WO2018002536A1 - Composition de caoutchouc comprenant un agent de couplage polysulfure de monohydroxysilane - Google Patents

Composition de caoutchouc comprenant un agent de couplage polysulfure de monohydroxysilane Download PDF

Info

Publication number
WO2018002536A1
WO2018002536A1 PCT/FR2017/051747 FR2017051747W WO2018002536A1 WO 2018002536 A1 WO2018002536 A1 WO 2018002536A1 FR 2017051747 W FR2017051747 W FR 2017051747W WO 2018002536 A1 WO2018002536 A1 WO 2018002536A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
copolymers
butadiene
isoprene
phr
Prior art date
Application number
PCT/FR2017/051747
Other languages
English (en)
Inventor
Nicolas Seeboth
Anne-Frédérique SALIT
Sylvain Mayer
José Manuel ANTELO MIGUEZ
Pablo Barreiro
Benigno A. Janeiro
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to CN201780041129.9A priority Critical patent/CN109415390B/zh
Priority to US16/314,135 priority patent/US10961371B2/en
Publication of WO2018002536A1 publication Critical patent/WO2018002536A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0836Compounds with one or more Si-OH or Si-O-metal linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • C08L2666/44Silicon-containing compounds

Definitions

  • the present invention relates to diene elastomer compositions reinforced with an inorganic filler, which can be used for the manufacture of tires or semi-finished products for tires, in particular treads of these tires.
  • the filler in general, in order to obtain the optimum reinforcement properties conferred by a filler, the filler should be present in the elastomeric matrix in a final form which is at once as finely divided as possible and distributed in the as homogeneous as possible.
  • the load has a very good ability, on the one hand to incorporate into the matrix during mixing with the elastomer and to deagglomerate, on the other hand to to disperse homogeneously in this matrix.
  • Such rubber compositions comprising reinforcing inorganic fillers of the siliceous or aluminous type, have for example been described in patents or applications for EP-A-0501227 (or US-A-5227425), EP-A-0735088 (or US-A-5852099), EP-A-0810258 (or US-A-5900449), EP-A-0881252, WO99 / 02590, WO99 / 02601, WO99 / 02602, WO99 / 28376, WO00 / 05300, WO00 / 05301.
  • a coupling agent also called binding agent, whose function is to ensure the connection between the surface of the inorganic filler particles and the elastomer, while facilitating the dispersion of this load inorganic within the elastomeric matrix.
  • coupling agent inorganic filler / elastomer
  • inorganic filler / elastomer means, in a known manner, an agent capable of establishing a sufficient bond, of a chemical and / or physical nature, between the inorganic filler and the elastomer. diene; such a coupling agent, at least bifunctional, has for example as simplified general formula "Y-W-X", in which:
  • Y represents a functional group ("Y" function) which is capable of binding physically and / or chemically to the inorganic filler, such a bond being able to be established, for example, between a silicon atom of the coupling agent and the hydroxyl (OH) groups of the surface of the inorganic filler (for example the surface silanols when it is silica);
  • X represents a functional group ("X" function) capable of binding physically and / or chemically to the diene elastomer, for example via a sulfur atom; W represents a divalent group making it possible to connect Y and X.
  • the coupling agents must not be confused with simple inorganic filler agents which, in known manner, can comprise the active Y function with respect to the inorganic filler but lack the active X function. with the diene elastomer.
  • Coupling agents in particular (silica / diene elastomer), have been described in a large number of documents, the best known being bifunctional organosilanes carrying at least one alkoxyl function as a Y function, and, as a function X, at least one function capable of reacting with the diene elastomer such as, for example, a sulfur function (ie, comprising sulfur).
  • a sulfur function ie, comprising sulfur
  • the subject of the invention is therefore an elastomeric composition based on at least one diene elastomer, an inorganic filler as a reinforcing filler, and a monohydroxysilane polysulfide as coupling agent, of formula (I):
  • R 2 identical or different, each represent a monovalent hydrocarbon group having 1 to 4 carbon atoms;
  • Z which are identical or different, each represent a divalent hydrocarbon linking group comprising from 1 to 16 carbon atoms;
  • x is an integer or fractional number greater than or equal to 2.
  • the groups R 1 are chosen from C 1 -C 6 alkyls, C 5 -C 8 cycloalkyls and the phenyl radical; the groups Z being selected from alkylenes and Ci-Ci 6 arylene C 6 -C 2 and preferably, the groups R 1 are selected from alkyl C 1 -C 3 and the Z groups being selected from alkylenes C 1 -C 3 .
  • the Z groups are chosen from methylene and ethylene and even more preferably the coupling agent consists of bis (2-methylpropane-1,3-diyl) (dimethylsilano 1) polysulfide.
  • x is in a range from 2 to 4.
  • the diene elastomer is chosen from the group consisting of polybutadienes, natural rubber, synthetic polyisoprenes, butadiene copolymers, isoprene copolymers and mixtures of these elastomers.
  • the butadiene and isoprene copolymers are chosen from butadiene-styrene copolymers, butadiene-isoprene copolymers, isoprene-styrene copolymers, butadiene-acrylonitrile copolymers and butadiene-styrene copolymers. isoprene and mixtures of these copolymers.
  • the invention also relates to a tread, a finished or semi-finished article and a tire comprising a composition as described above.
  • the rubber compositions are characterized before and after firing, as indicated below.
  • the rubber compositions according to the invention are based on at least one diene elastomer, an inorganic filler as reinforcing filler, and a monohydroxysilane polysulfide as coupling agent, of formula (I):
  • R 1 identical or different, each represent a monovalent hydrocarbon group having 1 to 18 carbon atoms;
  • R 2 identical or different, each represent a monovalent hydrocarbon group having 1 to 4 carbon atoms;
  • Z which are identical or different, each represent a divalent hydrocarbon linking group comprising from 1 to 16 carbon atoms;
  • x is an integer or fractional number greater than or equal to 2.
  • composition-based is meant a composition comprising the mixture and / or the reaction product of the various constituents used, some of these basic constituents being capable of or intended to react with one another, less in part, during the various phases of manufacture of the composition, in particular during its crosslinking or vulcanization.
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • the compounds mentioned below and used in the preparation of rubber compositions may be of fossil origin or biobased. In the latter case, they can be, partially or totally, derived from biomass or obtained from renewable raw materials derived from biomass. This includes polymers, plasticizers, fillers, etc.
  • composition according to the invention comprises at least one diene elastomer.
  • iene elastomer or indistinctly rubber, whether natural or synthetic, must be understood in known manner an elastomer consisting at least in part (ie, a homopolymer or a copolymer) of monomeric diene units (monomers carrying two carbon-carbon double bonds, conjugated or not).
  • diene elastomers can be classified into two categories: “essentially unsaturated” or “essentially saturated”.
  • the term “essentially unsaturated” is generally understood to mean a diene elastomer derived at least in part from conjugated diene monomers, having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%);
  • diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not fall within the above definition and may in particular be described as "essentially saturated” diene elastomers ( low or very low diene origin, always less than 15%).
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • iene elastomer can be understood more particularly to be used in the compositions according to the invention:
  • conjugated dienes 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-di (C 1 -C 5) alkyl-1,3-butadienes, such as for example 2 3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3-isopropyl-1, 3-butadiene, aryl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene.
  • alkyl-1,3-butadienes such as for example 2 3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3-isopropyl-1, 3-butadiene, aryl-1,3-butadiene, 1,3-pentadiene, 2,4-hexa
  • Suitable vinylaromatic compounds are, for example, styrene, ortho-, meta-, para-methylstyrene, the "vinyl-toluene" commercial mixture, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene.
  • the copolymers may contain from 99% to 20% by weight of diene units and from 1% to 80% by weight of vinylaromatic units.
  • the elastomers may have any microstructure which is a function of the polymerization conditions used, in particular the presence or absence of a modifying and / or randomizing agent and the amounts of modifying and / or randomizing agent used.
  • the elastomers can be for example block, statistical, sequenced, microsequenced, and be prepared in dispersion or in solution; they may be coupled and / or starred or functionalized with a coupling agent and / or starring or functionalization.
  • alkoxysilane groups as described for example in FR 2,765,882 or US 5,977,238), carboxylic groups (as described for example in WO 01/92402 or US 6,815,473, WO 2004/096865 or US 2006 / 0089445) or polyether groups (as described for example in EP 1 127 909 or US 6,503,973, WO 2009/000750 and WO 2009/000752).
  • Functional elastomers that may be mentioned are those prepared by the use of a functional initiator, especially those carrying an amine or tin function (see, for example, WO 2010072761).
  • elastomers such as SBR, BR, NR or IR
  • SBR surface potential
  • BR BR
  • NR IR
  • elastomers such as SBR, BR, NR or IR
  • Tg glass transition temperature
  • styrene content of between 5% and 60% by weight and more particularly between 20% and 50%, a content (mol%) in 1,2-bonds of the butadiene part of between 4% and 75%, a content (mol%) trans-1,4 bonds between 10% and 80%>, butadiene-isoprene copolymers and especially those having an isoprene content of between 5% and 90% by weight and a Tg of -40 ° C to -80 ° C, isoprene-styrene copolymers and in particular those having a styrene content of between 5% and 50% by weight and a Tg of between -5 ° C. and -50 ° C.
  • butadiene-styrene-isoprene copolymers are especially suitable those having a styrene content of between 5% and 50% by weight and more particularly between 10% and 40%), an isoprene content of between 15% and 60%> by weight and more particularly between 20% and 50%, a butadiene content of between 5% and 50% by weight and more particularly between 20%> and 40%>, a content (mol%) in units - 1,2 of the butadiene part of between 4% and 85%, a content (mol%) in trans-1,4 units of the butadiene part of between 6% and 80%, a content (mol%) in units -1 , 2 plus -3,4 of the isoprenic part of between 5% and 70% and a content (mol%) in trans units -1,4 of the isoprene part of between 10% and 50%, and more generally any butadiene copolymer isyrene-isoprene having a Tg between -5 ° C and -70 ° C
  • the diene elastomer (s) of the composition according to the invention are preferably chosen from the group of highly unsaturated diene elastomers consisting of polybutadienes (abbreviated as "BR"), synthetic polyisoprenes (IR) and natural rubber (NR), butadiene copolymers, isoprene copolymers and mixtures of these elastomers.
  • BR polybutadienes
  • IR synthetic polyisoprenes
  • NR natural rubber
  • butadiene copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR) and isoprene-copolymers.
  • the diene elastomer is an isoprene elastomer.
  • isoprene elastomer is meant in known manner a homopolymer or copolymer of isoprene, in other words a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), different isoprene copolymers and mixtures of these elastomers.
  • isoprene copolymers examples include butyl rubber - IIR), isoprene-styrene (SIR), isoprene-butadiene (BIR) or isoprene-butadiene-styrene (SBIR).
  • This isoprene elastomer is preferably natural rubber or synthetic cis-1,4 polyisoprene; of these synthetic polyisoprenes, polyisoprenes having a content (mol%) of cis-1,4 bonds greater than 90%, more preferably still greater than 98%, are preferably used.
  • the natural rubber consists of natural rubber and is used in a blend with one or more elastomers chosen from the group consisting of polybutadienes, synthetic polyisoprenes, butadiene copolymers, isoprene copolymers and mixtures of these elastomers.
  • the natural rubber is predominant (for more than 50 phr) an isoprene elastomer; according to another embodiment, the natural rubber is the only elastomer of the composition.
  • the diene elastomer is constituted by an SBR, used mainly or not, and optionally in a blend with one or more elastomers chosen from the group consisting of polybutadienes, synthetic polyisoprenes, copolymers of butadiene, isoprene copolymers and mixtures of these elastomers.
  • the SBR is the only elastomer of the composition.
  • composition according to the invention may contain a single diene elastomer or a mixture of several diene elastomers, the diene elastomer or elastomers which may be used in combination with any type of synthetic elastomer other than diene, or even with polymers other than elastomers, for example thermoplastic polymers.
  • reinforcing inorganic filler is meant here, in known manner, any inorganic or inorganic filler, regardless of its color and origin (natural or synthetic), also called “white” filler, “clear” filler “or” non-black filler “charge as opposed to carbon black, this inorganic filler being able to reinforce on its own, with no other means than an intermediate coupling agent, a rubber composition intended for the manufacture of a tread of tires, in other words able to replace, in its reinforcing function, a conventional carbon black pneumatic grade, in particular for tread; such a filler is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • the reinforcing inorganic filler is a filler of the siliceous or aluminous type, or a mixture of these two types of filler.
  • the silica (SiO 2 ) used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface area both less than 450 m 2 / g, preferably 30 to 400 m 2 / g.
  • Highly dispersible precipitated silicas are preferred, in particular when the invention is used for the manufacture of tires having a low rolling resistance; examples of such silicas are the silicas “Ultrasil 7000" from Evonik, the silicas “Zeosil 1165 MP, 1135 MP, 1115 MP and Zeosil premium 200 MP” from Solvay, silica "Hi-Sil EZ150G From PPG, the "Zeopol 8715, 8745 or 8755” silicas from the Huber Company.
  • HDS Highly dispersible precipitated silicas
  • the reinforcing alumina (Al 2 O 3) preferably used is a highly dispersible alumina having a BET surface area ranging from 30 to 400 m 2 / g, more preferably from 60 to 250 m 2 / g, an average particle size of at most 500 nm. more preferably at most equal to 200 nm.
  • aluminas "Baikalox A125” or "CR125” (Ba ⁇ kowski company), "APA-100RDX” (Congrua), "Aluminoxid C” (Evonik) or "AKP-G015" (Sumitomo Chemicals).
  • inorganic filler suitable for use in the tread rubber compositions of the invention, mention may also be made of aluminum (oxide) hydroxides, aluminosilicates, titanium oxides, silicon carbides or nitrides, all of the reinforcing type as described for example in the applications WO 99/28376, WO 00/73372, WO 02/053634, WO 2004/003067, WO 2004/056915.
  • the physical state under which the reinforcing inorganic filler is present is indifferent whether in the form of powder, microbeads, granules, beads or any other suitable densified form.
  • the term "reinforcing inorganic filler” also refers to mixtures of different reinforcing inorganic fillers, in particular highly dispersible siliceous and / or aluminous fillers as described above.
  • this level of reinforcing inorganic filler will be chosen between 10 and 200 phr, more preferably between 30 and 150 phr, in particular greater than 50 phr, and more preferably between 60 and 140 phr.
  • the BET surface area is determined in a known manner by gas adsorption using the Brunauer-Emmett-Teller method described in "The Journal of the American Chemical Society” Vol. 60, page 309, February 1938, specifically according to the French standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points) - gas: nitrogen - degassing: time at 160 ° C - relative pressure range p / po: 0.05 at 0.17).
  • the CTAB specific surface is the external surface determined according to the French standard NF T 45-007 of November 1987 (method B).
  • the reinforcing inorganic filler can be used also associated with an organic reinforcing filler, in particular carbon black, for example a black of the HAF, ISAF, SAF type, conventionally used in tires and particularly in the treads of tires (for example).
  • carbon black for example a black of the HAF, ISAF, SAF type, conventionally used in tires and particularly in the treads of tires (for example).
  • These carbon blacks can be used in the isolated state, as commercially available, or in any other form, for example as a carrier for some of the rubber additives used.
  • the carbon blacks could for example already be incorporated into the elastomer in the form of a masterbatch (see for example WO 97/36724 or WO 99/16600).
  • the amount of carbon black present in the total reinforcing filler can vary within wide limits, it is preferably lower than that of the reinforcing inorganic filler.
  • carbon black is used in a very small proportion, with a content of between 2 and 20 phr and preferably at a level of less than 10 phr. In the ranges indicated, it benefits from the coloring properties (black pigmentation agent) and anti-UV carbon blacks, without otherwise penalizing the typical performance provided by the reinforcing inorganic filler.
  • the composition of the invention may be completely devoid of carbon black.
  • the organosilane used as coupling agent according to the invention is a monohydroxysilane polysulfide of formula (I):
  • R 1 identical or different, each represent a monovalent hydrocarbon group having 1 to 18 carbon atoms;
  • R 2 which may be identical or different, each represent a monovalent hydrocarbon group having from 1 to 4 carbon atoms, Z, which are identical or different, each represent a divalent hydrocarbon linking group comprising from 1 to 16 carbon atoms,
  • x is an integer or fractional number greater than or equal to 2.
  • the groups R 1 are chosen from C 1 -C 6 alkyls, C 5 -C 8 cycloalkyls and the phenyl radical; the groups Z being selected from alkylenes and Ci-Ci 6 arylene C 6 -C 2; and more preferably the R 1 groups are chosen from C 1 -C 3 alkyls and the Z groups being chosen from C 1 -C 3 alkylenes.
  • the Z groups are selected from methylene and ethylene.
  • the polysulfide consists of a polysulfide
  • the average value targeted for x is preferably in a range from 2 to 6, more preferably in a range from 2 to 4.
  • the monohydroxysilane polysulfide of formula (I) can be obtained by a process comprising the following steps:
  • Hal is chlorine
  • the organic base for trapping the formed acid halide is a tertiary amine.
  • the hydroxyl donor is used in excess with respect to the amount of product A.
  • it is a sodium polysulfide Na 2 S x , preferably generated by action of sulfur on Na 2 S.
  • the sulfurization step is carried out in an aqueous phase or in a two-phase water / organic solvent medium, in the presence of a phase transfer catalyst and a salt of formula M "Hal or M” 2 SO 4. (M "selected from Li, Na and K, Hal selected from F, Cl and Br).
  • the amount of monohydroxysilane polysulfide of formula (I) being between 1 and 20 phr.
  • This coupling agent may be used alone or as a mixture with another coupling agent, the total amount of coupling agent in the composition being between 1 and 20 phr.
  • the crosslinking system is preferably a vulcanization system, that is to say a system based on sulfur (or a sulfur donor agent) and a primary vulcanization accelerator.
  • a vulcanization system that is to say a system based on sulfur (or a sulfur donor agent) and a primary vulcanization accelerator.
  • various known secondary accelerators or vulcanization activators such as zinc oxide.
  • Sulfur is used at a preferential rate of between 0.5 and 12 phr, in particular between 1 and 10 phr.
  • the primary vulcanization accelerator is used at a preferred level of between 0.5 and 10 phr, more preferably between 0.5 and 5.0 phr.
  • accelerator primary or secondary
  • any compound capable of acting as an accelerator of vulcanization of diene elastomers in the presence of sulfur in particular accelerators of the thiazole type and their derivatives, accelerators of thiuram type, zinc dithiocarbamates.
  • accelerators are for example selected from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated "MBTS”), tetrabenzylthiuram disulfide (“TBZTD”), N-cyclohexyl-2-benzothiazyl sulfenamide (“CBS”), N, N dicyclohexyl-2-benzothiazylsulfenamide (“DCBS”), N-tert-butyl-2-benzothiazylsulfenamide (“TBBS”), N-tert-butyl-2-benzothiazylsulfenamide (“TBSI”), zinc dibenzyldithiocarbamate (“ ZBEC ”) and mixtures of these compounds.
  • MBTS 2-mercaptobenzothiazyl disulfide
  • TBZTD tetrabenzylthiuram disulfide
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • zinc and any zinc derivative such as ZnO are excluded, or they may be used in compliance with the maximum 0.5 phr of zinc in the composition, and preferably less than 0.3 phr.
  • the rubber compositions in accordance with the invention may also comprise all or part of the usual additives normally used in elastomer compositions intended for the manufacture of tires, in particular treads, such as, for example, plasticizers or lubricating oils. extension, whether these are of aromatic or non-aromatic nature, pigments, protective agents such as anti-ozone waxes, chemical antiozonants, anti-oxidants, anti-fatigue agents, reinforcing resins, acceptors (for example phenolic novolac resin) or methylene donors (for example HMT or H3M) as described for example in the application WO 02/10269, a crosslinking system based on either sulfur or sulfur donors and / or peroxide and / or bismaleimides, vulcanization accelerators, vulcanization activators.
  • plasticizers or lubricating oils such as, for example, plasticizers or lubricating oils.
  • extension whether these are of aromatic or non-aromatic nature, pigments, protective agents such as anti-ozone
  • the rubber compositions may comprise so-called plasticizing resins corresponding, by definition herein, to compounds that are solid at room temperature (23 ° C) (as opposed to a liquid plasticizer such as an oil).
  • Hydrocarbon resins are polymers well known to those skilled in the art, miscible by nature in diene (s) elastomer compositions (s) when they are further qualified as “plasticizers". They have been described, for example, in the book “Hydrocarbon Resins” by R. Mildenberg, M. Zander and G. Collin (New York, VCH, 1997, ISBN 3-527-28617-9), chapter 5 of which is devoted their applications, in particular pneumatic rubber (5.5 “Rubber Tires and Mechanical Goods”). They may be aliphatic, aromatic or aliphatic / aromatic type that is to say based on aliphatic and / or aromatic monomers.
  • the softening point is measured according to ISO 4625 ("Ring and Bail” method).
  • the glass transition temperature Tg is measured in a known manner by DSC (Differential Scanning Calorimetry), according to the ASTM D3418 (1999) standard.
  • the macrostructure (Mw, Mn and Ip) of the hydrocarbon resin is determined by steric exclusion chromatography (SEC): solvent tetrahydrofuran; temperature 35 ° C; concentration 1 g / 1; flow rate 1 ml / min; filtered solution on 0.45 ⁇ porosity filter before injection; Moore calibration with polystyrene standards; set of 3 "WATERS” columns in series (“STYRAGEL” HR4E, HR1 and HR0.5); differential refractometer detection (“WATERS 2410") and its associated operating software (“WATERS EMPOWER”).
  • SEC steric exclusion chromatography
  • Tg greater than 20 ° C, more preferably greater than 30 ° C;
  • Mn a number-average molecular mass (Mn) of between 400 and 2000 g / mol
  • Ip Mw / Mn with Mw weight average molecular weight
  • this plasticizing hydrocarbon resin has all of the above preferred characteristics.
  • Tg between -40 ° C and 0 ° C, more preferably between -30 ° C and 0 ° C and even more preferably between -20 ° C and 0 ° C;
  • Mn a number-average molecular mass (Mn) of less than 800 g / mol, preferably less than 600 g / mol and more preferentially less than 400 g / mol;
  • a softening point in a range from 0 to 50 ° C, preferably from 0 to 40 ° C, more preferably from 10 to 40 ° C, preferably from 10 to 30 ° C;
  • this low Tg hydrocarbon plasticizing resin has all of the above preferred characteristics.
  • plasticizing resins whatever the type of plasticizing resins mentioned above, it is known to choose them from the group consisting of homopolymer or copolymer resins of cyclopentadiene (abbreviated as CPD) or dicyclopentadiene (abbreviated as DCPD), the resins of Terpene homopolymer or copolymer, C5 homopolymer or copolymer resins, and mixtures of these resins.
  • the level of plasticizing resins ranges from 10 to 90 phr.
  • inert fillers such as clay particles, bentonite, talc, chalk, kaolin with a rate of less than or equal to 10 phr and preferably less than or equal to 5 phr.
  • the rubber compositions of the invention are manufactured in appropriate mixers, using two successive preparation phases according to a general procedure well known to those skilled in the art: a first phase of work or thermomechanical mixing (sometimes called phase “non-productive") at a high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C, followed by a second mechanical working phase (sometimes referred to as "Productive” phase) at lower temperature, typically below 120 ° C, for example between 60 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system or vulcanization.
  • a first phase of work or thermomechanical mixing sometimes called phase "non-productive”
  • a second mechanical working phase sometimes referred to as "Productive” phase
  • One or more additional steps can be envisaged to prepare masterbatches of elastomer and reinforcing filler, intended to be introduced during the first phase of work.
  • Step 1 In a reactor (2 liters) with temperature control, mechanical stirring and refrigerated condensation, heptane is introduced in order to have the stirring volume. The temperature of the reaction medium is brought to 90 ° C. Once this temperature is reached, the Karsted catalyst is added. Immediately after the addition of the catalyst, a premix of dimethylchlorosilane and 3-chloro-2-methyl propene is added to the reaction miiu via a dropping funnel. The rate of addition of the premix is adjusted according to the exothermicity of the reaction medium and reflux. The goal is to keep reflux as low as possible and the reaction temperature between 85 and 95 ° C.
  • reaction medium is stirred for 30 minutes at 90 ° C. (+/- 5 ° C.). Heptane and unreacted raw materials are separated by distillation.
  • the polysulfide salts are preformed by reacting a mixture of sulfur, sodium chloride and sodium sulphide.
  • the sulfur distribution in the final product can be varied by changing the proportion of sulfur to silanol in this reaction.
  • the amount of sodium sulphide used in molar ratios with respect to sulfur can therefore vary from 5 to 0.5.
  • phase transfer agent may be a quaternary salt added just before starting the addition of the silanol.
  • quaternary salt mention may in particular be made of:
  • phase transfer catalysts if these amounts of phase transfer catalysts are increased, then the amount of asymmetric by-products resulting from the reaction of the butyl groups from the catalysts will increase disadvantageously.
  • the proportions tested range from 0.8 to 5% of the weight of reactants.
  • the reaction was followed by gas chromatography, and considered complete when all the silanol was consumed.
  • the dilution of the product is between 10 and 15% toluene.
  • the amount of water used in the salts is also in this range.
  • the aqueous phase is removed and the product contained in the organic phase is concentrated under vacuum at a temperature below 35 ° C.
  • the final products are characterized by NMR. This shows the amount of asymmetric compounds formed (derived mainly from the reaction of the silanol with the catalyst) and the amount of polyfluorinated sulfidosilanol.
  • the content of the asymmetric compounds can be reduced by washing the product with hexane.
  • the asymmetric compounds are preferentially soluble in hexane, but some of the product is also soluble in hexane, which lowers the reaction yield.
  • This product therefore consists of a distribution of polysulfides whose average value of x is close to 2.
  • the diene elastomer (or the mixture of diene elastomers) is introduced into an internal mixer, filled to 70% and whose initial tank temperature is approximately 60 ° C. , if applicable), the reinforcing filler, the coupling agent, then the various other ingredients with the exception of the vulcanization system.
  • Thermomechanical work (non-productive phase) is then carried out in one or two stages (total mixing time equal to about 7 minutes), until a maximum "falling" temperature of approximately 165 ° C. is reached.
  • the mixture thus obtained is recovered, cooled and then added sulfur and sulfenamide accelerator on an external mixer (homo-finisher) at 30 ° C, mixing the whole (productive phase) for 3 to 4 minutes.
  • compositions thus obtained are then calendered in the form of plates (thickness of 2 to 3 mm) or thin sheets of rubber for the measurement of their physical or mechanical properties, or extruded to form profiles that can be used directly, after cutting and / or assembly to the desired dimensions, for example as semi-finished products for tires, in particular as treads of tires.
  • This test is intended to demonstrate the improved performance of a composition according to the invention, compared to a conventional composition using TESPT, as well as a composition using a coupling agent according to EP 1 326 914.
  • compositions are thus prepared in accordance with the method explained in the preceding paragraph, based on SBR, reinforced mainly with silica, which are distinguished from each other. others by the nature of their coupling agent, these coupling agents being used at an isomolar silicon level, as follows:
  • the conventional control composition C1 which does not conform to the invention, comprises, as a coupling agent for TESPT,
  • control composition C2 which does not conform to the invention, comprises, as coupling agent, the product B,
  • the composition C3 in accordance with the invention comprises, as coupling agent, the product A.
  • TESPT is bis (3-triethoxysilylpropyl) tetrasulfide of formula [(C 2 H 5 O) 3 Si (CH 2 ) 3S 2 ] 2; it is marketed for example by the company Evonik under the name "Si69” (or “X50S” when it is supported at 50% by weight on carbon black), or by the company Witco under the name "Silquest A1289” (In both cases, commercial mixture of polysulfides S x with an average value for x which is close to 4).
  • TESPT The developed formula of TESPT is:
  • Tables 1 and 2 respectively give the formulation of the three compositions (rate of the different products expressed in phr, and their properties after curing (about 30 minutes at 150 ° C.).
  • composition C3 according to the invention has significantly improved stiffness property compared to the two control compositions C1 and C2 at all the deformations as well as properties in stress at break clearly. improved with respect to the conventional control composition C1 and identical to the composition C2.
  • This test aims to demonstrate the improved performance of a composition according to the invention not comprising ZnO, compared to a composition using a coupling agent according to EP 1 326 914 not comprising ZnO.
  • compositions are thus prepared in accordance with the above-mentioned method, based on SBR, mainly reinforced with silica, which are distinguished from each other by the nature of their coupling agent, these coupling agents being used at an isomolar silicon content, as following :
  • control composition C2 not according to the invention is that of test 1, comprising as coupling agent product B,
  • composition C'2 is identical to the composition C2 except that it does not comprise zinc oxide
  • composition C3 according to the invention is that of test 1, comprising as coupling agent the product A,
  • composition C'3 is identical to the composition C3 except that it does not comprise zinc oxide.
  • Tables 3 and 4 respectively give the formulation of the four compositions (rate of the different products expressed in phr, and their properties after baking (about 30 minutes at 150 ° C.).
  • compositions C2 C'2 C3 C'3

Abstract

L'invention concerne une composition élastomérique à base d'au moins un élastomère diénique, une charge inorganique à titre de charge renforçante, un polysulfure de monohydroxysilane à titre d'agent de couplage un, de formule (I): (HO)(R1)2Si –CH2–(R2)CH-Z-Sx –Z-HC((R2) –CH2-Si(R1)2(OH) (I) dans laquelle: -R1, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 18 atomes de carbone; -R2, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 4 atomes de carbone; -Z, identiques ou différents, représentent chacun un groupe de liaison hydrocarboné divalent comportant de 1 à 16 atomes de carbone;-x est un nombre entier ou fractionnaire supérieur ou égal à 2.

Description

COMPOSITION DE CAOUTCHOUC COMPRENANT UN AGENT DE COUPLAGE POLYSULFURE DE MONOHYDROXYSILANE La présente invention se rapporte aux compositions d'élastomères diéniques renforcées d'une charge inorganique, utilisables pour la fabrication de pneumatiques ou de produits semi-finis pour pneumatiques, notamment de bandes de roulement de ces pneumatiques.
Elle est relative en particulier aux agents de couplage utilisables pour le couplage de charges inorganiques renforçantes et d'élastomères diéniques dans de telles compositions élastomériques.
On sait que d'une manière générale, pour obtenir les propriétés de renforcement optimales conférées par une charge, il convient que cette dernière soit présente dans la matrice élastomérique sous une forme finale qui soit à la fois la plus finement divisée possible et répartie de la façon la plus homogène possible. Or, de telles conditions ne peuvent être réalisées que dans la mesure où la charge présente une très bonne aptitude, d'une part à s'incorporer dans la matrice lors du mélange avec l'élastomère et à se désagglomérer, d'autre part à se disperser de façon homogène dans cette matrice.
De manière tout à fait connue, le noir de carbone présente de telles aptitudes, ce qui n'est en général pas le cas des charges inorganiques. En effet, pour des raisons d'affinités réciproques, les particules de charge inorganique ont une fâcheuse tendance, dans la matrice élastomérique, à s'agglomérer entre elles. Ces interactions ont pour conséquence néfaste de limiter la dispersion de la charge et donc les propriétés de renforcement à un niveau sensiblement inférieur à celui qu'il serait théoriquement possible d'atteindre si toutes les liaisons (charge inorganique/élastomère) susceptibles d'être créées pendant l'opération de mélangeage, étaient effectivement obtenues ; ces interactions tendent d'autre part à augmenter la consistance à l'état cru des compositions caoutchouteuses et donc à rendre leur mise en œuvre ("processabilité") plus difficile qu'en présence de noir de carbone.
Depuis que les économies de carburant et la nécessité de protéger l'environnement sont devenues une priorité, il s'est avéré cependant nécessaire de produire des pneumatiques ayant une résistance au roulement réduite, sans pénalisation de leur résistance à l'usure. Ceci a été rendu possible notamment grâce à la découverte de nouvelles compositions de caoutchouc renforcées de charges inorganiques spécifiques qualifiées de "renforçantes", capables de rivaliser du point de vue renforçant avec un noir de carbone conventionnel de grade pneumatique, tout en offrant à ces compositions une hystérèse plus faible, synonyme d'une plus basse résistance au roulement pour les pneumatiques les comportant.
De telles compositions de caoutchouc, comportant des charges inorganiques renforçantes du type siliceuses ou alumineuses, ont par exemple été décrites dans les brevets ou demandes de brevet EP-A-0501227 (ou US-A-5227425), EP-A-0735088 (ou US-A-5852099), EP-A- 0810258 (ou US-A-5900449), EP-A-0881252, WO99/02590, WO99/02601, WO99/02602, W099/28376, WO00/05300, WO00/05301. On citera en particulier les documents EP-A-0501227, EP-A-0735088 ou EP-A-0881252 qui divulguent des compositions de caoutchouc diénique renforcées de silices précipitées à haute dispersibilité, de telles compositions permettant de fabriquer des bandes de roulement ayant une résistance au roulement nettement améliorée, sans affecter les autres propriétés en particulier celles d'adhérence, d'endurance et de résistance à l'usure. De telles compositions présentant un tel compromis de propriétés contradictoires sont également décrites dans les demandes EP-A-0810258 et W099/28376, avec à titre de charges inorganiques renforçantes des charges alumineuses (alumines ou (oxyde)hydroxydes d'aluminium) spécifiques à dispersibilité élevée, ou encore dans les demandes WO00/73372 et WO00/73373 décrivant des oxydes de titane spécifiques du type renforçants.
L'utilisation de ces charges inorganiques spécifiques, hautement dispersibles, à titre de charge renforçante majoritaire ou non, a certes réduit les difficultés de mise en œuvre des compositions de caoutchouc les contenant, mais cette mise en œuvre reste néanmoins plus difficile que pour les compositions de caoutchouc chargées conventionnellement de noir de carbone.
En particulier, il est nécessaire d'utiliser un agent de couplage, encore appelé agent de liaison, qui a pour fonction d'assurer la liaison entre la surface des particules de charge inorganique et l'élastomère, tout en facilitant la dispersion de cette charge inorganique au sein de la matrice élastomérique.
On rappelle ici que par "agent de couplage" (charge inorganique/élastomère), on doit entendre, de manière connue, un agent apte à établir une liaison suffisante, de nature chimique et/ou physique, entre la charge inorganique et l'élastomère diénique ; un tel agent de couplage, au moins bifonctionnel, a par exemple comme formule générale simplifiée "Y-W-X", dans laquelle:
- Y représente un groupe fonctionnel (fonction "Y") qui est capable de se lier physiquement et/ou chimiquement à la charge inorganique, une telle liaison pouvant être établie, par exemple, entre un atome de silicium de l'agent de couplage et les groupes hydroxyle (OH) de surface de la charge inorganique (par exemple les silanols de surface lorsqu'il s'agit de silice);
- X représente un groupe fonctionnel (fonction "X") capable de se lier physiquement et/ou chimiquement à l'élastomère diénique, par exemple par l'intermédiaire d'un atome de soufre; - W représente un groupe divalent permettant de relier Y et X. Les agents de couplage ne doivent en particulier pas être confondus avec de simples agents de recouvrement de charge inorganique qui, de manière connue, peuvent comporter la fonction Y active vis-à-vis de la charge inorganique mais sont dépourvus de la fonction X active vis-à-vis de l'élastomère diénique.
Des agents de couplage, notamment (silice/élastomère diénique), ont été décrits dans un grand nombre de documents, les plus connus étant des organosilanes bifonctionnels porteurs d'au moins une fonction alkoxyle à titre de fonction Y, et, à titre de fonction X, d'au moins une fonction capable de réagir avec l'élastomère diénique telle que par exemple une fonction soufrée (i.e., comportant du soufre).
La demanderesse dans son brevet EP 1 326871 a décrit de nouveaux agents de couplage hydroxysilanes susceptibles de pallier les inconvénients des agents de couplage mercaptosilanes tels que décrits dans les publications FR-A-2094859 ou GB-A-1310379, qui entraînent, pour les compositions les incluant, des problèmes de vulcanisation prématurée encore appelée "grillage" ("scorching"), et de viscosité à l'état cru excessive. Ces nouveaux agents de couplage hydroxysilanes permettent également de pallier les inconvénients des agents de couplage alkoxysilanes polysulfurés tels que décrits notamment dans les publications EP-A- 1043357, WO00/53671 en particulier le TESPT (tétrasulfure de bis 3-triéthoxysilylpropyle) qui règlent les inconvénient précités, mais présentent toutefois l'inconvénient de ralentir de manière sensible la cinétique de vulcanisation des compositions de caoutchouc les contenant, par rapport à celle des compositions conventionnelles renforcées par du noir de carbone.
La demanderesse a donc poursuivi ces recherches et après de nombreuses années de recherche, a découvert qu'une fonctionnalisation particulière de l'agent de couplage permettait de conserver les propriétés en composition de caoutchouc obtenues avec la 1ère génération d'agents de couplage hydroxysilanes précités mais également, de façon surprenante, que ces nouveaux agents de couplage permettaient d'améliorer les propriétés de renforcement et de rigidité conférées à des compositions de caoutchouc les incluant.
Avantageusement ces propriétés améliorées le sont également en l'absence d'oxyde de zinc que l'on souhaite, pour des raisons environnementales, diminuer voire supprimer.
L'invention a donc pour objet une composition élastomérique à base d'au moins un élastomère diénique, une charge inorganique à titre de charge renforçante, un polysulfure de monohydroxysilane à titre d'agent de couplage un, de formule (I):
(HO)(R1)2Si - CH2 - (R2)CH-Z- Sx - Z - HC((R2) - CFL-Si^MOH)
(I) dans laquelle : - R1, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 18 atomes de carbone;
- R2, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 4 atomes de carbone ;
- Z, identiques ou différents, représentent chacun un groupe de liaison hydrocarboné divalent comportant de 1 à 16 atomes de carbone ;
x est un nombre entier ou fractionnaire supérieur ou égal à 2.
Selon une caractéristique avantageuse de l'invention, les groupes R1 sont choisis parmi les alkyles en Ci-C6, les cycloalkyles en C5-C8 et le radical phényle; les groupes Z étant choisis parmi les alkylènes en Ci-Ci6 et les arylènes en C6-Ci2 et de préférence, les groupes R1 sont choisis parmi les alkyles en C1-C3 et les groupes Z étant choisis parmi les alkylènes en C1-C3.
De préférence, le polysulfure de monohydroxysilane répond à la formule (Me = méthyle)
(HO)(Me)2Si -CH2- (Me)CH - Z - Sx - Z - HC(Me) -CH2- Si(Me)2(OH)
Plus préférentiellement, les groupes Z sont choisis parmi méthylène et éthylène et encore plus préférentiellement l'agent de couplage consiste en un polysulfure de bis(2-methylpropane-l,3- diyl)(diméthylsilano 1) .
Selon un mode de réalisation préféré de l'invention, x est compris dans un domaine allant de 2 à 4.
Selon une autre caractéristique préférée de l'invention, l'élastomère diénique est choisi dans le groupe constitué par les polybutadiènes, le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères.
De préférence, les copolymères de butadiène et ceux d'isoprène sont choisis parmi les copolymères de butadiène-styrène, les copolymères de butadiène-isoprène, les copolymères d'isoprène-styrène, les copolymères de butadiène-acrylonitrile, les copolymères de butadiène- styrène-isoprène et les mélanges de ces copolymères.
L'invention a également pour objet une bande de roulement, un article fini ou semi-fini et un pneumatique comportant une composition telle que décrite précédemment.
I. MESURES ET TESTS UTILISES
Les compositions de caoutchouc sont caractérisées avant et après cuisson, comme indiqué ci- après.
Essais de traction Ces essais permettent de déterminer les contraintes d'élasticité et les propriétés à la rupture. Sauf indication différente, ils sont effectués conformément à la norme française NF T 46-002 de septembre 1988. On mesure en seconde élongation (i.e. après un cycle d'accommodation au taux d'extension prévu pour la mesure elle-même) les modules sécants nominaux (ou contraintes apparentes, en MPa) à 10% d'allongement (noté M 10), 100% d'allongement (noté M100) et 300% d'allongement (noté M300). On mesure également les contraintes à la rupture (en MPa) et les allongements à la rupture (en %). Toutes ces mesures de traction sont effectuées dans les conditions normales de température et d'hygrométrie selon la norme française NF T 40-101 (décembre 1979).
II. DESCRITION DETAILLEE DE L'INVENTION
Les compositions de caoutchouc selon l'invention sont-à base d'au moins un élastomère diénique, une charge inorganique à titre de charge renforçante, un polysulfure de monohydroxysilane à titre d'agent de couplage, de formule (I):
(HO)(R1)2Si - CH2 - (R2)CH-Z- Sx - Z - HC((R2) -
Figure imgf000006_0001
(I)
dans laquelle :
- R1, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 18 atomes de carbone;
- R2, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 4 atomes de carbone ;
- Z, identiques ou différents, représentent chacun un groupe de liaison hydrocarboné divalent comportant de 1 à 16 atomes de carbone ;
x est un nombre entier ou fractionnaire supérieur ou égal à 2.
Par l'expression composition "à base de", il faut entendre une composition comportant le mélange et/ou le produit de réaction des différents constituants utilisés, certains de ces constituants de base étant susceptibles de, ou destinés à, réagir entre eux, au moins en partie, lors des différentes phases de fabrication de la composition, en particulier au cours de sa réticulation ou vulcanisation.
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des pourcentages (%) en masse. D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b). On notera que les composés mentionnés ci-dessous et entrant dans la préparation de compositions de caoutchouc peuvent être d'origine fossile ou biosourcés. Dans ce dernier cas, ils peuvent être, partiellement ou totalement, issus de la biomasse ou obtenus à partir de matières premières renouvelables issues de la biomasse. Sont concernés notamment les polymères, les plastifiants, les charges....
Elastomère diénique
La composition conforme à l'invention comprend au moins un élastomère diénique.
Par élastomère (ou indistinctement caoutchouc) "diénique", qu'il soit naturel ou synthétique, doit être compris de manière connue un élastomère constitué au moins en partie (i.e., un homopolymère ou un copolymère) d'unités monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
Ces élastomères diéniques peuvent être classés dans deux catégories : "essentiellement insaturés" ou "essentiellement saturés". On entend en général par "essentiellement insaturé", un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles) ; c'est ainsi que des élastomères diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d'alpha-oléfines type EPDM n'entrent pas dans la définition précédente et peuvent être notamment qualifiés d'élastomères diéniques "essentiellement saturés" (taux de motifs d'origine diénique faible ou très faible, toujours inférieur à 15%). Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%>.
Ces définitions étant données, on entend plus particulièrement par élastomère diénique susceptible d'être utilisé dans les compositions conformes à l'invention:
(a)- tout homopolymère d'un monomère diène conjugué, notamment tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant de 4 à 12 atomes de carbone;
(b) - tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinyle aromatique ayant de 8 à 20 atomes de carbone;
(c) - un copolymère ternaire obtenu par copolymérisation d'éthylène, d'une α-oléfine ayant 3 à 6 atomes de carbone avec un monomère diène non conjugué ayant de 6 à 12 atomes de carbone, comme par exemple les élastomères obtenus à partir d'éthylène, de propylène avec un monomère diène non conjugué du type précité tel que notamment l'hexadiène-1,4, l'éthylidène norbornène, le dicyclopentadiène;
(d) - un copolymère d'isobutène et d'isoprène (caoutchouc butyle), ainsi que les versions halogénées, en particulier chlorées ou bromées, de ce type de copolymère. Bien qu'elle s'applique à tout type d'élastomère diénique, l'homme du métier du pneumatique comprendra que la présente invention est de préférence mise en œuvre avec des élastomères diéniques essentiellement insaturés, en particulier du type (a) ou (b) ci-dessus. A titre de diènes conjugués conviennent notamment le butadiène-1,3, le 2-méthyl-l,3- butadiène, les 2,3-di(alkyle en Cl-C5)-l,3-butadiènes tels que par exemple le 2,3-diméthyl-l,3- butadiène, le 2,3-diéthyl-l,3-butadiène, le 2-méthyl-3-éthyl-l,3-butadiène, le 2-méthyl-3- isopropyl-l,3-butadiène, un aryl-l,3-butadiène, le 1,3-pentadiène, le 2,4-hexadiène. A titre de composés vinylaromatique conviennent par exemple le styrène, l'ortho-, méta-, para- méthylstyrène, le mélange commercial "vinyle-toluène", le para-tertiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène.
Les copolymères peuvent contenir entre 99% et 20%> en poids d'unités diéniques et entre 1% et 80%) en poids d'unités vinylaromatique. Les élastomères peuvent avoir toute microstructure qui est fonction des conditions de polymérisation utilisées, notamment de la présence ou non d'un agent modifiant et/ou randomisant et des quantités d'agent modifiant et/ou randomisant employées. Les élastomères peuvent être par exemple à blocs, statistiques, séquencés, microséquencés, et être préparés en dispersion ou en solution ; ils peuvent être couplés et/ou étoilés ou encore fonctionnalisés avec un agent de couplage et/ou d'étoilage ou de fonctionnalisation. Pour un couplage à du noir de carbone, on peut citer par exemple des groupes fonctionnels comprenant une liaison C-Sn ou des groupes fonctionnels aminés tels que aminobenzophénone par exemple ; pour un couplage à une charge inorganique renforçante telle que silice, on peut citer par exemple des groupes fonctionnels silanol ou polysiloxane ayant une extrémité silanol (tels que décrits par exemple dans FR 2 740 778 ou US 6 013 718, et WO 2008/141702), des groupes alkoxysilane (tels que décrits par exemple dans FR 2 765 882 ou US 5 977 238), des groupes carboxyliques (tels que décrits par exemple dans WO 01/92402 ou US 6 815 473, WO 2004/096865 ou US 2006/0089445) ou encore des groupes polyéthers (tels que décrits par exemple dans EP 1 127 909 ou US 6 503 973, WO 2009/000750 et WO 2009/000752).
On peut aussi citer comme élastomères fonctionnels ceux préparés par l'utilisation d'un amorceur fonctionnel, notamment ceux portant une fonction aminé ou étain (voir par exemple WO 2010072761).
Comme autres exemples d'élastomères fonctionnalisés, on peut citer également des élastomères (tels que SBR, BR, NR ou IR) du type époxydés.
Conviennent les polybutadiènes et en particulier ceux ayant une teneur (% molaire) en unités - 1,2 comprise entre 4% et 80%> ou ceux ayant une teneur (% molaire) en cis-1,4 supérieure à 80%), les polyisoprènes, les copolymères de butadiène-styrène et en particulier ceux ayant une Tg (température de transition vitreuse (Tg, mesurée selon ASTM D3418) comprise entre 0°C et - 70°C et plus particulièrement entre - 10°C et - 60°C, une teneur en styrène comprise entre 5%> et 60%o en poids et plus particulièrement entre 20%> et 50%>, une teneur (% molaire) en liaisons -1,2 de la partie butadiénique comprise entre 4% et 75%, une teneur (% molaire) en liaisons trans- 1,4 comprise entre 10% et 80%>, les copolymères de butadiène-isoprène et notamment ceux ayant une teneur en isoprène comprise entre 5% et 90% en poids et une Tg de - 40°C à - 80°C, les copolymères isoprène-styrène et notamment ceux ayant une teneur en styrène comprise entre 5% et 50%> en poids et une Tg comprise entre - 5 C et - 50°C. Dans le cas des copolymères de butadiène-styrène-isoprène conviennent notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 10%) et 40%), une teneur en isoprène comprise entre 15% et 60%> en poids et plus particulièrement entre 20% et 50%, une teneur en butadiène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 20%> et 40%>, une teneur (% molaire) en unités - 1,2 de la partie butadiénique comprise entre 4% et 85%, une teneur (% molaire) en unités trans -1,4 de la partie butadiénique comprise entre 6% et 80%, une teneur (% molaire) en unités -1,2 plus -3,4 de la partie isoprénique comprise entre 5% et 70% et une teneur (% molaire) en unités trans -1,4 de la partie isoprénique comprise entre 10% et 50%, et plus généralement tout copolymère butadiène-styrène-isoprène ayant une Tg comprise entre - 5°C et - 70°C.
En résumé, le ou les élastomères diéniques de la composition selon l'invention sont choisis préférentiellement dans le groupe des élastomères diéniques fortement insaturés constitué par les polybutadiènes (en abrégé "BR"), les polyisoprènes (IR) de synthèse, le caoutchouc naturel (NR), les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène-styrène (SBR), les copolymères d'isoprène-butadiène (BIR), les copolymères d'isoprène-styrène (SIR) et les copolymères d'isoprène-butadiène-styrène (SBIR). Selon un mode de réalisation particulier, l'élastomère diénique est un élastomère isoprénique. Par "élastomère isoprénique", on entend de manière connue un homopolymère ou un copolymère d'isoprène, en d'autres termes un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères d'isoprène et les mélanges de ces élastomères. Parmi les copolymères d'isoprène, on citera en particulier les copolymères d'isobutène-isoprène (caoutchouc butyle - IIR), d'isoprène-styrène (SIR), d'isoprène-butadiène (BIR) ou d'isoprène-butadiène-styrène (SBIR). Cet élastomère isoprénique est de préférence du caoutchouc naturel ou un polyisoprène cis-1,4 de synthèse; parmi ces polyisoprènes de synthèse, sont utilisés de préférence des polyisoprènes ayant un taux (% molaire) de liaisons cis-1,4 supérieur à 90%, plus préférentiellement encore supérieur à 98%.
Avantageusement il est constitué par du caoutchouc naturel et est utilisé en coupage avec un ou plusieurs élastomères choisis par le groupe constitué par les polybutadiènes, les polyisoprènes synthétiques, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères. Selon une variante de réalisation de l'invention le caoutchouc naturel est majoritaire (pour plus de 50 pce) un élastomère isoprénique ; selon une autre variante de réalisation, le caoutchouc naturel est le seul élastomère de la composition. Selon un autre mode de réalisation de l'invention, Γ élastomère diénique est constitué par un SBR, utilisé majoritairement ou non, et éventuellement en coupage avec un ou plusieurs élastomères choisis par le groupe constitué par les polybutadiènes, les polyisoprènes synthétiques, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères.
Selon une variante de réalisation de l'invention, le SBR est le seul élastomère de la composition.
La composition selon l'invention peut contenir un seul élastomère diénique ou un mélange de plusieurs élastomères diéniques, le ou les élastomères diéniques pouvant être utilisés en association avec tout type d'élastomère synthétique autre que diénique, voire avec des polymères autres que des élastomères, par exemple des polymères thermoplastiques.
Charge inorganique renforçante Par "charge inorganique renforçante", doit être entendu ici, de manière connue, toute charge inorganique ou minérale, quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge "blanche", charge "claire" ou encore charge "non-noire" ("non-black filler") par opposition au noir de carbone, cette charge inorganique étant capable de renforcer à elle seule, sans autre moyen qu'un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication d'une bande de roulement de pneumatiques, en d'autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique, en particulier pour bande de roulement ; une telle charge se caractérise généralement, de manière connue, par la présence de groupes hydroxyle (-OH) à sa surface.
Préférentiellement, la charge inorganique renforçante est une charge du type siliceuse ou alumineuse, ou un mélange de ces deux types de charges.
La silice (Si02) utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m2/g, de préférence de 30 à 400 m2/g.
Les silices précipitées hautement dispersibles (dites "HDS") sont préférées, en particulier lorsque l'invention est mise en œuvre pour la fabrication de pneumatiques présentant une faible résistance au roulement ; comme exemples de telles silices, on peut citer les silices « Ultrasil 7000 » de la société Evonik, les silices « Zeosil 1165 MP, 1135 MP, 1115 MP et Zeosil premium 200 MP » de la société Solvay, la silice « Hi-Sil EZ150G » de la société PPG, les silices « Zeopol 8715, 8745 ou 8755 » de la Société Huber. L'alumine (AI2O3) renforçante utilisée préférentiellement est une alumine hautement dispersible ayant une surface BET allant de 30 à 400 m2/g, plus préférentiellement entre 60 et 250 m2/g, une taille moyenne de particules au plus égale à 500 nm, plus préférentiellement au plus égale à 200 nm. Comme exemples non limitatifs de telles alumines renforçantes, on peut citer notamment les alumines "Baikalox A125" ou "CR125" (société Baïkowski), "APA- 100RDX" (Condéa), "Aluminoxid C" (Evonik) ou "AKP-G015" (Sumitomo Chemicals).
A titre d'autres exemples de charge inorganique susceptible d'être utilisée dans les compositions de caoutchouc des bandes de roulement de l'invention peuvent être encore cités des (oxyde-)hydroxydes d'aluminium, des alumino silicates, des oxydes de titane, des carbures ou nitrures de silicium, tous du type renforçants tels que décrits par exemple dans les demandes WO 99/28376, WO 00/73372, WO 02/053634, WO 2004/003067, WO 2004/056915. L'état physique sous lequel se présente la charge inorganique renforçante est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, de billes ou toute autre forme densifïée appropriée. Bien entendu on entend également par charge inorganique renforçante des mélanges de différentes charges inorganiques renforçantes, en particulier de charges siliceuses et/ou alumineuses hautement dispersibles telles que décrites ci-dessus.
L'homme du métier saura adapter le taux de charge inorganique renforçante selon la nature de la charge inorganique utilisée et selon le type de pneumatique concerné, par exemple pneumatique pour moto, pour véhicule de tourisme ou encore pour véhicule utilitaire tel que camionnette ou Poids lourd. De préférence, ce taux de charge inorganique renforçante sera choisi compris entre 10 et 200 pce, plus préférentiellement entre 30 et 150 pce, en particulier supérieur à 50 pce, et plus préférentiellement encore compris entre 60 et 140 pce.
Dans le présent exposé, la surface spécifique BET est déterminée de manière connue par adsorption de gaz à l'aide de la méthode de Brunauer-Emmett-Teller décrite dans "The Journal of the American Chemical Society" Vol. 60, page 309, février 1938, plus précisément selon la norme française NF ISO 9277 de décembre 1996 (méthode volumétrique multipoints (5 points) - gaz: azote - dégazage: lheure à 160°C - domaine de pression relative p/po : 0.05 à 0.17). La surface spécifique CTAB est la surface externe déterminée selon la norme française NF T 45-007 de novembre 1987 (méthode B).
Enfin, l'homme du métier comprendra qu'à titre de charge équivalente de la charge inorganique renforçante décrite dans le présent paragraphe, pourrait être utilisée une charge renforçante d'une autre nature, notamment organique, dès lors que cette charge renforçante serait recouverte d'une couche inorganique telle que silice, ou bien comporterait à sa surface des sites fonctionnels, notamment hydroxyles, nécessitant l'utilisation d'un agent de couplage pour établir la liaison entre la charge et l'élastomère. Comme exemples de telles charges organiques, on peut citer les charges organiques de polyvinylaromatique fonctionnalisé telles que décrites dans les demandes WO 2006/069792 et WO 2006/069793.
La charge inorganique renforçante peut être utilisée également associée à une charge renforçante organique, en particulier du noir de carbone, par exemple un noir du type HAF, ISAF, SAF, conventionnellement utilisé dans les pneumatiques et particulièrement dans les bandes de roulement des pneumatiques (par exemple noirs NI 15, N134, N234, N326, N330, N339, N347, N375, ou encore, selon les applications visées, les noirs de séries plus élevées, par exemple N660, N683, N772). Ces noirs de carbone peuvent être utilisés à l'état isolé, tels que disponibles commercialement, ou sous tout autre forme, par exemple comme support de certains des additifs de caoutchouterie utilisés. Les noirs de carbone pourraient être par exemple déjà incorporés à l'élastomère sous la forme d'un masterbatch (voir par exemple demandes WO 97/36724 ou WO 99/16600). La quantité de noir de carbone présente dans la charge renforçante totale peut varier dans de larges limites, elle est de préférence inférieure à celle de la charge inorganique renforçante. Avantageusement, on utilise du noir de carbone en très faible proportion, avec un taux compris entre 2 et 20 pce et dé préférence à un taux inférieur à 10 pce. Dans les intervalles indiqués, on bénéficie des propriétés colorantes (agent de pigmentation noire) et anti-UV des noirs de carbone, sans pénaliser par ailleurs les performances typiques apportées par la charge inorganique renforçante. Bien entendu, la composition de l'invention elle peut être totalement dépourvue de noir de carbone.
Agent de couplage
L'organosilane utilisé à titre d'agent de couplage selon l'invention est un polysulfure de monohydroxysilane, de formule (I):
(HO)(R1)2Si - CH2 - (R2)CH-Z- Sx - Z - HC((R2) - CFL-Si^MOH)
(I)
soit sous forme semi-développée :
Figure imgf000012_0001
(I)
dans laquelle :
- R1, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 18 atomes de carbone;
- R2, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 4 atomes de carbone, - Z, identiques ou différents, représentent chacun un groupe de liaison hydrocarboné divalent comportant de 1 à 16 atomes de carbone,
x est un nombre entier ou fractionnaire supérieur ou égal à 2.
De préférence les groupes R1 sont choisis parmi les alkyles en Ci-C6, les cycloalkyles en C5-C8 et le radical phényle; les groupes Z étant choisis parmi les alkylènes en Ci-Ci6 et les arylènes en C6-Ci2 ; et plus préférentiellement les groupes R1 sont choisis parmi les alkyles en C1-C3 et les groupes Z étant choisis parmi les alkylènes en C1-C3.
Selon une variante de réalisation préférentielle de l'invention, le polysulfure répond à la formule (Me = méthyle)
(HO)(Me)2Si - CH2 - (Me)CH - Z - Sx - Z - HC(Me) - CH2-Si(Me)2(OH)
De préférence, les groupes Z sont choisis parmi méthylène et éthylène.
Encore plus préférentiellement le polysulfure consiste en un polysulfure
methylpropane-l,3-diyl)(diméthylsilanol) de formule :
Figure imgf000013_0001
Les hydroxysilanes polysulfurés synthétisés sont en fait des mélanges de polysulfures (par exemple de x=2 à x=9), avec par conséquent une valeur moyenne pour x qui est différente d'une valeur entière. La valeur moyenne visée pour x est préférentiellement dans un domaine allant de 2 à 6, plus préférentiellement dans un domaine allant de 2 à 4.
Le polysulfure de monohydroxysilane de formule (I) peut être obtenu par un procédé comportant les étapes suivantes:
• on conduite une hydrosilylation (schéma 1 ci-dessous) d'un alcène de formule
R2-C(CH2)Z-Hal par un hydrogénosilane de formule générale Ha^R^Si-H (où Hal = halogène) pour conduire à un organosilane halogéné (ci-après produit A) de formule: Hal - (R^Si -CH2- (R2)CH-Z- Hal
Figure imgf000014_0001
Schéma 1 avec R1, R2 et Z tels que définis précédemment ;
• on conduit, dans un solvant organique inerte, une hydrolyse par action d'un donneur d'hydroxyles, sur le produit (A) en présence, d'une base organique ou minérale pour piéger l'halogénure d'acide formé, le donneur d'hydroxyles étant de l'eau (schéma 2), pour obtenir un monohydroxysilane (produit C) de formule :
HO - (R^Si -CH2- (R2)CH-Z- Hal
Figure imgf000014_0002
Schéma 2 avec R1, R2 et Z tels que définis précédemment
• on conduit finalement une étape de sulfuration sur le produit C (schéma 3), par action d'un polysulfure, pour aboutir au produit de formule (I) visé.
Figure imgf000014_0003
(C) (i) Schéma 3 avec R1, R2 , Z et x tels que définis précédemment ;
Avantageusement, Hal est le chlore.
De préférence, la base organique destinée à piéger l'halogénure d'acide formé est une aminé tertiaire.
Selon une variante de réalisation du procédé, le donneur d'hydroxyles est utilisé en excès par rapport à la quantité de produit A.
Avantageusement, le polysulfure est un polysulfure (x > 2) d'ammonium ou métallique, de formule MnSx ou M'SX (M = métal alcalin ou NH4 ; M' = Zn ou métal alcalino -terreux).
De préférence, il s'agit d'un polysulfure de sodium Na2Sx, de préférence généré par action de soufre sur Na2S.
Plus préférentiellement encore, l'étape de sulfuration est conduite en phase aqueuse ou dans un milieu biphasique eau/solvant organique, en présence d'un catalyseur de transfert de phase et d'un sel de formule M"Hal ou M"2S04 (M" choisi parmi Li, Na et K ; Hal choisi parmi F, Cl et Br).
Avantageusement, la quantité de polysulfure de monohydroxysilane de formule (I) étant comprise entre 1 et 20 pce.
Cet agent de couplage peut être utilisé seul ou en mélange avec un autre agent de couplage, la quantité totale d'agent de couplage dans la composition étant comprise entre 1 et 20 pce.
Système de réticulation Le système de réticulation est préférentiellement un système de vulcanisation, c'est-à-dire un système à base de soufre (ou d'un agent donneur de soufre) et d'un accélérateur primaire de vulcanisation. A ce système de vulcanisation de base viennent s'ajouter, incorporés au cours de la première phase non-productive et/ou au cours de la phase productive telles que décrites ultérieurement, divers accélérateurs secondaires ou activateurs de vulcanisation connus tels qu'oxyde de zinc, acide stéarique ou composés équivalents, dérivés guanidiques (en particulier diphénylguanidine) .
Le soufre est utilisé à un taux préférentiel compris entre 0,5 et 12 pce, en particulier entre 1 et 10 pce. L'accélérateur primaire de vulcanisation est utilisé à un taux préférentiel compris entre 0,5 et 10 pce, plus préférentiellement compris entre 0,5 et 5,0 pce.
On peut utiliser comme accélérateur (primaire ou secondaire) tout composé susceptible d'agir comme accélérateur de vulcanisation des élastomères diéniques en présence de soufre, notamment des accélérateurs du type thiazoles ainsi que leurs dérivés, des accélérateurs de types thiurames, dithiocarbamates de zinc. Ces accélérateurs sont par exemple choisis dans le groupe constitué par disulfure de 2-mercaptobenzothiazyle (en abrégé "MBTS"), disulfure de tetrabenzylthiurame ("TBZTD"), N-cyclohexyl-2-benzothiazyle sulfénamide ("CBS"), N,N- dicyclohexyl-2-benzothiazyle sulfénamide ("DCBS"), N-ter-butyl-2-benzothiazyle sulfénamide ("TBBS"), N-ter-butyl-2-benzothiazyle sulfénimide ("TBSI"), dibenzyldithiocarbamate de zinc ("ZBEC") et les mélanges de ces composés.
Selon une variante préférentielle de réalisation de l'invention, parmi les accélérateurs secondaires ou activateurs de vulcanisation utilisés, sont exclus le zinc et de tout dérivé de zinc tel que ZnO, ou ils peuvent être utilisés dans le respect des 0,5 pce maximum de zinc dans la composition, et de préférence moins de 0,3 pce.
Additifs divers
Les compositions de caoutchouc conformes à l'invention peuvent comporter également tout ou partie des additifs usuels habituellement utilisés dans les compositions d'élastomères destinées à la fabrication de pneumatiques, en particulier de bandes de roulement, comme par exemple des plastifiants ou des huiles d'extension, que ces derniers soient de nature aromatique ou non- aromatique, des pigments, des agents de protection tels que cires anti-ozone, anti-ozonants chimiques, anti-oxydants, des agents anti-fatigue, des résines renforçantes, des accepteurs (par exemple résine phénolique novolaque) ou des donneurs de méthylène (par exemple HMT ou H3M) tels que décrits par exemple dans la demande WO 02/10269, un système de réticulation à base soit de soufre, soit de donneurs de soufre et/ou de peroxyde et/ou de bismaléimides, des accélérateurs de vulcanisation, des activateurs de vulcanisation.
En particulier, les compositions de caoutchouc peuvent comprendre des résines dites plastifiantes correspondant, par définition ici, à des composés qui sont solides à température ambiante (23°C) (par opposition à un composé plastifiant liquide tel qu'une huile).
Les résines hydrocarbonées sont des polymères bien connus de l'homme du métier, miscibles par nature dans les compositions d'élastomère(s) diénique(s) lorsqu'elles sont qualifiées en outre de "plastifiantes". Elles ont été décrites par exemple dans l'ouvrage intitulé "Hydrocarbon Resins" de R. Mildenberg, M. Zander et G. Collin (New York, VCH, 1997, ISBN 3-527-28617-9) dont le chapitre 5 est consacré à leurs applications, notamment en caoutchouterie pneumatique (5.5. "Rubber Tires and Mechanical Goods"). Elles peuvent être aliphatiques, aromatiques ou encore du type aliphatique/aromatique c'est-à-dire à base de monomères aliphatiques et/ou aromatiques. Elles peuvent être naturelles ou synthétiques, à base ou non de pétrole (si tel est le cas, connues aussi sous le nom de résines de pétrole). Elles sont préférentiellement exclusivement hydrocarbonées, c'est-à-dire qu'elles ne comportent que des atomes de carbone et d'hydrogène. Le point de ramollissement est mesuré selon la norme ISO 4625 (méthode "Ring and Bail"). La température de transition vitreuse Tg est mesurée de manière connue par DSC {Differential Scanning Calorimetry), selon la norme ASTM D3418 (1999). La macrostructure (Mw, Mn et Ip) de la résine hydrocarbonée est déterminée par chromatographie d'exclusion stérique (SEC) : solvant tétrahydrofurane ; température 35°C ; concentration 1 g/1 ; débit 1 ml/min ; solution filtrée sur filtre de porosité 0,45 μιη avant injection ; étalonnage de Moore avec des étalons de polystyrène ; jeu de 3 colonnes "WATERS" en série ("STYRAGEL" HR4E, HR1 et HR0.5) ; détection par réfractomètre différentiel ("WATERS 2410") et son logiciel d'exploitation associé ("WATERS EMPOWER").
Il est connu d'utiliser dans des compositions de caoutchouc pour pneumatiques des résines plastifiantes hydrocarbonées ayant au moins une quelconque des caractéristiques suivantes :
- une Tg supérieure à 20°C, plus préférentiellement supérieure à 30°C ;
- une masse moléculaire moyenne en nombre (Mn) comprise entre 400 et 2000 g/mol,
- un indice de polymolécularité (Ip) inférieur à 4, préférentiellement inférieur à 3 (rappel : Ip = Mw/Mn avec Mw masse moléculaire moyenne en poids).
Plus préférentiellement, cette résine plastifiante hydrocarbonée présente l'ensemble des caractéristiques préférentielles ci-dessus.
Il est également connu d'utiliser dans des compositions de caoutchouc pour pneumatiques des résines plastifiantes hydrocarbonées ayant au moins une quelconque des caractéristiques suivantes :
- une Tg comprise entre -40°C et 0°C, plus préférentiellement entre -30°C et 0°C et plus préférentiellement encore entre -20°C et 0°C ;
- une masse moléculaire moyenne en nombre (Mn) inférieure à 800 g/mol, de préférence inférieure à 600 g/mol et plus préférentiellement inférieure à 400 g/mol ;
- un point de ramollissement compris dans un domaine allant de 0 à 50°C, préférentiellement de 0 à 40°C, plus préférentiellement de 10 à 40°C, de préférence de 10 à 30°C ;
- un indice de polymolécularité (Ip) inférieur à 3, plus préférentiellement inférieur à 2 (rappel : Ip = Mw/Mn avec Mw masse moléculaire moyenne en poids).
[0077]
Plus préférentiellement, cette résine plastifiante hydrocarbonée de faible Tg présente l'ensemble des caractéristiques préférentielles ci-dessus.
Et en particulier, quel que soit le type de résines plastifiantes précités, il est connu de les choisir parmi le groupe constitué par les résines d'homopolymère ou copolymère de cyclopentadiène (en abrégé CPD) ou dicyclopentadiène (en abrégé DCPD), les résines d'homopolymère ou copolymère terpène, les résines d'homopolymère ou copolymère de coupe C5, et les mélanges de ces résines. De préférence, le taux de résines plastifiantes va de 10 à 90 pce.
A la charge renforçante précédemment décrite, peuvent être également ajoutées, en fonction de l'application visée, des charges inertes (i.e., non renforçantes) telles que particules d'argile, bentonite, talc, craie, kaolin avec un taux inférieur ou égal à 10 pce et préférentiellement inférieur ou égal à 5 pce.
Fabrication des compositions de caoutchouc
Les compositions de caoutchouc de l'invention sont fabriquées dans des mélangeurs appropriés, en utilisant deux phases de préparation successives selon une procédure générale bien connue de l'homme du métier : une première phase de travail ou malaxage thermo- mécanique (parfois qualifiée de phase "non-productive") à haute température, jusqu'à une température maximale comprise entre 130°C et 200°C, de préférence entre 145°C et 185°C, suivie d'une seconde phase de travail mécanique (parfois qualifiée de phase "productive") à plus basse température, typiquement inférieure à 120°C, par exemple entre 60°C et 100°C, phase de finition au cours de laquelle est incorporé le système de réticulation ou vulcanisation. On peut envisager une ou plusieurs étapes supplémentaires visant à préparer des mélanges maîtres d'élastomère et de charge renforçante, destinés à être introduits lors de la première phase de travail.
Les exemples qui suivent permettent d'illustrer l'invention, cette dernière ne saurait cependant être limitée à ces seuls exemples.
III- EXEMPLES DE REALISATION DE L'INVENTION Dans les exemples de réalisation qui suivent, l'invention est mise en œuvre avec un polysulfure de bis(2-methylpropane-l,3-diyl)(diméthylsilanol) de formule :
Figure imgf000018_0001
Produit A
Synthèse du disulfure de bis(2-methylpropane-l,3-diyl)(diméthylsilanol) (produit A) Etape 1 Dans un réacteur (2 litres) avec contrôle de température, agitation mécanique et condensation réfrigérée, l'heptane est introduit afin d'avoir le volume d'agitation. La température du milieu réactionnel est portée à 90°C. Une fois cette température atteinte, le catalyseur de Karsted est ajouté. Immédiatement après l'ajout du catalyseur, un pré-mélange de dimethylchlorosilane et de 3-chloro-2-methyl propène est ajouté au mileiu réactionnel via une ampoule de coulée. La vitesse d'addition du pré-mélange est ajustée en fonction de l'exothermicité du milieu réactionnel et de reflux. L'objectif est de maintenir le reflux aussi bas que possible et la température de réaction entre 85 et 95 °C.
Une fois l'addition terminée, le milieu réactionnel est agité pendant 30 minutes à 90°C (+/- 5°C). L'heptane et les matières premières n'ayant pas réagi sont séaprés par distillation.
Une distillation du brut réactionnel à 80°C sous une pression de 20 mm de mercure permet d'isoler le chloro(3-chloro-2-méthylpropyl)diméthylsilane avec un rendement de 97%. L'analyse RMN ne montre pas la présence de sous-produit. Etape 2
Le (3-chloro-2-méthylpropyl)diméthylsilanol est synthétisé par hydrolyse du chloro(3-chloro- 2-méthylpropyl)diméthylsilane en présence de diméthyléthy lamine. Deux protocoles expérimentaux peuvent être appliqués
- en utilisant l'éther comme solvant (75% massique de la quantité totale introduite) avec 6 moles d'eau et 5 moles de diméthyléthylamine pour une mole de chlorosilane,
- ou en utilisant le toluène comme solvant (45% massique de la quantité totale introduite) avec 3 moles d'eau et 2 moles de diméthyléthylamine pour une mole de chlorosilane.
Les deux protocoles sont réalisés à une température de 0 °C. Le chlorosilane est ajouté goutte à goutte (durée totale d'addition environ 4 heures). Puis, la phase aqueuse est éliminée et la phase organique est concentrée sous pression réduite à 30 °C.
Le (3-chloro-2-méthylpropyl)diméthylsilanol est obtenu avec un rednement quantitatif . La quantité de disiloxane, sous-produit résultatnt de la condensation du (3-chloro-2- méthylpropyl)diméthylsilanol est comprise entre 1 et 3 %mol par rapport au taux de silanol. Étape 3
A un mélange biphasique d'eau, de toluène, d'un agent de transfert de phase et de sels de polysulfures agité pendant 90 minutes entre 80 et 85 °C, est ajoutée goutte à goutte du (3- chloro-2-méthylpropyl)diméthylsilanol en solution dans le toluène (environ 15%).
- Les sels de polysulfures sont pré-formés par réaction d'un mélange de soufre, de chlorure de sodium et de sulfure de sodium.
La distribution de soufre dans le produit final peut être modifiée en changeant la proportion de soufre vis-à-vis du silanol dans cette réaction. Les proportions utilisées ici sont 1,33 moles de soufre pour 1 mole silanol, afin d'obtenir une longueur moyenne de chaîne de x= 2 atomes de soufre (produit A). On notera ici que pour réaliser la synthèse d'un tétrasulfure de bis(2-methylpropane-l,3- diyl)(diméthylsilanol) de formule :
Figure imgf000020_0001
il suffit de modifier la quantité de soufre introduite.
La quantité de sulfure de sodium utilisée en ratios molaires par rapport au soufre peut donc varier de 5 à 0,5.
Le chlorure de sodium est ajouté dans des taux compris entre 2,3 et 4,3 moles de NaCl pour chaque mole de silanol. l'agent de transfert de phase peut être un sel quaternaire ajouté juste avant commencer l'ajout du silanol. On peut citer notamment comme sel quaternaire :
- le bromure de tétrabutyl ammonium (au minimum 3%mol),
- le chlorure de tétrabutyl ammonium (au minimum l,6%mol),
- le chlorure de tetrabutylphosphonium (au minimum 1 ,6%mol),
Il est à noter que si ces quantités de catalyseurs de transfert de phase sont augmentées, alors la quantité de sous-produits asymétriques résultants de la réaction des groupements butyl provenant des catalyseurs, augmentera de manière désavantageuse.
Les proportions testées s'étendent de 0,8 à 5 % du poids de réactifs. La réaction a été suivie par chromatographie gazeuse, et considérée comme terminée quand tout le silanol a été consommé.
La dilution du produit est comprise entre 10 et 15 % en toluène. La quantité de l'eau utilisée dans les sels est également dans cette plage de valeurs. La phase aqueuse est éliminée et le produit contenu dans la phase organique est concentré sous vide à une température inférieure à 35°C .
Les produits finaux sont caractérisés par RMN. Ceci montre la quantité de composés asymétriques formés (dérivés principalement de la réaction du silanol avec le catalyseur) et la quantité de sulfïdosilanol poly condensés.
Le contenu des composés asymétriques peut être réduit en lavant le produit avec de l'hexane. Les composés asymétriques sont préférentiellement solubles dans l'hexane, mais une partie du produit est également soluble dans l'hexane, ce qui fait baisser le rendement de la réaction. Ce produit est donc constitué d'une distribution de polysulfures dont la valeur moyenne des x est proche de 2.
Synthèse du bis-(propyldiméthylsilanol), (produit B), de formule :
Figure imgf000021_0001
Ce produit est synthétisé conformément à la description du brevet EP 1 326 914, paragraphes [0108] à [0128].
Préparation des compositions de caoutchouc
On procède pour les essais qui suivent de la manière suivante: on introduit dans un mélangeur interne, rempli à 70% et dont la température initiale de cuve est d'environ 60°C, l'élastomère diénique (ou le mélange d'élastomères diéniques, le cas échéant), la charge renforçante, l'agent de couplage, puis les divers autres ingrédients à l'exception du système de vulcanisation. On conduit alors un travail thermomécanique (phase non-productive) en une ou deux étapes (durée totale du malaxage égale à environ 7 min), jusqu'à atteindre une température maximale de "tombée" d'environ 165°C. On récupère le mélange ainsi obtenu, on le refroidit puis on ajoute soufre et accélérateur sulfénamide sur un mélangeur externe (homo-finisseur) à 30°C, en mélangeant le tout (phase productive) pendant 3 à 4 minutes.
Les compositions ainsi obtenues sont ensuite calandrées sous la forme de plaques (épaisseur de 2 à 3 mm) ou de feuilles fines de caoutchouc pour la mesure de leurs propriétés physiques ou mécaniques, ou extrudées pour former des profilés utilisables directement, après découpage et/ou assemblage aux dimensions souhaitées, par exemple comme produits semi-finis pour pneumatiques, en particulier comme bandes de roulement de pneumatiques.
Essai 1
Cet essai a pour but de démontrer les performances améliorées d'une composition conforme à l'invention, comparée à une composition conventionnelle utilisant du TESPT, ainsi qu'à une composition utilisant un agent de couplage conforme au document EP 1 326 914.
On prépare ainsi trois compositions conformément au procédé explicité au paragraphe précédent, à base de SBR, renforcées majoritairement de silice, qui se distinguent les unes des autres par la nature de leur agent de couplage, ces agents de couplage étant utilisés à un taux isomolaire en silicium, comme suit :
- la composition témoin Cl conventionnelle, non conforme à l'invention, comprend à titre d'agent de couplage du TESPT,
- la composition témoin C2, non conforme à l'invention, comprend à titre d'agent de couplage le produit B,
- la composition C3 conforme à l'invention comprend à titre d'agent de couplage le produit A. On rappelle que le TESPT est le tétrasulfure de bis(3-triéthoxysilylpropyl), de formule [(C2H50)3Si(CH2)3S2]2 ; il est commercialisé par exemple par la société Evonik sous la dénomination "Si69" (ou "X50S" lorsqu'il est supporté à 50% en poids sur du noir de carbone), ou encore par la société Witco sous la dénomination "Silquest A1289" (dans les deux cas, mélange commercial de polysulfures Sx avec une valeur moyenne pour x qui est proche de 4).
La formule développée du TESPT est:
Figure imgf000022_0001
Les tableaux 1 et 2 donnent respectivement la formulation des trois compositions (taux des différents produits exprimés en pce, et leurs propriétés après cuisson (environ 30 min à 150°C).
Au vu du tableau 2, on constate de façon surprenante que la composition C3 conforme à l'invention présente de propriété de rigidité significativement améliorées par rapport aux deux compositions témoins Cl et C2 à toutes les déformations ainsi que des propriétés en contrainte à la rupture nettement améliorés par rapport à la composition témoin conventionnelle Cl et identique à la composition C2.
Tableau 1
Figure imgf000023_0001
(1) SBR avec 27% de motif styrène et 24% de motif 1,2 de la partie butadiénique (Tg = - 48°C) porteur d'une fonction silanol en extrémité de chaîne élastomère, et comportant minoritairement en poids, des chaînes de même microstructure mais étoilées Sn ;
(2) noir de carbone N234 commercialisé par la société Cabot Corporation
(3) silice type "HD" - "Zeosil 1165MP" de la société Solvay ;
(4) TESPT ("Si69" de la société EVONIK);
(5) produit B (bis-(propyldiméthylsilanol) à 90%mol) ;
(6) produit A (bis(2-methylpropane- 1 ,3-diyl)(diméthylsilanol) à 77%mol) ;
(7) résine coupe C5/C9 (« Résine THER 8644 » de la société Cray Valley) ;
(8) huile de tournesol, Lubrirob TOD 1880 de la société Novance
(9) diphénylguanidine ("Vulcacit D" de la société Bayer);
(10) N- 1 ,3 -diméthylbutyl-N-phényl-para-phénylènediamine
("Santoflex 6-PPD" de la société Flexsys);
(11) N-cyclohexyl-2-benzothiazyl-sulfénamide ("Santocure CBS" de la société Flexsys).
* Les taux de soufre ont été ajustés pour prendre en compte le relargage du soufre qui a lieu avec le TESTP et le produit B ( polysulfure S4) et pas avec le produit A (disulfure S2). Tableau 2
Figure imgf000024_0001
Essai 2
Cet essai a pour but de démontrer les performances améliorées d'une composition conforme à l'invention ne comprenant pas de ZnO, comparée à une composition utilisant un agent de couplage conforme au document EP 1 326 914 ne comprenant pas de ZnO.
On prépare ainsi quatre compositions conformément au procédé explicité précédemment, à base de SBR, renforcées majoritairement de silice, qui se distinguent les unes des autres par la nature de leur agent de couplage, ces agents de couplage étant utilisés à un taux isomolaire en silicium, comme suit :
- la composition témoin C2 non conforme à l'invention, est celle de l'essai 1, comprenant à titre d'agent de couplage le produit B,
- la composition C'2, non conforme à l'invention, est identique à la composition C2 à l'exception du fait qu'elle ne comprend pas d'oxyde de zinc,
- la composition C3 conforme à l'invention, est celle de l'essai 1, comprenant à titre d'agent de couplage le produit A,
- la composition C'3, conforme à l'invention, est identique à la composition C3 à l'exception du fait qu'elle ne comprend pas d'oxyde de zinc.
Les tableaux 3 et 4 donnent respectivement la formulation des quatre compositions (taux des différents produits exprimés en pce, et leurs propriétés après cuisson (environ 30 min à 150°C).
Au vu du tableau 4, on constate de façon surprenante que la suppression de l'oxyde de zinc dans la composition C'3 conforme à l'invention par rapport à la composition C3, entraîne une amélioration des propriétés de rigidité (augmentation des modules M 100 et M300) ainsi que du renforcement (M300/MA100) alors que cette suppression sur une composition témoin non conforme à l'invention C'2 entraîne par rapport à la composition C2, au contraire, une dégradation significative de la rigidité à renforcement sensiblement équivalent. Tableau 3
Figure imgf000025_0001
Tableau 4
Compositions C2 C'2 C3 C'3
M 100 (MPa) 1,6 1,5 1,9 2,0
M300 (MPa) 2,4 2,1 3,0 3,5
M300/M100 1,5 1,4 1,5 1,8

Claims

REVENDICATIONS
1) Composition élastomérique à base d'au moins un élastomère diénique, une charge inorganique à titre de charge renforçante, un polysulfure de monohydroxysilane à titre d'agent de couplage, de formule (I): (HO)(R1)2Si - CH2 - (R2)CH-Z- Sx - Z - HC((R2) -
Figure imgf000026_0001
(I) dans laquelle :
- R1, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 18 atomes de carbone;
- R2, identiques ou différents, représentent chacun un groupe hydrocarboné monovalent ayant de 1 à 4 atomes de carbone ;
- Z, identiques ou différents, représentent chacun un groupe de liaison hydrocarboné divalent comportant de 1 à 16 atomes de carbone ;
- x est un nombre entier ou fractionnaire supérieur ou égal à 2.
2) Composition selon la revendication 1 , dans laquelle les groupes R1 sont choisis parmi les alkyles en Ci-C6, les cycloalkyles en C5-C8 et le radical phényle; les groupes Z étant choisis parmi les alkylènes en Ci-Ci6 et les arylènes en C6-Ci2.
3) Composition selon la revendication 2, dans laquelle les groupes RI sont choisis parmi les alkyles en C1-C3 et les groupes Z étant choisis parmi les alkylènes en C1-C3.
4) Composition selon la revendication 3, dans laquelle le polysulfure de monohydroxysilane répond à la formule (Me = méthyle)
(HO)(Me)2Si -CH2- (Me)CH - Z - Sx - Z - HC(Me) -CH2- Si(Me)2(OH)
5) Composition selon l'une quelconque des revendications 3 ou 4, dans laquelle les groupes Z sont choisis parmi méthylène et éthylène.
6) Composition selon la revendication 5, dans laquelle l'agent de couplage consiste en un polysulfure de bis(2-methylpropane-l ,3-diyl)(diméthylsilanol).
7) Composition selon l'une quelconque des revendications 1 à 5, dans laquelle x est compris dans un domaine allant de 2 à 4. 8) Composition selon l'une quelconque des revendications précédentes, l'élastomère diénique étant choisi dans le groupe constitué par les polybutadiènes, le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères.
9) Composition selon la revendication 8, les copolymères de butadiène et ceux d'isoprène étant choisis parmi les copolymères de butadiène-styrène, les copolymères de butadiène-isoprène, les copolymères d'isoprène-styrène, les copolymères de butadiène-acrylonitrile, les copolymères de butadiène-styrène-isoprène et les mélanges de ces copolymères.
10) Composition selon l'une quelconque des revendications 1 à 9, dans laquelle le taux de charge inorganiques renforçante est compris entre 10 et 200 pce (parties en poids pour cent d'élastomère), de préférence entre 30 et 150 pce. 11) Composition selon l'une quelconque des revendications 1 à 10, dans laquelle la quantité de polysulfure de monohydroxysilane de formule (I) est comprise entre 1 et 20 pce.
12) Composition selon l'une quelconque des revendications 1 à 11, qui comporte du noir de carbone.
13) Composition selon la revendication 12, dans laquelle le noir de carbone est présent à un taux compris entre 2 et 20 pce.
14) Composition selon l'une quelconque des revendications précédentes, dans laquelle le taux de zinc est inférieur ou égal à 0,5 pce.
15) Bande de roulement comportant une composition de caoutchouc conforme à l'une quelconque des revendications 1 à 14. 16) Article fini ou semi-fini comportant une composition de caoutchouc conforme à l'une quelconque des revendications 1 à 14.
17) Pneumatique comportant une composition de caoutchouc conforme à l'une quelconque des revendications 1 à 14.
PCT/FR2017/051747 2016-06-30 2017-06-29 Composition de caoutchouc comprenant un agent de couplage polysulfure de monohydroxysilane WO2018002536A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780041129.9A CN109415390B (zh) 2016-06-30 2017-06-29 包含单羟基硅烷多硫化物偶联剂的橡胶组合物
US16/314,135 US10961371B2 (en) 2016-06-30 2017-06-29 Rubber composition comprising a monohydroxysilane polysulfide coupling agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656271A FR3053345B1 (fr) 2016-06-30 2016-06-30 Composition de caoutchouc comprenant un agent de couplage polysulfure de monohydroxysilane
FR1656271 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018002536A1 true WO2018002536A1 (fr) 2018-01-04

Family

ID=57190074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/051747 WO2018002536A1 (fr) 2016-06-30 2017-06-29 Composition de caoutchouc comprenant un agent de couplage polysulfure de monohydroxysilane

Country Status (4)

Country Link
US (1) US10961371B2 (fr)
CN (1) CN109415390B (fr)
FR (1) FR3053345B1 (fr)
WO (1) WO2018002536A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060565A1 (fr) 2016-12-16 2018-06-22 Michelin & Cie Polysulfure d'alcoxysilane

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2094859A5 (fr) 1970-12-10 1972-02-04 Ppg Industries Inc
EP0501227A1 (fr) 1991-02-25 1992-09-02 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Composition de caoutchouc et enveloppes de pneumatiques à base de ladite composition
EP0735088A1 (fr) 1995-03-29 1996-10-02 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Composition de caoutchouc destinée à la fabrication d'enveloppes de pneumatiques à base de silices précipitées "dopées" à l'aluminium
FR2740778A1 (fr) 1995-11-07 1997-05-09 Michelin & Cie Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale
WO1997036724A2 (fr) 1996-04-01 1997-10-09 Cabot Corporation Nouveaux materiaux composites elastomeres, et procede et appareil s'y rapportant
EP0810258A1 (fr) 1996-05-28 1997-12-03 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Composition de caoutchouc diénique à base d'alumine en tant que charge renforçante et son utilisation pour la fabrication d'enveloppes de pneumatiques
EP0881252A1 (fr) 1997-05-26 1998-12-02 Compagnie Générale des Etablissements MICHELIN-MICHELIN & CIE Composition de caoutchoc à base de silice destinée à la fabrication d'enveloppes de pneumatiques routiers ayant une résistance au roulement améliorée
FR2765882A1 (fr) 1997-07-11 1999-01-15 Michelin & Cie Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane
WO1999002601A1 (fr) 1997-07-09 1999-01-21 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Composition de caoutchouc vulcanisable au soufre contenant de la silice
WO1999002590A1 (fr) 1997-07-07 1999-01-21 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Composition de caoutchouc de pneumatique couleur
WO1999002602A1 (fr) 1997-07-11 1999-01-21 Compagnie Generale Des Etablissements Michelin - Composition de caoutchouc dienique renforcee d'une charge blanche, comportant a titre d'agent de couplage (charge blanche/elastomere) un polyorganosiloxane multifonctionnalise
WO1999016600A1 (fr) 1997-09-30 1999-04-08 Cabot Corporation Melanges composites a base d'elastomere et procedes d'elaboration
WO1999028376A2 (fr) 1997-11-28 1999-06-10 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Charge alumineuse renforcante et composition de caoutchouc comportant une telle charge
WO2000005300A1 (fr) 1998-07-22 2000-02-03 Societe De Technologie Michelin Systeme de couplage (charge blanche/elastomere dienique) a base d'alkoxysilane polysulfure, d'enamine et de derive guanidique
WO2000005301A1 (fr) 1998-07-22 2000-02-03 Societe De Technologie Michelin Systeme de couplage (charge blanche/elastomere dienique) a base d'alkoxysilane polysulfure, de dithiophosphate de zinc et de derive guanidique
WO2000053671A1 (fr) 1999-03-10 2000-09-14 Bridgestone/Firestone Research, Inc. Composites d'un agent de couplage de silice solide dans des compositions caoutchoutees a base de silice
EP1043357A1 (fr) 1999-04-03 2000-10-11 Degussa-Hüls Aktiengesellschaft Compositions de caoutchouc
WO2000073373A1 (fr) 1999-05-28 2000-12-07 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique, a base d'elastomere dienique et d'un oxyde de titane renforcant
WO2000073372A1 (fr) 1999-05-28 2000-12-07 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique, a base d'elastomere dienique et d'un oxyde de titane renforçant
EP1127909A1 (fr) 2000-02-24 2001-08-29 Société de Technologie Michelin Composition de caoutchouc vulcanisable, utilisable pour fabriquer un pneumatique, et pneumatique comprenant cette composition
WO2001092402A1 (fr) 2000-05-26 2001-12-06 Societe De Technologie Michelin Composition de caoutchouc utilisable comme bande de roulement de pneumatique
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
WO2002053634A1 (fr) 2001-01-02 2002-07-11 Societe De Technologie Michelin Composition de caoutchouc a base d'élastomère dienique et d'un carbure de silicium renforçant
EP1326914A1 (fr) 2000-10-13 2003-07-16 Société de Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
EP1326871A1 (fr) 2000-10-13 2003-07-16 Société de Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2004003067A1 (fr) 2002-07-01 2004-01-08 Societe De Technologie Michelin Composition de caoutchouc a base d' elastomere dienique et d' un nitrure de silicium renforcant
WO2004056915A1 (fr) 2002-12-19 2004-07-08 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique a base d'un aluminosilicate renforcant
WO2004096865A2 (fr) 2003-04-29 2004-11-11 Societe De Technologie Michelin Procede d’obtention d’un elastomere greffe a groupes fonctionnels le long de la chaîne et composition de caoutchouc
WO2006013056A1 (fr) * 2004-07-29 2006-02-09 Societe De Technologie Michelin Composition de caoutchouc depourvue ou pratiquement depourvue de zinc
WO2006069793A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
WO2006069792A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Nanoparticules de polyvinylaromatique fonctionnalise
WO2008141702A1 (fr) 2007-04-18 2008-11-27 Societe De Technologie Michelin Elastomere dienique couple monomodal possedant une fonction silanol en milieu de chaine, son procede d'obtention et composition de caoutchouc le contenant
WO2009000752A1 (fr) 2007-06-28 2008-12-31 Societe De Technologie Michelin Procédé de préparation d'un copolymère diénique à bloc polyéther, composition de caoutchouc renforcée et pneumatique
WO2009000750A1 (fr) 2007-06-28 2008-12-31 Société de Technologie Michelin Procédé de préparation d'un copolymère diénique à bloc polyéther, copolymère diénique à bloc polyéther, composition de caoutchouc renforcée et pneumatique
WO2010072761A1 (fr) 2008-12-23 2010-07-01 Societe De Technologie Michelin Nouveau système d'amorçage pour polymérisation anionique de diènes conjugués, procédé de préparation d'élastomères diéniques

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3226091C2 (de) 1982-07-13 1986-11-20 Degussa Ag, 6000 Frankfurt Polymere Di-, Tri- oder Tetrasulfide, Verfahren zu ihrer Herstellung und Verwendung
US5559264A (en) 1994-02-24 1996-09-24 Osi Specialities, Inc. Process for making chloroorganosilicon compounds
US5534592A (en) 1995-09-22 1996-07-09 The Goodyear Tire & Rubber Company High performance blend for tire treads
US6156822A (en) 1998-11-12 2000-12-05 The Goodyear Tire & Rubber Company Prepared reinforced elastomer, elastomer composite and tire having component thereof
FR2830014B1 (fr) 2001-09-21 2005-02-18 Rhodia Chimie Sa Procede d'obtention de monoorganoxysilanes halogenes utilisables notamment en tant qu'intermediaires de synthese
US6872845B2 (en) 2003-03-03 2005-03-29 General Electric Company Process for making haloorganoalkoxysilanes
FR2873707B1 (fr) * 2004-07-29 2007-08-10 Michelin Soc Tech Composition de caoutchouc depourvue de zinc
EP1948668A1 (fr) 2005-11-16 2008-07-30 Dow Corning Corporation Organosilanes et leur preparation et utilisation dans des compositions d'elastomere
EP3342776B1 (fr) 2015-08-27 2020-09-30 Kuraray Co., Ltd. Composé d'organosilicium contenant du soufre et composition de résine
FR3060565A1 (fr) 2016-12-16 2018-06-22 Michelin & Cie Polysulfure d'alcoxysilane

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1310379A (en) 1970-12-10 1973-03-21 Ppg Industries Inc Tire tread
FR2094859A5 (fr) 1970-12-10 1972-02-04 Ppg Industries Inc
EP0501227A1 (fr) 1991-02-25 1992-09-02 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Composition de caoutchouc et enveloppes de pneumatiques à base de ladite composition
US5227425A (en) 1991-02-25 1993-07-13 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Copolymer rubber composition with silica filler, tires having a base of said composition and method of preparing same
US5852099A (en) 1995-03-29 1998-12-22 Compagnie Generale des Etablissements Michelin--Michelin & Cie Rubber composition for the manufacture of tires which has a base of precipitated silicas "doped" with aluminum
EP0735088A1 (fr) 1995-03-29 1996-10-02 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Composition de caoutchouc destinée à la fabrication d'enveloppes de pneumatiques à base de silices précipitées "dopées" à l'aluminium
FR2740778A1 (fr) 1995-11-07 1997-05-09 Michelin & Cie Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale
US6013718A (en) 1995-11-07 2000-01-11 Michelin & Cie Rubber composition based on silica and on functionalized diene polymer which has a silanol end functional group
WO1997036724A2 (fr) 1996-04-01 1997-10-09 Cabot Corporation Nouveaux materiaux composites elastomeres, et procede et appareil s'y rapportant
US5900449A (en) 1996-05-28 1999-05-04 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Diene rubber composition based on alumina as reinforcing filler and its use for the manufacture of a tire
EP0810258A1 (fr) 1996-05-28 1997-12-03 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Composition de caoutchouc diénique à base d'alumine en tant que charge renforçante et son utilisation pour la fabrication d'enveloppes de pneumatiques
EP0881252A1 (fr) 1997-05-26 1998-12-02 Compagnie Générale des Etablissements MICHELIN-MICHELIN & CIE Composition de caoutchoc à base de silice destinée à la fabrication d'enveloppes de pneumatiques routiers ayant une résistance au roulement améliorée
WO1999002590A1 (fr) 1997-07-07 1999-01-21 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Composition de caoutchouc de pneumatique couleur
WO1999002601A1 (fr) 1997-07-09 1999-01-21 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Composition de caoutchouc vulcanisable au soufre contenant de la silice
FR2765882A1 (fr) 1997-07-11 1999-01-15 Michelin & Cie Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane
WO1999002602A1 (fr) 1997-07-11 1999-01-21 Compagnie Generale Des Etablissements Michelin - Composition de caoutchouc dienique renforcee d'une charge blanche, comportant a titre d'agent de couplage (charge blanche/elastomere) un polyorganosiloxane multifonctionnalise
US5977238A (en) 1997-07-11 1999-11-02 Michelin & Cie Rubber composition based on carbon black having silica fixed to its surface and on diene polymer functionalized with alkoxysilane
WO1999016600A1 (fr) 1997-09-30 1999-04-08 Cabot Corporation Melanges composites a base d'elastomere et procedes d'elaboration
WO1999028376A2 (fr) 1997-11-28 1999-06-10 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Charge alumineuse renforcante et composition de caoutchouc comportant une telle charge
WO2000005300A1 (fr) 1998-07-22 2000-02-03 Societe De Technologie Michelin Systeme de couplage (charge blanche/elastomere dienique) a base d'alkoxysilane polysulfure, d'enamine et de derive guanidique
WO2000005301A1 (fr) 1998-07-22 2000-02-03 Societe De Technologie Michelin Systeme de couplage (charge blanche/elastomere dienique) a base d'alkoxysilane polysulfure, de dithiophosphate de zinc et de derive guanidique
WO2000053671A1 (fr) 1999-03-10 2000-09-14 Bridgestone/Firestone Research, Inc. Composites d'un agent de couplage de silice solide dans des compositions caoutchoutees a base de silice
EP1043357A1 (fr) 1999-04-03 2000-10-11 Degussa-Hüls Aktiengesellschaft Compositions de caoutchouc
WO2000073372A1 (fr) 1999-05-28 2000-12-07 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique, a base d'elastomere dienique et d'un oxyde de titane renforçant
WO2000073373A1 (fr) 1999-05-28 2000-12-07 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique, a base d'elastomere dienique et d'un oxyde de titane renforcant
EP1127909A1 (fr) 2000-02-24 2001-08-29 Société de Technologie Michelin Composition de caoutchouc vulcanisable, utilisable pour fabriquer un pneumatique, et pneumatique comprenant cette composition
US6503973B2 (en) 2000-02-24 2003-01-07 Michelin Recherche Et Technique S.A. Vulcanizable rubber composition usable for the manufacture of a tire, and a tire comprising this composition
US6815473B2 (en) 2000-05-26 2004-11-09 Michelin Recherche Et Technique S.A. Rubber composition usable as a tire tread
WO2001092402A1 (fr) 2000-05-26 2001-12-06 Societe De Technologie Michelin Composition de caoutchouc utilisable comme bande de roulement de pneumatique
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
EP1326914A1 (fr) 2000-10-13 2003-07-16 Société de Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
EP1326871A1 (fr) 2000-10-13 2003-07-16 Société de Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
EP1326914B1 (fr) * 2000-10-13 2006-06-21 Société de Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002053634A1 (fr) 2001-01-02 2002-07-11 Societe De Technologie Michelin Composition de caoutchouc a base d'élastomère dienique et d'un carbure de silicium renforçant
WO2004003067A1 (fr) 2002-07-01 2004-01-08 Societe De Technologie Michelin Composition de caoutchouc a base d' elastomere dienique et d' un nitrure de silicium renforcant
WO2004056915A1 (fr) 2002-12-19 2004-07-08 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique a base d'un aluminosilicate renforcant
WO2004096865A2 (fr) 2003-04-29 2004-11-11 Societe De Technologie Michelin Procede d’obtention d’un elastomere greffe a groupes fonctionnels le long de la chaîne et composition de caoutchouc
US20060089445A1 (en) 2003-04-29 2006-04-27 Michelin Recherche Et Technique S.A. Process for obtaining a grafted elastomer having functional groups along the chain and a rubber composition
WO2006013056A1 (fr) * 2004-07-29 2006-02-09 Societe De Technologie Michelin Composition de caoutchouc depourvue ou pratiquement depourvue de zinc
WO2006069793A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
WO2006069792A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Nanoparticules de polyvinylaromatique fonctionnalise
WO2008141702A1 (fr) 2007-04-18 2008-11-27 Societe De Technologie Michelin Elastomere dienique couple monomodal possedant une fonction silanol en milieu de chaine, son procede d'obtention et composition de caoutchouc le contenant
WO2009000752A1 (fr) 2007-06-28 2008-12-31 Societe De Technologie Michelin Procédé de préparation d'un copolymère diénique à bloc polyéther, composition de caoutchouc renforcée et pneumatique
WO2009000750A1 (fr) 2007-06-28 2008-12-31 Société de Technologie Michelin Procédé de préparation d'un copolymère diénique à bloc polyéther, copolymère diénique à bloc polyéther, composition de caoutchouc renforcée et pneumatique
WO2010072761A1 (fr) 2008-12-23 2010-07-01 Societe De Technologie Michelin Nouveau système d'amorçage pour polymérisation anionique de diènes conjugués, procédé de préparation d'élastomères diéniques

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. MILDENBERG; M. ZANDER; G. COLLIN: "Hydrocarbon Resins", 1997, VCH, ISBN: 3-527-28617-9
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, February 1938 (1938-02-01), pages 309

Also Published As

Publication number Publication date
US10961371B2 (en) 2021-03-30
US20190233618A1 (en) 2019-08-01
CN109415390A (zh) 2019-03-01
FR3053345A1 (fr) 2018-01-05
FR3053345B1 (fr) 2018-07-06
CN109415390B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
EP2694582B1 (fr) Composition de caoutchouc pour pneumatique comportant un agent de couplage azosilane.
EP2212379A2 (fr) Composition de caoutchouc pour pneumatique comportant un agent de recouvrement hydroxysilane
WO2014095585A1 (fr) Pneumatique comportant une composition de caoutchouc comprenant un elastomere epoxyde reticule par un poly-acide carboxylique
WO2010072682A1 (fr) Composition de caoutchouc comportant un agent de couplage mercaptosilane bloque
WO2014095583A1 (fr) Pneumatique comportant une composition de caoutchouc comprenant un elastomere epoxyde reticule par un poly-acide carboxylique
EP2694581A1 (fr) Composition de caoutchouc pour pneumatique comportant un agent de couplage azosilane
EP2791226A1 (fr) Composition de caoutchouc comprenant un agent de couplage mercaptosilane bloque
EP2432827A1 (fr) Composition de caoutchouc comportant un agent de couplage organosilane
WO2014095588A1 (fr) Pneumatique comportant une composition de caoutchouc comprenant une resine époxyde et un poly-acide
WO2018109312A1 (fr) Pneumatique comportant une composition de caoutchouc comprenant un polymere porteur d'un groupement diene conjugue reticule par un dienophile
EP3083813A1 (fr) Composition de caoutchouc comprenant une resine de polyphenylene ether comme plastifiant
WO2014095267A1 (fr) Composition de caoutchouc comportant une poudrette de caoutchouc modifiee
FR3015504A1 (fr) Composition de caoutchouc comprenant une resine de polyphenylene ether comme plastifiant
EP3134472B1 (fr) Composition de caoutchouc pour pneumatique comportant un agent de couplage azosilane
WO2004056918A1 (fr) Composition de caoutchouc pour pneumatique comportant un oligomere polyorganosiloxane a titre d’agent de couplage
WO2018002536A1 (fr) Composition de caoutchouc comprenant un agent de couplage polysulfure de monohydroxysilane
FR2873707A1 (fr) Composition de caoutchouc depourvue de zinc
WO2018109335A1 (fr) Polysulfure d'alcoxysilane
WO2019077272A1 (fr) Composition de caoutchouc comprenant une resine de polyphenylene ether comme plastifiant
WO2017103529A1 (fr) Composition de caoutchouc pour pneumatique comportant un agent de couplage azosilane
EP3478695B1 (fr) Polysulfure de monohydroxysilane
WO2019193286A1 (fr) Pneumatique comportant une composition de caoutchouc comprenant un nouvel agent de couplage polysulfure porteur de groupes associatifs azotes
WO2010072679A1 (fr) Composition de caoutchouc depourvue ou quasiment depourvue de zinc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17740448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17740448

Country of ref document: EP

Kind code of ref document: A1