WO2018003113A1 - Reception device - Google Patents

Reception device Download PDF

Info

Publication number
WO2018003113A1
WO2018003113A1 PCT/JP2016/069622 JP2016069622W WO2018003113A1 WO 2018003113 A1 WO2018003113 A1 WO 2018003113A1 JP 2016069622 W JP2016069622 W JP 2016069622W WO 2018003113 A1 WO2018003113 A1 WO 2018003113A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
output
converter
output signal
signals
Prior art date
Application number
PCT/JP2016/069622
Other languages
French (fr)
Japanese (ja)
Inventor
裕翔 榊
圭佑 中村
田島 賢一
檜枝 護重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/069622 priority Critical patent/WO2018003113A1/en
Publication of WO2018003113A1 publication Critical patent/WO2018003113A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details

Definitions

  • the present invention relates to a receiving apparatus that performs signal processing by converting a plurality of received analog signals having different frequencies into digital signals.
  • the direct RF method is different from the well-known techniques of heterodyne method and direct conversion method, and does not frequency-convert the received analog signal, but directly inputs it to the AD converter to convert the analog signal into a digital signal. It is a method.
  • undersampling is a method of operating an AD converter below the Nyquist frequency to sample an analog signal and convert it into a digital signal.
  • Aliasing occurs from the Nyquist theorem, and a digital signal can be obtained by using the aliasing.
  • the direct RF undersampling system is a system combining these two, and the direct RF undersampling receiver indicates a receiver having the above system.
  • analog signals can be converted simultaneously into digital signals with a single AD converter using undersampling.
  • the frequency of the sampling signal is selected so that signals output from the AD converter do not overlap each other.
  • a wide vacant frequency region occurs between the signals output from the AD converter after undersampling. In such a case, the frequency of the sampling signal increases and the power consumption of the AD converter increases.
  • the AD converter can be operated at a frequency lower than that of the method of selecting the frequency of the sampling signal so that the bands of the signals after undersampling do not overlap each other.
  • the power consumption of the AD converter can be reduced.
  • the receiver described in Patent Document 1 has a problem that the signals cannot be separated when three or more analog signals are received.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a receiving apparatus capable of separating signals even when three or more analog signals are received.
  • a receiving apparatus includes a first AD converter and a second AD converter that sample three analog signals having different frequencies, and a low-pass filter that passes the output of the first AD converter in a low-pass manner.
  • a high pass filter that passes the output of the first AD converter in a high pass
  • a first decimation processor that makes the output signal of the low pass filter and the high pass filter a half frequency
  • a second Three analog signals having different frequencies by performing an operation using the output signal of the first thinning processor, the output signal of the second thinning processor, and the output signal of the second AD converter.
  • the sampling frequency of the second AD converter is 1 ⁇ 2 of the sampling frequency of the first AD converter, and the first AD Supply to the converter
  • the pulling signal and the sampling signal of the second AD converter have a phase difference of 90 °, and the sampling frequencies of the first AD converter and the second AD converter are overlapped with the frequency bands of the three analog signals.
  • the frequency is set so that it does not become.
  • the sampling frequency of the second AD converter is set to 1 ⁇ 2 of the sampling frequency of the first AD converter, and the sampling signal supplied to the first AD converter and the second AD converter A signal obtained by processing the output of the first AD converter with the low-pass filter and the first decimation processor and the output of the first AD converter with a 90 ° phase difference from the sampling signal of the AD converter.
  • the three signals are separated and output using the signal processed by the high-pass filter and the second thinning processor and the signal output from the second AD converter. Thereby, even when three analog signals are received, the signals can be separated.
  • FIG. FIG. 1 is a configuration diagram of a receiver to which a receiving apparatus according to this embodiment is applied.
  • the receiver shown in FIG. 1 includes an antenna 1, an analog circuit unit 2, and a signal processing unit 3.
  • the analog circuit unit 2 includes an amplifier 21, a filter 22, and a sampling circuit 23.
  • the antenna 1 is an antenna that receives a plurality of analog signals having different frequencies.
  • the analog circuit unit 2 is a circuit that processes an analog signal received by the antenna 1.
  • the signal processing unit 3 is a processing unit that performs signal processing using the output signal of the analog circuit unit 2.
  • the amplifier 21 in the analog circuit unit 2 is an amplifier that amplifies an analog signal received by the antenna 1 with a predetermined amplification factor.
  • the filter 22 is a filter that suppresses unnecessary analog signals.
  • the sampling circuit 23 is a circuit that performs processing for converting an analog signal into a digital signal, and corresponds to the receiving apparatus of the present embodiment.
  • FIG. 2 is a configuration diagram showing details of the sampling circuit 23.
  • the sampling circuit 23 includes an oscillator 101, a first power divider 102, a two-frequency divider 103, a phase shifter 104, a second power divider 105, a first AD converter 106, a low frequency band, Pass filter (hereinafter referred to as LPF) 107, first decimation processor 108, first delay unit 109, high-pass filter (hereinafter referred to as HPF) 110, second decimation processor 111, second delay unit 112, a second AD converter 113, a third delay unit 114, and a signal separation unit 115.
  • LPF Pass filter
  • HPF high-pass filter
  • the oscillator 101 is an oscillator that excites a reference signal of a sampling signal input to the first AD converter 106 and the second AD converter 113.
  • a crystal oscillator is used.
  • Oscillator 101 is connected to a first power splitter 102, it oscillates at a frequency 2f 0, and outputs an oscillation signal to the power divider 102.
  • the first power distributor 102 is a circuit that receives the signal output from the oscillator 101 and distributes the power of the signal into two. For example, a discrete power distributor is used.
  • the first power divider 102 is connected to the oscillator 101, the two-frequency divider 103, and the phase shifter 104.
  • the first power divider 102 distributes the power of the signal output from the oscillator 101 to two, and the two-frequency divider 103 and the phase shifter 104. To each output.
  • the phase shifter 104 is a circuit that delays the phase of the signal output from the first power distributor 102 by 90 ° and outputs the delayed signal. For example, a discrete phase shifter is used.
  • the phase shifter 104 is connected to the first power divider 102 and the first AD converter 106, delays the phase of the signal output by the first power divider 102 by 90 °, and the first AD converter 106. Output to.
  • the frequency divider 103 is a circuit that halves the frequency of the signal output from the first power distributor 102.
  • the two-frequency divider 103 is connected to the first power divider 102 and the second AD converter 113, halves the frequency of the signal output from the first power divider 102, and the second AD converter 113.
  • the second power distributor 105 is a circuit that distributes the power of the signal output from the filter 22 into two.
  • a discrete power distributor is used.
  • the second power distributor 105 is connected to the filter 22, the first AD converter 106, and the second AD converter 113, and distributes the power of the signal output from the filter 22 into two, and the first AD converter 106 and the second AD converter 113, respectively.
  • the first AD converter 106 is a circuit that uses the signal output from the phase shifter 104 as a sampling signal, converts the signal output from the second power distributor 105 into a digital signal using the sampling signal, and outputs the digital signal. is there.
  • an IC AD converter is used.
  • the first AD converter 106 is connected to the phase shifter 104, the second power distributor 105, the LPF 107, and the HPF 110, converts the signal output from the second power distributor 105 into a digital signal, and the LPF 107 and the HPF 110. To each output.
  • the LPF 107 is a circuit that passes a frequency band below a specific frequency in the digital signal output from the first AD converter 106 and attenuates the frequency band above the specific frequency. For example, it is configured with an FPGA logic circuit.
  • the LPF 107 is connected to the first AD converter 106 and the first decimation processor 108, and passes a signal having a low frequency among the signals output from the first AD converter 106, and the first decimation processor To 108.
  • the first decimation processor 108 is a circuit that decimates the signal output from the LPF 107.
  • the first decimation processor 108 is connected to the LPF 107 and the first delay unit 109, decimates the signal output from the LPF 107, and outputs it to the first delay unit 109.
  • the first delay unit 109 is a circuit that delays the signal output from the first decimation processor 108 and outputs the delayed signal. For example, it is configured with an FPGA logic circuit.
  • the first delay unit 109 is connected to the first decimation processor 108 and the signal separation unit 115, delays the signal output from the first decimation processor 108 in time, and outputs the delayed signal to the signal separation unit 115. .
  • the HPF 110 is a circuit that passes a frequency band of a specific frequency or higher and attenuates a frequency band of a specific frequency or lower in the digital signal output from the first AD converter 106. For example, it is configured with an FPGA logic circuit.
  • the HPF 110 is connected to the first AD converter 106 and the second decimation processor 111, and passes a signal having a high frequency among the signals output from the first AD converter 106, and the second decimation processor To 111.
  • the second decimation processor 111 is a circuit that decimates the signal output from the HPF 110. For example, it is configured with an FPGA logic circuit.
  • the second decimation processor 111 is connected to the HPF 110 and the second delay unit 112, decimates the signal output from the HPF 110, and outputs the signal to the second delay unit 112.
  • the second delay unit 112 is a circuit that delays the signal output from the second decimation processor 111 and outputs the delayed signal. For example, it is configured with an FPGA logic circuit.
  • the second delay unit 112 is connected to the second decimation processor 111 and the signal separation unit 115, delays the signal output from the second decimation processor 111 in time, and outputs the delayed signal to the signal separation unit 115.
  • the second AD converter 113 uses the signal output from the frequency divider 103 as a sampling signal, converts the signal output from the second power distributor 105 into a digital signal using the sampling signal, and outputs the digital signal It is. For example, an IC AD converter is used.
  • the second AD converter 113 is connected to the frequency divider 103, the second power distributor 105, and the third delay device 114, and the signal output from the frequency divider 103 is used as a sampling signal. Is used to convert the signal output from the second power distributor 105 into a digital signal and output it to the third delay unit 114.
  • the third delay unit 114 is a circuit that delays the signal output from the second AD converter 113 and outputs the delayed signal. For example, it is configured with an FPGA logic circuit.
  • the third delay unit 114 is connected to the second AD converter 113 and the signal separation unit 115, delays the signal output from the second AD converter 113 in time, and outputs the delayed signal to the signal separation unit 115.
  • FIG. 3 is a configuration diagram of the signal separation unit 115.
  • the signal separation unit 115 includes a phase shifter 201, an adder 202, and a separator 203.
  • the phase shifter 201 is a circuit that delays the phase of the signal output from the first delay unit 109 by 90 ° and outputs the delayed signal. For example, it is configured with an FPGA logic circuit.
  • the phase shifter 201 is connected to the first delay unit 109, the adder 202, and the signal processing unit 3, delays the phase of the signal output from the first delay unit 109 by 90 °, and adds the adder 202 and the signal processing unit 3. Output to.
  • the adder 202 is a circuit that adds the signals output from the third delay device 114 and the phase shifter 201.
  • the adder 202 adds the signals output from the third delay unit 114 and the phase shifter 201 and outputs the result to the separator 203.
  • the separator 203 is a circuit that separates the signals output from the second delay unit 112 and the adder 202.
  • it is configured with an FPGA logic circuit.
  • the separator 203 separates the signal using the signals output from the second delay unit 112 and the adder 202 and outputs the separated signal to the signal processing unit 3.
  • FIG. 4 is a configuration diagram illustrating an example of the separator 203.
  • the separator 203 includes a phase shifter 301, a subtracter 302, and an adder 303.
  • the phase shifter 301 is a circuit that delays the phase of the signal output from the second delay unit 112 by 90 ° and outputs the delayed signal.
  • the subtractor 302 is a circuit that subtracts the output signal of the phase shifter 301 and the signal output from the adder 202 to obtain the output 1 of the separator 203.
  • the adder 303 is a circuit that adds the output signal of the phase shifter 301 and the signal output from the adder 202 to output 2 of the separator 203.
  • FIG. 5 shows the phase of the signal.
  • 5B shows a signal delayed by 90 ° with respect to the phase of the signal shown in FIG. 5A
  • FIG. 5C shows a signal delayed by 180 °
  • FIG. 5D shows a signal delayed by 270 °.
  • the second power distributor 105 distributes the power of the signal output from the filter 22 into two, and outputs the signal to the first AD converter 106 and the second AD converter 113.
  • An example of a signal input to the second power distributor 105 is shown in FIG.
  • the signals input to the second power distributor 105 are three signals having different frequencies from those of the signal 1, the signal 2, and the signal 3. Further, the signal 1, the signal 2, and the signal 3 exist between 0 to 1 / 2f 0 , 1 / 2f 0 to f 0 , and f 0 to 3 / 2f 0 , respectively. That is, the sampling frequency of the first AD converter 106 and the second AD converter 113 is set to a frequency that does not overlap with the bands of the signal 1, the signal 2, and the signal 3.
  • the Oscillator 101 outputs a signal of the frequency 2f 0.
  • the first power distributor 102 divides the power of the signal output from the oscillator 101 into two, and outputs the signal to the two-frequency divider 103 and the phase shifter 104.
  • the phase shifter 104 delays the phase of the signal output from the oscillator 101 by 90 °, and outputs the signal to the first AD converter 106.
  • the first AD converter 106 operates with the signal having the frequency 2f 0 output from the phase shifter 104, samples the signal 1 and the signal 2 among the output signals of the second power distributor 105, and outputs the signal 3. Undersampling is performed, and signals are output to the LPF 107 and the HPF 110.
  • An output signal of the first AD converter 106 is shown in FIG. Among the output signals of the first AD converter 106, the phases of the signals 1 and 2 are delayed by 90 ° compared to FIG. 6, and the phase of the signal 3 is delayed by 270 °.
  • the LPF 107 passes a signal in the range of 0 to 1 / 2f 0 among the signals output from the first AD converter 106 and outputs the signal to the first decimation processor 108.
  • the output signal of the LPF 107 is shown in FIG.
  • the first decimation processor 108 decimates the output signal of the LPF 107 with a decimation factor of 2, and outputs a signal to the first delay unit 109.
  • the output signal of the LPF 107 is a digital signal having a time period of 1 / (2f 0 ).
  • the first decimation processor 108 operating with the decimation factor 2 extracts and outputs one of the two digital signals from the digital signal output from the LPF 107.
  • the output signal of the first decimation processor 108 is a digital signal with a time period of 1 / f 0 .
  • the HPF 110 passes the signal in the range of 1 / 2f 0 to f 0 among the signals output from the first AD converter 106 and outputs the signal to the first thinning processor 108.
  • the output signal of the HPF 110 is shown in FIG.
  • the second decimation processor 111 decimates the output signal of the HPF 110 with a decimation factor of 2, and outputs a signal to the second delay unit 112.
  • the output signal of the HPF 110 is a digital signal having a time period of 1 / (2f 0 ).
  • the second decimation processor 111 operating with the decimation factor 2 extracts and outputs one of the two digital signals from the digital signal output from the HPF 110.
  • the output signal of the second decimation processor 111 is a digital signal with a time period of 1 / f 0 .
  • a signal existing between 1 / 2f 0 and f 0 is frequency-converted by the second decimation processor 111 from 0 to 1 / 2f 0 .
  • the output signal of the second thinning processor 111 is shown in FIG.
  • the frequency divider 103 divides the frequency 2f 0 signal output from the first power divider 102 by 2 and outputs the signal to the second AD converter 113.
  • the second AD converter 113 operates with the signal of the frequency f 0 output from the frequency divider 103, samples the signal 1 out of the output signal of the second power divider 105, and outputs the signal 2 and the signal 3. Is undersampled and a signal is output to the third delay unit 114.
  • An output signal of the second AD converter 113 is shown in FIG.
  • the phase of the output signal of the second AD converter 113 is the same for all signals compared to FIG.
  • the signals input from the first delay unit 109, the second delay unit 112, and the third delay unit 114 to the signal separation unit 115 do not coincide with each other in time. Don't be. Therefore, the delay amounts of the first delay unit 109, the second delay unit 112, and the third delay unit 114 are determined so that the signals input to the signal separation unit 115 coincide with each other in time. Therefore, the delay amounts of the first delay device 109, the second delay device 112, and the third delay device 114 are not the same.
  • the signals output from the first delay unit 109, the second delay unit 112, and the third delay unit 114 to the signal separation unit 115 are the same as those in FIGS. 8, 10, and 11, respectively.
  • the phase shifter 201 delays the phase of the output signal of the first delay unit 109 by 90 °, and outputs a signal to the adder 202 and the signal processing unit 3.
  • the output signal of the phase shifter 201 is shown in FIG.
  • the phase of the signal 1 is delayed by 180 ° compared to FIG.
  • the adder 202 adds the output signals of the third delay unit 114 and the phase shifter 201 and outputs a signal to the separator 203.
  • the signal 1 that is the output signal of the phase shifter 201 is 180 degrees out of phase with the signal 1 that is the output signal of the third delay device 114.
  • the separator 203 separates signals using the output signals of the second delay unit 112 and the adder 202 shown in FIGS. 10 and 13, respectively, and outputs a signal to the signal processing unit 3. Signal separation is performed using other well known techniques including Weber architecture or Hartley architecture.
  • a signal 2 is output from the output 1 of the separator 203 shown in FIG. 4 and a signal 3 is output from the output 2.
  • the output 1 and output 2 signals of the separator 203 are shown in FIGS. 14 and 15, respectively.
  • three signals having different frequencies can be separated and output to the signal processing unit 3.
  • the signal 2 and the signal 3 are 180 degrees out of phase with respect to the signal 1, but this is because the signal processing unit 3 rotates the phase of the signal 1 by 180 degrees. It can be demodulated. Further, the direction of the signal 2 in FIG. 14 is left and right inverted as compared with FIG. 6, but this can also be restored by the signal processing unit 3 and demodulated.
  • phase shifter 201 may be a 270 ° phase shifter. In that case, the same effect can be obtained by changing the adder 202 to a subtracter.
  • the signal 2 is output from the output 1 of the separator 203 and the signal 3 is output from the output 2, but the output 1 is separated so that the signal 3 is output and the signal 2 is output from the output 2.
  • the vessel 203 may be configured. That is, the signal output by replacing the subtracter 302 and the adder 303 shown in FIG. 4 is reversed.
  • the first AD converter and the second AD converter that sample three analog signals having different frequencies, and the output of the first AD converter.
  • the low-pass filter that passes the low-pass signal, the high-pass filter that passes the output of the first AD converter high-pass, and the output signals of the low-pass filter and the high-pass filter are 1 ⁇ 2 the frequency. Calculation is performed using the first thinning processor and the second thinning processor, the output signal of the first thinning processor, the output signal of the second thinning processor, and the output signal of the second AD converter.
  • a signal separation unit that separates and outputs three signals corresponding to three analog signals having different frequencies
  • the sampling frequency of the second AD converter is set to 1 / of the sampling frequency of the first AD converter. 2 and the second
  • the sampling signal supplied to the AD converter and the sampling signal of the second AD converter have a phase difference of 90 °, and the sampling frequencies of the first AD converter and the second AD converter are set to three Since the frequency is set so as not to overlap with the frequency band of the analog signal, the signal can be separated even when three analog signals are received.
  • the signal separation unit includes a phase shifter that shifts the output of the first decimation processor by 90 °, an output signal of the phase shifter, and the second AD converter. And an adder that adds the output signals of the second decimation processor and an output signal of the adder, and outputs two separated signals, the output of the phase shifter Since the signal and the two separated signals of the separator are output as three signals, the signals can be separated even when three analog signals are received.
  • the signal separation unit includes a phase shifter that shifts the output of the first decimation processor by 270 °, the output signal of the phase shifter, and the second AD conversion.
  • a subtractor for subtracting the output signal of the counter, and a separator for inputting the output signal of the second decimation processor and the output signal of the subtractor and outputting two separated signals Since the output signal and the two separated signals of the separator are output as three signals, the signals can be separated even when three analog signals are received.
  • the first delay device that delays the output of the first decimation processor, the second delay device that delays the output of the second decimation processor, A third delay unit that delays the output of the second AD converter, and outputs the delay amounts of the first delay unit, the second delay unit, and the third delay unit from the first decimation processor The signal output from the second delay unit and the signal output from the second AD converter are input to the signal separation unit at the same timing.
  • the signals to be processed are the same in time, and there is no need to match the timing in the signal separation unit.
  • Embodiment 2 FIG. In the first embodiment, the configuration in which three analog signals having different frequencies input to the second power distributor 105 are separated has been described. In the second embodiment, a configuration in which four analog signals having different frequencies input to the second power distributor 105 are separated will be described.
  • FIG. 16 is a configuration diagram of the sampling circuit 23a of the second embodiment.
  • FIG. 17 is a configuration diagram of the signal separation unit 115a shown in FIG.
  • the configuration of the receiver to which the receiving apparatus of the second embodiment is applied is the same as that of the first embodiment shown in FIG.
  • the first LPF 116 is provided between the second power distributor 105 and the second AD converter 113.
  • the first LPF 116 is a circuit that passes a frequency band equal to or lower than a specific frequency and reflects a frequency band equal to or higher than a specific frequency among signals output from the second power distributor 105.
  • it is mounted using a chip inductor, a chip capacitor, or the like.
  • the first LPF 116 is connected to the second power divider 105 and the second AD converter 113, and passes a frequency band equal to or lower than a specific frequency among the signals output from the second power divider 105, Output to the second AD converter 113. Since the configuration other than the signal separation unit 115a in the sampling circuit 23a is the same as that of the first embodiment shown in FIG. 2, the same reference numerals are given to the corresponding portions, and the description thereof is omitted. In the second embodiment, the LPF 107 is described as the second LPF 107 in order to distinguish it from the first LPF 116.
  • the adder 202 of the first embodiment is deleted, and a second adder 401, a first subtracter 402, a second subtractor 403, a first An adder 404 and a third subtracter 405 are provided.
  • the second adder 401 is a circuit that adds the signal output from the phase shifter 201 and the signal output from the third subtractor 405. For example, it is configured with an FPGA logic circuit.
  • the second adder 401 is connected to the phase shifter 201, the third subtracter 405, and the signal processing unit 3, and adds the signal output from the phase shifter 201 and the signal output from the third subtractor 405. Output to the signal processing unit 3.
  • the first subtractor 402 is a circuit that subtracts the signal output from the third delay unit 114 and the signal output from the separator 203.
  • the first subtractor 402 is connected to the third delay unit 114, the separator 203, the first adder 404 and the signal processing unit 3, and the signal output from the third delay unit 114 and the separator 203 output The obtained signals are subtracted and output to the first adder 404 and the signal processing unit 3.
  • the second subtractor 403 is a circuit that subtracts the signal output from the third delay unit 114 and the signal output from the separator 203.
  • the second subtractor 403 is connected to the third delay unit 114, the separator 203, the first adder 404, and the signal processing unit 3, and the signal output from the third delay unit 114 and the separator 203 output The obtained signals are subtracted and output to the first adder 404 and the signal processing unit 3.
  • the first adder 404 is a circuit that adds the signal output from the first subtractor 402 and the signal output from the second subtractor 403. For example, it is configured with an FPGA logic circuit.
  • the first adder 404 is connected to the first subtractor 402, the second subtractor 403, and the third subtracter 405, and the signal output from the first subtractor 402 and the second subtractor 403 are connected to each other.
  • the output signals are added and output to the third subtractor 405.
  • the third subtracter 405 is a circuit that subtracts the signal output from the third delay unit 114 and the signal output from the first adder 404.
  • the third subtractor 405 is connected to the third delay unit 114, the first adder 404, the second adder 401, and the signal processing unit 3, and the third delay unit 114 and the first adder 404 are connected. Is subtracted and output to the second adder 401 and the signal processing unit 3.
  • the second power distributor 105 distributes the power of the signal output from the filter 22 into two, and outputs the signal to the first AD converter 106 and the first LPF 116.
  • An example of a signal input to the second power distributor 105 is shown in FIG.
  • Signals input to the second power distributor 105 are four signals having frequencies different from those of the signal 1, the signal 2, the signal 3, and the signal 4.
  • signal 1, signal 2, signal 3, and signal 4 exist between 0 to 1 / 2f 0 , 1 / 2f 0 to f 0 , f 0 to 3 / 2f 0 , and 3 / 2f 0 to 2f 0 , respectively. To do.
  • the first AD converter 106 operates on the signal of the frequency 2f 0 output from the phase shifter 104, samples the signal 1 and the signal 2 among the output signals of the second power divider 105, The signal 4 is undersampled, and a signal is output to the second LPF 107 and the HPF 110.
  • An output signal of the first AD converter 106 is shown in FIG. Among the output signals of the first AD converter 106, the phases of the signals 1 and 2 are delayed by 90 ° compared to FIG. 18, and the phases of the signals 3 and 4 are delayed by 270 °.
  • the second LPF 107 passes a signal in the range of 0 to 1 / 2f 0 among the signals output from the first AD converter 106 and outputs the signal to the first decimation processor 108.
  • the output signal of the second LPF 107 is shown in FIG.
  • the first thinning processor 108 performs the same operation as in the first embodiment.
  • the HPF 110 performs the same operation as in the first embodiment.
  • the output signal of the HPF 110 is shown in FIG.
  • the second thinning processor 111 performs the same operation as in the first embodiment.
  • the output signal of the second thinning processor 111 is shown in FIG.
  • the first LPF 116 passes a signal in the range of 0 to 3 / 2f 0 among the signals output from the second power distributor 105 and outputs the signal to the second AD converter 113.
  • the output signal of the first LPF 116 is shown in FIG.
  • the second AD converter 113 operates with the signal of the frequency f 0 output from the frequency divider 103, samples signal 1 out of the output signal of the second power divider 105, and outputs signal 2 and signal 3. Is undersampled and a signal is output to the third delay unit 114.
  • the output signal of the second AD converter 113 is shown in FIG.
  • the phase of the output signal of the second AD converter 113 is the same for all signals compared to FIG.
  • the first delay device 109, the second delay device 112, and the third delay device 114 operate in the same manner as in the first embodiment.
  • the phase shifter 201 delays the phase of the output signal of the first delay unit 109 by 90 ° and outputs a signal to the second adder 401.
  • the output signal of the phase shifter 201 is shown in FIG.
  • the phase of signal 1 is 180 ° behind that of FIG. 18, and signal 4 is in phase.
  • the separator 203 performs signal separation using the output signals of the second delay unit 112 and the third delay unit 114 shown in FIGS. 22 and 24, respectively, and performs the first subtractor 402 and the second subtractor 402.
  • a signal is output to the subtracter 403.
  • Signal separation is performed using other well-known techniques, including Weber architecture or Hartley architecture.
  • the signal 1 and the signal 2 are output from the output 1 of the separator 203 shown in FIG. 17, and the signal 1 and the signal 3 are output from the output 2.
  • the output 1 and output 2 signals of the separator 203 are shown in FIGS. 26 and 27, respectively.
  • the first subtractor 402 subtracts the output signal of the third delay unit 114 shown in FIGS. 24 and 26 and the separated signal of the output 1 in the separator 203, and uses the output signal as a signal processing unit. 3 and the first adder 404.
  • the output signal of the first subtractor 402 is shown in FIG.
  • the second subtracter 403 performs subtraction between the output signal of the third delay unit 114 shown in FIGS. 24 and 27 and the output 2 separation signal in the separator 203, and outputs the output to the signal processing unit 3. And a signal is output to the first adder 404.
  • the output signal of the second subtractor 403 is shown in FIG.
  • the first adder 404 adds the output signal of the first subtractor 402 and the output signal of the second subtractor 403 shown in FIGS. 28 and 29, respectively, and sends the signal to the third subtracter 405. Output.
  • the output signal of the first adder 404 is shown in FIG.
  • the third subtracter 405 subtracts the output signal of the third delay unit 114 and the output signal of the first adder 404 shown in FIGS. 24 and 30, respectively, and outputs the output signal to the signal processing unit 3. Output to.
  • the output signal of the third subtractor 405 is shown in FIG.
  • the second adder 401 adds the output signal of the phase shifter 201 and the output signal of the third subtractor 405 shown in FIGS. 25 and 31 respectively, and outputs the output signal to the signal processing unit 3. .
  • the output signal of the second adder 401 is shown in FIG.
  • phase shifter 201 may be a 270 ° phase shifter. In that case, the same effect can be obtained by changing the second adder 401 to a subtracter.
  • the first LPF 116 may be changed to a notch filter for removing one specific signal.
  • the notch filter when used, the band of the signal 4 is blocked.
  • the first AD converter that samples four analog signals having different frequencies and the first low-pass signal that allows the four analog signals to pass through the low-frequency signal.
  • the sampling frequency of the second AD converter is set to 1 ⁇ 2 of the sampling frequency of the first AD converter.
  • the sampling signal of the converter is set to a phase difference of 90 °, and the sampling frequencies of the first AD converter and the second AD converter are set to frequencies that do not overlap with the frequency bands of the four analog signals. Therefore, even when four analog signals are received, the signals can be separated.
  • the signal separation unit includes a phase shifter that shifts the output of the first decimation processor by 90 °, the output signal of the second decimation processor, and the second signal.
  • a separator that inputs the output signal of the AD converter 113 and outputs the first and second separated signals, and a first that subtracts the first separated signal and the output signal of the second AD converter.
  • a subtracter, a second subtractor for subtracting the second separated signal and the output signal of the second AD converter, and the output signal of the first subtracter and the output signal of the second subtractor are added.
  • the first adder, the third subtracter for subtracting the output signal of the first adder and the output signal of the second AD converter, the output signal of the phase shifter and the third subtractor A second adder for adding the output signal, an output signal of the second adder, an output signal of the first subtractor, an output signal of the second subtractor, 3 of the output signal of the subtractor, since the output as four signal, it is possible to separate the signals even in the case of receiving the four analog signals.
  • Embodiment 3 FIG. In the third embodiment, a configuration in which an analog signal received by the antenna 1 is frequency-converted and then output to the sampling circuit 23 will be described.
  • FIG. 33 is a configuration diagram of a receiver to which the receiving apparatus of the third embodiment is applied.
  • the receiver includes an antenna 1, an analog circuit unit 2, and a signal processing unit 3, and the analog circuit unit 2 includes an amplifier 21, a filter 22, a sampling circuit 23, and a frequency converter 24.
  • the third embodiment is different from the first embodiment in that a frequency converter 24 is provided between the filter 22 and the sampling circuit 23.
  • the frequency converter 24 is a circuit that converts the frequency of the analog signal output from the filter 22 to a low frequency.
  • it is composed of a mixer, a filter, and an IC PLL.
  • the frequency converter 24 converts the analog signal output from the filter 22 into a low frequency and outputs the signal to the sampling circuit 23.
  • the configuration of the sampling circuit 23 is the same as that of the first embodiment shown in FIG. 2 except that the signal input to the second power distributor 105 is the output signal of the frequency converter 24. This is different from the first form.
  • the receiving frequency is generally 1 GHz to 2 GHz.
  • the frequency converter 24 lowers it in advance from several MHz to several tens of MHz, and then the signal is input to the sampling circuit 23. As a result, the cost of the AD converter can be reduced.
  • the frequency converter 24 is provided for the configuration of the first embodiment, but may be applied to the configuration of the second embodiment.
  • the three analog signals having different frequencies are used as input signals, and the frequency converter is provided that converts the frequency of the input signal to a low frequency to be an output signal, Since the first AD converter and the second AD converter sample the output signal of the frequency converter, the frequency of the target signal can be lowered, so that the cost of the receiving apparatus can be reduced. Can be achieved.
  • the receiving apparatus relates to a configuration for performing signal processing by converting a plurality of analog signals having different frequencies into digital signals, and is suitable for use in a multi-channel receiver.

Abstract

In the present invention the phase of a sampling signal of a first A/D converter (106) is offset 90°. A second A/D converter (113) operates at ½ the sampling frequency. The output from the first A/D converter (106) passes through a LPF (107) and a first thinning processor (108) and passes through a HPF (110) and a second thinning processor (111), and is input to a signal separation unit (115). The output from the second A/D converter (113) is input to the signal separation unit (115). On the basis of these input signals the signal separation unit (115) separates out signals corresponding to three analog signals having different frequencies.

Description

受信装置Receiver
 本発明は、受信した周波数の異なる複数のアナログ信号をデジタル信号に変換して信号処理を行う受信装置に関するものである。 The present invention relates to a receiving apparatus that performs signal processing by converting a plurality of received analog signals having different frequencies into digital signals.
 複数のアナログ信号を同時に受信する受信機を小型化する方法として、ダイレクトRFアンダーサンプリング方式を用いて一つのアナログデジタル変換器(以下、AD変換器という)で受信する方法がある。
 ここで、ダイレクトRF方式とは、周知の技術であるヘテロダイン方式やダイレクトコンバージョン方式と異なり、受信したアナログ信号を周波数変換せず、直接、AD変換器に入力してアナログ信号をデジタル信号に変換する方式の事である。一方、アンダーサンプリングとは、ナイキスト周波数以下でAD変換器を動作させ、アナログ信号をサンプリングしデジタル信号に変換する方式の事である。ナイキストの定理よりエイリアシングが発生し、それを利用することによりデジタル信号を得ることができる。
 ダイレクトRFアンダーサンプリング方式とは、これら二つを組み合わせた方式であり、ダイレクトRFアンダーサンプリング受信機とは、前記の方式を備えた受信機の事を示す。
As a method for reducing the size of a receiver that simultaneously receives a plurality of analog signals, there is a method of receiving a single analog-digital converter (hereinafter referred to as an AD converter) using a direct RF undersampling method.
Here, the direct RF method is different from the well-known techniques of heterodyne method and direct conversion method, and does not frequency-convert the received analog signal, but directly inputs it to the AD converter to convert the analog signal into a digital signal. It is a method. On the other hand, undersampling is a method of operating an AD converter below the Nyquist frequency to sample an analog signal and convert it into a digital signal. Aliasing occurs from the Nyquist theorem, and a digital signal can be obtained by using the aliasing.
The direct RF undersampling system is a system combining these two, and the direct RF undersampling receiver indicates a receiver having the above system.
 アンダーサンプリングを用いて一つのAD変換器で複数のアナログ信号を同時にデジタル信号に変換することができる。通常、アンダーサンプリング後、AD変換器から出力する信号が互いに重複しないようにサンプリング信号の周波数を選定している。AD変換器に入力するアナログ信号の周波数によっては、アンダーサンプリング後、AD変換器から出力する信号間に広い空き周波数領域が生じる。このような場合、サンプリング信号の周波数が高くなり、AD変換器の消費電力が増加する。 ア ン ダ ー Multiple analog signals can be converted simultaneously into digital signals with a single AD converter using undersampling. Usually, after undersampling, the frequency of the sampling signal is selected so that signals output from the AD converter do not overlap each other. Depending on the frequency of the analog signal input to the AD converter, a wide vacant frequency region occurs between the signals output from the AD converter after undersampling. In such a case, the frequency of the sampling signal increases and the power consumption of the AD converter increases.
 例えば、特許文献1に記載された従来の受信機では、同じ周波数をもち、所定の位相によりオフセットされる二つのサンプリング信号で二つのAD変換器をそれぞれ動作させ、アナログ信号をアンダーサンプリングしてデジタル信号に変換した後に、一般的にイメージリジェクションミクサとして利用されるウェーバーアーキテクチャーまたはハートレーアーキテクチャーを含む、その他の周知の技術を用いて受信した信号を分離する。 For example, in the conventional receiver described in Patent Document 1, two AD converters are operated with two sampling signals having the same frequency and offset by a predetermined phase, and analog signals are undersampled to perform digital sampling. After conversion to a signal, the received signal is separated using other well-known techniques, including Weber architecture or Hartley architecture, commonly used as an image rejection mixer.
特表2011-526132号公報Special table 2011-526132 gazette
 上記特許文献1に記載された従来の受信機では、アンダーサンプリング後の信号の帯域が互いに重複しないようにサンプリング信号の周波数を選定する方式と比較して低い周波数でAD変換器を動作させることが可能となり、AD変換器の消費電力を小さくすることが可能となる。しかしながら、上記特許文献1に記載された受信機では、三つ以上のアナログ信号を受信した場合に信号を分離することができないという問題があった。 In the conventional receiver described in Patent Document 1, the AD converter can be operated at a frequency lower than that of the method of selecting the frequency of the sampling signal so that the bands of the signals after undersampling do not overlap each other. Thus, the power consumption of the AD converter can be reduced. However, the receiver described in Patent Document 1 has a problem that the signals cannot be separated when three or more analog signals are received.
 この発明は、かかる問題を解決するためになされたもので、三つ以上のアナログ信号を受信した場合でも信号を分離することのできる受信装置を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a receiving apparatus capable of separating signals even when three or more analog signals are received.
 この発明に係る受信装置は、周波数の異なる三つのアナログ信号をサンプリングする第1のAD変換器及び第2のAD変換器と、第1のAD変換器の出力を低域通過させる低域通過フィルタと、第1のAD変換器の出力を高域通過させる高域通過フィルタと、低域通過フィルタ及び高域通過フィルタの出力信号を1/2の周波数とする第1の間引き処理器及び第2の間引き処理器と、第1の間引き処理器の出力信号と第2の間引き処理器の出力信号と第2のAD変換器の出力信号とを用いて演算を行い、周波数の異なる三つのアナログ信号に対応した三つの信号を分離して出力する信号分離部とを備え、第2のAD変換器のサンプリング周波数を第1のAD変換器のサンプリング周波数の1/2とし、かつ、第1のAD変換器に供給するサンプリング信号と第2のAD変換器のサンプリング信号とを90゜の位相差とすると共に、第1のAD変換器及び第2のAD変換器のサンプリング周波数を、三つのアナログ信号の周波数帯域と重ならない周波数に設定するようにしたものである。 A receiving apparatus according to the present invention includes a first AD converter and a second AD converter that sample three analog signals having different frequencies, and a low-pass filter that passes the output of the first AD converter in a low-pass manner. A high pass filter that passes the output of the first AD converter in a high pass, a first decimation processor that makes the output signal of the low pass filter and the high pass filter a half frequency, and a second Three analog signals having different frequencies by performing an operation using the output signal of the first thinning processor, the output signal of the second thinning processor, and the output signal of the second AD converter. And a signal separation unit that separates and outputs three signals corresponding to the second AD converter, the sampling frequency of the second AD converter is ½ of the sampling frequency of the first AD converter, and the first AD Supply to the converter The pulling signal and the sampling signal of the second AD converter have a phase difference of 90 °, and the sampling frequencies of the first AD converter and the second AD converter are overlapped with the frequency bands of the three analog signals. The frequency is set so that it does not become.
 この発明に係る受信装置は、第2のAD変換器のサンプリング周波数を第1のAD変換器のサンプリング周波数の1/2とし、かつ、第1のAD変換器に供給するサンプリング信号と第2のAD変換器のサンプリング信号とを90゜の位相差とし、第1のAD変換器の出力を低域通過フィルタ及び第1の間引き処理器で処理した信号と、第1のAD変換器の出力を高域通過フィルタ及び第2の間引き処理器で処理した信号と、第2のAD変換器から出力した信号とを用いて三つの信号を分離して出力するようにしたものである。これにより、三つのアナログ信号を受信した場合でも信号を分離することができる。 In the receiving apparatus according to the present invention, the sampling frequency of the second AD converter is set to ½ of the sampling frequency of the first AD converter, and the sampling signal supplied to the first AD converter and the second AD converter A signal obtained by processing the output of the first AD converter with the low-pass filter and the first decimation processor and the output of the first AD converter with a 90 ° phase difference from the sampling signal of the AD converter The three signals are separated and output using the signal processed by the high-pass filter and the second thinning processor and the signal output from the second AD converter. Thereby, even when three analog signals are received, the signals can be separated.
この発明の実施の形態1の受信装置が適用される受信機の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the receiver with which the receiver of Embodiment 1 of this invention is applied. この発明の実施の形態1の受信装置の構成図である。It is a block diagram of the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における信号分離部の一例を示す構成図である。It is a block diagram which shows an example of the signal separation part in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における分離器の一例を示す構成図である。It is a block diagram which shows an example of the separator in the receiver of Embodiment 1 of this invention. 図5A~図5Dは、信号の位相を定義する説明図である。5A to 5D are explanatory diagrams for defining the phase of the signal. この発明の実施の形態1の受信装置における第2の電力分配器に入力する信号の一例を示す説明図である。It is explanatory drawing which shows an example of the signal input into the 2nd power divider | distributor in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における第1のAD変換器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 1st AD converter in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置におけるLPFの出力信号を示す説明図である。It is explanatory drawing which shows the output signal of LPF in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置におけるHPFの出力信号を示す説明図である。It is explanatory drawing which shows the output signal of HPF in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における第2の間引き処理器の出力信号を示す図である。It is a figure which shows the output signal of the 2nd thinning-out processor in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における第2のAD変換器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 2nd AD converter in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における移相器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the phase shifter in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における加算器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the adder in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における分離器の出力1の信号を示す説明図である。It is explanatory drawing which shows the signal of the output 1 of the separator in the receiver of Embodiment 1 of this invention. この発明の実施の形態1の受信装置における分離器203の出力2の信号を示す説明図である。It is explanatory drawing which shows the signal of the output 2 of the separator 203 in the receiver of Embodiment 1 of this invention. この発明の実施の形態2の受信装置の構成図である。It is a block diagram of the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における信号分離部の一例を示す構成図である。It is a block diagram which shows an example of the signal separation part in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第2の電力分配器に入力する信号の一例を示す説明図である。It is explanatory drawing which shows an example of the signal input into the 2nd power divider | distributor in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第1のAD変換器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 1st AD converter in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第2のLPFの出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 2nd LPF in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置におけるHPFの出力信号を示す説明図である。It is explanatory drawing which shows the output signal of HPF in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第2の間引き処理器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 2nd thinning processor in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第1のLPFの出力信号を示す説明図である。It is explanatory drawing which shows the output signal of 1st LPF in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第2のAD変換器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 2nd AD converter in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における移相器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the phase shifter in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における分離器の出力1の信号を示す説明図である。It is explanatory drawing which shows the signal of the output 1 of the separator in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における分離器の出力2の信号を示す説明図である。It is explanatory drawing which shows the signal of the output 2 of the separator in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第1の減算器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 1st subtractor in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第2の減算器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 2nd subtractor in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第1の加算器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 1st adder in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第3の減算器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 3rd subtractor in the receiver of Embodiment 2 of this invention. この発明の実施の形態2の受信装置における第2の加算器の出力信号を示す説明図である。It is explanatory drawing which shows the output signal of the 2nd adder in the receiver of Embodiment 2 of this invention. この発明の実施の形態3の受信装置が適用される受信機の一例を示す構成図である。It is a block diagram which shows an example of the receiver with which the receiver of Embodiment 3 of this invention is applied.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本実施の形態による受信装置を適用する受信機の構成図である。
 図1に示す受信機は、アンテナ1、アナログ回路部2、信号処理部3を備え、アナログ回路部2は、増幅器21、フィルタ22、サンプリング回路23を備える。アンテナ1は、周波数の異なる複数のアナログ信号を受信するアンテナである。アナログ回路部2は、アンテナ1で受信したアナログ信号の処理を行う回路である。信号処理部3は、アナログ回路部2の出力信号を用いて信号処理を行う処理部である。アナログ回路部2における増幅器21は、アンテナ1で受信したアナログ信号を所定の増幅率で増幅する増幅器である。フィルタ22は、不要なアナログ信号を抑圧するフィルタである。サンプリング回路23はアナログ信号をデジタル信号に変換する処理を行う回路であり、本実施の形態の受信装置に相当する。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a receiver to which a receiving apparatus according to this embodiment is applied.
The receiver shown in FIG. 1 includes an antenna 1, an analog circuit unit 2, and a signal processing unit 3. The analog circuit unit 2 includes an amplifier 21, a filter 22, and a sampling circuit 23. The antenna 1 is an antenna that receives a plurality of analog signals having different frequencies. The analog circuit unit 2 is a circuit that processes an analog signal received by the antenna 1. The signal processing unit 3 is a processing unit that performs signal processing using the output signal of the analog circuit unit 2. The amplifier 21 in the analog circuit unit 2 is an amplifier that amplifies an analog signal received by the antenna 1 with a predetermined amplification factor. The filter 22 is a filter that suppresses unnecessary analog signals. The sampling circuit 23 is a circuit that performs processing for converting an analog signal into a digital signal, and corresponds to the receiving apparatus of the present embodiment.
 図2は、サンプリング回路23の詳細を示す構成図である。
 図示のように、サンプリング回路23は、発振器101、第1の電力分配器102、2分周器103、移相器104、第2の電力分配器105、第1のAD変換器106、低域通過フィルタ(以下、LPFという)107、第1の間引き処理器108、第1の遅延器109、高域通過フィルタ(以下、HPFという)110、第2の間引き処理器111、第2の遅延器112、第2のAD変換器113、第3の遅延器114、信号分離部115を備える。
FIG. 2 is a configuration diagram showing details of the sampling circuit 23.
As illustrated, the sampling circuit 23 includes an oscillator 101, a first power divider 102, a two-frequency divider 103, a phase shifter 104, a second power divider 105, a first AD converter 106, a low frequency band, Pass filter (hereinafter referred to as LPF) 107, first decimation processor 108, first delay unit 109, high-pass filter (hereinafter referred to as HPF) 110, second decimation processor 111, second delay unit 112, a second AD converter 113, a third delay unit 114, and a signal separation unit 115.
 発振器101は、第1のAD変換器106と第2のAD変換器113に入力するサンプリング信号の基準信号を励振する発振器である。例えば、水晶発振器が用いられる。発振器101は、第1の電力分配器102に接続され、周波数2fにて発振し、発振した信号を電力分配器102へ出力する。第1の電力分配器102は、発振器101が出力した信号が入力され、その信号の電力を2分配する回路である。例えば、ディスクリートの電力分配器が用いられる。第1の電力分配器102は、発振器101と2分周器103と移相器104とに接続され、発振器101が出力した信号の電力を2分配し、2分周器103と移相器104へそれぞれ出力する。移相器104は、第1の電力分配器102が出力した信号の位相を90°遅らせて出力する回路である。例えば、ディスクリートの移相器が用いられる。移相器104は、第1の電力分配器102と第1のAD変換器106に接続され、第1の電力分配器102が出力した信号の位相を90°遅らせ、第1のAD変換器106へ出力する。 The oscillator 101 is an oscillator that excites a reference signal of a sampling signal input to the first AD converter 106 and the second AD converter 113. For example, a crystal oscillator is used. Oscillator 101 is connected to a first power splitter 102, it oscillates at a frequency 2f 0, and outputs an oscillation signal to the power divider 102. The first power distributor 102 is a circuit that receives the signal output from the oscillator 101 and distributes the power of the signal into two. For example, a discrete power distributor is used. The first power divider 102 is connected to the oscillator 101, the two-frequency divider 103, and the phase shifter 104. The first power divider 102 distributes the power of the signal output from the oscillator 101 to two, and the two-frequency divider 103 and the phase shifter 104. To each output. The phase shifter 104 is a circuit that delays the phase of the signal output from the first power distributor 102 by 90 ° and outputs the delayed signal. For example, a discrete phase shifter is used. The phase shifter 104 is connected to the first power divider 102 and the first AD converter 106, delays the phase of the signal output by the first power divider 102 by 90 °, and the first AD converter 106. Output to.
 2分周器103は、第1の電力分配器102が出力した信号の周波数を半分にする回路である。例えば、ICの分周器が用いられる。2分周器103は、第1の電力分配器102と第2のAD変換器113に接続され、第1の電力分配器102が出力した信号の周波数を半分にし、第2のAD変換器113へ出力する。第2の電力分配器105は、フィルタ22が出力した信号の電力を2分配する回路である。例えば、ディスクリートの電力分配器が用いられる。第2の電力分配器105は、フィルタ22と第1のAD変換器106と第2のAD変換器113に接続され、フィルタ22が出力した信号の電力を2分配し、第1のAD変換器106と第2のAD変換器113へそれぞれ出力する。 The frequency divider 103 is a circuit that halves the frequency of the signal output from the first power distributor 102. For example, an IC frequency divider is used. The two-frequency divider 103 is connected to the first power divider 102 and the second AD converter 113, halves the frequency of the signal output from the first power divider 102, and the second AD converter 113. Output to. The second power distributor 105 is a circuit that distributes the power of the signal output from the filter 22 into two. For example, a discrete power distributor is used. The second power distributor 105 is connected to the filter 22, the first AD converter 106, and the second AD converter 113, and distributes the power of the signal output from the filter 22 into two, and the first AD converter 106 and the second AD converter 113, respectively.
 第1のAD変換器106は、移相器104が出力した信号をサンプリング信号とし、そのサンプリング信号を用いて第2の電力分配器105が出力した信号をデジタル信号に変換して出力する回路である。例えば、ICのAD変換器が用いられる。第1のAD変換器106は、移相器104と第2の電力分配器105とLPF107とHPF110に接続され、第2の電力分配器105が出力した信号をデジタル信号に変換し、LPF107とHPF110へそれぞれ出力する。 The first AD converter 106 is a circuit that uses the signal output from the phase shifter 104 as a sampling signal, converts the signal output from the second power distributor 105 into a digital signal using the sampling signal, and outputs the digital signal. is there. For example, an IC AD converter is used. The first AD converter 106 is connected to the phase shifter 104, the second power distributor 105, the LPF 107, and the HPF 110, converts the signal output from the second power distributor 105 into a digital signal, and the LPF 107 and the HPF 110. To each output.
 LPF107は、第1のAD変換器106が出力したデジタル信号の内、特定の周波数以下の周波数帯域を通過させ、特定の周波数以上の周波数帯域を減衰させる回路である。例えば、FPGAの論理回路で構成される。LPF107は、第1のAD変換器106と第1の間引き処理器108に接続され、第1のAD変換器106で出力した信号の内、周波数の低い信号を通過させ、第1の間引き処理器108へ出力する。第1の間引き処理器108は、LPF107が出力した信号を間引く回路である。例えば、FPGAの論理回路で構成される。第1の間引き処理器108は、LPF107と第1の遅延器109に接続され、LPF107が出力した信号を間引き、第1の遅延器109へ出力する。 The LPF 107 is a circuit that passes a frequency band below a specific frequency in the digital signal output from the first AD converter 106 and attenuates the frequency band above the specific frequency. For example, it is configured with an FPGA logic circuit. The LPF 107 is connected to the first AD converter 106 and the first decimation processor 108, and passes a signal having a low frequency among the signals output from the first AD converter 106, and the first decimation processor To 108. The first decimation processor 108 is a circuit that decimates the signal output from the LPF 107. For example, it is configured with an FPGA logic circuit. The first decimation processor 108 is connected to the LPF 107 and the first delay unit 109, decimates the signal output from the LPF 107, and outputs it to the first delay unit 109.
 第1の遅延器109は、第1の間引き処理器108が出力した信号を時間的に遅延させて出力する回路である。例えば、FPGAの論理回路で構成される。第1の遅延器109は、第1の間引き処理器108と信号分離部115とに接続され、第1の間引き処理器108が出力した信号を時間的に遅延させ、信号分離部115へ出力する。 The first delay unit 109 is a circuit that delays the signal output from the first decimation processor 108 and outputs the delayed signal. For example, it is configured with an FPGA logic circuit. The first delay unit 109 is connected to the first decimation processor 108 and the signal separation unit 115, delays the signal output from the first decimation processor 108 in time, and outputs the delayed signal to the signal separation unit 115. .
 HPF110は、第1のAD変換器106が出力したデジタル信号の内、特定の周波数以上の周波数帯域を通過させ、特定の周波数以下の周波数帯域を減衰させる回路である。例えば、FPGAの論理回路で構成される。HPF110は、第1のAD変換器106と第2の間引き処理器111に接続され、第1のAD変換器106が出力した信号の内、周波数の高い信号を通過させ、第2の間引き処理器111へ出力する。第2の間引き処理器111は、HPF110が出力した信号を間引く回路である。例えば、FPGAの論理回路で構成される。第2の間引き処理器111は、HPF110と第2の遅延器112に接続され、HPF110が出力した信号を間引き、第2の遅延器112へ出力する。 The HPF 110 is a circuit that passes a frequency band of a specific frequency or higher and attenuates a frequency band of a specific frequency or lower in the digital signal output from the first AD converter 106. For example, it is configured with an FPGA logic circuit. The HPF 110 is connected to the first AD converter 106 and the second decimation processor 111, and passes a signal having a high frequency among the signals output from the first AD converter 106, and the second decimation processor To 111. The second decimation processor 111 is a circuit that decimates the signal output from the HPF 110. For example, it is configured with an FPGA logic circuit. The second decimation processor 111 is connected to the HPF 110 and the second delay unit 112, decimates the signal output from the HPF 110, and outputs the signal to the second delay unit 112.
 第2の遅延器112は、第2の間引き処理器111が出力した信号を時間的に遅延させて出力する回路である。例えば、FPGAの論理回路で構成される。第2の遅延器112は、第2の間引き処理器111と信号分離部115に接続され、第2の間引き処理器111が出力した信号を時間的に遅延させ、信号分離部115へ出力する。第2のAD変換器113は、2分周器103が出力した信号をサンプリング信号とし、そのサンプリング信号を用いて第2の電力分配器105が出力した信号をデジタル信号に変換して出力する回路である。例えば、ICのAD変換器が用いられる。第2のAD変換器113は、2分周器103と第2の電力分配器105と第3の遅延器114に接続され、2分周器103が出力した信号をサンプリング信号とし、そのサンプリング信号を用いて第2の電力分配器105が出力した信号をデジタル信号に変換し、第3の遅延器114へ出力する。第3の遅延器114は、第2のAD変換器113が出力した信号を時間的に遅延させて出力する回路である。例えば、FPGAの論理回路で構成される。第3の遅延器114は、第2のAD変換器113と信号分離部115に接続され、第2のAD変換器113が出力した信号を時間的に遅延させ、信号分離部115へ出力する。 The second delay unit 112 is a circuit that delays the signal output from the second decimation processor 111 and outputs the delayed signal. For example, it is configured with an FPGA logic circuit. The second delay unit 112 is connected to the second decimation processor 111 and the signal separation unit 115, delays the signal output from the second decimation processor 111 in time, and outputs the delayed signal to the signal separation unit 115. The second AD converter 113 uses the signal output from the frequency divider 103 as a sampling signal, converts the signal output from the second power distributor 105 into a digital signal using the sampling signal, and outputs the digital signal It is. For example, an IC AD converter is used. The second AD converter 113 is connected to the frequency divider 103, the second power distributor 105, and the third delay device 114, and the signal output from the frequency divider 103 is used as a sampling signal. Is used to convert the signal output from the second power distributor 105 into a digital signal and output it to the third delay unit 114. The third delay unit 114 is a circuit that delays the signal output from the second AD converter 113 and outputs the delayed signal. For example, it is configured with an FPGA logic circuit. The third delay unit 114 is connected to the second AD converter 113 and the signal separation unit 115, delays the signal output from the second AD converter 113 in time, and outputs the delayed signal to the signal separation unit 115.
 図3は、信号分離部115の構成図である。信号分離部115は、移相器201、加算器202、分離器203を備える。移相器201は、第1の遅延器109が出力した信号の位相を90°遅らせて出力する回路である。例えば、FPGAの論理回路で構成される。移相器201は、第1の遅延器109と加算器202と信号処理部3に接続され、第1の遅延器109が出力した信号の位相を90°遅らせ、加算器202及び信号処理部3へ出力する。加算器202は、第3の遅延器114と移相器201が出力した信号を加算する回路である。例えば、FPGAの論理回路で構成される。加算器202は、第3の遅延器114と移相器201が出力した信号を加算し、分離器203へ出力する。分離器203は、第2の遅延器112及び加算器202が出力した信号を分離する回路である。例えば、FPGAの論理回路で構成される。分離器203は、第2の遅延器112と加算器202が出力した信号を用いて信号を分離し、信号処理部3へ出力する。 FIG. 3 is a configuration diagram of the signal separation unit 115. The signal separation unit 115 includes a phase shifter 201, an adder 202, and a separator 203. The phase shifter 201 is a circuit that delays the phase of the signal output from the first delay unit 109 by 90 ° and outputs the delayed signal. For example, it is configured with an FPGA logic circuit. The phase shifter 201 is connected to the first delay unit 109, the adder 202, and the signal processing unit 3, delays the phase of the signal output from the first delay unit 109 by 90 °, and adds the adder 202 and the signal processing unit 3. Output to. The adder 202 is a circuit that adds the signals output from the third delay device 114 and the phase shifter 201. For example, it is configured with an FPGA logic circuit. The adder 202 adds the signals output from the third delay unit 114 and the phase shifter 201 and outputs the result to the separator 203. The separator 203 is a circuit that separates the signals output from the second delay unit 112 and the adder 202. For example, it is configured with an FPGA logic circuit. The separator 203 separates the signal using the signals output from the second delay unit 112 and the adder 202 and outputs the separated signal to the signal processing unit 3.
 図4は、分離器203の一例を示す構成図である。分離器203は、移相器301、減算器302、加算器303を備える。移相器301は第2の遅延器112が出力した信号の位相を90゜遅らせて出力する回路である。減算器302は移相器301の出力信号と加算器202が出力した信号との減算を行い、分離器203の出力1とする回路である。加算器303は、移相器301の出力信号と加算器202が出力した信号とを加算し、分離器203の出力2とする回路である。 FIG. 4 is a configuration diagram illustrating an example of the separator 203. The separator 203 includes a phase shifter 301, a subtracter 302, and an adder 303. The phase shifter 301 is a circuit that delays the phase of the signal output from the second delay unit 112 by 90 ° and outputs the delayed signal. The subtractor 302 is a circuit that subtracts the output signal of the phase shifter 301 and the signal output from the adder 202 to obtain the output 1 of the separator 203. The adder 303 is a circuit that adds the output signal of the phase shifter 301 and the signal output from the adder 202 to output 2 of the separator 203.
 次に、実施の形態1の受信装置におけるサンプリング回路23の動作を説明する。
 図5は、信号の位相を示している。図5Aで示す信号の位相を基準として、位相が90°遅れた信号を図5Bで、位相が180°遅れた信号を図5Cで、位相が270°遅れた信号を図5Dで示す。
Next, the operation of the sampling circuit 23 in the receiving apparatus according to the first embodiment will be described.
FIG. 5 shows the phase of the signal. 5B shows a signal delayed by 90 ° with respect to the phase of the signal shown in FIG. 5A, FIG. 5C shows a signal delayed by 180 °, and FIG. 5D shows a signal delayed by 270 °.
 第2の電力分配器105は、フィルタ22が出力した信号の電力を2分配し、第1のAD変換器106及び第2のAD変換器113に信号を出力する。第2の電力分配器105に入力する信号の一例を図6に示す。第2の電力分配器105に入力する信号は、信号1、信号2、信号3と周波数の異なる三つの信号とする。また、信号1、信号2、信号3は、それぞれ0から1/2f、1/2fからf、fから3/2fの間に存在する。すなわち、第1のAD変換器106と第2のAD変換器113のサンプリング周波数は、信号1、信号2、信号3の帯域とは重ならない周波数に設定されている。 The second power distributor 105 distributes the power of the signal output from the filter 22 into two, and outputs the signal to the first AD converter 106 and the second AD converter 113. An example of a signal input to the second power distributor 105 is shown in FIG. The signals input to the second power distributor 105 are three signals having different frequencies from those of the signal 1, the signal 2, and the signal 3. Further, the signal 1, the signal 2, and the signal 3 exist between 0 to 1 / 2f 0 , 1 / 2f 0 to f 0 , and f 0 to 3 / 2f 0 , respectively. That is, the sampling frequency of the first AD converter 106 and the second AD converter 113 is set to a frequency that does not overlap with the bands of the signal 1, the signal 2, and the signal 3.
 発振器101は、周波数2fの信号を出力する。第1の電力分配器102は、発振器101が出力した信号の電力を2分配し、2分周器103及び移相器104へ信号を出力する。移相器104は、発振器101が出力した信号の位相を90°遅らせ、第1のAD変換器106へ信号を出力する。第1のAD変換器106は、移相器104が出力した周波数2fの信号で動作し、第2の電力分配器105の出力信号の内、信号1及び信号2をサンプリングし、信号3をアンダーサンプリングし、LPF107及びHPF110へ信号を出力する。第1のAD変換器106の出力信号を図7に示す。第1のAD変換器106の出力信号の内、信号1及び信号2の位相は図6と比較して90°遅れており、信号3の位相は270°遅れている。 Oscillator 101 outputs a signal of the frequency 2f 0. The first power distributor 102 divides the power of the signal output from the oscillator 101 into two, and outputs the signal to the two-frequency divider 103 and the phase shifter 104. The phase shifter 104 delays the phase of the signal output from the oscillator 101 by 90 °, and outputs the signal to the first AD converter 106. The first AD converter 106 operates with the signal having the frequency 2f 0 output from the phase shifter 104, samples the signal 1 and the signal 2 among the output signals of the second power distributor 105, and outputs the signal 3. Undersampling is performed, and signals are output to the LPF 107 and the HPF 110. An output signal of the first AD converter 106 is shown in FIG. Among the output signals of the first AD converter 106, the phases of the signals 1 and 2 are delayed by 90 ° compared to FIG. 6, and the phase of the signal 3 is delayed by 270 °.
 LPF107は、第1のAD変換器106が出力した信号の内、0から1/2fの範囲の信号を通過させ、第1の間引き処理器108へ出力する。LPF107の出力信号を図8に示す。第1の間引き処理器108は、間引き係数2でLPF107の出力信号を間引き、第1の遅延器109へ信号を出力する。LPF107の出力信号は1/(2f)の時間周期のデジタル信号である。間引き係数2で動作する第1の間引き処理器108は、LPF107から出力されたデジタル信号において2点の内1点のデジタル信号を抽出して出力する。第1の間引き処理器108の出力信号は1/fの時間周期のデジタル信号となる。 The LPF 107 passes a signal in the range of 0 to 1 / 2f 0 among the signals output from the first AD converter 106 and outputs the signal to the first decimation processor 108. The output signal of the LPF 107 is shown in FIG. The first decimation processor 108 decimates the output signal of the LPF 107 with a decimation factor of 2, and outputs a signal to the first delay unit 109. The output signal of the LPF 107 is a digital signal having a time period of 1 / (2f 0 ). The first decimation processor 108 operating with the decimation factor 2 extracts and outputs one of the two digital signals from the digital signal output from the LPF 107. The output signal of the first decimation processor 108 is a digital signal with a time period of 1 / f 0 .
 HPF110は、第1のAD変換器106が出力した信号の内、1/2fからfの範囲の信号を通過させ、第1の間引き処理器108へ出力する。HPF110の出力信号を図9に示す。第2の間引き処理器111は、間引き係数2でHPF110の出力信号を間引き、第2の遅延器112へ信号を出力する。HPF110の出力信号は1/(2f)の時間周期のデジタル信号である。間引き係数2で動作する第2の間引き処理器111は、HPF110から出力されたデジタル信号において、2点の内1点のデジタル信号を抽出して出力する。第2の間引き処理器111の出力信号は1/fの時間周期のデジタル信号となる。1/2fからfの間に存在している信号は、第2の間引き処理器111により0から1/2f内に周波数変換される。第2の間引き処理器111の出力信号を図10に示す。 The HPF 110 passes the signal in the range of 1 / 2f 0 to f 0 among the signals output from the first AD converter 106 and outputs the signal to the first thinning processor 108. The output signal of the HPF 110 is shown in FIG. The second decimation processor 111 decimates the output signal of the HPF 110 with a decimation factor of 2, and outputs a signal to the second delay unit 112. The output signal of the HPF 110 is a digital signal having a time period of 1 / (2f 0 ). The second decimation processor 111 operating with the decimation factor 2 extracts and outputs one of the two digital signals from the digital signal output from the HPF 110. The output signal of the second decimation processor 111 is a digital signal with a time period of 1 / f 0 . A signal existing between 1 / 2f 0 and f 0 is frequency-converted by the second decimation processor 111 from 0 to 1 / 2f 0 . The output signal of the second thinning processor 111 is shown in FIG.
 2分周器103は、第1の電力分配器102が出力した周波数2fの信号を2分周し、第2のAD変換器113へ信号を出力する。第2のAD変換器113は、2分周器103が出力した周波数fの信号で動作し、第2の電力分配器105の出力信号の内、信号1をサンプリングし、信号2及び信号3をアンダーサンプリングし、第3の遅延器114へ信号を出力する。第2のAD変換器113の出力信号を図11に示す。第2のAD変換器113の出力信号の位相は、図6と比較していずれの信号も位相は等しい。 The frequency divider 103 divides the frequency 2f 0 signal output from the first power divider 102 by 2 and outputs the signal to the second AD converter 113. The second AD converter 113 operates with the signal of the frequency f 0 output from the frequency divider 103, samples the signal 1 out of the output signal of the second power divider 105, and outputs the signal 2 and the signal 3. Is undersampled and a signal is output to the third delay unit 114. An output signal of the second AD converter 113 is shown in FIG. The phase of the output signal of the second AD converter 113 is the same for all signals compared to FIG.
 信号分離部115で信号を分離するためには,第1の遅延器109、第2の遅延器112、第3の遅延器114から信号分離部115へ入力する信号が時間的に一致しなければならない。そこで、信号分離部115へ入力する信号が時間的に一致するよう、第1の遅延器109、第2の遅延器112、第3の遅延器114の遅延量を決定する。そのため、第1の遅延器109、第2の遅延器112、第3の遅延器114の遅延量はそれぞれ同一ではない。第1の遅延器109、第2の遅延器112、第3の遅延器114から信号分離部115へ出力する信号は、それぞれ、図8、図10、図11と等しい。 In order to separate the signals by the signal separation unit 115, the signals input from the first delay unit 109, the second delay unit 112, and the third delay unit 114 to the signal separation unit 115 do not coincide with each other in time. Don't be. Therefore, the delay amounts of the first delay unit 109, the second delay unit 112, and the third delay unit 114 are determined so that the signals input to the signal separation unit 115 coincide with each other in time. Therefore, the delay amounts of the first delay device 109, the second delay device 112, and the third delay device 114 are not the same. The signals output from the first delay unit 109, the second delay unit 112, and the third delay unit 114 to the signal separation unit 115 are the same as those in FIGS. 8, 10, and 11, respectively.
 次に、実施の形態1の受信装置における信号分離部115の動作を説明する。
 移相器201は、第1の遅延器109の出力信号の位相を90°遅らせ、加算器202及び信号処理部3へ信号を出力する。移相器201の出力信号を図12に示す。信号1の位相は図6と比較して180°遅れている。加算器202は、第3の遅延器114及び移相器201の出力信号を加算し、分離器203へ信号を出力する。移相器201の出力信号である信号1は、第3の遅延器114の出力信号である信号1と比較して位相が180°遅れている。そのため、移相器201の出力信号と第3の遅延器114の出力信号を加算器202で加算すると信号1は打ち消され、信号2及び信号3が加算器202から出力する。加算器202の出力信号を図13に示す。
Next, the operation of signal separation section 115 in the receiving apparatus of Embodiment 1 will be described.
The phase shifter 201 delays the phase of the output signal of the first delay unit 109 by 90 °, and outputs a signal to the adder 202 and the signal processing unit 3. The output signal of the phase shifter 201 is shown in FIG. The phase of the signal 1 is delayed by 180 ° compared to FIG. The adder 202 adds the output signals of the third delay unit 114 and the phase shifter 201 and outputs a signal to the separator 203. The signal 1 that is the output signal of the phase shifter 201 is 180 degrees out of phase with the signal 1 that is the output signal of the third delay device 114. Therefore, when the output signal of the phase shifter 201 and the output signal of the third delay unit 114 are added by the adder 202, the signal 1 is canceled and the signal 2 and the signal 3 are output from the adder 202. The output signal of the adder 202 is shown in FIG.
 分離器203は、図10及び図13でそれぞれ示した第2の遅延器112及び加算器202の出力信号を用いて、信号の分離を行い信号処理部3へ信号を出力する。信号の分離は、ウェーバーアーキテクチャーまたはハートレーアーキテクチャーを含むその他の周知の技術を用いて実行される。図4で示した分離器203の出力1から信号2、出力2から信号3が出力する。分離器203の出力1及び出力2の信号をそれぞれ図14及び図15で示す。 The separator 203 separates signals using the output signals of the second delay unit 112 and the adder 202 shown in FIGS. 10 and 13, respectively, and outputs a signal to the signal processing unit 3. Signal separation is performed using other well known techniques including Weber architecture or Hartley architecture. A signal 2 is output from the output 1 of the separator 203 shown in FIG. 4 and a signal 3 is output from the output 2. The output 1 and output 2 signals of the separator 203 are shown in FIGS. 14 and 15, respectively.
 図12、図14、図15の結果より、実施の形態1によれば、周波数の異なる三つの信号を分離し、信号処理部3へ出力することができる。なお、これらの図に示すように、信号1と比較して信号2及び信号3は位相が180°異なっているが、これは、信号処理部3において信号1の位相を180°回転させることにより復調することができる。また、図14中の信号2の向きは図6と比べると左右反転したままであるが、これも信号処理部3で波形の左右を戻すことができ、復調することができる。 12, 14, and 15, according to the first embodiment, three signals having different frequencies can be separated and output to the signal processing unit 3. As shown in these figures, the signal 2 and the signal 3 are 180 degrees out of phase with respect to the signal 1, but this is because the signal processing unit 3 rotates the phase of the signal 1 by 180 degrees. It can be demodulated. Further, the direction of the signal 2 in FIG. 14 is left and right inverted as compared with FIG. 6, but this can also be restored by the signal processing unit 3 and demodulated.
 また、移相器201は、270°移相器としてもよい。その場合は、加算器202を減算器に変更することにより同様の効果を得ることができる。 Further, the phase shifter 201 may be a 270 ° phase shifter. In that case, the same effect can be obtained by changing the adder 202 to a subtracter.
 さらに、実施の形態1では、例として、分離器203の出力1から信号2、出力2から信号3を出力しているが、出力1から信号3、出力2から信号2を出力するように分離器203を構成してもよい。すなわち、図4で示した減算器302と加算器303を入れ替えることにより出力される信号が逆となる。 Further, in the first embodiment, as an example, the signal 2 is output from the output 1 of the separator 203 and the signal 3 is output from the output 2, but the output 1 is separated so that the signal 3 is output and the signal 2 is output from the output 2. The vessel 203 may be configured. That is, the signal output by replacing the subtracter 302 and the adder 303 shown in FIG. 4 is reversed.
 以上説明したように、実施の形態1の受信装置によれば、周波数の異なる三つのアナログ信号をサンプリングする第1のAD変換器及び第2のAD変換器と、第1のAD変換器の出力を低域通過させる低域通過フィルタと、第1のAD変換器の出力を高域通過させる高域通過フィルタと、低域通過フィルタ及び高域通過フィルタの出力信号を1/2の周波数とする第1の間引き処理器及び第2の間引き処理器と、第1の間引き処理器の出力信号と第2の間引き処理器の出力信号と第2のAD変換器の出力信号とを用いて演算を行い、周波数の異なる三つのアナログ信号に対応した三つの信号を分離して出力する信号分離部とを備え、第2のAD変換器のサンプリング周波数を第1のAD変換器のサンプリング周波数の1/2とし、かつ、第1のAD変換器に供給するサンプリング信号と第2のAD変換器のサンプリング信号とを90゜の位相差とすると共に、第1のAD変換器及び第2のAD変換器のサンプリング周波数を、三つのアナログ信号の周波数帯域と重ならない周波数に設定するようにしたので、三つのアナログ信号を受信した場合でも信号を分離することができる。 As described above, according to the receiving apparatus of the first embodiment, the first AD converter and the second AD converter that sample three analog signals having different frequencies, and the output of the first AD converter. The low-pass filter that passes the low-pass signal, the high-pass filter that passes the output of the first AD converter high-pass, and the output signals of the low-pass filter and the high-pass filter are ½ the frequency. Calculation is performed using the first thinning processor and the second thinning processor, the output signal of the first thinning processor, the output signal of the second thinning processor, and the output signal of the second AD converter. And a signal separation unit that separates and outputs three signals corresponding to three analog signals having different frequencies, and the sampling frequency of the second AD converter is set to 1 / of the sampling frequency of the first AD converter. 2 and the second The sampling signal supplied to the AD converter and the sampling signal of the second AD converter have a phase difference of 90 °, and the sampling frequencies of the first AD converter and the second AD converter are set to three Since the frequency is set so as not to overlap with the frequency band of the analog signal, the signal can be separated even when three analog signals are received.
 また、実施の形態1の受信装置によれば、信号分離部は、第1の間引き処理器の出力を90゜移相する移相器と、移相器の出力信号と第2のAD変換器の出力信号とを加算する加算器と、第2の間引き処理器の出力信号と加算器の出力信号とを入力して、二つの分離信号を出力する分離器とを備え、移相器の出力信号と分離器の二つの分離信号とを三つの信号として出力するようにしたので、三つのアナログ信号を受信した場合でも信号を分離することができる。 Further, according to the receiving apparatus of the first embodiment, the signal separation unit includes a phase shifter that shifts the output of the first decimation processor by 90 °, an output signal of the phase shifter, and the second AD converter. And an adder that adds the output signals of the second decimation processor and an output signal of the adder, and outputs two separated signals, the output of the phase shifter Since the signal and the two separated signals of the separator are output as three signals, the signals can be separated even when three analog signals are received.
 また、実施の形態1の受信装置によれば、信号分離部は、第1の間引き処理器の出力を270゜移相する移相器と、移相器の出力信号と前記第2のAD変換器の出力信号とを減算する減算器と、第2の間引き処理器の出力信号と減算器の出力信号とを入力して、二つの分離信号を出力する分離器とを備え、移相器の出力信号と分離器の二つの分離信号とを三つの信号として出力するようにしたので、三つのアナログ信号を受信した場合でも信号を分離することができる。 Further, according to the receiving apparatus of the first embodiment, the signal separation unit includes a phase shifter that shifts the output of the first decimation processor by 270 °, the output signal of the phase shifter, and the second AD conversion. A subtractor for subtracting the output signal of the counter, and a separator for inputting the output signal of the second decimation processor and the output signal of the subtractor and outputting two separated signals, Since the output signal and the two separated signals of the separator are output as three signals, the signals can be separated even when three analog signals are received.
 また、実施の形態1の受信装置によれば、第1の間引き処理器の出力を遅延させる第1の遅延器と、第2の間引き処理器の出力を遅延させる第2の遅延器と、第2のAD変換器の出力を遅延させる第3の遅延器とを備え、これら第1の遅延器、第2の遅延器及び第3の遅延器の遅延量を、第1の間引き処理器から出力された信号と、第2の遅延器から出力された信号と、第2のAD変換器から出力された信号とが同じタイミングで信号分離部に入力される値としたので、信号分離部に入力される信号が時間的に同じものとなり、信号分離部でタイミングを合わせる必要がない。 Further, according to the receiving apparatus of the first embodiment, the first delay device that delays the output of the first decimation processor, the second delay device that delays the output of the second decimation processor, A third delay unit that delays the output of the second AD converter, and outputs the delay amounts of the first delay unit, the second delay unit, and the third delay unit from the first decimation processor The signal output from the second delay unit and the signal output from the second AD converter are input to the signal separation unit at the same timing. The signals to be processed are the same in time, and there is no need to match the timing in the signal separation unit.
実施の形態2.
 実施の形態1では、第2の電力分配器105に入力する周波数の異なる三つのアナログ信号を分離する構成について説明した。実施の形態2では、第2の電力分配器105に入力する周波数の異なる四つのアナログ信号を分離する構成について説明する。
Embodiment 2. FIG.
In the first embodiment, the configuration in which three analog signals having different frequencies input to the second power distributor 105 are separated has been described. In the second embodiment, a configuration in which four analog signals having different frequencies input to the second power distributor 105 are separated will be described.
 図16は、実施の形態2のサンプリング回路23aの構成図である。また、図17は、図16に示す信号分離部115aの構成図である。なお、実施の形態2の受信装置が適用される受信機の構成については図1に示した実施の形態1と同様である。 FIG. 16 is a configuration diagram of the sampling circuit 23a of the second embodiment. FIG. 17 is a configuration diagram of the signal separation unit 115a shown in FIG. The configuration of the receiver to which the receiving apparatus of the second embodiment is applied is the same as that of the first embodiment shown in FIG.
 まず、サンプリング回路23aにおいて、実施の形態1と異なる構成について説明する。実施の形態2のサンプリング回路23aでは、第2の電力分配器105と第2のAD変換器113との間に第1のLPF116を設ける。第1のLPF116は、第2の電力分配器105が出力した信号の内、特定の周波数以下の周波数帯域を通過させ、特定の周波数以上の周波数帯域を反射させる回路である。例えば、チップインダクタ、チップキャパシタ等を用いて実装される。第1のLPF116は、第2の電力分配器105と第2のAD変換器113に接続され、第2の電力分配器105が出力した信号の内、特定の周波数以下の周波数帯域を通過させ、第2のAD変換器113へ出力する。サンプリング回路23aにおける信号分離部115aを除くその他の構成については図2に示した実施の形態1の構成と同様であるため、対応する部分に同一符号を付してその説明を省略する。なお、実施の形態2では、LPF107を第1のLPF116と区別するために第2のLPF107として説明する。 First, a configuration different from that of the first embodiment in the sampling circuit 23a will be described. In the sampling circuit 23 a according to the second embodiment, the first LPF 116 is provided between the second power distributor 105 and the second AD converter 113. The first LPF 116 is a circuit that passes a frequency band equal to or lower than a specific frequency and reflects a frequency band equal to or higher than a specific frequency among signals output from the second power distributor 105. For example, it is mounted using a chip inductor, a chip capacitor, or the like. The first LPF 116 is connected to the second power divider 105 and the second AD converter 113, and passes a frequency band equal to or lower than a specific frequency among the signals output from the second power divider 105, Output to the second AD converter 113. Since the configuration other than the signal separation unit 115a in the sampling circuit 23a is the same as that of the first embodiment shown in FIG. 2, the same reference numerals are given to the corresponding portions, and the description thereof is omitted. In the second embodiment, the LPF 107 is described as the second LPF 107 in order to distinguish it from the first LPF 116.
 次に、信号分離部115aにおいて、実施の形態1の信号分離部115と異なる構成について説明する。実施の形態2の信号分離部115aでは、実施の形態1の加算器202を削除し、新たに、第2の加算器401、第1の減算器402、第2の減算器403、第1の加算器404、第3の減算器405を設ける。第2の加算器401は、移相器201が出力した信号と第3の減算器405が出力した信号を加算する回路である。例えば、FPGAの論理回路で構成される。第2の加算器401は、移相器201と第3の減算器405と信号処理部3に接続され、移相器201が出力した信号と第3の減算器405が出力した信号を加算し信号処理部3へ出力する。 Next, a configuration of the signal separation unit 115a that is different from the signal separation unit 115 of the first embodiment will be described. In the signal separation unit 115a of the second embodiment, the adder 202 of the first embodiment is deleted, and a second adder 401, a first subtracter 402, a second subtractor 403, a first An adder 404 and a third subtracter 405 are provided. The second adder 401 is a circuit that adds the signal output from the phase shifter 201 and the signal output from the third subtractor 405. For example, it is configured with an FPGA logic circuit. The second adder 401 is connected to the phase shifter 201, the third subtracter 405, and the signal processing unit 3, and adds the signal output from the phase shifter 201 and the signal output from the third subtractor 405. Output to the signal processing unit 3.
 第1の減算器402は、第3の遅延器114が出力した信号と分離器203が出力した信号を減算する回路である。例えば、FPGAの論理回路で構成される。第1の減算器402は、第3の遅延器114と分離器203と第1の加算器404と信号処理部3に接続され、第3の遅延器114が出力した信号と分離器203が出力した信号を減算し第1の加算器404及び信号処理部3へ出力する。 The first subtractor 402 is a circuit that subtracts the signal output from the third delay unit 114 and the signal output from the separator 203. For example, it is configured with an FPGA logic circuit. The first subtractor 402 is connected to the third delay unit 114, the separator 203, the first adder 404 and the signal processing unit 3, and the signal output from the third delay unit 114 and the separator 203 output The obtained signals are subtracted and output to the first adder 404 and the signal processing unit 3.
 第2の減算器403は、第3の遅延器114が出力した信号と分離器203が出力した信号を減算する回路である。例えば、FPGAの論理回路で構成される。第2の減算器403は、第3の遅延器114と分離器203と第1の加算器404と信号処理部3に接続され、第3の遅延器114が出力した信号と分離器203が出力した信号を減算し第1の加算器404及び信号処理部3へ出力する。 The second subtractor 403 is a circuit that subtracts the signal output from the third delay unit 114 and the signal output from the separator 203. For example, it is configured with an FPGA logic circuit. The second subtractor 403 is connected to the third delay unit 114, the separator 203, the first adder 404, and the signal processing unit 3, and the signal output from the third delay unit 114 and the separator 203 output The obtained signals are subtracted and output to the first adder 404 and the signal processing unit 3.
 第1の加算器404は、第1の減算器402が出力した信号と第2の減算器403が出力した信号を加算する回路である。例えば、FPGAの論理回路で構成される。第1の加算器404は、第1の減算器402と第2の減算器403と第3の減算器405に接続され、第1の減算器402が出力した信号と第2の減算器403が出力した信号を加算し第3の減算器405へ出力する。 The first adder 404 is a circuit that adds the signal output from the first subtractor 402 and the signal output from the second subtractor 403. For example, it is configured with an FPGA logic circuit. The first adder 404 is connected to the first subtractor 402, the second subtractor 403, and the third subtracter 405, and the signal output from the first subtractor 402 and the second subtractor 403 are connected to each other. The output signals are added and output to the third subtractor 405.
 第3の減算器405は、第3の遅延器114が出力した信号と第1の加算器404が出力した信号を減算する回路である。例えば、FPGAの論理回路で構成される。第3の減算器405は、第3の遅延器114と第1の加算器404と第2の加算器401と信号処理部3に接続され、第3の遅延器114と第1の加算器404が出力した信号を減算し第2の加算器401及び信号処理部3へ出力する。 The third subtracter 405 is a circuit that subtracts the signal output from the third delay unit 114 and the signal output from the first adder 404. For example, it is configured with an FPGA logic circuit. The third subtractor 405 is connected to the third delay unit 114, the first adder 404, the second adder 401, and the signal processing unit 3, and the third delay unit 114 and the first adder 404 are connected. Is subtracted and output to the second adder 401 and the signal processing unit 3.
 次に、実施の形態2の受信装置におけるサンプリング回路23aの動作について説明する。なお、以下の説明では、実施の形態1と異なる動作を中心に説明する。
 第2の電力分配器105は、フィルタ22が出力した信号の電力を2分配し、第1のAD変換器106及び第1のLPF116に信号を出力する。第2の電力分配器105に入力する信号の一例を図18に示す。第2の電力分配器105に入力する信号は、信号1、信号2、信号3、信号4と周波数の異なる四つの信号とする。また、信号1、信号2、信号3、信号4は、それぞれ0から1/2f、1/2fからf、fから3/2f、3/2fから2fの間に存在する。
Next, the operation of the sampling circuit 23a in the receiving apparatus according to the second embodiment will be described. In the following description, operations different from those in the first embodiment will be mainly described.
The second power distributor 105 distributes the power of the signal output from the filter 22 into two, and outputs the signal to the first AD converter 106 and the first LPF 116. An example of a signal input to the second power distributor 105 is shown in FIG. Signals input to the second power distributor 105 are four signals having frequencies different from those of the signal 1, the signal 2, the signal 3, and the signal 4. Also, signal 1, signal 2, signal 3, and signal 4 exist between 0 to 1 / 2f 0 , 1 / 2f 0 to f 0 , f 0 to 3 / 2f 0 , and 3 / 2f 0 to 2f 0 , respectively. To do.
 第1のAD変換器106は、移相器104が出力した周波数2fの信号で動作し、第2の電力分配器105の出力信号の内、信号1、信号2をサンプリングし、信号3、信号4をアンダーサンプリングし、第2のLPF107及びHPF110へ信号を出力する。第1のAD変換器106の出力信号を図19に示す。第1のAD変換器106の出力信号の内、信号1及び信号2の位相は図18と比較して90°遅れており、信号3及び信号4の位相は270°遅れている。 The first AD converter 106 operates on the signal of the frequency 2f 0 output from the phase shifter 104, samples the signal 1 and the signal 2 among the output signals of the second power divider 105, The signal 4 is undersampled, and a signal is output to the second LPF 107 and the HPF 110. An output signal of the first AD converter 106 is shown in FIG. Among the output signals of the first AD converter 106, the phases of the signals 1 and 2 are delayed by 90 ° compared to FIG. 18, and the phases of the signals 3 and 4 are delayed by 270 °.
 第2のLPF107は、第1のAD変換器106が出力した信号の内、0から1/2fの範囲の信号を通過させ、第1の間引き処理器108へ出力する。第2のLPF107の出力信号を図20に示す。第1の間引き処理器108では実施の形態1と同様の動作を行う。また、HPF110は実施の形態1と同様の動作を行う。HPF110の出力信号を図21に示す。さらに、第2の間引き処理器111では実施の形態1と同様の動作を行う。第2の間引き処理器111の出力信号を図22に示す。 The second LPF 107 passes a signal in the range of 0 to 1 / 2f 0 among the signals output from the first AD converter 106 and outputs the signal to the first decimation processor 108. The output signal of the second LPF 107 is shown in FIG. The first thinning processor 108 performs the same operation as in the first embodiment. The HPF 110 performs the same operation as in the first embodiment. The output signal of the HPF 110 is shown in FIG. Further, the second thinning processor 111 performs the same operation as in the first embodiment. The output signal of the second thinning processor 111 is shown in FIG.
 第1のLPF116は、第2の電力分配器105が出力した信号の内、0から3/2fの範囲の信号を通過させ、第2のAD変換器113へ出力する。第1のLPF116の出力信号を図23に示す。第2のAD変換器113は、2分周器103が出力した周波数fの信号で動作し、第2の電力分配器105の出力信号の内、信号1をサンプリングし、信号2、信号3をアンダーサンプリングし、第3の遅延器114へ信号を出力する。第2のAD変換器113の出力信号を図24に示す。第2のAD変換器113の出力信号の位相は、図18と比較していずれの信号も位相は等しい。 The first LPF 116 passes a signal in the range of 0 to 3 / 2f 0 among the signals output from the second power distributor 105 and outputs the signal to the second AD converter 113. The output signal of the first LPF 116 is shown in FIG. The second AD converter 113 operates with the signal of the frequency f 0 output from the frequency divider 103, samples signal 1 out of the output signal of the second power divider 105, and outputs signal 2 and signal 3. Is undersampled and a signal is output to the third delay unit 114. The output signal of the second AD converter 113 is shown in FIG. The phase of the output signal of the second AD converter 113 is the same for all signals compared to FIG.
 第1の遅延器109、第2の遅延器112及び第3の遅延器114は実施の形態1と同様に動作する。 The first delay device 109, the second delay device 112, and the third delay device 114 operate in the same manner as in the first embodiment.
 次に、実施の形態2の信号分離部115aの動作について説明する。
 移相器201は、第1の遅延器109の出力信号の位相を90°遅らせ、第2の加算器401へ信号を出力する。移相器201の出力信号を図25に示す。信号1の位相は図18と比較して180°遅れており、信号4は同相である。
Next, the operation of the signal separation unit 115a according to the second embodiment will be described.
The phase shifter 201 delays the phase of the output signal of the first delay unit 109 by 90 ° and outputs a signal to the second adder 401. The output signal of the phase shifter 201 is shown in FIG. The phase of signal 1 is 180 ° behind that of FIG. 18, and signal 4 is in phase.
 分離器203は、図22及び図24でそれぞれ示した第2の遅延器112及び第3の遅延器114の出力信号を用いて、信号の分離を行い、第1の減算器402及び第2の減算器403へ信号を出力する。信号の分離は、ウェーバーアーキテクチャーまたはハートレーアーキテクチャーを含む、その他の周知の技術を用いて実行される。図17で示した分離器203の出力1から信号1及び信号2、出力2から信号1及び信号3を出力する。分離器203の出力1及び出力2の信号をそれぞれ図26及び図27で示す。 The separator 203 performs signal separation using the output signals of the second delay unit 112 and the third delay unit 114 shown in FIGS. 22 and 24, respectively, and performs the first subtractor 402 and the second subtractor 402. A signal is output to the subtracter 403. Signal separation is performed using other well-known techniques, including Weber architecture or Hartley architecture. The signal 1 and the signal 2 are output from the output 1 of the separator 203 shown in FIG. 17, and the signal 1 and the signal 3 are output from the output 2. The output 1 and output 2 signals of the separator 203 are shown in FIGS. 26 and 27, respectively.
 第1の減算器402は、図24と図26でそれぞれ示した第3の遅延器114の出力信号と、分離器203における出力1の分離信号との減算を行い、その出力信号を信号処理部3及び第1の加算器404へ出力する。第1の減算器402の出力信号を図28に示す。 The first subtractor 402 subtracts the output signal of the third delay unit 114 shown in FIGS. 24 and 26 and the separated signal of the output 1 in the separator 203, and uses the output signal as a signal processing unit. 3 and the first adder 404. The output signal of the first subtractor 402 is shown in FIG.
 第2の減算器403は、図24と図27でそれぞれ示した第3の遅延器114の出力信号と、分離器203における出力2の分離信号との減算を行い、その出力を信号処理部3及び第1の加算器404へ信号を出力する。第2の減算器403の出力信号を図29に示す。 The second subtracter 403 performs subtraction between the output signal of the third delay unit 114 shown in FIGS. 24 and 27 and the output 2 separation signal in the separator 203, and outputs the output to the signal processing unit 3. And a signal is output to the first adder 404. The output signal of the second subtractor 403 is shown in FIG.
 第1の加算器404は、図28と図29でそれぞれ示した第1の減算器402の出力信号と第2の減算器403の出力信号とを加算し、第3の減算器405へ信号を出力する。第1の加算器404の出力信号を図30に示す。 The first adder 404 adds the output signal of the first subtractor 402 and the output signal of the second subtractor 403 shown in FIGS. 28 and 29, respectively, and sends the signal to the third subtracter 405. Output. The output signal of the first adder 404 is shown in FIG.
 第3の減算器405は、図24と図30でそれぞれ示した第3の遅延器114及の出力信号と第1の加算器404の出力信号とを減算し、その出力信号を信号処理部3へ出力する。第3の減算器405の出力信号を図31に示す。 The third subtracter 405 subtracts the output signal of the third delay unit 114 and the output signal of the first adder 404 shown in FIGS. 24 and 30, respectively, and outputs the output signal to the signal processing unit 3. Output to. The output signal of the third subtractor 405 is shown in FIG.
 第2の加算器401は、図25と図31でそれぞれ示した移相器201の出力信号と第3の減算器405の出力信号とを加算し、その出力信号を信号処理部3へ出力する。第2の加算器401の出力信号を図32に示す。 The second adder 401 adds the output signal of the phase shifter 201 and the output signal of the third subtractor 405 shown in FIGS. 25 and 31 respectively, and outputs the output signal to the signal processing unit 3. . The output signal of the second adder 401 is shown in FIG.
 図28、図29、図31、図32の結果より、実施の形態2によれば、周波数の異なる四つの信号を分離し、信号処理部3へ出力することができる。 28, 29, 31 and 32, according to the second embodiment, four signals having different frequencies can be separated and output to the signal processing unit 3.
 なお、移相器201は、270°移相器としてもよい。その場合は、第2の加算器401を減算器に変更することにより同様の効果を得ることができる。 Note that the phase shifter 201 may be a 270 ° phase shifter. In that case, the same effect can be obtained by changing the second adder 401 to a subtracter.
 なお、第1のLPF116は、特定の一つの信号を除去するためのノッチフィルタに変更してもよい。上記例ではノッチフィルタとした場合、信号4の帯域を阻止することになる。 Note that the first LPF 116 may be changed to a notch filter for removing one specific signal. In the above example, when the notch filter is used, the band of the signal 4 is blocked.
 以上説明したように、実施の形態2の受信装置によれば、周波数の異なる四つのアナログ信号をサンプリングする第1のAD変換器と、四つのアナログ信号を低域通過させる第1の低域通過フィルタと、第1の低域通過フィルタの出力信号をサンプリングする第2のAD変換器と、第1のAD変換器の出力を低域通過させる第2の低域通過フィルタと、第1のAD変換器の出力を高域通過させる高域通過フィルタと、低域通過フィルタ及び高域通過フィルタの出力信号を1/2の周波数とする第1の間引き処理器及び第2の間引き処理器と、第1の間引き処理器の出力信号と第2の間引き処理器の出力信号と第2のAD変換器の出力信号とを用いて演算を行い、周波数の異なる四つのアナログ信号に対応した四つの信号を分離して出力する信号分離部とを備え、第2のAD変換器のサンプリング周波数を第1のAD変換器のサンプリング周波数の1/2とし、かつ、第1のAD変換器に供給するサンプリング信号と第2のAD変換器のサンプリング信号とを90゜の位相差とすると共に、第1のAD変換器及び第2のAD変換器のサンプリング周波数を、四つのアナログ信号の周波数帯域と重ならない周波数に設定するようにしたので、四つのアナログ信号を受信した場合でも信号を分離することができる。 As described above, according to the receiving apparatus of the second embodiment, the first AD converter that samples four analog signals having different frequencies and the first low-pass signal that allows the four analog signals to pass through the low-frequency signal. A filter, a second AD converter that samples the output signal of the first low-pass filter, a second low-pass filter that passes the output of the first AD converter through a low-pass, and a first AD A high-pass filter that passes the output of the converter through a high-pass, a first decimation processor and a second decimation processor that use an output signal of the low-pass filter and the high-pass filter as a half frequency, Four signals corresponding to four analog signals having different frequencies are calculated using the output signal of the first decimation processor, the output signal of the second decimation processor, and the output signal of the second AD converter. Is output separately. And a sampling signal supplied to the first AD converter and the second AD, the sampling frequency of the second AD converter is set to ½ of the sampling frequency of the first AD converter. The sampling signal of the converter is set to a phase difference of 90 °, and the sampling frequencies of the first AD converter and the second AD converter are set to frequencies that do not overlap with the frequency bands of the four analog signals. Therefore, even when four analog signals are received, the signals can be separated.
 また、実施の形態2の受信装置によれば、信号分離部は、第1の間引き処理器の出力を90゜移相する移相器と、第2の間引き処理器の出力信号と第2のAD変換器113の出力信号とを入力して、第1及び第2の分離信号を出力する分離器と、第1の分離信号と第2のAD変換器の出力信号とを減算する第1の減算器と、第2の分離信号と第2のAD変換器の出力信号とを減算する第2の減算器と、第1の減算器の出力信号と第2の減算器の出力信号とを加算する第1の加算器と、第1の加算器の出力信号と第2のAD変換器の出力信号とを減算する第3の減算器と、移相器の出力信号と第3の減算器の出力信号とを加算する第2の加算器とを備え、第2の加算器の出力信号と、第1の減算器の出力信号と、第2の減算器の出力信号と、第3の減算器の出力信号とを、四つの信号として出力するようにしたので、四つのアナログ信号を受信した場合でも信号を分離することができる。 Further, according to the receiving apparatus of the second embodiment, the signal separation unit includes a phase shifter that shifts the output of the first decimation processor by 90 °, the output signal of the second decimation processor, and the second signal. A separator that inputs the output signal of the AD converter 113 and outputs the first and second separated signals, and a first that subtracts the first separated signal and the output signal of the second AD converter. A subtracter, a second subtractor for subtracting the second separated signal and the output signal of the second AD converter, and the output signal of the first subtracter and the output signal of the second subtractor are added. The first adder, the third subtracter for subtracting the output signal of the first adder and the output signal of the second AD converter, the output signal of the phase shifter and the third subtractor A second adder for adding the output signal, an output signal of the second adder, an output signal of the first subtractor, an output signal of the second subtractor, 3 of the output signal of the subtractor, since the output as four signal, it is possible to separate the signals even in the case of receiving the four analog signals.
実施の形態3.
 実施の形態3では、アンテナ1で受信したアナログ信号を周波数変換した後にサンプリング回路23へ出力する構成について説明する。
Embodiment 3 FIG.
In the third embodiment, a configuration in which an analog signal received by the antenna 1 is frequency-converted and then output to the sampling circuit 23 will be described.
 図33は、実施の形態3の受信装置が適用される受信機の構成図である。
 受信機は、アンテナ1とアナログ回路部2と信号処理部3とを備え、アナログ回路部2は、増幅器21、フィルタ22、サンプリング回路23、周波数変換器24を備える。実施の形態3では、フィルタ22とサンプリング回路23との間に周波数変換器24を設けた点が実施の形態1とは異なる。
FIG. 33 is a configuration diagram of a receiver to which the receiving apparatus of the third embodiment is applied.
The receiver includes an antenna 1, an analog circuit unit 2, and a signal processing unit 3, and the analog circuit unit 2 includes an amplifier 21, a filter 22, a sampling circuit 23, and a frequency converter 24. The third embodiment is different from the first embodiment in that a frequency converter 24 is provided between the filter 22 and the sampling circuit 23.
 周波数変換器24は、フィルタ22が出力したアナログ信号の周波数を低い周波数に変換する回路である。例えば、ミクサ、フィルタ、ICのPLLで構成される。周波数変換器24は、フィルタ22が出力したアナログ信号を低い周波数に変換しサンプリング回路23へ信号を出力する。サンプリング回路23の構成は図2に示した実施の形態1の構成と同様であるが、第2の電力分配器105に対して入力される信号が周波数変換器24の出力信号である点が実施の形態1とは異なる。 The frequency converter 24 is a circuit that converts the frequency of the analog signal output from the filter 22 to a low frequency. For example, it is composed of a mixer, a filter, and an IC PLL. The frequency converter 24 converts the analog signal output from the filter 22 into a low frequency and outputs the signal to the sampling circuit 23. The configuration of the sampling circuit 23 is the same as that of the first embodiment shown in FIG. 2 except that the signal input to the second power distributor 105 is the output signal of the frequency converter 24. This is different from the first form.
 このように、実施の形態3によれば、アンテナ1で受信したアナログ信号を周波数変換器24で低い周波数に変換した後サンプリングするようにしたので、次のような効果がある。
 例えば、受信機が携帯電話であった場合、受信する周波数は一般的に1GHz~2GHzである。その周波数でAD変換器に直接信号を入力することも可能ではあるが、AD変換器に入力する周波数が高くなるほどAD変換器のコストが高くなる。そのため、受信した信号をAD変換器に入力する前に周波数変換器24で数MHz~数十MHzまで予め下げておき、その後、サンプリング回路23に信号を入力する。これにより、AD変換器のコストを下げることができる。
As described above, according to the third embodiment, since the analog signal received by the antenna 1 is sampled after being converted to a low frequency by the frequency converter 24, the following effects are obtained.
For example, when the receiver is a mobile phone, the receiving frequency is generally 1 GHz to 2 GHz. Although it is possible to input a signal directly to the AD converter at that frequency, the higher the frequency input to the AD converter, the higher the cost of the AD converter. Therefore, before the received signal is input to the AD converter, the frequency converter 24 lowers it in advance from several MHz to several tens of MHz, and then the signal is input to the sampling circuit 23. As a result, the cost of the AD converter can be reduced.
 なお、上記例は実施の形態1の構成に対して周波数変換器24を設けたが、実施の形態2の構成に対して適用してもよい。 In the above example, the frequency converter 24 is provided for the configuration of the first embodiment, but may be applied to the configuration of the second embodiment.
 以上説明したように、実施の形態3の受信装置によれば、周波数の異なる三つのアナログ信号を入力信号として、入力信号の周波数を低い周波数に変換して出力信号とする周波数変換器を備え、第1のAD変換器及び第2のAD変換器は、周波数変換器の出力信号をサンプリングするようにしたので、対象となる信号の周波数を低くすることができるため、受信装置としての低コスト化を図ることができる。 As described above, according to the receiving apparatus of the third embodiment, the three analog signals having different frequencies are used as input signals, and the frequency converter is provided that converts the frequency of the input signal to a low frequency to be an output signal, Since the first AD converter and the second AD converter sample the output signal of the frequency converter, the frequency of the target signal can be lowered, so that the cost of the receiving apparatus can be reduced. Can be achieved.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 以上のように、この発明に係る受信装置は、周波数の異なる複数のアナログ信号をデジタル信号に変換して信号処理を行う構成に関するものであり、マルチチャネル受信機に用いるのに適している。 As described above, the receiving apparatus according to the present invention relates to a configuration for performing signal processing by converting a plurality of analog signals having different frequencies into digital signals, and is suitable for use in a multi-channel receiver.
 1 アンテナ、2 アナログ回路部、3 信号処理部、21 増幅器、22 フィルタ、23,23a サンプリング回路、24 周波数変換器、101 発振器、102 第1の電力分配器、103 2分周器、104,201,301 移相器、105 第2の電力分配器、106 第1のAD変換器、107 LPF(第2のLPF)、108 第1の間引き処理器、109 第1の遅延器、110 HPF、111 第2の間引き処理器、112 第2の遅延器、113 第2のAD変換器、114 第3の遅延器、115,115a 信号分離部、116 第1のLPF、202,303 加算器、203 分離器、302 減算器、401 第2の加算器、402 第1の減算器、403 第2の減算器、404 第1の加算器、405 第3の減算器。 1 antenna, 2 analog circuit unit, 3 signal processing unit, 21 amplifier, 22 filter, 23, 23a sampling circuit, 24 frequency converter, 101 oscillator, 102 first power distributor, 103/2 divider, 104, 201 , 301 phase shifter, 105 second power distributor, 106 first AD converter, 107 LPF (second LPF), 108 first decimation processor, 109 first delay, 110 HPF, 111 Second decimation processor, 112 second delay unit, 113 second AD converter, 114 third delay unit, 115, 115a signal separation unit, 116 first LPF, 202, 303 adder, 203 separation , 302 subtractor, 401 second adder, 402 first subtractor, 403 second subtractor, 404 first adder , 405 third subtractor.

Claims (7)

  1.  周波数の異なる三つのアナログ信号をサンプリングする第1のAD変換器及び第2のAD変換器と、
     前記第1のAD変換器の出力を低域通過させる低域通過フィルタと、
     前記第1のAD変換器の出力を高域通過させる高域通過フィルタと、
     前記低域通過フィルタ及び前記高域通過フィルタの出力信号を1/2の周波数とする第1の間引き処理器及び第2の間引き処理器と、
     前記第1の間引き処理器の出力信号と前記第2の間引き処理器の出力信号と前記第2のAD変換器の出力信号とを用いて演算を行い、前記周波数の異なる三つのアナログ信号に対応した三つの信号を分離して出力する信号分離部とを備え、
     前記第2のAD変換器のサンプリング周波数を前記第1のAD変換器のサンプリング周波数の1/2とし、かつ、前記第1のAD変換器に供給するサンプリング信号と前記第2のAD変換器のサンプリング信号とを90゜の位相差とすると共に、これら第1のAD変換器及び第2のAD変換器のサンプリング周波数を、前記三つのアナログ信号の周波数帯域と重ならない周波数に設定することを特徴とする受信装置。
    A first AD converter and a second AD converter that sample three analog signals having different frequencies;
    A low-pass filter that low-passes the output of the first AD converter;
    A high-pass filter that passes the output of the first AD converter through a high-pass,
    A first decimation processor and a second decimation processor that halves the output signal of the low-pass filter and the high-pass filter,
    Calculation is performed using the output signal of the first decimation processor, the output signal of the second decimation processor, and the output signal of the second AD converter, and supports three analog signals having different frequencies. A signal separation unit that separates and outputs the three signals,
    The sampling frequency of the second AD converter is ½ of the sampling frequency of the first AD converter, and the sampling signal supplied to the first AD converter and the second AD converter are The sampling signal has a phase difference of 90 °, and the sampling frequency of the first AD converter and the second AD converter is set to a frequency that does not overlap the frequency band of the three analog signals. A receiving device.
  2.  前記信号分離部は、
     前記第1の間引き処理器の出力を90゜移相する移相器と、
     前記移相器の出力信号と前記第2のAD変換器の出力信号とを加算する加算器と、
     前記第2の間引き処理器の出力信号と前記加算器の出力信号とを入力して、二つの分離信号を出力する分離器とを備え、
     前記移相器の出力信号と前記分離器の二つの分離信号とを前記三つの信号として出力することを特徴とする請求項1記載の受信装置。
    The signal separator is
    A phase shifter that shifts the output of the first decimation processor by 90 °;
    An adder for adding the output signal of the phase shifter and the output signal of the second AD converter;
    A separator that inputs an output signal of the second decimation processor and an output signal of the adder and outputs two separated signals;
    The receiving apparatus according to claim 1, wherein an output signal of the phase shifter and two separated signals of the separator are output as the three signals.
  3.  前記信号分離部は、
     前記第1の間引き処理器の出力を270゜移相する移相器と、
     前記移相器の出力信号と前記第2のAD変換器の出力信号とを減算する減算器と、
     前記第2の間引き処理器の出力信号と前記減算器の出力信号とを入力して、二つの分離信号を出力する分離器とを備え、
     前記移相器の出力信号と前記分離器の二つの分離信号とを前記三つの信号として出力することを特徴とする請求項1記載の受信装置。
    The signal separator is
    A phase shifter that shifts the output of the first decimation processor by 270 °;
    A subtractor for subtracting the output signal of the phase shifter and the output signal of the second AD converter;
    A separator that inputs an output signal of the second decimation processor and an output signal of the subtractor and outputs two separated signals;
    The receiving apparatus according to claim 1, wherein an output signal of the phase shifter and two separated signals of the separator are output as the three signals.
  4.  前記第1の間引き処理器の出力を遅延させる第1の遅延器と、前記第2の間引き処理器の出力を遅延させる第2の遅延器と、前記第2のAD変換器の出力を遅延させる第3の遅延器とを備え、
     これら第1の遅延器、第2の遅延器及び第3の遅延器の遅延量を、前記第1の間引き処理器から出力された信号と、前記第2の遅延器から出力された信号と、前記第2のAD変換器から出力された信号とが同じタイミングで前記信号分離部に入力される値としたことを特徴とする請求項1記載の受信装置。
    A first delay unit for delaying an output of the first decimation processor; a second delay unit for delaying an output of the second decimation processor; and an output of the second AD converter. A third delay device,
    The amount of delay of the first delay device, the second delay device, and the third delay device, the signal output from the first decimation processor, the signal output from the second delay device, The receiving apparatus according to claim 1, wherein the signal output from the second AD converter has a value input to the signal separation unit at the same timing.
  5.  周波数の異なる四つのアナログ信号をサンプリングする第1のAD変換器と、
     前記四つのアナログ信号を低域通過させる第1の低域通過フィルタと、
     前記第1の低域通過フィルタの出力信号をサンプリングする第2のAD変換器と、
     前記第1のAD変換器の出力を低域通過させる第2の低域通過フィルタと、
     前記第1のAD変換器の出力を高域通過させる高域通過フィルタと、
     前記低域通過フィルタ及び前記高域通過フィルタの出力信号を1/2の周波数とする第1の間引き処理器及び第2の間引き処理器と、
     前記第1の間引き処理器の出力信号と前記第2の間引き処理器の出力信号と前記第2のAD変換器の出力信号とを用いて演算を行い、前記周波数の異なる四つのアナログ信号に対応した四つの信号を分離して出力する信号分離部とを備え、
     前記第2のAD変換器のサンプリング周波数を前記第1のAD変換器のサンプリング周波数の1/2とし、かつ、前記第1のAD変換器に供給するサンプリング信号と前記第2のAD変換器のサンプリング信号とを90゜の位相差とすると共に、これら第1のAD変換器及び第2のAD変換器のサンプリング周波数を、前記四つのアナログ信号の周波数帯域と重ならない周波数に設定することを特徴とする受信装置。
    A first AD converter that samples four analog signals having different frequencies;
    A first low-pass filter for low-passing the four analog signals;
    A second AD converter for sampling an output signal of the first low-pass filter;
    A second low-pass filter for low-passing the output of the first AD converter;
    A high-pass filter that passes the output of the first AD converter through a high-pass,
    A first decimation processor and a second decimation processor that halves the output signal of the low-pass filter and the high-pass filter,
    Calculation is performed using the output signal of the first decimation processor, the output signal of the second decimation processor, and the output signal of the second AD converter, and supports four analog signals having different frequencies. A signal separation unit that separates and outputs the four signals
    The sampling frequency of the second AD converter is ½ of the sampling frequency of the first AD converter, and the sampling signal supplied to the first AD converter and the second AD converter are The sampling signal has a phase difference of 90 °, and the sampling frequency of the first AD converter and the second AD converter is set to a frequency that does not overlap with the frequency bands of the four analog signals. A receiving device.
  6.  前記信号分離部は、
     前記第1の間引き処理器の出力を90゜移相する移相器と、
     前記第2の間引き処理器の出力信号と前記第2のAD変換器113の出力信号とを入力して、第1及び第2の分離信号を出力する分離器と、
     前記第1の分離信号と前記第2のAD変換器の出力信号とを減算する第1の減算器と、
     前記第2の分離信号と前記第2のAD変換器の出力信号とを減算する第2の減算器と、
     前記第1の減算器の出力信号と前記第2の減算器の出力信号とを加算する第1の加算器と、
     前記第1の加算器の出力信号と前記第2のAD変換器の出力信号とを減算する第3の減算器と、
     前記移相器の出力信号と前記第3の減算器の出力信号とを加算する第2の加算器とを備え、
     前記第2の加算器の出力信号と、前記第1の減算器の出力信号と、前記第2の減算器の出力信号と、前記第3の減算器の出力信号とを、前記四つの信号として出力することを特徴とする請求項5記載の受信装置。
    The signal separator is
    A phase shifter that shifts the output of the first decimation processor by 90 °;
    A separator that inputs an output signal of the second decimation processor and an output signal of the second AD converter 113 and outputs first and second separation signals;
    A first subtractor for subtracting the first separated signal and the output signal of the second AD converter;
    A second subtractor for subtracting the second separated signal and the output signal of the second AD converter;
    A first adder for adding the output signal of the first subtracter and the output signal of the second subtractor;
    A third subtractor for subtracting the output signal of the first adder from the output signal of the second AD converter;
    A second adder for adding the output signal of the phase shifter and the output signal of the third subtractor;
    The output signal of the second adder, the output signal of the first subtractor, the output signal of the second subtractor, and the output signal of the third subtractor are used as the four signals. 6. The receiving apparatus according to claim 5, wherein the receiving apparatus outputs the received signal.
  7.  前記周波数の異なる三つのアナログ信号を入力信号として、当該入力信号の周波数を低い周波数に変換して出力信号とする周波数変換器を備え、
     前記第1のAD変換器及び前記第2のAD変換器は、前記周波数変換器の出力信号をサンプリングすることを特徴とする請求項1記載の受信装置。
    A frequency converter comprising the three analog signals having different frequencies as input signals and converting the frequency of the input signals to a low frequency to be an output signal,
    The receiving apparatus according to claim 1, wherein the first AD converter and the second AD converter sample an output signal of the frequency converter.
PCT/JP2016/069622 2016-07-01 2016-07-01 Reception device WO2018003113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069622 WO2018003113A1 (en) 2016-07-01 2016-07-01 Reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069622 WO2018003113A1 (en) 2016-07-01 2016-07-01 Reception device

Publications (1)

Publication Number Publication Date
WO2018003113A1 true WO2018003113A1 (en) 2018-01-04

Family

ID=60785485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069622 WO2018003113A1 (en) 2016-07-01 2016-07-01 Reception device

Country Status (1)

Country Link
WO (1) WO2018003113A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354056A (en) * 2001-05-25 2002-12-06 Toyota Central Res & Dev Lab Inc Receiver
JP2004096177A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Demodulator and receiver employing the same, on-vehicle device, and roadside device
JP2011526132A (en) * 2008-06-27 2011-09-29 エントロピック・コミュニケーションズ・インコーポレイテッド Direct orthogonal sampling apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354056A (en) * 2001-05-25 2002-12-06 Toyota Central Res & Dev Lab Inc Receiver
JP2004096177A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Demodulator and receiver employing the same, on-vehicle device, and roadside device
JP2011526132A (en) * 2008-06-27 2011-09-29 エントロピック・コミュニケーションズ・インコーポレイテッド Direct orthogonal sampling apparatus and method

Similar Documents

Publication Publication Date Title
TWI408400B (en) Method and apparatus of signal processing for multiple satellite navigation system
JP6656825B2 (en) Test measurement device and noise reduction method
WO2022179021A1 (en) Receiver and method for use in ultra high frequency partial discharge detection
KR20120061026A (en) Bandpass sampling receiver and filter design and reconfiguration method thereof
CN108259051B (en) Unique frequency plan and baseband design for low power radar detection module
TW201519585A (en) Wireless signal receiving device and method
JP2006191216A (en) Oversampling a/d conversion circuit
US10812096B2 (en) Ad converting device and electronic apparatus
WO2018003113A1 (en) Reception device
JP5546999B2 (en) Radar equipment
JP5015833B2 (en) CIC filter, filter system, and satellite signal receiving circuit
US7953184B2 (en) Direct sampling type wireless receiver and method using the same
JP2013205093A (en) Digital phase detector
JP6570798B2 (en) Receiving machine
KR20120021599A (en) Band pass sampling receiver
RU2289202C2 (en) Digital multi-channel reprogrammable reception path
JP6029065B2 (en) Receiver
KR101668009B1 (en) Signal rejection apparatus
JP6761218B2 (en) Reception processing device and receiver
JP3472520B2 (en) Digital phase detector and pulse radar device
JP2008271311A (en) Undesired wave removing receiver
KR101809276B1 (en) Apparatus for receiving band pass sampling signal
JP7108717B2 (en) Analog/digital conversion device, wireless communication device, and analog/digital conversion method
JP2008216194A (en) Signal measuring device
JP5468498B2 (en) Receiving apparatus and receiving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16907346

Country of ref document: EP

Kind code of ref document: A1