WO2018003154A1 - Optical compensation film having wide viewing angle and high contrast - Google Patents

Optical compensation film having wide viewing angle and high contrast Download PDF

Info

Publication number
WO2018003154A1
WO2018003154A1 PCT/JP2017/002021 JP2017002021W WO2018003154A1 WO 2018003154 A1 WO2018003154 A1 WO 2018003154A1 JP 2017002021 W JP2017002021 W JP 2017002021W WO 2018003154 A1 WO2018003154 A1 WO 2018003154A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
formula
rth
equation
optical compensation
Prior art date
Application number
PCT/JP2017/002021
Other languages
French (fr)
Japanese (ja)
Inventor
真典 松本
哲央 野口
藤掛 英夫
石鍋 隆宏
Original Assignee
デンカ株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社, 国立大学法人東北大学 filed Critical デンカ株式会社
Priority to JP2018524873A priority Critical patent/JP6711914B2/en
Priority to CN201780040736.3A priority patent/CN109416427B/en
Priority to KR1020197002543A priority patent/KR102576933B1/en
Publication of WO2018003154A1 publication Critical patent/WO2018003154A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • C08F222/08Maleic anhydride with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to an optical compensation film for providing a liquid crystal display device having excellent viewing angle characteristics and a high contrast ratio even in an oblique direction.
  • Transparent resins are used in various applications such as home appliance parts, food containers, and miscellaneous goods.
  • the liquid crystal display device is frequently used for optical parts such as a thin liquid crystal display element and an electroluminescence element instead of the cathode ray tube type television monitor.
  • a stretched film obtained by uniaxially or biaxially stretching a resin film is widely used as an optical compensation film for liquid crystal displays.
  • As a typical optical compensation film there is a retardation film, and a ⁇ / 2 plate for converting the vibration direction of polarized light and a ⁇ / 4 plate for converting circularly polarized light into linearly polarized light or linearly polarized light into circularly polarized light are widely used. It has been.
  • Patent Document 1 discloses a liquid crystal display device including a laminate of a transparent stretched film having negative orientation birefringence and a transparent stretched film having positive orientation birefringence. Has been.
  • a stretched film exhibiting negative orientation birefringence and a stretched film exhibiting positive orientation birefringence are laminated so that the slow axes of the stretched films are parallel to each other.
  • a method for widening the viewing angle of a liquid crystal display device by using an optical compensation film having a phase difference (Re) of 60 to 300 nm and an alignment parameter (Nz) within a range of 0.5 ⁇ 0.1 is disclosed.
  • the stretched film showing negative intrinsic birefringence is a resin composition of a copolymer composed of an ⁇ -olefin and an N-phenyl-substituted maleimide and an acrylonitrile-styrene copolymer.
  • thermoplastic resins exhibiting positive orientation birefringence include polycarbonate and amorphous cyclic polyolefin, which are excellent in heat resistance, transparency, film strength, and retardation development. It is used.
  • thermoplastic resin exhibiting negative orientation birefringence there are very few examples of practical use because heat resistance, transparency, film strength, and retardation development are inferior.
  • a plurality of stretched films exhibiting positive orientation birefringence are bonded together at an appropriate angle. Therefore, the optical compensation design is complicated and expensive, and the optical compensation performance is insufficient.
  • Patent Document 3 and Patent Document 4 include a thermoplastic resin copolymer excellent in transparency, heat resistance, film moldability, film strength, and retardation development, and negative orientation birefringence.
  • the retardation film described in Patent Document 3 and Patent Document 4 uses a cyclic polyolefin as a thermoplastic resin exhibiting positive orientation birefringence.
  • Patent Document 5 proposes a so-called reverse wavelength dispersion film in which the in-plane retardation increases as the wavelength increases.
  • Cited Document 3 and Cited Document 4 are insufficient to have high contrast characteristics. Further, in Patent Document 5, it is expected that a high contrast characteristic is exhibited by a film with reverse wavelength dispersion, and a high contrast from the front is obtained, but the contrast characteristic from an oblique direction is insufficient.
  • An object of the present invention is to provide an optical compensation film for providing a liquid crystal display device having excellent viewing angle characteristics and having a high contrast ratio even in an oblique direction.
  • the present inventors have studied to obtain a high contrast ratio even in an oblique direction with excellent viewing angle characteristics, and as a result, the in-plane phase difference Re and thickness are obtained.
  • Positive birefringent film A having directional retardation Rth within a specific range, and negative birefringent film having in-plane retardation Re and thickness direction retardation Rth corresponding to directional retardation Rth within a specific range It was found that by combining B, an optical compensation film for providing a liquid crystal display device having a high contrast ratio even in an oblique direction can be provided, and the present invention has been completed.
  • the optical compensation film obtained by the method of the present invention can be used for a liquid crystal display device.
  • the gist of the present invention is as follows. (1) A film A satisfying (Expression 1) to (Expression 3) and a film B satisfying (Expression 4) and (Expression 5) are laminated, and the film B is an aromatic vinyl monomer unit, It is a copolymer comprising an unsaturated dicarboxylic acid anhydride monomer unit and a (meth) acrylic acid ester monomer unit, and Re (450), Re (550) and Re (650) have a wavelength of 450 nm.
  • Rth indicates a thickness direction retardation at a wavelength of 550 nm, a refractive index in the slow axis direction of the film is nx, a refractive index in the fast axis direction of the film is ny, and the film
  • the in-plane retardation Re is a value defined by (Expression 6)
  • the thickness direction retardation Rth is a value defined by (Expression 7). Compensation film.
  • Nz (nx ⁇ nz) / (nx ⁇ ny) (3)
  • nx ny ⁇ nz (4)
  • ny ⁇ nz nx (5)
  • the film A satisfies (Expression 12), (Expression 13), and (Expression 14), and the film B satisfies (Expression 15) and (Expression 16).
  • Optical compensation film
  • an optical compensation film for providing a liquid crystal display device having excellent viewing angle characteristics and a high contrast ratio even in an oblique direction can be provided by a simple method.
  • an optical compensation film having a high contrast ratio even in an oblique viewing angle is possible. That is, a positive birefringent film A having a reverse wavelength dispersion characteristic in which the in-plane retardation becomes smaller as the wavelength is shorter, and has an in-plane retardation Re and a thickness direction retardation Rth within a specific range, By combining the negative birefringent film B having the corresponding in-plane retardation Re and thickness direction retardation Rth within a specific range, a high contrast ratio can be realized even in an oblique viewing angle.
  • the film A used for the optical compensation film of the present invention is characterized by satisfying the following (formula 1) to (formula 3).
  • (Formula 1) Re (450) ⁇ Re (550) ⁇ Re (650) (Formula 2) 25 nm ⁇ Re (550) ⁇ 280 nm (Formula 3) 12 nm ⁇ Rth (550) ⁇ 95 nm
  • Re (450), Re (550), and Re (650) indicate in-plane retardation at wavelengths of 450 nm, 550 nm, and 650 nm
  • Rth (550) indicates a thickness direction retardation at a wavelength of 550 nm.
  • the slow axis of the film that is, the refractive index in the axial direction where the refractive index in the film plane is maximum
  • the fast axis of the film that is, the refractive index in the axial direction perpendicular to the slow axis
  • Film A has the characteristics of Re (450) ⁇ Re (550) ⁇ Re (650), 25 nm ⁇ Re (550) ⁇ 280 nm, and 12 nm ⁇ Rth (550) ⁇ 95 nm.
  • An optical compensation film having a high contrast ratio at a viewing angle can be produced.
  • the Nz coefficient of the film A preferably satisfies the following (Equation 8) in producing an optical compensation film having a high contrast ratio at an oblique viewing angle.
  • (Equation 8) 0.6 ⁇ Nz ⁇ 1.2
  • the Nz coefficient is a value defined by (Equation 9).
  • (Formula 9) Nz (nx ⁇ nz) / (nx ⁇ ny)
  • thermoplastic resin that can be used for the film A is not particularly limited as long as it satisfies (Formula 1) to (Formula 3).
  • thermoplastic resin described in JP2012-150477A there are polycarbonate resins such as a copolymer of 9-bis [4- (2-hydroxyethoxy) phenyl] fluorene and isosorbide.
  • the resin that can be used for the film A may be used alone or in combination of two or more.
  • the production method of the film A is not particularly limited.
  • the unstretched film is uniaxially formed by a roll stretching method, a tenter stretching method, or the like. Or it can produce by extending
  • the film B used for the optical compensation film of the present invention satisfies the following (formula 4) to (formula 5).
  • (Formula 4) 0 nm ⁇ Re (550) ⁇ 140 nm
  • (Formula 5) ⁇ 140 nm ⁇ Rth (550) ⁇ 0 nm
  • an optical compensation film having a high contrast ratio at an oblique viewing angle can be produced.
  • thermoplastic resin that can be used for the film B is a copolymer comprising an aromatic vinyl monomer unit, an unsaturated dicarboxylic anhydride monomer unit, and a (meth) acrylic acid ester monomer unit.
  • Aromatic vinyl monomer units include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, ethyl styrene, p-tert-butyl styrene, ⁇ -methyl styrene, ⁇ Examples thereof include units derived from styrene monomers such as -methyl-p-methylstyrene. Of these, styrene units are preferred. These aromatic vinyl monomer units may be one type or a combination of two or more types.
  • Examples of the unsaturated dicarboxylic acid anhydride monomer unit include units derived from respective anhydride monomers such as maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, and aconitic acid anhydride. Among these, maleic anhydride units are preferable.
  • the unsaturated dicarboxylic acid anhydride monomer unit may be one type or a combination of two or more types.
  • Examples of the (meth) acrylic acid ester monomer unit include methyl methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, and isobornyl methacrylate, and Examples include units derived from acrylate monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, and decyl acrylate. Among these, a methyl methacrylate unit is preferable.
  • These (meth) acrylic acid ester monomer units may be one kind or a combination of two or more kinds.
  • the copolymer used for the film B is a vinyl monomer unit other than an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit. It may be included within a range not inhibiting the effect, and is preferably 5% by mass or less.
  • vinyl monomer units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N-ethylmaleimide, N- Derived from various monomers such as N-alkylmaleimide monomers such as butylmaleimide and N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide The unit to do is mentioned.
  • Other vinyl monomer units may contain two or more kinds.
  • the preferred content of the aromatic vinyl monomer unit is 50 to 90% by mass, and more preferably 60 to 85% by mass. If the aromatic vinyl monomer unit is 50% by mass or more, the retardation can be improved, so that the thickness of the film can be reduced, and when performing film forming by melt extrusion, an optical compensation film is used. A suitable and beautiful film can be obtained, and if it is 60% by mass or more, the retardation can be further improved to reduce the thickness of the film, and when performing film forming processing by melt extrusion It is particularly preferable because a more beautiful film suitable for an optical compensation film can be obtained. If the aromatic vinyl monomer unit is 90% by mass or less, heat resistance or film strength is improved, and if the aromatic vinyl monomer unit is 85% by mass or less, heat resistance or film strength is further increased. Since it improves, it is especially preferable.
  • the content of unsaturated dicarboxylic acid anhydride monomer units is preferably 5 to 25% by mass, more preferably 8 to 20% by mass. If the unsaturated dicarboxylic acid anhydride monomer unit is 5% by mass or more, the heat resistance is improved, and if it is 8% by mass or more, the heat resistance is further improved, which is particularly preferable. If the unsaturated dicarboxylic acid anhydride monomer unit is 25% by mass or less, the film strength is improved, and a beautiful film suitable for an optical compensation film can be obtained when film forming by melt extrusion is performed. The amount of 20% by mass or less is particularly preferable because the film strength is further improved and a more beautiful film suitable for an optical compensation film can be obtained when film forming by melt extrusion is performed.
  • the preferred content of the (meth) acrylic acid ester monomer unit is 5 to 45% by mass, more preferably 7 to 32% by mass. If the (meth) acrylic acid ester monomer unit is 5% by mass or more, transparency and film strength are improved, and if it is 7% by mass or more, transparency and film strength are further improved, which is particularly preferable. . If the (meth) acrylic acid ester monomer unit is 45% by mass or less, the retardation development property is improved, so that the thickness of the film can be reduced and the film forming process by melt extrusion is optical. A beautiful film suitable for a compensation film can be obtained, and is preferably 32% by mass or less. Since the retardation development is further improved, the thickness of the film can be further reduced, and the film is formed by melt extrusion. In particular, a more beautiful film suitable for an optical compensation film can be obtained, which is particularly preferable.
  • the copolymer used for the film B preferably has a weight average molecular weight (Mw) of 1 to 250,000.
  • a weight average molecular weight (Mw) of 120,000 or more is preferable because the film strength is improved.
  • a weight average molecular weight (Mw) of 250,000 or less is preferable because a beautiful film suitable for an optical compensation film can be obtained when film forming by melt extrusion is performed.
  • the weight average molecular weight (Mw) is a value in terms of polystyrene measured by gel permeation chromatography (GPC), and is a value measured under the measurement conditions described below.
  • the production method of the film B is not particularly limited.
  • the unstretched film is uniaxially formed by a roll stretching method, a tenter stretching method, or the like. Or it can produce by extending
  • the manufacturing method of the copolymer used for the film B is demonstrated.
  • the polymerization mode is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but solution polymerization is more preferable.
  • the solvent used in the solution polymerization is preferably non-polymerizable from the viewpoint that a by-product is difficult to produce and that there are few adverse effects.
  • the type of the solvent is not particularly limited.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, ethers such as tetrahydrofuran, 1,4-dioxane, toluene, ethylbenzene, xylene, chlorobenzene Aromatic hydrocarbons, etc. are mentioned, but methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of the solubility of the monomer and copolymer and the ease of solvent recovery.
  • the amount of the solvent added is preferably 10 to 100 parts by mass, and more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the copolymer to be obtained. If it is 10 parts by mass or more, it is suitable for controlling the reaction rate and the polymerization solution viscosity, and if it is 100 parts by mass or less, it is suitable for obtaining a preferable weight average molecular weight (Mw).
  • the polymerization process may be any of a batch polymerization method, a semi-batch polymerization method, and a continuous polymerization method, but the batch polymerization method is suitable for obtaining a desired molecular weight range and transparency.
  • the polymerization method is not particularly limited, but is preferably a radical polymerization method from the viewpoint that it can be produced with high productivity by a simple process.
  • the polymerization initiator is not particularly limited.
  • Known organic compounds such as isopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyacetate, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate
  • Known azo compounds such as peroxides, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, and the like can be used. Two or more of these
  • the aromatic vinyl monomer and unsaturated dicarboxylic acid anhydride monomer have strong alternating copolymerization, it corresponds to the polymerization rate of the aromatic vinyl monomer and the (meth) acrylate monomer.
  • a method in which the unsaturated dicarboxylic acid anhydride monomer is continuously added and the addition flow rate is appropriately adjusted in accordance with the polymerization rate is suitable. It is preferable to control the polymerization rate while appropriately adjusting the polymerization temperature, the polymerization time, and the addition amount of the polymerization initiator because the composition distribution of the copolymer can be reduced more precisely.
  • the chain transfer agent is not particularly limited.
  • a known chain transfer agent such as n-dodecyl mercaptan, t-dodecyl mercaptan or 2,4-diphenyl-4-methyl-1-pentene is used. Can do.
  • the polymerization solution is optionally provided with a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound,
  • a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound
  • Additives such as lubricants, plasticizers, colorants, antistatic agents and mineral oils may be added. The addition amount is preferably less than 0.2 parts by mass with respect to 100 parts by mass of all monomer units. These additives may be used alone or in combination of two or more.
  • a well-known devolatilization technique can be used. For example, a method of continuously feeding the polymerization liquid to a twin-screw devolatilizing extruder using a gear pump and devolatilizing a polymerization solvent, an unreacted monomer and the like can be mentioned.
  • the devolatilizing component including the polymerization solvent, unreacted monomer, etc. is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in a distillation tower. .
  • the film B used for the optical compensation film of the present invention is laminated with the film A to perform optical compensation, it is preferably a positive C plate or a negative A plate in designing optical compensation.
  • the positive C plate is a film satisfying the following (formula 10)
  • the negative A plate is a film satisfying the following (formula 11).
  • stretching method of an unstretched film It can select according to desired optical compensation, and it extends
  • a positive C plate for example, it is biaxially stretched, preferably simultaneously biaxially stretched.
  • the draw ratio is adjusted according to the target retardation value, and is 1.05 to 5 times, more preferably 1.1 to 4 times, and still more preferably 1.5 to 3 times in the vertical and horizontal directions, respectively. This stretching may be performed in a single stage or in multiple stages.
  • When producing a negative A plate for example, it is uniaxially stretched, preferably free end uniaxially stretched.
  • the draw ratio is adjusted according to the target retardation value, and is 1.05 to 5 times, more preferably 1.1 to 4 times, and still more preferably 1.5 to 3 times in the vertical and horizontal directions, respectively. This stretching may be performed in a single stage or in multiple stages.
  • the film A is arranged adjacent to each other with the slow axis orthogonal to the absorption axis of one polarizing plate.
  • an optical compensation film having a high contrast ratio with an oblique viewing angle can be produced.
  • the contrast ratio at an incident angle of 60 ° is preferably 100: 1 or more, more preferably 300: 1 or more, still more preferably 900: 1 or more, and particularly preferably 1000: 1 or more.
  • the contrast ratio represents the difference in brightness of the liquid crystal display device, and the higher the contrast ratio, the clearer the image quality.
  • FIG. 1 shows the combined structure when film B is a positive C plate.
  • a high contrast ratio can be obtained by adjusting the balance between the in-plane retardation of the film A and the film B and the retardation in the thickness direction according to the Nz coefficient of the film A. it can.
  • the film B satisfies the following (formula 16 ′) in order to obtain a high contrast ratio.
  • (Formula 16 ′) ⁇ 110 nm ⁇ Rth (550) ⁇ ⁇ 90 nm
  • the Nz coefficient of the film A is preferably 0.6 ⁇ Nz ⁇ 1.2 as described above, but 0.6 ⁇ Nz ⁇ 0.8. More preferred. When the Nz coefficient of the film A is 0.6 ⁇ Nz ⁇ 0.8, a higher contrast ratio can be obtained because the Nz coefficient is small.
  • the film B is a negative A plate
  • the film B is arranged adjacent to each other with the slow axis orthogonal to the absorption axis of one polarizing plate.
  • An optical compensation film having a high contrast ratio at an oblique viewing angle when the film A is laminated with the slow axes orthogonal to each other can be produced.
  • the contrast ratio at an incident angle of 60 ° is preferably 100: 1 or more, more preferably 300: 1 or more.
  • FIG. 2 shows the combined structure when the film B is a negative A plate.
  • film A When film B is a negative A plate, film A satisfies the following (formula 22) and (formula 23), and film B satisfies (formula 24) and (formula 25) to obtain a high contrast ratio. More preferred.
  • Formmula 24) 70 nm ⁇ Re (550) ⁇ 120 nm
  • Formula 25 ⁇ 60 nm ⁇ Rth (550) ⁇ ⁇ 30 nm
  • the contrast ratio is improved particularly when the difference in absolute value of the retardation in the thickness direction between the film A and the film B is small.
  • of the retardation in the thickness direction of the film B it is more preferable to satisfy the following (formula 26). (Formula 26) ⁇ 10 nm ⁇
  • the positive C plate and the negative A plate as described above as the film B, it is possible to provide an optical compensation film having a high contrast ratio. Furthermore, since a particularly high contrast ratio can be obtained by combining the positive C plate with the film A, it is more preferable to use the positive C plate.
  • the film of the present invention has a high contrast ratio at a viewing angle in an oblique direction, and can be suitably used as an optical compensation film for a liquid crystal display device.
  • copolymer used for film B Production of copolymer used for film B ⁇ Production example of copolymer (B-1)> 20% maleic anhydride solution dissolved in methyl isobutyl ketone so that maleic anhydride has a concentration of 20% by mass and methyl so that t-butylperoxy-2-ethylhexanoate becomes 2% by mass. A 2% t-butyl peroxy-2-ethylhexanoate solution diluted in isobutyl ketone was prepared in advance and used for the polymerization.
  • a 120 liter autoclave equipped with a stirrer was charged with 2 kg of a 20% maleic anhydride solution, 24 kg of styrene, 12 kg of methyl methacrylate, 30 g of t-dodecyl mercaptan, and 2 kg of methyl isobutyl ketone, and the gas phase part was filled with nitrogen gas. After the replacement, the temperature was raised to 87 ° C. over 40 minutes with stirring. While maintaining 87 ° C.
  • a 20% maleic anhydride solution was added at a rate of 1.5 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 375 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 30 g of t-butylperoxyisopropyl monocarbonate was added.
  • the 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a temperature rising rate of 8.25 ° C./hour, while maintaining the addition rate of 1.5 kg / hour.
  • the addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 18 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (B-1) was obtained.
  • the obtained copolymer (B-1) was subjected to composition analysis by the C-13 NMR method, and the weight average molecular weight (Mw) was measured by a GPC apparatus.
  • a mirror surface plate having a length of 90 mm, a width of 55 mm, and a thickness of 2 mm was injection molded under molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C. to ASTM D1003.
  • a haze of 2 mm thickness was measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.).
  • compositional analysis As a result of the compositional analysis, they were 59.8% by mass of styrene monomer units, 29.8% by mass of methyl methacrylate monomer units, and 10.4% by mass of maleic anhydride monomer units.
  • the polymerization average molecular weight (Mw) was 18,000 g / mol, and the haze was 0.4%.
  • Example 1 Using a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide to a 40mm ⁇ single screw extruder, gear pump, polymer filter “Dena filter, mesh opening 5 ⁇ m” (manufactured by Nagase Sangyo Co., Ltd.) A non-stretched film having a thickness of 70 ⁇ m was formed using a film-forming machine equipped with a 300 mm-wide single-layer T-die and a take-up winder “touch roll flexible type” (manufactured by Plastics Engineering Laboratory).
  • the obtained unstretched film was cut into a 100 mm square, and the length was increased by 2.0 times in the longitudinal direction using a biaxial stretching apparatus (X61-S manufactured by Toyo Seiki Co., Ltd.) at a temperature of 155 ° C. and a stretching speed of 2 mm / s.
  • a free end uniaxially stretched film (a-1) was obtained.
  • Re (450) 128 nm
  • Re (550) 146 nm
  • Re (650) 150 nm
  • Rth (550) 73 nm
  • the film thickness was 50 ⁇ m, and the Nz coefficient was 1.00.
  • An unstretched film having a thickness of 170 ⁇ m was formed using the copolymer (B-1) in the same manner as the film (a-1) by a film casting machine.
  • the obtained unstretched film was cut into a square of 100 mm each, and it was 2.0 times in the longitudinal direction at a temperature of 129 ° C. and a stretching speed of 2 mm / s using a biaxial stretching apparatus (X61-S manufactured by Toyo Seiki Co., Ltd.)
  • a film (b-1) which was simultaneously biaxially stretched 2.0 times in the transverse direction was obtained.
  • the film (b-1) was measured for birefringence with a birefringence measuring apparatus KOBRA-WR.
  • Re (550) 0 nm
  • Rth (550) ⁇ 93 nm
  • film thickness 42 ⁇ m.
  • the film (a-1) and the film (b-1) are arranged between polarizing plates arranged in the configuration shown in FIG. 1 with the polarization axes orthogonal to each other, and an incident angle of 60 degrees using a contrast measuring machine (Conoscope manufactured by Autronic Melchers). As a result of measuring the contrast ratio, the contrast ratio was 945: 1. The results are shown in Table 1.
  • Example 2 Stretching was carried out in the same manner as the film (b-1) except that the thickness of the unstretched film was 144 ⁇ m using the copolymer (B-1) to obtain a film (b-2).
  • the birefringence of the film (b-2) was measured with a birefringence measuring apparatus KOBRA-WR.
  • Re (550) 0 nm
  • Rth (550) ⁇ 79 nm
  • the film thickness was 36 ⁇ m.
  • Example 3 Stretching was carried out in the same manner as the film (b-1) except that the thickness of the unstretched film was changed to 212 ⁇ m using the copolymer (B-1) to obtain a film (b-3).
  • the birefringence of the film (b-3) was measured with a birefringence measuring apparatus KOBRA-WR.
  • Re (550) 0 nm
  • Rth (550) ⁇ 116 nm
  • the film thickness was 53 ⁇ m.
  • Film (a-1) and film (b-3) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device.
  • the contrast ratio was 335: 1.
  • Table 1 The results are shown in Table 1.
  • Example 4 Stretching was carried out in the same manner as the film (b-1) except that the thickness of the unstretched film was changed to 108 ⁇ m using the copolymer (B-1) to obtain a film (b-4).
  • Film (a-1) and film (b-4) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device.
  • the contrast ratio was 179: 1.
  • Table 1 The results are shown in Table 1.
  • Example 5 Stretching was carried out in the same manner as the film (b-1) except that the unstretched film thickness was changed to 252 ⁇ m using the copolymer (B-1) to obtain a film (b-5).
  • Film (a-1) and film (b-5) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device.
  • the contrast ratio was 108: 1.
  • Table 1 The results are shown in Table 1.
  • Film (a-2) and film (b-1) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device.
  • the contrast ratio was 539: 1.
  • Table 1 The results are shown in Table 1.
  • Film (a-3) and film (b-1) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration shown in FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device.
  • the contrast ratio was 320: 1.
  • the results are shown in Table 1.
  • Film (a-4) and film (b-1) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device.
  • the contrast ratio was 222: 1.
  • Table 1 The results are shown in Table 1.
  • Film (a-5) and film (b-1) are arranged between polarizing plates arranged in the configuration of FIG. 1 with the polarization axes orthogonal to each other, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device.
  • the contrast ratio was 112: 1.
  • Table 1 The results are shown in Table 1.
  • Example 10 A copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide is dissolved in methylene chloride and applied directly onto a shrinkable film (PP uniaxially stretched film) using a wire bar. A coating film was formed. Further, it was dried at 60 ° C. for 5 minutes to produce a laminate of the shrinkable film and a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide.
  • the laminate is shrunk 0.8 times at 150 ° C., and at the same time, the stretching speed is 2 mm / s in the direction perpendicular to the shrinkage direction of the laminate.
  • the film was stretched 2.0 times under the following conditions. Subsequently, the shrinkable film was peeled off to obtain a film (a-6).
  • Example 11 A copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide is dissolved in methylene chloride and applied directly onto a shrinkable film (PP uniaxially stretched film) using a wire bar. A coating film was formed. Further, it was dried at 60 ° C. for 5 minutes to produce a laminate of the shrinkable film and a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide.
  • the laminate is shrunk 0.7 times at 150 ° C., and at the same time, the stretching speed is 2 mm / s in the direction perpendicular to the shrinkage direction of the laminate.
  • the film was stretched 2.0 times under the following conditions. Subsequently, the shrinkable film was peeled off to obtain a film (a-7).
  • Example 12 Stretching was carried out in the same manner as the film (b-1) except that the thickness of the unstretched film was changed to 20 ⁇ m using the copolymer (B-1) to obtain a film (b-8).
  • the birefringence of the film (b-8) was measured with a birefringence measuring apparatus KOBRA-WR.
  • Re (550) 0 nm
  • Rth (550) -11 nm
  • the film thickness was 5 ⁇ m.
  • Film (a-7) and film (b-8) are arranged between polarizing plates arranged in the configuration of FIG. 1 with the polarization axes orthogonal to each other, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device.
  • the contrast ratio was 202: 1.
  • Table 1 The results are shown in Table 1.
  • Example 13 A copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide is dissolved in methylene chloride and applied directly onto a shrinkable film (PP uniaxially stretched film) using a wire bar. A coating film was formed. Further, it was dried at 60 ° C. for 5 minutes to produce a laminate of the shrinkable film and a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide.
  • the laminate is shrunk 0.7 times at 150 ° C., and at the same time, the stretching speed is 2 mm / s in the direction perpendicular to the shrinkage direction of the laminate.
  • the film was stretched 2.0 times under the following conditions. Subsequently, the shrinkable film was peeled off to obtain a film (a-8).
  • the film was stretched in the same manner as the film (a-1) except that the unstretched film thickness was 33 ⁇ m and the temperature was 130 ° C. to obtain a film (b-9).
  • the birefringence of the film (b-9) was measured with a birefringence measuring apparatus KOBRA-WR.
  • Re (550) 96 nm
  • Rth (550) ⁇ 48 nm
  • the film thickness was 23 ⁇ m.
  • the result of measuring the contrast ratio at an incident angle of 60 degrees with a contrast measuring device by arranging the film (a-9) and the film (b-9) between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG.
  • the contrast ratio was 869: 1.
  • Table 1 The results are shown in Table 1.
  • Example 15 Using the copolymer (B-1), the film was stretched in the same manner as the film (a-1) except that the unstretched film thickness was 47 ⁇ m and the temperature was 130 ° C. to obtain a film (b-10).
  • the laminate is shrunk 0.7 times at 150 ° C., and at the same time, the stretching speed is 2 mm / s in the direction perpendicular to the shrinkage direction of the laminate.
  • the film was stretched 2.0 times under the following conditions. Subsequently, the shrinkable film was peeled off to obtain a film (a-12).
  • the result of measuring the contrast ratio at an incident angle of 60 degrees with a contrast measuring machine by arranging the film (a-9) and the film (b-12) between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG.
  • the contrast ratio was 100: 1 or less.
  • Table 1 The results are shown in Table 1.
  • optical compensation film of the present invention it is possible to produce an optical compensation film having characteristics that improve the viewing angle of a liquid crystal device, that is, characteristics of a high contrast ratio at a wide viewing angle.
  • the optical compensation film for providing the liquid crystal display device which is excellent in a viewing angle characteristic and has a high contrast ratio also in the diagonal direction can be provided.

Abstract

Provided is a liquid crystal display device having excellent viewing angle characteristics and a high contrast ratio even in an oblique direction. This optical compensation film is configured from a film A that satisfies formulas (1) through (3) laminated on a film B that satisfies formulas (4) and (5). The film B is a copolymer composed of an aromatic vinyl monomer unit, an unsaturated dicarboxylic acid anhydride monomer unit, and a (meth)acrylic acid ester monomer unit. An in-plane phase difference Re is a value defined by a formula (6) and a thickness-direction phase difference Rth is a value defined by a formula (7), the Re(450), Re(550), and Re(650) representing in-plane phase differences for wavelengths 450 nm, 550 nm and 650 nm, Rth(550) representing a thickness-direction phase difference for a wavelength 550 nm, nx representing a refractive index along the slow axis direction of the film, ny representing a refractive index along the fast axis direction of the film, nz representing a refractive index along the thickness direction of the film, and d representing the thickness of the film. Re(450) < Re(550) < Re(650) (1) 25 nm ≤ Re(550) ≤ 280 nm (2) 12 nm ≤ Rth(550) ≤ 95 nm (3) 0 nm ≤ Re(550) ≤ 140 nm (4) −140 nm ≤ Rth(550) ≤ 0 nm (5) Re = (nx − ny) × d (6) Rth = {(nx + ny) ÷ 2 − nz} × d (7)

Description

広視野角高コントラスト光学補償フィルムWide viewing angle high contrast optical compensation film
本発明は視野角特性に優れ、斜め方向でも高いコントラスト比を有する液晶表示装置を提供するための光学補償フィルムに関するものである。 The present invention relates to an optical compensation film for providing a liquid crystal display device having excellent viewing angle characteristics and a high contrast ratio even in an oblique direction.
透明樹脂は、家電製品の部品や、食品容器、雑貨等様々な用途に用いられている。近年では、ブラウン管型テレビモニターに代わる薄型液晶表示素子や、エレクトロルミネッセンス素子などの光学部品に多用される状況にある。 Transparent resins are used in various applications such as home appliance parts, food containers, and miscellaneous goods. In recent years, the liquid crystal display device is frequently used for optical parts such as a thin liquid crystal display element and an electroluminescence element instead of the cathode ray tube type television monitor.
液晶ディスプレイの光学補償フィルムには、樹脂フィルムを一軸延伸または二軸延伸して得られた延伸フィルムが広く使用されている。光学補償フィルムの代表的なものとして位相差フィルムがあり、偏光の振動方向を変換するλ/2板や円偏光を直線偏光に、または直線偏光を円偏光に変換するλ/4板が広く用いられている。 A stretched film obtained by uniaxially or biaxially stretching a resin film is widely used as an optical compensation film for liquid crystal displays. As a typical optical compensation film, there is a retardation film, and a λ / 2 plate for converting the vibration direction of polarized light and a λ / 4 plate for converting circularly polarized light into linearly polarized light or linearly polarized light into circularly polarized light are widely used. It has been.
位相差フィルムには、広い視野範囲において光学補償することが求められており、斜め方向の入射光についても位相差が変化しないことが極めて重要な特性である。このような要求特性に対して、特許文献1には負の配向複屈折性を有する透明延伸フィルムと正の配向複屈折性を有する透明延伸フィルムとの積層体を含んでなる液晶表示装置が開示されている。 The retardation film is required to optically compensate in a wide visual field range, and it is an extremely important characteristic that the retardation does not change even for incident light in an oblique direction. For such required characteristics, Patent Document 1 discloses a liquid crystal display device including a laminate of a transparent stretched film having negative orientation birefringence and a transparent stretched film having positive orientation birefringence. Has been.
特許文献2には、負の配向複屈折性を示す延伸フィルムと正の配向複屈折性を示す延伸フィルムをそれぞれの延伸フィルムの遅相軸が平行方向になるように積層してなり、面内位相差(Re)が60~300nm、配向パラメータ(Nz)が0.5±0.1の範囲内である光学補償フィルムを用いることにより液晶表示装置の視野角を広くする方法が開示されている。さらに負の固有複屈折性を示す延伸フィルムが、α-オレフィンおよびN-フェニル置換マレイミドからなる共重合体とアクリロニトリル-スチレン共重合体との樹脂組成物であることが開示されている。 In Patent Document 2, a stretched film exhibiting negative orientation birefringence and a stretched film exhibiting positive orientation birefringence are laminated so that the slow axes of the stretched films are parallel to each other. A method for widening the viewing angle of a liquid crystal display device by using an optical compensation film having a phase difference (Re) of 60 to 300 nm and an alignment parameter (Nz) within a range of 0.5 ± 0.1 is disclosed. . Furthermore, it is disclosed that the stretched film showing negative intrinsic birefringence is a resin composition of a copolymer composed of an α-olefin and an N-phenyl-substituted maleimide and an acrylonitrile-styrene copolymer.
正の配向複屈折性を示す熱可塑性樹脂には、ポリカーボネートや非晶性の環状ポリオレフィンなどがあり、耐熱性、透明性、フィルム強度、位相差発現性に優れることから、光学フィルム用に好適に用いられている。一方、負の配向複屈折性を示す熱可塑性樹脂としては、耐熱性、透明性、フィルム強度、位相差発現性の何れかが劣ることから実用化の例が極めて少なく、主に実用化されているのは正の配向複屈折性を示す延伸フィルムを複数枚適度な角度で貼り合わせたものとなっている。そのため、光学補償設計が複雑でコストも高いものとなっており、光学補償性能も不十分である。 Examples of thermoplastic resins exhibiting positive orientation birefringence include polycarbonate and amorphous cyclic polyolefin, which are excellent in heat resistance, transparency, film strength, and retardation development. It is used. On the other hand, as a thermoplastic resin exhibiting negative orientation birefringence, there are very few examples of practical use because heat resistance, transparency, film strength, and retardation development are inferior. A plurality of stretched films exhibiting positive orientation birefringence are bonded together at an appropriate angle. Therefore, the optical compensation design is complicated and expensive, and the optical compensation performance is insufficient.
これら要求に対して、特許文献3および特許文献4には透明性、耐熱性、フィルム成形性、フィルム強度、及び位相差発現性に優れた熱可塑性樹脂共重合体および負の配向複屈折性を示す延伸フィルムが提案され、特許文献3および特許文献4に記載の位相差フィルムは正の配向複屈折性を示す熱可塑性樹脂に環状ポリオレフィンを用いている。また、特許文献5では長波長ほど面内位相差が大きくなる特性、いわゆる逆波長分散のフィルムが提案されている。 In response to these requirements, Patent Document 3 and Patent Document 4 include a thermoplastic resin copolymer excellent in transparency, heat resistance, film moldability, film strength, and retardation development, and negative orientation birefringence. The retardation film described in Patent Document 3 and Patent Document 4 uses a cyclic polyolefin as a thermoplastic resin exhibiting positive orientation birefringence. Patent Document 5 proposes a so-called reverse wavelength dispersion film in which the in-plane retardation increases as the wavelength increases.
特開平2-256023号公報JP-A-2-256603 特開2007-24940号公報JP 2007-24940 A WO2014/021265号公報WO2014 / 021265 WO2015/033877号公報WO2015 / 033877 特開2013-164501号公報JP 2013-164501 A
しかし、引用文献3および引用文献4に記載されている方法では高いコントラスト特性を有するには不十分であった。また、特許文献5では逆波長分散のフィルムにより高いコントラスト特性が発現することが期待され正面からのコントラストは高いものが得られたが、斜め方向からのコントラスト特性は不十分であった。 However, the methods described in Cited Document 3 and Cited Document 4 are insufficient to have high contrast characteristics. Further, in Patent Document 5, it is expected that a high contrast characteristic is exhibited by a film with reverse wavelength dispersion, and a high contrast from the front is obtained, but the contrast characteristic from an oblique direction is insufficient.
本発明の目的は、視野角特性に優れ、斜め方向でも高いコントラスト比を有する液晶表示装置を提供するための光学補償フィルムの提供である。 An object of the present invention is to provide an optical compensation film for providing a liquid crystal display device having excellent viewing angle characteristics and having a high contrast ratio even in an oblique direction.
本発明者が視野角特性に優れ、斜め方向でも高いコントラスト比を得るべく検討を行ったところ、短波長ほど面内位相差が小さくなる逆波長分散特性を有し、面内位相差Re及び厚み方向位相差Rthを特定の範囲内で有する正の複屈折性のフィルムAと、これに対応する面内位相差Re及び厚み方向位相差Rthを特定の範囲内で有する負の複屈折性のフィルムBを組み合わせることにより、斜め方向でも高いコントラスト比を有する液晶表示装置とするための光学補償フィルムを提供できることを見出し、本発明の完成に到った。本発明の方法によって得られた光学補償フィルムは、液晶表示装置に用いることができる。 The present inventors have studied to obtain a high contrast ratio even in an oblique direction with excellent viewing angle characteristics, and as a result, the in-plane phase difference Re and thickness are obtained. Positive birefringent film A having directional retardation Rth within a specific range, and negative birefringent film having in-plane retardation Re and thickness direction retardation Rth corresponding to directional retardation Rth within a specific range It was found that by combining B, an optical compensation film for providing a liquid crystal display device having a high contrast ratio even in an oblique direction can be provided, and the present invention has been completed. The optical compensation film obtained by the method of the present invention can be used for a liquid crystal display device.
本発明は、以下を要旨とするものである。
(1)(式1)~(式3)を満たすフィルムAと、(式4)および(式5)を満たすフィルムBとを積層させてなり、フィルムBが、芳香族ビニル単量体単位、不飽和ジカルボン酸無水物単量体単位、(メタ)アクリル酸エステル単量体単位からなる共重合体であることを特徴とし、Re(450)、Re(550)およびRe(650)は波長450nm、550nmおよび650nmにおける面内位相差、Rth(550)は波長550nmにおける厚み方向位相差を示し、フィルムの遅相軸方向の屈折率をnx、フィルムの進相軸方向の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルム厚さをdとしたとき、面内位相差Reは(式6)で、厚み方向位相差Rthは(式7)で定義される値である、光学補償フィルム。
 (式1) Re(450)<Re(550)<Re(650)
 (式2) 25nm≦Re(550)≦280nm
 (式3) 12nm≦Rth(550)≦95nm
 (式4) 0nm≦Re(550)≦140nm
 (式5) -140nm≦Rth(550)≦0nm
 (式6) Re=(nx-ny)×d
 (式7) Rth={(nx+ny)÷2-nz}×d
(2)フィルムAのNz係数が(式8)を満たすことを特徴とし、Nz係数は(式9)で定義される値である、(1)に記載の光学補償フィルム。
 (式8) 0.6≦Nz≦1.2
 (式9) Nz=(nx-nz)/(nx-ny)
(3)フィルムBがポジティブCプレートであることを特徴とし、ポジティブCプレートは(式10)を満たすフィルムである、(1)または(2)のいずれか1項に記載の光学補償フィルム。
 (式10) nx=ny<nz
(4)フィルムBがネガティブAプレートであることを特徴とし、ネガティブAプレートは(式11)を満たすフィルムである、(1)または(2)のいずれか1項に記載の光学補償フィルム。
 (式11) ny<nz=nx
(5)フィルムAが(式12)、(式13)、および(式14)を満たし、かつフィルムBが(式15)、および(式16)を満たすことを特徴とする(3)に記載の光学補償フィルム。
 (式12) 0.8≦Nz≦1.2
 (式13) 120nm≦Re(550)≦170nm
 (式14) 55nm≦Rth(550)≦90nm
 (式15) Re(550)=0
 (式16) -120nm≦Rth(550)≦-70nm
(6)フィルムAが(式17)、(式18)、および(式19)を満たし、かつフィルムBが(式20)、および(式21)を満たすことを特徴とする(3)に記載の光学補償フィルム。
 (式17) 0.6≦Nz≦0.8
 (式18) 170nm≦Re(550)≦230nm
 (式19) 15nm≦Rth(550)≦55nm
 (式20) Re(550)=0
 (式21) -70nm≦Rth(550)≦-20nm
(7)フィルムAが(式22)および(式23)を満たし、かつフィルムBが(式24)および(式25)を満たすことを特徴とする(4)に記載の光学補償フィルム。
 (式22) 70nm≦Re(550)≦120nm
 (式23) 30nm≦Rth(550)≦60nm
 (式24) 70nm≦Re(550)≦120nm
 (式25) -60nm≦Rth(550)≦-30nm
(8)(1)~(7)に記載の光学補償フィルムを用いた液晶表示装置。
The gist of the present invention is as follows.
(1) A film A satisfying (Expression 1) to (Expression 3) and a film B satisfying (Expression 4) and (Expression 5) are laminated, and the film B is an aromatic vinyl monomer unit, It is a copolymer comprising an unsaturated dicarboxylic acid anhydride monomer unit and a (meth) acrylic acid ester monomer unit, and Re (450), Re (550) and Re (650) have a wavelength of 450 nm. In-plane retardation at 550 nm and 650 nm, Rth (550) indicates a thickness direction retardation at a wavelength of 550 nm, a refractive index in the slow axis direction of the film is nx, a refractive index in the fast axis direction of the film is ny, and the film When the refractive index in the thickness direction is nz and the film thickness is d, the in-plane retardation Re is a value defined by (Expression 6), and the thickness direction retardation Rth is a value defined by (Expression 7). Compensation film.
(Formula 1) Re (450) <Re (550) <Re (650)
(Formula 2) 25 nm ≦ Re (550) ≦ 280 nm
(Formula 3) 12 nm ≦ Rth (550) ≦ 95 nm
(Formula 4) 0 nm ≦ Re (550) ≦ 140 nm
(Formula 5) −140 nm ≦ Rth (550) ≦ 0 nm
(Expression 6) Re = (nx−ny) × d
(Expression 7) Rth = {(nx + ny) ÷ 2-nz} × d
(2) The optical compensation film according to (1), wherein the Nz coefficient of the film A satisfies (Equation 8), and the Nz coefficient is a value defined by (Equation 9).
(Formula 8) 0.6 ≦ Nz ≦ 1.2
(Formula 9) Nz = (nx−nz) / (nx−ny)
(3) The optical compensation film according to any one of (1) and (2), wherein the film B is a positive C plate, and the positive C plate is a film satisfying (Equation 10).
(Formula 10) nx = ny <nz
(4) The optical compensation film according to any one of (1) and (2), wherein the film B is a negative A plate, and the negative A plate is a film satisfying (Equation 11).
(Formula 11) ny <nz = nx
(5) The film A satisfies (Expression 12), (Expression 13), and (Expression 14), and the film B satisfies (Expression 15) and (Expression 16). Optical compensation film.
(Formula 12) 0.8 ≦ Nz ≦ 1.2
(Formula 13) 120 nm ≦ Re (550) ≦ 170 nm
(Formula 14) 55 nm ≦ Rth (550) ≦ 90 nm
(Formula 15) Re (550) = 0
(Expression 16) −120 nm ≦ Rth (550) ≦ −70 nm
(6) The film A satisfies (Expression 17), (Expression 18), and (Expression 19), and the film B satisfies (Expression 20) and (Expression 21). Optical compensation film.
(Formula 17) 0.6 ≦ Nz ≦ 0.8
(Formula 18) 170 nm ≦ Re (550) ≦ 230 nm
(Formula 19) 15 nm ≦ Rth (550) ≦ 55 nm
(Equation 20) Re (550) = 0
(Formula 21) −70 nm ≦ Rth (550) ≦ −20 nm
(7) The optical compensation film according to (4), wherein the film A satisfies (Formula 22) and (Formula 23), and the film B satisfies (Formula 24) and (Formula 25).
(Formula 22) 70 nm ≦ Re (550) ≦ 120 nm
(Formula 23) 30 nm ≦ Rth (550) ≦ 60 nm
(Formula 24) 70 nm ≦ Re (550) ≦ 120 nm
(Formula 25) −60 nm ≦ Rth (550) ≦ −30 nm
(8) A liquid crystal display device using the optical compensation film according to any one of (1) to (7).
本発明により、視野角特性に優れ、斜め方向でも高いコントラスト比を有する液晶表示装置を提供するための光学補償フィルムを簡易な方法で提供することができる。 According to the present invention, an optical compensation film for providing a liquid crystal display device having excellent viewing angle characteristics and a high contrast ratio even in an oblique direction can be provided by a simple method.
フィルムBをポジティブCプレートとした場合に組合せた構成を示す概略図である。It is the schematic which shows the structure combined when the film B is made into the positive C plate. フィルムBをネガティブAプレートとした場合に組合せた構成を示す概略図である。It is the schematic which shows the structure combined when the film B is made into the negative A plate.
<用語の説明>
本願明細書において、「A~B」なる記載は、A以上でありB以下であることを意味する。また、「Nz係数」は式中においては「Nz」で表されることがある。
<Explanation of terms>
In the present specification, the description “A to B” means not less than A and not more than B. In addition, the “Nz coefficient” may be represented by “Nz” in the formula.
以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明においては、特定の光学特性を有するフィルムAとフィルムBを組み合わせることにより、斜め方向の視野角でも高いコントラスト比を有する光学補償フィルムを可能である。すなわち、短波長ほど面内位相差が小さくなる逆波長分散特性を有し、面内位相差Re及び厚み方向位相差Rthを特定の範囲内で有する正の複屈折性のフィルムAと、これに対応する面内位相差Re及び厚み方向位相差Rthを特定の範囲内で有する負の複屈折性のフィルムBを組み合わせることにより、斜め方向の視野角でも高いコントラスト比が実現される。 In the present invention, by combining the film A and the film B having specific optical characteristics, an optical compensation film having a high contrast ratio even in an oblique viewing angle is possible. That is, a positive birefringent film A having a reverse wavelength dispersion characteristic in which the in-plane retardation becomes smaller as the wavelength is shorter, and has an in-plane retardation Re and a thickness direction retardation Rth within a specific range, By combining the negative birefringent film B having the corresponding in-plane retardation Re and thickness direction retardation Rth within a specific range, a high contrast ratio can be realized even in an oblique viewing angle.
本発明の光学補償フィルムに用いられるフィルムAは、下記の(式1)~(式3)を満たすことを特徴とする。
 (式1) Re(450)<Re(550)<Re(650)
 (式2) 25nm≦Re(550)≦280nm
 (式3) 12nm≦Rth(550)≦95nm
ここで、Re(450)、Re(550)およびRe(650)は波長450nm、550nmおよび650nmにおける面内位相差、Rth(550)は波長550nmにおける厚み方向位相差を示す。
なお、フィルムの遅相軸、すなわちフィルム面内の屈折率が最大となる軸方向の屈折率をnx、フィルムの進相軸、すなわち遅相軸と垂直な軸方向の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルム厚さをdとしたとき、面内位相差Reは(式6)で、厚み方向位相差Rthは(式7)で定義される値である。
 (式6) Re=(nx-ny)×d
 (式7) Rth={(nx+ny)÷2-nz}×d
The film A used for the optical compensation film of the present invention is characterized by satisfying the following (formula 1) to (formula 3).
(Formula 1) Re (450) <Re (550) <Re (650)
(Formula 2) 25 nm ≦ Re (550) ≦ 280 nm
(Formula 3) 12 nm ≦ Rth (550) ≦ 95 nm
Here, Re (450), Re (550), and Re (650) indicate in-plane retardation at wavelengths of 450 nm, 550 nm, and 650 nm, and Rth (550) indicates a thickness direction retardation at a wavelength of 550 nm.
Note that the slow axis of the film, that is, the refractive index in the axial direction where the refractive index in the film plane is maximum is nx, the fast axis of the film, that is, the refractive index in the axial direction perpendicular to the slow axis, ny, When the refractive index in the thickness direction is nz and the film thickness is d, the in-plane retardation Re is a value defined by (Expression 6), and the thickness direction retardation Rth is a value defined by (Expression 7).
(Expression 6) Re = (nx−ny) × d
(Expression 7) Rth = {(nx + ny) ÷ 2-nz} × d
フィルムAが、Re(450)<Re(550)<Re(650)の特性を有し、25nm≦Re(550)≦280nmであり、12nm≦Rth(550)≦95nmであれば、斜め方向の視野角で高いコントラスト比を有する光学補償フィルムを作製することができる。 Film A has the characteristics of Re (450) <Re (550) <Re (650), 25 nm ≦ Re (550) ≦ 280 nm, and 12 nm ≦ Rth (550) ≦ 95 nm. An optical compensation film having a high contrast ratio at a viewing angle can be produced.
フィルムAのNz係数は、下記の(式8)を満たすことが斜め方向の視野角で高いコントラスト比を有する光学補償フィルムを作製する上で好ましい。
 (式8) 0.6≦Nz≦1.2
なお、Nz係数とは(式9)で定義される値である。
 (式9) Nz=(nx-nz)/(nx-ny)
The Nz coefficient of the film A preferably satisfies the following (Equation 8) in producing an optical compensation film having a high contrast ratio at an oblique viewing angle.
(Formula 8) 0.6 ≦ Nz ≦ 1.2
The Nz coefficient is a value defined by (Equation 9).
(Formula 9) Nz = (nx−nz) / (nx−ny)
フィルムAに用いることの出来る熱可塑性樹脂は、(式1)~(式3)を満たすものであれば特に限定されるものではないが、例えば、特開2012-150477号公報に記載の9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンとイソソルビドとの共重合体などのポリカーボネート樹脂がある。フィルムAに用いることのできる樹脂は、1種単独または2種以上を組み合わせて使用してもよい。 The thermoplastic resin that can be used for the film A is not particularly limited as long as it satisfies (Formula 1) to (Formula 3). For example, the thermoplastic resin described in JP2012-150477A, There are polycarbonate resins such as a copolymer of 9-bis [4- (2-hydroxyethoxy) phenyl] fluorene and isosorbide. The resin that can be used for the film A may be used alone or in combination of two or more.
フィルムAの製造方法としては、特に限定されるものではないが、例えば、溶融押出法、溶液キャスト法などにより未延伸フィルムを成形した後、未延伸フィルムをロール延伸法、テンター延伸法などにより一軸又は二軸に延伸することにより作製することができる。 The production method of the film A is not particularly limited. For example, after forming an unstretched film by a melt extrusion method, a solution casting method, or the like, the unstretched film is uniaxially formed by a roll stretching method, a tenter stretching method, or the like. Or it can produce by extending | stretching biaxially.
本発明の光学補償フィルムに用いられるフィルムBは、下記の(式4)~(式5)を満たすことを特徴とする。
 (式4) 0nm≦Re(550)≦140nm
 (式5) -140nm≦Rth(550)≦0nm
The film B used for the optical compensation film of the present invention satisfies the following (formula 4) to (formula 5).
(Formula 4) 0 nm ≦ Re (550) ≦ 140 nm
(Formula 5) −140 nm ≦ Rth (550) ≦ 0 nm
フィルムBが、0nm≦Re(550)≦140nmであり、-140nm≦Rth(550)≦0nmであれば、斜め方向の視野角で高いコントラスト比を有する光学補償フィルムを作製することができる。 If the film B satisfies 0 nm ≦ Re (550) ≦ 140 nm and −140 nm ≦ Rth (550) ≦ 0 nm, an optical compensation film having a high contrast ratio at an oblique viewing angle can be produced.
フィルムBに用いることの出来る熱可塑性樹脂は、芳香族ビニル単量体単位、不飽和ジカルボン酸無水物単量体単位、(メタ)アクリル酸エステル単量体単位からなる共重合体である。 The thermoplastic resin that can be used for the film B is a copolymer comprising an aromatic vinyl monomer unit, an unsaturated dicarboxylic anhydride monomer unit, and a (meth) acrylic acid ester monomer unit.
芳香族ビニル単量体単位としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレンなどの各スチレン系単量体に由来する単位が挙げられる。これらの中でも好ましくはスチレン単位である。これら芳香族ビニル単量体単位は、1種類でもよく、2種類以上の併用であってもよい。 Aromatic vinyl monomer units include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, ethyl styrene, p-tert-butyl styrene, α-methyl styrene, α Examples thereof include units derived from styrene monomers such as -methyl-p-methylstyrene. Of these, styrene units are preferred. These aromatic vinyl monomer units may be one type or a combination of two or more types.
不飽和ジカルボン酸無水物単量体単位としては、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物などの各無水物単量体に由来する単位が挙げられる。これらの中でも好ましくはマレイン酸無水物単位である。不飽和ジカルボン酸無水物単量体単位は、1種でもよく、2種類以上の併用であってもよい。 Examples of the unsaturated dicarboxylic acid anhydride monomer unit include units derived from respective anhydride monomers such as maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, and aconitic acid anhydride. Among these, maleic anhydride units are preferable. The unsaturated dicarboxylic acid anhydride monomer unit may be one type or a combination of two or more types.
(メタ)アクリル酸エステル単量体単位としては、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレートなどの各メタクリル酸エステル単量体、およびメチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートなどの各アクリル酸エステル単量体に由来する単位が挙げられる。これらの中でも好ましくはメチルメタクリレート単位である。これら(メタ)アクリル酸エステル単量体単位は、1種類でもよく、2種類以上の併用であってもよい。 Examples of the (meth) acrylic acid ester monomer unit include methyl methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, and isobornyl methacrylate, and Examples include units derived from acrylate monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, and decyl acrylate. Among these, a methyl methacrylate unit is preferable. These (meth) acrylic acid ester monomer units may be one kind or a combination of two or more kinds.
フィルムBに用いる共重合体は、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位、不飽和ジカルボン酸無水物単量体単位以外のその他のビニル単量体単位を発明の効果を阻害しない範囲で含んでもよく、好ましくは5質量%以下である。その他のビニル単量体単位としては、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などの各単量体に由来する単位が挙げられる。その他のビニル単量体単位は、2種類以上の含んでもよい。 The copolymer used for the film B is a vinyl monomer unit other than an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit. It may be included within a range not inhibiting the effect, and is preferably 5% by mass or less. Other vinyl monomer units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N-ethylmaleimide, N- Derived from various monomers such as N-alkylmaleimide monomers such as butylmaleimide and N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide The unit to do is mentioned. Other vinyl monomer units may contain two or more kinds.
芳香族ビニル単量体単位の好ましい含有量は50~90質量%であり、さらに好ましくは60~85質量%である。芳香族ビニル単量体単位が50質量%以上であれば、位相差発現性が向上するためフィルムの厚みを薄くすることができ、かつ溶融押出によるフィルム成形加工を行う際には光学補償フィルムに適した美麗なフィルムが得られるので好ましく、60質量%以上であれば、さらに位相差発現性が向上するためフィルムの厚みを薄くすることができ、かつ溶融押出によるフィルム成形加工を行う際には光学補償フィルムに適したさらに美麗なフィルムが得られるので特に好ましい。芳香族ビニル単量体単位が90質量%以下であれば、耐熱性またはフィルム強度が向上するので好ましく、芳香族ビニル単量体単位が85質量%以下であれば、耐熱性またはフィルム強度がさらに向上するので特に好ましい。 The preferred content of the aromatic vinyl monomer unit is 50 to 90% by mass, and more preferably 60 to 85% by mass. If the aromatic vinyl monomer unit is 50% by mass or more, the retardation can be improved, so that the thickness of the film can be reduced, and when performing film forming by melt extrusion, an optical compensation film is used. A suitable and beautiful film can be obtained, and if it is 60% by mass or more, the retardation can be further improved to reduce the thickness of the film, and when performing film forming processing by melt extrusion It is particularly preferable because a more beautiful film suitable for an optical compensation film can be obtained. If the aromatic vinyl monomer unit is 90% by mass or less, heat resistance or film strength is improved, and if the aromatic vinyl monomer unit is 85% by mass or less, heat resistance or film strength is further increased. Since it improves, it is especially preferable.
不飽和ジカルボン酸無水物単量体単位の好ましい含有量は5~25質量%であり、さらに好ましくは8~20質量%である。不飽和ジカルボン酸無水物単量体単位が5質量%以上であれば、耐熱性が向上するので好ましく、8質量%以上であれば、さらに耐熱性が向上するので特に好ましい。不飽和ジカルボン酸無水物単量体単位が25質量%以下であれば、フィルム強度が向上し、かつ溶融押出によるフィルム成形加工を行う際には光学補償フィルムに適した美麗なフィルムが得られるので好ましく、20質量%以下であれば、さらにフィルム強度が向上し、かつ溶融押出によるフィルム成形加工を行う際には光学補償フィルムに適したさらに美麗なフィルムが得られるので特に好ましい。 The content of unsaturated dicarboxylic acid anhydride monomer units is preferably 5 to 25% by mass, more preferably 8 to 20% by mass. If the unsaturated dicarboxylic acid anhydride monomer unit is 5% by mass or more, the heat resistance is improved, and if it is 8% by mass or more, the heat resistance is further improved, which is particularly preferable. If the unsaturated dicarboxylic acid anhydride monomer unit is 25% by mass or less, the film strength is improved, and a beautiful film suitable for an optical compensation film can be obtained when film forming by melt extrusion is performed. The amount of 20% by mass or less is particularly preferable because the film strength is further improved and a more beautiful film suitable for an optical compensation film can be obtained when film forming by melt extrusion is performed.
(メタ)アクリル酸エステル単量体単位の好ましい含有量は5~45質量%であり、さらに好ましくは7~32質量%である。(メタ)アクリル酸エステル単量体単位が5質量%以上であれば、透明性やフィルム強度が向上するので好ましく、7質量%以上であれば、さらに透明性やフィルム強度が向上するので特に好ましい。(メタ)アクリル酸エステル単量体単位が45質量%以下であれば、位相差発現性が向上するためフィルムの厚みを薄くすることができ、かつ溶融押出によるフィルム成形加工を行う際には光学補償フィルムに適した美麗なフィルムが得られるので好ましく、32質量%以下であればさらに位相差発現性が向上するためフィルムの厚みをさらに薄くすることができ、かつ溶融押出によるフィルム成形加工を行う際には光学補償フィルムに適したさらに美麗なフィルムが得られるので特に好ましい。 The preferred content of the (meth) acrylic acid ester monomer unit is 5 to 45% by mass, more preferably 7 to 32% by mass. If the (meth) acrylic acid ester monomer unit is 5% by mass or more, transparency and film strength are improved, and if it is 7% by mass or more, transparency and film strength are further improved, which is particularly preferable. . If the (meth) acrylic acid ester monomer unit is 45% by mass or less, the retardation development property is improved, so that the thickness of the film can be reduced and the film forming process by melt extrusion is optical. A beautiful film suitable for a compensation film can be obtained, and is preferably 32% by mass or less. Since the retardation development is further improved, the thickness of the film can be further reduced, and the film is formed by melt extrusion. In particular, a more beautiful film suitable for an optical compensation film can be obtained, which is particularly preferable.
フィルムBに用いる共重合体は、重量平均分子量(Mw)が12~25万であることが好ましい。重量平均分子量(Mw)が12万以上であれば、フィルム強度が向上するため好ましい。重量平均分子量(Mw)が25万以下であれば、溶融押出によるフィルム成形加工を行う際には光学補償フィルムに適した美麗なフィルムが得られるので好ましい。なお、重量平均分子量(Mw)とは、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、下記記載の測定条件における測定値である。
  装置名:SYSTEM-21 Shodex(昭和電工社製)
  カラム:PL gel MIXED-Bを3本直列
  温度:40℃
  検出:示差屈折率
  溶媒:テトラヒドロフラン
  濃度:2質量%
  検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
The copolymer used for the film B preferably has a weight average molecular weight (Mw) of 1 to 250,000. A weight average molecular weight (Mw) of 120,000 or more is preferable because the film strength is improved. A weight average molecular weight (Mw) of 250,000 or less is preferable because a beautiful film suitable for an optical compensation film can be obtained when film forming by melt extrusion is performed. The weight average molecular weight (Mw) is a value in terms of polystyrene measured by gel permeation chromatography (GPC), and is a value measured under the measurement conditions described below.
Device name: SYSTEM-21 Shodex (manufactured by Showa Denko)
Column: 3 series PL gel MIXED-B Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL).
フィルムBの製造方法としては、特に限定されるものではないが、例えば、溶融押出法、溶液キャスト法などにより未延伸フィルムを成形した後、未延伸フィルムをロール延伸法、テンター延伸法などにより一軸又は二軸に延伸することにより作製することができる。 The production method of the film B is not particularly limited. For example, after forming an unstretched film by a melt extrusion method, a solution cast method, or the like, the unstretched film is uniaxially formed by a roll stretching method, a tenter stretching method, or the like. Or it can produce by extending | stretching biaxially.
フィルムBに用いる共重合体の製造方法について説明する。
重合様式においては特に限定はなく、溶液重合、塊状重合等公知の方法で製造できるが、溶液重合がより好ましい。溶液重合で用いる溶剤は、副生成物が出来難く、悪影響が少ないという観点から非重合性であることが好ましい。溶剤の種類としては、特に限定されるものではないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1、4-ジオキサン等のエーテル類、トルエン、エチルベンゼン、キシレン、クロロベンゼン等の芳香族炭化水素などが挙げられるが、単量体や共重合体の溶解度、溶剤回収のし易さの観点から、メチルエチルケトン、メチルイソブチルケトンが好ましい。溶剤の添加量は、得られる共重合体量100質量部に対して、10~100質量部が好ましく、さらに好ましくは30~80質量部である。10質量部以上であれば、反応速度および重合液粘度を制御する上で好適であり、100質量部以下であれば、好ましい重量平均分子量(Mw)を得る上で好適である。
The manufacturing method of the copolymer used for the film B is demonstrated.
The polymerization mode is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but solution polymerization is more preferable. The solvent used in the solution polymerization is preferably non-polymerizable from the viewpoint that a by-product is difficult to produce and that there are few adverse effects. The type of the solvent is not particularly limited. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, ethers such as tetrahydrofuran, 1,4-dioxane, toluene, ethylbenzene, xylene, chlorobenzene Aromatic hydrocarbons, etc. are mentioned, but methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of the solubility of the monomer and copolymer and the ease of solvent recovery. The amount of the solvent added is preferably 10 to 100 parts by mass, and more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the copolymer to be obtained. If it is 10 parts by mass or more, it is suitable for controlling the reaction rate and the polymerization solution viscosity, and if it is 100 parts by mass or less, it is suitable for obtaining a preferable weight average molecular weight (Mw).
重合プロセスは回分式重合法、半回分式重合法、連続重合法のいずれの方式であっても差し支えないが、所望の分子量範囲と透明性を得る上で回分式重合法が好適である。 The polymerization process may be any of a batch polymerization method, a semi-batch polymerization method, and a continuous polymerization method, but the batch polymerization method is suitable for obtaining a desired molecular weight range and transparency.
重合方法は特に限定されないが、簡潔プロセスによって生産性良く製造することが可能であるという観点から、好ましくはラジカル重合法である。重合開始剤としては特に限定されるものではないが、例えばジベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシアセテート、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等の公知の有機過酸化物やアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物を用いることができる。これらの重合開始剤は2種以上を併用することも出来る。これらの中でも10時間半減期温度が、70~110℃である有機過酸化物を用いるのが好ましい。 The polymerization method is not particularly limited, but is preferably a radical polymerization method from the viewpoint that it can be produced with high productivity by a simple process. The polymerization initiator is not particularly limited. For example, dibenzoyl peroxide, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, t-butylperoxy Known organic compounds such as isopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyacetate, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate Known azo compounds such as peroxides, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, and the like can be used. Two or more of these polymerization initiators can be used in combination. Of these, organic peroxides having a 10-hour half-life temperature of 70 to 110 ° C. are preferably used.
芳香族ビニル単量体と不飽和ジカルボン酸無水物単量体とが強い交互共重合性を有することから、芳香族ビニル単量体と(メタ)アクリル酸エステル単量体の重合速度に対応するように不飽和ジカルボン酸無水物単量体を連続的に分添し、かつ分添流量も重合速度に合わせて適宜調整する方法が好適である。重合温度、重合時間、および重合開始剤添加量を適宜調整しながら重合速度をコントロールすると、より精密に共重合体の組成分布を小さく出来るので好適である。 Since the aromatic vinyl monomer and unsaturated dicarboxylic acid anhydride monomer have strong alternating copolymerization, it corresponds to the polymerization rate of the aromatic vinyl monomer and the (meth) acrylate monomer. Thus, a method in which the unsaturated dicarboxylic acid anhydride monomer is continuously added and the addition flow rate is appropriately adjusted in accordance with the polymerization rate is suitable. It is preferable to control the polymerization rate while appropriately adjusting the polymerization temperature, the polymerization time, and the addition amount of the polymerization initiator because the composition distribution of the copolymer can be reduced more precisely.
さらに、好ましい重量平均分子量(Mw)の範囲である共重合体を得る方法については、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶剤添加量および連鎖移動剤添加量で調整することが出来る。連鎖移動剤としては、特に限定されるものではないが、例えば、n-ドデシルメルカプタン、t-ドデシルメルカプタンや2,4-ジフェニル-4-メチル-1-ペンテン等の公知の連鎖移動剤を用いることができる。 Furthermore, regarding a method for obtaining a copolymer having a preferred weight average molecular weight (Mw) range, in addition to adjustment of polymerization temperature, polymerization time, and polymerization initiator addition amount, solvent addition amount and chain transfer agent addition amount Can be adjusted. The chain transfer agent is not particularly limited. For example, a known chain transfer agent such as n-dodecyl mercaptan, t-dodecyl mercaptan or 2,4-diphenyl-4-methyl-1-pentene is used. Can do.
重合終了後、重合液には必要に応じて、ヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物、イオウ系化合物などの耐熱安定剤、ヒンダードアミン系化合物、ベンゾトリアゾール系化合物等の耐光安定剤、滑剤や可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を加えても構わない。その添加量は全単量体単位100質量部に対して0.2質量部未満であることが好ましい。これらの添加剤は単独で用いても、2種類以上を併用しても構わない。 After the polymerization is completed, the polymerization solution is optionally provided with a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound, Additives such as lubricants, plasticizers, colorants, antistatic agents and mineral oils may be added. The addition amount is preferably less than 0.2 parts by mass with respect to 100 parts by mass of all monomer units. These additives may be used alone or in combination of two or more.
重合液から共重合体を回収する方法については、特に限定はなく、公知の脱揮技術を用いることが出来る。例えば、重合液を二軸脱揮押出機にギヤーポンプを用いて連続的にフィードし、重合溶剤や未反応モノマー等を脱揮処理する方法が挙げられる。なお、重合溶剤や未反応モノマー等を含む脱揮成分は、コンデンサー等を用いて凝縮させて回収し、凝縮液を蒸留塔にて精製することで、重合溶剤は再利用することが可能である。 There is no limitation in particular about the method of collect | recovering a copolymer from a polymerization liquid, A well-known devolatilization technique can be used. For example, a method of continuously feeding the polymerization liquid to a twin-screw devolatilizing extruder using a gear pump and devolatilizing a polymerization solvent, an unreacted monomer and the like can be mentioned. The devolatilizing component including the polymerization solvent, unreacted monomer, etc. is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in a distillation tower. .
本発明の光学補償フィルムに用いられるフィルムBは、フィルムAと積層させて光学補償を行うことからポジティブCプレート、またはネガティブAプレートであることが光学補償設計をする上で好ましい。なお、ポジティブCプレートとは下記の(式10)を満たすフィルムであり、ネガティブAプレートは下記の(式11)を満たすフィルムである。
 (式10) nx=ny<nz
 (式11) ny<nz=nx
Since the film B used for the optical compensation film of the present invention is laminated with the film A to perform optical compensation, it is preferably a positive C plate or a negative A plate in designing optical compensation. The positive C plate is a film satisfying the following (formula 10), and the negative A plate is a film satisfying the following (formula 11).
(Formula 10) nx = ny <nz
(Formula 11) ny <nz = nx
未延伸フィルムの延伸方法については、特に限定はなく、所望の光学補償に合わせて選択することができ、一軸又は二軸に延伸される。ポジティブCプレートを作製する場合には、例えば、二軸延伸され、好ましくは同時二軸延伸される。延伸倍率は目的とする位相差値により調整されるが、縦、横、それぞれ、1.05~5倍、より好ましくは1.1~4倍、さらに好ましくは1.5~3倍である。この延伸は一段で行ってもよく、多段で行ってもよい。ネガティブAプレートを作製する場合には、例えば、一軸延伸され、好ましくは自由端一軸延伸される。延伸倍率は目的とする位相差値により調整されるが、縦、横、それぞれ、1.05~5倍、より好ましくは1.1~4倍、さらに好ましくは1.5~3倍である。この延伸は一段で行ってもよく、多段で行ってもよい。 There is no limitation in particular about the extending | stretching method of an unstretched film, It can select according to desired optical compensation, and it extends | stretches uniaxially or biaxially. When producing a positive C plate, for example, it is biaxially stretched, preferably simultaneously biaxially stretched. The draw ratio is adjusted according to the target retardation value, and is 1.05 to 5 times, more preferably 1.1 to 4 times, and still more preferably 1.5 to 3 times in the vertical and horizontal directions, respectively. This stretching may be performed in a single stage or in multiple stages. When producing a negative A plate, for example, it is uniaxially stretched, preferably free end uniaxially stretched. The draw ratio is adjusted according to the target retardation value, and is 1.05 to 5 times, more preferably 1.1 to 4 times, and still more preferably 1.5 to 3 times in the vertical and horizontal directions, respectively. This stretching may be performed in a single stage or in multiple stages.
フィルムBがポジティブCプレートの場合、互いに吸収軸を直交させて配置した偏光板の間に、一方の偏光板の吸収軸に遅相軸を直交させてフィルムAを隣接させて配置し、さらにフィルムAにフィルムBを隣接させて積層させたときに斜め方向の視野角で高いコントラスト比を有する光学補償フィルムを作製することができる。入射角60°におけるコントラスト比が100:1以上であることが好ましく、より好ましくは300:1以上であり、さらに好ましくは900:1以上であり、特に好ましくは1000:1以上である。コントラスト比は液晶表示装置の明暗の差を表しており、コントラスト比が大きいほど、鮮明な画質となる。 In the case where the film B is a positive C plate, between the polarizing plates arranged with the absorption axes orthogonal to each other, the film A is arranged adjacent to each other with the slow axis orthogonal to the absorption axis of one polarizing plate. When the films B are laminated adjacent to each other, an optical compensation film having a high contrast ratio with an oblique viewing angle can be produced. The contrast ratio at an incident angle of 60 ° is preferably 100: 1 or more, more preferably 300: 1 or more, still more preferably 900: 1 or more, and particularly preferably 1000: 1 or more. The contrast ratio represents the difference in brightness of the liquid crystal display device, and the higher the contrast ratio, the clearer the image quality.
フィルムBをポジティブCプレートとした場合に組合せた構成を図1に示す。 FIG. 1 shows the combined structure when film B is a positive C plate.
フィルムBがポジティブCプレートである場合、フィルムAのNz係数に応じて、フィルムAとフィルムBの面内位相差および厚さ方向の位相差のバランスを調整することにより高いコントラスト比を得ることができる。 When the film B is a positive C plate, a high contrast ratio can be obtained by adjusting the balance between the in-plane retardation of the film A and the film B and the retardation in the thickness direction according to the Nz coefficient of the film A. it can.
フィルムBがポジティブCプレートであり、フィルムAが下記の(式12)の範囲にある場合には、フィルムAが(式13)および(式14)満たし、かつフィルムBが(式15)、および(式16)を満たすことが高いコントラスト比を得る上で好ましい。
 (式12) 0.8≦Nz≦1.2
 (式13) 120nm≦Re(550)≦170nm
 (式14) 55nm≦Rth(550)≦90nm
 (式15) Re(550)=0
 (式16) -120nm≦Rth(550)≦-70nm
When film B is a positive C plate and film A is in the range of (Equation 12) below, film A satisfies (Equation 13) and (Equation 14), and film B is (Equation 15), and It is preferable to satisfy (Expression 16) in order to obtain a high contrast ratio.
(Formula 12) 0.8 ≦ Nz ≦ 1.2
(Formula 13) 120 nm ≦ Re (550) ≦ 170 nm
(Formula 14) 55 nm ≦ Rth (550) ≦ 90 nm
(Formula 15) Re (550) = 0
(Expression 16) −120 nm ≦ Rth (550) ≦ −70 nm
さらに、フィルムBが下記の(式16')を満たすことが高いコントラスト比を得る上でより好ましい。
 (式16') -110nm≦Rth(550)≦-90nm
Furthermore, it is more preferable that the film B satisfies the following (formula 16 ′) in order to obtain a high contrast ratio.
(Formula 16 ′) −110 nm ≦ Rth (550) ≦ −90 nm
フィルムBがポジティブCプレートであり、フィルムAが下記の(式17)の範囲にある場合には、フィルムAが(式18)および(式19)を満たし、かつフィルムBが(式20)、および(式21)を満たすことが高いコントラスト比を得る上で好ましい。
 (式17) 0.6≦Nz≦0.8
 (式18) 170nm≦Re(550)≦230nm
 (式19) 15nm≦Rth(550)≦55nm
 (式20) Re(550)=0
 (式21) -70nm≦Rth(550)≦-20nm
When film B is a positive C plate and film A is in the range of (Equation 17) below, film A satisfies (Equation 18) and (Equation 19), and film B is (Equation 20), And satisfying (Equation 21) is preferable for obtaining a high contrast ratio.
(Formula 17) 0.6 ≦ Nz ≦ 0.8
(Formula 18) 170 nm ≦ Re (550) ≦ 230 nm
(Formula 19) 15 nm ≦ Rth (550) ≦ 55 nm
(Equation 20) Re (550) = 0
(Formula 21) −70 nm ≦ Rth (550) ≦ −20 nm
フィルムBがポジティブCプレートである場合、フィルムAのNz係数は、上記のように0.6≦Nz≦1.2であることが好ましいが、0.6≦Nz≦0.8であることがより好ましい。フィルムAのNz係数が0.6≦Nz≦0.8の場合には、Nz係数が小さいためより高いコントラスト比を得ることができる。 When the film B is a positive C plate, the Nz coefficient of the film A is preferably 0.6 ≦ Nz ≦ 1.2 as described above, but 0.6 ≦ Nz ≦ 0.8. More preferred. When the Nz coefficient of the film A is 0.6 ≦ Nz ≦ 0.8, a higher contrast ratio can be obtained because the Nz coefficient is small.
フィルムBがネガティブAプレートの場合、互いに吸収軸を直交させて配置した偏光板の間に、一方の偏光板の吸収軸に遅相軸を直交させてフィルムBを隣接させて配置し、さらにフィルムBと遅相軸を直交させてフィルムAを隣接させて積層させたときに斜め方向の視野角で高いコントラスト比を有する光学補償フィルムを作製することができる。入射角60°におけるコントラスト比が100:1以上であることが好ましく、さらに好ましくは300:1以上である。 In the case where the film B is a negative A plate, between the polarizing plates arranged with the absorption axes orthogonal to each other, the film B is arranged adjacent to each other with the slow axis orthogonal to the absorption axis of one polarizing plate. An optical compensation film having a high contrast ratio at an oblique viewing angle when the film A is laminated with the slow axes orthogonal to each other can be produced. The contrast ratio at an incident angle of 60 ° is preferably 100: 1 or more, more preferably 300: 1 or more.
フィルムBがネガティブAプレートである場合も、フィルムAのNz係数に応じて、フィルムAとフィルムBの面内位相差および厚さ方向の位相差のバランスを調整することにより高いコントラスト比を得ることができる。 Even when the film B is a negative A plate, a high contrast ratio is obtained by adjusting the balance between the in-plane retardation of the film A and the film B and the retardation in the thickness direction according to the Nz coefficient of the film A. Can do.
フィルムBをネガティブAプレートとした場合に組合せた構成を図2に示す。 FIG. 2 shows the combined structure when the film B is a negative A plate.
フィルムBがネガティブAプレートの場合、フィルムAが下記の(式22)および(式23)を満たし、かつフィルムBが(式24)および(式25)を満たすことが高いコントラスト比を得る上でより好ましい。
 (式22) 70nm≦Re(550)≦120nm
 (式23) 30nm≦Rth(550)≦60nm
 (式24) 70nm≦Re(550)≦120nm
 (式25) -60nm≦Rth(550)≦-30nm
When film B is a negative A plate, film A satisfies the following (formula 22) and (formula 23), and film B satisfies (formula 24) and (formula 25) to obtain a high contrast ratio. More preferred.
(Formula 22) 70 nm ≦ Re (550) ≦ 120 nm
(Formula 23) 30 nm ≦ Rth (550) ≦ 60 nm
(Formula 24) 70 nm ≦ Re (550) ≦ 120 nm
(Formula 25) −60 nm ≦ Rth (550) ≦ −30 nm
フィルムBがネガティブAプレートである場合は、特にフィルムAとフィルムBとの厚さ方向の位相差の絶対値の差が小さい場合にコントラスト比が向上する。フィルムAの厚さ方向の位相差の絶対値|RthA|とフィルムBの厚さ方向の位相差の絶対値|RthB|に関して、下記の(式26)を満たすことがより好ましい。
 (式26) -10nm≦|ARth|-|RthB|≦10nm
When the film B is a negative A plate, the contrast ratio is improved particularly when the difference in absolute value of the retardation in the thickness direction between the film A and the film B is small. Regarding the absolute value | RthA | of the retardation in the thickness direction of the film A and the absolute value | RthB | of the retardation in the thickness direction of the film B, it is more preferable to satisfy the following (formula 26).
(Formula 26) −10 nm ≦ | ARth | − | RthB | ≦ 10 nm
フィルムBとして上記のようなポジティブCプレートおよびネガティブAプレートを用いることで高いコントラスト比を有する光学補償フィルムを提供することが可能である。さらに、ポジティブCプレートをフィルムAと組み合わせることにより、特に高いコントラスト比を得ることができるため、ポジティブCプレートを用いることがより好ましい。 By using the positive C plate and the negative A plate as described above as the film B, it is possible to provide an optical compensation film having a high contrast ratio. Furthermore, since a particularly high contrast ratio can be obtained by combining the positive C plate with the film A, it is more preferable to use the positive C plate.
本発明のフィルムは斜め方向の視野角で高いコントラスト比を有しており、液晶表示装置の光学補償フィルムとして好適に用いることができる。 The film of the present invention has a high contrast ratio at a viewing angle in an oblique direction, and can be suitably used as an optical compensation film for a liquid crystal display device.
以下、本発明をさらに詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。 Examples are given below to illustrate the present invention in more detail. However, the present invention is not limited to these examples.
フィルムBに用いる共重合体の製造
<共重合体(B-1)の製造例>
マレイン酸無水物が20質量%濃度となるようにメチルイソブチルケトンに溶解させた20%マレイン酸無水物溶液と、t-ブチルパーオキシ-2-エチルヘキサノエートが2質量%となるようにメチルイソブチルケトンに希釈した2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを事前に調整し、重合に使用した。
撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2kg、スチレン24kg、メチルメタクレリレート12kg、t-ドデシルメルカプタン30g、メチルイソブチルケトン2kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて87℃まで昇温した。昇温後87℃を保持しながら、20%マレイン酸無水物溶液を1.5kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを30g添加した。20%マレイン酸無水物溶液は、そのまま1.5kg/時の分添速度を維持しながら、8.25℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で18kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B-1)を得た。得られた共重合体(B-1)をC-13NMR法により組成分析を行い、GPC装置にて重量平均分子量(Mw)の測定を行った。さらに射出成形機(東芝機械社製IS-50EPN)を用いて、シリンダー温度230℃、金型温度40℃の成形条件で縦90mm、横55mm、厚み2mmの鏡面プレートを射出成形し、ASTM D1003に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて2mm厚みの曇り度を測定した。組成分析の結果、スチレン単量体単位59.8質量%、メチルメタクリレート単量体単位29.8質量%、無水マレイン酸単量体単位10.4質量%であった。また、重合平均分子量(Mw)は、18.0万g/molおよび曇り度は0.4%であった。
Production of copolymer used for film B <Production example of copolymer (B-1)>
20% maleic anhydride solution dissolved in methyl isobutyl ketone so that maleic anhydride has a concentration of 20% by mass and methyl so that t-butylperoxy-2-ethylhexanoate becomes 2% by mass. A 2% t-butyl peroxy-2-ethylhexanoate solution diluted in isobutyl ketone was prepared in advance and used for the polymerization.
A 120 liter autoclave equipped with a stirrer was charged with 2 kg of a 20% maleic anhydride solution, 24 kg of styrene, 12 kg of methyl methacrylate, 30 g of t-dodecyl mercaptan, and 2 kg of methyl isobutyl ketone, and the gas phase part was filled with nitrogen gas. After the replacement, the temperature was raised to 87 ° C. over 40 minutes with stirring. While maintaining 87 ° C. after the temperature rise, a 20% maleic anhydride solution was added at a rate of 1.5 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 375 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 30 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a temperature rising rate of 8.25 ° C./hour, while maintaining the addition rate of 1.5 kg / hour. The addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 18 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (B-1) was obtained. The obtained copolymer (B-1) was subjected to composition analysis by the C-13 NMR method, and the weight average molecular weight (Mw) was measured by a GPC apparatus. Further, using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.), a mirror surface plate having a length of 90 mm, a width of 55 mm, and a thickness of 2 mm was injection molded under molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C. to ASTM D1003. In accordance with this standard, a haze of 2 mm thickness was measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.). As a result of the compositional analysis, they were 59.8% by mass of styrene monomer units, 29.8% by mass of methyl methacrylate monomer units, and 10.4% by mass of maleic anhydride monomer units. The polymerization average molecular weight (Mw) was 18,000 g / mol, and the haze was 0.4%.
[実施例1]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を用いて40mmΦ単軸押出機にギヤーポンプ、ポリマーフィルター「デナフィルター、目開き5μm」(長瀬産業社製)、300mm幅単層Tダイ、および引取巻取装置「タッチロールフレキシブルタイプ」(プラスチック工学研究所製)を備えたフィルム製膜機にて厚さ70μmの未延伸フィルムを成形した。得られた未延伸フィルムを一片100mmの正方形に裁断し、二軸延伸装置(東洋精機社製X61-S)により温度155℃、延伸速度2mm/sの条件にて縦方向に2.0倍の自由端一軸延伸したフィルム(a-1)を得た。フィルム(a-1)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=128nm、Re(550)=146nm、Re(650)=150nm、Rth(550)=73nm、フィルム厚み50μm、Nz係数=1.00であった。
フィルム(a-1)と同様に共重合体(B-1)を用いてフィルム製膜機にて厚さ170μmの未延伸フィルムを成形した。得られた未延伸フィルムを一片100mmの正方形に裁断し、二軸延伸装置(東洋精機社製X61-S)により温度129℃、延伸速度2mm/sの条件にて縦方向に2.0倍、横方向に2.0倍の同時二軸延伸したフィルム(b-1)を得た。フィルム(b-1)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-93nm、フィルム厚み42μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-1)とフィルム(b-1)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機(Autronic Melchers社製Conoscope)にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は945:1であった。結果を表1に示す。
[Example 1]
Using a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide to a 40mmφ single screw extruder, gear pump, polymer filter “Dena filter, mesh opening 5μm” (manufactured by Nagase Sangyo Co., Ltd.) A non-stretched film having a thickness of 70 μm was formed using a film-forming machine equipped with a 300 mm-wide single-layer T-die and a take-up winder “touch roll flexible type” (manufactured by Plastics Engineering Laboratory). The obtained unstretched film was cut into a 100 mm square, and the length was increased by 2.0 times in the longitudinal direction using a biaxial stretching apparatus (X61-S manufactured by Toyo Seiki Co., Ltd.) at a temperature of 155 ° C. and a stretching speed of 2 mm / s. A free end uniaxially stretched film (a-1) was obtained. As a result of measuring the birefringence of the film (a-1) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 128 nm, Re (550) = 146 nm, Re (650) = 150 nm, Rth (550) = 73 nm The film thickness was 50 μm, and the Nz coefficient was 1.00.
An unstretched film having a thickness of 170 μm was formed using the copolymer (B-1) in the same manner as the film (a-1) by a film casting machine. The obtained unstretched film was cut into a square of 100 mm each, and it was 2.0 times in the longitudinal direction at a temperature of 129 ° C. and a stretching speed of 2 mm / s using a biaxial stretching apparatus (X61-S manufactured by Toyo Seiki Co., Ltd.) A film (b-1) which was simultaneously biaxially stretched 2.0 times in the transverse direction was obtained. The film (b-1) was measured for birefringence with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) = − 93 nm, and film thickness was 42 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
The film (a-1) and the film (b-1) are arranged between polarizing plates arranged in the configuration shown in FIG. 1 with the polarization axes orthogonal to each other, and an incident angle of 60 degrees using a contrast measuring machine (Conoscope manufactured by Autronic Melchers). As a result of measuring the contrast ratio, the contrast ratio was 945: 1. The results are shown in Table 1.
[実施例2]
共重合体(B-1)を用いて未延伸フィルム厚さを144μmとした以外はフィルム(b-1)と同様に延伸を実施し、フィルム(b-2)を得た。フィルム(b-2)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-79nm、フィルム厚み36μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-1)とフィルム(b-2)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は507:1であった。結果を表1に示す。
[Example 2]
Stretching was carried out in the same manner as the film (b-1) except that the thickness of the unstretched film was 144 μm using the copolymer (B-1) to obtain a film (b-2). The birefringence of the film (b-2) was measured with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) = − 79 nm, and the film thickness was 36 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
The result of measuring the contrast ratio at an incident angle of 60 degrees with a contrast measuring machine by arranging the film (a-1) and the film (b-2) between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. The contrast ratio was 507: 1. The results are shown in Table 1.
[実施例3]
共重合体(B-1)を用いて未延伸フィルム厚さを212μmとした以外はフィルム(b-1)と同様に延伸を実施し、フィルム(b-3)を得た。フィルム(b-3)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-116nm、フィルム厚み53μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-1)とフィルム(b-3)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は335:1であった。結果を表1に示す。
[Example 3]
Stretching was carried out in the same manner as the film (b-1) except that the thickness of the unstretched film was changed to 212 μm using the copolymer (B-1) to obtain a film (b-3). The birefringence of the film (b-3) was measured with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) = − 116 nm, and the film thickness was 53 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
Film (a-1) and film (b-3) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 335: 1. The results are shown in Table 1.
[実施例4]
共重合体(B-1)を用いて未延伸フィルム厚さを108μmとした以外はフィルム(b-1)と同様に延伸を実施し、フィルム(b-4)を得た。フィルム(b-4)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-60nm、フィルム厚み27μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-1)とフィルム(b-4)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は179:1であった。結果を表1に示す。
[Example 4]
Stretching was carried out in the same manner as the film (b-1) except that the thickness of the unstretched film was changed to 108 μm using the copolymer (B-1) to obtain a film (b-4). The film (b-4) was measured for birefringence with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) = − 60 nm, and film thickness was 27 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
Film (a-1) and film (b-4) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 179: 1. The results are shown in Table 1.
[実施例5]
共重合体(B-1)を用いて未延伸フィルム厚さを252μmとした以外はフィルム(b-1)と同様に延伸を実施し、フィルム(b-5)を得た。フィルム(b-5)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-139nm、フィルム厚み63μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-1)とフィルム(b-5)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は108:1であった。結果を表1に示す。
[Example 5]
Stretching was carried out in the same manner as the film (b-1) except that the unstretched film thickness was changed to 252 μm using the copolymer (B-1) to obtain a film (b-5). The film (b-5) was measured for birefringence with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) =-139 nm, and film thickness 63 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
Film (a-1) and film (b-5) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 108: 1. The results are shown in Table 1.
[実施例6]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を用いて未延伸フィルム厚さを77μmとした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(a-2)を得た。フィルム(a-2)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=141nm、Re(550)=160nm、Re(650)=165nm、Rth(550)=80nm、フィルム厚み55μm、Nz係数=1.00であった。
フィルム(a-2)とフィルム(b-1)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は539:1であった。結果を表1に示す。
[Example 6]
The film was stretched in the same manner as the film (a-1) except that a 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide copolymer was used to make the unstretched film thickness 77 μm. A film (a-2) was obtained. As a result of measuring the birefringence of the film (a-2) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 141 nm, Re (550) = 160 nm, Re (650) = 165 nm, Rth (550) = 80 nm The film thickness was 55 μm and the Nz coefficient was 1.00.
Film (a-2) and film (b-1) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 539: 1. The results are shown in Table 1.
[実施例7]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を用いて未延伸フィルム厚さを60μmとした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(a-3)を得た。フィルム(a-3)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=109nm、Re(550)=124nm、Re(650)=128nm、Rth(550)=62nm、フィルム厚み43μm、Nz係数=1.00であった。
フィルム(a-3)とフィルム(b-1)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は320:1であった。結果を表1に示す。
[Example 7]
Stretching was carried out in the same manner as the film (a-1) except that the unstretched film thickness was changed to 60 μm using a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. A film (a-3) was obtained. As a result of measuring the birefringence of the film (a-3) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 109 nm, Re (550) = 124 nm, Re (650) = 128 nm, Rth (550) = 62 nm The film thickness was 43 μm and the Nz coefficient was 1.00.
Film (a-3) and film (b-1) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration shown in FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 320: 1. The results are shown in Table 1.
[実施例8]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を用いて未延伸フィルム厚さを84μmとした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(a-4)を得た。フィルム(a-4)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=153nm、Re(550)=174nm、Re(650)=179nm、Rth(550)=87nm、フィルム厚み60μm、Nz係数=1.00であった。
フィルム(a-4)とフィルム(b-1)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は222:1であった。結果を表1に示す。
[Example 8]
Stretching was carried out in the same manner as the film (a-1) except that the unstretched film thickness was 84 μm using a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. A film (a-4) was obtained. As a result of measuring the birefringence of the film (a-4) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 153 nm, Re (550) = 174 nm, Re (650) = 179 nm, Rth (550) = 87 nm The film thickness was 60 μm and the Nz coefficient was 1.00.
Film (a-4) and film (b-1) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 222: 1. The results are shown in Table 1.
[実施例9]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を用いて未延伸フィルム厚さを91μmとした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(a-5)を得た。フィルム(a-5)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=165nm、Re(550)=188nm、Re(650)=194nm、Rth(550)=94nm、フィルム厚み65μm、Nz係数=1.00であった。
フィルム(a-5)とフィルム(b-1)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は112:1であった。結果を表1に示す。
[Example 9]
Stretching was carried out in the same manner as the film (a-1) except that the unstretched film thickness was 91 μm using a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. A film (a-5) was obtained. As a result of measuring the birefringence of the film (a-5) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 165 nm, Re (550) = 188 nm, Re (650) = 194 nm, Rth (550) = 94 nm The film thickness was 65 μm and the Nz coefficient was 1.00.
Film (a-5) and film (b-1) are arranged between polarizing plates arranged in the configuration of FIG. 1 with the polarization axes orthogonal to each other, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 112: 1. The results are shown in Table 1.
[実施例10]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を塩化メチレンに溶解させ、ワイヤーバーを用いて収縮性フィルム(PPの一軸延伸フィルム)上に直接塗布して塗膜を形成した。さらに60℃で5分間乾燥させて収縮性フィルムと9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体との積層体を作製した。つぎに
二軸延伸装置(東洋精機社製X61-S)を用いて、150℃で積層体を0.8倍に収縮させると同時に、積層体の収縮方向と直行する方向に延伸速度2mm/sの条件にて2.0倍延伸させた。ついで、収縮性フィルムを剥離し、フィルム(a-6)を得た。フィルム(a-6)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=153nm、Re(550)=174nm、Re(650)=179nm、Rth(550)=43nm、フィルム厚み60μm、Nz係数=0.75であった。
共重合体(B-1)を用いて未延伸フィルム厚さを120μmとした以外はフィルム(b-1)と同様に延伸を実施し、フィルム(b-6)を得た。フィルム(b-6)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-65nm、フィルム厚み30μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-6)とフィルム(b-6)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は1020:1であった。結果を表1に示す。
[Example 10]
A copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide is dissolved in methylene chloride and applied directly onto a shrinkable film (PP uniaxially stretched film) using a wire bar. A coating film was formed. Further, it was dried at 60 ° C. for 5 minutes to produce a laminate of the shrinkable film and a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. Next, using a biaxial stretching apparatus (X61-S manufactured by Toyo Seiki Co., Ltd.), the laminate is shrunk 0.8 times at 150 ° C., and at the same time, the stretching speed is 2 mm / s in the direction perpendicular to the shrinkage direction of the laminate. The film was stretched 2.0 times under the following conditions. Subsequently, the shrinkable film was peeled off to obtain a film (a-6). As a result of measuring the birefringence of the film (a-6) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 153 nm, Re (550) = 174 nm, Re (650) = 179 nm, Rth (550) = 43 nm The film thickness was 60 μm, and the Nz coefficient was 0.75.
Stretching was carried out in the same manner as the film (b-1) except that the unstretched film thickness was changed to 120 μm using the copolymer (B-1) to obtain a film (b-6). The film (b-6) was measured for birefringence with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) = − 65 nm, and the film thickness was 30 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
Film (a-6) and film (b-6) are arranged between polarizing plates arranged in the configuration of FIG. 1 with the polarization axes orthogonal to each other, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 1020: 1. The results are shown in Table 1.
[実施例11]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を塩化メチレンに溶解させ、ワイヤーバーを用いて収縮性フィルム(PPの一軸延伸フィルム)上に直接塗布して塗膜を形成した。さらに60℃で5分間乾燥させて収縮性フィルムと9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体との積層体を作製した。つぎに
二軸延伸装置(東洋精機社製X61-S)を用いて、150℃で積層体を0.7倍に収縮させると同時に、積層体の収縮方向と直行する方向に延伸速度2mm/sの条件にて2.0倍延伸させた。ついで、収縮性フィルムを剥離し、フィルム(a-7)を得た。フィルム(a-7)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=183nm、Re(550)=208nm、Re(650)=214nm、Rth(550)=21nm、フィルム厚み72μm、Nz係数=0.60であった。
共重合体(B-1)を用いて未延伸フィルム厚さを76μmとした以外はフィルム(b-1)と同様に延伸を実施し、フィルム(b-7)を得た。フィルム(b-7)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-42nm、フィルム厚み19μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-7)とフィルム(b-7)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は1135:1であった。結果を表1に示す。
[Example 11]
A copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide is dissolved in methylene chloride and applied directly onto a shrinkable film (PP uniaxially stretched film) using a wire bar. A coating film was formed. Further, it was dried at 60 ° C. for 5 minutes to produce a laminate of the shrinkable film and a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. Next, using a biaxial stretching apparatus (X61-S manufactured by Toyo Seiki Co., Ltd.), the laminate is shrunk 0.7 times at 150 ° C., and at the same time, the stretching speed is 2 mm / s in the direction perpendicular to the shrinkage direction of the laminate. The film was stretched 2.0 times under the following conditions. Subsequently, the shrinkable film was peeled off to obtain a film (a-7). As a result of measuring the birefringence of the film (a-7) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 183 nm, Re (550) = 208 nm, Re (650) = 214 nm, Rth (550) = 21 nm The film thickness was 72 μm, and the Nz coefficient was 0.60.
Stretching was carried out in the same manner as the film (b-1) except that the unstretched film thickness was changed to 76 μm using the copolymer (B-1) to obtain a film (b-7). The film (b-7) was measured for birefringence with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) = − 42 nm, and film thickness was 19 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
Film (a-7) and film (b-7) are arranged between polarizing plates arranged in the configuration of FIG. 1 with the polarization axes orthogonal to each other, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 1135: 1. The results are shown in Table 1.
[実施例12]
共重合体(B-1)を用いて未延伸フィルム厚さを20μmとした以外はフィルム(b-1)と同様に延伸を実施し、フィルム(b-8)を得た。フィルム(b-8)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-11nm、フィルム厚み5μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-7)とフィルム(b-8)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は202:1であった。結果を表1に示す。
[Example 12]
Stretching was carried out in the same manner as the film (b-1) except that the thickness of the unstretched film was changed to 20 μm using the copolymer (B-1) to obtain a film (b-8). The birefringence of the film (b-8) was measured with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) =-11 nm, and the film thickness was 5 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
Film (a-7) and film (b-8) are arranged between polarizing plates arranged in the configuration of FIG. 1 with the polarization axes orthogonal to each other, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 202: 1. The results are shown in Table 1.
[実施例13]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を塩化メチレンに溶解させ、ワイヤーバーを用いて収縮性フィルム(PPの一軸延伸フィルム)上に直接塗布して塗膜を形成した。さらに60℃で5分間乾燥させて収縮性フィルムと9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体との積層体を作製した。つぎに
二軸延伸装置(東洋精機社製X61-S)を用いて、150℃で積層体を0.7倍に収縮させると同時に、積層体の収縮方向と直行する方向に延伸速度2mm/sの条件にて2.0倍延伸させた。ついで、収縮性フィルムを剥離し、フィルム(a-8)を得た。フィルム(a-8)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=245nm、Re(550)=278nm、Re(650)=286nm、Rth(550)=28nm、フィルム厚み97μm、Nz係数=0.60であった。
フィルム(a-8)とフィルム(b-7)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は110:1であった。結果を表1に示す。
[Example 13]
A copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide is dissolved in methylene chloride and applied directly onto a shrinkable film (PP uniaxially stretched film) using a wire bar. A coating film was formed. Further, it was dried at 60 ° C. for 5 minutes to produce a laminate of the shrinkable film and a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. Next, using a biaxial stretching apparatus (X61-S manufactured by Toyo Seiki Co., Ltd.), the laminate is shrunk 0.7 times at 150 ° C., and at the same time, the stretching speed is 2 mm / s in the direction perpendicular to the shrinkage direction of the laminate. The film was stretched 2.0 times under the following conditions. Subsequently, the shrinkable film was peeled off to obtain a film (a-8). As a result of measuring the birefringence of the film (a-8) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 245 nm, Re (550) = 278 nm, Re (650) = 286 nm, Rth (550) = 28 nm The film thickness was 97 μm, and the Nz coefficient was 0.60.
Film (a-8) and film (b-7) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration shown in FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 110: 1. The results are shown in Table 1.
[実施例14]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を用いて未延伸フィルム厚さを47μmとした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(a-9)を得た。フィルム(a-9)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=84nm、Re(550)=96nm、Re(650)=99nm、Rth(550)=48nm、フィルム厚み33μm、Nz係数=1.00であった。
共重合体(B-1)を用いて未延伸フィルム厚さを33μm、温度130℃とした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(b-9)を得た。フィルム(b-9)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=96nm、Rth(550)=-48nm、フィルム厚み23μmであった。また、屈折率はny<nz=nxの関係でありネガティブAプレートであった。
フィルム(a-9)とフィルム(b-9)を図2の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は869:1であった。結果を表1に示す。
[Example 14]
Stretching was carried out in the same manner as the film (a-1) except that the unstretched film thickness was 47 μm using a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. A film (a-9) was obtained. As a result of measuring the birefringence of the film (a-9) with a birefringence measuring device KOBRA-WR, Re (450) = 84 nm, Re (550) = 96 nm, Re (650) = 99 nm, Rth (550) = 48 nm The film thickness was 33 μm and the Nz coefficient was 1.00.
Using the copolymer (B-1), the film was stretched in the same manner as the film (a-1) except that the unstretched film thickness was 33 μm and the temperature was 130 ° C. to obtain a film (b-9). The birefringence of the film (b-9) was measured with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 96 nm, Rth (550) = − 48 nm, and the film thickness was 23 μm. Further, the refractive index was ny <nz = nx and was a negative A plate.
The result of measuring the contrast ratio at an incident angle of 60 degrees with a contrast measuring device by arranging the film (a-9) and the film (b-9) between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. The contrast ratio was 869: 1. The results are shown in Table 1.
[実施例15]
共重合体(B-1)を用いて未延伸フィルム厚さを47μm、温度130℃とした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(b-10)を得た。フィルム(b-10)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=136nm、Rth(550)=-68nm、フィルム厚み32μmであった。また、屈折率はny<nz=nxの関係でありネガティブAプレートであった。
フィルム(a-9)とフィルム(b-10)を図2の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は124:1であった。結果を表1に示す。
[Example 15]
Using the copolymer (B-1), the film was stretched in the same manner as the film (a-1) except that the unstretched film thickness was 47 μm and the temperature was 130 ° C. to obtain a film (b-10). The film (b-10) was measured for birefringence with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 136 nm, Rth (550) = − 68 nm, and the film thickness was 32 μm. Further, the refractive index was ny <nz = nx and was a negative A plate.
The result of measuring the contrast ratio at an incident angle of 60 degrees with a contrast measuring machine by placing the film (a-9) and the film (b-10) between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. The contrast ratio was 124: 1. The results are shown in Table 1.
[実施例16]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を用いて未延伸フィルム厚さを25μmとした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(a-10)を得た。フィルム(a-10)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=46nm、Re(550)=52nm、Re(650)=54nm、Rth(550)=26nm、フィルム厚み18μm、Nz係数=1.00であった。
フィルム(a-10)とフィルム(b-9)を図2の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は102:1であった。結果を表1に示す。
[Example 16]
Stretching was carried out in the same manner as the film (a-1) except that the unstretched film thickness was 25 μm using a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. A film (a-10) was obtained. As a result of measuring the birefringence of the film (a-10) with the birefringence measuring apparatus KOBRA-WR, Re (450) = 46 nm, Re (550) = 52 nm, Re (650) = 54 nm, Rth (550) = 26 nm The film thickness was 18 μm and the Nz coefficient was 1.00.
The result of measuring the contrast ratio at an incident angle of 60 degrees with a contrast measuring machine by arranging the film (a-10) and the film (b-9) between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. The contrast ratio was 102: 1. The results are shown in Table 1.
[比較例1]
共重合体(B-1)を用いて未延伸フィルム厚さを312μmとした以外はフィルム(b-1)と同様に延伸を実施し、フィルム(b-11)を得た。フィルム(b-11)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=0nm、Rth(550)=-160nm、フィルム厚み78μmであった。また、屈折率はnx=ny<nzの関係でありポジティブCプレートであった。
フィルム(a-1)とフィルム(b-11)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は100:1以下であった。結果を表1に示す。
[Comparative Example 1]
Stretching was performed in the same manner as the film (b-1) except that the unstretched film thickness was changed to 312 μm using the copolymer (B-1) to obtain a film (b-11). The film (b-11) was measured for birefringence with a birefringence measurement apparatus KOBRA-WR. As a result, Re (550) = 0 nm, Rth (550) = − 160 nm, and the film thickness was 78 μm. The refractive index was a positive C plate with a relationship of nx = ny <nz.
Film (a-1) and film (b-11) are arranged between polarizing plates arranged in the configuration of FIG. 1 with the polarization axes orthogonal to each other, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 100: 1 or less. The results are shown in Table 1.
[比較例2]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を用いて未延伸フィルム厚さを105μmとした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(a-11)を得た。フィルム(a-11)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=192nm、Re(550)=218nm、Re(650)=225nm、Rth(550)=109nm、フィルム厚み75μm、Nz係数=1.00であった。
フィルム(a-11)とフィルム(b-1)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は100:1以下であった。結果を表1に示す。
[Comparative Example 2]
Stretching was carried out in the same manner as the film (a-1), except that a 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide copolymer was used and the unstretched film thickness was changed to 105 μm. A film (a-11) was obtained. As a result of measuring the birefringence of the film (a-11) with a birefringence measuring apparatus KOBRA-WR, Re (450) = 192 nm, Re (550) = 218 nm, Re (650) = 225 nm, Rth (550) = 109 nm The film thickness was 75 μm and the Nz coefficient was 1.00.
The result of measuring the contrast ratio at an incident angle of 60 degrees with a contrast measuring device by placing the film (a-11) and the film (b-1) between the polarizing plates arranged in the configuration of FIG. The contrast ratio was 100: 1 or less. The results are shown in Table 1.
[比較例3]
9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体を塩化メチレンに溶解させ、ワイヤーバーを用いて収縮性フィルム(PPの一軸延伸フィルム)上に直接塗布して塗膜を形成した。さらに60℃で5分間乾燥させて収縮性フィルムと9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとイソソルビドの共重合体との積層体を作製した。つぎに
二軸延伸装置(東洋精機社製X61-S)を用いて、150℃で積層体を0.7倍に収縮させると同時に、積層体の収縮方向と直行する方向に延伸速度2mm/sの条件にて2.0倍延伸させた。ついで、収縮性フィルムを剥離し、フィルム(a-12)を得た。フィルム(a-12)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(450)=255nm、Re(550)=290nm、Re(650)=299nm、Rth(550)=29nm、フィルム厚み100μm、Nz係数=0.6であった。
フィルム(a-12)とフィルム(b-7)を図1の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は100:1以下であった。結果を表1に示す。
[Comparative Example 3]
A copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide is dissolved in methylene chloride and applied directly onto a shrinkable film (PP uniaxially stretched film) using a wire bar. A coating film was formed. Further, it was dried at 60 ° C. for 5 minutes to produce a laminate of the shrinkable film and a copolymer of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and isosorbide. Next, using a biaxial stretching apparatus (X61-S manufactured by Toyo Seiki Co., Ltd.), the laminate is shrunk 0.7 times at 150 ° C., and at the same time, the stretching speed is 2 mm / s in the direction perpendicular to the shrinkage direction of the laminate. The film was stretched 2.0 times under the following conditions. Subsequently, the shrinkable film was peeled off to obtain a film (a-12). As a result of measuring the birefringence of the film (a-12) with the birefringence measuring apparatus KOBRA-WR, Re (450) = 255 nm, Re (550) = 290 nm, Re (650) = 299 nm, Rth (550) = 29 nm The film thickness was 100 μm, and the Nz coefficient was 0.6.
Film (a-12) and film (b-7) are arranged between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. 1, and the contrast ratio at an incident angle of 60 degrees is measured with a contrast measuring device. The contrast ratio was 100: 1 or less. The results are shown in Table 1.
[比較例4]
共重合体(B-1)を用いて未延伸フィルム厚さを52μm、温度130℃とした以外はフィルム(a-1)と同様に延伸を実施し、フィルム(b-12)を得た。フィルム(b-12)を複屈折測定装置KOBRA-WRにて複屈折を測定した結果、Re(550)=154nm、Rth(550)=-77nm、フィルム厚み37μmであった。また、屈折率はny<nz=nxの関係でありネガティブAプレートであった。
フィルム(a-9)とフィルム(b-12)を図2の構成で互いに偏光軸を直交させて配置した偏光板の間に配置し、コントラスト測定機にて入射角60度におけるコントラスト比を測定した結果、コントラスト比は100:1以下であった。結果を表1に示す。
[Comparative Example 4]
Using the copolymer (B-1), the film was stretched in the same manner as the film (a-1) except that the unstretched film thickness was 52 μm and the temperature was 130 ° C. to obtain a film (b-12). The film (b-12) was measured for birefringence with a birefringence measuring apparatus KOBRA-WR. As a result, Re (550) = 154 nm, Rth (550) = − 77 nm, and film thickness was 37 μm. Further, the refractive index was ny <nz = nx and was a negative A plate.
The result of measuring the contrast ratio at an incident angle of 60 degrees with a contrast measuring machine by arranging the film (a-9) and the film (b-12) between polarizing plates arranged with the polarization axes orthogonal to each other in the configuration of FIG. The contrast ratio was 100: 1 or less. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

本発明の光学補償フィルムを用いれば、液晶装置の視野角を向上させる特性、すなわち広視野角における高コントラスト比の特性を有する光学補償フィルムを作製することが可能である。 By using the optical compensation film of the present invention, it is possible to produce an optical compensation film having characteristics that improve the viewing angle of a liquid crystal device, that is, characteristics of a high contrast ratio at a wide viewing angle.
本発明によれば、視野角特性に優れ、斜め方向でも高いコントラスト比を有する液晶表示装置を提供するための光学補償フィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the optical compensation film for providing the liquid crystal display device which is excellent in a viewing angle characteristic and has a high contrast ratio also in the diagonal direction can be provided.

Claims (8)

  1. (式1)~(式3)を満たすフィルムAと、(式4)および(式5)を満たすフィルムBとを積層させてなり、フィルムBが、芳香族ビニル単量体単位、不飽和ジカルボン酸無水物単量体単位、(メタ)アクリル酸エステル単量体単位からなる共重合体であることを特徴とし、
    Re(450)、Re(550)およびRe(650)は波長450nm、550nmおよび650nmにおける面内位相差、Rth(550)は波長550nmにおける厚み方向位相差を示し、
    フィルムの遅相軸方向の屈折率をnx、フィルムの進相軸方向の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルム厚さをdとしたとき、面内位相差Reは(式6)で、厚み方向位相差Rthは(式7)で定義される値である、光学補償フィルム。
     (式1) Re(450)<Re(550)<Re(650)
     (式2) 25nm≦Re(550)≦280nm
     (式3) 12nm≦Rth(550)≦95nm
     (式4) 0nm≦Re(550)≦140nm
     (式5) -140nm≦Rth(550)≦0nm
     (式6) Re=(nx-ny)×d
     (式7) Rth={(nx+ny)÷2-nz}×d
    A film A satisfying (Formula 1) to (Formula 3) and a film B satisfying (Formula 4) and (Formula 5) are laminated, and the film B is composed of an aromatic vinyl monomer unit and an unsaturated dicarboxylic acid. It is a copolymer consisting of an acid anhydride monomer unit and a (meth) acrylic acid ester monomer unit,
    Re (450), Re (550) and Re (650) are in-plane retardations at wavelengths of 450 nm, 550 nm and 650 nm, Rth (550) is a thickness direction retardation at a wavelength of 550 nm,
    When the refractive index in the slow axis direction of the film is nx, the refractive index in the fast axis direction of the film is ny, the refractive index in the thickness direction of the film is nz, and the film thickness is d, the in-plane retardation Re is In (Expression 6), the thickness direction retardation Rth is a value defined by (Expression 7).
    (Formula 1) Re (450) <Re (550) <Re (650)
    (Formula 2) 25 nm ≦ Re (550) ≦ 280 nm
    (Formula 3) 12 nm ≦ Rth (550) ≦ 95 nm
    (Formula 4) 0 nm ≦ Re (550) ≦ 140 nm
    (Formula 5) −140 nm ≦ Rth (550) ≦ 0 nm
    (Expression 6) Re = (nx−ny) × d
    (Expression 7) Rth = {(nx + ny) ÷ 2-nz} × d
  2. フィルムAのNz係数が(式8)を満たすことを特徴とし、Nz係数は(式9)で定義される値である、請求項1に記載の光学補償フィルム。
     (式8) 0.6≦Nz≦1.2
     (式9) Nz=(nx-nz)/(nx-ny)
    2. The optical compensation film according to claim 1, wherein the Nz coefficient of the film A satisfies (Equation 8), and the Nz coefficient is a value defined by (Equation 9).
    (Formula 8) 0.6 ≦ Nz ≦ 1.2
    (Formula 9) Nz = (nx−nz) / (nx−ny)
  3. フィルムBがポジティブCプレートであることを特徴とし、ポジティブCプレートは(式10)を満たすフィルムである、請求項1または2のいずれか1項に記載の光学補償フィルム。
     (式10) nx=ny<nz
    The optical compensation film according to claim 1, wherein the film B is a positive C plate, and the positive C plate is a film satisfying (Equation 10).
    (Formula 10) nx = ny <nz
  4. フィルムBがネガティブAプレートであることを特徴とし、ネガティブAプレートは(式11)を満たすフィルムである、請求項1または2のいずれか1項に記載の光学補償フィルム。
     (式11) ny<nz=nx
    The optical compensation film according to claim 1, wherein the film B is a negative A plate, and the negative A plate is a film satisfying (Equation 11).
    (Formula 11) ny <nz = nx
  5. フィルムAが(式12)、(式13)、および(式14)を満たし、かつフィルムBが(式15)、および(式16)を満たすことを特徴とする請求項3に記載の光学補償フィルム。
     (式12) 0.8≦Nz≦1.2
     (式13) 120nm≦Re(550)≦170nm
     (式14) 55nm≦Rth(550)≦90nm
     (式15) Re(550)=0
     (式16) -120nm≦Rth(550)≦-70nm
    4. The optical compensation according to claim 3, wherein the film A satisfies (Equation 12), (Equation 13), and (Equation 14), and the film B satisfies (Equation 15) and (Equation 16). the film.
    (Formula 12) 0.8 ≦ Nz ≦ 1.2
    (Formula 13) 120 nm ≦ Re (550) ≦ 170 nm
    (Formula 14) 55 nm ≦ Rth (550) ≦ 90 nm
    (Formula 15) Re (550) = 0
    (Expression 16) −120 nm ≦ Rth (550) ≦ −70 nm
  6. フィルムAが(式17)、(式18)、および(式19)を満たし、かつフィルムBが(式20)、および(式21)を満たすことを特徴とする請求項3に記載の光学補償フィルム。
     (式17) 0.6≦Nz≦0.8
     (式18) 170nm≦Re(550)≦230nm
     (式19) 15nm≦Rth(550)≦55nm
     (式20) Re(550)=0
     (式21) -70nm≦Rth(550)≦-20nm
    4. The optical compensation according to claim 3, wherein the film A satisfies (Equation 17), (Equation 18), and (Equation 19), and the film B satisfies (Equation 20) and (Equation 21). the film.
    (Formula 17) 0.6 ≦ Nz ≦ 0.8
    (Formula 18) 170 nm ≦ Re (550) ≦ 230 nm
    (Formula 19) 15 nm ≦ Rth (550) ≦ 55 nm
    (Equation 20) Re (550) = 0
    (Formula 21) −70 nm ≦ Rth (550) ≦ −20 nm
  7. フィルムAが(式22)および(式23)を満たし、かつフィルムBが(式24)および(式25)を満たすことを特徴とする請求項4に記載の光学補償フィルム。
     (式22) 70nm≦Re(550)≦120nm
     (式23) 30nm≦Rth(550)≦60nm
     (式24) 70nm≦Re(550)≦120nm
     (式25) -60nm≦Rth(550)≦-30nm
    The optical compensation film according to claim 4, wherein the film A satisfies (Formula 22) and (Formula 23), and the film B satisfies (Formula 24) and (Formula 25).
    (Formula 22) 70 nm ≦ Re (550) ≦ 120 nm
    (Formula 23) 30 nm ≦ Rth (550) ≦ 60 nm
    (Formula 24) 70 nm ≦ Re (550) ≦ 120 nm
    (Formula 25) −60 nm ≦ Rth (550) ≦ −30 nm
  8. 請求項1~7に記載の光学補償フィルムを用いた液晶表示装置 A liquid crystal display device using the optical compensation film according to any one of claims 1 to 7.
PCT/JP2017/002021 2016-06-30 2017-01-20 Optical compensation film having wide viewing angle and high contrast WO2018003154A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018524873A JP6711914B2 (en) 2016-06-30 2017-01-20 Wide viewing angle high contrast optical compensation film
CN201780040736.3A CN109416427B (en) 2016-06-30 2017-01-20 Wide-view angle high-contrast optical compensation film
KR1020197002543A KR102576933B1 (en) 2016-06-30 2017-01-20 Wide viewing angle high contrast optical compensation film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016129874 2016-06-30
JP2016-129874 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003154A1 true WO2018003154A1 (en) 2018-01-04

Family

ID=60786577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002021 WO2018003154A1 (en) 2016-06-30 2017-01-20 Optical compensation film having wide viewing angle and high contrast

Country Status (4)

Country Link
JP (1) JP6711914B2 (en)
KR (1) KR102576933B1 (en)
CN (1) CN109416427B (en)
WO (1) WO2018003154A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216998A (en) * 2007-02-06 2008-09-18 Asahi Kasei Chemicals Corp Multilayer optical film
JP2009198600A (en) * 2008-02-19 2009-09-03 Asahi Kasei E-Materials Corp Laminated optical film
WO2013039178A1 (en) * 2011-09-14 2013-03-21 三菱化学株式会社 Phase difference film, circularly polarizing plate using same, and image display device
WO2014021265A1 (en) * 2012-07-30 2014-02-06 電気化学工業株式会社 Copolymer for optical compensation film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857889B2 (en) 1988-11-04 1999-02-17 富士写真フイルム株式会社 Liquid crystal display
JP4010810B2 (en) * 1999-07-29 2007-11-21 帝人株式会社 Retardation film, retardation film composite, and liquid crystal display using the same
JP2002341320A (en) * 2001-05-15 2002-11-27 Fuji Photo Film Co Ltd Liquid crystal display device and optical laminate
KR20070059114A (en) * 2004-08-30 2007-06-11 제이에스알 가부시끼가이샤 Optical film, polarization plate and liquid crystal display
JP4856989B2 (en) * 2005-08-17 2012-01-18 富士フイルム株式会社 Optical resin film, polarizing plate and liquid crystal display device using the same
KR101197760B1 (en) 2005-08-31 2012-11-06 엘지디스플레이 주식회사 Liquid crystal display
US20090161045A1 (en) * 2006-05-01 2009-06-25 Mitsui Chemicals, Inc. Method of Compensating Wavelength Dependence of Birefringence of Optical Part, Optical Part, and Display Obtained with these
JP2009053684A (en) * 2007-07-30 2009-03-12 Fujifilm Corp Retardation film, polarizing plate, and liquid crystal display device comprising it
US8842243B2 (en) * 2011-02-01 2014-09-23 Fujifilm Corporation IPS or FFS-mode liquid-crystal display device
JP2013076982A (en) * 2011-09-14 2013-04-25 Mitsubishi Chemicals Corp Phase difference film, circularly polarizing plate using the same, and image display device
CN104345368B (en) * 2013-08-09 2018-10-16 住友化学株式会社 Elliptical polarization plate
CN104345372B (en) * 2013-08-09 2018-04-10 住友化学株式会社 Optical film
CN105705971A (en) 2013-09-03 2016-06-22 电化株式会社 Optical film copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216998A (en) * 2007-02-06 2008-09-18 Asahi Kasei Chemicals Corp Multilayer optical film
JP2009198600A (en) * 2008-02-19 2009-09-03 Asahi Kasei E-Materials Corp Laminated optical film
WO2013039178A1 (en) * 2011-09-14 2013-03-21 三菱化学株式会社 Phase difference film, circularly polarizing plate using same, and image display device
WO2014021265A1 (en) * 2012-07-30 2014-02-06 電気化学工業株式会社 Copolymer for optical compensation film

Also Published As

Publication number Publication date
CN109416427B (en) 2020-12-29
KR20190025932A (en) 2019-03-12
JP6711914B2 (en) 2020-06-17
KR102576933B1 (en) 2023-09-12
CN109416427A (en) 2019-03-01
JPWO2018003154A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US9873787B2 (en) Copolymer for improving methacrylic resin heat resistance
TW200930733A (en) Thermoplastic copolymer resin and molded body thereof for optical use
JP6568687B2 (en) Copolymer for optical compensation film
JP5245109B2 (en) Optical film
KR20130100920A (en) Fumarate diester resin for retardation film, and retardation film comprising same
KR102086326B1 (en) (diisopropyl fumarate)-(cinnamic acid derivative) copolymer, and phase difference film produced using same
JP2008216998A (en) Multilayer optical film
JP6587620B2 (en) Copolymer suitable for improving heat resistance of methacrylic resin
JP5158322B2 (en) Optical compensation film and manufacturing method thereof
JP6646445B2 (en) Copolymer for optical film
JP5343360B2 (en) Optical compensation film
JP6711914B2 (en) Wide viewing angle high contrast optical compensation film
JP2009275069A (en) Optical oriented film and image display including the same
JP6890126B2 (en) A resin composition and a film composed of the resin composition.
JP2009198600A (en) Laminated optical film
JP5664736B2 (en) Optical compensation film
JP2012032830A (en) Retardation film
JP6693109B2 (en) Fumarate-alkoxycinnamic acid copolymer and retardation film using the same
TWI642688B (en) Copolymer for optical film
JP2019049583A (en) Phase difference film and image display device
JP2015074759A (en) Trans-stilbene-maleic acid anhydride copolymer and retardation film using the same
JP2011102869A (en) Optical compensation film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197002543

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17819524

Country of ref document: EP

Kind code of ref document: A1