を流すこと(逆潮流)が許可されている状態で動作する分散電源を構成する。なお、第1方向は、電力系統10から電力を買電する方向である第2方向(潮流)とは異なる方向で定義される。
 蓄電池120は、電力を蓄積する装置である。蓄電池120は、蓄積されたDC電力を出力する。実施形態では、蓄電池120は、例えば、PCS130の機能の一部とともに、施設100から電力系統10への逆潮流が許可されていない状態で動作する分散電源を構成する。但し、蓄電池120は、逆潮流が一時的に許可された状態で動作してもよい。
 PCS130は、分散電源からの出力電力及び分散電源への入力電力の少なくともいずれかを交流電力又は直流電力に変換する電力変換装置(PCS;Power Conditioning System)の一例である。実施形態では、PCS130は、変換装置131及び通信装置132を有する。実施形態では、PCS130は、変換装置131を含むユニットの一例である。
 変換装置131は、太陽電池110からのDC電力をAC電力に変換するとともに、蓄電池120からのDC電力をAC電力に変換する。さらに、変換装置131は、電力系統10からのAC電力をDC電力に変換する。変換装置131は、電力系統10に接続された主幹電力線10L(ここでは、主幹電力線10LA及び主幹電力線10LB)に第1分電盤140Aを介して接続されるとともに、太陽電池110及び蓄電池120の双方に接続される。主幹電力線10LAは、電力系統10と第1分電盤140Aとを接続する電力線であり、主幹電力線10LBは、第1分電盤140Aと第2分電盤140Bとを接続する電力線である。なお、本実施形態では、変換装置131は太陽電池110及び蓄電池120に接続されたハイブリッド型の電力変換装置について説明するが、太陽電池110及び蓄電池120のそれぞれに電力変換装置が接続されるように構成してもよい。太陽電池110及び蓄電池120のそれぞれに電力変換装置が接続される構成である場合、それぞれの電力変換装置は、本実施形態のハイブリッド型の電力変換装置と同様の制御が可能となっている。
 通信装置132は、変換装置131と接続されており、変換装置131への各種メッセージを受信するとともに、変換装置131からの各種メッセージを送信する。通信装置132と変換装置131との間の通信では、PCS130に適用されるプロトコル(例えば、独自プロトコル)が用いられる。
 実施形態では、通信装置132は、有線又は無線によってルータ200と接続される。通信装置132は、ルータ200を介して外部サーバ400と接続されており、分散電源の出力抑制を指示する出力抑制メッセージを外部サーバ400から受信する。第2に、通信装置132は、ルータ200を介してEMS160と接続されており、所定フォーマットを有する所定コマンドの通信をEMS160と行う。所定フォーマットは、特に限定されるものではなく、例えば、ECHONET方式、ECHONET Lite方式、SEP2.0方式又はKNX方式等を用いることができる。
 所定フォーマットは、例えば、ECHONET Lite方式に準拠するフォーマットについて説明する。このようなケースにおいて、所定コマンドは、例えば、要求コマンド、要求コマンドに対する応答である要求応答コマンド、又は情報通知コマンドに大別することができる。要求コマンドは、例えば、SETコマンド又はGETコマンドなどである。要求応答コマンドは、例えば、SETコマンドに対する応答であるSET応答コマンド、GETコマンドに対する応答であるGET応答コマンドなどである。情報通知コマンドは、例えば、INFコマンドなどである。
 SETコマンドは、PCS130に対する設定又は操作を指示するプロパティを含むコマンドである。SET応答コマンドは、SETコマンドを受信した旨を示すコマンドである。GETコマンドは、PCS130の状態を示すプロパティを含み、PCS130の状態を取得するためのコマンドである。GET応答コマンドは、PCS130の状態を示すプロパティを含み、GETコマンドで要求された情報を含むコマンドである。INFコマンドは、PCS130の状態を示すプロパティを含み、PCS130の状態を通知するためのコマンドである。
 分電盤140は、主幹電力線10Lに接続される。分電盤140は、第1分電盤140A及び第2分電盤140Bを有する。第1分電盤140Aは、主幹電力線10LAを介して電力系統10に接続されているとともに、変換装置131を介して太陽電池110及び蓄電池120と接続されている。また、第1分電盤140Aは、変換装置131から出力される電力及び電力系統10から供給される電力を制御して主幹電力線10LBに流す。主幹電力線10LBから流れてきた電力は、第2分電盤140Bによって、各機器(ここでは、負荷150及びEMS160)に分配される。
 負荷150は、電力線を介して供給される電力を消費する装置である。例えば、負荷150は、エアーコンディショナ、照明装置、冷蔵庫、テレビなどの装置を含む。負荷150は、単数の装置であってもよく、複数の装置を含んでもよい。
 EMS160は、施設100における電力を示す電力情報を管理する装置(EMS;Energy Management System)である。施設100における電力とは、施設100内を流れる電力、施設100が買電する電力、又は施設100から売電する電力等を指すものである。従って、例えば、EMS160は、少なくともPCS130を管理する。
 EMS160は、太陽電池110の発電量、蓄電池120の充電量及び蓄電池120の放電量を制御してもよい。EMS160は、分電盤140と一体として構成されていてもよい。EMS160は、ネットワーク300に接続された装置であり、EMS160が有する機能は、ネットワーク300を介したクラウドサービスによって提供されてもよい。
 実施形態では、EMS160は、ルータ200を介して各機器(例えば、PCS130の通信装置132及び負荷150)と接続されており、所定フォーマットを有する所定コマンドの通信を各機器と行う。
 EMS160は、ルータ200を介して表示装置170と接続されており、表示装置170と通信を行う。EMS160は、所定フォーマットを有する所定コマンドの通信を表示装置170と行ってもよい。上述したように、所定フォーマットは、例えば、ECHONET Lite方式に準拠するフォーマットである。
 表示装置170は、PCS130の状態を表示する。表示装置170は、施設100における電力を示す電力情報を表示してもよい。表示装置170は、例えば、スマートフォン、タブレット、テレビ、パーソナルコンピュータ又は専用端末である。表示装置170は、有線又は無線によってEMS160と接続されており、EMS160と通信を行う。表示装置170は、所定フォーマットを有する所定コマンドの通信をEMS160と行ってもよい。表示装置170は、各種情報の表示に必要なデータをEMS160から受信する。
 ネットワーク300は、EMS160及び外部サーバ400を接続する通信網である。ネットワーク300は、インターネットのような公衆通信回線であってもよい。ネットワーク300は、移動体通信網を含んでもよい。また、ネットワーク300は、専用通信回線であってもよいし、一般通信回線であってもよい。例えば、太陽電池110の出力が所定の出力以上である場合には、ネットワーク300として専用通信回線を用いることにより、より確実に出力抑制を実施することができる。
 外部サーバ400は、発電事業者、送配電事業者或いは小売事業者などの事業者によって管理されるサーバである。例えば、事業者は、分散電源の出力抑制を指定するものであり、例えば、発電事業者、送配電事業者、小売事業者或いは分散電源の群管理事業者などの事業者である。具体的には、外部サーバ400は、分散電源の出力抑制を指示する出力抑制メッセージを送信する。外部サーバ400は、電力系統10から施設100に対する潮流量の抑制を指示する潮流量抑制メッセージ(DR;Demand Response)を送信してもよい。
 出力抑制メッセージは、分散電源(ここでは、太陽電池110)の出力抑制のレベルを示す目標出力抑制レベルを含む。目標出力抑制レベルは、分散電源を制御するPCSの出力能力(例えば、定格出力)として認定を受けた出力(以下、設備認定出力[kW])に応じて定められる。分散電源は、蓄電池120及び燃料電池であってもよい。出力抑制メッセージは、分散電源の出力抑制のスケジュールを示すカレンダー情報を含んでいてもよい。カレンダー情報において、分散電源の出力抑制のスケジュールは30分単位で設定可能である。カレンダー情報は、1日分のスケジュールを含んでもよく、1月分のスケジュールを含んでもよく、1年分のスケジュールを含んでもよい。
 実施形態では、外部サーバ400は、EMS160を経由して、変換装置131を制御する電力制御メッセージをPCS130に送信する。電力制御メッセージは、変換装置131を制御するメッセージであればよく、太陽電池110の出力の増減を指示するメッセージであってもよく、蓄電池120の蓄電又は放電を指示するメッセージであってもよい。また、電力制御メッセージは、出力抑制メッセージ及び潮流量抑制メッセージであってもよいが、出力抑制メッセージ又は潮流量抑制メッセージは、EMS160を経由せずに外部サーバ400からPCS130に送信されてもよい。
 ユーザ端末500は、EMS160を経由して、変換装置131を制御する電力制御メッセージを送信する。ユーザ端末500は、例えば、スマートフォン、タブレット又は専用端末である。ユーザ端末500は、太陽電池110、蓄電池120又はPCS130を利用するユーザが所持する端末であってもよく、太陽電池110、蓄電池120又はPCS130のメンテナンスを担う業者が所持する端末であってもよい。電力制御メッセージは、変換装置131を制御するメッセージであればよく、太陽電池110の出力の増減を指示するメッセージであってもよく、蓄電池120の蓄電又は放電を指示するメッセージであってもよい。
 図1では、ユーザ端末500は、ネットワーク300及びルータ200を介してEMS160と接続されているが、実施形態はこれに限定されるものではない。ユーザ端末500は、施設100内に位置しており、ネットワーク300を経由せずにルータ200を介してEMS160と接続されていてもよい。例えば、ユーザ端末500は、上述した表示装置170であってもよい。なお、ユーザ端末500は、ネットワーク300を経由してルータ200を介してEMS160と接続してもよい。
 (適用シーン)
 上述したように、施設100に設けられる分散電源は、施設100から電力系統10への逆潮流が許可されている分散電源(例えば、太陽電池110)だけではなく、施設100から電力系統10への逆潮流が許可されていない分散電源(例えば、蓄電池120)を含み得る。このような背景下において、電力系統10の電力需給バランスによっては、施設100から電力系統10への逆潮流が許可されている分散電源だけではなく、施設100から電力系統10への逆潮流が許可されていない分散電源を逆潮流させることが可能な分散電源として利用したいというニーズが存在する。より具体的なニーズとしては、施設100が保有する分散電源を複数の施設100に亘ってまとめて利用する仮想発電所(Virtual Power Plant)として用いることが考えられる。このようなニーズを実現するためには、上述した管理システム1で用いる通信規格に様々な工夫が必要である。
 実施形態では、限られた条件のなかで、逆潮流が許可された状態で動作することを許可する許可メッセージを新たに定義する。ECHONET Lite方式では、例えば、上述したSETコマンドの1つを許可メッセージとして用いることができる。
 具体的には、EMS160は、逆潮流が許可されていない第1状態で動作する蓄電池120に対して、逆潮流が許可された第2状態で動作することを許可する許可メッセージを送信する。実施形態では、蓄電池120がPCS130によって制御されているため、蓄電池120へのメッセージの送信は、PCS130へのメッセージの送信と同義と考えてもよい。以下においては、蓄電池120へのメッセージは、PCS130に送信されるものとして説明を続ける。
 特に限定されるものではないが、例えば、EMS160は、電力系統10において電力需要が電力供給よりも多い場合に、許可メッセージをPCS130に送信してもよい。例えば、EMS160は、外部サーバ400から潮流量抑制メッセージを受信した場合に、許可メッセージをPCS130に送信してもよい。
 蓄電池120は、PCS130の制御によって、許可メッセージの受信後において、第1状態の動作を第2状態の動作に切り替える。許可メッセージに第2状態の動作へ切り換え可能な時間、開始時刻又は終了時刻を含んでいてもよく、許可メッセージにそのような時間又は時刻を含んでいる場合には切り換え可能な時間内又は時刻に第1状態の動作を第2状態の動作へ切り替える。
 蓄電池120は、許可メッセージの受信に応じて、第1状態の動作を第2状態の動作に切り替えてもよい。蓄電池120は、許可メッセージの受信後において、蓄電池120の放電を指示するメッセージの受信に応じて、第1状態の動作を第2状態の動作に切り替えてもよい。
 蓄電池120は、第2状態の動作から第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、PCS130の制御によって第2状態の動作を第1状態の動作に切り替える(すなわち、第2状態の動作を停止する)。すなわち、蓄電池120は、EMS160から特別な指示を受けなくても、第2状態の動作を自律的に停止する。
 このような前提下において、EMS160は、所定条件を指定するメッセージ(以下、条件指定メッセージ)をPCS130に送信してもよい。所定条件は、蓄電池120が第2状態の動作を継続する時間が所定時間に達することであってもよく、条件指定メッセージは、所定時間を示す情報を含む。所定条件は、蓄電池120の累積出力が所定出力に達することであってもよく、条件指定メッセージは、所定出力を示す情報を含む。「出力」とは、例えば、Wh又はkWhによって表される。
 特に限定されるものではないが、EMS160から条件指定メッセージを送信するタイミングは、許可メッセージと同じタイミング又は許可メッセージよりも前であってもよい。条件指定メッセージが許可メッセージと同じタイミングで送信される場合には、条件指定メッセージ及び許可メッセージは1つのメッセージであってもよい。例えば、許可メッセージが所定条件を指定する情報を含んでもよい。
 (通信装置)
 以下において、実施形態に係る通信装置について説明する。図2に示すように、通信装置132は、第1通信部132Aと、第2通信部132Bと、インタフェース132Cと、制御部132Dとを有する。通信装置132(すなわち、PCS130)は機器の一例である。
 第1通信部132Aは、出力抑制メッセージ又は潮流量抑制メッセージを外部サーバ400から受信する。実施形態では、第1通信部132Aは、EMS160を経由せずに、出力抑制メッセージ又は潮流量抑制メッセージを受信してもよく、EMS160を経由して、出力抑制メッセージ又は潮流量抑制メッセージを受信してもよい。
 第2通信部132Bは、所定フォーマットを有する所定コマンドの通信をEMS160と行う。上述したように、所定フォーマットは、例えば、ECHONET Lite方式に準拠するフォーマットである。ここで、通信装置132(第2通信部132B)とEMS160との通信で用いられる所定フォーマットは、通信装置132(第1通信部132A)と外部サーバ400との通信で用いられるフォーマットと異なってもよい。また、第2通信部132B(第2通信部132B)とEMS160との通信で用いられる所定フォーマットは、通信装置132(インタフェース132C)と変換装置131との通信で用いられるフォーマットと異なってもよい。
 インタフェース132Cは、変換装置131とのインタフェースである。インタフェース132Cは、有線のインタフェースであってもよく、無線のインタフェースであってもよい。通信装置132と変換装置131との間の通信では、PCS130に適用されるプロトコル(例えば、独自プロトコル)が用いられる。
 制御部132Dは、メモリ及びCPUによって構成されており、通信装置132を制御する。例えば、制御部132Dは、インタフェース132Cを用いて変換装置131を制御することによって、出力抑制メッセージに従って分散電源の出力を制御する。制御部132Dは、インタフェース132Cを用いて、変換装置131の状態(例えば、太陽電池110の発電量、蓄電池120の蓄電量、蓄電池120の放電量)を変換装置131から取得する。制御部132Dは、EMS160から受信するコマンドに基づいて変換装置131を制御するためのコマンドを生成し、インタフェース132Cを用いてコマンドを変換装置131に出力する。
 (管理装置)
 以下において、実施形態に係る管理装置について説明する。図3に示すように、EMS160は、通信部161と、制御部162とを有する。
 通信部161は、所定フォーマットを有する所定コマンドの通信を通信装置132及び表示装置170と行う。上述したように、所定フォーマットは、例えば、ECHONET Lite方式に準拠するフォーマットである。
 制御部162は、メモリ及びCPUによって構成されており、EMS160を制御する。制御部162は、太陽電池110の発電量、蓄電池120の充電量及び蓄電池120の放電量を制御してもよい。
 (メッセージフォーマット)
 以下において、実施形態に係るメッセージフォーマットについて説明する。ここでは、所定フォーマットがECHONET Lite方式に準拠するフォーマットであるケースを例示する。
 図4に示すように、SETコマンドM510は、ヘッダM511と、コードM512と、対象プロパティM513とを含む。実施形態では、SETコマンドM510は、電力制御メッセージに応じてPCS130の動作を指示するコマンドの一例であり、EMS160からPCS130に送信されるコマンドである。すなわち、SETコマンドM510は、電力制御メッセージの一例であると考えてもよい。
 ヘッダM511は、SETコマンドM510の宛先等を示す情報である。コードM512は、コードM512を含むメッセージの種別を示す情報である。ここでは、コードM512は、コードM512を含むメッセージがSETコマンドであることを示す情報である。対象プロパティM513は、EMS160がPCS130に指示する動作を示すプロパティを含む。
 図5に示すように、SET応答コマンドM520は、ヘッダM521と、コードM522と、応答内容M523とを含む。実施形態では、SET応答コマンドM520は、EMS160から受信されるコマンドに応じて、PCS130からEMS160に送信されるコマンドの一例である。
 ヘッダM521は、SET応答コマンドM520の宛先等を示す情報である。コードM522は、コードM522を含むメッセージの種別を示す情報である。ここでは、コードM522は、コードM522を含むメッセージがSET応答コマンドであることを示す情報である。応答内容M523は、SETコマンドを受信したことを示す情報を含む。このような情報は、SETコマンドに含まれるプロパティのコピーであってもよいし、肯定応答(Acknowledgement;ACK)であってもよい。またこのような情報は、これに限定されず、一部のデータだけを正しく受け取った旨を意図する応答(Selective ACK)であってもよい。
 図6に示すように、GETコマンドM610は、ヘッダM611と、コードM612と、対象プロパティM613とを含む。実施形態では、GETコマンドM610は、PCS130の状態を要求するコマンドの一例であり、EMS160からPCS130に送信されるコマンドの一例である。
 ヘッダM611は、GETコマンドM610の宛先等を示す情報である。コードM612は、コードM612を含むメッセージの種別を示す情報である。ここでは、コードM612は、コードM612を含むメッセージがGETコマンドであることを示す情報である。対象プロパティM613は、EMS160が知りたいプロパティを含む。
 図7に示すように、GET応答コマンドM620は、ヘッダM621と、コードM622と、応答内容M623とを含む。実施形態では、GET応答コマンドM620は、EMS160から受信されるコマンドに応じて、PCS130からEMS160に送信されるコマンドの一例である。
 ヘッダM621は、GET応答コマンドM620の宛先等を示す情報である。コードM622は、コードM622を含むメッセージの種別を示す情報である。ここでは、コードM622は、コードM622を含むメッセージがGET応答コマンドであることを示す情報である。応答内容M623は、GETコマンドによって要求されたプロパティを含む。
 図8に示すように、INFコマンドM710は、ヘッダM711と、コードM712と、対象プロパティM713とを含む。実施形態では、INFコマンドM710は、送信元を表示装置170に通知するコマンドの一例であり、EMS160から表示装置170に送信される送信元メッセージの一例である。
 ヘッダM711は、INFコマンドM710の宛先等を示す情報である。コードM712は、コードM712を含むメッセージの種別を示す情報である。ここでは、コードM712は、コードM712を含むメッセージがINFコマンドであることを示す情報である。対象プロパティM713は、EMS160が通知するプロパティを含む。
 (管理方法)
 以下において、実施形態に係る管理方法について説明する。ここでは、PCS130(通信装置132)とEMS160との通信で用いられる所定フォーマットがECHONET Lite方式に準拠するフォーマットであるケースを例示する。
 図9に示すように、ステップS10において、EMS160は、外部サーバ400から電力制御メッセージ(ここでは、潮流量抑制メッセージ)を受信する。但し、ステップS10は必須ではなく、このステップが無くてもよい。ステップS10は、蓄電池120から電力系統10への逆潮流を一時的に許可するとEMS160が判断するステップであってもよい。
 ステップS11において、EMS160は、SETコマンドをPCS130に送信する。SETコマンドは、上述した許可メッセージである。SETコマンドは、上述した条件指定メッセージを含んでもよい。EMS160は、上述したように、許可メッセージ及び条件指定メッセージを別々なSETコマンドで送信してもよい。
 ステップS12において、PCS130は、SETコマンドに対するSET応答コマンドをEMS160に送信する。
 ステップS13において、PCS130は、蓄電池120の動作を第1状態の動作から第2状態の動作に切り替える。
 ステップS14において、PCS130は、第2状態の動作から第1状態の動作への切り替えが指示されているか否かによらずに、所定条件が満たされたことを検出する。所定条件は、上述したように、蓄電池120が第2状態の動作を継続する時間が所定時間に達することであってもよく、蓄電池120の累積出力が所定出力に達することであってもよい。
 ステップS15において、PCS130は、蓄電池120の動作を第2状態の動作から第1状態の動作に切り替える。
 ステップS16Aにおいて、EMS160は、GETコマンドをPCS130に送信する。GETコマンドは、蓄電池120の動作状態をプロパティとして含む。例えば、動作状態は、蓄電池120が第1状態で動作しているか第2状態で動作しているかであってもよい。動作状態は、急速充電、充電、放電、待機、テストなど充放電の基準が異なる状態であってもよい。
 ステップS17Aにおいて、PCS130は、GETコマンドに対するGET応答コマンドをEMS160に送信する。GET応答コマンドは、蓄電池120の動作状態をプロパティとして含む。これによって、EMS160は、蓄電池120が第1状態で動作しているか否かの判断材料を得ることができる。
 図9に示す例では、EMS160は、GETコマンドの送信及びGET応答コマンドの受信によって、蓄電池120が第1状態で動作しているか否かの判断材料を得る。しかしながら、実施形態はこれに限定されるものではない。
 例えば、図10に示すように、ステップS16Bにおいて、PCS130は、蓄電池120の動作を第2状態の動作から第1状態の動作に切り替えた場合に、INFコマンドをEMS160に送信してもよい。INFコマンドは、蓄電池120の動作状態をプロパティとして含む。図10において、ステップS10~ステップS15までの処理は図9と同様である。
 図9及び図10では、PCS130は、許可メッセージの受信に応じて、蓄電池120の動作を第1状態の動作から第2状態の動作に切り替える。しかしながら、実施形態はこれに限定されるものではない。PCS130は、許可メッセージの受信後において、蓄電池120の放電を指示するメッセージの受信に応じて、蓄電池120の動作を第1状態の動作から第2状態の動作に切り替えてもよい。
 (作用及び効果)
 実施形態では、EMS160は、許可メッセージをPCS130に送信する。このような構成によれば、蓄電池120から電力系統10への逆潮流を一時的に許可することができる。
 実施形態では、第2状態の動作から第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、PCS130の制御によって蓄電池120が第2状態の動作を停止する。このような構成によれば、本来であれば逆潮流が許可されていない蓄電池120を利用するにあたって、逆潮流が許可された第2状態が不適切に継続する事態を低減することができる。例えば、第2状態の動作から第1状態の動作への切り替えが何らかの理由で行われなかった場合であっても、第2状態の動作を適切に停止することができる。
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する差異について主として説明する。
 実施形態では、蓄電池120は、第2状態の動作から第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、PCS130の制御によって第2状態の動作を停止する。これに対して、変更例1では、蓄電池120は、所定条件が満たされていなくても、第2状態の動作から第1状態の動作への切り替えが指示された場合に、PCS130の制御によって第2状態の動作を停止する。
 (管理方法)
 以下において、変更例1に係る管理方法について説明する。ここでは、PCS130(通信装置132)とEMS160との通信で用いられる所定フォーマットがECHONET Lite方式に準拠するフォーマットであるケースを例示する。
 図11に示すように、ステップS20において、EMS160は、外部サーバ400から電力制御メッセージ(ここでは、潮流量抑制メッセージ)を受信する。但し、ステップS20はオプションであり、ステップS20は、蓄電池120から電力系統10への逆潮流を一時的に許可するとEMS160が判断するステップであってもよい。
 ステップS21において、EMS160は、SETコマンドをPCS130に送信する。SETコマンドは、上述した許可メッセージである。SETコマンドは、上述した条件指定メッセージを含んでもよい。EMS160は、上述したように、許可メッセージ及び条件指定メッセージを別々なSETコマンドで送信してもよい。
 ステップS22において、PCS130は、SETコマンドに対するSET応答コマンドをEMS160に送信する。
 ステップS23において、PCS130は、蓄電池120の動作を第1状態の動作から第2状態の動作に切り替える。
 ステップS24において、EMS160は、SETコマンドをPCS130に送信する。SETコマンドは、第2状態の動作から第1状態の動作への切り替えを指示するメッセージである。
 ステップS25において、PCS130は、SETコマンドに対するSET応答コマンドをEMS160に送信する。
 ステップS26において、PCS130は、所定条件が満たされていなくても、蓄電池120の動作を第2状態の動作から第1状態の動作に切り替える。
 ステップS27Aにおいて、EMS160は、GETコマンドをPCS130に送信する。GETコマンドは、蓄電池120の動作状態をプロパティとして含む。例えば、動作状態は、蓄電池120が第1状態で動作しているか第2状態で動作しているかであってもよい。動作状態は、急速充電、充電、放電、待機、テストなど充放電の基準が異なる状態であってもよい。
 ステップS28Aにおいて、PCS130は、GETコマンドに対するGET応答コマンドをEMS160に送信する。GET応答コマンドは、蓄電池120の動作状態をプロパティとして含む。これによって、EMS160は、蓄電池120が第1状態で動作しているか否かの判断材料を得ることができる。
 図11に示す例では、EMS160は、GETコマンドの送信及びGET応答コマンドの受信によって、蓄電池120が第1状態で動作しているか否かの判断材料を得る。しかしながら、変更例1はこれに限定されるものではない。
 例えば、図12に示すように、ステップS27Bにおいて、PCS130は、蓄電池120の動作を第2状態の動作から第1状態の動作に切り替えた場合に、INFコマンドをEMS160に送信してもよい。INFコマンドは、蓄電池120の動作状態をプロパティとして含む。図12において、ステップS20~ステップS26までの処理は図11と同様である。
 変更例1では、第2状態の動作から第1状態の動作への切り替えの指示は、EMS160からPCS130に送信されるメッセージによって行われる。しかしながら、変更例1はこれに限定されるものではない。第2状態の動作から第1状態の動作への切り替えの指示は、ユーザ操作によって行われてもよい。また、第2状態の動作から第1状態の動作への切り替えの指示は、分散電源が自身から電力を出力しないような運転モードへの変更の指示でもよく、待機するような運転モードへの変更の指示であってもよい。例えば、蓄電池120は、蓄電池120への充電、待機などの運転モードの変更指示を、第2状態の動作から第1状態の動作への切り替えの指示と解釈してもよい。
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する差異について主として説明する。
 実施形態では、第2状態の動作を停止する所定条件を指定する条件指定メッセージがEMS160からPCS130に送信される。これに対して、変更例2では、許可メッセージは、蓄電池120が第2状態の動作を継続する時間と対応付けられる。EMS160は、許可メッセージと対応付けられた時間に応じて、許可メッセージの送信を繰り返す。従って、条件指定メッセージの送信が不要である。
 (管理方法)
 以下において、変更例2に係る管理方法について説明する。ここでは、PCS130(通信装置132)とEMS160との通信で用いられる所定フォーマットがECHONET Lite方式に準拠するフォーマットであるケースを例示する。
 図13に示すように、ステップS30において、EMS160は、外部サーバ400から電力制御メッセージ(ここでは、潮流量抑制メッセージ)を受信する。但し、ステップS30はオプションであり、ステップS30は、蓄電池120から電力系統10への逆潮流を一時的に許可するとEMS160が判断するステップであってもよい。
 ステップS31において、EMS160は、SETコマンドをPCS130に送信する。SETコマンドは、上述した許可メッセージである。
 ステップS32において、PCS130は、SETコマンドに対するSET応答コマンドをEMS160に送信する。
 ステップS33において、PCS130は、蓄電池120の動作を第1状態の動作から第2状態の動作に切り替える。
 ステップS34において、EMS160は、許可メッセージと対応付けられた時間が満了する前において、SETコマンドをPCS130に送信する。SETコマンドは、上述した許可メッセージである。
 ステップS35において、PCS130は、SETコマンドに対するSET応答コマンドをEMS160に送信する。
 すなわち、EMS160は、第2状態の動作を継続したい場合には、許可メッセージと対応付けられた時間が満了する前において、許可メッセージ(SETコマンド)の送信を繰り返す。一方で、第2状態の動作を停止したい場合には、許可メッセージ(SETコマンド)の送信を停止する。
 ステップS36において、PCS130は、許可メッセージと対応付けられた時間の満了に応じて、蓄電池120の動作を第2状態の動作から第1状態の動作に切り替える。
 ステップS37Aにおいて、EMS160は、GETコマンドをPCS130に送信する。GETコマンドは、蓄電池120の動作状態をプロパティとして含む。例えば、動作状態は、蓄電池120が第1状態で動作しているか第2状態で動作しているかであってもよい。動作状態は、急速充電、充電、放電、待機、テストなど充放電の基準が異なる状態であってもよい。
 ステップS38Aにおいて、PCS130は、GETコマンドに対するGET応答コマンドをEMS160に送信する。GET応答コマンドは、蓄電池120の動作状態をプロパティとして含む。これによって、EMS160は、蓄電池120が第1状態で動作しているか否かの判断材料を得ることができる。
 図13に示す例では、EMS160は、GETコマンドの送信及びGET応答コマンドの受信によって、蓄電池120が第1状態で動作しているか否かの判断材料を得る。しかしながら、変更例2はこれに限定されるものではない。
 例えば、図14に示すように、ステップS37Bにおいて、PCS130は、蓄電池120の動作を第2状態の動作から第1状態の動作に切り替えた場合に、INFコマンドをEMS160に送信してもよい。INFコマンドは、蓄電池120の動作状態をプロパティとして含む。図14において、ステップS30~ステップS36までの処理は図13と同様である。
 変更例2において、PCS130及びEMS160は、許可メッセージと対応付けられた時間をカウントするタイマを有する。例えば、PCS130は、SETコマンド(許可メッセージ)の受信に応じてタイマを起動し、EMS160は、SETコマンド(許可メッセージ)の送信に応じてタイマを起動する。但し、変更例2はこれに限定されるものではない。PCS130は、第2状態の動作への切り替えに応じてタイマを起動してもよい。EMS160は、SET応答コマンドの受信に応じてタイマを起動してもよい。
 上述したように、変更例2において、所定条件は、n番目の許可メッセージと対応付けられた時間が満了するまでにn+1番目の許可メッセージを受信しないことであると考えてもよい。
 [変更例3]
 以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する差異について主として説明する。
 変更例3では、EMS160からPCS130への許可メッセージの送信に先立って、PCS130からEMS160に対して、第1状態と第2状態との切り替えが許容されるか否かを示すメッセージ(以下、切替能力メッセージ)を送信する。ECHONET Lite方式では、例えば、切替能力メッセージとしてインスタンスリストを用いることができる。第1状態と第2状態との切り替えが許容されるか否かは、蓄電池120の能力及び蓄電池120の契約のいずれか1つによって定められる。
 蓄電池120の能力は、逆潮流が許可されるために必要な電圧上昇抑制機能(AVR;Automatic Voltage Regulator)を有するか否かを示す情報である。EMS160は、AVR機能を有する蓄電池120を対象として許可メッセージを送信する。一方で、EMS160は、AVR機能を有しておらず、逆電力防止機能(RPR;Reverse Power Relay)のみを有する蓄電池120を対象として許可メッセージを送信しない。
 蓄電池120の契約は、発電事業者、送配電事業者或いは小売事業者などの事業者と蓄電池120のユーザとの間の契約である。EMS160は、逆潮流の一時的な許可を許容する契約を有する蓄電池120を対象として許可メッセージを送信する。EMS160は、逆潮流の一時的な許可を許容する契約を有していない蓄電池120を対象として許可メッセージを送信しない。
 (管理方法)
 以下において、変更例3に係る管理方法について説明する。ここでは、PCS130(通信装置132)とEMS160との通信で用いられる所定フォーマットがECHONET Lite方式に準拠するフォーマットであるケースを例示する。
 図15に示すように、ステップS40において、EMS160は、インスタンスリストをPCS130から受信する。インスタンスリストは、上述した切替能力メッセージを含む。特に限定されるものではないが、PCS130がインスタンスリストを送信するタイミングは、PCS130がEMS160と接続されたタイミングであってもよく、PCS130の電源が投入されたタイミングであってもよく、蓄電池120の電源が投入されたタイミングであってもよい。
 図15では、SETコマンド(許可メッセージ)の送信以降の処理として図9に示す処理を例示しているが、SETコマンド(許可メッセージ)の送信以降の処理は、図10~図14に示す処理であってもよい。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では、通信装置132とEMS160との通信で用いられる所定フォーマットがECHONET Lite方式に準拠するフォーマットであるケースについて説明した。しかしながら、実施形態はこれに限定されるものではない。所定フォーマットは、施設100で用いるフォーマットとして規格化されたフォーマットであればよい。
 実施形態では、太陽電池110及び蓄電池120の出力を制御するPCS130(マルチPCS)を例示した。しかしながら、実施形態はこれに限定されるものではない。PCS130は、太陽電池110を制御するPCSであってもよく、蓄電池120の出力を制御するPCSであってもよい。
 実施形態では、表示装置170は、例えば、スマートフォン、タブレット、テレビ又は専用端末である。しかしながら、実施形態はこれに限定されるものではない。表示装置170は、変換装置131を操作するリモートコントローラであってもよい。リモートコントローラは、PCS130の一部であると考えてもよい。
 実施形態では、第1通信部132A及び第2通信部132Bが別の構成である場合について説明したが、第1通信部132A及び第2通信部132Bが一体の構成であってもよい。すなわち、第1通信部132Aが第2通信部132Bの役割を兼ねてもよい。
 実施形態では、施設100から電力系統10への逆潮流が許可されていない状態で動作する分散電源として蓄電池120を例示した。しかしながら、実施形態はこれに限定されるものではない。逆潮流が許可されていない状態で動作する分散電源は、太陽電池110及び燃料電池などのように、蓄電池120以外の分散電源であってもよい。
 太陽電池110、燃料電池又は蓄電池120などの分散電源が発電した電力を逆潮流していたときに、逆潮流量を抑制する指令を受けて逆潮流量を低減している場合に、上述した実施形態、変更例1、変更例2及び変更例3のいずれかを適用してもよい。具体的には、出力抑制メッセージを実行することにより逆潮流が許可されていない第1状態で動作する分散電源に対して、一時的に逆潮流を許可する第2状態で動作させてもよい。
 分散電源が太陽電池110である場合には、逆潮流が許可されていない第1状態として出力抑制状態を想定することができ、電力系統10の状況に応じて出力抑制状態を緩和して逆潮流を許可する第2状態へ一部の施設100を変更させることなどが想定される。この場合、施設100の出力抑制状態は維持しつつ、例外的に逆潮流を可能とさせるように第2状態を設定することが可能である。第1状態から第2状態への変更は、上述の通り、許可メッセージ又は条件設定メッセージ等を用いることができる。
 また、太陽電池110が出力抑制状態である場合に、原則として逆潮流が許可されていない第1状態の蓄電池120を第2状態へ切り替えてもよい。
 実施形態では、EMS160からPCS130に対して、各種メッセージが送信される。しかしながら、実施形態はこれに限定されるものではない。EMS160から蓄電池120に対して、各種メッセージが直接的に送信されてもよい。
 実施形態では特に触れていないが、第2状態は、逆潮流が許可された状態に過ぎないため、第2状態において逆潮流が必ず行われるとは限らない。例えば、蓄電池120の蓄電残量が閾値よりも少ない場合には、第2状態であっても蓄電池120の放電が行われなくてもよい。
 なお、日本国特許出願第2016-127625号(2016年6月28日出願)の全内容が参照により本願明細書に組み込まれている。

Claims (13)

  1.  施設から電力系統への逆潮流が許可されていない第1状態で動作する分散電源に対して、前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを管理装置から送信するステップAと、
     前記許可メッセージを受信した後において、前記分散電源が前記第1状態の動作を前記第2状態の動作に切り替えるステップBと、
     前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記分散電源が前記第2状態の動作を前記第1状態の動作に切り替えるステップCとを備える、管理方法。
  2.  前記管理装置から前記分散電源に対して、前記所定条件を指定するメッセージを送信するステップDを備える、請求項1に記載の管理方法。
  3.  前記所定条件は、前記分散電源が前記第2状態の動作を継続する時間が所定時間に達することである、請求項1又は請求項2に記載の管理方法。
  4.  前記所定条件は、前記分散電源の累積出力が所定出力に達することである、請求項1乃至請求項3のいずれかに記載の管理方法。
  5.  前記許可メッセージは、前記分散電源が前記第2状態の動作を継続する時間と対応付けられており、
     前記ステップAは、前記許可メッセージと対応付けられた時間に応じて、前記許可メッセージの送信を繰り返すステップを含む、請求項1乃至請求項4のいずれかに記載の管理方法。
  6.  前記ステップCは、前記第2状態の動作から前記第1状態の動作への切り替えが指示された場合に、前記所定条件が満たされていなくても、前記分散電源が前記第2状態の動作を前記第1状態の動作に切り替えるステップを含む、請求項1乃至請求項5のいずれかに記載の管理方法。
  7.  前記第2状態の動作から前記第1状態の動作への切り替えの指示は、前記管理装置から前記分散電源に送信されるメッセージ又はユーザ操作によって行われる、請求項6に記載の管理方法。
  8.  前記分散電源から前記管理装置に対して、前記第1状態と前記第2状態との切り替えが許容されるか否かを示すメッセージを送信するステップEを備える、請求項1乃至請求項7のいずれかに記載の管理方法。
  9.  前記第1状態と前記第2状態との切り替えが許容されるか否かは、前記分散電源の能力及び前記分散電源の契約のいずれか1つによって定められる、請求項8に記載の管理方法。
  10.  前記分散電源は、蓄電池装置であり、
     前記ステップBは、前記蓄電池装置の放電を指示するメッセージの受信に応じて、前記分散電源が前記第1状態の動作を前記第2状態の動作に切り替えるステップを含む、請求項1乃至請求項9のいずれかに記載の管理方法。
  11.  施設から電力系統への逆潮流が許可されていない第1状態で動作する分散電源に対して、前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを送信する送信部を備え、
     前記分散電源は、前記許可メッセージを受信した後において、前記第1状態の動作を前記第2状態の動作に切り替えるように構成されており、
     前記分散電源は、前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記第2状態の動作を前記第1状態の動作に切り替えるように構成されている、管理装置。
  12.  施設から電力系統への逆潮流が許可されていない第1状態で動作する分散電源であって、
     前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを受信する受信部と、
     前記許可メッセージを受信した後において、前記第1状態の動作を前記第2状態の動作に切り替える制御部とを備え、
     前記制御部は、前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記第2状態の動作を前記第1状態の動作に切り替える、分散電源。
  13.  分散電源と管理装置とを備える管理システムであって、
     前記管理装置は、施設から電力系統への逆潮流が許可されていない第1状態で動作する前記分散電源に対して、前記逆潮流が許可された第2状態で動作することを許可する許可メッセージを送信し、
     前記分散電源は、前記許可メッセージを受信した後において、前記第1状態の動作を前記第2状態の動作に切り替え、
     前記分散電源は、前記第2状態の動作から前記第1状態の動作への切り替えが指示されなくても、所定条件が満たされた場合に、前記第2状態の動作を前記第1状態の動作に切り替える、管理システム。
PCT/JP2017/020765 2016-06-28 2017-06-05 管理方法、管理装置、分散電源及び管理システム WO2018003408A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17819773.7A EP3477815A4 (en) 2016-06-28 2017-06-05 ADMINISTRATIVE PROCEDURE, ADMINISTRATIVE DEVICE, DISTRIBUTED POWER SUPPLY AND MANAGEMENT SYSTEM
US16/313,463 US10840709B2 (en) 2016-06-28 2017-06-05 Management method, management device, distributed power supply, and management system
CN201780040154.5A CN109417306A (zh) 2016-06-28 2017-06-05 管理方法、管理设备、分布式电源和管理系统
JP2018524986A JP6794445B2 (ja) 2016-06-28 2017-06-05 管理方法、管理装置、分散電源及び管理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-127625 2016-06-28
JP2016127625 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003408A1 true WO2018003408A1 (ja) 2018-01-04

Family

ID=60786999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020765 WO2018003408A1 (ja) 2016-06-28 2017-06-05 管理方法、管理装置、分散電源及び管理システム

Country Status (5)

Country Link
US (1) US10840709B2 (ja)
EP (1) EP3477815A4 (ja)
JP (1) JP6794445B2 (ja)
CN (1) CN109417306A (ja)
WO (1) WO2018003408A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158591A1 (ja) * 2019-01-29 2020-08-06 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2020167798A (ja) * 2019-03-28 2020-10-08 株式会社Ihi 電力需給管理システム、電力需給管理装置、及び電力需給管理方法
JP2022050576A (ja) * 2019-01-29 2022-03-30 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2022191440A (ja) * 2022-01-11 2022-12-27 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713701B (zh) * 2019-02-01 2022-08-30 国网江苏省电力有限公司 叠加控制的电池储能网荷互动方法、终端、系统及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175795A (ja) * 2011-02-21 2012-09-10 Panasonic Corp 電力制御システム
JP2013188087A (ja) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd 分散型電源システム
JP2014014223A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 電力制御システム、サーバ装置、電力需要設備用の制御装置及び電力制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270315B2 (ja) 2008-11-27 2013-08-21 株式会社日立製作所 自動検針方法、自動検針システム、自動検針装置、およびスマートメータ
JP2010226942A (ja) * 2009-02-26 2010-10-07 Sanyo Electric Co Ltd 系統連系装置、系統連系システム及び配電システム
US8401709B2 (en) * 2009-11-03 2013-03-19 Spirae, Inc. Dynamic distributed power grid control system
JP2015219202A (ja) * 2014-05-21 2015-12-07 パナソニックIpマネジメント株式会社 電力量計、電力量計測システム、および電力量計測方法
EP3243195A4 (en) * 2015-01-06 2018-08-22 Cmoo Systems Itd. A method and apparatus for power extraction in a pre-existing ac wiring infrastructure
KR102675137B1 (ko) * 2016-05-06 2024-06-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 자원 할당 방법, 장비 및 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175795A (ja) * 2011-02-21 2012-09-10 Panasonic Corp 電力制御システム
JP2013188087A (ja) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd 分散型電源システム
JP2014014223A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 電力制御システム、サーバ装置、電力需要設備用の制御装置及び電力制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477815A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158591A1 (ja) * 2019-01-29 2020-08-06 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2020124022A (ja) * 2019-01-29 2020-08-13 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2022050576A (ja) * 2019-01-29 2022-03-30 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2020167798A (ja) * 2019-03-28 2020-10-08 株式会社Ihi 電力需給管理システム、電力需給管理装置、及び電力需給管理方法
JP7151591B2 (ja) 2019-03-28 2022-10-12 株式会社Ihi 電力需給管理システム、電力需給管理装置、及び電力需給管理方法
JP2022191440A (ja) * 2022-01-11 2022-12-27 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP7316433B2 (ja) 2022-01-11 2023-07-27 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法

Also Published As

Publication number Publication date
US20190157877A1 (en) 2019-05-23
JP6794445B2 (ja) 2020-12-02
US10840709B2 (en) 2020-11-17
EP3477815A1 (en) 2019-05-01
JPWO2018003408A1 (ja) 2019-04-25
EP3477815A4 (en) 2019-12-18
CN109417306A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2018003408A1 (ja) 管理方法、管理装置、分散電源及び管理システム
JP6715448B2 (ja) 出力制御装置、電力管理装置及び電力管理方法
US11056911B2 (en) Management system, management method, equipment, and management device
JP6802833B2 (ja) 管理システム、管理方法、操作端末及び制御装置
JP6762360B2 (ja) 管理システム、管理方法、電力変換装置及び管理装置
JP6582091B2 (ja) 電力変換装置、電力管理装置及び電力管理方法
JP7014870B2 (ja) 電力変換装置及びその制御方法
JP6328216B2 (ja) 管理システム、管理方法、機器及び管理装置
JP6640989B2 (ja) 管理システム、管理方法、電力変換装置及び管理装置
JP6825866B2 (ja) 電力管理方法、電力管理装置、燃料電池装置及び電力管理システム
JP7153686B2 (ja) 表示装置、管理装置、及び制御方法
JP2018170882A (ja) 電源制御方法、分散電源及び制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017819773

Country of ref document: EP

Effective date: 20190128