WO2018002059A9 - Microalgue modifiée pour une production enrichie en tag - Google Patents

Microalgue modifiée pour une production enrichie en tag Download PDF

Info

Publication number
WO2018002059A9
WO2018002059A9 PCT/EP2017/065869 EP2017065869W WO2018002059A9 WO 2018002059 A9 WO2018002059 A9 WO 2018002059A9 EP 2017065869 W EP2017065869 W EP 2017065869W WO 2018002059 A9 WO2018002059 A9 WO 2018002059A9
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
elongase
seq
tag
gene
Prior art date
Application number
PCT/EP2017/065869
Other languages
English (en)
Other versions
WO2018002059A1 (fr
Inventor
Lina Juana Dolch
Camille RAK
Fabrice REBEILLE
Juliette Jouhet
Marina LETERRIER
Eric Marechal
Original Assignee
Fermentalg
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fermentalg, Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Fermentalg
Priority to CN201780040195.4A priority Critical patent/CN109477060B/zh
Priority to AU2017288438A priority patent/AU2017288438B2/en
Priority to US16/308,226 priority patent/US10724011B2/en
Publication of WO2018002059A1 publication Critical patent/WO2018002059A1/fr
Publication of WO2018002059A9 publication Critical patent/WO2018002059A9/fr
Priority to IL263792A priority patent/IL263792B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01199Very-long-chain 3-oxoacyl-CoA synthase (2.3.1.199)

Definitions

  • the present invention relates to a microalga genetically modified by inhibiting the activity of the enzyme elongase- ⁇ (or ⁇ -ELO), having as substrate palmitic acid, a saturated fatty acid, and associated with the production of MGDG (Mono -Galactosyl-diacyl-Glycerol). It also relates to a process for culturing said microalgae for a production enriched in TAG (tri-acyl-glycerols) and the recovery of said TAGs.
  • MGDG Mono -Galactosyl-diacyl-Glycerol
  • Synthetic routes of polyunsaturated long chain fatty acids have been studied and are known to those skilled in the art for plants and microalgae. They generally consist of the synthesis of oleic acid, a C18 fatty acid carrying a double bond (18: 1), and linoleic acid (18: 2), in the form of thioesters with Coenzyme A, then, in a series of elongations with creation of unsaturations by the alternating action of elongases and desaturases.
  • Nannochloropsis elongases active on desaturated fatty acids (containing double bonds) have been described in the state of the art (Cook and Hildebrand, 2015, Jung et al., 2007, Kihara, 2012, Lee et al., 2006, Ramakrishnan et al. et al., 2012, Tehlivets et al., 2007). Nannochloropsis elongases, active on desaturated fatty acids are also described in US Patent 8,809,046.
  • the application WO 2014/207043 describes the preparation of microalgae genetically modified by KO (knock-out) of certain genes.
  • KO knock-out
  • TALE-Nuclease for targeted mutagenesis of genes in microalgae is described.
  • gene targeting including the targeting of an A6-ELO elongase, active on a fatty acid carrying a double bond in the ⁇ 6 position.
  • the present invention relates to genetically modified microalgae in which ⁇ -ELO elongase activity is inhibited.
  • the invention relates to genetically modified microalgae chosen from microalgae comprising photosynthetically active organelles, in particular of the genera Crypthecodinium, Chlorella, Cyclotella, Euglena, Haematococcus, Isochrysis, Monodus, Nanochloris, Nannochloropsis, Nitzschia, Odontella, Phaeodactylum, Scenedesmus, Tetraselmis, and Thalassiosira.
  • photosynthetically active organelles in particular of the genera Crypthecodinium, Chlorella, Cyclotella, Euglena, Haematococcus, Isochrysis, Monodus, Nanochloris, Nannochloropsis, Nitzschia, Odontella, Phaeodactylum, Scenedesmus, Tetraselmis, and Thalassiosira.
  • the invention relates to microalgae for which the elongase ⁇ -ELO activity is multigene, and more preferentially when only the activity of the ⁇ -ELO elongase associated with the production of MGDG is inhibited.
  • the invention also relates to a method for producing a TAG-enriched biomass which comprises culturing genetically modified microalgae according to the invention on a culture medium that is suitable for promoting the growth and multiplication of the cells of the microorganisms.
  • the invention also relates to a method for producing TAG which comprises obtaining the TAG-enriched biomass and isolating the TAGs thus produced. DESCRIPTION OF THE FIGURES
  • Figure 1 shows the reconstructed pathway of biosynthesis of very long chain polyunsaturated fatty acids in Nannochloropsis gaditana.
  • the synthesis of fatty acids in the chloroplast can generate 16: 0 precursors (acid palmitic), 18: 0 (stearic acid) and 18: 1 (oleic acid) which are exported to the cytosol.
  • Desaturation of 18: 0 in 18: 1 can be done either by chloroplast stearoyl-acp A9-desaturase (SAD) desorption or endoplasmic reticulum A9-desaturase (ERA9FAD).
  • SAD chloroplast stearoyl-acp A9-desaturase
  • ERA9FAD endoplasmic reticulum A9-desaturase
  • Elongases identified as capable of transforming a 16: 0 saturated substrate are designated ⁇ -ELO.
  • Elongases identified as capable of transforming an unsaturated substrate with a double bond at ⁇ 6 (18: 3) are designated ⁇ -ELO.
  • Those identified as capable of transforming an unsaturated substrate with a double bond at position ⁇ 5 (20: 5) are designated ⁇ 5-ELO.
  • FIG. 2 represents the sequences of six ⁇ -ELO saturated fatty acid elongases of Nannochloropsis gaditana: Naga_100083g23 (SEQ ID No. 1), Naga_100162g4 (SEQ ID No. 2), Naga_100004g 102 (SEQ ID No. 3), Naga_100399g1 (SEQ ID No. No. 4), Naga_100162g5 (SEQ ID No. 5) and Naga_100017g49 (SEQ ID No. 6).
  • Figure 3 represents the phylogenetic tree of putative fatty acid elongases or identified in the literature as representative groups of eukaryotes.
  • the selected sequences cover the biodiversity of eukaryotes, including Opisthokontes, eg Fungi (Saccharomyces) and Metazoa (Drosophila, Musca, Apis, Bombus, Caenorhabditis, Homo, Mus, Gallus), Heterokontes (Phaeodactylum, Thalassiosira, Ectocarpus, Phytophthora, Albugo, Saprolegnia, Aphanomyces), Apicomplexa (Toxoplasma, Neospora, Eimeria, Cryptosporidium, Plasmodium, Gregarina), Haptophytes (Emiliania), Cryptomonads (Guillardia) and Kinetoplastida (Trypanosoma, Leishmania).
  • Opisthokontes eg Fung
  • the amino acid sequences were aligned with the MUSCLE program and the phylogenetic tree constructed by the Neighbor-Joining method.
  • a star indicates the sequences characterized or proposed as elongases in the literature (Cook and Hildebrand, 2015, Jung et al., 2007, Kihara, 2012, Lee et al., 2006, Ramakrishnan et al., 2012, Tehlivets et al., 2007).
  • Figure 4 shows the amino acid sequence of the NgAO-ELO1 elongase (Naga_100083g23). Characteristic patterns of elongases have been identified following (Dnie and Weissman, 2007) and (Hashimoto et al., 2008): a pattern HxxHH in an environment rich in arginine (R) and lysine (K) is essential for 3-ketoacyl-CoA synthase activity for elongation of saturated or monounsaturated fatty acids; a LYF motif also present in the yeast elongase sequences of the Fenl p superfamily which accepts fatty acids with an acyl chain of 18 to 24 carbon atoms as substrates; a retention signal in the endoplasmic reticulum associated with a K-rich motif in the C-terminal portion (Jackson et al., 1990); seven predicted transmembrane domains (PM) with the TMHMM Server v. 2.0 (www.cbs.dt
  • FIG. 5 represents an alignment of the Nano-Hoganum gaditana elongase sequence Naga_100083g23 with a Phaeodactylum ⁇ -elongase (SEQ ID No. 7) with the Smith-Waterman method with Blossum 62 comparison matrix (Rice et al., 2000): Matrix: EBLOSUM62, "Gap_penalty”: 10.0, "Extend_penalty”: 0.5, Length: 287, Identity: 123/237 (51, 9%), Similarity: 161/237 (67.9%), Gaps: 2/237 ( 0.8%), Score: 690.5.
  • Figure 6 shows an alignment of the elongase sequence of
  • Nannochloropsis gaditana Naga_100083g23 with a Thalassiosira ⁇ -elongase (SEQ ID NO 8) with the Smith-Waterman method with Blossum 62 comparison matrix (Rice et al., 2000): Matrix: EBLOSUM62, "Gap_penalty”: 10.0, Extend_penalty ": 0.5, Length: 237, Identity: 135/287 (47.0%), Similarity: 178/287 (62.0%), Gaps: 16/287 (5.6%), Score: 713.5.
  • Figure 7 shows the overall fatty acid analysis of wild-type (WT) and KO-transformed Nannochloropsis gaditana lines of the NgA0-ELO1 elongase gene (NgA0-ELO1-KO).
  • FIG. 8 represents the glycerolipid profile of wild-type Nannochloropsis gaditana (WT) lines transformed by KO of the NgA0-ELO1 elongase gene (NgA0-ELO1-KO): phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol ( DGDG), sulfoquinovosyldiacylglycerol (SQDG), diacylglyceryltrimethylhomoserine (DGTS), lyso-DGTS (LDGTS), (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), t acylglycerol (TAG) and diacylglycerol (DAG).
  • PG phosphatidylglycerol
  • MGDG monogalactosyldiacylglyce
  • FIG. 9 represents the growth and the biomass obtained by the culture of wild-type Nannochloropsis gaditana (WT) lines transformed by KO of the NgA0-ELO1 elongase gene (NgA0-ELO1 -KO). DETAILED DESCRIPTION OF THE INVENTION
  • the present invention relates to genetically modified microalgae in which ⁇ -ELO elongase activity is inhibited.
  • ⁇ -ELO elongases are those that accept a saturated fatty acid as a substrate, particularly palmitic acid.
  • the microalgae according to the invention make it possible to produce more TAGs than the corresponding microalgae whose elongase activity is not inhibited (FIG. 8) while having growth and biomass production properties that are not substantially affected in relation to the TAG. to the corresponding unmodified strain (Figure 9).
  • the microalgae according to the invention are genetically modified so that the elongase ⁇ -ELO activity is inhibited, more particularly the elongase ⁇ -ELO activity associated with the production of MGDG (Mono-Galactosyl-Diacyl-Glycerol).
  • MGDG Mono-Galactosyl-Diacyl-Glycerol
  • genetically modified is meant according to the invention any modification of the genome of microalgae obtained by human intervention or under human control consisting in introducing into the genome of microalgae a heterologous nucleic acid sequence. This modification results in enriching the genome of the genetically modified microalgae with the addition of new sequences and / or reducing it by eliminating fragments of native sequences.
  • heterologous nucleic acid sequence is meant any synthetic sequence prepared by or under the control of a human, in particular by copying a natural gene by any replication technique known as PCR, by assembly of natural gene fragments, with introduction or not of mutations. It may be a sequence coding for a gene of interest with or without sequences for regulating its expression in a host organism, or synthetic fragments without a function other than introducing into a target gene a mutation intended to inhibit its expression (KO).
  • the heterologous nucleic acid sequence advantageously comprises nucleic acid fragments making it possible to target its introduction into a target gene by any known recombination technique. homologous or targeting of DNA sequence.
  • Microalgae transformation techniques are well known to those skilled in the art. As well as gene targeting techniques. In particular (Kilian et al., 201 1) or the application WO 2014/207043.
  • the invention is particularly suitable for microalgae comprising organelles with photosynthetic activity such as chloroplasts.
  • the effect obtained has been more particularly identified for such microalgae which produce the precursor 16: 0 (palmitoyl-CoA) in chloroplasts.
  • microalgae are well known to those skilled in the art. Mention may in particular be made of microalgae of the genera Crypthecodinium, Chlorella, Cyclotella, Euglena, Haematococcus, Isochrysis, Monodus, Nanochloris, Nannochloropsis, Nitzschia, Odontella, Phaeodactylum, Scenedesmus, Tetraselmis, and Thalassiosira.
  • the inventors have been able to demonstrate that the elongase ⁇ -ELO activity could be multigene in microalgae.
  • the invention is more particularly adapted to inhibit the ⁇ -ELO elongase activity in microalgae for which the ⁇ -ELO elongase activity is multigene, more particularly when only the ⁇ -ELO elongase activity associated with the production of MGDG is inhibited.
  • the invention is more particularly suitable for microalgae whose inhibited elongase ⁇ -ELO activity is encoded by a gene encoding a protein of SEQ ID NO 1 or a homologous sequence comprising at least 40% identity, preferably at least 45% identity with SEQ ID NO 1 and comprises an HxxHH motif in an environment rich in R- and K-, and a K-rich motif in its C-terminal part.
  • the homologous sequences have at least 100 amino acids identical to those of SEQ ID NO 1, preferably at least 120 identical amino acids.
  • microalgae according to the invention are chosen from the microalgae of the genera Phaeodactylum, Thalassiosira and Nannochloropsis identified to have genes coding for sequences homologous to SEQ ID NO 1, in particular the proteins represented by SEQ ID No. 7 and SEQ ID NO.
  • the microalgae are of the species Nannochloropsis gaditana which comprises a gene coding for the elongase represented by SEQ ID No. 1.
  • the microorganism can be modified to promote the production of a substrate that binds to the enzyme in competition with the 16: 0 fatty acid.
  • the microorganism can also be modified to express a nucleic acid that will inhibit the translation of the gene encoding ⁇ -ELO elongase.
  • the microorganism can also be modified to express a nucleic acid that will inhibit transcription of the gene encoding ⁇ -ELO elongase.
  • the microalgae are transformed by the introduction of a mutation in the gene coding for ⁇ -ELO elongase.
  • This mutation has the effect of inhibiting the expression of the gene (KO).
  • the mutation may consist of the addition of a nucleic acid or a nucleic acid fragment so as to insert a "stop" codon into the coding part of the gene.
  • the mutation may also consist of a deletion of nucleic acid fragments in the gene, in the promoter regulatory sequence and / or in the coding sequence.
  • the mutation may consist of a complete suppression of the targeted genome gene of genetically modified microalgae.
  • the genetically modified microalgae are KO-modified Nannochloropsis gaditana of the Naga_100083g23 gene coding for the elongase ⁇ -ELOI of SEQ ID No. 1.
  • the invention also relates to the production of a biomass enriched in TAG (Tri-Acyl-Glycerols), comprising culturing microalgae genetically modified according to the invention in a culture medium suitable for promoting their growth and their cell multiplication.
  • microalgae cultivation methods are well known to those skilled in the art, whether in the autotrophic, heterotrophic or mixotrophic mode.
  • the culture is carried out with light supply in autotrophic or mixotrophic mode.
  • those skilled in the art will be able to adapt the culture conditions, in particular the composition of the medium, the conditions for adding nutrients during the cultivation, the cycles of temperature, oxygenation and the lighting conditions to favor biomass production.
  • the invention also relates to a method for producing TAG (Tri-Acyl-Glycerols), comprising obtaining a TAG-enriched biomass according to the invention and isolating TAG from biomass.
  • Methods for isolating TAGs from biomass are well known to those skilled in the art. Processes comprising steps for recovering biomass from the culture medium, for example by filtration or centrifugation, followed by drying before extracting the fat, including TAG by pressing, are mentioned.
  • the methods described by Bligh, E.G. and Dyer, W.J. (1959) or in the application WO 1997/037032 are described.
  • the isolated TAGs can also be purified by known methods of purification such as liquid / liquid extraction or distillation under reduced pressure.
  • the invention also relates to a TAG-enriched biomass obtained by the process according to the invention.
  • biomass according to the invention is advantageously understood to mean a set of microalgae cells produced by their culture, cells which may or may not have retained their physical integrity. It is therefore understood that said biomass may comprise a quantity of degraded microalgae cells ranging from 0% to 100%.
  • degraded is meant that the physical integrity of said microalgae cells could be altered such as lysed microalgae, resulting for example from a homogenization process. Once produced, this biomass can be raw, in its culture medium or isolated from the latter, dried or not, degraded or not.
  • the invention finally relates to the TAGs obtained by the process according to the invention, in particular a TAG enriched oil which has not been substantially modified with respect to the oil extracted from the biomass according to the invention.
  • Nannochloropsis gaditana CCMP526 (NgWT) and mutants are maintained in f / 2 medium (Guillard and Ryther, 1962) containing modified sea salts (NaCl, 21, 194 gL 1 , Na 2 SO 4 , 3, 55 gL-1; KCI 0.599 gL-1;
  • the cells are stored at -80 ° C. in DMSO or can be maintained on 1.5% agar plates supplemented in f / 2 medium and subcultured every month.
  • the cell densities are measured by absorbance at 750 nm of 300 ⁇ culture aliquots (TECAN infinity M1000Pro). All measurements are made on at least three biological samples, each representing an individual culture of the same strain.
  • the transformation vector comprises a p35S-LoxP cassette, a zeocin resistance gene (ZEO, CDS 3078-3448) under the control of the ubiquitin promoter and the FcpA terminator of Phaeodactylum tricornutum.
  • ZO zeocin resistance gene
  • Two flanking regions containing the restriction enzyme recognition sites specific for the targeted gene to allow knockout by insertion into genomic DNA by homologous recombination after transformation (Kilian et al., 201 1).
  • flanking sequences of the Naga_100083g23 gene are amplified by PCR with oligonucleotide pairs 5'-gttgggaataatgcgggacc-3 '(SEQ ID NO 9) and 5'-ccgctttggtttcacagtca-3' (SEQ ID NO 10) for the terminal flank and 5'-acgatgggtatgttgcttgc-3 '(SEQ ID NO 1 1) and 5'-tgtacagggcggatttcact-3 '(SEQ ID No. 12) for the upstream flank.
  • CCMP526 with the transformation vector is carried out according to the method described by Killian et al. with the following modifications: 10 8 NgWT cells are harvested during the exponential growth phase) at a concentration of 30 6 cells. mL -1 , washed twice with 375 mM D-sorbitol and then resuspended in a final volume of 100 ⁇ . The recombination cassette is digested with the vector and 1 ⁇ g of digestion product is mixed with the suspension. After 15 minutes of incubation on ice, the cells are electroporated (NEPA21 Type II, Sonidel Ltd., MicroPulser BioRad).
  • the transformation mixture is transferred into 5 mL of f / 2 medium and incubated for 16 hours under continuous light irradiation.
  • the cells are then seeded on agar plates with 1.5% f / 2 medium and 7 ⁇ g.ml -1 zeocin, colonies are obtained after 3 to 4 weeks of incubation under continuous light.
  • Genotyping of KO mutants Naga_100083g23 was performed by PCR by looking for the presence of the flanking sequences of the zeocin resistance gene and by the absence of the Naga_100083g23 gene with the following oligonucleotide pairs: 5'-gaggaatgtgtgtggttggg-3 '(SEQ ID NO 13) for zeocin resistance gene promoter and 5'-gccgtattgttggagtggac-3 '(SEQ ID NO 14) for the terminator sequence; 5'-gacacttctctgccttgcc-3 '(SEQ ID NO 15) and 5'-atggtggtaccagtggagga-3' (SEQ ID NO 16) for the gene Naga_100083g23.
  • Glycerolipid analyzes show a relationship between the KO of the gene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

La présente invention concerne une microalgue génétiquement modifiée par inhibition de l'activité de l'enzyme élongase-Δ0 (ou Δ0-ELO), ayant pour substrat l'acide palmitique, un acide gras saturé, et associée à la production de MGDG (Mono-Galactosyl-Diacyl-Glycerol). Elle concerne également un procédé de culture deladite microalgue pour une production enrichie en TAG (Tri-Acyl-Glycerols) et la récupération desdits TAG.

Description

MICROALGUE MODIFIÉE POUR UNE PRODUCTION ENRICHIE EN TAG DOMAINE DE L'INVENTION
La présente invention concerne une microalgue génétiquement modifiée par inhibition de l'activité de l'enzyme élongase-ΔΟ (ou ΔΟ-ELO), ayant pour substrat l'acide palmitique, un acide gras saturé, et associée à la production de MGDG (Mono-Galactosyl-Diacyl-Glycerol). Elle concerne également un procédé de culture de ladite microalgue pour une production enrichie en TAG (Tri-Acyl-Glycerols) et la récupération desdits TAG.
ETAT DE LA TECHNIQUE
Les voies de synthèse des acides gras à longue chaîne polyinsaturées ont été étudiées et sont connues de l'homme du métier pour les plantes et les microalgues. Elles consistent généralement en la synthèse d'acide oléique, un acide gras en C18 porteur d'une double liaison (18:1 ), et d'acide linoléique (18:2), sous forme de thioesters avec le Coenzyme A, puis, en une série d'élongations avec création d'insaturations par l'action alternée d'élongases et de désaturases. Plusieurs élongases actives sur des acides gras désaturés (contenant des doubles liaisons) ont été décrites dans l'état de la technique (Cook and Hildebrand, 2015; Jung et al., 2007; Kihara, 2012; Lee et al., 2006; Ramakrishnan et al., 2012; Tehlivets et al., 2007). Des élongases de Nannochloropsis, actives sur des acides gras désaturés sont également décrites dans le brevet US 8,809,046.
Agir sur l'expression des enzymes impliquées dans la biosynthèse d'acides gras (poly)insaturés dans les plantes ou les microalgues pour moduler cette biosynthèse est également connu de l'homme du métier. On citera notamment la demande de brevet WO 96/21022 pour la synthèse d'acide gamma-linolénique,
La demande WO 2014/207043 décrit la préparation de microalgues génétiquement modifiées par KO (knock-out) de certains gènes. L'emploi d'une TALE-Nuclease pour la mutagénèse ciblée de gènes dans les microalgues est décrit. Plusieurs exemples de ciblage de gènes sont donnés, notamment le ciblage d'une élongase A6-ELO, active sur un acide gras porteur d'une double liaison en position Δ6.
Dans cette demande, les auteurs affirment obtenir une augmentation des TAG en inhibant l'expression d'une élongase ΔΘ-ELO mais restent silencieux sur leur capacité à cultiver les clones obtenus dans la durée. L'augmentation des TAG affirmée dans la demande WO 2014/207043 s'accompagne également d'une inhibition de la croissance cellulaire.
Or, pour une exploitation industrielle des microalgues en vue de la production d'acides gras insaturés et de TAG, il faut également pouvoir disposer de souches capables d'assurer une bonne croissance cellulaire pour produire de la biomasse riche en TAG. L'homme du métier cherche donc à disposer de souches génétiquement modifiées qui permettent d'augmenter la production de TAG sans affecter leur croissance.
EXPOSE DE L'INVENTION
La présente invention concerne des microalgues génétiquement modifiées dans lesquelles l'activité élongase ΔΟ-ELO est inhibée.
L'invention concerne en particulier des microalgues génétiquement modifiées choisies parmi les microalgues comprenant des organelles à activité photosynthétique, notamment des genres Crypthecodinium, Chlorella, Cyclotella, Euglena, Haematococcus, Isochrysis, Monodus, Nanochloris, Nannochloropsis, Nitzschia, Odontella, Phaeodactylum, Scenedesmus, Tetraselmis, et Thalassiosira.
De manière préférée, l'invention concerne des microalgues pour lesquelles l'activité élongase ΔΟ-ELO est multigénique, et plus préférentiellement lorsque seule l'activité de l'élongase ΔΟ-ELO associée à la production de MGDG est inhibée.
L'invention concerne également un procédé de production d'une biomasse enrichie en TAG qui comprend la culture de microalgues génétiquement modifiées selon l'invention sur un milieu de culture approprié pour favoriser la croissance et la multiplication des cellules des microorganismes. L'invention concerne aussi un procédé de production de TAG qui comprend l'obtention de la biomasse enrichie en TAG et l'isolation des TAG ainsi produits. DESCRIPTION DES FIGURES
La Figure 1 représente la voie reconstruite de biosynthèse des acides gras polyinsaturés à très longue chaîne chez Nannochloropsis gaditana. La synthèse des acides gras dans le chloroplaste peut générer des précurseurs 16:0 (acide palmitique), 18:0 (acide stéarique) et 18:1 (acide oléique) qui sont exportés dans le cytosol. La désaturation du 18:0 en 18:1 peut se faire soit par une désaturase chloroplastique stearoyl-acp A9-desaturase (SAD) ou une A9-désaturase du réticulum endoplasmique (ERA9FAD). Huit gènes candidats codant pour des élongases et six gènes codant pour des désaturases ont été identifiés dans le génome de N. gaditana. Les élongases identifiées comme capables de transformer un substrat saturé 16:0 sont désignées ΔΟ-ELO. Les élongases identifiées comme capables de transformer un substrat insaturé avec une double liaison en position Δ6 (18:3) sont désignées ΔΘ-ELO. Celles identifiées comme capables de transformer un substrat insaturé avec une double liaison en position Δ5 (20:5) sont désignées Δ5- ELO.
La Figure 2 représente les séquences de six élongases d'acides gras saturés ΔΟ-ELO de Nannochloropsis gaditana : Naga_100083g23 (SEQ ID NO 1 ), Naga_100162g4 (SEQ ID NO 2), Naga_100004g 102 (SEQ ID NO 3), Naga_100399g1 (SEQ ID NO 4), Naga_100162g5 (SEQ ID NO 5) et Naga_100017g49 (SEQ ID NO 6).
La Figure 3 représente l'arbre phylogénétique d'élongases d'acides gras putatives ou identifiées dans la littérature comme telles de groupes représentatifs des eukaryotes. Les séquences sélectionnées couvrent la biodiversité des eukaryotes, dont les Opisthokontes, e.g. Fungi (Saccharomyces) et Metazoa (Drosophila, Musca, Apis, Bombus, Caenorhabditis, Homo, Mus, Gallus), Heterokontes (Phaeodactylum, Thalassiosira, Ectocarpus, Phytophthora, Albugo, Saprolegnia, Aphanomyces), Apicomplexa (Toxoplasma, Neospora, Eimeria, Cryptosporidium, Plasmodium, Gregarina), Haptophytes (Emiliania), Cryptomonads (Guillardia) et Kinetoplastida (Trypanosoma, Leishmania). Les séquences d'acides aminés ont été alignées avec le programme MUSCLE et l'arbre phylogénétique construit par la method Neighbor-Joining. Une étoile indique les séquences caractérisées ou proposées comme élongases dans la littérature (Cook and Hildebrand, 2015; Jung et al., 2007; Kihara, 2012; Lee et al., 2006; Ramakrishnan et al., 2012; Tehlivets et al., 2007).
La Figure 4 représente la séquence en acides aminés de l'élongase NgAO- ELO1 (Naga_100083g23). Les motifs caractéristiques des élongases ont été identifiés suivant (Dénie and Weissman, 2007) et (Hashimoto et al., 2008) : un motif HxxHH dans un environnement riche en arginines (R) et lysines (K) est essentiel à l'activité 3-ketoacyl-CoA synthase pour l'élongation des acides gras saturés ou monoinsaturés ; un motif LYF présent également dans les séquences d'élongases de levures de la superfamille Fenl p qui accepte des acides gras avec une chaîne acyle de 18 à 24 atomes de carbone comme substrats ; un signal de rétention dans le réticulum endoplasmique associée à un motif riche en K dans la partie C-terminale (Jackson et al., 1990) ; sept domaines transmembranaires (PM) prédits avec le serveur TMHMM Server v. 2.0 (www.cbs.dtu.dk/services/TMHMM).
La Figure 5 représente un alignement de la séquence d'élongase de Nannochloropsis gaditana Naga_100083g23 avec une ΔΟ-élongase de Phaeodactylum (SEQ ID NO 7) avec la méthode Smith-Waterman avec matrice de comparaison Blossum 62 (Rice et al., 2000) : Matrice: EBLOSUM62, "Gap_penalty": 10.0, "Extend_penalty": 0.5, Longueur: 287, Identité: 123/237 (51 ,9%), Similarité: 161/237 (67,9%), Gaps: 2/237 (0,8%), Score: 690,5.
La Figure 6 représente un alignement de la séquence d'élongase de
Nannochloropsis gaditana Naga_100083g23 avec une ΔΟ-élongase de Thalassiosira (SEQ ID NO 8) avec la méthode Smith-Waterman avec matrice de comparaison Blossum 62 (Rice et al., 2000) : Matrice: EBLOSUM62, "Gap_penalty": 10.0, Extend_penalty ": 0.5, Longueur: 237, Identité: 135/287 (47,0%), Similarité: 178/287 (62,0%), Gaps: 16/287 (5,6%), Score: 713,5.
La Figure 7 représente l'analyse globale en acides gras de lignées de Nannochloropsis gaditana sauvage (WT) et transformée par KO du gène de l'élongase NgA0-ELO1 (NgA0-ELO1 -KO).
La Figure 8 représente le profil en glycérolipides de lignées de Nannochloropsis gaditana sauvage (WT) et transformée par KO du gène de l'élongase NgA0-ELO1 (NgA0-ELO1 -KO) : phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), diacylglyceryltrimethylhomoserine (DGTS), lyso-DGTS (LDGTS), (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), t acylglycerol (TAG) and diacylglycerol (DAG).
La Figure 9 représente la croissance et la biomasse obtenue par la culture de lignées de Nannochloropsis gaditana sauvage (WT) et transformée par KO du gène de l'élongase NgA0-ELO1 (NgA0-ELO1 -KO). DESCRIPTION DETAILLEE DE L'INVENTION
La présente invention concerne des microalgues génétiquement modifiées dans lesquelles l'activité élongase ΔΟ-ELO est inhibée. Les élongases ΔΟ-ELO sont celles qui acceptent un acide gras saturé comme substrat, particulièrement l'acide palmitique. Les microalgues selon l'invention permettent de produire plus de TAG que les microalgues correspondantes dont l'activité élongase n'est pas inhibée (figure 8) tout en ayant des propriétés de croissance et de production de biomasse qui ne sont pas substantiellement affectées par rapport à la souche correspondante non modifiée (figure 9). Les microalgues selon l'invention sont génétiquement modifiées de manière que l'activité élongase ΔΟ-ELO soit inhibée, plus particulièrement l'activité élongase ΔΟ-ELO associée à la production de MGDG (Mono-Galactosyl-Diacyl-Glycerol). En effet, les inventeurs ont pu constater que malgré l'inhibition de l'activité élongase ΔΟ-ELO associée à la production de MGDG, les souches génétiquement modifiées continuaient à en produire permettant sa croissance et la production de biomasse de manière non altérée par rapport à la même souche non modifiée.
Par « génétiquement modifiée » on entend selon l'invention toute modification du génome des microalgues obtenue par une intervention humaine ou sous contrôle humain consistant à introduire dans le génome des microalgues une séquence d'acide nucléique hétérologue. Cette modification a pour résultat d'enrichir le génome de la microalgue génétiquement modifiée avec l'ajout de nouvelles séquences et/ou de le réduire par élimination de fragments de séquences natives.
Par « séquence d'acide nucléique hétérologue » on entend toute séquence synthétique préparée par un humain ou sous son contrôle, notamment par copie d'un gène naturel par toute technique de réplication connue comme la PCR, par assemblage de fragments de gènes naturels, avec introduction ou non de mutations. Il peut s'agir d'une séquence codant pour un gène d'intérêt avec ou sans séquences de régulation de son expression dans un organisme hôte, ou encore des fragments synthétiques sans fonction autre qu'introduire dans un gène cible une mutation destinée à inhiber son expression (KO). La séquence d'acide nucléique hétérologue comprend avantageusement des fragments d'acide nucléique permettant de cibler son introduction dans un gène cible par toute technique connue de recombinaison homologue ou ciblage de séquence d'ADN.
Les techniques de transformations de microalgues sont bien connues de l'homme du métier. De même que les techniques de ciblage de gènes. On citera en particulier (Kilian et al., 201 1 ) ou la demande WO 2014/207043.
L'invention est particulièrement appropriée pour les microalgues comprenant des organelles à activité photosynthétique comme les chloroplastes. L'effet obtenu a été plus particulièrement identifié pour de telles microalgues qui produisent le précurseur 16:0 (palmitoyl-CoA) dans les chloroplastes.
Ces microalgues sont bien connues de l'homme du métier. On citera en particulier les microalgues des genres Crypthecodinium, Chlorella, Cyclotella, Euglena, Haematococcus, Isochrysis, Monodus, Nanochloris, Nannochloropsis, Nitzschia, Odontella, Phaeodactylum, Scenedesmus, Tetraselmis, et Thalassiosira.
Les inventeurs ont pu mettre en évidence que l'activité élongase ΔΟ-ELO pouvait être multigénique dans les microalgues. L'invention est plus particulièrement adaptée pour inhiber l'activité élongase ΔΟ-ELO dans des microalgues pour lesquelles l'activité élongase ΔΟ-ELO est multigénique, plus particulièrement lorsque seule l'activité de l'élongase ΔΟ-ELO associée à la production de MGDG est inhibée.
L'invention est plus particulièrement adaptée pour des microalgues dont l'activité élongase ΔΟ-ELO inhibée est codée par un gène codant pour une protéine de SEQ ID NO 1 ou une séquence homologue comprenant au moins 40% d'identité, de préférence au moins 45% d'identité avec la SEQ ID NO 1 et comprend un motif HxxHH dans un environnement riche en R- et K-, et un motif riche en K dans sa partie C-terminale.
Ces éléments structurels sont communs aux élongases et ont été identifiées dans la SEQ ID NO 1 codée par le gène Naga_100083g23 (figure 4) et se retrouvent dans les autres séquences d'élongases ΔΟ-ELO de Nannochloropsis gaditana (figure 2) et dans les séquences de Phaeodactylum (figure 5) et de Thalassiosira (figure 6).
Avec ces éléments structurels communs aux élongases, les séquences homologues ont au moins 100 acides aminés identiques à ceux de la SEQ ID NO 1 , de préférence au moins 120 acides aminés identiques.
L'homme du métier saura identifier d'autres séquences homologues de la SEQ ID NO 1 à partir de séquences connues ou obtenues du génome de microalgues et par des méthodes usuelles d'alignement simple ou multiples comme les méthodes Clustal (Sievers F. et al., 201 1 ) ou basées sur la méthode Smith-Waterman avec matrice de comparaison Blossum 62 (Rice et al., 2000).
De manière avantageuse, les microalgues selon l'invention sont choisies parmi les microalgues des genres Phaeodactylum, Thalassiosira et Nannochloropsis identifiées pour avoir des gènes codant pour des séquences homologues de la SEQ ID NO 1 , notamment les protéines représentées par les SEQ ID NO 7 et SEQ ID NO 8.
Selon un mode plus préférentiel de réalisation de l'invention, les microalgues sont de l'espèce Nannochloropsis gaditana qui comprend un gène codant pour l'élongase représentée par la SEQ ID NO 1 .
L'homme du métier connaît plusieurs moyens d'inhiber l'activité ΔΟ-ELO. On peut par exemple modifier le microorganisme pour favoriser la production d'un substrat qui vient se lier à l'enzyme en compétition avec l'acide gras 16:0. On peut aussi modifier le microorganisme pour exprimer un acide nucléique qui va inhiber la traduction du gène codant pour l'élongase ΔΟ-ELO. On peut également modifier le microorganisme pour exprimer un acide nucléique qui va inhiber la transcription du gène codant pour l'élongase ΔΟ-ELO. Selon un mode préféré de réalisation de l'invention, les microalgues sont transformées par l'introduction d'une mutation dans le gène codant pour l'élongase ΔΟ-ELO. Cette mutation a pour effet d'inhiber l'expression du gène (KO). La mutation peut consister en l'ajout d'un acide nucléique ou d'un fragment d'acide nucléique de manière à insérer un codon « stop » dans la partie codante du gène. La mutation peut aussi consister en une suppression de fragments d'acide nucléique dans le gène, dans la séquence de régulation promotrice et/ou dans la séquence codante. La mutation peut consister en une suppression complète du gène ciblé du génome des microalgues génétiquement modifiées.
Les méthodes permettant la transformation des microalgues pour introduire un KO d'un gène cible sont connues de l'homme du métier qui saura les adapter pour cibler le gène codant pour l'élongase ΔΟ-ELO. On citera notamment (Kilian et al., 201 1 ) ou la demande WO 2014/207043.
Selon un mode préféré de réalisation de l'invention, les microalgues génétiquement modifiées sont des Nannochloropsis gaditana modifiées par KO du gène Naga_100083g23 codant pour l'élongase ΔΟ-ELOI de SEQ ID NO 1 . L'invention concerne également la production d'une biomasse enrichie en TAG (Tri-Acyl-Glycerols), comprenant la culture de microalgues génétiquement modifiées selon l'invention dans un milieu de culture approprié pour favoriser leur croissance et leur multiplication cellulaire.
Les méthodes de culture des microalgues sont bien connues de l'homme du métier, qu'elles soient en mode autotrophe, hétérotrophe ou mixotrophe. Selon un mode préféré de réalisation de l'invention, la culture est réalisée avec apport de lumière en mode autotrophe ou mixotrophe. On citera en particulier les méthodes de culture décrites dans les demandes WO 2012/035262 et WO 2015/004403. Bien entendu, l'homme du métier pourra adapter les conditions de culture, notamment la composition du milieu, les conditions d'ajout de nutriments au cours de la culture, les cycles de température, d'oxygénation et les conditions d'éclairage pour favoriser la production de biomasse.
L'invention concerne également un procédé de production de TAG (Tri-Acyl- Glycerols), comprenant l'obtention d'une biomasse enrichie en TAG selon l'invention et l'isolation des TAG de la biomasse. Les méthodes d'isolation des TAG à partir d'une biomasse sont bien connues de l'homme du métier. On citera notamment des procédés comprenant des étapes de récupération de la biomasse à partir du milieu de culture, par exemple par filtration ou centrifugation, puis son séchage avant d'en extraire les matières grasses, dont les TAG par pressage. On citera notamment les méthodes décrites par décrites par Bligh, E.G. et Dyer, W.J. (1959) ou dans la demande WO 1997/037032.
Les TAG isolés peuvent aussi être purifiés par des méthodes connues de purification comme l'extraction liquide/liquide ou la distillation sous pression réduite.
L'invention concerne aussi une biomasse enrichie en TAG obtenue par le procédé selon l'invention.
On entend avantageusement par "biomasse" selon l'invention un ensemble de cellules de microalgues produites par leur culture, cellules qui peuvent avoir conservé ou non leur intégrité physique. On comprend donc que ladite biomasse peut comprendre une quantité de cellules de microalgues dégradées allant de 0% à 100%. Par "dégradée" on entend que l'intégrité physique desdites cellules de microalgues a pu être altérée comme par exemple des microalgues lysées, résultant par exemple d'un procédé d'homogénéisation. Une fois produite, cette biomasse pourra être brute, dans son milieu de culture ou isolée de ce dernier, séchée ou non, dégradée ou non.
L'invention concerne enfin les TAG obtenus par le procédé selon l'invention, en particulier une huile enrichie en TAG qui n'a pas été modifiée de manière substantielle par rapport à l'huile extraite de la biomasse selon l'invention.
EXEMPLES
MATÉRIEL ET MÉTHODES
Souches de N. gaditana et conditions de culture
Les souches sauvages de Nannochloropsis gaditana CCMP526 (NgWT) et les mutants sont maintenus dans un milieu f/2 (Guillard and Ryther, 1962) contenant des sels de mer modifiés (NaCI, 21 ,194 g.L1; Na2SO4, 3,55 g.L1; KCI, 0,599 g.L1;
NaHCOs, 0,174 g.L"1; KBr, 0,0863 g.L"1; H3BO3, 0,023 g.L"1; NaF, 0,0028 g.L"1;
MgCI2.6H2O, 9,592 g.L"1; CaCI2.2H2O, 1 ,344 g.L"1; and SrCI2.6H2O, 0,0218 g.L"1;
NaNO3, 46,67 mg.L"1 et NaH2PO , 3.094 mg,L"1) sous agitation douce à 20°C avec soit un cycle d'éclairage alterné nuit/jour 12h/12h, soit un éclairage continu sous lumière blanche avec un flux de photons de 30 pmol.nn~2s~1. Les cultures en erlenmeyer (50-100 mL) ou sur plaques de 24 puits (2 mL) sont inoculées avec une densité de 206 cellules. mL"1.
Les cellules sont conservées à -80°C dans le DMSO ou peuvent être maintenues sur des boites d'agar à 1 ,5% supplémentées en milieu f/2 et repiquées tous les mois.
Les densités cellulaires sont mesurées par absorbance à 750 nm d'aliquotes de cultures de 300μί (TECAN infinité M1000Pro). Toutes les mesures sont faites sur au moins trois échantillons biologiques, chacun représentant une culture individuelle d'une même souche.
Clonage de la cassette de KO du gène Naga_100083g23 (A0-ELO1) et transformation de N. gaditana CCMP526
Le vecteur de transformation comprend une cassette p35S-LoxP, un gène de résistance à la zéocine (ZEO, CDS 3078-3448) sous le contrôle du promoteur ubiquitine et du terminateur FcpA de Phaeodactylum tricornutum. Deux régions flanquantes contenant les sites de reconnaissance des enzymes de restriction spécifiques du gène ciblé pour permettre le KO par insertion dans l'ADN génomique par recombinaison homologue après transformation (Kilian et al., 201 1 ). Les séquences flanquantes du gène Naga_100083g23 (A0-ELO1 ) sont amplifiés par PCR avec les paires d'oligonucléotides 5'-gttgggaataatgcgggacc-3' (SEQ ID NO 9) et 5'-ccgctttggtttcacagtca-3' (SEQ ID NO 10) pour le flanc terminal et 5'- acgatgggtatgttgcttgc-3' (SEQ ID NO 1 1 ) et 5'-tgtacagggcggatttcact-3' (SEQ ID NO 12) pour le flanc amont.
La transformation des souches sauvages de Nannochloropsis gaditana
CCMP526 avec le vecteur de transformation est réalisée selon la méthode décrite par Killian et al. avec les modifications suivantes : 108 cellules NgWT sont récoltées pendant la phase de croissance exponentielle) une concentration de 306 cellules. mL-1, lavées deux fois avec 375 mM de D-sorbitol puis remises en suspension dans un volume final de 100 μί. La cassette de recombinaison est digérée du vecteur et 1 μg de produit de digestion est mélangé à la suspension. Après 15 minutes d'incubation sur de la glace, les cellules sont soumises à une électroporation (NEPA21 Type II, Sonidel Ltd ; MicroPulser BioRad). Le mélange de transformation est transféré dans 5 mL de milieu f/2 et incubé pendant 16 heures sous irradiation lumineuse continue. Les cellules sont ensuite ensemencées sur des boites d'agar avec 1 ,5% de milieu f/2 et 7 μg.ml"1 de zeocine. Des colonies sont obtenues après 3 à 4 semaines d'incubation sous lumière continue.
Génotypage des mutants KO Naga_100083g23 (NgA0-elo1 KO)
Le génotypage des mutants KO Naga_100083g23 a été réalisé par PCR en cherchant la présence des séquences flanquantes du gène de résistance à la zéocine et par l'absence du gène Naga_100083g23 avec les paires d'oligonuclotides suivantes : 5'-gaggaatgtgtgtggttggg-3' (SEQ ID NO 13) pour le promoteur du gène de résistance à la zéocine et 5'-gccgtattgttggagtggac-3' (SEQ ID NO 14) pour la séquence terminatrice ; 5'-gacacttctctgcctttgcc-3' (SEQ ID NO 15) et 5'- atggtggtaccagtggagga-3' (SEQ ID NO 16) pour le gène Naga_100083g23.
Le nombre de cassettes insérées dans le génome de N. gaditana dans trois clones indépendants a été quantifié par qPCR sur de l'ADN extrait selon la méthode au chloroforme-phénol (Pacific Biosciences of California, Inc, 2012 ; Cao et. Al., 2012) et en utilisant les oligonucléotides suivants : Naga_100083g23F 5'- gtgggcaccaaggttatgga-3' (SEQ ID NO 17); Naga_100083g23R 5'- gaaggaggtgtggtacggtg-3' (SEQ ID NO 18); papF 5'-aagtggtacctttgctccgt-3' (SEQ ID NO 19); papR 5'-aaggtagccgagtagccaaa-3' (SEQ ID NO 20); tubF 5'- ttgagcataccgacgtgact-3' (SEQ ID NO 21 ) ; tubR 5'-gcgatgagcctgttcagatt-3' (SEQ ID NO 22); zeoF 5'-tgtgccaaaatcatacagcagg-3' (SEQ ID NO 23); zeoR 5'- cgaagtcgtcctccacgaag-3' (SEQ ID NO 24).
Extraction et analyse des lipides
L'extraction et l'analyse des lipides ont été réalisées selon les méthodes décrites par Simionato et al. (2013). L'analyse par spectrométrie de masse a été réalisée par comparaison avec des standards décrits par Abida et al. (2015).
RÉSULTATS
Les résultats obtenus sont représentés sur les figures 7 à 9. On n'observe pas de différence statistiquement notable des quantités de lipides produites entre les souches sauvages (WT) et les mutants NgA0-elo1 KO (figure 7.A). On observe en revanche une modification du type d'acides gras produits (figure 7.B), avec une baisse de 8% de la quantité d'acide éicosapentaénoique, ou EPA (20:5), produite.
Lorsque l'on compare les différents glycérolipides produits, (figure 8) on constate une différence marquée entre les souches WT et les mutants NgA0-elo1 KO avec chez les mutants une baisse de la production de MGDG (-43,8 %) et une augmentation de la production de TAG (+71 %).
Enfin, lorsque l'on compare les courbes de croissances (figure 9A) et la production de biomasse (figure 9B), on constate que l'inhibition de l'expression du gène Naga_100083g23 chez les mutants ne modifie pas ces propriétés.
Les analyses des glycérolipides montrent une relation entre le KO du gène
Naga_100083g23 codant pour l'élongase ΔΟ-ELOI et une baisse de la synthèse d'EPA et une baisse de la synthèse de MGDG concomitante à une augmentation de la synthèse de TAG. La biomasse produite étant la même, on obtient une augmentation de la production de TAG d'un facteur 1 ,7 à 2.
REFERENCES
BREVETS ET DEMANDES DE BREVETS
US 8,809,046
WO 96/21022
W0 1997/037032
WO 2012/035262
WO 2014/207043
WO 2015/004403 PUBLICATIONS
Abida H, Dolch LJ, Mei C, Villanova V, Conte M, Block MA, Finazzi G, Bastien O, Tirichine L, Bowler C, Rebeille F, Petroutsos D, Jouhet J, Maréchal E (2015) Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol 167: 1 18-136.
Bligh, E.G. et Dyer, W.J. (1959); A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37:91 1 -917.
Cook O, Hildebrand M (2015) Enhancing LC-PUFA production in Thalassiosira pseudonana by overexpressing the endogenous fatty acid elongase gènes. J Appl Phycol 1 -9.
Cao S, Zhang X, Ye N, Fan X, Mou S, Xu D, Liang C, Wang Y, Wang W (2012) Evaluation of putative internai référence gènes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR. Biochem Biophys Res Commun 424: 1 18-123.
Dénie V, Weissman JS (2007) A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130: 663-677.
Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Canadian journal of microbiology 8: 229-239.
Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M (2008) The répertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic génomes. J Lipid Res 49: 183-191 .
Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for rétention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9: 3153- 3162. Jung A, Hollmann M, Schafer MA (2007) The fatty acid elongase NOA is necessary for viability and has a somatic rôle in Drosophila sperm development. J Cell Sci 120: 2924-2934.
Kihara A (2012) Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem 152: 387-395.
Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108: 21265-21269.
Lee SH, Stephens JL, Paul KS, Englund PT (2006) Fatty acid synthesis by elongases in trypanosomes. Cell 126: 691 -699.
Ramakrishnan S, Docampo MD, Macrae Jl, Pujol FM, Brooks CF, van Dooren GG, Hiltunen JK, Kastaniotis AJ, McConville MJ, Striepen B (2012) Apicoplast and endoplasmic reticulum cooperate in fatty acid biosynthesis in apicomplexan parasite Toxoplasma gondii. J Biol Chem 287: 4957-4971 .
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Sôding J, Thompson JD, Higgins DG (201 1 ) Fast, scalable génération of high-quality protein multiple séquence alignments using Clustal Oméga. Molecular Systems Biology, 7:539
Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsis gaditana to nitrogen starvation indudes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 12: 665-676.
Rice P., Longden I., Bleasby A. (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 16(6):276-277
Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771 : 255-270.

Claims

REVENDICATIONS
1 . Microalgues génétiquement modifiées dans lesquelles l'activité élongase ΔΟ-ELO codée par un gène codant pour une protéine de SEQ ID NO 1 ou une séquence homologue comprenant au moins 45% d'identité avec la SEQ ID NO 1 avec un motif HxxHH dans un environnement riche en R- et K-, et un motif riche en K dans sa partie C-terminale est inhibée par l'introduction d'une mutation dans ledit gène codant pour ladite élongase ΔΟ-ELO qui inhibe l'expression dudit gène (KO).
2. Microalgue selon la revendication 1 , caractérisées en ce qu'elle est choisie parmi les microalgues comprenant des organelles à activité photosynthétique.
3. Microalgue selon la revendication 2, caractérisées en ce qu'elle est choisie parmi les microalgues des genres Crypthecodinium, Chlorella, Cyclotella, Euglena, Haematococcus, Isochrysis, Monodus, Nanochloris, Nannochloropsis, Nitzschia, Odontella, Phaoedactylum, Scenedesmus, Tetraselmis, et Thalassiosira.
4. Microalgue selon l'une des revendications 1 à 3, caractérisée en ce qu'elle est choisie parmi les microalgues des genres Phaoedactylum, Thalassiorisa et Nannochloropsis.
5. Microalgue selon l'une des revendications 1 à 4, caractérisée en ce qu'elle est une Nannochloropsis gaditana modifiée par KO du gène Naga_100083g23 codant pour l'élongase ΔΟ-ELOI de SEQ ID NO 1 .
6. Procédé de production d'une biomasse enrichie en TAG (Tri-Acyl- Glycerols), caractérisée en ce qu'il comprend la culture de microalgues génétiquement modifiées selon l'une des revendications 1 à 5 dans un milieu de culture approprié pour favoriser la croissance et la multiplication des cellules de microalgues.
7. Procédé de production de TAG (Tri-Acyl-Glycerols), caractérisé en ce qu'il comprend l'obtention d'une biomasse enrichie en TAG selon la revendication 6 et l'isolation des TAG de la biomasse.
8. Biomasse, caractérisée en ce qu'elle comprend des microalgues selon l'une des revendications 1 à 6.
PCT/EP2017/065869 2016-06-28 2017-06-27 Microalgue modifiée pour une production enrichie en tag WO2018002059A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780040195.4A CN109477060B (zh) 2016-06-28 2017-06-27 增加tag产量的修饰藻类
AU2017288438A AU2017288438B2 (en) 2016-06-28 2017-06-27 Alga modified for increased tag production
US16/308,226 US10724011B2 (en) 2016-06-28 2017-06-27 Alga modified for increased tag production
IL263792A IL263792B2 (en) 2016-06-28 2018-12-18 Algae modified for increased production of triacylglycerols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656007 2016-06-28
FR1656007A FR3053052B1 (fr) 2016-06-28 2016-06-28 Microalgue modifiee pour une production enrichie en tag

Publications (2)

Publication Number Publication Date
WO2018002059A1 WO2018002059A1 (fr) 2018-01-04
WO2018002059A9 true WO2018002059A9 (fr) 2018-04-05

Family

ID=57233580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/065869 WO2018002059A1 (fr) 2016-06-28 2017-06-27 Microalgue modifiée pour une production enrichie en tag

Country Status (6)

Country Link
US (1) US10724011B2 (fr)
CN (1) CN109477060B (fr)
AU (1) AU2017288438B2 (fr)
FR (1) FR3053052B1 (fr)
IL (1) IL263792B2 (fr)
WO (1) WO2018002059A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053052B1 (fr) * 2016-06-28 2021-02-12 Fermentalg Microalgue modifiee pour une production enrichie en tag

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614393A (en) 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
EP2251410A3 (fr) 1996-03-28 2011-09-28 DSM IP Assets B.V. Preparation d'acide gras polyinsature microbien a partir d'huile contenant une biomasse pasteurisee
GB0107510D0 (en) * 2001-03-26 2001-05-16 Univ Bristol New elongase gene and a process for the production of -9-polyunsaturated fatty acids
JP5123861B2 (ja) * 2005-11-23 2013-01-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ9エロンガーゼおよびそれらの多価不飽和脂肪酸製造における使用
US7678560B2 (en) * 2006-05-17 2010-03-16 E.I. Du Pont De Nemours And Company Δ 5 desaturase and its use in making polyunsaturated fatty acids
CA2722275A1 (fr) * 2008-04-25 2009-10-29 Commonwealth Scientific And Industrial Research Organisation Polypeptides et procedes de production de triacylglycerols comprenant des acides gras modifies
US8809046B2 (en) * 2011-04-28 2014-08-19 Aurora Algae, Inc. Algal elongases
FR2964667B1 (fr) 2010-09-15 2014-08-22 Fermentalg Procede de culture d'algues unicellulaires mixotrophes en presence d'un apport lumineux discontinu sous forme de flashs
CN102226196B (zh) * 2011-05-18 2012-11-21 上海海洋大学 一种编码缺刻缘绿藻δ-6脂肪酸延长酶的dna序列及其应用
JP2016523093A (ja) 2013-06-25 2016-08-08 セレクティスCellectis バイオ燃料生産のための改変された珪藻
FR3008422B1 (fr) 2013-07-12 2017-11-17 Fermentalg Procede de culture cellulaire decouple
FR3053052B1 (fr) * 2016-06-28 2021-02-12 Fermentalg Microalgue modifiee pour une production enrichie en tag

Also Published As

Publication number Publication date
IL263792B2 (en) 2023-07-01
AU2017288438A1 (en) 2019-01-03
FR3053052B1 (fr) 2021-02-12
CN109477060B (zh) 2022-06-17
US20190264183A1 (en) 2019-08-29
IL263792A (en) 2019-02-03
FR3053052A1 (fr) 2017-12-29
CN109477060A (zh) 2019-03-15
US10724011B2 (en) 2020-07-28
WO2018002059A1 (fr) 2018-01-04
AU2017288438B2 (en) 2022-09-15
IL263792B1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
Haslam et al. Overexpression of an endogenous type 2 diacylglycerol acyltransferase in the marine diatom Phaeodactylum tricornutum enhances lipid production and omega-3 long-chain polyunsaturated fatty acid content
CA2421267C (fr) Fad4, fad5, fad5-2, and fad6, membres de la famille des desaturases d'acides gras et utilisations associees
An et al. Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L
Khozin-Goldberg et al. Microalgae as a source for VLC-PUFA production
Liu et al. Cloning and functional characterization of a polyunsaturated fatty acid elongase in a marine bivalve noble scallop Chlamys nobilis Reeve
Li et al. Characterization of two Δ5 fatty acyl desaturases in abalone (Haliotis discus hannai Ino)
Liang et al. De novo sequencing and global transcriptome analysis of Nannochloropsis sp.(Eustigmatophyceae) following nitrogen starvation
Bai et al. Long‐chain acyl‐CoA synthetases activate fatty acids for lipid synthesis, remodeling and energy production in Chlamydomonas
Chen et al. Different carbon and nitrogen sources regulated docosahexaenoic acid (DHA) production of Thraustochytriidae sp. PKU# SW8 through a fully functional polyunsaturated fatty acid (PUFA) synthase gene (pfaB)
US6448055B1 (en) Δ9-desaturase gene
US20140256927A1 (en) Increasing the lipid content in microalgae by genetically manipulating a triacylglycerol (tag) lipase
Hong et al. A transgene expression system for the marine microalgae Aurantiochytrium sp. KRS101 using a mutant allele of the gene encoding ribosomal protein L44 as a selectable transformation marker for cycloheximide resistance
Dellero et al. The zoospores of the thraustochytrid Aurantiochytrium limacinum: transcriptional reprogramming and lipid metabolism associated to their specific functions
Véra et al. Fatty acid composition of freshwater heterotrophic flagellates: an experimental study
Chodok et al. The Plackett–Burman design for evaluating the production of polyunsaturated fatty acids by Physcomitrella patens
Ouyang et al. Accumulation of arachidonic acid in a green microalga, Myrmecia incisa H4301, enhanced by nitrogen starvation and its molecular regulation mechanisms
WO2018002059A1 (fr) Microalgue modifiée pour une production enrichie en tag
Tan et al. Molecular analysis of∆ 6 desaturase and∆ 6 elongase from Conidiobolus obscurus in the biosynthesis of eicosatetraenoic acid, a ω3 fatty acid with nutraceutical potentials
Wah et al. Changes in lipid profiles of a tropical benthic diatom in different cultivation temperature
Sitnik et al. DGAT1 from the arachidonic-acid-producing microalga Lobosphaera incisa shows late gene expression under nitrogen starvation and substrate promiscuity in a heterologous system
WO2016031947A1 (fr) Procédé de production de lipides à haute teneur en acide eicosapentaénoïque
KR101519704B1 (ko) 포스파티딘산 포스파타아제 유전자와 그 이용
Shi et al. Identification and characterization of a novel C20-elongase gene from the marine microalgae, Pavlova viridis, and its use for the reconstitution of two pathways of long-chain polyunsatured fatty acids biosynthesis in Saccharomyces cerevisiae
KR102049695B1 (ko) 오메가-3 생산 증진을 위한 미세조류의 배양 방법
CN109477079A (zh) 增加微藻中ω-3多不饱和脂肪酸产量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017288438

Country of ref document: AU

Date of ref document: 20170627

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17735447

Country of ref document: EP

Kind code of ref document: A1