WO2018001333A1 - 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件 - Google Patents

低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件 Download PDF

Info

Publication number
WO2018001333A1
WO2018001333A1 PCT/CN2017/090911 CN2017090911W WO2018001333A1 WO 2018001333 A1 WO2018001333 A1 WO 2018001333A1 CN 2017090911 W CN2017090911 W CN 2017090911W WO 2018001333 A1 WO2018001333 A1 WO 2018001333A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy cast
cast steel
low alloy
weight percentage
low
Prior art date
Application number
PCT/CN2017/090911
Other languages
English (en)
French (fr)
Inventor
文超
张俊新
Original Assignee
中车戚墅堰机车车辆工艺研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车戚墅堰机车车辆工艺研究所有限公司 filed Critical 中车戚墅堰机车车辆工艺研究所有限公司
Publication of WO2018001333A1 publication Critical patent/WO2018001333A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G9/00Draw-gear
    • B61G9/20Details; Accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention belongs to the technical field of alloy steel, and relates to a low alloy cast steel, in particular to a low alloy cast steel containing tungsten rhenium, a smelting method and a heat treatment method of the low alloy cast steel, and an E grade steel obtained after the heat treatment, and Mainly applied to the railway locomotive parts prepared by the E-grade steel.
  • the alloy cast steel was graded and classified as A grade steel.
  • E-grade steel is the highest grade low alloy cast steel in the American Railway Association (AAR) M-201-05 standard. At present, the components of the widely used E-grade steel and their corresponding weight percentages are: carbon 0.22% to 0.28%, silicon 0.20% to 0.40%, manganese 1.20% to 1.50%, phosphorus ⁇ 0.020%, sulfur ⁇ 0.020%, Chromium 0.40% to 0.60%, nickel 0.35% to 0.55%, molybdenum 0.20% to 0.30%, and aluminum 0.02% to 0.06%. E-grade steel can be widely used in the manufacture of steel castings with corresponding strength grades in railway locomotives, such as coupler hooks, knuckles and other components.
  • the present invention provides the following technical solutions.
  • a low alloy cast steel the components thereof and their weight percentage relative to the total weight of the low alloy cast steel are:
  • a heat treatment method for the above low alloy cast steel Law which includes the steps:
  • the normalizing treatment is performed on the steel casting, wherein the normalizing treatment is: heating the steel casting to 920 ° C to 940 ° C for 2 to 5 hours, and then cooling the air to room temperature;
  • the quenching treatment including the quenching treatment and the tempering treatment is performed on the steel material after the normalizing treatment, wherein the quenching treatment is: heating the steel casting member to 890 ° C to 910 ° C for 2 to 5 hours, and then discharging the furnace Cooling in water, wherein the temperature of the water is 20 ° C ⁇ 40 ° C; the tempering treatment is to heat the steel casting after quenching to 580 ° C ⁇ 600 ° C for 3 to 5 hours, and then air cooled to room temperature.
  • an E-grade steel obtained by treating the above low alloy cast steel by the above heat treatment method.
  • a smelting method for the above low alloy cast steel wherein the smelting is carried out by an electric arc furnace oxidation method, comprising the steps of:
  • the corresponding charge is put into the electric arc furnace, wherein the furnace charge comprises ferromolybdenum, tungsten iron and nickel plate;
  • Oxidation period step when the bath temperature is greater than or equal to 1560 ° C, iron ore is added to the electric arc furnace to decarburize, and dephosphorization operation is performed;
  • the tapping step and the pouring step are identical to The tapping step and the pouring step.
  • a smelting method for the above low alloy cast steel wherein the medium frequency induction furnace is used for smelting, comprising the steps of:
  • the corresponding charge is put into the intermediate frequency induction furnace, wherein the furnace charge comprises ferromolybdenum, tungsten iron and nickel plate;
  • a melting period step of melting the charge when the temperature of the charge is completely melted to 1500 ° C ⁇ 20 ° C, adding a neodymium iron alloy to the intermediate frequency induction furnace;
  • the tapping step and the pouring step are identical to The tapping step and the pouring step.
  • a railway locomotive component formed by the preparation of the E-grade steel described above.
  • the low alloy cast steel of the invention mainly adopts a multi-component composite addition method to form a distribution ratio, wherein the main elements used for strengthening the elements are carbon, silicon, manganese, chromium, nickel, molybdenum and tungsten. And ⁇ , and choose the appropriate ratio, can improve the hardness and hardenability of the low alloy cast steel, and make the obtained steel castings after heat treatment the structure is tempered sorbite; in particular, composite alloy The elements tungsten and rhenium, and choose the appropriate ratio, can effectively inhibit the austenite grain growth during the casting process, refine the grains, strengthen the matrix and improve the hardenability of the steel castings. Therefore, the low-alloy cast steel of the present invention can be used as an E-grade steel after normalizing and quenching and tempering heat treatment, and has excellent weldability, good plasticity and impact toughness, and good stability.
  • the carbon equivalent of the low alloy cast steel of the present invention may be in the range of 0.55% to 0.73%, and may further be optimized in the range of 0.63% to 0.66%.
  • the metallographic structure of the obtained low alloy cast steel is mainly tempered sorbite, and the mechanical properties thereof satisfy the AAR M-201-05 standard.
  • Fig. 1 is a photograph showing a metallographic structure of a low alloy cast steel obtained by a normalizing treatment and a quenching and tempering treatment, which is magnified 100 times, in accordance with an embodiment of the present invention.
  • FIG. 2 is a picture of a metallographic structure obtained by magnifying 500 times of a low alloy cast steel according to an embodiment of the present invention after normalizing treatment and quenching and tempering treatment.
  • low alloy cast steel means alloy steel having a alloying element content of less than 5% by weight in cast steel
  • E grade steel is revised and released in 2005 according to the American Railway Association (AAR).
  • AAR American Railway Association
  • the measurement of mechanical properties is carried out in accordance with the relevant provisions of the M-201-05 standard of AAR, and the sample used for the measurement of mechanical properties is a Kiel test block.
  • the hardenability test was performed in accordance with the requirements of ASTM Standard A255, wherein the hardness at J13 represents the hardness at 13 mm from the water quenched end face.
  • C represents the weight percentage of carbon
  • Mn represents the weight percentage of manganese
  • Si represents the weight percentage of silicon
  • Cr represents the weight percentage of chromium
  • Mo represents the weight percentage of molybdenum
  • V represents the weight percentage of vanadium
  • Ni represents the weight percentage of nickel.
  • Cu represents the weight percentage of copper.
  • the quenching treatment is: heating the steel castings to 890 ° C ⁇ 910 ° C for 2 to 5 hours, and then cooling in water, wherein the temperature of the water is 20 ° C ⁇ 40 ° C;
  • the tempering treatment is: heating the steel material after the quenching treatment to 580 ° C ⁇ 600 ° C for 3 to 5 hours, and then air cooling to room temperature.
  • the normalizing treatment is performed on the steel casting, wherein the normalizing treatment is: heating the steel casting to 920 ° C to 940 ° C for 2 to 5 hours, and then cooling the air to room temperature;
  • the quenching treatment including the quenching treatment and the tempering treatment is performed on the steel material after the normalizing treatment, wherein the quenching treatment is: heating the steel casting member to 890 ° C to 910 ° C for 2 to 5 hours, and then discharging the furnace Cooling in water, wherein the temperature of the water is 20 ° C ⁇ 40 ° C; the tempering treatment is to heat the steel casting after quenching to 580 ° C ⁇ 600 ° C for 3 to 5 hours, and then air cooled to room temperature.
  • the corresponding charge is put into the electric arc furnace, wherein the furnace charge comprises ferromolybdenum, tungsten iron and nickel plate;
  • Oxidation period step when the bath temperature is greater than or equal to 1560 ° C, iron ore is added to the electric arc furnace to decarburize, and dephosphorization operation is performed;
  • a reduction period step adding a ferrochrome alloy to the electric arc furnace, and comparing the result with the weight percentage of each chemical component of the low alloy cast steel according to the result of the sampling analysis chemical composition operation, into the electric arc furnace At least adding a strontium iron alloy;
  • the tapping water step and the pouring step are The tapping water step and the pouring step.
  • the tungsten iron is of a grade of FeW75, wherein the weight percentage of W is 75%.
  • the corresponding charge is put into the medium frequency induction furnace, wherein the furnace charge comprises ferrochrome, ferromolybdenum, tungsten iron and nickel plate;
  • a melting period step of melting the charge when the temperature of the charge is completely melted to 1500 ° C ⁇ 20 ° C, adding a neodymium iron alloy to the intermediate frequency induction furnace;
  • the tapping water step and the pouring step are The tapping water step and the pouring step.
  • the tungsten iron is of a grade of FeW75, wherein the weight percentage of W is 75%.
  • the smelting method according to claim 30 or 32 wherein in the tapping step, the steel is kept at a tapping temperature and subjected to sampling and analysis of chemical composition operations, and whether or not tapping is performed based on the result of analyzing the chemical composition And, before the tapping water, add an appropriate amount of aluminum in the ladle (the aluminum block can be used for deoxidation).
  • the railway locomotive component according to claim 34 wherein the railway locomotive component is a coupler hook body, a knuckle, a hook frame or other components having the same mechanical performance requirements.
  • the component contents are all based on their weight percentages.
  • the components and their weight percentages are as follows: carbon 0.26%, silicon 0.27%, manganese 0.91%, phosphorus 0.013%, sulfur 0.014%, chromium 0.52%, nickel 0.56%, molybdenum 0.23%, aluminum 0.05%, copper 0.07%, tungsten 0.08%, niobium 0.03%, of which tungsten + niobium is 0.11%, the balance is iron and other unavoidable elements.
  • the tungsten-rhenium-containing low alloy cast steel of Example 1 can be, but is not limited to, prepared by the smelting method exemplified below.
  • Example 1 the smelting is performed by an electric arc furnace large slag oxidation method, which specifically includes the following steps:
  • the furnace charge is put into the furnace at a time according to the normal conditions.
  • the furnace charge generally includes scrap steel, high-quality pig iron, iron alloy, recycled material, etc., and they are sequentially added to the furnace.
  • the order of addition can be Variations, wherein the charge should include a suitable amount of ferromolybdenum, tungsten iron, nickel plate, wherein the tungsten iron is specifically made of tungsten iron of the grade of FeW75, which means that the weight percentage of W is about 75%.
  • the furnace material melting and slag dephosphorization treatment can be carried out at the maximum power matched by the electric arc furnace. When the charge is melted by 25% to 45%, the oxygen can be blown and the furnace charge can be accelerated.
  • IV reduction period after the formation of the thin slag, adding the ferrochrome alloy, then adding carbon powder or adding silicon carbide on the surface of the slag to form the reducing slag; when the reducing slag is substantially turned into white, stirring, sampling and analyzing the chemical composition operation, and According to the results of the test report, based on the chemical composition weight percentage requirement of the low alloy cast steel of the above Example 1, the addition of the aluminum block, the ferrosilicon alloy, the ferromanganese alloy and the neodymium iron alloy were sequentially controlled.
  • the addition of the strontium iron alloy in the reduction period step is avoided, the oxidation reaction of the bismuth in the molten steel is avoided earlier, the enthalpy loss is reduced, and the percentage content of the lanthanum element in the low alloy cast steel after formation is ensured. The corresponding role.
  • V tapping When the temperature of the molten pool is in the range of 1620 ⁇ 1650°C, the chemical composition operation is carried out by sampling and analysis; after the composition is qualified, when the temperature reaches the tapping temperature, the tapping and steel slag are carried out. Mixing and desulfurization operation.
  • the medium frequency induction furnace is used for smelting, and the smelting method specifically includes the following steps:
  • the prepared charge is put into the medium frequency induction furnace, wherein the furnace charge can include, for example, scrap steel, high quality pig iron, iron alloy, recycled material, etc., which are sequentially added to the furnace, wherein the alloy mainly includes ferrochrome , ferromolybdenum, tungsten iron, nickel plate, tungsten iron grade is FeW75, wherein the weight percentage of W is about 75%.
  • the lower part of the furnace is tightly packed and the upper part is loosely loaded, so that the charge is easily and smoothly descended, and the probability of overhead of the charge is reduced.
  • the furnace material is melted at the maximum power of the medium frequency induction furnace; when the temperature of the furnace material is completely melted, the temperature reaches 1500 °C ⁇ 20 °C, and the bismuth iron alloy is added.
  • the addition of the strontium iron alloy after the melting is completed, the oxidation loss of the bismuth is reduced, and the percentage content of the bismuth element in the low alloy cast steel after formation and the corresponding effect are ensured.
  • Pre-deoxidation continue to send electricity at the maximum power matched by the intermediate frequency induction furnace to raise the temperature of the molten pool.
  • an appropriate amount of aluminum block, ferromanganese alloy and ferrosilicon alloy are sequentially added to the furnace for pre-preparation. Deoxygenation operation.
  • IV tapping heat preservation at a predetermined tapping temperature, and sampling and analyzing the chemical composition operation.
  • the tapping water is used; wherein, before the tapping water, an appropriate amount of aluminum block is added into the ladle.
  • V casting After the molten steel has completed the specified sedation time in the ladle, the casting molding and pouring operation is carried out.
  • the steel sheet can be heat-treated to obtain a grade E steel having better performance.
  • the heat treatment process is positive. Fire and quenching and tempering. Specifically, the normalizing treatment process is heated to 930 ° C for 3 hours, and then air-cooled; the quenching and tempering treatment process is heating to 910 ° C for 2 hours, and the furnace is water-cooled, the water temperature is 35 ° C, and then the quenched casting is re-cast. The steel was heated to 590 ° C for 3.5 hours and then cooled to room temperature in air.
  • the metallographic structure obtained is mainly tempered sorbite, and the specific metallographic structure is shown in FIG.
  • Fig. 2 the typical tempered sorbite metallographic morphology can be seen from Fig. 1 and Fig. 2, and the grain size is remarkably refined, and the uniformity of the structure is very good, which is due to the low alloy cast steel.
  • tungsten and niobium are added in a certain weight percentage, the austenite grain growth during casting can be effectively suppressed, which is beneficial to refining the grain of cast steel, and the low alloy cast steel obtained after normalizing and quenching and tempering treatment
  • the tempered sorbite grains are also relatively fine.
  • tungsten and ruthenium are added in a certain weight percentage, and at the same time, it is beneficial to strengthen the matrix to improve the hardenability of the low alloy cast steel.
  • the mechanical properties of the low alloy cast steel of the above Example 1 (after the above heat treatment) were measured, and the following test results were obtained: tensile strength 906 MPa, yield strength 771 MPa, elongation 17.5%, reduction in area 49%, -40 ° C
  • the Charpy V-type impact energy (average value) is 67 J
  • the hardness is 271 HBW
  • the hardness at J13 is 36 HRC.
  • the low-alloy cast steel based on the above Example 1 can obtain the E-grade steel satisfying the mechanical performance requirements of the E-class cast steel of the American Railway Association Standard M-201-05, and Plasticity (for example, in terms of elongation) and impact toughness (from Charpy V-type impact work) are particularly good. From the hardness performance index at J13, the hardenability of low-alloy cast steel is also clearly obtained. Performance indicators such as lift, tensile strength and yield strength also reflect the strengthening of the matrix of low alloy cast steel.
  • the low-alloy cast steel of the above Example 1 can be used as an E-grade steel after the above-described normalizing and quenching heat treatment, and has excellent weldability, good plasticity, and impact toughness.
  • Table 1 Composition (% by weight) and carbon equivalent of the low alloy cast steel of Examples 2 to 12
  • the tungsten-rhenium-containing low alloy cast steels of Examples 2 to 12 can be, but are not limited to, prepared by the smelting methods of Examples 1 and 2 above to obtain corresponding steel castings.
  • the heat treatment can be performed to obtain the E-grade steel with better performance.
  • the heat treatment process is normalized and quenched and tempered; Ground, normalizing treatment usually heats the steel castings to 920 ° C ⁇ 940 ° C for 2 to 5 hours, and then air cooled to room temperature; quenching and tempering treatment is quenching + tempering, quenching treatment usually heats the steel castings Heated at 890 ° C ⁇ 910 ° C for 2 to 5 hours, and then cooled in water, the temperature of the water is 20 ° C ⁇ 40 ° C, tempering treatment usually heats the quenched steel castings to 580 ° C ⁇ 600 ° C insulation 3 ⁇ 5 Hours, then air cooled to room temperature.
  • the obtained metallographic structure is mainly tempered sorbite, and the specific metallographic structure is similar to that shown in Figs. 1 and 2 Show.
  • the low alloy cast steel based on the above Examples 2 to 12 can obtain the E grade steel satisfying the mechanical performance requirements of the E grade cast steel of the American railway Association Standard M-201-05, and Especially good in terms of plasticity (for example, it can be greater than or equal to 15.0% or 15.5% in terms of elongation) and impact toughness (which can be greater than or equal to 40 J from Charpy V-type impact work), from J13 Hardness (greater than or equal to 34HRC) performance data, the hardenability of low alloy cast steel is also significantly improved, tensile strength (greater than or equal to 832Mpa) and yield strength (greater than or equal to 695Mpa) and other performance indicators can also reflect low The matrix of the alloy cast steel is strengthened.
  • the low-alloy cast steels of the above Examples 2 to 12 can be used as E-grade steel after the normalizing and quenching and tempering heat treatments exemplified above, and have excellent weldability, good plasticity, and impact toughness.
  • the main reason for the good mechanical properties of the low alloy cast steels of the above Examples 1 to 12 is that the use of the higher content of manganese is overcome, and the distribution ratio is mainly achieved by the method of multi-component compound addition.
  • the alloying elements tungsten and rhenium are added in combination, and a suitable ratio (tungsten 0.02% to 0.10%, ⁇ 0.01% to 0.05%, and must satisfy 0.04% ⁇ tungsten + ⁇ ⁇ 0.12%) can be effectively selected.
  • the percentage of manganese ranges from 0.80% to 1.00%, and the content of manganese in the conventional E-grade steel decreases, and the material segregation decreases.
  • the percentage of molybdenum ranges from 0.15% to 0.25% (for example, 0.15% to 0.19%), and is also relatively decreased, which is advantageous for reducing the cost of the low alloy cast steel.
  • the low-alloy cast steels of the above embodiments 1 to 12 can be used to prepare thick parts on railway locomotives after normalizing and quenching and tempering heat treatment, for example, key components of traction buffers of heavy-duty trucks, such as couplers. Hook body, knuckle, hook frame, etc. It should be understood that the specific application of the low alloy cast steel of the above embodiment is not limited to the above embodiment, and those skilled in the art can also use it for components on railway machines or other equipment having substantially the same mechanical performance requirements, for example, Cylinder head parts in hydraulic cylinders.

Abstract

低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件,属于合金钢技术领域。低合金铸钢的各组分及其相对于所述低合金铸钢总重的重量百分比为:碳0.23%~0.28%、硅0.20%~0.40%、锰0.80%~1.00%、磷≤0.020%、硫≤0.020%、铬0.45%~0.55%、镍0.50%~0.60%、钼0.15%~0.25%、铝0.02%~0.06%,以及钨0.02%~0.10%、铌0.01%~0.05%,且必须满足0.04%≤钨+铌≤0.12%;以及余量为铁和其他不可避免的元素。该低合金铸钢含有按一定配比使用的钨和铌,在经过热处理后,可以作为E级钢使用,并且,具有优越的可焊性、良好的塑性和冲击韧性,且机械性能稳定性好。

Description

低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件 技术领域
本发明属于合金钢技术领域,涉及一种低合金铸钢,特别涉及一种含钨铌的低合金铸钢、该低合金铸钢的冶炼方法和热处理方法、热处理后获得的E级钢、以及主要应用该E级钢制备的铁路机车零部件。
背景技术
美国铁路协会(AAR)于2005年修订并发布了M-201-05标准,以满足诸如铁道行业铸造零部件的材质需求,其中对合金铸钢进行了分级定义,其被分为A级钢、B级钢、B+级钢、C级钢和E级钢,并且相应地定义它们的主要化学成分范围和机械性能等。
E级钢是美国铁路协会(AAR)M-201-05的标准中最高等级的低合金铸钢。目前,广泛使用的E级钢的组分及其相应的重量百分比为:碳0.22%~0.28%、硅0.20%~0.40%、锰1.20%~1.50%、磷≤0.020%、硫≤0.020%、铬0.40%~0.60%、镍0.35%~0.55%、钼0.20%~0.30%、铝0.02%~0.06%。E级钢可以广泛用于制造铁路机车中相应强度等级要求的铸钢件,如车钩钩体、钩舌等零部件。
发明内容
本发明的目的在于,提出一种新型的低合金铸钢,其能够对应至少满足E级钢的机械性能要求。
为实现以上目的或者其他目的,本发明提供以下技术方案。
按照本发明的第一方面,提供一种低合金铸钢,其各组分及其相对于所述低合金铸钢总重的重量百分比为:
碳0.23%~0.28%、硅0.20%~0.40%、锰0.80%~1.00%、磷≤0.020%、硫≤0.020%、铬0.45%~0.55%、镍0.50%~0.60%、钼0.15%~0.25%、铝0.02%~0.06%,以及钨0.02%~0.10%、铌0.01%~0.05%,且必须满足0.04%≤钨+铌≤0.12%;以及余量为铁和其他不可避免的元素。
按照本发明的第二方面,提供一种上述低合金铸钢的热处理方 法,其包括步骤:
提供所述低合金铸钢的铸钢件;
对所述铸钢件进行正火处理,其中,所述正火处理为:将铸钢件加热到920℃~940℃保温2~5小时,然后出炉空冷到室温;
对正火处理后的铸钢件进行包括淬火处理和回火处理的调质处理,其中,所述淬火处理为:将铸钢件加热到890℃~910℃保温2~5小时,然后出炉在水中冷却,其中水的温度为20℃~40℃;所述回火处理为将淬火处理后的铸钢件加热到580℃~600℃保温3~5小时,然后出炉空冷到室温。
按照本发明的第三方面,提供一种上述低合金铸钢通过上述热处理方法处理后获得的E级钢。
按照本发明的第四方面,提供一种上述低合金铸钢的冶炼方法,其中采用电弧炉氧化法进行冶炼,包括以下步骤:
装料步骤:基于组分要求,将相应的炉料投入所述电弧炉内,其中入炉炉料包括钼铁、钨铁和镍板;
对炉料进行熔化的熔化期步骤;
氧化期步骤:在熔池温度大于或等于1560℃时,向所述电弧炉内加入铁矿石以脱碳,并进行脱磷操作;
还原期步骤:向所述电弧炉内加入铬铁合金,并且根据取样分析化学成分操作的结果,并按照所述低合金铸钢的重量百分比向所述电弧炉内至少加入铌铁合金;以及
出钢步骤和浇注步骤。
按照本发明的第五方面,提供一种上述低合金铸钢的冶炼方法,其中采用中频感应炉进行冶炼,包括以下步骤:
装料步骤:基于组分要求,将相应的炉料投入所述中频感应炉内,其中入炉炉料包括钼铁、钨铁和镍板;
对炉料进行熔化的熔化期步骤:炉料全部熔化后温度达到1500℃±20℃时,向所述中频感应炉内加入铌铁合金;
预脱氧步骤;以及
出钢步骤和浇注步骤。
按照本发明的第六方面,提供一种铁路机车零部件,其采用以上所述的E级钢制备形成。
本发明的低合金铸钢为了克服较高锰含量的使用,主要通过多元复合添加的方法来进行成分配比,其中主要用于强化元素的是碳、硅、锰、铬、镍、钼、钨和铌,并选择其合适的配比,可以提高低合金铸钢的硬度和淬透性,并使得所获得的铸钢件在热处理后的组织为回火索氏体;尤其地,复合添加合金元素钨和铌,并选择其合适的配比,则能有效地抑制铸造过程中奥氏体晶粒长大,细化晶粒,同时强化基体和提高铸钢件的淬透性。因此,本发明的低合金铸钢在经过正火和调质热处理后,可以作为E级钢使用,并且,具有优越的可焊性、良好的塑性和冲击韧性,且稳定性好。
并且,进一步地,本发明的低合金铸钢的碳当量可以在0.55%~0.73%的范围内,并且进一步可以优化为0.63%~0.66%的范围内。
并且,本发明的低合金铸钢经过本发明的热处理工艺以后,所获得低合金铸钢的金相组织主要为回火索氏体,且其机械性能指标满足AAR的M-201-05标准中E级钢的要求,进一步地,其伸长率可以优化提高到≥15%,-40℃的夏比V型冲击功可以优化提高到≥40J,可以在提高J13处的硬度保持在大于或等于33HRC的前提下,碳当量不增加,可焊性较好。
附图说明
图1是按照本发明一实施例的低合金铸钢经正火处理和调质处理后获得放大100倍的金相组织图片。
图2是按照本发明一实施例的低合金铸钢经正火处理和调质处理后获得放大500倍的金相组织图片。
具体实施方式
下面介绍的是本发明的多个可能实施例中的一些,旨在提供对本发明的基本了解,并不旨在确认本发明的关键或决定性的要素或限定所要保护的范围。容易理解,根据本发明的技术方案,在不变更本发明的实质精神下,本领域的一般技术人员可以提出可相互替换的其他实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
在本申请中,“低合金铸钢”是指铸钢中合金元素含量小于5%(重量百分比)的合金钢,E级钢是按照美国铁路协会(AAR)于2005年修订并发布了M-201-05标准对合金钢分级定义的钢种。
本申请发明人发现,目前随着生产E级钢所需原材料成本的提高,行业对控制E级钢的成本提出了更高要求,并致力于降低E级钢的成本。诸如中国专利公开号为CN1995429A、CN101701325A的相关专利中,主要都是通过提高铸钢中锰(Mn)的含量、并降低或不使用贵重元素镍(Ni)和/或钼(Mo),从而降低E级钢的成本。但是,在实际使用中,这种技术方案存在两个较为明显的问题:第一,采用高含量的锰而少量或不使用钼或镍,使得铸钢的淬透性明显变差,仔细分析发现,其中获得的铸钢有很多是无法满足M-201-05标准中规定的端淬试验中J13处硬度≥33HRC的要求;第二,这种铸钢中高锰、少钼镍的合金元素组合,使得铸钢的韧性和塑性的不足,并且其稳定性较差。
本发明一实施例中,机械性能的测定依据的是AAR的M-201-05标准的相关规定进行的,机械性能的测定所用的试样为基尔试块。其中碳当量CE的计算公式为:CE=C+(Mn+Si)/6+(Cr+Mo+V)/5+(Ni+Cu)/15,其中,以上公式中的某些合金元素,有可能是不可避免的余量元素。淬透性测定依据ASTM标准A255的要求,其中J13处的硬度表示距离水淬端面13mm处的硬度。
本申请提供以下技术方案:
技术方案1,一种低合金铸钢,其中,各组分及其相对于所述低合金铸钢总重的重量百分比为:
碳0.23%~0.28%、硅0.20%~0.40%、锰0.80%~1.00%、磷≤0.020%、硫≤0.020%、铬0.45%~0.55%、镍0.50%~0.60%、钼0.15%~0.25%、铝0.02%~0.06%,以及钨0.02%~0.10%、铌0.01%~0.05%,且必须满足0.04%≤钨+铌≤0.12%;以及余量为铁和其他不可避免的元素。
技术方案2,如技术方案1所述的低合金铸钢,其中,所述低合金铸钢的碳当量CE在0.55%~0.73%之间,所述碳当量CE按照以下公式计算:
CE=C+(Mn+Si)/6+(Cr+Mo+V)/5+(Ni+Cu)/15
其中,C表示碳的重量百分比,Mn表示锰的重量百分比,Si表示硅的重量百分比,Cr表示铬的重量百分比,Mo表示钼的重量百分比,V表示钒的重量百分比,Ni表示镍的重量百分比,Cu表示铜的重量百分比。
技术方案3,如技术方案1至2中任一所述的低合金铸钢,其中,所述碳当量CE在0.55%~0.73%之间,或者在0.63%~0.66%之间,或者在0.64%~0.66%之间。
技术方案4,如技术方案1至3中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,碳的重量百分比为碳的重量百分比为0.23%~0.27%,0.24%~0.27%,或者0.24%~0.28%。
技术方案5,如技术方案1至4中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,硅的重量百分比为0.29%~0.36%,或者0.25%~0.36%。
技术方案6,如技术方案1至5中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,锰的重量百分比为0.96%~1.04%,或者0.96%~1.02%,或者0.98%~1.01%,或者0.97%,或者0.99%,或者1.00%。
技术方案7,如技术方案1至6中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,磷的重量百分比≤0.015%,或者≤0.012%。
技术方案8,如技术方案1至7中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,硫的重量百分比≤0.015%,或者≤0.010%。
技术方案9,如技术方案1至8中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,铬的重量百分比为0.46%~0.54%,或者0.47%~0.51%,或者0.48%~0.50%。
技术方案10,如技术方案1至9中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,镍的重量百分比为0.52%~0.59%,或者0.53%~0.57%,或者0.54%~0.58%,或者0.55%~0.56%。
技术方案11,如技术方案1至10中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,钼的重量百分比为0.36%~0.44%,或者0.37%~0.43%,或者0.37%~0.42%,或者0.39%~0.41%。
技术方案12,如技术方案1至11中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,铝的重量百分比为0.02%~0.04%, 或者0.03%~0.05%。
技术方案13,如技术方案1至12中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,铌的重量百分比为0.01%~0.04%,或者0.02%~0.05%。
技术方案14,如技术方案1至14中任一所述的低合金铸钢,其中,相对于所述低合金铸钢总重,钨的重量百分比为0.02%~0.09%,或者0.04%~0.09%。
技术方案15,如技术方案1至14中任一所述的低合金铸钢,其中,所述低合金铸钢为经过正火处理和调质处理得到的E级钢。
技术方案16,如技术方案15所述的低合金铸钢,其中,所述正火处理为:将铸钢件加热到920℃~940℃保温2~5小时,然后出炉空冷到室温。
技术方案17,如技术方案16所述的低合金铸钢,其中,所述调质处理包括淬火处理和回火处理;
所述淬火处理为:将铸钢件加热到890℃~910℃保温2~5小时,然后出炉在水中冷却,其中水的温度为20℃~40℃;
所述回火处理为:将淬火处理后的铸钢件加热到580℃~600℃保温3~5小时,然后出炉空冷到室温。
技术方案18,如技术方案17所述的低合金铸钢,其中,其伸长率≥15%。
技术方案19,如技术方案17所述的低合金铸钢,其中,其-40℃的夏比V型冲击功≥40J。
技术方案20,一种如技术方案1至19中任一项所述低合金铸钢的热处理方法,其中,包括步骤:
提供所述低合金铸钢的铸钢件;
对所述铸钢件进行正火处理,其中,所述正火处理为:将铸钢件加热到920℃~940℃保温2~5小时,然后出炉空冷到室温;
对正火处理后的铸钢件进行包括淬火处理和回火处理的调质处理,其中,所述淬火处理为:将铸钢件加热到890℃~910℃保温2~5小时,然后出炉在水中冷却,其中水的温度为20℃~40℃;所述回火处理为将淬火处理后的铸钢件加热到580℃~600℃保温3~5小时,然后出炉空冷到室温。
技术方案21,如技术方案20所述的热处理方法,其中,在所述热处理后,所述低合金铸钢的金相组织主要为回火索氏体。
技术方案22,一种如技术方案1至14中任一所述的低合金铸钢通过如技术方案20至21中任一项所述的热处理方法处理后获得的E级钢。
技术方案23,一种如技术方案1至19中任一项所述低合金铸钢的冶炼方法,其中采用电弧炉氧化法进行冶炼,其中,包括以下步骤:
装料步骤:基于组分要求,将相应炉料投入所述电弧炉内,其中入炉炉料包括钼铁、钨铁和镍板;
对炉料进行熔化的熔化期步骤;
氧化期步骤:在熔池温度大于或等于1560℃时,向所述电弧炉内加入铁矿石以脱碳,并进行脱磷操作;
还原期步骤:向所述电弧炉内加入铬铁合金,并且根据取样分析化学成分操作的结果,将该结果与所述低合金铸钢的各化学成分的重量百分比进行对比,向所述电弧炉内至少加入铌铁合金;以及
出钢水步骤和浇注步骤。
技术方案24,如技术方案23所述的冶炼方法,其中,在所述装料步骤中,所述钨铁的牌号为FeW75,其中,W的重量百分比含量为75%。
技术方案25,如技术方案23所述的冶炼方法,其中,在所述熔化期步骤中,进行炉料熔化及造渣先期脱磷处理,其中,当炉料熔化25%~45%以上时,进行吹氧助熔以加速炉料熔化。
技术方案26,如技术方案23或25所述的冶炼方法,其中,在所述氧化期步骤中,在所述脱碳后,进行大渣量流渣脱磷操作。
技术方案27,如技术方案26所述的冶炼方法,其中,在所述还原期步骤中,在稀薄渣形成后加入所述铬铁合金,然后在渣面加入碳粉或碳化硅,造还原渣,在所述还原渣变白色后,搅拌、进行所述取样分析化学成分操作。
技术方案28,如技术方案27所述的冶炼方法,其中,所述还原期步骤中,基于取样分析的结果,将该结果与所述低合金铸钢各化学成分的重量百分比进行比对,在需要的情况下,有选择性地依次加入铝块、硅铁合金、锰铁合金和所述铌铁合金,其中至少加入铌铁合金; 当然,在不需要的情况下,即,如果取样分析结果表明某化学成分已满足所述低合金铸钢各化学成分的重量百分比要求,则就无须再加入含有该化学成分的相应物料。
技术方案29,如技术方案23所述的冶炼方法,其中,在所述出钢步骤中,当熔池温度在1620~1650℃范围时,进一步取样分析化学成分,在成分合格后,进行出钢水、钢渣混冲脱硫操作。
技术方案30,一种如技术方案1至3中任一项所述低合金铸钢的冶炼方法,其中采用中频感应炉进行冶炼,其中,包括以下步骤:
装料步骤:基于组分要求,将相应的炉料投入所述中频感应炉内,其中入炉炉料中包括铬铁、钼铁、钨铁和镍板;
对炉料进行熔化的熔化期步骤:炉料全部熔化后温度达到1500℃±20℃时,向所述中频感应炉内加入铌铁合金;
预脱氧步骤;以及
出钢水步骤和浇注步骤。
技术方案31,如技术方案30所述的冶炼方法,其中,在所述装料步骤中,所述钨铁的牌号为FeW75,其中,W的重量百分比含量为75%。
技术方案32,如技术方案30所述的冶炼方法,其中,在所述预脱氧步骤中,当熔池温度达到出钢温度时向炉内依次加入适量的铝块、锰铁合金、硅铁合金进行预脱氧。
技术方案33,如技术方案30或32所述的冶炼方法,其中,在所述出钢步骤中,在出钢温度下保温并进行取样分析化学成分操作,根据分析化学成分结果确定是否进行出钢;并且,出钢水前,在钢包内加入适量的铝块(该铝块可以用于脱氧)。
技术方案34,一种铁路机车零部件,其中,其采用如技术方案1至19、22任一项所述的E级钢制备形成。
技术方案35,如技术方案34所述的铁路机车零部件,其中,所述铁路机车零部件为车钩钩体、钩舌、钩尾框或具有同等机械性能要求的其他零部件。
以下实施例中,组分含量均以其重量百分含量计。
实施例1
该实施例1的含钨铌的低合金铸钢中,其各组分及其重量百分比如下:碳0.26%、硅0.27%、锰0.91%、磷0.013%、硫0.014%、铬0.52%、镍0.56%、钼0.23%、铝0.05%、铜0.07%、钨0.08%、铌0.03%,其中钨+铌为0.11%,余量为铁及其他不可避免的元素。其中,碳当量CE的计算公式为:CE=C+(Mn+Si)/6+(Cr+Mo+V)/5+(Ni+Cu)/15,以上公式中的某些合金元素,有可能是不可避免的余量元素。基于以上碳当量的计算公式,确定在该实施例1的低合金铸钢中的碳当量具体为0.65,碳当量相对传统的E级钢较小,因此具有优越的可焊性。
实施例1的含钨铌的低合金铸钢可以但不限于通过以下示例的冶炼方法制备得到。
在示例1中,采用电弧炉大渣量氧化法进行冶炼,具体包括以下步骤:
I装料:基于组分要求,按正常情况一次性投入炉料,入炉炉料例如一般包括废钢、优质生铁、铁合金、回炉料等,将它们依次加入炉内,可选地,加入的顺序是可以变化的,其中,炉料中应包括合适量的钼铁、钨铁、镍板,其中,钨铁具体采用牌号为FeW75的钨铁,其表示W的重量百分比为75%左右。
II熔化期:以电弧炉能匹配的最大功率进行炉料熔化及造渣先期脱磷处理,当炉料熔化25%~45%以上时,可吹氧助熔,加速炉内炉料熔化。
III氧化期:当熔池温度大于或等于1560℃时,加铁矿石脱碳,在该温度条件下,铁矿石相对容易发生脱碳反应;并进行大渣量流渣脱磷操作。
IV还原期:在稀薄渣形成后,加入铬铁合金,然后在渣面上加入碳粉或加碳化硅,造还原渣;当还原渣基本变为白色后,搅拌、进行取样分析化学成分操作,并且根据化验报告结果,基于以上实施例1的低合金铸钢的化学成分重量百分比要求,依次控制加入铝块、硅铁合金、锰铁合金和铌铁合金。本实施例选择在还原期步骤加入铌铁合金,避免了铌在钢液中较早地发生氧化反应,减少了铌的损失,有利于保证形成后的低合金铸钢中的铌元素的百分比含量和相应的作用。
V出钢:当熔池温度在1620~1650℃范围时,进行取样分析化学成分操作;在成分合格后,当温度达到出钢温度时,进行出钢、钢渣 混冲脱硫操作。
VI浇注:钢水在钢包内完成规定的镇静时间后,进行铸件成型浇注操作。
在示例2中,采用中频感应炉进行冶炼,该冶炼方法具体包括以下步骤:
I装料:基于组分要求,将准备好的炉料投入中频感应炉内,其中入炉炉料例如可以包括废钢、优质生铁、铁合金、回炉料等,它们依次加入炉内,其中合金主要包括铬铁、钼铁、钨铁、镍板,钨铁的牌号为FeW75,其中,W的重量百分比含量为75%左右。在该步骤中,采用炉膛下部紧、上部松的方式装料,从而使得炉料容易顺利下行,减少炉料架空概率。
II熔化:以中频感应炉最大功率进行炉料熔化;当炉料全部熔化后温度达到1500℃±20℃时,加铌铁合金。本实施例选择在熔化完成加入铌铁合金,减少了铌的氧化损失,有利于保证形成后的低合金铸钢中的铌元素的百分比含量和相应的作用。
III预脱氧:继续以中频感应炉能匹配的最大功率进行送电以对熔池升温,当温度达到出钢温度时,向炉内按顺序加入适量的铝块、锰铁合金、硅铁合金以进行预脱氧操作。
IV出钢:在预定的出钢温度下进行保温,并进行取样分析化学成分操作,当成分合格后,出钢水;其中,出钢水前,在钢包内加入适量的铝块。
V浇注:钢水在钢包内完成规定的镇静时间后,实施铸件成型浇注操作。
以上实施例1的低合金铸钢经以上示例1或示例2的冶炼方法冶炼铸造成型获得铸钢件后,可以进行热处理获得性能较好的E级钢,在该实施例中,热处理过程采用正火和调质处理。具体地,正火处理工艺为加热到930℃保温3小时,然后出炉进行空冷;调质处理工艺为加热到910℃保温2小时,出炉进行水冷,水温35℃,随后重新将淬火处理后的铸钢件加热到590℃保温3.5小时,再出炉在空气中冷却到室温。
以上实施例1的低合金铸钢经过以上示例的正火和调质处理以后,所获得的金相组织主要为回火索氏体,具体金相组织图样如图1 和图2所示,由图1和图2可以看到典型的回火索氏体金相形貌,并且,晶粒尺寸明显细化,组织均匀性非常良好,这是由于低合金铸钢中钨和铌按一定重量百分比复合添加时,能有效抑制铸造过程中奥氏体晶粒长大,有利于细化铸钢的晶粒,在正火和调质处理后得到的低合金铸钢的回火索氏体晶粒也相对较细。并且,钨和铌按一定重量百分比的复合添加,同时有利于强化基体提高低合金铸钢的淬透性。
对以上实施例1的低合金铸钢(经过上述热处理后)进行机械性能测定,获得以下测试结果:抗拉强度906MPa,屈服强度771MPa,伸长率17.5%,断面收缩率49%,-40℃的夏比V型冲击功(平均值)67J,硬度271HBW,J13处的硬度为36HRC。
基于AAR的M-201-05标准可以看到,基于以上实施例1的低合金铸钢能够获得满足美国铁道协会标准M-201-05的E级铸钢机械性能要求的E级钢,并且在塑性(例如从伸长率来看)和冲击韧性方面(从夏比V型冲击功来看)尤其表现良好,从J13处的硬度性能指标来看,低合金铸钢的淬透性也明显得到提升,抗拉强度和屈服强度等性能指标也可以反映低合金铸钢的基体得到强化。
因此,以上实施例1的低合金铸钢在经过以上示例的正火和调质热处理后,可以作为E级钢使用,并且,具有优越的可焊性、良好的塑性和冲击韧性。
实施例2~12
与实施例1基本相同,实施例2~12的低合金铸钢中的具体组分及含量、碳当量见表1。相对应的机械性能和J13处的硬度如下表2所示:
表1 实施例2~12的低合金铸钢的组成(重量百分比%)及碳当量
Figure PCTCN2017090911-appb-000001
实施例2~12的含钨铌的低合金铸钢可以但不限于通过以上示例1和示例2的冶炼方法制备得到相应的铸钢件。
以上实施例2~12的低合金铸钢经冶炼铸造成型获得铸钢件后,可以进行热处理获得性能较好的E级钢,在该实施例中,热处理过程采用正火和调质处理;具体地,正火处理即通常将铸钢件加热到920℃~940℃保温2~5小时,然后出炉空冷到室温;调质处理即淬火处理+回火处理,淬火处理即通常将铸钢件加热到890℃~910℃保温2~5小时,然后出炉在水中冷却,水的温度为20℃~40℃,回火处理即通常将淬火的铸钢件加热到580℃~600℃保温3~5小时,然后出炉空冷到室温。
以上实施例2~12的低合金铸钢经过以上示例的正火和调质处理以后,所获得的金相组织主要为回火索氏体,具体金相组织图样类似如图1和图2所示。
对以上实施例2~12的低合金铸钢(经过上述热处理后)进行机械性能测定,获得以下表2所示的测试结果:
表2 实施例2~12的低合金铸钢的机械性能和J13处的硬度数据
Figure PCTCN2017090911-appb-000002
从以上表2的机械性能数据可以看出,基于以上实施例2~12的低合金铸钢能够获得满足美国铁道协会标准M-201-05的E级铸钢机械性能要求的E级钢,并且在塑性(例如从伸长率来看其能够大于或等于15.0%或15.5%)和冲击韧性方面(从夏比V型冲击功来看其能够大于或等于40J)尤其表现良好,从J13处的硬度(大于或等于34HRC)性能数据来看,低合金铸钢的淬透性也明显得到提升,抗拉强度(大于或等于832Mpa)和屈服强度(大于或等于695Mpa)等性能指标也可以反映低合金铸钢的基体得到强化。
因此,以上实施例2~12的低合金铸钢在经过以上示例的正火和调质热处理后,可以作为E级钢使用,并且,具有优越的可焊性、良好的塑性和冲击韧性。
需要说明的是,以上实施例1~12的低合金铸钢具有良好的机械性能表现的主要原因在于,克服了较高含量的锰的使用,主要通过多元复合添加的方法来进行成分配比,尤其地,复合添加合金元素钨和铌,并选择了合适的配比(钨0.02%~0.10%、铌0.01%~0.05%,且必须满足0.04%≤钨+铌≤0.12%),能有效地抑制铸造过程和正火过程中奥氏体晶粒长大,细化晶粒,同时强化基体和提高铸钢件的淬透性;因此,在经过本申请实施例的为该低合金铸钢设计的热处理工艺后,低合金铸钢的韧性和塑性方面明显提升,并且韧性和塑性的稳定性好,反映淬透性的J13处的硬度也得到明显提升,整体满足E级钢 的机械性能要求,且在韧性、塑性和可焊性方面相比传统E级钢有明显提升。
需要说明的是,以上实施例1~12的含钨铌的低合金铸钢中,锰的百分比范围为0.80%~1.00%,其相对传统的E级钢中的锰的含量下降,材料偏析减少,并且钼的百分比范围为0.15%~0.25%(例如为,0.15%~0.19%),也相对下降,有利于降低该低合金铸钢的成本。
以上实施例1至12的低合金铸钢在经过正火和调质热处理后,可以用来制备铁路机车上的厚大零部件,例如,重载货车的牵引缓冲装置的关键零部件,如车钩钩体、钩舌、钩尾框等。应当理解到,以上实施例的低合金铸钢具体应用并不限于以上实施例,本领域技术人员也可以将其用于具有基本同等机械性能要求的铁路机上或其他设备上的零部件,例如,液压油缸中的缸头零部件。
以上例子主要说明了本发明的低合金铸钢及各种冶炼方法和热处理方法、热处理后得到的E级钢及其应用。尽管只对其中一些本发明的实施方式进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

Claims (25)

  1. 一种低合金铸钢,其特征在于,各组分及其相对于所述低合金铸钢总重的重量百分比为:
    碳0.23%~0.28%、硅0.20%~0.40%、锰0.80%~1.00%、磷≤0.020%、硫≤0.020%、铬0.45%~0.55%、镍0.50%~0.60%、钼0.15%~0.25%、铝0.02%~0.06%,以及钨0.02%~0.10%、铌0.01%~0.05%,且必须满足0.04%≤钨+铌≤0.12%;以及余量为铁和其他不可避免的元素。
  2. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,碳的重量百分比为0.24%~0.27%。
  3. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,硅的重量百分比为0.29%~0.36%。
  4. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,锰的重量百分比为0.89%~1.00%。
  5. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,铬的重量百分比为0.49%~0.53%。
  6. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,镍的重量百分比为0.52%~0.58%。
  7. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,钼的重量百分比为0.15%~0.22%。
  8. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,铝的重量百分比为0.03%~0.05%。
  9. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,铌的重量百分比为0.01%~0.04%,或者0.02%~0.05%。
  10. 如权利要求1所述的低合金铸钢,其特征在于,相对于所述低合金铸钢总重,钨的重量百分比为0.04%~0.09%。
  11. 如权利要求1所述的低合金铸钢,其特征在于,所述低合金铸钢的碳当量CE在0.55%~0.73%之间,所述碳当量CE按照以下公式计算:
    CE=C+(Mn+Si)/6+(Cr+Mo+V)/5+(Ni+Cu)/15
    其中,C表示碳的重量百分比,Mn表示锰的重量百分比,Si表示硅的重量百分比,Cr表示铬的重量百分比,Mo表示钼的重量百分比,V表示钒的重量百分比,Ni表示镍的重量百分比,Cu表示铜的重量百分比。
  12. 如权利要求11所述的低合金铸钢,其特征在于,所述碳当量CE在0.63%~0.66%之间。
  13. 如权利要求1所述的低合金铸钢,其特征在于,所述低合金铸钢经过正火处理和调质处理。
  14. 如权利要求13所述的低合金铸钢,其特征在于,所述正火处理为:将铸钢件加热到920℃~940℃保温2~5小时,然后出炉空冷到室温。
  15. 如权利要求14所述的低合金铸钢,其特征在于,所述调质处理包括淬火处理和回火处理;
    所述淬火处理为:将铸钢件加热到890℃~910℃保温2~5小时,然后出炉在水中冷却,其中水的温度为20℃~40℃;
    所述回火处理为:将淬火处理后的铸钢件加热到580℃~600℃保温3~5小时,然后出炉空冷到室温。
  16. 如权利要求15所述的低合金铸钢,其特征在于,其伸长率≥15%。
  17. 如权利要求15所述的低合金铸钢,其特征在于,其具有以下机械性能的至少一个方面:-40℃的夏比V型冲击功≥40J、伸长率大于或等于15.5%。
  18. 如权利要求17所述的低合金铸钢,其特征在于,其还具有以下机械性能的至少一个方面:J13处的硬度大于或等于34HRC、抗拉强度大于或等于832Mpa、屈服强度大于或等于695Mpa。
  19. 一种如权利要求1至18中任一项所述低合金铸钢的热处理方法,其特征在于,包括步骤:
    提供所述低合金铸钢的铸钢件;
    对所述铸钢件进行正火处理,其中,所述正火处理为:将铸钢件加热到920℃~940℃保温2~5小时,然后出炉空冷到室温;
    对正火处理后的铸钢件进行包括淬火处理和回火处理的调质处 理,其中,所述淬火处理为:将铸钢件加热到890℃~910℃保温2~5小时,然后出炉在水中冷却,其中水的温度为20℃~40℃;所述回火处理为将淬火处理后的铸钢件加热到580℃~600℃保温3~5小时,然后出炉空冷到室温。
  20. 如权利要求19所述的热处理方法,其特征在于,在所述热处理后,所述低合金铸钢的金相组织主要为回火索氏体。
  21. 一种如权利要求1所述的低合金铸钢通过如权利要求19至20中任一项所述的热处理方法处理后获得的E级钢。
  22. 一种如权利要求1至12中任一项所述低合金铸钢的冶炼方法,其中采用电弧炉氧化法进行冶炼,其特征在于,包括以下步骤:
    装料步骤:基于组分要求,将相应的炉料投入所述电弧炉内,其中入炉炉料包括钼铁、钨铁和镍板;
    对炉料进行熔化的熔化期步骤;
    氧化期步骤:在熔池温度大于或等于1560℃时,向所述电弧炉内加入铁矿石以脱碳,并进行脱磷操作;
    还原期步骤:向所述电弧炉内加入铬铁合金,并且根据取样分析化学成分操作的结果,基于取样分析的结果,将该结果与所述低合金铸钢各化学成分的重量百分比进行比对,并按照所述低合金铸钢各化学成分的重量百分比要求,向所述电弧炉内加入至少包括铌铁合金的炉料;以及
    出钢步骤和浇注步骤。
  23. 一种如权利要求1至12中任一项所述低合金铸钢的冶炼方法,其中采用中频感应炉进行冶炼,其特征在于,包括以下步骤:
    装料步骤:基于组分要求,将相应的炉料投入所述中频感应炉内,其中入炉炉料包括铬铁、钼铁、钨铁和镍板;
    对炉料进行熔化的熔化期步骤:炉料全部熔化后温度达到1500℃±20℃时,向所述中频感应炉内加入铌铁合金;
    预脱氧步骤;以及
    出钢水步骤和浇注步骤。
  24. 一种铁路机车零部件,其特征在于,其采用如权利要求21所述的E级钢制备形成。
  25. 如权利要求24所述的铁路机车零部件,其特征在于,所述铁 路机车零部件为车钩钩体、钩舌、钩尾框或具有同等机械性能要求的其他零部件。
PCT/CN2017/090911 2016-06-30 2017-06-29 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件 WO2018001333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610502598.3 2016-06-30
CN201610502598.3A CN106086674A (zh) 2016-06-30 2016-06-30 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件

Publications (1)

Publication Number Publication Date
WO2018001333A1 true WO2018001333A1 (zh) 2018-01-04

Family

ID=57214198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090911 WO2018001333A1 (zh) 2016-06-30 2017-06-29 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件

Country Status (2)

Country Link
CN (2) CN113186465A (zh)
WO (1) WO2018001333A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699448A (zh) * 2021-08-27 2021-11-26 中冶陕压重工设备有限公司 一种低合金结构钢SY41CrMnMoNbVTi及其制备方法
CN114164322A (zh) * 2022-02-11 2022-03-11 杭州汽轮铸锻有限公司 一种杆塔连接节点及其热处理方法及输变电用避雷杆塔
CN115354207A (zh) * 2022-09-20 2022-11-18 中天钢铁集团有限公司 一种高洁净度滚珠丝杠用中碳合金结构钢的冶炼方法
CN116083821A (zh) * 2023-01-09 2023-05-09 天地上海采掘装备科技有限公司 采煤机摇臂壳体铸件材料制备工艺

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113186465A (zh) * 2016-06-30 2021-07-30 中车戚墅堰机车车辆工艺研究所有限公司 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件
CN107675104A (zh) * 2017-08-07 2018-02-09 中车戚墅堰机车车辆工艺研究所有限公司 铸钢、铸钢的制备方法及其应用
CN110499452B (zh) * 2018-05-16 2021-08-20 中车戚墅堰机车车辆工艺研究所有限公司 合金铸钢、其制作方法及应用
CN109487048A (zh) * 2019-01-11 2019-03-19 徐州徐工矿业机械有限公司 一种超大型矿山设备支承用铸钢材料及制备方法
CN111850246A (zh) * 2020-06-30 2020-10-30 锦州捷通铁路机械股份有限公司 一种提高c级钢断后伸长率的热处理方法
RU2762502C1 (ru) * 2020-08-27 2021-12-21 Общество с ограниченной ответственностью "Всесоюзный научно-исследовательский центр транспортных технологий" (ООО "ВНИЦТТ") Сталь для изготовления литых деталей железнодорожного подвижного состава и литой корпус сцепки из стали
RU2755711C1 (ru) * 2020-08-27 2021-09-20 РЕЙЛ 1520 АйПи ЛТД Литой корпус сцепки железнодорожного подвижного состава
CN112626412B (zh) * 2020-11-23 2022-03-29 天津重型装备工程研究有限公司 一种耐蚀高强低合金钢及其制备方法
CN115927966A (zh) * 2022-12-20 2023-04-07 中车齐齐哈尔车辆有限公司 钩舌及其制备方法、轨道车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695576A (en) * 1995-01-31 1997-12-09 Creusot Loire Industrie (S.A.) High ductility steel, manufacturing process and use
WO2006133668A1 (de) * 2005-06-16 2006-12-21 Georgsmarienhütte Gmbh Stahl für die herstellung von verschleissteilen für die baumaschinenindustrie
CN101845592A (zh) * 2010-05-18 2010-09-29 南车戚墅堰机车车辆工艺研究所有限公司 低合金铸钢及其冶炼、热处理方法
CN102876969A (zh) * 2012-07-31 2013-01-16 宝山钢铁股份有限公司 一种超高强度高韧性耐磨钢板及其制造方法
CN102965588A (zh) * 2012-11-29 2013-03-13 南车戚墅堰机车车辆工艺研究所有限公司 低合金高强度铸钢及其冶炼、热处理方法
CN103510024A (zh) * 2012-06-28 2014-01-15 南车戚墅堰机车车辆工艺研究所有限公司 用于高速列车制动盘的合金铸钢及其热处理方法以及由该合金铸钢制造的高速列车制动盘
CN103725963A (zh) * 2014-01-29 2014-04-16 齐齐哈尔轨道交通装备有限责任公司 一种用于铸造焊接型转向架中铸钢件的金属合金及钢铸件
CN105714202A (zh) * 2016-03-31 2016-06-29 共享铸钢有限公司 一种采煤机械用高强度铸钢件的铸造生产方法
CN106086674A (zh) * 2016-06-30 2016-11-09 中车戚墅堰机车车辆工艺研究所有限公司 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593006B2 (ja) * 2001-05-22 2010-12-08 新日本製鐵株式会社 割れ欠陥のない鋼片の製造方法
JP2003160811A (ja) * 2001-11-26 2003-06-06 Nippon Steel Corp 靭性に優れた調質高張力鋼板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695576A (en) * 1995-01-31 1997-12-09 Creusot Loire Industrie (S.A.) High ductility steel, manufacturing process and use
WO2006133668A1 (de) * 2005-06-16 2006-12-21 Georgsmarienhütte Gmbh Stahl für die herstellung von verschleissteilen für die baumaschinenindustrie
CN101845592A (zh) * 2010-05-18 2010-09-29 南车戚墅堰机车车辆工艺研究所有限公司 低合金铸钢及其冶炼、热处理方法
CN103510024A (zh) * 2012-06-28 2014-01-15 南车戚墅堰机车车辆工艺研究所有限公司 用于高速列车制动盘的合金铸钢及其热处理方法以及由该合金铸钢制造的高速列车制动盘
CN102876969A (zh) * 2012-07-31 2013-01-16 宝山钢铁股份有限公司 一种超高强度高韧性耐磨钢板及其制造方法
CN102965588A (zh) * 2012-11-29 2013-03-13 南车戚墅堰机车车辆工艺研究所有限公司 低合金高强度铸钢及其冶炼、热处理方法
CN103725963A (zh) * 2014-01-29 2014-04-16 齐齐哈尔轨道交通装备有限责任公司 一种用于铸造焊接型转向架中铸钢件的金属合金及钢铸件
CN105714202A (zh) * 2016-03-31 2016-06-29 共享铸钢有限公司 一种采煤机械用高强度铸钢件的铸造生产方法
CN106086674A (zh) * 2016-06-30 2016-11-09 中车戚墅堰机车车辆工艺研究所有限公司 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699448A (zh) * 2021-08-27 2021-11-26 中冶陕压重工设备有限公司 一种低合金结构钢SY41CrMnMoNbVTi及其制备方法
CN113699448B (zh) * 2021-08-27 2022-06-10 中冶陕压重工设备有限公司 一种低合金结构钢SY41CrMnMoNbVTi及其制备方法
CN114164322A (zh) * 2022-02-11 2022-03-11 杭州汽轮铸锻有限公司 一种杆塔连接节点及其热处理方法及输变电用避雷杆塔
CN115354207A (zh) * 2022-09-20 2022-11-18 中天钢铁集团有限公司 一种高洁净度滚珠丝杠用中碳合金结构钢的冶炼方法
CN116083821A (zh) * 2023-01-09 2023-05-09 天地上海采掘装备科技有限公司 采煤机摇臂壳体铸件材料制备工艺

Also Published As

Publication number Publication date
CN106086674A (zh) 2016-11-09
CN113186465A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2018001333A1 (zh) 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件
WO2021017520A1 (zh) 一种表面质量优良的耐磨钢及其制备方法
WO2022148492A1 (zh) 一种乘用车万向节叉冷锻用钢及其制造方法
CN101748338B (zh) 铁路车辆的车钩用高强度铸钢及其制造方法
CN108893681B (zh) 高强高韧性压力容器钢板及其制备方法
CN108950432B (zh) 一种高强度、高韧性低合金耐磨钢的制造方法
CN113789472B (zh) 合金铸钢、其制作方法及应用
CN107058883B (zh) 一种高速列车制动盘合金钢材料及其制备方法
WO2018001355A1 (zh) 一种低合金铸钢及其热处理方法和在铁路行业的应用
CN102268608B (zh) 大容量高压气瓶钢及其生产方法
US20190226040A1 (en) Hypereutectoid rail and manufacturing method thereof
WO2022227396A1 (zh) 一种高效焊接桥梁钢及其制造方法
CN110983187A (zh) 一种新型高强耐候管线钢x80钢板及其生产方法
CN111663017B (zh) 一种牵引座用高强韧低合金铸钢的制造方法
CN111485164B (zh) 一种强化低铬合金铸件耐磨性能的铸造方法
CN109161650B (zh) 一种低合金铸钢、制造方法及其应用
CN110819913B (zh) 一种硫系易切削不锈钢及其制备方法
CN108977612B (zh) 高强度耐大气腐蚀螺栓用钢的冶炼方法
WO2019029533A1 (zh) 铸钢、铸钢的制备方法及其应用
CN103725974A (zh) 一种新型低成本耐磨管件钢x65钢板及其生产方法
WO2018001346A1 (zh) 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件
CN109097665B (zh) 高强度耐大气腐蚀螺栓用钢的冶炼方法
CN114934239B (zh) 一种液压缸杆头用锻造非调质钢及其生产方法
CN116179967A (zh) 一种支重轮轮轴用材料及其制备方法
CN110468329B (zh) ZG-SY09MnCrNiMo RE钢及铸件制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819330

Country of ref document: EP

Kind code of ref document: A1