WO2018003062A1 - Linear motor, head unit, surface mounting machine, and single-axis robot - Google Patents
Linear motor, head unit, surface mounting machine, and single-axis robot Download PDFInfo
- Publication number
- WO2018003062A1 WO2018003062A1 PCT/JP2016/069447 JP2016069447W WO2018003062A1 WO 2018003062 A1 WO2018003062 A1 WO 2018003062A1 JP 2016069447 W JP2016069447 W JP 2016069447W WO 2018003062 A1 WO2018003062 A1 WO 2018003062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- armature
- field element
- linear motor
- unit
- component
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
Definitions
- the technology disclosed in this specification relates to a linear motor, a head unit, a surface mounter, and a single-axis robot.
- a linear motor that raises and lowers the suction nozzle in the vertical direction is known as disclosed in JP2013-143886A (Patent Document 1 below).
- This linear motor is provided on the frame so as to be aligned in the vertical direction with the coil provided on the frame, a slider having a permanent magnet disposed opposite to the coil and supported so as to be movable up and down on the frame.
- the slider is moved in the vertical direction by the attractive force generated between the coil and the permanent magnet by performing energization control on the coil.
- the encoder includes a magnetic scale disposed below the permanent magnet in the slider and an encoder body supported by the frame so as to face the magnetic scale below the coil, and a detection sensor of the encoder body reads the magnetic scale. Thus, the vertical position of the slider is detected.
- a detection unit that detects the vertical position of the slider has a sensor and a linear scale on the back side opposite to the front side, which is the coil side, with the slider as a boundary. This unit is fixed to the base plate. The detected sensor reads the linear scale affixed to the support provided on the movable base, thereby detecting the vertical position of the slider.
- Patent Document 2 Japanese Patent No. 5250267
- JP 2013-143886 A Japanese Patent No. 5250267
- the drive unit composed of the coil and the permanent magnet and the position detection unit for detecting the position information of the slider are arranged side by side in the vertical direction or the front-rear direction. Or it will enlarge in the front-back direction.
- the slider moved by the drive unit is detected by the position detection unit separated from the drive unit, so the position detection unit follows the drive unit. And the responsiveness between the drive unit and the position detection unit is deteriorated. Therefore, the servo gain of the linear motor cannot be increased, and the servo control of the linear motor cannot be accelerated.
- This specification discloses a technique for speeding up servo control of a linear motor by reducing the size of the linear motor and improving the response of the linear motor.
- the technology disclosed in this specification is an armature in which a plurality of coil portions are linearly arranged, and a plurality of permanent magnets are arranged in the same direction as the arrangement direction of the coil portions so as to face the armature. And either one of the armature or the field element is longer in the arrangement direction than the other, and either the armature or the field element is relative to the other.
- the linear motor is movable in the arrangement direction, and the detected part is directly fixed to the longer one of the armature or the field element, and the shorter one of the armature or the field element
- the detection unit for optically detecting the detection target unit is provided adjacent to the detection unit.
- the technology disclosed in this specification is a head unit having a component holding drive unit that moves a component holding unit that holds a component up and down, and the component holding drive unit includes the linear motor. It was set as the composition. Further, the technology disclosed in this specification is configured such that the component holding drive unit includes a plurality of the linear motors together with the component holding unit.
- the technology disclosed in the present specification is a surface mounter, which is a component mounter having the head unit, a component supply device that supplies the component to the component mounter, and the component mounter. And a board transfer device for transferring a board on which the component is mounted.
- the technology disclosed in this specification is a surface mounter including a head drive unit that moves a component mounting apparatus for mounting a component on a substrate in a horizontal direction, and the head drive unit includes the linear motor. It was set as the structure which has.
- the technology disclosed in this specification is a single-axis robot including a pedestal drive unit that linearly moves the pedestal unit, and the pedestal drive unit includes the linear motor, and the electric machine It was set as the structure by which the child was provided in the said base part.
- the detected part is directly fixed to the driving mechanism constituted by the armature and the field element, and the detecting part is provided adjacently.
- a mechanism and a position detection unit for detecting the position are individually provided, and the drive mechanism and the position detection unit are arranged in series in the movement direction of the linear motor, or the drive unit and the position detection unit are arranged in parallel.
- the linear motor can be reduced in size by the amount of overlap between the drive mechanism and the detected portion as compared with the case where the drive mechanism and the detected portion are overlapped.
- a linear motor can be reduced in weight.
- the driving mechanism and the position detecting part are arranged in series, or the driving part and the position detecting part are arranged in parallel.
- the followability of the position detection unit with respect to the drive mechanism is enhanced, and the responsiveness between the drive mechanism and the position detection unit can be improved.
- the servo gain of a linear motor can be raised and the servo control of a linear motor can be sped up.
- the linear motor disclosed by this specification is good also as the following structures.
- the surface of the armature and the field element to which the detected portion is fixed may be provided flat with resin, and the detected portion may be fixed to the resin.
- the surface of the armature or the field element is covered with the resin, and the flatness of the portion to which the detected portion is fixed is high, so that the space between the detected portion and the detecting portion is high.
- the accuracy of the gap dimension can be increased. Thereby, it can prevent that a to-be-detected part becomes undetectable by a detection part.
- the detection unit includes a sensor unit that detects the detected unit, and is arranged side by side in the movement direction so as to be adjacent to the armature, and the sensor unit of the detection unit includes the sensor unit in the detection unit. It is good also as a structure provided in the edge part by the side of an armature.
- the sensor unit for detecting the detected portion is arranged adjacent to the armature side.
- the sensor unit is provided at the end of the detection unit opposite to the armature.
- the length of the to-be-detected part fixed to the field element can be shortened.
- the length dimension of the arrangement direction of a field element can be shortened, and the field element side can be further reduced in weight.
- the detected part is provided to extend from the field element in the moving direction, and the detected part extended from the field element is provided at a position adjacent to the field element in the arrangement direction. It is good also as a structure provided with the support part fixed.
- the field element that moves relative to the armature only needs to be provided up to the position where the armature is arranged.
- the armature-side detection unit It is necessary to arrange the detected part up to the position of the detection part on the child side. That is, when the detected part is fixed to the field element, there is a disagreement that the field elements must be enlarged in the arrangement direction by the length from the armature to the position of the detecting part.
- the detected portion extending from the field element is fixed to the support portion provided adjacent to the field element, the field element increases in size in the moving direction. Can be prevented. Thereby, the quantity of the permanent magnet of a field element can be reduced.
- the servo control of the linear motor can be speeded up by reducing the size of the linear motor and improving the response of the linear motor.
- FIG. 1 Perspective view of head unit Front view AA line sectional view of FIG. Perspective view of linear motor
- FIG. 1 Perspective view of linear motor
- FIG. 1 Perspective view of head unit Front view AA line sectional view of FIG. Perspective view of linear motor
- FIG. 1 Perspective view of head unit Front view AA line sectional view of FIG. Perspective view of linear motor
- FIG. 1 Perspective view of head unit Front view AA line sectional view of FIG. Perspective view of linear motor
- FIG. Side view of linear motor showing a state where the mover has reached the final position in the linear motor
- Partially enlarged side view of the mover Side view showing relationship between armature and field element of linear motor
- Side view showing a mover according to Modification 1
- Side view showing a mover according to Modification 2
- the principal part enlarged view of the surface mounting machine which concerns on Embodiment 2.
- FIG. The perspective view of the linear guide apparatus which concerns on Embodiment 3.
- FIGS. 1 An embodiment of the technology disclosed in this specification will be described with reference to FIGS.
- the present embodiment illustrates a surface mounter 10 that mounts an electronic component (an example of “component”) E on a printed circuit board (an example of “substrate”) P.
- an electronic component an example of “component”
- a printed circuit board an example of “substrate”
- FIG. 1 some of the electronic components E accommodated in each feeder 16 described later are not shown.
- the surface mounter 10 includes a base 12 having a substantially rectangular shape in plan view, a transport conveyor (an example of a “board transport device”) 13 disposed on the base 12, and a printed circuit board P. And a component mounting apparatus 20 for mounting the electronic component E.
- a transport conveyor an example of a “board transport device”
- a component mounting apparatus 20 for mounting the electronic component E.
- the long side direction of the base 12 and the transport direction of the transport conveyor 13 in FIG. 1 will be described as the left-right direction
- the short side direction of the base 12 will be described as the front-back direction.
- the vertical direction will be described with reference to the vertical direction of the component mounting apparatus 20 in FIG.
- the base 12 is a base on which a transport conveyor 13, a component mounting apparatus 20, and the like are arranged.
- An electronic component is placed on the printed circuit board P below the transport conveyor 13 in the base 12.
- a backup plate (not shown) for backing up the printed circuit board P is provided.
- the transport conveyor 13 is arranged at a substantially central portion in the front-rear direction of the base 12 and transports the printed board P in the left-right direction. Further, the transport conveyor 13 includes a pair of conveyor belts 15 that circulate and drive in the left-right direction, and a printed circuit board P is set on the pair of conveyor belts 15 so as to be installed. Then, the printed circuit board P is loaded from the right side along the conveyor belt 15 into the mounting range in the substantially central portion on the base 12 in the left-right direction, and after the electronic component E is mounted, the printed board P is left along the conveyor belt 15. It is carried out to.
- the component supply device 14 is a feeder type, and two parts are arranged in the left and right directions on both sides in the up and down direction of the transport conveyor 13, and are arranged in a total of four locations.
- a plurality of feeders 16 are attached to these component supply devices 14 so as to be aligned in the left-right direction.
- Each feeder 16 includes an unillustrated electric delivery device that pulls out a component supply tape containing a plurality of electronic components E from a reel, and the electronic components E are fed from the end of each feeder 16 on the side of the conveyer 13. One by one is supplied.
- the component mounting apparatus 20 includes a pair of support frames 21 arranged on both sides in the left-right direction of the base 12, a head unit 30, and a head driving device 22 that moves the head unit 30. Configured.
- Each support frame 21 has an elongated shape extending in the front-rear direction, and is disposed on each side of the base 12 in the left-right direction.
- the head drive device 22 includes a Y-axis servo mechanism 23 and an X-axis servo mechanism 27 and is provided so as to be installed on the pair of support frames 21.
- the Y-axis servo mechanism 23 includes a pair of Y-axis guide rails 24 provided along each support frame 21 in a form extending in the left-right direction and a Y-axis in which a ball nut (not shown) is screwed. It has a shaft ball screw 25A and a Y-axis servomotor 25 provided at the end of the Y-axis ball screw 25A.
- a pair of Y-axis guide rails 24 have a head support 26 fixed to a ball nut. Is installed in the form of erection.
- the ball nut advances and retreats along the Y-axis ball screw 25A.
- the head support 26 fixed to the ball nut and the head support 26 are mounted.
- the head unit 30 moves in the front-rear direction along the Y-axis guide rail 24.
- the X-axis servo mechanism 27 includes an X-axis guide rail (not shown) provided on the head support 26 in a form extending in the left-right direction and a ball nut (not shown) screwed together.
- a ball screw 28A and an X-axis servomotor 28 provided at the end of the X-axis ball screw 28A are provided.
- a head unit 30 is attached to the X-axis guide rail so as to be movable in the left-right direction.
- the head unit 30 fixed to the ball nut moves in the left-right direction along the X-axis guide rail.
- the head unit 30 is movable on the base 12 in the horizontal direction, which is the front / rear / right / left direction.
- the head unit 30 has a shape that is long in the vertical direction, and includes a metal unit frame 31, a component holding unit 60 that holds the electronic component E, and a plurality of component holding units 60.
- a component holding drive unit 32 that is driven up and down and an R-axis servo mechanism 70 that rotates the component holding unit 60 are provided.
- a plurality of (10 in the present embodiment) side-by-side components are provided in the lower end of the component holding drive unit 32 as shown in FIG. And a nozzle 62 attached to the lower end of the drive shaft 61.
- the nozzle 62 is connected to a valve switch 65 provided on the top of the head unit 30 via a drive shaft 61, a resin pipe 63, and the like.
- a negative pressure suction force is applied from a negative pressure generator (not shown), and the electronic component E is sucked and held at the lower end of the nozzle 62.
- a cylindrical shaft holder 66 is mounted on the outer periphery of the drive shaft 61.
- the shaft holder 66 is interlocked with the R-axis servo mechanism 70 via the belt 71, and the component holding portion 60 is rotated around the axis when the R-axis servo mechanism 70 is operated.
- the component holding drive unit 32 includes a plurality of linear motors 40 and a fixed frame 33 that fixes the plurality of linear motors 40.
- the fixed frame 33 is substantially U-shaped when viewed from the front, and fixes a plurality of linear motors 40 side by side between the side walls 33A at both left and right ends.
- Each linear motor 40 is provided so as to correspond to the component holding unit 60, and the nozzle 62 is moved in the vertical direction with respect to the component supply device 14 and the printed circuit board P by driving the component holding unit 60 up and down.
- This is a drive mechanism.
- Each linear motor 40 includes a metal mounting frame 41 and a mover 50 that is held so as to be linearly movable in the vertical direction with respect to the mounting frame 41, as shown in FIGS. Configured.
- FIGS. 5 to 11 show the front side and the rear side reversed, and in FIG. 9, the Z rail 52 of the mover 50 described later is omitted. .
- the mounting frame 41 is configured such that a frame portion 43 having a rectangular shape in side view is integrally provided on a peripheral portion of a flat plate 42 having a substantially rectangular shape in side view that is long in the vertical direction.
- the linear motor 40 is held by the unit frame 31 by screwing the provided upper and lower slide bases 44 to the unit frame 31 with screws.
- the armature 45 having a plurality of coil portions 46 is fixed to the front lower portion of the frame portion 43 of the mounting frame 41 by screws.
- the armature 45 is also a stator fixed to the mounting frame 41.
- the armature 45 has a comb-shaped core 47 made of a plurality of electromagnetic steel plates, and a coil is wound around each comb-shaped tooth portion 47 ⁇ / b> A provided on the core 47, so that the vertical direction A plurality of coil portions 46 arranged in a row are configured.
- the mover 50 is longer than the armature 45 in the mounting frame 41 in the vertical direction by a factor of two or more.
- the mover 50 is provided with a clearance of a predetermined size in the front-rear direction between the armature 45 and the armature 45 in the mounting frame 41, and is provided opposite to the front-rear direction behind the armature 45. Yes.
- the mover 50 is configured such that the Z rail 52 is slidably fitted to the pair of slide bases 44 in the mounting frame 41 so that the upper end portion of the mover 50 is As shown in FIG. 8, the lower half of the mover 50 extends from the mounting frame 41 as shown in FIG. It is possible to move up and down between the final position protruding downward. In other words, the mover 50 is movable in the vertical direction with respect to the armature 45 that is a stator.
- the mover 50 includes a mover main body 51 extending in the vertical direction and a Z rail 52 fixed to the rear surface of the mover main body 51.
- the lower end of the mover main body 51 is a component holding unit 60.
- the upper end of each is a fixed portion 53 fixed with screws.
- a plurality of permanent magnets 54 are fixed over the entire length of the front surface of the movable body 51 from the fixed portion 53 so as to be arranged at equal pitches in the vertical direction, and a field element 55 is provided. Yes.
- the permanent magnet 54 in the field element 55 has a front surface facing the armature 45 as a magnetic pole, and the permanent magnet 54 is arranged so that N poles and S poles alternate in the vertical direction. ing.
- mover 50 is demonstrated with reference to FIG.
- the installation range of the permanent magnet 54 necessary for moving the mover 50 in the vertical direction is arranged so that at least the entire coil portion 46 of the armature 45 and the permanent magnet 54 always face each other in the front-rear direction.
- the permanent magnet 54 of the mover 50 includes a coil unit 46 and a field element 55 arranged at the upper end of the armature 45 when the mover 50 is arranged at the final position. It arrange
- the field elements 55 in the mover 50 are arranged so that the permanent magnets 54 face each other over the entire coil portion 46 in the armature 45 because the permanent magnets 54 having substantially the same shape are arranged at equal pitches in the vertical direction.
- the permanent magnet 54 at the upper end portion of the field element 55 may protrude above the coil portion 46 at the upper end portion of the armature 45 at the final position.
- the permanent magnet 54 at the lower end may protrude below the coil portion 46 at the lower end of the armature 45 at the initial position. Therefore, the minimum installation range L3 of the permanent magnet 54 may be larger than the sum of the moving distance L1 of the mover 50 and the overall length L2 of the coil portion 46.
- the permanent magnet 54 in this embodiment has a sensor offset range L4, which will be described later, in addition to the minimum installation range L3 of the permanent magnet 54, as shown in FIG. The configuration is included.
- the field element 55 in a state where the mover main body 51 is arranged at the initial position, the field element 55 is arranged slightly below the armature 45, as shown in FIG. In addition, in a state where the mover main body 51 is disposed at the final position, the field element 55 is disposed slightly above the armature 45. Note that the thickness dimension of the permanent magnet 54 in the present embodiment is substantially uniform, and the front surface of the field element 55 is flat so as not to be uneven.
- the linear motor 40 is a moving magnet type linear motor
- the head unit 30 is fixed to the fixed portion 53 of the movable element main body 51 in accordance with the vertical movement of the movable element 50 in the linear motor 40.
- the component holding unit 60 is moved up and down, and the nozzle 62 of the component holding unit 60 can be moved up and down with respect to the component supply device 14 and the circuit board.
- a return spring 90 that urges the mover 50 upward is attached to the fixed portion 53 of the mover main body 51.
- the return spring 90 prevents the component holding portion 60 from descending when the coil portion 46 of the armature 45 is in a non-energized state and no attractive force acts between the armature 45 and the field element 55. It is like that.
- a linear encoder 80 that detects the position of the mover 50 is provided between the field element 55 and the mounting frame 41 of the mover 50 of the linear motor 40.
- an optical linear scale (an example of “detected portion”) 81 extending in the Z direction is provided on the front surface of the field element 55 in the mover 50 of the linear motor 40, and Above the armature 45, a detection unit 82 that optically detects the linear scale 81 in a form facing the linear scale 81 in the front-rear direction is screwed to the mounting frame 41.
- the detection unit 82 has an elongated shape in the vertical direction, and is fixed at a position adjacent to the armature 45 immediately above the armature 45.
- the detection unit 82 includes a main body portion 84 having a substantially rectangular plate-like substrate portion 83 that is long in the vertical direction, and a sensor portion 85 fixed to the rear surface 83A of the substrate portion 83.
- the main body 84 has a detection unit 82 screwed to the mounting frame 41 by inserting fixing screws 86 into both upper and lower ends of the main body 84 and tightening the flat plate 42 of the mounting frame 41.
- the sensor unit 85 is arranged so as to be offset upward from the coil unit 46 at the upper end of the armature 45 by the sensor offset range L4 (about two permanent magnets). Yes.
- the linear scale 81 is formed in a thin band shape from a non-magnetic stainless steel, and has optical scales in the vertical direction at intervals of several tens of micro pitches, for example. Therefore, the position of the field element 55 and the mover 50 can be detected by optically reading the scale of the linear scale 81 by the sensor unit 85 of the detection unit 82.
- the linear scale 81 is fixed to the front surface of the permanent magnet 54 in the field element 55 by a known method such as a double-sided tape or an adhesive, and the measurement range is at least the position of the mover 50. Is set to a range where it can be detected.
- the measurement range of the linear scale 81 in the present embodiment is at least the same length as the moving distance of the mover 50. Specifically, as shown in FIG. A range between the position P1 facing the front and rear of the sensor unit 85 and the length of the movable element 50 extended by the moving distance L1 when it is arranged at the position is a measurement range L5.
- the linear scale 81 is installed in a slightly larger range L6 before and after the measurement range L5, so that the sensor unit 85 of the detection unit 82 and the linear scale 81 Is always opposed in the front-rear direction between the initial position and the final position, so that the position of the mover 50 between the initial position and the final position can be detected.
- the sensor unit 85 in the detection unit 82 is disposed above the coil unit 46 at the upper end of the mover 50 by the length of the sensor offset range L4. Therefore, the permanent magnets 54 in the field element 55 of the mover 50 are installed more than the minimum installation range L3 by the sensor offset range L4 (two permanent magnets).
- the present embodiment is configured as described above, and subsequently, the operation and effect of the surface mounter 10 will be described.
- the linear motor 40 of the head unit 30 of the present embodiment as shown in FIGS. 5 to 8, the field element 55 of the mover 50 of the linear motor 40 which is a drive mechanism for moving the component holding portion 60 in the vertical direction. Since the linear scale 81 is directly fixed to the movable element 50, a portion for fixing the linear scale 81 does not need to be provided separately from the field element 55 in the movable element 50. Can be lighter.
- the linear motor 40 can be prevented from becoming large.
- the armature 2 having the coil portion 2 ⁇ / b> A and the detection portion 3 ⁇ / b> A of the position detection encoder 3 are moving directions of the mover 4 having the field element 4 ⁇ / b> A made of a permanent magnet.
- the linear motor 1 arranged in series in the vertical direction and the armature 7 and the position detecting encoder 8 are arranged in parallel in the front-rear direction (with the movable element 6 interposed therebetween).
- the linear motor 40 can be reduced in size.
- the head unit 30 having a plurality of linear motors 40 can be reduced in size and weight.
- the sensor part 85 of the detection part 82 fixed to the attachment frame 41 is disposed at the lower end part on the armature 45 side, for example, the sensor part is provided at the upper end part of the detection part.
- mover 50 can be shortened.
- mover 50 can be shortened, and the needle
- the linear scale 81 is directly fixed to the field element 55 of the mover 50, so that the drive mechanism constituted by the field element 55 and the armature 45, the linear scale 81, and the detection unit 82.
- the distance between the linear encoder 80 and the linear encoder 80 is made very small to increase the rigidity between the driving mechanism and the linear encoder 80, so that the followability of the linear encoder 80 to the driving mechanism is increased. Therefore, the responsiveness between the drive mechanism and the linear encoder 80 can be improved.
- the linear motor 40 can be reduced in weight, so that the mover 50 can be speeded up, and the followability of the linear encoder 80 can be improved to improve the responsiveness of the linear motor 40. Therefore, the servo gain of the linear motor 40 can be increased and the servo control of the linear motor 40 can be speeded up.
- the position information of the mover is acquired by detecting the N pole and the S pole in the permanent magnet of the field element by a magnetic sensor.
- a method is conceivable.
- the optical linear scale 81 having a very fine scale pitch is pasted and fixed on the field element 55, the position information of the mover 50 is not affected by the magnetic field. The accuracy can be improved and the linear scale 81 can be attached to the field element 55 very easily.
- Modification 1 of the mover 50 in Embodiment 1 will be described with reference to FIG. In FIG. 11, the Z rail is not shown.
- the mover 150 of the first modification is obtained by changing the field element 55 of the mover 50 in the first embodiment, and the configuration, operation, and effect common to the above-described embodiment are duplicated. Omitted.
- symbol shall be used about the same structure as the said embodiment.
- the field element 155 of the mover 150 according to the first modification is resin-molded with a plurality of permanent magnets 154 arranged in the vertical direction, and the front surface 155A of the resin-molded field element 155 is: It is formed flat.
- a linear scale (an example of a “detected portion”) 81 is fixed to a flat front surface 155A of the field element 155 by a known method such as a double-sided tape.
- the front surface 155A of the field element 155 is configured in a flat state without unevenness, and the front surface 155A of the field element 155 is The flatness can be increased, and variations in the gap dimension between the linear scale 81 and the sensor unit 85 in the detection unit 82 can be prevented. Thereby, it can prevent that the linear scale 81 becomes undetectable by the detection part 82.
- Modification 2 of the mover 50 in Embodiment 1 will be described with reference to FIG.
- the mover 250 in the linear motor 240 according to the second modification is obtained by changing the configuration of the mover 50 in the first embodiment, and the configuration, operation, and effect common to the above-described embodiment are duplicated. Is omitted.
- symbol shall be used about the same structure as the said embodiment.
- the mover 250 includes a mounting base portion 256 (an example of a “support portion”) 256 having a thickness substantially the same as that of the permanent magnet 54 above the field element 255 in the mover 250. It is provided adjacent to the magnetic element 255.
- the vertical dimension of the mounting table 256 is slightly longer than the length (the sensor offset range L4) between the upper coil part 46 of the armature 45 and the sensor part 85 of the detection part 82. Is provided.
- a linear scale (an example of a “detected portion”) 281 extending upward from the upper end position of the field element 255 is fixed to the front surface of the mounting table portion 256 over the entire length of the mounting table portion 256. Yes.
- the length dimension of the field element 255 in the vertical direction is shorter than the length dimension of the field element 55 of the first embodiment by the length dimension in the vertical direction of the mounting table 256.
- the sensor unit 85 of the detection unit 82 can detect the position of the mover 250 by reading the linear scale 281 fixed to the mounting table unit 256. It can be done.
- the field element for driving the mover only needs to be provided up to the position where the armature is arranged.
- the position of the sensor unit of the detection unit is required. It is necessary to arrange a linear scale. For this reason, when the linear scale is fixed to the field element, there is a disagreement that the field element has to be enlarged in the vertical direction by the length dimension from the armature to the position of the detection unit.
- the linear scale 281 extending upward from the field element 255 is fixed to the mounting table portion 256 provided adjacent to the upper side of the field element 255, the field element The length dimension in the vertical direction of 255 can be reduced. Thereby, the quantity of the permanent magnet 54 of the field element 255 can be reduced.
- Embodiment 2 will be described with reference to FIG.
- the surface mounter 310 according to the second embodiment is obtained by changing the driving method for moving the head unit 30 in the left-right direction in the component mounting apparatus 20 according to the first embodiment. Since the effect is duplicated, its description is omitted.
- the same reference numerals are used for the same configurations as those in the first embodiment.
- the component mounting apparatus 320 in the surface mounter 310 has an X frame 321 fixed to a base (not shown) in a form extending in the left-right direction, and forward from the X frame 321.
- a cantilever Y arm 322 that extends, a head unit 330 supported by the Y arm 322, and a head drive unit 340 that moves the head unit 330 back and forth and from side to side.
- the X frame 321 is provided with a pair of upper and lower linear guides 324 extending in the left-right direction over the entire length of the X frame 321, and the Y arm 322 extends along the linear guide 324 while being fitted to the linear guide 324.
- a movable first slider 325 is provided. Therefore, the Y arm 322 is held so as to be linearly movable in the left-right direction along the X frame 321.
- the Y arm 322 is provided with a pair of upper and lower guide rails 323 extending in the front-rear direction over the entire length of the Y arm 322, and the head unit 330 is moved back and forth along the guide rail 323 while being fitted to the guide rail 323.
- An X-direction slider (not shown) that can move in the direction is provided.
- the head unit 330 is movable in the front-rear direction along the Y arm 322. Therefore, the head unit 330 is movable in the horizontal direction, which is the front / rear / left / right direction, on the base.
- the head drive unit 340 includes a first servo mechanism 341 and a second servo mechanism 346.
- the first servo mechanism 341 is provided at the end of the Y arm 322 on the X frame 321 side, and a field element 342 which is provided on the inner surface of the X frame 321 and is formed of a permanent magnet (not shown) and which is long in the left-right direction.
- the field element 342 is longer in the left-right direction than the armature 343. Then, by performing energization control on the coil of the armature 343, the Y arm 322 is moved in the left-right direction by the attractive force generated between the coil of the armature 343 and the permanent magnet of the field element 342. ing. That is, the first servo mechanism 341 of the present embodiment is a moving coil type linear motor.
- the second servo mechanism 346 includes a ball screw shaft 335 provided in the head unit 330 in a form extending in the front-rear direction, and a servo motor 333 that drives the ball screw shaft 335.
- This servo motor The head unit 330 can be moved in the front-rear direction by rotating a ball screw (not shown) attached to the Y arm 322.
- the head unit 330 can be moved to desired positions in the front-rear direction and the left-right direction by the first servo mechanism 341 and the second servo mechanism 346.
- an optical linear scale (an example of a “detected portion”) 381 extending in the left-right direction is fixed to a substantially central portion in the up-down direction of the field element 342, and on the side surface of the armature 343.
- a detection unit 382 for optically detecting the linear scale 381 is fixed at a substantially central portion in the vertical direction.
- the linear scale 381 with respect to the field element 342 and the detection unit 382 with respect to the armature 343 are fixed by a known method such as a double-sided tape.
- the linear scale 381 is fixed on the surface of the field element 342 and the detection unit 382 is fixed on the side surface of the armature 343, so that the linear scale 381 is supported with respect to the X frame 321. There is no need to provide a separate portion, and the X frame 321 can be prevented from becoming large or complicated.
- the linear scale 381 is directly fixed to the surface of the field element 342 and the detection unit 382 is directly fixed to the side surface of the armature 343, the first servo mechanism configured by the field element 342 and the armature 343 is provided.
- 341 and the rigidity between the linear encoder 380 configured by the linear scale 381 and the detection unit 382 are increased, and the followability of the linear encoder 380 with respect to the first servo mechanism 341 can be increased. Thereby, the responsiveness of the first servo mechanism 341 can be improved.
- the response of the first servo mechanism 341 is improved by improving the followability of the linear encoder 80. Therefore, the servo gain of the first servo mechanism 341 is increased and the first servo mechanism 341 is increased. Servo control can be speeded up.
- This embodiment is a linear guide device (an example of a “single-axis robot”) 410 that moves the pedestal portion 430 in the front-rear direction, and includes a base 412 and a pair of support frames 420 provided on the base 412. A pedestal portion 430 that is movably held by the pair of support frames 420 and a pedestal drive portion 440 that drives the pedestal portion 430 are configured.
- the front-rear direction will be described with the left side in the figure as the front side and the right side in the figure as the rear side with reference to the left-right direction in FIG.
- the base 412 has a substantially rectangular shape in plan view extending in the front-rear direction, and a pair of support frames 420 are disposed on both sides in the width direction of the base 412.
- the pair of support frames 420 extend in the front-rear direction at both ends in the width direction of the base 412, and extend in the front-rear direction over the entire length of the support frame 420 at the upper end of each support frame 420.
- a guide rail 421 is provided.
- the pedestal portion 430 has a substantially rectangular flat plate shape in plan view, and a pair of front and rear sliders 431 are provided on the bottom surfaces of both sides of the pedestal portion 430 in the width direction.
- the slider 431 is movable in the front-rear direction along the guide rail 421 while being fitted to the guide rail 421 of the support frame 420, and the pedestal portion 430 can be moved back and forth by moving the slider 431 back and forth. It is said that.
- the pedestal drive unit 440 includes an armature 441 composed of a plurality of coil portions (not shown) and a field element 442 composed of a plurality of permanent magnets 454.
- the armature 441 has a flat block shape and is fixed to a substantially central portion in the width direction on the lower surface of the pedestal portion 430. Electric power is supplied to a coil portion of the armature 441 from a cable (not shown) inserted through a cable guide portion 413 provided on a side portion of the base 412.
- the field element 442 is configured by fixing a plate-like permanent magnet 454 between the pair of support frames 420 to the base 412 so that the N pole and the S pole are alternately arranged in the front-rear direction.
- the entire length of the base 412 is provided. In other words, the field element 442 is longer than the armature 441.
- the pedestal drive unit 440 in the present embodiment is also a moving coil type linear motor, as in the second embodiment.
- an optical linear scale (an example of a “detected portion”) 481 extending in the front-rear direction is fixed to a substantially central portion in the width direction of the field element 442, and is arranged on the front surface of the armature 441.
- a detection unit 482 that optically detects the linear scale 481 is fixed at a substantially central portion in the width direction.
- the linear scale 481 with respect to the field element 442 and the detection unit 482 with respect to the armature 441 are fixed by the same method as in the first and second embodiments.
- the linear scale 481 is fixed to the upper surface of the field element 442, and the detection unit 482 is fixed to the front surface of the armature 441. Therefore, the portion that supports the linear scale with respect to the support frame 420 The support frame 420 can be prevented from becoming large or complicated. In addition, since it is not necessary to provide a detection unit for detecting a linear scale separately provided on the side of the support frame, the linear guide device 410 can be prevented from being enlarged.
- the linear scale 481 is directly fixed to the upper surface of the field element 442, and the detection unit 482 is directly fixed to the front surface of the armature 441. Therefore, the field element 442 and the armature 441 are configured.
- the rigidity between the pedestal drive unit 440 and the linear encoder 480 configured by the linear scale 481 and the detection unit 482 is increased, and the followability of the linear encoder 480 with respect to the pedestal drive unit 440 can be enhanced. That is, the responsiveness between the pedestal drive unit 440 and the linear encoder 480 can be improved, the servo gain of the pedestal drive unit 440 can be increased, and the servo control of the pedestal drive unit 440 can be speeded up.
- the linear scales 81, 281, 381, 481 are made of nonmagnetic stainless steel.
- the present invention is not limited to this, and the linear scale may be made of a nonmagnetic metal or glass. If the magnetic field lines of the permanent magnet of the field element are not completely shielded and are made thin enough to pass the armature and the mover can be driven sufficiently, the linear scale can be made of a magnetic metal (magnetic stainless steel). May be included).
- the linear scales 81, 281, 381, and 481 are fixed to the field elements 55, 155, 255, 342, and 442 by double-sided tape or the like.
- the present invention is not limited to this, and the lower end portion of the linear scale may be embedded in the resin portion of a field element formed by resin molding of a permanent magnet.
- the armature 45, 343, 441 is configured to have a long field element.
- the present invention is not limited to this, and as shown in FIGS. 17 and 18, an armature 545 formed by resin molding a plurality of coil portions 546 is formed longer than a field element 555 formed by arranging a plurality of permanent magnets 554.
- the linear motor 540 may be configured, and the linear scale 581 attached to the surface of the armature 545 longer than the field element 555 is detected by the detection unit 582 provided adjacent to the field element 555. It is good also as a structure.
- the detection unit 482 is fixed to the front surface of the armature 441 including the coil unit.
- the configuration is not limited to this, and the detection unit may be embedded in the armature together with the coil unit.
- the detection unit 82 is disposed above the armature 45.
- the configuration is not limited to this, and the detection unit may be arranged below the armature. Even when the detection unit is arranged below the armature, the minimum permanent magnet installation range and the linear scale installation range in the field element of the mover should be determined by the same method as in the first embodiment. Can do.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Linear Motors (AREA)
- Supply And Installment Of Electrical Components (AREA)
Abstract
[Problem] To achieve a size reduction of a linear motor and enhance the speed of the servo control of the linear motor by improving the responsiveness of the linear motor. [Solution] A linear motor disclosed in this specification is a linear motor 40 having: an armature 45 in which a plurality of coil parts 46 are fixed to an attachment frame 41 in a form of being aligned in the vertical direction; and a field element 55 in which a plurality of permanent magnets 54 are aligned in the vertical direction so as to face the armature 45, wherein the field element 55 is longer than the armature 45 in the vertical direction, and the field element 55 is vertically movable relative to the armature 45. An optical linear scale 81 is directly fixed to the field element 55, and the attachment frame 41 is provided with a detection part 82 which optically detects the linear scale 81 and is disposed adjacent to the armature 45 in the vertical direction.
Description
本明細書によって開示される技術は、リニアモータ、ヘッドユニット、表面実装機および単軸ロボットに関する。
The technology disclosed in this specification relates to a linear motor, a head unit, a surface mounter, and a single-axis robot.
例えば、吸着ノズルを上下方向に昇降させるリニアモータとして、特開2013-143886号公報(下記特許文献1)に記載のものが知られている。このリニアモータは、フレームに設けられたコイルと、コイルと対向して配置された永久磁石を有しフレームに上下に移動可能に支持されたスライダと、コイルと上下方向に並ぶようにフレームに設けられたエンコーダとを備えており、コイルに対して通電制御を行うことにより、コイルと永久磁石との間に生じる吸引力によってスライダが上下方向に移動するようになっている。
For example, a linear motor that raises and lowers the suction nozzle in the vertical direction is known as disclosed in JP2013-143886A (Patent Document 1 below). This linear motor is provided on the frame so as to be aligned in the vertical direction with the coil provided on the frame, a slider having a permanent magnet disposed opposite to the coil and supported so as to be movable up and down on the frame. The slider is moved in the vertical direction by the attractive force generated between the coil and the permanent magnet by performing energization control on the coil.
エンコーダは、スライダにおいて永久磁石の下方に配された磁気スケールと、コイルの下方において磁気スケールと対向するようにフレームに支持されたエンコーダ本体とを備え、エンコーダ本体の検出用センサが磁気スケールを読み取ることで、スライダの上下方向の位置を検出する。
The encoder includes a magnetic scale disposed below the permanent magnet in the slider and an encoder body supported by the frame so as to face the magnetic scale below the coil, and a detection sensor of the encoder body reads the magnetic scale. Thus, the vertical position of the slider is detected.
一方、スライダの上下方向の位置を検出する検出ユニットとしては、スライダを境にコイル側である前側とは反対側の後側にセンサとリニアスケールを有するものがあり、このものは、ベースプレートに固定されたセンサが、可動ベースに設けられた支持部に貼り付けられたリニアスケールを読み取ることでスライダの上下方向の位置を検出する。このような技術としては、特許第5250267号公報(下記特許文献2)に記載のものが知られている。
On the other hand, a detection unit that detects the vertical position of the slider has a sensor and a linear scale on the back side opposite to the front side, which is the coil side, with the slider as a boundary. This unit is fixed to the base plate. The detected sensor reads the linear scale affixed to the support provided on the movable base, thereby detecting the vertical position of the slider. As such a technique, one described in Japanese Patent No. 5250267 (Patent Document 2 below) is known.
ところで、上記のリニアモータは、コイルと永久磁石とからなる駆動部と、スライダの位置情報を検出する位置検出部とが上下方向もしくは前後方向に並んで配置されているため、リニアモータが上下方向もしくは前後方向に大型化してしまう。
By the way, in the above linear motor, the drive unit composed of the coil and the permanent magnet and the position detection unit for detecting the position information of the slider are arranged side by side in the vertical direction or the front-rear direction. Or it will enlarge in the front-back direction.
また、駆動部と位置検出部との位置が離れている場合には、駆動部によって移動したスライダを駆動部から離れた位置検出部によって検出することになるため、駆動部に対する位置検出部の追従性が悪くなり、駆動部と位置検出部間の応答性が悪くなってしまう。したがって、リニアモータのサーボゲインを上げることができず、リニアモータのサーボ制御を高速化させることができなくなってしまう。
In addition, when the position of the drive unit and the position detection unit is separated, the slider moved by the drive unit is detected by the position detection unit separated from the drive unit, so the position detection unit follows the drive unit. And the responsiveness between the drive unit and the position detection unit is deteriorated. Therefore, the servo gain of the linear motor cannot be increased, and the servo control of the linear motor cannot be accelerated.
本明細書では、リニアモータの小型化を図ると共に、リニアモータの応答性を向上させることで、リニアモータのサーボ制御を高速化させる技術を開示する。
This specification discloses a technique for speeding up servo control of a linear motor by reducing the size of the linear motor and improving the response of the linear motor.
本明細書によって開示される技術は、複数のコイル部を直線的に並べた形態の電機子と、前記電機子に対向するように複数の永久磁石を前記コイル部の並び方向と同一方向に並べた界磁子とを有し、前記電機子または前記界磁子のいずれか一方が他方よりも前記並び方向に長く、かつ、前記電機子または前記界磁子のいずれか一方が他方に対して前記並び方向に移動可能なリニアモータであって、前記電機子または前記界磁子のうち長い方には被検出部が直接固定され、前記電機子または前記界磁子のうち短い方には前記被検出部を光学的に検出する検出部が隣接して設けられている構成とした。
The technology disclosed in this specification is an armature in which a plurality of coil portions are linearly arranged, and a plurality of permanent magnets are arranged in the same direction as the arrangement direction of the coil portions so as to face the armature. And either one of the armature or the field element is longer in the arrangement direction than the other, and either the armature or the field element is relative to the other. The linear motor is movable in the arrangement direction, and the detected part is directly fixed to the longer one of the armature or the field element, and the shorter one of the armature or the field element The detection unit for optically detecting the detection target unit is provided adjacent to the detection unit.
また、本明細書によって開示される技術は、部品を保持する部品保持部を上下に移動させる部品保持駆動部を有するヘッドユニットであって、前記部品保持駆動部は、前記リニアモータを有している構成とした。
また、本明細書によって開示される技術は、前記部品保持駆動部が、前記部品保持部と共に、前記リニアモータを複数有している構成とした。 The technology disclosed in this specification is a head unit having a component holding drive unit that moves a component holding unit that holds a component up and down, and the component holding drive unit includes the linear motor. It was set as the composition.
Further, the technology disclosed in this specification is configured such that the component holding drive unit includes a plurality of the linear motors together with the component holding unit.
また、本明細書によって開示される技術は、前記部品保持駆動部が、前記部品保持部と共に、前記リニアモータを複数有している構成とした。 The technology disclosed in this specification is a head unit having a component holding drive unit that moves a component holding unit that holds a component up and down, and the component holding drive unit includes the linear motor. It was set as the composition.
Further, the technology disclosed in this specification is configured such that the component holding drive unit includes a plurality of the linear motors together with the component holding unit.
また、本明細書によって開示される技術は、表面実装機であって、前記ヘッドユニットを有する部品実装装置と、前記部品実装装置に前記部品を供給する部品供給装置と、前記部品実装装置によって保持された前記部品を実装する基板を搬送する基板搬送装置とを備える構成とした。
The technology disclosed in the present specification is a surface mounter, which is a component mounter having the head unit, a component supply device that supplies the component to the component mounter, and the component mounter. And a board transfer device for transferring a board on which the component is mounted.
また、本明細書によって開示される技術は、部品を基板に実装する部品実装装置を水平方向に移動させるヘッド駆動部を備えた表面実装機であって、前記ヘッド駆動部は、前記リニアモータを有している構成とした。
また、本明細書によって開示される技術は、台座部を直線的に移動させる台座駆動部を備えた単軸ロボットであって、前記台座駆動部は、前記リニアモータを有しており、前記電機子が前記台座部に設けられている構成とした。 Further, the technology disclosed in this specification is a surface mounter including a head drive unit that moves a component mounting apparatus for mounting a component on a substrate in a horizontal direction, and the head drive unit includes the linear motor. It was set as the structure which has.
The technology disclosed in this specification is a single-axis robot including a pedestal drive unit that linearly moves the pedestal unit, and the pedestal drive unit includes the linear motor, and the electric machine It was set as the structure by which the child was provided in the said base part.
また、本明細書によって開示される技術は、台座部を直線的に移動させる台座駆動部を備えた単軸ロボットであって、前記台座駆動部は、前記リニアモータを有しており、前記電機子が前記台座部に設けられている構成とした。 Further, the technology disclosed in this specification is a surface mounter including a head drive unit that moves a component mounting apparatus for mounting a component on a substrate in a horizontal direction, and the head drive unit includes the linear motor. It was set as the structure which has.
The technology disclosed in this specification is a single-axis robot including a pedestal drive unit that linearly moves the pedestal unit, and the pedestal drive unit includes the linear motor, and the electric machine It was set as the structure by which the child was provided in the said base part.
このような構成のリニアモータによると、電機子と界磁子とによって構成される駆動機構に対して、被検出部が直接固定され、検出部が隣接して設けられているから、例えば、駆動機構と位置を検出する位置検出部とをそれぞれ個別に設けて、駆動機構と位置検出部とをリニアモータの移動方向に直列に並べて配置したり、駆動部と位置検出部とを並列に並べて配置したりする場合に比べて、駆動機構と被検出部とを重ねる分だけリニアモータを小型化することができる。
According to the linear motor having such a configuration, the detected part is directly fixed to the driving mechanism constituted by the armature and the field element, and the detecting part is provided adjacently. A mechanism and a position detection unit for detecting the position are individually provided, and the drive mechanism and the position detection unit are arranged in series in the movement direction of the linear motor, or the drive unit and the position detection unit are arranged in parallel. The linear motor can be reduced in size by the amount of overlap between the drive mechanism and the detected portion as compared with the case where the drive mechanism and the detected portion are overlapped.
また、駆動機構と位置検出部とをそれぞれ個別に設ける必要がないから、リニアモータを軽量化することができる。
また、駆動機構の一部に被検出部を直接固定しているから、駆動機構と位置検出部とを直列に並べて配置したり、駆動部と位置検出部とを並列に並べて配置したりする場合に比べて、駆動機構に対する位置検出部の追従性が高くなり、駆動機構と位置検出部と間の応答性を向上させることができる。これにより、リニアモータのサーボゲインを高めて、リニアモータのサーボ制御を高速化させることができる。 Moreover, since it is not necessary to provide a drive mechanism and a position detection part separately, a linear motor can be reduced in weight.
In addition, since the detected part is directly fixed to a part of the driving mechanism, the driving mechanism and the position detecting part are arranged in series, or the driving part and the position detecting part are arranged in parallel. As compared with the above, the followability of the position detection unit with respect to the drive mechanism is enhanced, and the responsiveness between the drive mechanism and the position detection unit can be improved. Thereby, the servo gain of a linear motor can be raised and the servo control of a linear motor can be sped up.
また、駆動機構の一部に被検出部を直接固定しているから、駆動機構と位置検出部とを直列に並べて配置したり、駆動部と位置検出部とを並列に並べて配置したりする場合に比べて、駆動機構に対する位置検出部の追従性が高くなり、駆動機構と位置検出部と間の応答性を向上させることができる。これにより、リニアモータのサーボゲインを高めて、リニアモータのサーボ制御を高速化させることができる。 Moreover, since it is not necessary to provide a drive mechanism and a position detection part separately, a linear motor can be reduced in weight.
In addition, since the detected part is directly fixed to a part of the driving mechanism, the driving mechanism and the position detecting part are arranged in series, or the driving part and the position detecting part are arranged in parallel. As compared with the above, the followability of the position detection unit with respect to the drive mechanism is enhanced, and the responsiveness between the drive mechanism and the position detection unit can be improved. Thereby, the servo gain of a linear motor can be raised and the servo control of a linear motor can be sped up.
本明細書によって開示されるリニアモータは、以下の構成としてもよい。
前記被検出部が固定された前記電機子および前記界磁子の表面は、樹脂によって平坦に設けられており、前記被検出部は、前記樹脂に固定されている構成としてもよい。 The linear motor disclosed by this specification is good also as the following structures.
The surface of the armature and the field element to which the detected portion is fixed may be provided flat with resin, and the detected portion may be fixed to the resin.
前記被検出部が固定された前記電機子および前記界磁子の表面は、樹脂によって平坦に設けられており、前記被検出部は、前記樹脂に固定されている構成としてもよい。 The linear motor disclosed by this specification is good also as the following structures.
The surface of the armature and the field element to which the detected portion is fixed may be provided flat with resin, and the detected portion may be fixed to the resin.
このような構成によると、電機子や界磁子の表面が樹脂によって覆われて、被検出部が固定される部分の平坦度が高くなっているから、被検出部と検出部との間の隙間寸法の精度を高めることができる。これにより、検出部によって被検出部が検出不能になること防ぐことができる。
According to such a configuration, the surface of the armature or the field element is covered with the resin, and the flatness of the portion to which the detected portion is fixed is high, so that the space between the detected portion and the detecting portion is high. The accuracy of the gap dimension can be increased. Thereby, it can prevent that a to-be-detected part becomes undetectable by a detection part.
前記界磁子が前記電機子に対して前記並び方向に移動可能とされている構成としてもよい。
このような構成によると、電機子に対して移動可能な界磁子に被検出部が直接固定されることになるから、界磁子とは別に被検出部が固定される部分を界磁子側に設ける場合に比べて、界磁子側を軽量化することができる。これにより、界磁子側をより高速に移動させることができる。 The field element may be configured to be movable in the arrangement direction with respect to the armature.
According to such a configuration, since the detected portion is directly fixed to the field element movable with respect to the armature, the portion where the detected portion is fixed separately from the field element is the field element. The field element side can be reduced in weight compared with the case where it is provided on the side. Thereby, the field element side can be moved at higher speed.
このような構成によると、電機子に対して移動可能な界磁子に被検出部が直接固定されることになるから、界磁子とは別に被検出部が固定される部分を界磁子側に設ける場合に比べて、界磁子側を軽量化することができる。これにより、界磁子側をより高速に移動させることができる。 The field element may be configured to be movable in the arrangement direction with respect to the armature.
According to such a configuration, since the detected portion is directly fixed to the field element movable with respect to the armature, the portion where the detected portion is fixed separately from the field element is the field element. The field element side can be reduced in weight compared with the case where it is provided on the side. Thereby, the field element side can be moved at higher speed.
前記検出部は、前記被検出部を検出するセンサ部を有し、前記電機子と隣接するように前記移動方向に並んで設けられており、前記検出部のセンサ部は、前記検出部において前記電機子側の端部に設けられている構成としてもよい。
The detection unit includes a sensor unit that detects the detected unit, and is arranged side by side in the movement direction so as to be adjacent to the armature, and the sensor unit of the detection unit includes the sensor unit in the detection unit. It is good also as a structure provided in the edge part by the side of an armature.
このような構成によると、被検出部を検出するセンサ部が電機子側に隣接して配されることになるから、例えば、センサ部が検出部において電機子とは反対側の端部に設けられている場合に比べて、界磁子に固定された被検出部の並び方向の長さを短くすることができる。これにより、界磁子の並び方向の長さ寸法を短くすることができ、界磁子側をさらに軽量化することができる。
According to such a configuration, the sensor unit for detecting the detected portion is arranged adjacent to the armature side. For example, the sensor unit is provided at the end of the detection unit opposite to the armature. Compared with the case where it is made, the length of the to-be-detected part fixed to the field element can be shortened. Thereby, the length dimension of the arrangement direction of a field element can be shortened, and the field element side can be further reduced in weight.
前記被検出部は、前記界磁子から前記移動方向に延出して設けられ、前記界磁子と前記並び方向に隣接した位置には、前記界磁子から延出された前記被検出部が固定される支持部が設けられている構成としてもよい。
The detected part is provided to extend from the field element in the moving direction, and the detected part extended from the field element is provided at a position adjacent to the field element in the arrangement direction. It is good also as a structure provided with the support part fixed.
一般に、電機子に対して移動する界磁子は、電機子が配された位置まで設けられていればよいものの、電機子側の検出部によって界磁子の位置を検出するためには、電機子側の検出部の位置まで被検出部を配置する必要がある。つまり、界磁子に被検出部が固定されている場合には、電機子から検出部の位置まで長さ分だけ、界磁子を並び方向に大きくしなければならなくなってしまう嫌いがある。
In general, the field element that moves relative to the armature only needs to be provided up to the position where the armature is arranged. However, in order to detect the position of the field element by the armature-side detection unit, It is necessary to arrange the detected part up to the position of the detection part on the child side. That is, when the detected part is fixed to the field element, there is a disagreement that the field elements must be enlarged in the arrangement direction by the length from the armature to the position of the detecting part.
ところが、このような構成によると、界磁子に隣接して設けられた支持部に界磁子から延出された被検出部が固定されているから、界磁子が移動方向に大型化することを防ぐことができる。これにより、界磁子の永久磁石の量を削減することができる。
However, according to such a configuration, since the detected portion extending from the field element is fixed to the support portion provided adjacent to the field element, the field element increases in size in the moving direction. Can be prevented. Thereby, the quantity of the permanent magnet of a field element can be reduced.
本明細書によって開示される技術によれば、リニアモータの小型化を図ると共に、リニアモータの応答性を向上させることで、リニアモータのサーボ制御を高速化させることができる。
According to the technology disclosed in this specification, the servo control of the linear motor can be speeded up by reducing the size of the linear motor and improving the response of the linear motor.
<実施形態>
本明細書に開示された技術における一実施形態について図1から図9を参照して説明する。
本実施形態は、プリント基板(「基板」の一例)P上に電子部品(「部品」の一例)Eを実装する表面実装機10を例示している。なお、図1において、後述する各フィーダ16に収容された電子部品Eは、一部図示省略している。 <Embodiment>
An embodiment of the technology disclosed in this specification will be described with reference to FIGS.
The present embodiment illustrates asurface mounter 10 that mounts an electronic component (an example of “component”) E on a printed circuit board (an example of “substrate”) P. In FIG. 1, some of the electronic components E accommodated in each feeder 16 described later are not shown.
本明細書に開示された技術における一実施形態について図1から図9を参照して説明する。
本実施形態は、プリント基板(「基板」の一例)P上に電子部品(「部品」の一例)Eを実装する表面実装機10を例示している。なお、図1において、後述する各フィーダ16に収容された電子部品Eは、一部図示省略している。 <Embodiment>
An embodiment of the technology disclosed in this specification will be described with reference to FIGS.
The present embodiment illustrates a
表面実装機10は、図1に示すように、平面視略矩形状の基台12と、基台12上に配置される搬送コンベア(「基板搬送装置」の一例)13と、プリント基板P上に電子部品Eを実装するための部品実装装置20とを備えて構成されている。なお、以下の説明では、図1における基台12の長辺方向および搬送コンベア13の搬送方向を左右方向とし、基台12の短辺方向を前後方向として説明する。また、上下方向とは、図2における部品実装装置20の上下方向を基準として説明する。
As shown in FIG. 1, the surface mounter 10 includes a base 12 having a substantially rectangular shape in plan view, a transport conveyor (an example of a “board transport device”) 13 disposed on the base 12, and a printed circuit board P. And a component mounting apparatus 20 for mounting the electronic component E. In the following description, the long side direction of the base 12 and the transport direction of the transport conveyor 13 in FIG. 1 will be described as the left-right direction, and the short side direction of the base 12 will be described as the front-back direction. The vertical direction will be described with reference to the vertical direction of the component mounting apparatus 20 in FIG.
基台12は、図1に示すように、搬送コンベア13、部品実装装置20などが配置される基台であって、基台12における搬送コンベア13の下方には、プリント基板P上に電子部品Eを実装する際に、そのプリント基板Pをバックアップするための図示しないバックアッププレート等が設けられている。
As shown in FIG. 1, the base 12 is a base on which a transport conveyor 13, a component mounting apparatus 20, and the like are arranged. An electronic component is placed on the printed circuit board P below the transport conveyor 13 in the base 12. When E is mounted, a backup plate (not shown) for backing up the printed circuit board P is provided.
搬送コンベア13は、図1に示すように、基台12の前後方向の略中央部に配されており、プリント基板Pを左右方向に搬送する。また、搬送コンベア13は、左右方向に循環駆動する一対のコンベアベルト15を備えており、一対のコンベアベルト15には、プリント基板Pが架設する形でセットされる。そして、プリント基板Pは、右側からコンベアベルト15に沿って基台12上における左右方向略中央部の実装範囲に搬入され、電子部品Eの実装作業がされた後、コンベアベルト15に沿って左側に搬出される。
As shown in FIG. 1, the transport conveyor 13 is arranged at a substantially central portion in the front-rear direction of the base 12 and transports the printed board P in the left-right direction. Further, the transport conveyor 13 includes a pair of conveyor belts 15 that circulate and drive in the left-right direction, and a printed circuit board P is set on the pair of conveyor belts 15 so as to be installed. Then, the printed circuit board P is loaded from the right side along the conveyor belt 15 into the mounting range in the substantially central portion on the base 12 in the left-right direction, and after the electronic component E is mounted, the printed board P is left along the conveyor belt 15. It is carried out to.
部品供給装置14は、図1に示すように、フィーダ型とされ、搬送コンベア13の上下方向両側において左右方向に2つずつ並べることで、合計4箇所に配されている。これらの部品供給装置14には、複数のフィーダ16が左右方向に整列した状態で取り付けられている。各フィーダ16は、複数の電子部品Eが収容された部品供給テープをリールから引き出す図示しない電動式の送出装置などを備えており、各フィーダ16における搬送コンベア13側の端部から電子部品Eが一つずつ供給されるようになっている。
As shown in FIG. 1, the component supply device 14 is a feeder type, and two parts are arranged in the left and right directions on both sides in the up and down direction of the transport conveyor 13, and are arranged in a total of four locations. A plurality of feeders 16 are attached to these component supply devices 14 so as to be aligned in the left-right direction. Each feeder 16 includes an unillustrated electric delivery device that pulls out a component supply tape containing a plurality of electronic components E from a reel, and the electronic components E are fed from the end of each feeder 16 on the side of the conveyer 13. One by one is supplied.
部品実装装置20は、図1に示すように、基台12の左右方向の両側に配される一対の支持フレーム21と、ヘッドユニット30と、ヘッドユニット30を移動させるヘッド駆動装置22とを備えて構成されている。各支持フレーム21は、前後方向に延びる細長い形態をなし、基台12の左右方向両側にそれぞれ配されている。
As shown in FIG. 1, the component mounting apparatus 20 includes a pair of support frames 21 arranged on both sides in the left-right direction of the base 12, a head unit 30, and a head driving device 22 that moves the head unit 30. Configured. Each support frame 21 has an elongated shape extending in the front-rear direction, and is disposed on each side of the base 12 in the left-right direction.
ヘッド駆動装置22は、Y軸サーボ機構23とX軸サーボ機構27とを有しており、一対の支持フレーム21に架設するように設けられている。
Y軸サーボ機構23は、図1に示すように、左右方向に延びた形態で各支持フレーム21に沿って設けられた一対のY軸ガイドレール24と、図示しないボールナットが螺合されたY軸ボールねじ25Aと、Y軸ボールねじ25Aの端部に設けられたY軸サーボモータ25とを有しており、一対のY軸ガイドレール24には、ボールナットに固定されたヘッド支持体26が架設する形で取り付けられている。 Thehead drive device 22 includes a Y-axis servo mechanism 23 and an X-axis servo mechanism 27 and is provided so as to be installed on the pair of support frames 21.
As shown in FIG. 1, the Y-axis servo mechanism 23 includes a pair of Y-axis guide rails 24 provided along each support frame 21 in a form extending in the left-right direction and a Y-axis in which a ball nut (not shown) is screwed. It has a shaft ball screw 25A and a Y-axis servomotor 25 provided at the end of the Y-axis ball screw 25A. A pair of Y-axis guide rails 24 have a head support 26 fixed to a ball nut. Is installed in the form of erection.
Y軸サーボ機構23は、図1に示すように、左右方向に延びた形態で各支持フレーム21に沿って設けられた一対のY軸ガイドレール24と、図示しないボールナットが螺合されたY軸ボールねじ25Aと、Y軸ボールねじ25Aの端部に設けられたY軸サーボモータ25とを有しており、一対のY軸ガイドレール24には、ボールナットに固定されたヘッド支持体26が架設する形で取り付けられている。 The
As shown in FIG. 1, the Y-
そして、Y軸サーボモータ25が通電制御されると、Y軸ボールねじ25Aに沿ってボールナットが進退し、その結果、ボールナットに固定されたヘッド支持体26およびヘッド支持体26に装着されたヘッドユニット30がY軸ガイドレール24に沿って前後方向に移動するようになっている。
When the Y-axis servomotor 25 is energized, the ball nut advances and retreats along the Y-axis ball screw 25A. As a result, the head support 26 fixed to the ball nut and the head support 26 are mounted. The head unit 30 moves in the front-rear direction along the Y-axis guide rail 24.
X軸サーボ機構27は、図1に示すように、左右方向に延びた形態でヘッド支持体26に設けられた図示しないX軸ガイドレールと、図示しないボールナットが螺合された図示しないX軸ボールねじ28Aと、X軸ボールねじ28Aの端部に設けられたX軸サーボモータ28とを有している。X軸ガイドレールには、左右方向に沿ってヘッドユニット30が移動自在に取り付けられており、X軸サーボモータ28が通電制御されると、X軸ボールねじ28Aに沿ってボールナットが進退し、その結果、ボールナットに固定されたヘッドユニット30がX軸ガイドレールに沿って左右方向に移動するようになっている。
これにより、ヘッドユニット30は基台12上において前後左右方向である水平方向に移動可能とされている。 As shown in FIG. 1, theX-axis servo mechanism 27 includes an X-axis guide rail (not shown) provided on the head support 26 in a form extending in the left-right direction and a ball nut (not shown) screwed together. A ball screw 28A and an X-axis servomotor 28 provided at the end of the X-axis ball screw 28A are provided. A head unit 30 is attached to the X-axis guide rail so as to be movable in the left-right direction. When the X-axis servo motor 28 is energized and controlled, the ball nut advances and retreats along the X-axis ball screw 28A. As a result, the head unit 30 fixed to the ball nut moves in the left-right direction along the X-axis guide rail.
As a result, thehead unit 30 is movable on the base 12 in the horizontal direction, which is the front / rear / right / left direction.
これにより、ヘッドユニット30は基台12上において前後左右方向である水平方向に移動可能とされている。 As shown in FIG. 1, the
As a result, the
ヘッドユニット30は、図2から図4に示すように、上下方向に長い形態とされ、金属製のユニットフレーム31と、電子部品Eを保持する部品保持部60と、複数の部品保持部60を上下に駆動させる部品保持駆動部32と、部品保持部60を回転させるR軸サーボ機構70とを備えて構成されている。
As shown in FIGS. 2 to 4, the head unit 30 has a shape that is long in the vertical direction, and includes a metal unit frame 31, a component holding unit 60 that holds the electronic component E, and a plurality of component holding units 60. A component holding drive unit 32 that is driven up and down and an R-axis servo mechanism 70 that rotates the component holding unit 60 are provided.
部品保持部60は、図3に示すように、部品保持駆動部32の下端部に左右方向に横並びに複数(本実施形態では10個)設けられており、上下方向に延びる駆動シャフト61と、駆動シャフト61の下端部に取り付けられたノズル62とを有している。ノズル62は、駆動シャフト61や樹脂製パイプ63等を介してヘッドユニット30の上部に設けられたバルブ切替器65に接続されており、部品吸着時には、バルブ切替器65によってバルブを切り替えることで、図示しない負圧発生装置から負圧吸引力が与えられ、ノズル62の下端部に電子部品Eが吸着して保持されるようになっている。
As shown in FIG. 3, a plurality of (10 in the present embodiment) side-by-side components are provided in the lower end of the component holding drive unit 32 as shown in FIG. And a nozzle 62 attached to the lower end of the drive shaft 61. The nozzle 62 is connected to a valve switch 65 provided on the top of the head unit 30 via a drive shaft 61, a resin pipe 63, and the like. A negative pressure suction force is applied from a negative pressure generator (not shown), and the electronic component E is sucked and held at the lower end of the nozzle 62.
また、駆動シャフト61の外周には、筒状のシャフトホルダ66が装着されている。このシャフトホルダ66は、ベルト71を介してR軸サーボ機構70と連動されており、R軸サーボ機構70が動作することによって、部品保持部60が軸周りに回動するようになっている。
Further, a cylindrical shaft holder 66 is mounted on the outer periphery of the drive shaft 61. The shaft holder 66 is interlocked with the R-axis servo mechanism 70 via the belt 71, and the component holding portion 60 is rotated around the axis when the R-axis servo mechanism 70 is operated.
部品保持駆動部32は、複数のリニアモータ40と、複数のリニアモータ40を固定する固定フレーム33とを備えて構成されている。
固定フレーム33は、図3に示すように、正面視略U字状をなし、左右両端部の側壁33Aの間に複数のリニアモータ40を左右方向に横並びに固定している。 The component holdingdrive unit 32 includes a plurality of linear motors 40 and a fixed frame 33 that fixes the plurality of linear motors 40.
As shown in FIG. 3, the fixedframe 33 is substantially U-shaped when viewed from the front, and fixes a plurality of linear motors 40 side by side between the side walls 33A at both left and right ends.
固定フレーム33は、図3に示すように、正面視略U字状をなし、左右両端部の側壁33Aの間に複数のリニアモータ40を左右方向に横並びに固定している。 The component holding
As shown in FIG. 3, the fixed
各リニアモータ40は、部品保持部60に対応するようにそれぞれ設けられており、部品保持部60を上下に駆動させることで部品供給装置14やプリント基板Pに対してノズル62を上下方向に移動させるための駆動機構とされている。また、各リニアモータ40は、図4から図8に示すように、金属製の取付フレーム41と、取付フレーム41に対して上下方向に直線的に移動可能に保持された可動子50などを備えて構成されている。なお、リニアモータ40の説明において、図5から図11では、図示前側と後側とを逆にして示しており、図9においては、後述する可動子50のZレール52を図示省略している。
Each linear motor 40 is provided so as to correspond to the component holding unit 60, and the nozzle 62 is moved in the vertical direction with respect to the component supply device 14 and the printed circuit board P by driving the component holding unit 60 up and down. This is a drive mechanism. Each linear motor 40 includes a metal mounting frame 41 and a mover 50 that is held so as to be linearly movable in the vertical direction with respect to the mounting frame 41, as shown in FIGS. Configured. In the description of the linear motor 40, FIGS. 5 to 11 show the front side and the rear side reversed, and in FIG. 9, the Z rail 52 of the mover 50 described later is omitted. .
取付フレーム41は、上下方向に長い側面視略矩形状の平板42の周縁部に側面視矩形状の枠部43が一体に設けられた形態とされており、枠部43の後側内面43Aに設けられた上下一対のスライドベース44をユニットフレーム31にねじ固定することで、リニアモータ40がユニットフレーム31に保持されている。
The mounting frame 41 is configured such that a frame portion 43 having a rectangular shape in side view is integrally provided on a peripheral portion of a flat plate 42 having a substantially rectangular shape in side view that is long in the vertical direction. The linear motor 40 is held by the unit frame 31 by screwing the provided upper and lower slide bases 44 to the unit frame 31 with screws.
取付フレーム41の枠部43における前側下部には、複数のコイル部46を有する電機子45がねじ固定されている。なお、この電機子45は取付フレーム41に固定された固定子でもある。
The armature 45 having a plurality of coil portions 46 is fixed to the front lower portion of the frame portion 43 of the mounting frame 41 by screws. The armature 45 is also a stator fixed to the mounting frame 41.
電機子45は、複数枚の電磁鋼板からなる櫛形状のコア47を有しており、このコア47に設けられた櫛歯状の各ティース部47Aにコイルが巻装されることで、上下方向に並んだ複数のコイル部46が構成されている。
The armature 45 has a comb-shaped core 47 made of a plurality of electromagnetic steel plates, and a coil is wound around each comb-shaped tooth portion 47 </ b> A provided on the core 47, so that the vertical direction A plurality of coil portions 46 arranged in a row are configured.
可動子50は、取付フレーム41における電機子45よりも上下方向に2倍以上長い形態とされている。また、可動子50は、取付フレーム41における電機子45との間に前後方向に所定寸法のクリアランスを有した状態で設けられており、電機子45の後方において前後方向に対向して設けられている。
The mover 50 is longer than the armature 45 in the mounting frame 41 in the vertical direction by a factor of two or more. The mover 50 is provided with a clearance of a predetermined size in the front-rear direction between the armature 45 and the armature 45 in the mounting frame 41, and is provided opposite to the front-rear direction behind the armature 45. Yes.
また、可動子50は、取付フレーム41内の一対のスライドベース44に対してZレール52を上下方向にスライド可能に嵌合させることで、図7に示すように、可動子50の上端部が枠部43の上側内面の直下に配されると共に可動子50のほぼ全体が取付フレーム41内に収容された初期位置と、図8に示すように、可動子50の下半分が取付フレーム41から下方に突出した最終位置との間を上下方向に移動可能とされている。言い換えると、可動子50は、固定子である電機子45に対して上下方向に移動可能とされている。
Further, as shown in FIG. 7, the mover 50 is configured such that the Z rail 52 is slidably fitted to the pair of slide bases 44 in the mounting frame 41 so that the upper end portion of the mover 50 is As shown in FIG. 8, the lower half of the mover 50 extends from the mounting frame 41 as shown in FIG. It is possible to move up and down between the final position protruding downward. In other words, the mover 50 is movable in the vertical direction with respect to the armature 45 that is a stator.
また、可動子50は、上下方向に延びる可動子本体51と、可動子本体51の後面に固定されたZレール52とを有しており、可動子本体51の下端部は、部品保持部60の上端部がねじ固定された固定部53とされている。
The mover 50 includes a mover main body 51 extending in the vertical direction and a Z rail 52 fixed to the rear surface of the mover main body 51. The lower end of the mover main body 51 is a component holding unit 60. The upper end of each is a fixed portion 53 fixed with screws.
そして、可動子本体51の前面における固定部53よりも上側の部分には、全長に亘って複数の永久磁石54が上下方向に等ピッチで並ぶように固定されて界磁子55が設けられている。なお、界磁子55における永久磁石54は、電機子45と対向する前側の表面が磁極とされており、永久磁石54は、上下方向にN極とS極とが交互になるように配置されている。
A plurality of permanent magnets 54 are fixed over the entire length of the front surface of the movable body 51 from the fixed portion 53 so as to be arranged at equal pitches in the vertical direction, and a field element 55 is provided. Yes. The permanent magnet 54 in the field element 55 has a front surface facing the armature 45 as a magnetic pole, and the permanent magnet 54 is arranged so that N poles and S poles alternate in the vertical direction. ing.
ここで、可動子50の移動範囲に対する永久磁石54の設置範囲について、図10を参照して説明する。
可動子50を上下方向に移動させる為に必要な永久磁石54の設置範囲は、少なくとも、電機子45のコイル部46全体と永久磁石54とが常に前後方向に対向するように配置する。 Here, the installation range of thepermanent magnet 54 with respect to the movement range of the needle | mover 50 is demonstrated with reference to FIG.
The installation range of thepermanent magnet 54 necessary for moving the mover 50 in the vertical direction is arranged so that at least the entire coil portion 46 of the armature 45 and the permanent magnet 54 always face each other in the front-rear direction.
可動子50を上下方向に移動させる為に必要な永久磁石54の設置範囲は、少なくとも、電機子45のコイル部46全体と永久磁石54とが常に前後方向に対向するように配置する。 Here, the installation range of the
The installation range of the
具体的には、可動子50の永久磁石54は、図10示すように、可動子50が最終位置に配された場合、電機子45の上端部に配されたコイル部46と界磁子55の上端部に配された永久磁石54とが一致するように配置する。また、可動子が初期位置に配された場合、電機子45の下端部に配されたコイル部46と界磁子55の下端部に配された永久磁石54とが一致するように配置する。
つまり、可動子50における永久磁石54の最小設置範囲L3は、少なくとも、可動子50の移動距離(初期位置から最終位置までの移動距離)L1と、コイル部46全体の長さ寸法L2とを合算した長さ寸法となる。 Specifically, as shown in FIG. 10, thepermanent magnet 54 of the mover 50 includes a coil unit 46 and a field element 55 arranged at the upper end of the armature 45 when the mover 50 is arranged at the final position. It arrange | positions so that the permanent magnet 54 distribute | arranged to the upper end part of may correspond. Further, when the mover is arranged at the initial position, the coil part 46 arranged at the lower end part of the armature 45 and the permanent magnet 54 arranged at the lower end part of the field element 55 are arranged to coincide with each other.
That is, the minimum installation range L3 of thepermanent magnet 54 in the mover 50 includes at least the movement distance (movement distance from the initial position to the final position) L1 of the mover 50 and the overall length L2 of the coil portion 46. This is the length dimension.
つまり、可動子50における永久磁石54の最小設置範囲L3は、少なくとも、可動子50の移動距離(初期位置から最終位置までの移動距離)L1と、コイル部46全体の長さ寸法L2とを合算した長さ寸法となる。 Specifically, as shown in FIG. 10, the
That is, the minimum installation range L3 of the
なお、可動子50における界磁子55は、ほぼ同一形状の永久磁石54を上下方向に等ピッチで並べているため、電機子45におけるコイル部46全体に亘って永久磁石54が対向するように設置するには、最終位置において、界磁子55における上端部の永久磁石54が電機子45における上端部のコイル部46よりも上方にはみ出す場合がある。また、これとは逆に、初期位置において、下端部の永久磁石54が電機子45における下端部のコイル部46よりも下方にはみ出す場合がある。したがって、永久磁石54の最小設置範囲L3は、可動子50の移動距離L1と、コイル部46全体の長さ寸法L2との合計よりも大きくなる場合がある。
The field elements 55 in the mover 50 are arranged so that the permanent magnets 54 face each other over the entire coil portion 46 in the armature 45 because the permanent magnets 54 having substantially the same shape are arranged at equal pitches in the vertical direction. To this end, the permanent magnet 54 at the upper end portion of the field element 55 may protrude above the coil portion 46 at the upper end portion of the armature 45 at the final position. On the contrary, the permanent magnet 54 at the lower end may protrude below the coil portion 46 at the lower end of the armature 45 at the initial position. Therefore, the minimum installation range L3 of the permanent magnet 54 may be larger than the sum of the moving distance L1 of the mover 50 and the overall length L2 of the coil portion 46.
また、本実施形態における永久磁石54の設置範囲は、後述するリニアスケールを設置するために、図10に示すように、永久磁石54の最小設置範囲L3に加え、後述するセンサ用オフセット範囲L4も含めた構成となっている。
In addition, in order to install a linear scale, which will be described later, the permanent magnet 54 in this embodiment has a sensor offset range L4, which will be described later, in addition to the minimum installation range L3 of the permanent magnet 54, as shown in FIG. The configuration is included.
したがって、本実施形態では、図7に示すように、可動子本体51が初期位置に配された状態では、電機子45よりもやや下側まで界磁子55が配され、図8に示すように、可動子本体51が最終位置に配された状態では、電機子45よりもやや上側まで界磁子55が配される構成となっている。なお、本実施形態における永久磁石54の厚み寸法はほぼ均一とされており、界磁子55の前面は凹凸が無いように平坦に構成されている。
Therefore, in the present embodiment, as shown in FIG. 7, in a state where the mover main body 51 is arranged at the initial position, the field element 55 is arranged slightly below the armature 45, as shown in FIG. In addition, in a state where the mover main body 51 is disposed at the final position, the field element 55 is disposed slightly above the armature 45. Note that the thickness dimension of the permanent magnet 54 in the present embodiment is substantially uniform, and the front surface of the field element 55 is flat so as not to be uneven.
そして、取付フレーム41の電機子45におけるコイル部46に対して通電制御が行われると、電機子45と可動子50の界磁子55との間に吸引力が発生することで、取付フレーム41に対して可動子50を上下方向に移動させることができるようになっている。
When energization control is performed on the coil portion 46 in the armature 45 of the mounting frame 41, an attractive force is generated between the armature 45 and the field element 55 of the mover 50, so that the mounting frame 41. In contrast, the movable element 50 can be moved in the vertical direction.
つまり、リニアモータ40は、ムービングマグネット型のリニアモータであって、ヘッドユニット30は、リニアモータ40における可動子50の上下方向の移動に伴って、可動子本体51の固定部53に固定された部品保持部60を上下に移動させ、部品供給装置14や回路基板に対して部品保持部60のノズル62を上下方向に移動させることができるようになっている。
That is, the linear motor 40 is a moving magnet type linear motor, and the head unit 30 is fixed to the fixed portion 53 of the movable element main body 51 in accordance with the vertical movement of the movable element 50 in the linear motor 40. The component holding unit 60 is moved up and down, and the nozzle 62 of the component holding unit 60 can be moved up and down with respect to the component supply device 14 and the circuit board.
なお、可動子本体51の固定部53には、部品保持部60以外に、可動子50を上方に向かって付勢するリターンスプリング90が取り付けられている。このリターンスプリング90は、電機子45のコイル部46が非通電状態となり、電機子45と界磁子55との間に吸引力が働かなくなった場合に、部品保持部60が降下することを防ぐようになっている。
Note that, in addition to the component holding portion 60, a return spring 90 that urges the mover 50 upward is attached to the fixed portion 53 of the mover main body 51. The return spring 90 prevents the component holding portion 60 from descending when the coil portion 46 of the armature 45 is in a non-energized state and no attractive force acts between the armature 45 and the field element 55. It is like that.
さて、リニアモータ40の可動子50における界磁子55と取付フレーム41との間には、可動子50の位置を検出するリニアエンコーダ80が設けられている。
A linear encoder 80 that detects the position of the mover 50 is provided between the field element 55 and the mounting frame 41 of the mover 50 of the linear motor 40.
詳細には、リニアモータ40の可動子50における界磁子55の前面には、Z方向に延びる光学式のリニアスケール(「被検出部」の一例)81が設けられており、取付フレーム41における電機子45の上方には、リニアスケール81と前後方向に対向する形態でリニアスケール81を光学的に検出する検出部82が取付フレーム41にねじ固定されている。
Specifically, an optical linear scale (an example of “detected portion”) 81 extending in the Z direction is provided on the front surface of the field element 55 in the mover 50 of the linear motor 40, and Above the armature 45, a detection unit 82 that optically detects the linear scale 81 in a form facing the linear scale 81 in the front-rear direction is screwed to the mounting frame 41.
検出部82は、上下方向に細長い形態をなしており、電機子45の直上において電機子45と隣接する位置に固定されている。また、検出部82は、上下方向に長い略矩形板状の基板部83を有する本体部84と、基板部83の後面83Aに固定されたセンサ部85とを備えて構成されている。
The detection unit 82 has an elongated shape in the vertical direction, and is fixed at a position adjacent to the armature 45 immediately above the armature 45. The detection unit 82 includes a main body portion 84 having a substantially rectangular plate-like substrate portion 83 that is long in the vertical direction, and a sensor portion 85 fixed to the rear surface 83A of the substrate portion 83.
本体部84は、その上下両端部に固定ねじ86を挿通して取付フレーム41の平板42に締め込むことで検出部82が取付フレーム41にねじ固定されており、センサ部85は、基板部83における電機子45側の下端部に配されている。したがって、センサ部85は、図10に示すように、電機子45における上端部のコイル部46よりも、センサ用オフセット範囲L4分(永久磁石2つ分程度)だけ上方にオフセットした配置となっている。
The main body 84 has a detection unit 82 screwed to the mounting frame 41 by inserting fixing screws 86 into both upper and lower ends of the main body 84 and tightening the flat plate 42 of the mounting frame 41. In the armature 45 side. Therefore, as shown in FIG. 10, the sensor unit 85 is arranged so as to be offset upward from the coil unit 46 at the upper end of the armature 45 by the sensor offset range L4 (about two permanent magnets). Yes.
一方、リニアスケール81は、非磁性体のステンレスによって厚みの薄い帯状に形成されており、例えば、数十マイクロピッチ間隔で上下方向に光学的な目盛りが付されている。したがって、検出部82のセンサ部85によって、リニアスケール81の目盛りを光学的に読み取ることで、界磁子55および可動子50の位置を検出することができるようになっている。
On the other hand, the linear scale 81 is formed in a thin band shape from a non-magnetic stainless steel, and has optical scales in the vertical direction at intervals of several tens of micro pitches, for example. Therefore, the position of the field element 55 and the mover 50 can be detected by optically reading the scale of the linear scale 81 by the sensor unit 85 of the detection unit 82.
また、リニアスケール81は、例えば、両面テープまたは接着剤による接着などの公知の方法によって、界磁子55における永久磁石54の前面に固定されており、その計測範囲は、少なくとも可動子50の位置を検出できる範囲に設定される。
The linear scale 81 is fixed to the front surface of the permanent magnet 54 in the field element 55 by a known method such as a double-sided tape or an adhesive, and the measurement range is at least the position of the mover 50. Is set to a range where it can be detected.
つまり、本実施形態におけるリニアスケール81における計測範囲は、少なくとも、可動子50の移動距離と同じ長さ寸法であって、具体的には、図10に示すように、少なくとも、可動子50が最終位置に配された場合におけるセンサ部85と前後に対向する位置P1から下方に向けて可動子50の移動距離L1分延ばした間の範囲が計測範囲L5となる。
In other words, the measurement range of the linear scale 81 in the present embodiment is at least the same length as the moving distance of the mover 50. Specifically, as shown in FIG. A range between the position P1 facing the front and rear of the sensor unit 85 and the length of the movable element 50 extended by the moving distance L1 when it is arranged at the position is a measurement range L5.
そして、リニアスケール81は、図7、図8および図10に示すように、計測範囲L5を含む前後にやや大きい範囲L6に設置されることで、検出部82のセンサ部85とリニアスケール81とが初期位置と最終位置との間において常に前後方向に対向した状態となり、初期位置と最終位置との間における可動子50の位置を検出することができるようになっている。
Then, as shown in FIGS. 7, 8, and 10, the linear scale 81 is installed in a slightly larger range L6 before and after the measurement range L5, so that the sensor unit 85 of the detection unit 82 and the linear scale 81 Is always opposed in the front-rear direction between the initial position and the final position, so that the position of the mover 50 between the initial position and the final position can be detected.
なお、本実施形態によると、検出部82におけるセンサ部85は、可動子50における上端部のコイル部46よりもセンサ用オフセット範囲L4の長さ寸法だけ上方に配されているため、リニアスケール81を設置するために、可動子50の界磁子55における永久磁石54が最小設置範囲L3よりもセンサ用オフセット範囲L4(永久磁石2つ)分程度多く設置されている。
According to the present embodiment, the sensor unit 85 in the detection unit 82 is disposed above the coil unit 46 at the upper end of the mover 50 by the length of the sensor offset range L4. Therefore, the permanent magnets 54 in the field element 55 of the mover 50 are installed more than the minimum installation range L3 by the sensor offset range L4 (two permanent magnets).
本実施形態は、以上のような構成であって、続いて、表面実装機10の作用および効果について説明する。
本実施形態のヘッドユニット30のリニアモータ40によると、図5から図8に示すように、部品保持部60を上下方向に移動させる駆動機構であるリニアモータ40の可動子50の界磁子55にリニアスケール81が直接固定された構成とされているから、リニアスケール81を固定するための部分を界磁子55とは別に可動子50に別途設ける必要がなく、可動子50を小型化かつ、軽量化することができる。 The present embodiment is configured as described above, and subsequently, the operation and effect of thesurface mounter 10 will be described.
According to thelinear motor 40 of the head unit 30 of the present embodiment, as shown in FIGS. 5 to 8, the field element 55 of the mover 50 of the linear motor 40 which is a drive mechanism for moving the component holding portion 60 in the vertical direction. Since the linear scale 81 is directly fixed to the movable element 50, a portion for fixing the linear scale 81 does not need to be provided separately from the field element 55 in the movable element 50. Can be lighter.
本実施形態のヘッドユニット30のリニアモータ40によると、図5から図8に示すように、部品保持部60を上下方向に移動させる駆動機構であるリニアモータ40の可動子50の界磁子55にリニアスケール81が直接固定された構成とされているから、リニアスケール81を固定するための部分を界磁子55とは別に可動子50に別途設ける必要がなく、可動子50を小型化かつ、軽量化することができる。 The present embodiment is configured as described above, and subsequently, the operation and effect of the
According to the
また、本実施形態によると、取付フレーム41において枠部43と可動子50との間に生じる電機子45の直上のデッドスペースに、リニアエンコーダ80の検出部82を配置しているから、リニアモータ40が大型化することを防ぐことができる。
Further, according to the present embodiment, since the detection unit 82 of the linear encoder 80 is arranged in the dead space immediately above the armature 45 generated between the frame portion 43 and the mover 50 in the mounting frame 41, the linear motor 40 can be prevented from becoming large.
つまり、例えば、図19に示すように、コイル部2Aを有する電機子2と位置検出用エンコーダ3の検出部3Aとが、永久磁石からなる界磁子4Aを有する可動子4の移動方向である上下方向に直列に並べて配置されたリニアモータ1や、図20に示すように、電機子7と位置検出用のエンコーダ8とが前後方向に並列して並べて配置された(可動子6を挟んで電機子7とは反対側の後側に位置検出用のエンコーダ8が配置された)リニアモータ5に比べて、可動子50の界磁子55とリニアスケール81とが重ねて配置された分だけリニアモータ40を小型化することができる。ひいては、リニアモータ40を複数有するヘッドユニット30の小型化および軽量化することができる。
That is, for example, as shown in FIG. 19, the armature 2 having the coil portion 2 </ b> A and the detection portion 3 </ b> A of the position detection encoder 3 are moving directions of the mover 4 having the field element 4 </ b> A made of a permanent magnet. As shown in FIG. 20, the linear motor 1 arranged in series in the vertical direction and the armature 7 and the position detecting encoder 8 are arranged in parallel in the front-rear direction (with the movable element 6 interposed therebetween). Compared with the linear motor 5 in which the position detecting encoder 8 is arranged on the rear side opposite to the armature 7, the field element 55 of the movable element 50 and the linear scale 81 are overlapped. The linear motor 40 can be reduced in size. As a result, the head unit 30 having a plurality of linear motors 40 can be reduced in size and weight.
また、本実施形態によると、取付フレーム41に固定された検出部82のセンサ部85を電機子45側の下端部に配置しているから、例えば、センサ部が検出部の上端部に設けられている場合に比べて、可動子50の界磁子55に固定されたリニアスケール81の長さ寸法を短くすることができる。これにより、界磁子55、ひいては可動子50の上下方向の長さ寸法を短くすることができ、可動子50をさらに軽量化することができる。
Moreover, according to this embodiment, since the sensor part 85 of the detection part 82 fixed to the attachment frame 41 is disposed at the lower end part on the armature 45 side, for example, the sensor part is provided at the upper end part of the detection part. Compared with the case where it is, the length dimension of the linear scale 81 fixed to the field element 55 of the needle | mover 50 can be shortened. Thereby, the vertical dimension of the field element 55 and by extension, the needle | mover 50 can be shortened, and the needle | mover 50 can be further reduced in weight.
また、本実施形態によると、可動子50の界磁子55にリニアスケール81を直接固定することで、界磁子55と電機子45によって構成される駆動機構と、リニアスケール81と検出部82とによって構成されるリニアエンコーダ80との間の距離を非常に小さくして、駆動機構とリニアエンコーダ80との間の剛性を高めているから、駆動機構に対するリニアエンコーダ80の追従性を高くすることができ、駆動機構とリニアエンコーダ80と間の応答性を向上させることができる。
Further, according to the present embodiment, the linear scale 81 is directly fixed to the field element 55 of the mover 50, so that the drive mechanism constituted by the field element 55 and the armature 45, the linear scale 81, and the detection unit 82. The distance between the linear encoder 80 and the linear encoder 80 is made very small to increase the rigidity between the driving mechanism and the linear encoder 80, so that the followability of the linear encoder 80 to the driving mechanism is increased. Therefore, the responsiveness between the drive mechanism and the linear encoder 80 can be improved.
すなわち、本実施形態によると、リニアモータ40を軽量化することで、可動子50を高速化させることができると共に、リニアエンコーダ80の追従性を高めることでリニアモータ40の応答性を向上させているから、リニアモータ40のサーボゲインを高めて、リニアモータ40のサーボ制御を高速化させることができる。
That is, according to this embodiment, the linear motor 40 can be reduced in weight, so that the mover 50 can be speeded up, and the followability of the linear encoder 80 can be improved to improve the responsiveness of the linear motor 40. Therefore, the servo gain of the linear motor 40 can be increased and the servo control of the linear motor 40 can be speeded up.
ところで、駆動機構と、エンコーダとの間の距離を小さくする方法としては、磁気センサによって、界磁子の永久磁石におけるN極とS極とを検出することで、可動子の位置情報を取得する方法が考えられる。
By the way, as a method of reducing the distance between the drive mechanism and the encoder, the position information of the mover is acquired by detecting the N pole and the S pole in the permanent magnet of the field element by a magnetic sensor. A method is conceivable.
しかしながら、このような方法によると、可動子の位置情報の精度を向上させるためには、界磁子における永久磁石のサイズを小さくしてN極とS極とのピッチを小さくする必要がある。このため、リニアモータの推力を維持しつつ、永久磁石のサイズを小さくさせることには限界があり、可動子の位置情報の精度を向上させることができなくなってしまう。
However, according to such a method, in order to improve the accuracy of the position information of the mover, it is necessary to reduce the size of the permanent magnet in the field element and reduce the pitch between the N pole and the S pole. For this reason, there is a limit to reducing the size of the permanent magnet while maintaining the thrust of the linear motor, and the accuracy of the position information of the mover cannot be improved.
ところが、本実施形態によると、目盛りピッチが非常に細かい光学式のリニアスケール81を界磁子55上に貼り付けて固定しているから、磁界の影響を受けずに可動子50の位置情報の精度を向上させることができると共に、界磁子55に対するリニアスケール81の取り付けを非常に容易に行うことができる。
However, according to the present embodiment, since the optical linear scale 81 having a very fine scale pitch is pasted and fixed on the field element 55, the position information of the mover 50 is not affected by the magnetic field. The accuracy can be improved and the linear scale 81 can be attached to the field element 55 very easily.
<変形例1>
次に、実施形態1における可動子50の変形例1について、図11を参照して説明する。なお、図11においては、Zレールを図示省略している。
変形例1の可動子150は、実施形態1における可動子50の界磁子55を変更したものであって、上記実施形態と共通する構成、作用、および効果については重複するため、その説明を省略する。また、上記実施形態と同じ構成については同一の符号を用いるものとする。 <Modification 1>
Next,Modification 1 of the mover 50 in Embodiment 1 will be described with reference to FIG. In FIG. 11, the Z rail is not shown.
Themover 150 of the first modification is obtained by changing the field element 55 of the mover 50 in the first embodiment, and the configuration, operation, and effect common to the above-described embodiment are duplicated. Omitted. Moreover, the same code | symbol shall be used about the same structure as the said embodiment.
次に、実施形態1における可動子50の変形例1について、図11を参照して説明する。なお、図11においては、Zレールを図示省略している。
変形例1の可動子150は、実施形態1における可動子50の界磁子55を変更したものであって、上記実施形態と共通する構成、作用、および効果については重複するため、その説明を省略する。また、上記実施形態と同じ構成については同一の符号を用いるものとする。 <
Next,
The
変形例1における可動子150の界磁子155は、図11に示すように、上下方向に並ぶ複数の永久磁石154が樹脂モールドされており、樹脂モールドされた界磁子155の前面155Aは、平坦に形成されている。
そして、界磁子155における平坦な前面155Aに、リニアスケール(「被検出部」の一例)81が、例えば両面テープなどの公知の方法によって固定されている。 As shown in FIG. 11, thefield element 155 of the mover 150 according to the first modification is resin-molded with a plurality of permanent magnets 154 arranged in the vertical direction, and the front surface 155A of the resin-molded field element 155 is: It is formed flat.
A linear scale (an example of a “detected portion”) 81 is fixed to a flatfront surface 155A of the field element 155 by a known method such as a double-sided tape.
そして、界磁子155における平坦な前面155Aに、リニアスケール(「被検出部」の一例)81が、例えば両面テープなどの公知の方法によって固定されている。 As shown in FIG. 11, the
A linear scale (an example of a “detected portion”) 81 is fixed to a flat
つまり、このような構成によると、永久磁石154の厚み寸法が不均一な場合においても、界磁子155の前面155Aを凹凸のない平坦な状態に構成して、界磁子155の前面155Aにおける平坦度を高めることができ、リニアスケール81と検出部82におけるセンサ部85との間の隙間寸法にばらつきが生じることを防ぐことができる。これにより、検出部82によってリニアスケール81が検出不能になること防ぐことができる。
That is, according to such a configuration, even when the thickness dimension of the permanent magnet 154 is not uniform, the front surface 155A of the field element 155 is configured in a flat state without unevenness, and the front surface 155A of the field element 155 is The flatness can be increased, and variations in the gap dimension between the linear scale 81 and the sensor unit 85 in the detection unit 82 can be prevented. Thereby, it can prevent that the linear scale 81 becomes undetectable by the detection part 82. FIG.
<変形例2>
次に、実施形態1における可動子50の変形例2について、図12を参照して説明する。
変形例2のリニアモータ240における可動子250は、実施形態1における可動子50の構成を変更したものであって、上記実施形態と共通する構成、作用、および効果については重複するため、その説明を省略する。また、上記実施形態と同じ構成については同一の符号を用いるものとする。 <Modification 2>
Next,Modification 2 of the mover 50 in Embodiment 1 will be described with reference to FIG.
Themover 250 in the linear motor 240 according to the second modification is obtained by changing the configuration of the mover 50 in the first embodiment, and the configuration, operation, and effect common to the above-described embodiment are duplicated. Is omitted. Moreover, the same code | symbol shall be used about the same structure as the said embodiment.
次に、実施形態1における可動子50の変形例2について、図12を参照して説明する。
変形例2のリニアモータ240における可動子250は、実施形態1における可動子50の構成を変更したものであって、上記実施形態と共通する構成、作用、および効果については重複するため、その説明を省略する。また、上記実施形態と同じ構成については同一の符号を用いるものとする。 <
Next,
The
変形例2の可動子250は、図12に示すように、可動子250における界磁子255の上方に永久磁石54とほぼ同じ厚み寸法の載置台部(「支持部」の一例)256が界磁子255と隣接して設けられている。載置台部256の上下方向の長さ寸法は、電機子45における上端のコイル部46と検出部82のセンサ部85との間の長さ寸法(センサ用オフセット範囲L4)とよりもやや長い寸法に設けられている。
As shown in FIG. 12, the mover 250 according to the second modification includes a mounting base portion 256 (an example of a “support portion”) 256 having a thickness substantially the same as that of the permanent magnet 54 above the field element 255 in the mover 250. It is provided adjacent to the magnetic element 255. The vertical dimension of the mounting table 256 is slightly longer than the length (the sensor offset range L4) between the upper coil part 46 of the armature 45 and the sensor part 85 of the detection part 82. Is provided.
そして、載置台部256の前面には、界磁子255の上端位置から上方に延出されたリニアスケール(「被検出部」の一例)281が載置台部256の全長に亘って固定されている。
A linear scale (an example of a “detected portion”) 281 extending upward from the upper end position of the field element 255 is fixed to the front surface of the mounting table portion 256 over the entire length of the mounting table portion 256. Yes.
したがって、本変形例によると、界磁子255の上下方向の長さ寸法が、実施形態1の界磁子55の長さ寸法よりも載置台部256の上下方向の長さ寸法分だけ短くなっており、可動子250が最終位置に配された状態では、検出部82のセンサ部85は、載置台部256に固定されたリニアスケール281を読み取ることで可動子250の位置を検出することができるようになっている。
Therefore, according to this modification, the length dimension of the field element 255 in the vertical direction is shorter than the length dimension of the field element 55 of the first embodiment by the length dimension in the vertical direction of the mounting table 256. In the state where the mover 250 is arranged at the final position, the sensor unit 85 of the detection unit 82 can detect the position of the mover 250 by reading the linear scale 281 fixed to the mounting table unit 256. It can be done.
つまり、可動子を駆動させる界磁子は、電機子が配された位置まで設けられていればよいものの、検出部によって可動子の位置を検出するためには、検出部のセンサ部の位置までリニアスケールを配置する必要がある。このため、界磁子にリニアスケールを固定する場合には、電機子から検出部の位置まで長さ寸法分だけ、界磁子を上下方向に大きくしなければならなくなってしまう嫌いがある。
In other words, the field element for driving the mover only needs to be provided up to the position where the armature is arranged. However, in order to detect the position of the mover by the detection unit, the position of the sensor unit of the detection unit is required. It is necessary to arrange a linear scale. For this reason, when the linear scale is fixed to the field element, there is a disagreement that the field element has to be enlarged in the vertical direction by the length dimension from the armature to the position of the detection unit.
ところが、本実施形態によると、界磁子255の上方に隣接して設けられた載置台部256に界磁子255から上方に延出されたリニアスケール281を固定しているから、界磁子255の上下方向の長さ寸法を小さくすることができる。これにより、界磁子255の永久磁石54の量を削減することができる。
However, according to the present embodiment, since the linear scale 281 extending upward from the field element 255 is fixed to the mounting table portion 256 provided adjacent to the upper side of the field element 255, the field element The length dimension in the vertical direction of 255 can be reduced. Thereby, the quantity of the permanent magnet 54 of the field element 255 can be reduced.
<実施形態2>
次に、実施形態2について図13を参照して説明する。
実施形態2の表面実装機310は、実施形態1における部品実装装置20においてヘッドユニット30を左右方向に移動させるため駆動方法を変更したものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。 <Embodiment 2>
Next,Embodiment 2 will be described with reference to FIG.
Thesurface mounter 310 according to the second embodiment is obtained by changing the driving method for moving the head unit 30 in the left-right direction in the component mounting apparatus 20 according to the first embodiment. Since the effect is duplicated, its description is omitted. The same reference numerals are used for the same configurations as those in the first embodiment.
次に、実施形態2について図13を参照して説明する。
実施形態2の表面実装機310は、実施形態1における部品実装装置20においてヘッドユニット30を左右方向に移動させるため駆動方法を変更したものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。 <
Next,
The
実施形態2の表面実装機310における部品実装装置320は、図13に示すように、左右方向に延びた形態で図示しない基台に固定されたXフレーム321と、Xフレーム321から前方に向かって延びる片持ち状のYアーム322と、Yアーム322に支持されたヘッドユニット330と、ヘッドユニット330を前後左右に移動させるヘッド駆動部340とを備えて構成されている。
As shown in FIG. 13, the component mounting apparatus 320 in the surface mounter 310 according to the second embodiment has an X frame 321 fixed to a base (not shown) in a form extending in the left-right direction, and forward from the X frame 321. A cantilever Y arm 322 that extends, a head unit 330 supported by the Y arm 322, and a head drive unit 340 that moves the head unit 330 back and forth and from side to side.
Xフレーム321には、Xフレーム321の全長に亘って左右方向に延びる上下一対のリニアガイド324が設けられており、Yアーム322には、リニアガイド324に嵌合した状態でリニアガイド324に沿って移動可能な第1スライダ325が設けられている。したがって、Yアーム322は、Xフレーム321に沿って左右方向に直線的に移動可能に保持されている。
The X frame 321 is provided with a pair of upper and lower linear guides 324 extending in the left-right direction over the entire length of the X frame 321, and the Y arm 322 extends along the linear guide 324 while being fitted to the linear guide 324. A movable first slider 325 is provided. Therefore, the Y arm 322 is held so as to be linearly movable in the left-right direction along the X frame 321.
また、Yアーム322には、Yアーム322の全長にわたって前後方向に延びる上下一対のガイドレール323が設けられ、ヘッドユニット330には、ガイドレール323に嵌合した状態でガイドレール323に沿って前後方向に移動可能な図示しないX方向スライダが備えられている。これにより、ヘッドユニット330は、Yアーム322に沿って前後方向に移動可能とされている。
したがって、ヘッドユニット330は、基台上において前後左右方向である水平方向に移動可能とされている。 TheY arm 322 is provided with a pair of upper and lower guide rails 323 extending in the front-rear direction over the entire length of the Y arm 322, and the head unit 330 is moved back and forth along the guide rail 323 while being fitted to the guide rail 323. An X-direction slider (not shown) that can move in the direction is provided. Thereby, the head unit 330 is movable in the front-rear direction along the Y arm 322.
Therefore, thehead unit 330 is movable in the horizontal direction, which is the front / rear / left / right direction, on the base.
したがって、ヘッドユニット330は、基台上において前後左右方向である水平方向に移動可能とされている。 The
Therefore, the
一方、ヘッド駆動部340は、第1サーボ機構341と第2サーボ機構346とを有している。
第1サーボ機構341は、Xフレーム321の内側面に設けられたプレート状の図示しない永久磁石からなる左右方向に長い界磁子342と、Yアーム322のXフレーム321側の端部に設けられた複数のコイルからなる電機子343とを有しており、界磁子342は、電機子343よりも左右方向に長い形態とされている。
そして、電機子343のコイルに対して通電制御を行うことにより、電機子343のコイルと界磁子342の永久磁石との間に生じる吸引力によってYアーム322が左右方向に移動するようになっている。つまり、本実施形態の第1サーボ機構341は、ムービングコイル型のリニアモータとされている。 On the other hand, thehead drive unit 340 includes a first servo mechanism 341 and a second servo mechanism 346.
Thefirst servo mechanism 341 is provided at the end of the Y arm 322 on the X frame 321 side, and a field element 342 which is provided on the inner surface of the X frame 321 and is formed of a permanent magnet (not shown) and which is long in the left-right direction. The field element 342 is longer in the left-right direction than the armature 343.
Then, by performing energization control on the coil of thearmature 343, the Y arm 322 is moved in the left-right direction by the attractive force generated between the coil of the armature 343 and the permanent magnet of the field element 342. ing. That is, the first servo mechanism 341 of the present embodiment is a moving coil type linear motor.
第1サーボ機構341は、Xフレーム321の内側面に設けられたプレート状の図示しない永久磁石からなる左右方向に長い界磁子342と、Yアーム322のXフレーム321側の端部に設けられた複数のコイルからなる電機子343とを有しており、界磁子342は、電機子343よりも左右方向に長い形態とされている。
そして、電機子343のコイルに対して通電制御を行うことにより、電機子343のコイルと界磁子342の永久磁石との間に生じる吸引力によってYアーム322が左右方向に移動するようになっている。つまり、本実施形態の第1サーボ機構341は、ムービングコイル型のリニアモータとされている。 On the other hand, the
The
Then, by performing energization control on the coil of the
なお、第2サーボ機構346は、前後方向に延びた形態でヘッドユニット330に設けられたボールねじ軸335と、このボールねじ軸335を駆動するサーボモータ333とを有しており、このサーボモータ333が、Yアーム322に取り付けられた図示しないボールねじを回動させることで、ヘッドユニット330を前後方向に移動させることができるようになっている。
The second servo mechanism 346 includes a ball screw shaft 335 provided in the head unit 330 in a form extending in the front-rear direction, and a servo motor 333 that drives the ball screw shaft 335. This servo motor The head unit 330 can be moved in the front-rear direction by rotating a ball screw (not shown) attached to the Y arm 322.
つまり、ヘッドユニット330は、第1サーボ機構341と第2サーボ機構346とによって、前後方向および左右方向の所望の位置に移動させることができるようになっている。
That is, the head unit 330 can be moved to desired positions in the front-rear direction and the left-right direction by the first servo mechanism 341 and the second servo mechanism 346.
そして、本実施形態では、界磁子342の上下方向略中央部に、左右方向に延びる光学式のリニアスケール(「被検出部」の一例)381が固定されており、電機子343の側面における上下方向略中央部に、リニアスケール381を光学的に検出する検出部382が固定されている。なお、界磁子342に対するリニアスケール381、電機子343に対する検出部382の固定は、例えば、両面テープなどの公知の方法によって固定されている。
In the present embodiment, an optical linear scale (an example of a “detected portion”) 381 extending in the left-right direction is fixed to a substantially central portion in the up-down direction of the field element 342, and on the side surface of the armature 343. A detection unit 382 for optically detecting the linear scale 381 is fixed at a substantially central portion in the vertical direction. The linear scale 381 with respect to the field element 342 and the detection unit 382 with respect to the armature 343 are fixed by a known method such as a double-sided tape.
すなわち、本実施形態によると、界磁子342の表面上にリニアスケール381が固定され、電機子343の側面に検出部382が固定されているから、Xフレーム321に対してリニアスケール381を支持する部分を別途設ける必要がなく、Xフレーム321が大型化したり、複雑化したりすることを防ぐことができる。
That is, according to the present embodiment, the linear scale 381 is fixed on the surface of the field element 342 and the detection unit 382 is fixed on the side surface of the armature 343, so that the linear scale 381 is supported with respect to the X frame 321. There is no need to provide a separate portion, and the X frame 321 can be prevented from becoming large or complicated.
また、界磁子342の表面にリニアスケール381が直接固定され、電機子343の側面に検出部382を直接固定しているから、界磁子342と電機子343によって構成される第1サーボ機構341と、リニアスケール381と検出部382とによって構成されるリニアエンコーダ380との間の剛性が高められ、第1サーボ機構341に対するリニアエンコーダ380の追従性を高くすることができる。これにより、第1サーボ機構341の応答性を向上させることができる。
Further, since the linear scale 381 is directly fixed to the surface of the field element 342 and the detection unit 382 is directly fixed to the side surface of the armature 343, the first servo mechanism configured by the field element 342 and the armature 343 is provided. 341 and the rigidity between the linear encoder 380 configured by the linear scale 381 and the detection unit 382 are increased, and the followability of the linear encoder 380 with respect to the first servo mechanism 341 can be increased. Thereby, the responsiveness of the first servo mechanism 341 can be improved.
すなわち、本実施形態によると、リニアエンコーダ80の追従性を高めることで第1サーボ機構341の応答性を向上させているから、第1サーボ機構341のサーボゲインを高めて、第1サーボ機構341のサーボ制御を高速化させることができる。
That is, according to the present embodiment, the response of the first servo mechanism 341 is improved by improving the followability of the linear encoder 80. Therefore, the servo gain of the first servo mechanism 341 is increased and the first servo mechanism 341 is increased. Servo control can be speeded up.
<実施形態3>
次に、実施形態3について図14から図16を参照して説明する。
本実施形態は、台座部430を前後方向に移動させるリニアガイド装置(「単軸ロボット」の一例)410であって、基台412と、基台412に設けられた一対の支持フレーム420と、一対の支持フレーム420に移動可能に保持された台座部430と、台座部430を駆動させる台座駆動部440とを備えて構成されている。なお、以下の説明において、前後方向とは、図14における左右方向を基準として、図示左側を前側、図示右側を後側として説明する。 <Embodiment 3>
Next,Embodiment 3 will be described with reference to FIGS.
This embodiment is a linear guide device (an example of a “single-axis robot”) 410 that moves thepedestal portion 430 in the front-rear direction, and includes a base 412 and a pair of support frames 420 provided on the base 412. A pedestal portion 430 that is movably held by the pair of support frames 420 and a pedestal drive portion 440 that drives the pedestal portion 430 are configured. In the following description, the front-rear direction will be described with the left side in the figure as the front side and the right side in the figure as the rear side with reference to the left-right direction in FIG.
次に、実施形態3について図14から図16を参照して説明する。
本実施形態は、台座部430を前後方向に移動させるリニアガイド装置(「単軸ロボット」の一例)410であって、基台412と、基台412に設けられた一対の支持フレーム420と、一対の支持フレーム420に移動可能に保持された台座部430と、台座部430を駆動させる台座駆動部440とを備えて構成されている。なお、以下の説明において、前後方向とは、図14における左右方向を基準として、図示左側を前側、図示右側を後側として説明する。 <
Next,
This embodiment is a linear guide device (an example of a “single-axis robot”) 410 that moves the
基台412は、図14および図15に示すように、前後方向に延びる平面視略矩形状をなしており、基台412の幅方向両側に一対の支持フレーム420が配置されている。
一対の支持フレーム420は、基台412の幅方向両端部において、前後方向に延びた形態をなしており、各支持フレーム420の上端部には、支持フレーム420の全長に亘って前後方向に延びるガイドレール421が設けられている。 As shown in FIGS. 14 and 15, thebase 412 has a substantially rectangular shape in plan view extending in the front-rear direction, and a pair of support frames 420 are disposed on both sides in the width direction of the base 412.
The pair of support frames 420 extend in the front-rear direction at both ends in the width direction of thebase 412, and extend in the front-rear direction over the entire length of the support frame 420 at the upper end of each support frame 420. A guide rail 421 is provided.
一対の支持フレーム420は、基台412の幅方向両端部において、前後方向に延びた形態をなしており、各支持フレーム420の上端部には、支持フレーム420の全長に亘って前後方向に延びるガイドレール421が設けられている。 As shown in FIGS. 14 and 15, the
The pair of support frames 420 extend in the front-rear direction at both ends in the width direction of the
台座部430は、平面視略方形の平板状をなしており、台座部430の幅方向両側下面には、前後一対のスライダ431がそれぞれ設けられている。スライダ431は、支持フレーム420のガイドレール421に嵌合した状態でガイドレール421に沿って前後方向に移動可能とされており、スライダ431を前後に移動させることで台座部430が前後に移動可能とされている。
The pedestal portion 430 has a substantially rectangular flat plate shape in plan view, and a pair of front and rear sliders 431 are provided on the bottom surfaces of both sides of the pedestal portion 430 in the width direction. The slider 431 is movable in the front-rear direction along the guide rail 421 while being fitted to the guide rail 421 of the support frame 420, and the pedestal portion 430 can be moved back and forth by moving the slider 431 back and forth. It is said that.
台座駆動部440は、複数の図示しないコイル部からなる電機子441と、複数の永久磁石454からなる界磁子442とを備えて構成されている。
電機子441は、扁平なブロック状をなし、台座部430の下面における幅方向略中央部に固定されている。電機子441のコイル部には、基台412の側部に設けられたケーブルガイド部413に挿通される図示しないケーブルから電力が供給されるようになっている。 Thepedestal drive unit 440 includes an armature 441 composed of a plurality of coil portions (not shown) and a field element 442 composed of a plurality of permanent magnets 454.
Thearmature 441 has a flat block shape and is fixed to a substantially central portion in the width direction on the lower surface of the pedestal portion 430. Electric power is supplied to a coil portion of the armature 441 from a cable (not shown) inserted through a cable guide portion 413 provided on a side portion of the base 412.
電機子441は、扁平なブロック状をなし、台座部430の下面における幅方向略中央部に固定されている。電機子441のコイル部には、基台412の側部に設けられたケーブルガイド部413に挿通される図示しないケーブルから電力が供給されるようになっている。 The
The
界磁子442は、一対の支持フレーム420の間にプレート状の永久磁石454をN極とS極とが前後方向に交互に並ぶように基台412に固定されることで構成されており、基台412の全長に亘って設けられている。言い換えると、界磁子442は、電機子441よりも長い形態とされている。
The field element 442 is configured by fixing a plate-like permanent magnet 454 between the pair of support frames 420 to the base 412 so that the N pole and the S pole are alternately arranged in the front-rear direction. The entire length of the base 412 is provided. In other words, the field element 442 is longer than the armature 441.
そして、電機子441のコイル部に対して通電制御を行うことで、電機子441のコイル部と界磁子442の永久磁石454との間に吸引力が発生し、基台412に対して台座部430が前後方向に移動するようになっている。つまり、本実施形態における台座駆動部440も、実施形態2と同様に、ムービングコイル型のリニアモータとされている。
Then, energization control is performed on the coil portion of the armature 441, whereby an attractive force is generated between the coil portion of the armature 441 and the permanent magnet 454 of the field element 442, and the base 412 is pedestal. The part 430 moves in the front-rear direction. That is, the pedestal drive unit 440 in the present embodiment is also a moving coil type linear motor, as in the second embodiment.
そして、本実施形態では、界磁子442の幅方向略中央部に、前後方向に延びる光学式のリニアスケール(「被検出部」の一例)481が固定されており、電機子441の前面における幅方向略中央部に、リニアスケール481を光学的に検出する検出部482が固定されている。なお、界磁子442に対するリニアスケール481、電機子441に対する検出部482の固定は、実施形態1および実施形態2と同様の方法によって固定されている。
In this embodiment, an optical linear scale (an example of a “detected portion”) 481 extending in the front-rear direction is fixed to a substantially central portion in the width direction of the field element 442, and is arranged on the front surface of the armature 441. A detection unit 482 that optically detects the linear scale 481 is fixed at a substantially central portion in the width direction. The linear scale 481 with respect to the field element 442 and the detection unit 482 with respect to the armature 441 are fixed by the same method as in the first and second embodiments.
すなわち、本実施形態によると、界磁子442の上面にリニアスケール481が固定され、電機子441の前面に検出部482が固定されているから、支持フレーム420に対してリニアスケールを支持する部分を別途設ける必要がなく、支持フレーム420が大型化したり、複雑化したりすることを防ぐことができる。また、別途設けられたリニアスケールを検出する検出部を支持フレームの側方など設ける必要がなくなるため、リニアガイド装置410が大型化することを防ぐことができる。
That is, according to the present embodiment, the linear scale 481 is fixed to the upper surface of the field element 442, and the detection unit 482 is fixed to the front surface of the armature 441. Therefore, the portion that supports the linear scale with respect to the support frame 420 The support frame 420 can be prevented from becoming large or complicated. In addition, since it is not necessary to provide a detection unit for detecting a linear scale separately provided on the side of the support frame, the linear guide device 410 can be prevented from being enlarged.
さらに、本実施形態によると、界磁子442の上面にリニアスケール481が直接固定され、電機子441の前面に検出部482を直接固定しているから、界磁子442と電機子441によって構成される台座駆動部440と、リニアスケール481と検出部482とによって構成されるリニアエンコーダ480との間の剛性が高められ、台座駆動部440に対するリニアエンコーダ480の追従性を高くすることができる。つまり、台座駆動部440とリニアエンコーダ480と間の応答性を向上させることができ、台座駆動部440のサーボゲインを高めて、台座駆動部440のサーボ制御を高速化させることができる。
Furthermore, according to the present embodiment, the linear scale 481 is directly fixed to the upper surface of the field element 442, and the detection unit 482 is directly fixed to the front surface of the armature 441. Therefore, the field element 442 and the armature 441 are configured. The rigidity between the pedestal drive unit 440 and the linear encoder 480 configured by the linear scale 481 and the detection unit 482 is increased, and the followability of the linear encoder 480 with respect to the pedestal drive unit 440 can be enhanced. That is, the responsiveness between the pedestal drive unit 440 and the linear encoder 480 can be improved, the servo gain of the pedestal drive unit 440 can be increased, and the servo control of the pedestal drive unit 440 can be speeded up.
<他の実施形態>
本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
(1)上記実施形態では、リニアスケール81,281,381,481を非磁性体のステンレスによって構成した。しかしながら、これに限らず、リニアスケールを、非磁性体の金属やガラスなどによって構成してもよい。また、界磁子の永久磁石の磁力線を完全に遮蔽せずに電機子側に通して可動子を充分に駆動できる程度まで薄く形成すれば、リニアスケールを磁性体の金属(磁性体のステンレスを含む)によって構成してもよい。 <Other embodiments>
The technology disclosed in the present specification is not limited to the embodiments described with reference to the above description and drawings, and includes, for example, the following various aspects.
(1) In the above embodiment, the linear scales 81, 281, 381, 481 are made of nonmagnetic stainless steel. However, the present invention is not limited to this, and the linear scale may be made of a nonmagnetic metal or glass. If the magnetic field lines of the permanent magnet of the field element are not completely shielded and are made thin enough to pass the armature and the mover can be driven sufficiently, the linear scale can be made of a magnetic metal (magnetic stainless steel). May be included).
本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
(1)上記実施形態では、リニアスケール81,281,381,481を非磁性体のステンレスによって構成した。しかしながら、これに限らず、リニアスケールを、非磁性体の金属やガラスなどによって構成してもよい。また、界磁子の永久磁石の磁力線を完全に遮蔽せずに電機子側に通して可動子を充分に駆動できる程度まで薄く形成すれば、リニアスケールを磁性体の金属(磁性体のステンレスを含む)によって構成してもよい。 <Other embodiments>
The technology disclosed in the present specification is not limited to the embodiments described with reference to the above description and drawings, and includes, for example, the following various aspects.
(1) In the above embodiment, the
(2)上記実施形態では、界磁子55,155,255,342,442に対してリニアスケール81,281,381,481を両面テープなどによって固定した構成とした。しかしながら、これに限らず、永久磁石を樹脂モールドしてなる界磁子の樹脂部にリニアスケールの下端部が埋設された構成にしてもよい。
(2) In the above embodiment, the linear scales 81, 281, 381, and 481 are fixed to the field elements 55, 155, 255, 342, and 442 by double-sided tape or the like. However, the present invention is not limited to this, and the lower end portion of the linear scale may be embedded in the resin portion of a field element formed by resin molding of a permanent magnet.
(3)上記実施形態では、電機子45,343,441に対して界磁子が長く形成された構成にした。しかしながら、これに限らず、図17および図18に示すように、複数のコイル部546を樹脂モールドしてなる電機子545を、複数の永久磁石554を並べてなる界磁子555よりも長く形成したリニアモータ540を構成してもよく、界磁子555よりも長い形態の電機子545の表面に貼り付けたリニアスケール581を、界磁子555に隣接して設けられた検出部582によって検出する構成としてもよい。
(3) In the above embodiment, the armature 45, 343, 441 is configured to have a long field element. However, the present invention is not limited to this, and as shown in FIGS. 17 and 18, an armature 545 formed by resin molding a plurality of coil portions 546 is formed longer than a field element 555 formed by arranging a plurality of permanent magnets 554. The linear motor 540 may be configured, and the linear scale 581 attached to the surface of the armature 545 longer than the field element 555 is detected by the detection unit 582 provided adjacent to the field element 555. It is good also as a structure.
(4)上記実施形態3では、検出部482をコイル部からなる電機子441の前面に固定した構成とした。しかしながら、これに限らず、検出部をコイル部と共に電機子内に埋設した構成にしてもよい。
(5)上記実施形態1では、検出部82が電機子45の上方に配置された構成とした。しかしながら、これに限らず、検出部を電機子の下方に配置した構成にしてもよい。なお、検出部を電機子の下方に配置した場合であっても、可動子の界磁子における永久磁石の最小設置範囲およびリニアスケールの設置範囲は、実施形態1と同様の方法によって決定することができる。 (4) In the third embodiment, thedetection unit 482 is fixed to the front surface of the armature 441 including the coil unit. However, the configuration is not limited to this, and the detection unit may be embedded in the armature together with the coil unit.
(5) In the first embodiment, thedetection unit 82 is disposed above the armature 45. However, the configuration is not limited to this, and the detection unit may be arranged below the armature. Even when the detection unit is arranged below the armature, the minimum permanent magnet installation range and the linear scale installation range in the field element of the mover should be determined by the same method as in the first embodiment. Can do.
(5)上記実施形態1では、検出部82が電機子45の上方に配置された構成とした。しかしながら、これに限らず、検出部を電機子の下方に配置した構成にしてもよい。なお、検出部を電機子の下方に配置した場合であっても、可動子の界磁子における永久磁石の最小設置範囲およびリニアスケールの設置範囲は、実施形態1と同様の方法によって決定することができる。 (4) In the third embodiment, the
(5) In the first embodiment, the
10,310:表面実装機
13:搬送コンベア(「基板搬送装置」の一例)
20,320:部品実装装置
22:ヘッド駆動部
30:ヘッドユニット
32:部品保持駆動部
40:リニアモータ
41:取付フレーム
45:電機子
46:コイル部
55,155,255,342,442:界磁子
60:部品保持部
81,281,381,481:リニアスケール(「被検出部」の一例)
82,382,481:検出部
85:センサ部
256:載置台部(「支持部」の一例)
342,442:界磁子
343,441:電機子
410:リニアガイド装置(「単軸ロボット」の一例)
440:台座駆動部
E:電子部品(「部品」の一例)
P:プリント基板(「基板」の一例) 10, 310: Surface mounter 13: Conveyor (an example of “substrate transport device”)
20, 320: Component mounting device 22: Head drive unit 30: Head unit 32: Component holding drive unit 40: Linear motor 41: Mounting frame 45: Armature 46: Coil units 55, 155, 255, 342, 442: Field Child 60: component holding parts 81, 281, 381, 481: linear scale (an example of “detected part”)
82, 382, 481: detection unit 85: sensor unit 256: mounting table unit (an example of “support unit”)
342, 442:Field element 343, 441: Armature 410: Linear guide device (an example of “single axis robot”)
440: Pedestal drive unit E: Electronic component (an example of “component”)
P: Printed circuit board (an example of “board”)
13:搬送コンベア(「基板搬送装置」の一例)
20,320:部品実装装置
22:ヘッド駆動部
30:ヘッドユニット
32:部品保持駆動部
40:リニアモータ
41:取付フレーム
45:電機子
46:コイル部
55,155,255,342,442:界磁子
60:部品保持部
81,281,381,481:リニアスケール(「被検出部」の一例)
82,382,481:検出部
85:センサ部
256:載置台部(「支持部」の一例)
342,442:界磁子
343,441:電機子
410:リニアガイド装置(「単軸ロボット」の一例)
440:台座駆動部
E:電子部品(「部品」の一例)
P:プリント基板(「基板」の一例) 10, 310: Surface mounter 13: Conveyor (an example of “substrate transport device”)
20, 320: Component mounting device 22: Head drive unit 30: Head unit 32: Component holding drive unit 40: Linear motor 41: Mounting frame 45: Armature 46:
82, 382, 481: detection unit 85: sensor unit 256: mounting table unit (an example of “support unit”)
342, 442:
440: Pedestal drive unit E: Electronic component (an example of “component”)
P: Printed circuit board (an example of “board”)
Claims (10)
- 複数のコイル部を直線的に並べた形態の電機子と、
前記電機子に対向するように複数の永久磁石を前記コイル部の並び方向と同一方向に並べた界磁子とを有し、
前記電機子または前記界磁子のいずれか一方が他方よりも前記並び方向に長く、かつ、前記電機子または前記界磁子のいずれか一方が他方に対して前記並び方向に移動可能なリニアモータであって、
前記電機子または前記界磁子のうち長い方には被検出部が直接固定され、前記電機子または前記界磁子のうち短い方には前記被検出部を光学的に検出する検出部が隣接して設けられているリニアモータ。 An armature in a form in which a plurality of coil portions are linearly arranged;
A field element in which a plurality of permanent magnets are arranged in the same direction as the arrangement direction of the coil portions so as to face the armature,
Either the armature or the field element is longer in the alignment direction than the other, and either the armature or the field element is movable in the alignment direction with respect to the other Because
The detected part is directly fixed to the longer one of the armature or the field element, and the detecting part for optically detecting the detected part is adjacent to the shorter one of the armature or the field element. A linear motor is provided. - 前記被検出部が固定された前記電機子または前記界磁子の表面は、樹脂によって平坦に設けられており、
前記被検出部は、前記樹脂に固定されている請求項1に記載のリニアモータ。 The surface of the armature or the field element to which the detected portion is fixed is provided flat by resin,
The linear motor according to claim 1, wherein the detected portion is fixed to the resin. - 前記界磁子が前記電機子に対して前記移動方向に移動可能とされている請求項1または請求項2に記載のリニアモータ。 The linear motor according to claim 1, wherein the field element is movable in the movement direction with respect to the armature.
- 前記検出部は、前記被検出部を検出するセンサ部を有し、前記電機子と隣接するように前記移動方向に並んで設けられており、
前記検出部のセンサ部は、前記検出部において前記電機子側の端部に設けられている請求項3に記載のリニアモータ。 The detection unit includes a sensor unit that detects the detected unit, and is provided side by side in the movement direction so as to be adjacent to the armature.
The linear motor according to claim 3, wherein the sensor unit of the detection unit is provided at an end of the detection unit on the armature side. - 前記被検出部は、前記界磁子から前記移動方向に延出して設けられ、
前記界磁子と前記移動方向に隣接した位置には、前記界磁子から延出された前記被検出部が固定される支持部が設けられている請求項4に記載のリニアモータ。 The detected portion is provided to extend from the field element in the moving direction,
The linear motor according to claim 4, wherein a support part to which the detected part extending from the field element is fixed is provided at a position adjacent to the field element in the moving direction. - 部品を保持する部品保持部を上下に移動させる部品保持駆動部を有するヘッドユニットであって、
前記部品保持駆動部は、請求項1から請求項5のいずれか一項に記載のリニアモータを有しているヘッドユニット。 A head unit having a component holding drive unit that moves a component holding unit that holds components up and down,
The said component holding drive part is a head unit which has the linear motor as described in any one of Claims 1-5. - 前記部品保持駆動部は、前記部品保持部と共に、前記リニアモータを複数有している請求項6に記載のヘッドユニット。 The head unit according to claim 6, wherein the component holding drive unit includes a plurality of the linear motors together with the component holding unit.
- 請求項6または請求項7に記載のヘッドユニットを有する部品実装装置と、
前記部品実装装置に前記部品を供給する部品供給装置と、
前記部品実装装置によって保持された前記部品を実装する基板を搬送する基板搬送装置とを備える表面実装機。 A component mounting apparatus having the head unit according to claim 6 or 7,
A component supply device for supplying the component to the component mounting device;
A surface mounting machine comprising: a substrate transfer device that transfers a substrate on which the component held by the component mounting device is mounted. - 部品を基板に実装する部品実装装置を水平方向に移動させるヘッド駆動部を備えた表面実装機であって、
前記ヘッド駆動部は、請求項1または請求項2に記載のリニアモータを有している表面実装機。 A surface mounter including a head drive unit that horizontally moves a component mounting apparatus for mounting a component on a board,
3. The surface mounter, wherein the head driving unit has the linear motor according to claim 1 or 2. - 台座部を直線的に移動させる台座駆動部を備えた単軸ロボットであって、
前記台座駆動部は、請求項1または請求項2に記載のリニアモータを有しており、
前記電機子が前記台座部に設けられている単軸ロボット。 A single-axis robot provided with a pedestal drive that linearly moves the pedestal,
The pedestal drive unit has the linear motor according to claim 1 or claim 2,
A single-axis robot in which the armature is provided on the pedestal.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018524661A JP6616507B2 (en) | 2016-06-30 | 2016-06-30 | Linear motor, head unit, surface mounter and single axis robot |
CN201680086045.2A CN109314456A (en) | 2016-06-30 | 2016-06-30 | Linear motor, head unit, surface mounting apparatus and single axis robot |
PCT/JP2016/069447 WO2018003062A1 (en) | 2016-06-30 | 2016-06-30 | Linear motor, head unit, surface mounting machine, and single-axis robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/069447 WO2018003062A1 (en) | 2016-06-30 | 2016-06-30 | Linear motor, head unit, surface mounting machine, and single-axis robot |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018003062A1 true WO2018003062A1 (en) | 2018-01-04 |
Family
ID=60786773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069447 WO2018003062A1 (en) | 2016-06-30 | 2016-06-30 | Linear motor, head unit, surface mounting machine, and single-axis robot |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6616507B2 (en) |
CN (1) | CN109314456A (en) |
WO (1) | WO2018003062A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112234792A (en) * | 2020-09-18 | 2021-01-15 | 瑞声新能源发展(常州)有限公司科教城分公司 | Linear motor |
CN112234793A (en) * | 2020-09-18 | 2021-01-15 | 瑞声新能源发展(常州)有限公司科教城分公司 | Linear motor |
CN115373878B (en) * | 2022-10-27 | 2023-03-28 | 麒麟软件有限公司 | Anti-screenshot extension protocol implementation system based on X framework |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010115020A (en) * | 2008-11-06 | 2010-05-20 | Sinfonia Technology Co Ltd | Position sensor unit and three-phase ac linear motor |
US20110306467A1 (en) * | 2008-10-13 | 2011-12-15 | Enrico Massa | Electromagnetic load device for an apparatus for physical exercise, and apparatus provided with said device |
JP2013143886A (en) * | 2012-01-12 | 2013-07-22 | Yamaha Motor Co Ltd | Adsorption nozzle lifting linear motor, and electronic component mounting device |
JP2013198204A (en) * | 2012-03-16 | 2013-09-30 | Yaskawa Electric Corp | Linear motor |
CN103615999A (en) * | 2013-11-21 | 2014-03-05 | 广西大学 | Motion synchronization precision detecting device based on linear motors |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003254703A (en) * | 2002-02-28 | 2003-09-10 | Yamaha Motor Co Ltd | Moving body system, and method of detecting position of moving body |
JP2005051856A (en) * | 2003-07-30 | 2005-02-24 | Yamaha Motor Co Ltd | Linear encoder device, linear motor, and single-axis robot |
CN101278467B (en) * | 2005-09-30 | 2010-09-01 | Thk株式会社 | Linear synchronous motor and linear motor actuator |
JP5170045B2 (en) * | 2009-09-18 | 2013-03-27 | 株式会社安川電機 | Linear encoder, linear motor, linear motor system, main scale, and linear encoder manufacturing method |
JP5421709B2 (en) * | 2009-09-30 | 2014-02-19 | Thk株式会社 | Linear motor drive system and control method |
-
2016
- 2016-06-30 CN CN201680086045.2A patent/CN109314456A/en active Pending
- 2016-06-30 JP JP2018524661A patent/JP6616507B2/en active Active
- 2016-06-30 WO PCT/JP2016/069447 patent/WO2018003062A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110306467A1 (en) * | 2008-10-13 | 2011-12-15 | Enrico Massa | Electromagnetic load device for an apparatus for physical exercise, and apparatus provided with said device |
JP2010115020A (en) * | 2008-11-06 | 2010-05-20 | Sinfonia Technology Co Ltd | Position sensor unit and three-phase ac linear motor |
JP2013143886A (en) * | 2012-01-12 | 2013-07-22 | Yamaha Motor Co Ltd | Adsorption nozzle lifting linear motor, and electronic component mounting device |
JP2013198204A (en) * | 2012-03-16 | 2013-09-30 | Yaskawa Electric Corp | Linear motor |
CN103615999A (en) * | 2013-11-21 | 2014-03-05 | 广西大学 | Motion synchronization precision detecting device based on linear motors |
Also Published As
Publication number | Publication date |
---|---|
CN109314456A (en) | 2019-02-05 |
JP6616507B2 (en) | 2019-12-04 |
JPWO2018003062A1 (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101483478B1 (en) | Linear motor, part mounting apparatus, and part inspecting apparatus | |
US8941271B2 (en) | Linear motor for lifting and lowering suction nozzle, and electronic component mounting apparatus | |
US8643226B2 (en) | Linear motor and electronic component transfer device equipped with linear motor unit | |
JP6616507B2 (en) | Linear motor, head unit, surface mounter and single axis robot | |
JP5960411B2 (en) | Linear conveyor | |
KR101523536B1 (en) | Linear motor, component mounting apparatus, and component inspecting apparatus | |
US5588312A (en) | Driving apparatus for needles of knitting machine | |
CN101868906B (en) | Linear motor and part displacing device | |
US20230353027A1 (en) | Linear conveyor | |
KR101557718B1 (en) | Component mounting device | |
KR101613142B1 (en) | Linear motor and component mounting device | |
JP5084189B2 (en) | Linear motor and component mounting device | |
KR101991462B1 (en) | Straight type linear actuator | |
JP5352089B2 (en) | Linear motor and component transfer device | |
JP5872908B2 (en) | Linear motor unit, head unit and component mounting machine | |
JP2009171657A (en) | Linear motor and component transfer apparatus | |
JP3537719B2 (en) | Electronic component feeder | |
JP5250270B2 (en) | Linear motor and component transfer device | |
WO2019043841A1 (en) | Component mounting machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018524661 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16907295 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16907295 Country of ref document: EP Kind code of ref document: A1 |