WO2018003079A1 - ドローン付属品制御システム、ドローン付属品制御方法及びプログラム - Google Patents

ドローン付属品制御システム、ドローン付属品制御方法及びプログラム Download PDF

Info

Publication number
WO2018003079A1
WO2018003079A1 PCT/JP2016/069504 JP2016069504W WO2018003079A1 WO 2018003079 A1 WO2018003079 A1 WO 2018003079A1 JP 2016069504 W JP2016069504 W JP 2016069504W WO 2018003079 A1 WO2018003079 A1 WO 2018003079A1
Authority
WO
WIPO (PCT)
Prior art keywords
accessory
drone
reference position
control system
support rod
Prior art date
Application number
PCT/JP2016/069504
Other languages
English (en)
French (fr)
Inventor
俊二 菅谷
Original Assignee
株式会社オプティム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプティム filed Critical 株式会社オプティム
Priority to PCT/JP2016/069504 priority Critical patent/WO2018003079A1/ja
Publication of WO2018003079A1 publication Critical patent/WO2018003079A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/22Taking-up articles from earth's surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms

Definitions

  • the present invention relates to a drone accessory control system, a drone accessory control method, and a program for controlling the movement of an accessory suspended from a drone.
  • drones Conventionally, the use of drones has been studied and put into practical use in various fields such as disaster relief, aerial photography, agriculture and the like. For example, in agriculture, it has been studied to suspend a pesticide spraying device or insecticide on a drone and spray a chemical or pest control.
  • a configuration for example, a configuration is disclosed in which a tank for storing a medicine or the like is suspended in a helicopter, and the medicine is sprayed from the tank onto farmland (see Patent Document 1).
  • Patent Document 1 when an accessory such as an insecticide or a pesticide spraying device is suspended from a drone, it is generated by the influence of wind from the propeller during flight, the wind from the external environment, or flight. It will be affected by inertia. As a result, the accessory may move to a position shifted from the reference position, which is a desirable position. For example, the accessory may sway in a direction opposite to the drone traveling direction, or may swing to a position unrelated to the traveling direction due to a strong wind.
  • An object of the present invention is to provide a drone accessory control system, a drone accessory control method, and a program capable of returning to a reference position even when an accessory suspended from the drone moves.
  • the present invention provides the following solutions.
  • the invention according to the first aspect is a drone accessory control system for controlling the movement of an accessory suspended from the drone, Motion detection means for detecting how much the accessory has moved from a reference position; Position control means for controlling the accessory to return to the reference position based on the detected result;
  • a drone accessory control system characterized by comprising:
  • the drone accessory control system for controlling the movement of the accessory suspended from the drone detects how much the accessory has moved from the reference position, and the detected Based on the result, the accessory is controlled to return to the reference position.
  • the invention according to the first feature is a category of the drone accessory control system, but in other categories such as a method or a program, the same actions and effects according to the category are exhibited.
  • the position control means calculates the wind pressure from the propeller of the drone and controls the accessory to return to the reference position.
  • a drone accessory control system which is an invention according to the first feature.
  • the drone accessory control system calculates the wind pressure from the propeller of the drone and returns the accessory to the reference position. To control.
  • the position control means controls the accessory to return to the reference position using the power of the drone.
  • a drone accessory control system which is an invention according to the first feature.
  • the drone accessory control system controls the accessory to return to the reference position using the power of the drone. .
  • the motion detection means is detected by an acceleration sensor,
  • the position control means is controlled by a motor;
  • a drone accessory control system which is an invention according to the first feature.
  • the drone accessory control system according to the first aspect of the invention is detected by the acceleration sensor and controlled by the motor.
  • the invention according to a fifth aspect comprises learning means for learning the movement of the accessory, With The position control means controls the accessory to return to the reference position in consideration of the learned movement; There is provided a drone accessory control system which is an invention according to the first feature.
  • the drone accessory control system learns the movement of the accessory, considers the learned movement, and removes the accessory. , Control to return to the reference position.
  • the invention according to the sixth aspect is a drone accessory control method for controlling the movement of an accessory suspended from the drone, Detecting how much the accessory has moved from a reference position; Controlling the accessory to return to the reference position based on the detected result; A method for controlling a drone accessory is provided.
  • the invention according to the seventh feature provides a drone accessory control system for controlling the movement of an accessory suspended from a drone. Detecting how much the accessory has moved from a reference position; Controlling the accessory to return to the reference position based on the detected result; Provide a program that executes
  • the present invention it is possible to provide a drone accessory control system, a drone accessory control method, and a program capable of returning to the reference position even when an accessory suspended from the drone moves. It becomes.
  • FIG. 1 is a diagram showing an outline of a drone accessory control system 1.
  • FIG. 2 is an overall configuration diagram of the drone accessory control system 1.
  • FIG. 3 is a functional block diagram of the drone 10.
  • FIG. 4 is a diagram illustrating a control process executed by the drone 10.
  • FIG. 5 is a diagram illustrating an example of the drone 10.
  • FIG. 1 is a diagram for explaining an outline of a drone accessory control system 1 which is a preferred embodiment of the present invention.
  • the drone accessory control system 1 includes a drone 10.
  • the drone 10 includes a support bar 100 and an accessory 200.
  • the support rod 100 is a rod-shaped article having one end connected to the drone 10 and the other end connected to the accessory 200.
  • the accessory 200 is a spraying device for spraying insecticides such as electric shock insecticides and adhesive insecticides, agricultural chemicals, and the like. In the present embodiment, the accessory 200 will be described as an insecticidal device.
  • the drone 10 and the support rod 100 are connected by the drive unit 400.
  • the drive unit 400 includes a motor, a robot arm, and the like, and the drone 10 controls the position of the support rod 100 by driving the drive unit 400.
  • the drone 10 controls the position of the accessory 200 by controlling the position of the support rod 100.
  • the drone 10 has a reference position 320 that indicates the positions of the support rod 100 and the accessory 200 when the support rod 100 and the accessory 200 suspended on the support rod 100 are not in a flying state by a one-dot chain line.
  • a reference position 320 for example, a position where the support rod 100 and the accessory 200 are substantially perpendicular to the drone 10 is stored as the reference position 320. That is, the state where the drone 10, the support rod 100, and the accessory 200 are positioned in a straight line is stored as the reference position 320.
  • the position of the reference position 320 is not limited to the above-described configuration, and may be another position.
  • the drone 10 flies based on an instruction from an information terminal (not shown) or a predetermined program (step S01).
  • the drone 10 flies by driving its own propeller 310.
  • the aircraft is flying in the direction indicated by the arrow 300.
  • the direction, height, etc. which fly can be changed suitably.
  • the drone 10 detects how much the positions of the support rod 100 and the accessory 200 have moved from the reference position 320 (step S02). In FIG. 1, it is assumed that the support rod 100 and the accessory 200 have moved in the direction and distance of the arrow 330. In FIG. 1, the positions and states of the support rod 100 and the accessory 200 after movement are indicated by dotted lines.
  • the drone 10 detects the amount of movement with an acceleration sensor and a wind sensor. Specifically, the drone 10 detects the movement of the support rod 100 using an acceleration sensor, and detects the movement of the accessory 200 using a wind sensor.
  • the drone 10 may be configured to detect the movement amount using another configuration.
  • control performed by the drone 10 to return the positions of the support rod 100 and the accessory 200 to the reference position 320 may be performed without acquiring information from the sensor.
  • the drone 10 may have a configuration in which another configuration such as a robot arm is provided in the drive unit 400 and control for returning the positions of the support rod 100 and the accessory 200 to the reference position 320 is performed by this configuration.
  • the drone 10 may be configured to execute control for returning the positions of the support rod 100 and the accessory 200 to the reference position 320 by using their own power.
  • the drone learns the movement of the support bar 100 and the accessory 200, and takes the learned movement into consideration, and returns the position of the support bar 100 and the accessory 200 to the reference position 320. It may be configured to execute control.
  • the configuration may be such that the actual movement is controlled by learning the movement of the support rod 100 and the accessory 200 as a result of executing the above-described processing.
  • the drone 10 is the above-described unmanned aircraft having the functions described later.
  • the drone 10 is connected to the accessory 200 via the support bar 100 and is connected to the support bar 100 by the drive unit 400.
  • the support rod 100 is connected to the accessory 200 through the connection portion 410.
  • One end of the support bar 100 is connected to the drive unit 400, and the other end of the support bar 100 is connected to the connection unit 410.
  • the material, size, installation position, installation method, and the like of the support rod 100 and the accessory 200 are not limited to the configuration of the present embodiment, and can be changed as appropriate.
  • the configuration of the drive unit 400 or the connection unit 410 may be omitted, and the drone 10 and the accessory 200 may be connected via the support rod 100.
  • FIG. 3 is a functional block diagram of the drone 10.
  • the drone 10 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like as the control unit 11 so as to be able to communicate with other devices as a communication unit (not shown).
  • the drone 10 also includes a data storage unit such as a hard disk, a semiconductor memory, a recording medium, or a memory card as the storage unit 13. Further, the drone 10 acquires, as the input / output unit 14, information detected by a driving device that moves the support rod 100 such as a motor or a robot arm provided in the driving unit 400 and various sensors provided in the connection unit 410.
  • Various devices such as an information acquisition device and a flying device that drives the propeller 310 to fly are provided.
  • the control unit 11 when the control unit 11 reads a predetermined program, the learning module 30 is realized in cooperation with the storage unit 13. In the drone 10, the control unit 11 reads a predetermined program, thereby realizing the flight module 40 and the control module 41 in cooperation with the input / output unit 14.
  • FIG. 4 is a diagram illustrating a flowchart of control processing executed by the drone 10. Processing executed by each module described above will be described together with this processing.
  • FIG. 5 is a diagram illustrating an example of the drone 10 in the present embodiment.
  • the drone 10 includes a propeller 310 and a drive unit 400.
  • the drone 10 flies by driving the propeller 310.
  • the drive unit 400 is located on the bottom surface of the drone 10 and is connected to one end of the support bar 100.
  • the drive unit 400 includes a motor, a robot arm, and the like.
  • the drone 10 controls the movement of the support bar 100 by driving the drive unit 400.
  • the drive unit 400 will be described as including a motor. Specifically, the end of the support bar 100 on the drive unit 400 side and the motor come into contact with each other, so that the support bar 100 moves in accordance with the rotation of the motor.
  • the drone 10 is connected to the accessory 200 via the support rod 100.
  • the accessory 200 includes a connection portion 410.
  • the support rod 100 is connected to the accessory 200 via the connection portion 410.
  • the support rod 100 has a rod-like shape in which one end is connected to the drive unit 400 and the other end is connected to the connection unit 410. One end is in contact with the motor and has a shape that moves in accordance with the rotation of the motor.
  • the connection unit 410 includes various sensors such as a wind sensor and an acceleration sensor.
  • the drone 10 acquires information detected by various sensors provided in the connection unit 410.
  • the drone 10 detects the wind pressure from the propeller 310 and the wind pressure from the external environment using a wind sensor, and detects its traveling direction using an acceleration sensor.
  • control of the movement of the support rod 100 is not limited to the configuration described above, and may be another configuration.
  • the support rod 100 and the accessory 200 may be moved by a robot arm.
  • the drone 10 stores the position of the reference position 320 between the support bar 100 and the accessory 200.
  • the reference position 320 is the position described above. For example, when the support rod 100 and the accessory 200 are attached to the center of the drone 10, it means that the reference position 320 is on a straight line extending in the direction of gravity from the center. Further, when the support rod 100 and the accessory 200 are attached to any location of the drone 10, it means that the reference position 320 is on a straight line extending in the direction of gravity from the attachment position.
  • Drone 10 flies in the direction indicated by arrow 300. Further, along with this flight, the support rod 100 and the accessory 200 will be described as moving from the reference position 320 by the amount of movement indicated by the arrow 330 and moving to the position of the support rod 100 and the accessory 200 indicated by the dotted line. . These are merely examples, and it goes without saying that the present invention should not be limited to these examples.
  • the flight control executed by the flight module 40 is not limited to this embodiment, and can be changed as appropriate.
  • the structure which flies only by the drive of a propeller may be sufficient, and the structure which flies by structures other than a propeller may be sufficient.
  • the flight altitude, the flight direction, and the like can be changed as appropriate.
  • the control module 41 determines whether or not the support rod 100 and the accessory 200 are positioned at the reference position 320 (step S11).
  • the reference position 320 is the same as the configuration described above.
  • the control module 41 detects the movement of the support rod 100 and the accessory 200 based on the acceleration sensor and the wind sensor.
  • the control module 41 determines whether the detected position of the support bar 100 and the accessory 200 is located on the reference position 320, so that the support bar 100 and the accessory 200 are located at the reference position 320. Determine whether or not.
  • the control module 41 determines that the support rod 100 and the accessory 200 are located at the reference position 320 when the support rod 100 and the accessory 200 are positions close to the reference position 320, for example. Approximating means that the positions of the support rod 100 and the accessory 200 are substantially collinear with the reference position 320 or within a predetermined range.
  • step S11 when the control module 41 determines that the support rod 100 and the accessory 200 are located at the reference position 320 (step S11: YES), the process ends.
  • step S11 when the control module 41 determines that the support rod 100 and the accessory 200 are not located at the reference position 320 (NO in step S11), the control module 41 acquires the movement amount (step S12).
  • step S12 the control module 41 acquires the movement amount of the support rod 100 from the acceleration sensor. Moreover, the control module 41 acquires the movement amount of the accessory 200 from a wind sensor.
  • step S ⁇ b> 12 the control module 41 acquires the movement amount assuming that the support rod 100 and the accessory 200 have moved in the direction and distance indicated by the arrow 330.
  • step S12 the positions of the support bar 100 and the accessory 200 detected by the control module 41 are the positions of the support bar 100 and the accessory 200 indicated by dotted lines.
  • the control module 41 controls the movement of the support bar 100 and the accessory 200 based on the acquired movement amount, and controls the positions of the support bar 100 and the accessory 200 to return to the reference position 320 (step S13).
  • the control module 41 brings the support rod 100 and the accessory 200 to the reference position 320 based on information detected by various sensors, calculation results obtained by calculating wind pressure from the propeller, wind pressure from the external environment, and the like. Control to return.
  • the control module 41 controls the movement of the support rod 100 and the accessory 200 by rotating a motor provided in the drive unit 400 in a direction to return the support rod 100 and the accessory 200 to the reference position 320. . By doing so, the control module 41 can control the movement of the support rod 100 and the accessory 200.
  • control module 41 is configured not to configure the drive unit 400 but to control the positions of the support rod 100 and the accessory 200 to return to the reference position 320 using the power of the drone 10. May be.
  • control module 41 controls the movement of the propeller and changes its own traveling direction to a direction opposite to the current traveling direction, thereby returning the positions of the support rod 100 and the accessory 200 to the reference position 320. It may be configured to execute.
  • the learning module 30 stores the control content of the movement of the support rod 100 executed in step S13, and learns the control content executed by the control module 41 (step S14).
  • the learning content that the learning module 30 learns includes, for example, the shape, weight, position of the center of gravity of the accessory 200, the influence of the wind from the propeller, the influence of the wind from the external environment, the length of the support rod 100,
  • the actual control content is based on the shape, weight, center of gravity position, and the like.
  • the control module 41 controls the movements of the support rod 100 and the accessory 200 based on the learned control content and information on various actual sensors by executing the above-described steps S10 to S14 a plurality of times. To do. That is, the control module 41 determines the actual control content of the support rod 100 and the accessory 200 in consideration of the learned control content.
  • the means and functions described above are realized by a computer (including a CPU, an information processing apparatus, and various terminals) reading and executing a predetermined program.
  • the program is provided in a form recorded on a computer-readable recording medium such as a flexible disk, CD (CD-ROM, etc.), DVD (DVD-ROM, DVD-RAM, etc.).
  • the computer reads the program from the recording medium, transfers it to the internal storage device or the external storage device, stores it, and executes it.
  • the program may be recorded in advance in a storage device (recording medium) such as a magnetic disk, an optical disk, or a magneto-optical disk, and provided from the storage device to a computer via a communication line.
  • Drone accessory control system 10 drone, 100 support rod, 200 accessories

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)

Abstract

【課題】ドローンに吊り下げられた付属品が動いた場合であっても、基準位置320に戻すことが可能なドローン付属品制御システム、ドローン付属品制御方法及びプログラムを提供することを目的とする。 【解決手段】ドローン10に吊り下げられた付属品200の動きを制御するドローン付属品制御システム1は、前記付属品200が、基準位置320からどれだけ動いたかを検知し、前記検知された結果に基づいて、前記付属品200を、前記基準位置320に戻すように制御する。

Description

ドローン付属品制御システム、ドローン付属品制御方法及びプログラム
 本発明は、ドローンに吊り下げられた付属品の動きを制御するドローン付属品制御システム、ドローン付属品制御方法及びプログラムに関する。
 従来、災害救助、空撮、農業等の様々な分野において、ドローンの利用が検討されるとともに、実用化されている。例えば、農業において、ドローンに農薬散布装置や殺虫器を吊り下げ、薬剤散布や害虫駆除を行うことが検討されている。
 このような構成として、例えば、ヘリコプターに、薬剤等を収納するタンクを吊り下げ、このタンクから薬剤を農地に散布をする構成が開示されている(特許文献1参照)。
特開平11-243829号公報
 しかしながら、特許文献1の構成では、ドローンに、殺虫器や農薬散布装置等の付属品を吊り下げた場合、飛行時におけるプロペラからの風や、外部環境からの風の影響や、飛行により発生する慣性等の影響を受けてしまう。その結果、付属品が望ましい位置である基準位置からずれた位置に動いてしまうおそれがあった。例えば、付属品は、ドローンの進行方向とは逆の方向に揺れてしまうことや、強風により、進行方向とは無関係な位置に揺れてしまうことが起こっていた。
 本発明の目的は、ドローンに吊り下げられた付属品が動いた場合であっても、基準位置に戻すことが可能なドローン付属品制御システム、ドローン付属品制御方法及びプログラムを提供することを目的とする。
 本発明では、以下のような解決手段を提供する。
 第1の特徴に係る発明は、ドローンに吊り下げられた付属品の動きを制御するドローン付属品制御システムであって、
 前記付属品が、基準位置からどれだけ動いたかを検知する動き検知手段と、
 前記検知された結果に基づいて、前記付属品を、前記基準位置に戻すように制御する位置制御手段と、
 を備えることを特徴とするドローン付属品制御システムを提供する。
 第1の特徴に係る発明によれば、ドローンに吊り下げられた付属品の動きを制御するドローン付属品制御システムは、前記付属品が、基準位置からどれだけ動いたかを検知し、前記検知された結果に基づいて、前記付属品を、前記基準位置に戻すように制御する。
 ここで、第1の特徴に係る発明は、ドローン付属品制御システムのカテゴリであるが、方法又はプログラム等の他のカテゴリにおいても、そのカテゴリに応じた同様の作用・効果を発揮する。
 第2の特徴に係る発明は、前記位置制御手段が、前記ドローンのプロペラからの風圧を計算して、前記付属品を、前記基準位置に戻すように制御する、
 ことを特徴とする第1の特徴に係る発明であるドローン付属品制御システムを提供する。
 第2の特徴に係る発明によれば、第1の特徴に係る発明であるドローン付属品制御システムは、前記ドローンのプロペラからの風圧を計算して、前記付属品を、前記基準位置に戻すように制御する。
 第3の特徴に係る発明は、前記位置制御手段が、前記ドローンの動力を利用して、前記付属品を、前記基準位置に戻すように制御する、
 ことを特徴とする第1の特徴に係る発明であるドローン付属品制御システムを提供する。
 第3の特徴に係る発明によれば、第1の特徴に係る発明であるドローン付属品制御システムは、前記ドローンの動力を利用して、前記付属品を、前記基準位置に戻すように制御する。
 第4の特徴に係る発明は、前記動き検知手段が、加速度センサによって検知し、
 前記位置制御手段が、モータで制御する、
 ことを特徴とする第1の特徴に係る発明であるドローン付属品制御システムを提供する。
 第4の特徴に係る発明によれば、第1の特徴に係る発明であるドローン付属品制御システムは、加速度センサによって検知し、モータで制御する。
 第5の特徴に係る発明は、前記付属品の動きを学習する学習手段と、
 を備え、
 前記位置制御手段が、前記学習された動きを考慮して、前記付属品を、前記基準位置に戻すように制御する、
 ことを特徴とする第1の特徴に係る発明であるドローン付属品制御システムを提供する。
 第5の特徴に係る発明によれば、第1の特徴に係る発明であるドローン付属品制御システムは、前記付属品の動きを学習し、前記学習された動きを考慮して、前記付属品を、前記基準位置に戻すように制御する。
 第6の特徴に係る発明は、ドローンに吊り下げられた付属品の動きを制御するドローン付属品制御方法であって、
 前記付属品が、基準位置からどれだけ動いたかを検知するステップと、
 前記検知された結果に基づいて、前記付属品を、前記基準位置に戻すように制御するステップと、
 を備えることを特徴とするドローン付属品制御方法を提供する。
 第7の特徴に係る発明は、ドローンに吊り下げられた付属品の動きを制御するドローン付属品制御システムに、
 前記付属品が、基準位置からどれだけ動いたかを検知するステップ、
 前記検知された結果に基づいて、前記付属品を、前記基準位置に戻すように制御するステップ、
 を実行させるプログラムを提供する。
 本発明によれば、ドローンに吊り下げられた付属品が動いた場合であっても、基準位置に戻すことが可能なドローン付属品制御システム、ドローン付属品制御方法及びプログラムを提供することが可能となる。
図1は、ドローン付属品制御システム1の概要を示す図である。 図2は、ドローン付属品制御システム1の全体構成図である。 図3は、ドローン10の機能ブロック図である。 図4は、ドローン10が実行する制御処理を示す図である。 図5は、ドローン10の一例を示す図である。
 以下、本発明を実施するための最良の形態について、図を参照しながら説明する。なお、これはあくまでも一例であって、本発明の技術的範囲はこれに限られるものではない。
 [ドローン付属品制御システム1の概要]
 本発明の好適な実施形態の概要について、図1に基づいて説明する。図1は、本発明の好適な実施形態であるドローン付属品制御システム1の概要を説明するための図である。ドローン付属品制御システム1は、ドローン10から構成される。
 ドローン10は、図示していない情報端末からの指示や予め自身に設定されたプログラム等に基づいて、所定の経路を自身が有するプロペラを駆動することにより飛行する無人航空機である。
 ドローン10は、支持棒100及び付属品200を備えている。支持棒100は、一方の端部がドローン10に接続され、他方の端部が付属品200に接続された棒状の物品である。また、付属品200は、電撃殺虫器や粘着式捕虫器等の殺虫器や農薬等を散布する散布装置である。なお、本実施形態において、付属品200は、殺虫器であるものとして説明する。
 ドローン10と支持棒100とは、駆動部400により接続される。駆動部400は、モータやロボットアーム等が備えられており、ドローン10は、この駆動部400を駆動することにより、支持棒100の位置を制御する。ドローン10は、支持棒100の位置を制御することにより、付属品200の位置を制御する。
 付属品200と支持棒100とは、接続部410により接続される。接続部410は、支持棒100と付属品200とを接続するとともに、風力センサ、加速度センサ等の各種センサを備える。ドローン10は、各種センサにより検知した情報を取得する。ドローン10は、例えば、風力センサにより、プロペラ310により発生する風や環境により発生する風を検知する。また、ドローン10は、例えば、加速度センサにより、自身及び付属品200の進行方向や、支持棒100の動きを検知する。
 前提として、ドローン10は、支持棒100と、この支持棒100に吊り下げられた付属品200とが飛行状態にない場合における支持棒100及び付属品200の位置を、一点鎖線で示す基準位置320として記憶する。この基準位置320とは、例えば、支持棒100及び付属品200がドローン10に対して略垂直な状態にある位置を基準位置320として記憶する。すなわち、ドローン10、支持棒100及び付属品200が直線状に位置した状態を基準位置320として記憶する。なお、基準位置320の位置は、上述した構成に限らず、他の位置であってもよい。
 ドローン10は、図示していない情報端末の指示や、所定のプログラムに基づいて、飛行する(ステップS01)。ドローン10は、自身が有するプロペラ310を駆動することにより、飛行する。本実施形態においては、矢印300の示す方向に向かって飛行するものとして説明する。なお、飛行する方向や高さ等は適宜変更可能である。
 ドローン10は、支持棒100及び付属品200の位置が基準位置320からどれだけ動いたかを検知する(ステップS02)。図1において、支持棒100及び付属品200は、矢印330の方向及び距離を移動したものとする。図1において、移動後の支持棒100及び付属品200の位置及び状態を点線で示している。ドローン10は、移動量を、加速度センサ及び風力センサにより検知する。具体的には、ドローン10は、加速度センサにより、支持棒100の動きを検知し、風力センサにより、付属品200の動きを検知する。なお、ドローン10は、移動量を他の構成により検知する構成であってもよい。
 ドローン10は、検知した結果に基づいて、支持棒100及び付属品200の位置を、基準位置320に戻すように制御する(ステップS03)。ドローン10は、例えば、支持棒100を、飛行により移動した位置から、基準位置320に戻すように、駆動部400に設けられたモータを回転させる。支持棒100は、このモータの回転により、基準位置320に戻される。その結果、ドローン10は、支持棒100及び付属品200の位置を基準位置320に戻す制御を実行することが可能となる。
 なお、ドローン10が実行する、支持棒100及び付属品200の位置を基準位置320に戻す制御は、センサによる情報を取得せずに、実行する構成であってもよい。また、ドローン10は、ロボットアーム等の他の構成を駆動部400に設け、この構成により支持棒100及び付属品200の位置を、基準位置320に戻す制御を実行する構成であってもよい。また、ドローン10は、自身の動力を利用して、支持棒100及び付属品200の位置を基準位置320に戻す制御を実行する構成であってもよい。
 また、ドローン10は、移動飛行した際に、支持棒100及び付属品200の動きを学習し、学習した動きを考慮して、上述した支持棒100及び付属品200の位置を基準位置320に戻す制御を実行する構成であってもよい。例えば、上述した処理を実行した結果の支持棒100及び付属品200の動きを、学習することにより、実際の動きを制御する構成であってもよい。
 以上が、ドローン付属品制御システム1の概要である。
 [ドローン付属品制御システム1のシステム構成]
 図2に基づいて、本発明の好適な実施形態であるドローン付属品制御システム1のシステム構成について説明する。図2は、本発明の好適な実施形態であるドローン付属品制御システム1のシステム構成を示す図である。ドローン付属品制御システム1は、ドローン10から構成される。
 ドローン10は、後述の機能を備えた上述した無人航空機である。上述した通り、ドローン10は、支持棒100を介して付属品200が接続され、駆動部400により支持棒100が接続される。また、上述した通り、付属品200は、接続部410により支持棒100が接続される。支持棒100の一方の端部は、駆動部400に接続され、支持棒100の他方の端部は、接続部410に接続される。なお、支持棒100及び付属品200の材質、大きさ、設置位置、設置方法等は、本実施形態の構成に限らず、適宜変更可能である。また、駆動部400又は接続部410の構成を省き、支持棒100を介して、ドローン10と付属品200とが接続される構成であってもよい。
 [各機能の説明]
 図3に基づいて、本発明の好適な実施形態であるドローン付属品制御システム1の機能について説明する。図3は、ドローン10の機能ブロック図を示す図である。
 ドローン10は、制御部11として、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備え、図示していない通信部として、他の機器と通信可能にするためのデバイス、例えば、IEEE802.11に準拠したWiFi(Wireless Fidelity)対応デバイス等を備える。また、ドローン10は、記憶部13として、ハードディスクや半導体メモリ、記録媒体、メモリカード等によるデータのストレージ部を備える。また、ドローン10は、入出力部14として、駆動部400に備えられたモータやロボットアーム等の支持棒100を動かす駆動デバイスや、接続部410に備えられた各種センサが検知する情報を取得する情報取得デバイスや、プロペラ310を駆動させて飛行する飛行デバイス等の各種デバイスを備える。
 ドローン10において、制御部11が所定のプログラムを読み込むことにより、記憶部13と協働して、学習モジュール30を実現する。ドローン10において、制御部11が所定のプログラムを読み込むことにより、入出力部14と協働して、飛行モジュール40、制御モジュール41を実現する。
 [制御処理]
 図4に基づいて、ドローン付属品制御システム1が実行する制御処理について説明する。図4は、ドローン10が実行する制御処理のフローチャートを示す図である。上述した各モジュールが実行する処理について、本処理に併せて説明する。
 図5は、本実施形態におけるドローン10の一例を示す図である。図5に示した状態を説明する。図5において、ドローン10は、プロペラ310、駆動部400を備える。ドローン10は、プロペラ310を駆動することにより、飛行する。駆動部400は、ドローン10の底面に位置し、支持棒100の一方の端部と接続される。駆動部400は、モータやロボットアーム等を備える。ドローン10は、駆動部400を駆動することにより、支持棒100の動きを制御する。本実施形態において、駆動部400は、モータを備えるものとして説明する。具体的には、支持棒100の駆動部400側の端部と、モータとが当接することにより、モータの回転に併せて、支持棒100が動く構成である。ドローン10は、支持棒100を介して付属品200と接続される。付属品200は、接続部410を備える。支持棒100は、接続部410を介して付属品200と接続される。支持棒100は、その一方の端部が駆動部400と接続されており、他方の端部が接続部410と接続された棒状の形状である。一方の端部は、モータと当接しており、モータの回転に併せた動きを行う形状である。接続部410は、風力センサ、加速度センサ等の各種センサを備える。ドローン10は、接続部410に備えられた各種センサが検知した情報を取得する。ドローン10は、風力センサにより、プロペラ310からの風圧や外部環境からの風圧を検知し、加速度センサにより、自身の進行方向を検知する。
 なお、支持棒100の動きの制御は、上述した構成に限らず、他の構成であってもよい。例えば、ロボットアームにより、支持棒100及び付属品200を動かす構成であってもよい。
 ドローン10は、支持棒100と付属品200との基準位置320の位置を記憶する。基準位置320は、上述した位置である。例えば、ドローン10の中心に支持棒100及び付属品200が取り付けられた場合、この中心から重力方向に延びる直線上にあることが基準位置320であることを意味する。また、ドローン10のいずれかの場所に支持棒100及び付属品200が取り付けられた場合、この取付位置から重力方向に延びる直線上にあることが基準位置320であることを意味する。
 ドローン10は、矢印300で示す方向に飛行する。また、この飛行に伴って、支持棒100及び付属品200は、基準位置320から矢印330で示す移動量だけ移動し、点線で示す支持棒100及び付属品200の位置に移動するものとして説明する。これらは、あくまでも一例であって、本発明は、この実施例に限定されるべきものではないことは言うまでもない。
 飛行モジュール40は、図示していない情報端末の飛行指示や、予め設定された飛行プログラムや、その他の構成により、飛行する(ステップS10)。ステップS10において、飛行モジュール40は、プロペラの駆動制御や、自身の傾斜等を制御することにより、上下動、前後動等を制御することにより、飛行する。
 なお、飛行モジュール40が実行する飛行制御は、本実施形態に限られるものではなく、適宜変更可能である。例えば、プロペラの駆動のみで飛行する構成であってもよいし、プロペラ以外の構成により飛行する構成であってもよい。また、飛行高度や飛行方向等は適宜変更可能である。
 制御モジュール41は、支持棒100及び付属品200が基準位置320に位置しているか否かを判断する(ステップS11)ステップS11において、基準位置320とは、上述した構成と同様である。ステップS11において、制御モジュール41は、加速度センサ及び風力センサに基づいて、支持棒100及び付属品200の動きを検知する。制御モジュール41は、検知した支持棒100及び付属品200の位置が、基準位置320上に位置しているか否かを判断することにより、支持棒100及び付属品200が基準位置320に位置しているか否かを判断する。このとき、制御モジュール41は、例えば、支持棒100及び付属品200が基準位置320に近似する位置である場合、基準位置320に位置しているものと判断する。近似するとは、支持棒100及び付属品200の位置が、基準位置320と略同一直線上にあることや、所定の範囲内に位置することを意味する。
 ステップS11において、制御モジュール41は、支持棒100及び付属品200が基準位置320に位置していると判断した場合(ステップS11 YES)、本処理を終了する。
 ステップS11において、制御モジュール41は、支持棒100及び付属品200が基準位置320に位置していないと判断した場合(ステップS11 NO)、移動量を取得する(ステップS12)。ステップS12において、制御モジュール41は、支持棒100の移動量を加速度センサから取得する。また、制御モジュール41は、付属品200の移動量を風力センサから取得する。ステップS12において、制御モジュール41は、支持棒100及び付属品200が、矢印330で示す方向及び距離を移動したものとして移動量を取得する。また、ステップS12において、制御モジュール41が検知する支持棒100及び付属品200の位置は、点線で示した支持棒100及び付属品200の位置である。なお、ステップS12において、制御モジュール41は、それ以外の構成により支持棒100及び付属品200の移動量を取得してもよい。例えば、支持棒100の傾斜角と長さとに基づいて、支持棒100及び付属品200の移動量を取得する構成であってもよい。
 制御モジュール41は、取得した移動量に基づいて、支持棒100及び付属品200の動きを制御し、支持棒100及び付属品200の位置を基準位置320に戻すように制御する(ステップS13)。ステップS13において、制御モジュール41は、各種センサが検知した情報や、プロペラからの風圧、外部環境からの風圧等を計算した計算結果等に基づいて、支持棒100及び付属品200を基準位置320に戻すように制御する。ステップS13において、制御モジュール41は、支持棒100及び付属品200を基準位置320に戻す方向に、駆動部400に設けられモータを回転させることにより、支持棒100及び付属品200の動きを制御する。このようにすることにより、制御モジュール41は、支持棒100及び付属品200の動きを制御することが可能となる。
 なお、ステップS13において、制御モジュール41は、駆動部400の構成ではなく、ドローン10の動力を利用して、支持棒100及び付属品200の位置を基準位置320に戻すように制御する構成であってもよい。例えば、制御モジュール41は、プロペラの動きを制御し、自身の進行方向を、現在の進行方向の逆方向に変更することにより、支持棒100及び付属品200の位置を基準位置320に戻す制御を実行する構成であってもよい。
 学習モジュール30は、ステップS13において実行した支持棒100の動きの制御内容を記憶し、制御モジュール41が実行する制御内容を学習する(ステップS14)。ステップS14において、学習モジュール30が学習する制御内容は、例えば、付属品200の形状、重さ、重心位置、プロペラからの風の影響、外部環境からの風の影響、支持棒100の長さ、形状、重さ、重心位置等に基づいた実際の制御内容である。
 制御モジュール41は、上述したステップS10乃至ステップS14の処理を複数回実行することにより、学習した制御内容と、実際の各種センサの情報とに基づいて、支持棒100及び付属品200の動きを制御する。すなわち、制御モジュール41は、学習した制御内容を考慮したうえで、実際の支持棒100及び付属品200の制御内容を決定する。
 このようにすることにより、支持棒100にさらに、付属品200以外の物品を吊り下げた場合や、突風が発生したりした場合であっても、飛行するうちに、自動で最適な制御内容を判断することが可能となる。
 以上が、制御処理である。
 上述した手段、機能は、コンピュータ(CPU、情報処理装置、各種端末を含む)が、所定のプログラムを読み込んで、実行することによって実現される。プログラムは、例えば、フレキシブルディスク、CD(CD-ROMなど)、DVD(DVD-ROM、DVD-RAMなど)等のコンピュータ読取可能な記録媒体に記録された形態で提供される。この場合、コンピュータはその記録媒体からプログラムを読み取って内部記憶装置又は外部記憶装置に転送し記憶して実行する。また、そのプログラムを、例えば、磁気ディスク、光ディスク、光磁気ディスク等の記憶装置(記録媒体)に予め記録しておき、その記憶装置から通信回線を介してコンピュータに提供するようにしてもよい。
 以上、本発明の実施形態について説明したが、本発明は上述したこれらの実施形態に限るものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。
 1 ドローン付属品制御システム、10 ドローン、100 支持棒、200 付属品

Claims (7)

  1.  ドローンに吊り下げられた付属品の動きを制御するドローン付属品制御システムであって、
     前記付属品が、基準位置からどれだけ動いたかを検知する動き検知手段と、
     前記検知された結果に基づいて、前記付属品を、前記基準位置に戻すように制御する位置制御手段と、
     を備えることを特徴とするドローン付属品制御システム。
  2.  前記位置制御手段は、前記ドローンのプロペラからの風圧を計算して、前記付属品を、前記基準位置に戻すように制御する、
     ことを特徴とする請求項1に記載のドローン付属品制御システム。
  3.  前記位置制御手段は、前記ドローンの動力を利用して、前記付属品を、前記基準位置に戻すように制御する、
     ことを特徴とする請求項1に記載のドローン付属品制御システム。
  4.  前記動き検知手段は、加速度センサによって検知し、
     前記位置制御手段は、モータで制御する、
     ことを特徴とする請求項1に記載のドローン付属品制御システム。
  5.  前記付属品の動きを学習する学習手段と、
     を備え、
     前記位置制御手段は、前記学習された動きを考慮して、前記付属品を、前記基準位置に戻すように制御する、
     ことを特徴とする請求項1に記載のドローン付属品制御システム。
  6.  ドローンに吊り下げられた付属品の動きを制御するドローン付属品制御方法であって、
     前記付属品が、基準位置からどれだけ動いたかを検知するステップと、
     前記検知された結果に基づいて、前記付属品を、前記基準位置に戻すように制御するステップと、
     を備えることを特徴とするドローン付属品制御方法。
  7.  ドローンに吊り下げられた付属品の動きを制御するドローン付属品制御システムに、
     前記付属品が、基準位置からどれだけ動いたかを検知するステップ、
     前記検知された結果に基づいて、前記付属品を、前記基準位置に戻すように制御するステップ、
     を実行させるプログラム。
PCT/JP2016/069504 2016-06-30 2016-06-30 ドローン付属品制御システム、ドローン付属品制御方法及びプログラム WO2018003079A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069504 WO2018003079A1 (ja) 2016-06-30 2016-06-30 ドローン付属品制御システム、ドローン付属品制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069504 WO2018003079A1 (ja) 2016-06-30 2016-06-30 ドローン付属品制御システム、ドローン付属品制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2018003079A1 true WO2018003079A1 (ja) 2018-01-04

Family

ID=60786198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069504 WO2018003079A1 (ja) 2016-06-30 2016-06-30 ドローン付属品制御システム、ドローン付属品制御方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2018003079A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171997A (ja) * 2018-03-27 2019-10-10 株式会社エアロネクスト 飛行体
JP2021041911A (ja) * 2019-09-06 2021-03-18 鐘瑩瑩 ドローンのクラッシュ防止用保護構造
WO2024038582A1 (ja) * 2022-08-19 2024-02-22 楽天グループ株式会社 制御装置、無人航空機、及び制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193584A (ja) * 1992-01-17 1993-08-03 Mitsubishi Heavy Ind Ltd 吊下荷物の姿勢安定装置
JP2013079034A (ja) * 2011-10-05 2013-05-02 Zero:Kk 空撮用回転翼機
US20150331427A1 (en) * 2014-05-13 2015-11-19 The Boeing Company Control Method to Damp Quadrotor Slung Payload Mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193584A (ja) * 1992-01-17 1993-08-03 Mitsubishi Heavy Ind Ltd 吊下荷物の姿勢安定装置
JP2013079034A (ja) * 2011-10-05 2013-05-02 Zero:Kk 空撮用回転翼機
US20150331427A1 (en) * 2014-05-13 2015-11-19 The Boeing Company Control Method to Damp Quadrotor Slung Payload Mode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171997A (ja) * 2018-03-27 2019-10-10 株式会社エアロネクスト 飛行体
JP2021041911A (ja) * 2019-09-06 2021-03-18 鐘瑩瑩 ドローンのクラッシュ防止用保護構造
WO2024038582A1 (ja) * 2022-08-19 2024-02-22 楽天グループ株式会社 制御装置、無人航空機、及び制御方法
JP7459385B1 (ja) 2022-08-19 2024-04-01 楽天グループ株式会社 制御装置、無人航空機、及び制御方法

Similar Documents

Publication Publication Date Title
US11794901B1 (en) Payload coupling apparatus for UAV and method of delivering a payload
US11667384B2 (en) Payload coupling apparatus for UAV and method of delivering a payload
US11993380B2 (en) Methods and systems for raising and lowering a payload
US11905018B2 (en) Methods and systems for user interaction and feedback via control of tether
AU2017322228B2 (en) Methods and systems for detecting and resolving failure events when raising and lowering a payload
CN107804459B (zh) 用于缓冲有效载荷的振荡的方法和系统
AU2018390468B2 (en) System and methods for automatic payload pickup by UAV
US11447371B2 (en) Perforated capsule hook for stable high speed retract
WO2017213837A1 (en) Apparatuses for releasing a payload from an aerial tether
WO2018003079A1 (ja) ドローン付属品制御システム、ドローン付属品制御方法及びプログラム
AU2021257911B2 (en) Payload coupling apparatus for UAV and method of delivering a payload
JP6105181B1 (ja) 殺虫器バランス調整システム、殺虫器バランス調整方法及びプログラム
US20230192449A1 (en) Package Coupling Apparatus with Attachment Plate for Securing a Package to a UAV and Method of Securing a Package for Delivery
US20230192295A1 (en) Package Coupling Apparatus with Strap and Hanger for Securing a Package to a UAV and Method of Securing a Package for Delivery
US20240140626A1 (en) UAV Having a Rotatable Cargo Bay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04-04-2019)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16907312

Country of ref document: EP

Kind code of ref document: A1