WO2018001318A1 - 一种近眼显示系统、虚拟现实设备和增强现实设备 - Google Patents

一种近眼显示系统、虚拟现实设备和增强现实设备 Download PDF

Info

Publication number
WO2018001318A1
WO2018001318A1 PCT/CN2017/090832 CN2017090832W WO2018001318A1 WO 2018001318 A1 WO2018001318 A1 WO 2018001318A1 CN 2017090832 W CN2017090832 W CN 2017090832W WO 2018001318 A1 WO2018001318 A1 WO 2018001318A1
Authority
WO
WIPO (PCT)
Prior art keywords
display system
eye display
eye
light
array
Prior art date
Application number
PCT/CN2017/090832
Other languages
English (en)
French (fr)
Inventor
黄琴华
周旭东
喻秀英
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2018001318A1 publication Critical patent/WO2018001318A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of virtual reality and augmented reality, and in particular to a near-eye display system, a virtual reality device, and an augmented reality device.
  • Virtual Reality (English: Virtual Reality; VR) is a computer simulation system that can create and experience virtual worlds. It uses a computer to generate a simulation environment, through interactive 3D dynamic vision and system simulation of physical behavior. Users are immersed in the environment, giving users a sensory experience that transcends real life.
  • virtual reality technology uses a computer device to generate an image of a virtual scene, and transmits the light of the image to the human eye through the optical device, so that the user can fully feel the virtual scene visually.
  • Augmented Reality is a technology that uses virtual objects or information to enhance the reality of real scenes.
  • Augmented reality technology is usually based on the real physical environment image obtained by the image acquisition device such as a camera.
  • the computer system recognizes and analyzes the query, and displays the virtual image generated by the virtual content such as text content, image content or image model associated with the virtual reality image.
  • the user can obtain the extended information such as the annotation, description and the like of the real object in the real physical environment, or experience the stereoscopic and highlighted enhanced visual effect of the real object in the real physical environment.
  • Existing virtual reality devices or augmented reality devices generally converge the light of a virtual image into a user's pupil through an optical lens, which imposes stricter restrictions on the position of the human eye.
  • the user's pupil position changes such as the user's eyeball rotation, or two users with different pupil distances use the same augmented reality device
  • the user needs to adjust the distance of the augmented reality device, or automatically by the augmented reality device.
  • the accuracy of the two is not high at present, which may cause the virtual image light to not enter the human eye, so that the augmented reality device cannot send the virtual image to the user, or the transmitted virtual image is not effective, and then the user cannot be Good increase Strong reality experience.
  • the virtual reality device or the augmented reality device has strict restrictions on the position of the human eye, and the user cannot be given a good virtual reality experience or an augmented reality experience.
  • An object of the present invention is to provide a near-eye display system, a virtual reality device, and an augmented reality device, so as to solve the problem that the virtual reality device or the augmented reality device has strict restrictions on the position of the human eye observed in the prior art.
  • the solution of the embodiment of the present invention increases the field of view provided by the virtual reality technology or the augmented reality technology, so that the virtual reality technology or the augmented reality technology can visually satisfy the viewing requirements of the human eye, thereby being able to provide an immersive experience to the user.
  • a first aspect of an embodiment of the present invention provides a near-eye display system including a light source, a beam expansion array, a reflective scanning device array, and a horizontally extending waveguide, the reflective scanning device array including a plurality of Reflecting the scanning device; the light emitted by the light source is expanded into a plurality of light beams after the beam expanding array, and the plurality of light beams are respectively scanned by the plurality of reflective scanning devices and reflected to the horizontal extended waveguide, and then Transmitted by the horizontally extending waveguide to the human eye.
  • the beam expanding array is disposed on an outgoing optical path of the light source
  • the reflective scanning device array is disposed on an outgoing optical path of the beam expanding array
  • the horizontal extended waveguide is disposed on the reflective scanning device array An exiting optical path
  • the beam expanding array is disposed between the reflective scanning device array and the horizontally extending waveguide.
  • the light source is a light emitting diode light source or a semiconductor laser light source.
  • the light source further includes a fiber coupling component and an optical fiber, the fiber coupling component configured to couple the light emitted by the LED light source or the semiconductor laser source into the optical fiber.
  • the exit end of the optical fiber is a curved structure.
  • the light source further includes a collimating mirror group disposed between an exit end of the optical fiber and an incident end of the beam expanding array, wherein the collimating mirror group is used for The light emitted by the optical fiber is subjected to collimation processing.
  • the beam expanding array is a prism array or a cemented prism.
  • the reflective scanning device array is a DMD array or a two-dimensional MEMS galvanometer array.
  • a second aspect of the embodiments of the present invention further provides a virtual reality device, comprising: two sets of near-eye display systems provided by the first aspect, wherein the light emitted by the first set of near-eye display system enters a left eye of the person, and the second The set of near-eye display system emits light into the person's right eye.
  • the virtual reality device further includes a light blocking structure, the light blocking structure is disposed on a side of the first set of near-eye display system and the horizontal extended waveguide of the second set of near-eye display system away from the human eye .
  • the virtual reality device further includes a zoom lens disposed on a side of the first set of near-eye display system and the horizontal extended waveguide of the second set of near-eye display system near the human eye.
  • a second aspect of the embodiments of the present invention provides an augmented reality device, comprising: two sets of near-eye display systems provided by the first aspect, wherein the light emitted by the first set of near-eye display system enters a left eye of the person, and the second The light emitted by the near-eye display system enters the right eye of the person, and the ambient light enters the left eye of the person through the horizontal expansion waveguide of the first set of near-eye display system, and expands horizontally through the second set of near-eye display system The waveguide enters the right eye of the person.
  • the augmented reality device further includes four zoom lenses respectively disposed on a side of the horizontal extended waveguide of the first set of near-eye display system close to the human eye and away from the human eye. a side, and a side of the horizontally extending waveguide of the second set of near-eye display systems that is close to the human eye and a side that is away from the human eye.
  • the exit pupil diameter of the near-eye display system is enlarged by the horizontally extending waveguide, the light output by the near-eye display system can enter the pupil of the eye in a larger range, thereby reducing or avoiding strict restrictions on the position of the human eye.
  • the utility model further expands the applicable population of the virtual reality device or the augmented reality device, and does not require the user to adjust the distance between the virtual reality device or the augmented reality device, thereby avoiding the user's inaccurate adjustment result and failing to obtain a good virtual reality experience or enhancement. The flaw of the reality experience.
  • Figure 1 is a schematic diagram of laser scanning retinal imaging
  • FIG. 2 is a schematic structural diagram of a near-eye display system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a light source 201
  • FIG. 4A and FIG. 4B are schematic diagrams showing two implementations of the curved end of the optical fiber 2017;
  • 4C is a schematic view of the angle constraint of the cemented prism
  • FIG. 5 is a schematic structural diagram of a near-eye display system applied to a virtual reality device according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a near-eye display system applied to an augmented reality device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of laser scanning retinal imaging.
  • 101 is a laser generator
  • 102 is a two-dimensional scanning device
  • 103 is a retina of the human eye.
  • the resolution of the imaged image is 5*5 as an example.
  • the laser generator emits a white laser and is deflected by the two-dimensional scanning device and reflected to the pixel, thereby realizing the scanning of the pixel.
  • the laser generator emits a corresponding black laser light, and is deflected and reflected to the pixel point by the two-dimensional scanning device, or A laser is emitted to achieve scanning of the pixel.
  • the entire image can be scanned.
  • a complete image can be presented on the retina of the human eye.
  • a Chinese character "king" can be formed in the human eye.
  • different colors of laser light are emitted by the laser generator.
  • lasers of different colors can be emitted by coupling a plurality of monochromatic lasers, and the image to be displayed can be completely scanned, thereby forming a rich image in the human eye.
  • the colorful images are not repeated here.
  • the black laser refers to the corresponding encoded value in the preset color coding mode.
  • the black RGB value is (0,0,0).
  • FIG. 2 is a schematic structural diagram of a near-eye display system according to an embodiment.
  • the near-eye display system includes a light source 201, a beam expansion array 202, a reflective scanning device array 203, and a horizontal expansion waveguide 204, and the reflective scanning device array 203 includes a plurality of reflective scanning devices.
  • the light emitted by the light source 201 is expanded into a plurality of light beams after passing through the beam expanding array 202.
  • the plurality of light beams are respectively scanned by the plurality of reflective scanning devices and reflected to the horizontally extending waveguide 204, and then transmitted to the human eye by the horizontally extending waveguide 204.
  • the horizontally extending waveguide can be formed by providing a plurality of imaging mirrors in the horizontal optical waveguide, for example, by plating a reversible film layer on a plurality of horizontal optical waveguides and bonding them together, wherein one can be reversed
  • the transmembrane layer forms an imaging mirror.
  • the reflection efficiency of each of the anti-permeable membrane layers can be set according to actual conditions. For example, taking a horizontally extending waveguide including five imaging mirrors as an example, according to the transmission direction of the light in the horizontally extending waveguide, the reflectance of the first mirror can be set to 20%, and the reflectance of the second mirror can be set to 25 %, the reflectance of the third mirror is set to 33%, the reflectance of the fourth mirror is set to 50%, and the reflectance of the fifth mirror is set to 100%.
  • the intensity of light emitted by each mirror is 20% of the total light intensity, and will not be described here.
  • the light emitted by the light source 201 is expanded into a plurality of light beams by the beam expanding array 202, scanned by the reflective scanning device array 203 and reflected to the horizontally extending waveguide 204, and the plurality of light beams are transmitted by the horizontally extending waveguide 204 to Human eyes.
  • the exit pupil diameter of the near-eye display system is enlarged by the horizontally extending waveguide 204 so that the light output by the near-eye display system can enter the pupil of the eye over a larger range.
  • the solution provided by the present scheme is significantly increased, thereby reducing or avoiding strict restrictions on the position of the human eye, thereby expanding the applicable population of the virtual reality device or the augmented reality device.
  • the user does not need to perform the distance adjustment on the virtual reality device or the augmented reality device, and thus avoids the defect that the user cannot obtain a good virtual reality experience or an augmented reality experience due to inaccurate adjustment results.
  • the beam expanding array 202 is disposed on the outgoing optical path of the light source 201
  • the reflective scanning device array 203 is disposed on the outgoing optical path of the beam expanding array 202
  • the horizontally extending waveguide 204 is disposed on the reflective scanning device.
  • the beam expanding array 202 is disposed between the reflective scanning device array 203 and the horizontally extending waveguide 204.
  • the light source 201 can be a light emitting diode (English: Light Emitting Diode; abbreviated as: LED) light source, or a semiconductor laser (English: Laser Diode; referred to as: LD) light source.
  • LED Light Emitting Diode
  • LD Laser Diode
  • the performance of the body laser in terms of collimation performance, response speed and other parameters is relatively good, but the cost is higher.
  • Those skilled in the art can select a suitable light source according to actual conditions, and no limitation is imposed herein.
  • FIG. 3 is a schematic structural diagram of the light source 201.
  • the light source 201 may include a red light emitting unit 2011, a green light emitting unit 2012, a blue light emitting unit 2013, and a first filter piece 2014 and a second filter piece 2015.
  • the first filter 2014 is capable of reflecting red light and transmitting blue light and green light
  • the second filter 2015 is capable of reflecting blue light and transmitting green light.
  • the light generated by each of the red light emitting unit 2011, the green light emitting unit 2012, and the blue light emitting unit 2013 can be coupled together by the first filter sheet 2014 and the second filter sheet 2015.
  • the red light emitting unit 2011, the green light emitting unit 2012, and the blue light emitting unit 2013, respectively, the color of the coupled light can be controlled.
  • a film formed of a material selected from the group consisting of silicon dioxide (chemical formula: SiO 2 ) and tantalum pentoxide (chemical formula: Ta 2 O 5 ) may be plated on the first filter sheet 2014 and the second filter sheet 2015.
  • the first filter sheet 2014 is capable of reflecting the red laser light and transmitting the blue laser light and the green laser light
  • the second filter sheet 2015 is capable of reflecting the blue laser light and transmitting the green laser light, which will not be described herein.
  • each of the light-emitting units can emit corresponding light by using a corresponding light-emitting diode or a semiconductor laser.
  • gallium arsenide diodes can emit red light
  • gallium phosphide diodes can emit green light
  • gallium nitride diodes can emit blue light, and so on.
  • the color of each of the light-emitting units in the light source 201 can be set according to actual needs to meet the needs of the actual situation, and is not limited herein.
  • the light source 201 further includes a fiber coupling assembly 2016 and an optical fiber 2017.
  • the fiber coupling assembly 2016 is used to couple the light from the LED source or the semiconductor laser source into the fiber 2017.
  • the exit end of the optical fiber 2017 is a curved structure.
  • FIG. 4A and FIG. 4B are schematic diagrams showing two implementations of the optical fiber 2017 with the exit end being a curved structure.
  • the exit end 20171 of the optical fiber 2017 is a complete curved structure; as shown in FIG. 4B, the exit end 20171 of the optical fiber 2017 is a truncated cone with a curved surface structure.
  • the numerical aperture of the outgoing beam can be enlarged, and the beam satisfying the required width can be more easily obtained under a short distance condition, thereby increasing the compactness of the light source 201 and reducing the light source 201. volume of.
  • the light source 201 further includes a collimating mirror group.
  • the collimating mirror group is disposed between the exit end of the optical fiber and the incident end of the beam expanding array 202 for collimating the light emitted from the optical fiber.
  • the collimating lens group may be a lens lens formed by a convex lens or a plurality of suitable lenses. It can also be a 1/4P self-focusing lens, which is not limited here.
  • the beam expanding array 202 is specifically a prism array or a cemented prism.
  • the beam expanding array 202 is specifically a prism array.
  • the beam expanding array 202 can also be a cemented prism.
  • FIG. 4C is a schematic diagram of the angle constraint of the cemented prism. As shown in FIG. 4C, in order to ensure total reflection of light entering the cemented prism, the angle constraint of the cemented prism is as follows:
  • n 0 is the refractive index of the cemented prism
  • n m is the refractive index of the exterior of the cemented prism such as air or glue
  • fvy is the angle of view of the near-eye display system in the y direction
  • ⁇ c is the angle of view of the cemented prism.
  • the reflective scanning device array 203 is specifically a DMD (English: Digital Micromirror Device; Chinese: Digital Micromirror device) array or a two-dimensional MEMS (English: Micro- Electro-Mechanical System; Chinese: MEMS system) galvanometer array.
  • DMD Digital Micromirror Device
  • Chinese Digital Micromirror device
  • MEMS Micro- Electro-Mechanical System
  • DMD (English: Digital Micromirror Device; Chinese: Digital Micromirror device) includes a control circuit and a plurality of microlenses that can be rotated in a two-dimensional direction. By transmitting a corresponding control signal to the control circuit, the corresponding control can be controlled by the control circuit.
  • the microlens rotates, thereby controlling the corresponding light deflection and reflection, and achieving the purpose of scanning. In this way, as long as the scanning speed of the MEMS galvanometer is fast enough, a corresponding virtual image can be formed in the eyes of the user according to the persistence phenomenon of the human eye.
  • MEMS galvanometer also known as MEMS scanning galvanometer, can deflect and reflect the light output from the aforementioned scanning light source 201 for scanning purposes. In this way, as long as the scanning speed of the MEMS galvanometer is fast enough, a corresponding virtual image can be formed in the eyes of the user according to the persistence phenomenon of the human eye.
  • the virtual image that needs to be sent to the user may be encoded according to a corresponding color mode, for example, the RGB (red, green, blue, and three primary colors) mode is used to encode the virtual image.
  • the light source 201 emits light of a color corresponding to the pixel point, and the light is expanded into a plurality of light beams after passing through the beam expanding array 202, and more
  • the scanning device array 203 After being reflected by the scanning device array 203, the light beams are respectively scanned by the plurality of reflective scanning devices in the reflective scanning device array 203, and specifically, the reflective scanning device is deflected to a corresponding position, thereby deflecting the light beam to a position corresponding to the corresponding pixel point. This completes the scanning of the pixel. Then the next pixel is scanned until the entire virtual image is scanned, which will not be described here.
  • the RGB red, green, blue, and three primary colors
  • the light emitted by the light source 201 is expanded into a plurality of light beams by the beam expanding array 202, scanned by the reflective scanning device array 203 and reflected to the horizontally extending waveguide 204, and then multiple by the horizontally extending waveguide 204.
  • the beam is transmitted to the human eye.
  • the exit pupil diameter of the near-eye display system is enlarged by the horizontally extending waveguide 204 so that the light output by the near-eye display system can enter the pupil of the eye over a larger range.
  • the solution provided by the present scheme is significantly increased, thereby reducing or avoiding strict restrictions on the position of the human eye, thereby expanding the applicable population of the virtual reality device or the augmented reality device.
  • the user does not need to perform the distance adjustment on the virtual reality device or the augmented reality device, and thus avoids the defect that the user cannot obtain a good virtual reality experience or an augmented reality experience due to inaccurate adjustment results.
  • the near-eye display system provided by this embodiment can be applied to a virtual reality device or an augmented reality device.
  • a specific implementation process of applying the near-eye display system to a virtual reality device or an augmented reality device will be described.
  • FIG. 5 is a schematic structural diagram of a near-eye display system applied to a virtual reality device according to an embodiment of the present invention.
  • the virtual reality device provided in this embodiment includes two sets of near-eye display systems introduced in the foregoing section, wherein the light emitted by the first set of near-eye display system 51 enters the left eye of the person, and the second set of near-eye display system 52 exits. The light enters the right eye of the person.
  • the content of the virtual reality can be provided to the user, for example, it can be a scene display, a video, a game content, etc., and will not be described here.
  • the two frames of images displayed by the first set of near-eye display system 51 and the second set of near-eye display system 52 at the same time may be images having a certain parallax.
  • the content of the virtual reality provided to the user has a 3D effect, which can improve the user experience.
  • the virtual reality device in order to ensure the user experience of the virtual reality device, it is necessary to avoid interference from external ambient light.
  • the virtual reality device further includes a light blocking structure 53 disposed on a side of the horizontal expansion waveguide of the first set of the near-eye display system 51 and the second set of the near-eye display system 52 away from the human eye. In this way, it is possible to avoid the interference of external ambient light, thereby being able to avoid the influence of the external environment light on the user using the virtual reality device.
  • the immersion in the preparation process in order to ensure the user experience of the virtual reality device.
  • the light blocking structure may be a total reflection film layer coated on a side of the horizontally extending waveguide away from the human eye, and the total reflection film layer may be, for example, a metal film composed of aluminum, silver, gold or copper. It may also be an electrolyte membrane layer composed of silicon monoxide, magnesium fluoride, silicon dioxide or aluminum oxide, or a combination of the two, which is not limited herein.
  • the light blocking structure can also be a light blocking sheet and the like, and will not be described again here.
  • the near-eye display system in the virtual reality device can also be disposed in an opaque outer casing, which can also achieve the effect of avoiding interference from external ambient light, and will not be described herein.
  • the virtual reality device further includes a zoom lens 54.
  • the zoom lens 54 is disposed on a side of the horizontally extending waveguide close to the human eye.
  • the zoom lens can be, for example, an electrically controlled liquid crystal Fresnel lens.
  • the divergence capability of the electrically controlled liquid crystal Fresnel lens can be varied by varying the voltage applied to the electrically controlled liquid crystal Fresnel lens. In this way, the adjustment of the light emitted by the horizontally spread wave can be achieved, thereby changing the depth of field of the image provided to the user.
  • a zoom lens may be provided for the left eye and the right eye, respectively, and is not limited herein.
  • the zoom lens may be, for example, a liquid-filled zoom lens or a fluid-focusing lens based on dielectric electrowetting, etc., and will not be described herein.
  • the depth of field of the image provided to the user can also be adjusted by software, and will not be described here.
  • the first set of the near-eye display system 51 and the second set of the near-eye display system 52 provide larger diameters of the exit pupils, the observation of the human eye is reduced or avoided.
  • the strict limitation of the location further expands the applicable population of the virtual reality device, and does not require the user to adjust the distance of the virtual reality device, thereby avoiding the defect that the user cannot obtain a good virtual reality experience due to inaccurate adjustment results.
  • FIG. 6 is a schematic structural diagram of a near-eye display system applied to an augmented reality device according to an embodiment of the present invention.
  • the augmented reality device includes two sets of near-eye display systems as described in the foregoing section, wherein light emitted by the first set of near-eye display system 61 enters the left eye of the person, and light emitted by the second set of near-eye display system 62 enters.
  • the human right eye, and ambient light passes into the left eye of the person through the horizontal expansion waveguide in the first set of near-eye display system 61, and enters the right eye of the person through the horizontal expansion waveguide in the second set of near-eye display system 62.
  • the near-eye display system The image provided by the system and the image formed by the ambient light are superimposed, so that the user can provide the augmented reality content, for example, navigation information, annotation information of things in the external environment, etc., and will not be described here. .
  • the augmented reality device further includes four zoom lenses 631, 632, 633, and 634, wherein the zoom lenses 631 and 632 are respectively disposed on the horizontal extended waveguide of the first set of the near-eye display system 61.
  • the zoom lens 633 and 634 are respectively disposed on a side of the horizontal expansion waveguide of the second set of the near-eye display system 62 near the human eye and a side away from the human eye, on the side close to the human eye and the side away from the human eye.
  • a zoom lens is provided on a side of the first set of near-eye display system 61 or second set of near-eye display system 62 that is away from the human eye for the first set of near-eye display system 61 or second set of near-eye display system 62.
  • the zoom lens provided on the side of the horizontally extended waveguide away from the human eye constitutes a 1:1 afocal system, which realizes the distortion-free transmission of the ambient light, avoids the deformation of the image formed by the external ambient light in the human eye, and affects the user's vision.
  • the first set of the near-eye display system 61 and the second set of the near-eye display system 62 provide a larger diameter of the exit pupil, the observation of the human eye is reduced or avoided.
  • the strict limitation of the location further expands the applicable population of the virtual reality device, and does not require the user to adjust the distance adjustment of the augmented reality device, thereby avoiding the defect that the user cannot obtain a good augmented reality experience due to inaccurate adjustment results.
  • the exit pupil diameter of the near-eye display system is enlarged by the horizontally extending waveguide, the light output by the near-eye display system can enter the pupil of the eye in a larger range, thereby reducing or avoiding strict restrictions on the position of the human eye. Furthermore, the applicable population of the augmented reality device is expanded, and the user does not need to adjust the distance adjustment of the augmented reality device, thereby avoiding the defect that the user cannot obtain a good augmented reality experience due to inaccurate adjustment results.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种近眼显示系统、虚拟现实设备和增强现实设备。近眼显示系统包括光源(201)、光束扩展阵列(202)、反射扫描器件阵列(203)和水平扩展波导(204),反射扫描器件阵列(203)包括多个反射扫描器件;光源(201)发出的光线经过光束扩展阵列(202)后被扩展为多个光束,多个光束分别由多个反射扫描器件进行扫描并反射至水平扩展波导(204),再由水平扩展波导(204)传递至人眼。由于通过水平扩展波导(204)扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也避免了用户因调节结果不精确导致无法获得良好的增强现实体验的缺陷。

Description

一种近眼显示系统、虚拟现实设备和增强现实设备
本申请要求享有2016年7月1日提交的名称为“一种近眼显示系统、虚拟现实设备和增强现实设备”的中国专利申请CN201610513813.X的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及虚拟现实领域和增强现实领域,尤其涉及一种近眼显示系统、虚拟现实设备和增强现实设备。
背景技术
虚拟现实(英文:Virtual Reality;简称:VR)是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,通过交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中,为用户带来超越真实生活环境的感官体验。在视觉方面,虚拟现实技术利用计算机设备生成虚拟场景的图像,并通过光学器件将图像的光线传递到人眼,使得用户能够在视觉上完全感受该虚拟场景。
增强现实(英文:Augmented Reality;简称:AR)是利用虚拟物体或信息对真实场景进行现实增强的技术。增强现实技术通常基于摄像头等图像采集设备获得的真实物理环境影像,通过计算机系统识别分析及查询检索,将与之存在关联的文本内容、图像内容或图像模型等虚拟生成的虚拟图像显示在真实物理环境影像中,从而使用户能够获得身处的现实物理环境中的真实物体的标注、说明等相关扩展信息,或者体验到现实物理环境中真实物体的立体的、突出强调的增强视觉效果。
现有的虚拟现实设备或者增强现实设备一般通过光学透镜将虚拟图像的光线会聚到用户的瞳孔中,对人眼观察的位置有较严格的限制。在用户的瞳孔位置发生变化时,例如用户的眼球转动,或者两个瞳距不同的用户先后使用同一个增强现实设备的时候,需要用户对增强现实设备的瞳距调节,或者由增强现实设备自动进行瞳距调节。但目前这两者的精度都不高,会导致虚拟图像的光线无法全部进入人眼,从而使得增强现实设备无法向用户发送虚拟图像,或者发送的虚拟图像的效果不佳,继而无法给用户以良好的增 强现实体验。
因此,现有技术中存在这样的技术问题:由于虚拟现实设备或增强现实设备对人眼观察的位置有较严格的限制,而导致无法给用户以良好的虚拟现实体验或增强现实体验。
发明内容
本发明的目的是提供一种近眼显示系统、虚拟现实设备和增强现实设备,以解决现有技术中存在的因虚拟现实设备或增强现实设备对人眼观察的位置有较严格的限制而导致无法给用户以良好的虚拟现实或增强现实体验的技术问题。本发明实施例的方案增加虚拟现实技术或增强现实技术提供的视场角,使得虚拟现实技术或增强现实技术能够在视觉上满足人眼的观看需求,从而能够向用户提供沉浸式的体验。
为了实现上述发明目的,本发明实施例第一方面提供了一种近眼显示系统,其特征在于,包括光源、光束扩展阵列、反射扫描器件阵列和水平扩展波导,所述反射扫描器件阵列包括多个反射扫描器件;所述光源发出的光线经过所述光束扩展阵列后被扩展为多个光束,所述多个光束分别由所述多个反射扫描器件进行扫描并反射至所述水平扩展波导,再由所述水平扩展波导传递至人眼。
可选地,所述光束扩展阵列设置于所述光源的出射光路上,所述反射扫描器件阵列设置于所述光束扩展阵列的出射光路上,所述水平扩展波导设置于所述反射扫描器件阵列的出射光路上,并且所述光束扩展阵列设置于所述反射扫描器件阵列和所述水平扩展波导之间。
可选地,所述光源为发光二极管光源或者半导体激光器光源。
可选地,所述光源还包括光纤耦合组件和光纤,所述光纤耦合组件用于将所述发光二极管光源或所述半导体激光器光源发出的光线耦合后至所述光纤中。
可选地,所述光纤的出射端为曲面结构。
可选地,所述光源还包括准直镜组,所述准直镜组设置于所述光纤的出射端与所述光束扩展阵列的入射端之间,所述准直镜组用于对从所述光纤出射的光线进行准直处理。
可选地,所述光束扩展阵列为棱镜阵列或胶合棱镜。
可选地,所述反射扫描器件阵列为DMD阵列或二维MEMS振镜阵列。
本发明实施例第二方面还提供一种虚拟现实设备,其特征在于,包括两套如第一方面提供的近眼显示系统,其中第一套近眼显示系统出射的光线进入人的左眼,第二套近眼显示系统出射的光线进入人的右眼。
可选地,所述虚拟现实设备还包括挡光结构,所述挡光结构设置于所述第一套近眼显示系统和所述第二套近眼显示系统的水平扩展波导上远离人眼的一侧。
可选地,所述虚拟现实设备还包括变焦透镜,所述变焦透镜设置于所述第一套近眼显示系统和所述第二套近眼显示系统的水平扩展波导上靠近人眼的一侧。
本发明实施例第二方面提供了一种增强现实设备,其特征在于,包括两套如第一方面提供的近眼显示系统,其中第一套近眼显示系统出射的光线进入人的左眼,第二套近眼显示系统出射的光线进入人的右眼,并且,外界环境光线通过所述第一套近眼显示系统的水平扩展波导进入人的左眼,并通过所述第二套近眼显示系统的水平扩展波导进入人的右眼。
可选地,所述增强现实设备还包括四个变焦透镜,所述四个变焦透镜分别设置于所述第一套近眼显示系统的水平扩展波导的靠近人眼的一侧和远离人眼的一侧,以及所述第二套近眼显示系统的水平扩展波导的靠近人眼的一侧和远离人眼的一侧。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
由于通过水平扩展波导扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备或增强现实设备的适用人群,并且无需用户对虚拟现实设备或增强现实设备进行瞳距调节,也因此避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验或增强现实体验的缺陷。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1为激光扫描视网膜成像的原理图;
图2为本实施例提供的近眼显示系统的结构示意图;
图3为光源201的结构示意图;
图4A和图4B为光纤2017的出射端为曲面结构的两种实现方式的示意图;
图4C为胶合棱镜的角度约束示意图;
图5为本实施例提供的近眼显示系统应用于虚拟现实设备的结构示意图;
图6为本实施例提供的近眼显示系统应用于增强现实设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在介绍本发明实施例中的技术方案之前,先介绍一下激光扫描成像的技术原理。请参考图1,图1为激光扫描视网膜成像的原理图。如图1所示,101为激光发生器,102为二维扫描装置,103为人眼的视网膜。
为方便介绍,以成像的图像的分辨率为5*5为例进行说明。在二维扫描装置当前的方向对准白色的像素点时,激光发生器发出白色的激光,并通过二维扫描装置偏转并反射至该像素点,即实现了对该像素点的扫描。在二维扫描装置的下一个位置,若二维扫描装置的方向对准黑色的像素点,激光发生器发出对应的黑色的激光,并通过二维扫描装置偏转并反射至该像素点,或者不发出激光,即实现了对该像素点的扫描。以此类推,即能够实现整个图像的扫描。这样,通过人眼的视觉暂留现象,就能够在人眼的视网膜上呈现出一幅完整的图像。如图1所示,最后能够在人眼中形成一个汉字“王”。在实际应用中,通过激光发生器发出不同颜色的激光,例如可以通过耦合多个单色激光的方式来发出不同颜色的激光,并且完整地扫描出待显示的图像,从而能够在人眼中形成丰富多彩的图像,在此就不再赘述了。
需要说明的是,黑色的激光是指在预设的颜色编码模式下对应的编码值。例如,在RGB颜色模式下,黑色的RGB值为(0,0,0)。
请参考图2,图2为本实施例提供的近眼显示系统的结构示意图。如图2所示,该近眼显示系统包括光源201、光束扩展阵列202、反射扫描器件阵列203和水平扩展波导204,反射扫描器件阵列203包括多个反射扫描器件。
光源201发出的光线经过光束扩展阵列202后被扩展为多个光束,多个光束分别由多个反射扫描器件进行扫描并反射至水平扩展波导204,再由水平扩展波导204传递至人眼。
水平扩展波导可以通过在水平光波导内设置多个成像镜面而形成,例如可以通过在多个水平光波导上分别镀上可反可透膜层并胶合在一起而形成,其中,一个可反可透膜层即形成一个成像镜面。光线在进入水平光波导后传递至该可反可透膜层时,一部分光线会在该可反可透膜层上发生反射,从而传递至人眼,而另一部分光线会透射过可反可透膜层到下一可反可透膜层。以此类推,从而能够实现扩大近眼显示系统的出瞳直径的效果。
当然,为了保证光强度的均匀性,可以根据实际情况设置每个可反可透膜层的反射效率。例如,以水平扩展波导包括5个成像镜面为例,按照光线在水平扩展波导中的传输方向,可以将第1个镜面的反射率设置为20%,将第2个镜面的反射率设置为25%,将第3个镜面的反射率设置为33%,将第4个镜面的反射率设置为50%,将第5个镜面的反射率设置为100%。这样,每个镜面出射的光强度为总光强度的20%,在此就不再赘述了。
可以看出,通过光束扩展阵列202将光源201发出的光线扩展为多个光束,再由反射扫描器件阵列203进行扫描并反射至水平扩展波导204,再由水平扩展波导204将多个光束传递至人眼。这样,通过水平扩展波导204扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中。所以,与单一光学透镜的出瞳相比,本方案提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备或增强现实设备的适用人群,并且无需用户对虚拟现实设备或增强现实设备进行瞳距调节,也因此避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验或增强现实体验的缺陷。
在接下来的部分中,将具体介绍上述技术方案。
请继续参考图2,如图2所示,光束扩展阵列202设置于光源201的出射光路上,反射扫描器件阵列203设置于光束扩展阵列202的出射光路上,水平扩展波导204设置于反射扫描器件阵列203的出射光路上,光束扩展阵列202设置于反射扫描器件阵列203和水平扩展波导204之间。
在具体实施过程中,光源201可以为发光二极管(英文:Light Emitting Diode;简称:LED)光源,或者半导体激光器(英文:Laser Diode;简称:LD)光源。当然半导 体激光器在准直性能、响应速度等参数的性能相对优秀一些,但成本更高一些。本领域所属的技术人员能够根据实际情况选择合适的光源,在此不做限制。
请参考图3,图3为光源201的结构示意图。如图3所示,在本实施例中,光源201可以包括红色发光单元2011、绿色发光单元2012、蓝色发光单元2013,以及第一滤波片2014和第二滤波片2015。第一滤波片2014能够反射红色光线且透射蓝色光线和绿色光线,第二滤波片2015能够反射蓝色光线且透射绿色光线。这样,通过第一滤波片2014和第二滤波片2015,即能够将红色发光单元2011、绿色发光单元2012和蓝色发光单元2013各自生成的光线耦合到一起。同时,通过分别控制红色发光单元2011、绿色发光单元2012和蓝色发光单元2013输出的能量,即能够控制耦合后的光线的颜色。
在具体实施过程中,可以在第一滤波片2014和第二滤波片2015上镀上选用二氧化硅(化学式:SiO2)和五氧化二钽(化学式:Ta2O5)等材料形成的薄膜,使得第一滤波片2014能够反射红色激光且透射蓝色激光和绿色激光,且第二滤波片2015能够反射蓝色激光且透射绿色激光,在此就不再赘述了。
在具体实施过程中,每一个发光单元都可以采用对应的发光二极管或者半导体激光器发出对应的光线。例如砷化镓二极管能够发出红光,磷化镓二极管能够发出绿光,氮化镓二极管能够发出蓝光,等等。在另一实施例中,光源201中各个发光单元的颜色可以根据实际需要进行设置,以满足实际情况的需要,在此不做限制。
请继续参考图3,在本实施例中,光源201还包括光纤耦合组件2016和光纤2017。光纤耦合组件2016用于将发光二极管光源或半导体激光器光源发出的光线耦合后至光纤2017中。
在具体实施过程中,光纤2017的出射端为曲面结构。请参考图4A和图4B,图4A和图4B为光纤2017的出射端为曲面结构的两种实现方式的示意图。如图4A所示,光纤2017的出射端20171为一个完整的曲面结构;如图4B所示,光纤2017的出射端20171为圆锥台加上一个曲面结构。
通过将光纤2017的出射端20171研磨为曲面结构,可以扩大出射光束的数值孔径,在短距离的条件下更容易获得满足需求宽度的光束,从而增加光源201的紧凑程度,减小光源201所占的体积。
请继续参考图2,在本实施例中,光源201还包括准直镜组。准直镜组设置于光纤的出射端与光束扩展阵列202的入射端之间,用于对从光纤出射的光线进行准直处理。
在具体实施过程中,准直镜组可以是一片凸透镜或若干片合适的透镜构成的透镜组 合,也可以是1/4P的自聚焦透镜,在此不做限制。
在具体实施过程中,光束扩展阵列202具体为棱镜阵列或胶合棱镜。
请继续参考图2,如图2所示,在本实施例中,光束扩展阵列202具体为棱镜阵列。
在具体实施过程中,光束扩展阵列202也可以为胶合棱镜。请继续参考图4C,图4C为胶合棱镜的角度约束示意图。如图4C所示,为了保证光线进入胶合棱镜后能够全反射,该胶合棱镜的角度约束条件如下:
β<θc1
Figure PCTCN2017090832-appb-000001
其中,n0为胶合棱镜的折射率,nm为胶合棱镜外部如空气或胶合液体的折射率,fvy为近眼显示系统在y方向上的视场角,θc为胶合棱镜的视场角。
请继续参考图2,如图2所示,在本实施例中,反射扫描器件阵列203具体为DMD(英文:Digital Micromirror Device;中文:数字微镜装置)阵列或二维MEMS(英文:Micro-Electro-Mechanical System;中文:微机电系统)振镜阵列。
DMD(英文:Digital Micromirror Device;中文:数字微镜装置)包括控制电路和多个可在二维方向上转动的微镜片,通过向控制电路发送对应的控制信号,就能够通过控制电路控制对应的微镜片转动,从而实现控制对应的光线偏转并反射,实现扫描的目的。这样,只要MEMS振镜扫描的速度足够快,就能够根据人眼的视觉暂留现象,在用户的人眼中形成相应的虚拟图像。
MEMS(英文:Micro-Electro-Mechanical System;中文:微机电系统)振镜又被称为MEMS扫描振镜,能够将前述的扫描光源201输出的光线进行偏转并反射,实现扫描的目的。这样,只要MEMS振镜扫描的速度足够快,就能够根据人眼的视觉暂留现象,在用户的人眼中形成相应的虚拟图像。
在具体实施过程中,可以将需要发送给用户的虚拟图像按照对应的颜色模式进行编码,例如采用RGB(红绿蓝三基色)模式对虚拟图像进行编码。编码完成后,由光源201发出对应像素点的颜色的光线,该光线经过光束扩展阵列202后被扩展为多个光束,多 个光束经过反射扫描器件阵列203后,分别被反射扫描器件阵列203中的多个反射扫描器件进行扫描,具体是反射扫描器件偏转至对应的位置,从而将光束偏转至对应像素点对应的位置,这样就完成了该像素点的扫描。然后再进行下一像素点的扫描,直到完成整幅虚拟图像的扫描,在此就不再赘述了。
当然,通过本实施例的介绍,本领域所属的技术人员还可以根据实际情况,采用其他方式来实现对光线的偏转,以满足实际情况的需要,在此就不再赘述了。
通过上述部分可以看出,通过光束扩展阵列202将光源201发出的光线扩展为多个光束,再由反射扫描器件阵列203进行扫描并反射至水平扩展波导204,再由水平扩展波导204将多个光束传递至人眼。这样,通过水平扩展波导204扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中。所以,与单一光学透镜的出瞳相比,本方案提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备或增强现实设备的适用人群,并且无需用户对虚拟现实设备或增强现实设备进行瞳距调节,也因此避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验或增强现实体验的缺陷。
在实际应用中,本实施例提供的近眼显示系统能够应用于虚拟现实设备或增强现实设备上。在接下来的部分中,将介绍将近眼显示系统应用于虚拟现实设备或增强现实设备的具体实现过程。
首先,介绍将本实施例提供的近眼显示系统应用于虚拟现实设备的具体实现过程。
请参考图5,图5为本实施例提供的近眼显示系统应用于虚拟现实设备的结构示意图。如图5所示,本实施例提供的虚拟现实设备包括两套前述部分介绍的近眼显示系统,其中第一套近眼显示系统51出射的光线进入人的左眼,第二套近眼显示系统52出射的光线进入人的右眼。这样,就能够向用户提供虚拟现实的内容,例如可以是场景展示、视频、游戏内容等等,在此就不再赘述了。
当然了,通过第一套近眼显示系统51和第二套近眼显示系统52在同一时间显示的两帧图像,可以是具有一定视差的图像。这样,向用户提供的虚拟现实的内容具有3D效果,能够提高用户体验。
在具体实施过程中,为了保证虚拟现实设备的用户体验,需要避免外界环境光线的干扰。在本实施例中,虚拟现实设备还包括挡光结构53,挡光结构53设置于第一套近眼显示系统51和第二套近眼显示系统52的水平扩展波导上远离人眼的一侧。这样,即能够避免外界环境光线的干扰,从而能够避免因外界环境光线而影响用户在使用虚拟现实设 备过程中的沉浸感。
在实际应用中,挡光结构可以是在水平扩展波导上远离人眼的一侧涂覆的全反射膜层,全反射膜层例如可以是由铝、银、金或铜等组成的金属膜,也可以是由一氧化硅、氟化镁、二氧化硅或三氧化二铝等组成的电解质膜层,或者是二者的结合,在此不做限制。当然,挡光结构还可以是挡光片等等,在此就不再赘述了。
在实际应用中,还可以将虚拟现实设备中的近眼显示系统设置在不透光的外壳中,这样也能够实现避免外界环境光线的干扰的效果,在此就不再赘述了。
在具体实施过程中,虚拟现实设备还包括变焦透镜54,如图5所示,变焦透镜54设置于水平扩展波导上靠近人眼的一侧。变焦透镜例如可以是电控液晶菲涅耳透镜。通过改变施加在电控液晶菲涅耳透镜上的电压,即能够改变电控液晶菲涅耳透镜的发散能力。这样,即能够实现对水平扩展波导出射的光线的调整,从而改变向用户提供的图像的景深。
在实际应用中,可以如图5所示,在一个虚拟现实设备中只设置一个变焦透镜。在另一实施例中,也可以分别为左眼和右眼设置一个变焦透镜,在此不做限制。
当然,在具体实施过程中,变焦透镜例如还可以是充液型变焦透镜或者是基于介质电润湿的流体变焦透镜等等,在此就不再赘述了。在实际应用中,还可以通过软件的方式来调整向用户提供的图像的景深,在此就不再赘述了。
在实际使用本实施例提供的虚拟现实设备的过程中,由于第一套近眼显示系统51和第二套近眼显示系统52提供的出瞳直径都较大,所以减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备的适用人群,并且无需用户对虚拟现实设备进行瞳距调节,也因此避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验的缺陷。
然后,在通过上述部分介绍完本实施例提供的近眼显示系统应用于虚拟现实设备的具体实现过程之后,在接下来部分中,将介绍本实施例提供的近眼显示系统应用于增强现实设备的具体实现过程。
请参考图6,图6为本实施例提供的近眼显示系统应用于增强现实设备的结构示意图。如图6所示,该增强现实设备包括两套如前述部分介绍的近眼显示系统,其中第一套近眼显示系统61出射的光线进入人的左眼,第二套近眼显示系统62出射的光线进入人的右眼,并且,外界环境光线通过第一套近眼显示系统61中的水平扩展波导进入人的左眼,并通过第二套近眼显示系统62中的水平扩展波导进入人的右眼。这样,近眼显示系 统提供的图像和外界环境光线形成的图像就叠加在一起,从而能够向用户提供增强现实的内容,例如可以是导航信息、对外界环境中事物的标注信息等等,在此就不再赘述了。
在具体实施过程中,如图6所示,增强现实设备还包括四个变焦透镜631、632、633和634,其中,变焦透镜631和632分别设置于第一套近眼显示系统61的水平扩展波导的靠近人眼的一侧和远离人眼的一侧,变焦透镜633和634分别设置于第二套近眼显示系统62的水平扩展波导的靠近人眼的一侧和远离人眼的一侧。
变焦透镜的具体作用及构成在前述部分已经进行了详细的介绍,在此就不再赘述了。
在第一套近眼显示系统61或第二套近眼显示系统62的水平扩展波导的远离人眼的一侧设置变焦透镜,是为了和在第一套近眼显示系统61或第二套近眼显示系统62的水平扩展波导的远离人眼的一侧设置的变焦透镜组成1:1的无焦系统,实现外界环境光线的无扭曲传递,避免外界环境光线在人眼中形成的图像存在变形,影响用户的视觉体验。
在实际使用本实施例提供的增强现实设备的过程中,由于第一套近眼显示系统61和第二套近眼显示系统62提供的出瞳直径都较大,所以减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也因此避免了用户因调节结果不精确导致无法获得良好的增强现实体验的缺陷。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
由于通过水平扩展波导扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也因此避免了用户因调节结果不精确导致无法获得良好的增强现实体验的缺陷。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (13)

  1. 一种近眼显示系统,其特征在于,包括光源、光束扩展阵列、反射扫描器件阵列和水平扩展波导,所述反射扫描器件阵列包括多个反射扫描器件;
    所述光源发出的光线经过所述光束扩展阵列后被扩展为多个光束,所述多个光束分别由所述多个反射扫描器件进行扫描并反射至所述水平扩展波导,再由所述水平扩展波导传递至人眼。
  2. 如权利要求1所述的近眼显示系统,其特征在于,所述光束扩展阵列设置于所述光源的出射光路上,所述反射扫描器件阵列设置于所述光束扩展阵列的出射光路上,所述水平扩展波导设置于所述反射扫描器件阵列的出射光路上,并且所述光束扩展阵列设置于所述反射扫描器件阵列和所述水平扩展波导之间。
  3. 如权利要求1所述的近眼显示系统,其特征在于,所述光源为发光二极管光源或者半导体激光器光源。
  4. 如权利要求3所述的近眼显示系统,其特征在于,所述光源还包括光纤耦合组件和光纤,所述光纤耦合组件用于将所述发光二极管光源或所述半导体激光器光源发出的光线耦合后至所述光纤中。
  5. 如权利要求4所述的近眼显示系统,其特征在于,所述光纤的出射端为曲面结构。
  6. 如权利要求4所述的近眼显示系统,其特征在于,所述光源还包括准直镜组,所述准直镜组设置于所述光纤的出射端与所述光束扩展阵列的入射端之间,所述准直镜组用于对从所述光纤出射的光线进行准直处理。
  7. 如权利要求1所述的近眼显示系统,其特征在于,所述光束扩展阵列为棱镜阵列或胶合棱镜。
  8. 如权利要求1所述的近眼显示系统,其特征在于,所述反射扫描器件阵列为DMD阵列或二维MEMS振镜阵列。
  9. 一种虚拟现实设备,其特征在于,包括两套如权利要求1-8中任一权项所述的近眼显示系统,其中第一套近眼显示系统出射的光线进入人的左眼,第二套近眼显示系统出射的光线进入人的右眼。
  10. 如权利要求9所述的虚拟现实设备,其特征在于,所述虚拟现实设备还包括挡光结构,所述挡光结构设置于所述第一套近眼显示系统和所述第二套近眼显示系统的水 平扩展波导上远离人眼的一侧。
  11. 如权利要求9所述的虚拟现实设备,其特征在于,所述虚拟现实设备还包括变焦透镜,所述变焦透镜设置于所述第一套近眼显示系统和所述第二套近眼显示系统的水平扩展波导上靠近人眼的一侧。
  12. 一种增强现实设备,其特征在于,包括两套如权利要求1-8中任一权项所述的近眼显示系统,其中第一套近眼显示系统出射的光线进入人的左眼,第二套近眼显示系统出射的光线进入人的右眼,并且,外界环境光线通过所述第一套近眼显示系统的水平扩展波导进入人的左眼,并通过所述第二套近眼显示系统的水平扩展波导进入人的右眼。
  13. 如权利要求12所述的增强现实设备,其特征在于,所述增强现实设备还包括四个变焦透镜,所述四个变焦透镜分别设置于所述第一套近眼显示系统的水平扩展波导的靠近人眼的一侧和远离人眼的一侧,以及所述第二套近眼显示系统的水平扩展波导的靠近人眼的一侧和远离人眼的一侧。
PCT/CN2017/090832 2016-07-01 2017-06-29 一种近眼显示系统、虚拟现实设备和增强现实设备 WO2018001318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610513813.XA CN107561698A (zh) 2016-07-01 2016-07-01 一种近眼显示系统、虚拟现实设备和增强现实设备
CN201610513813.X 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018001318A1 true WO2018001318A1 (zh) 2018-01-04

Family

ID=60785970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090832 WO2018001318A1 (zh) 2016-07-01 2017-06-29 一种近眼显示系统、虚拟现实设备和增强现实设备

Country Status (2)

Country Link
CN (1) CN107561698A (zh)
WO (1) WO2018001318A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022271329A1 (en) * 2021-06-24 2022-12-29 Microsoft Technology Licensing, Llc Spectrally diverse laser-based near-eye display
EP3640710B1 (en) * 2018-10-15 2023-04-19 Coretronic Corporation Near-eye display apparatus
US11656467B2 (en) 2021-06-24 2023-05-23 Microsoft Technology Licensing, Llc Compact laser-based near-eye display
US11899211B2 (en) 2021-06-24 2024-02-13 Microsoft Technology Licensing, Llc Pulse-modulated laser-based near-eye display

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415162A (zh) * 2018-01-18 2018-08-17 北京灵犀微光科技有限公司 近眼显示设备
WO2019152538A1 (en) * 2018-01-31 2019-08-08 Magic Leap, Inc. Method and system for large field of view display with scanning mirror having optical power
US11971549B2 (en) 2018-03-12 2024-04-30 Magic Leap, Inc. Very high index eyepiece substrate-based viewing optics assembly architectures
CN108717235A (zh) * 2018-08-29 2018-10-30 深圳珑璟光电技术有限公司 一种可调视度波导近眼显示光学装置
CN109157188B (zh) * 2018-09-10 2021-10-15 执鼎医疗科技(杭州)有限公司 多人定位微透镜变焦oct光学系统和扫描方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201974578U (zh) * 2011-01-26 2011-09-14 中国科学院光电研究院 连续光学扫描装置
US20150077312A1 (en) * 2011-05-13 2015-03-19 Google Inc. Near-to-eye display having adaptive optics
CN104536136A (zh) * 2015-01-25 2015-04-22 上海理湃光晶技术有限公司 一种用于显示的折叠准直光学波导器件
CN104570352A (zh) * 2015-01-06 2015-04-29 华为技术有限公司 一种近眼显示器
CN104614858A (zh) * 2015-01-25 2015-05-13 上海理湃光晶技术有限公司 增强现实的锯齿结构平面波导目视光学显示器件
CN105629474A (zh) * 2016-03-07 2016-06-01 成都理想境界科技有限公司 一种近眼显示系统及头戴显示设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1849033B1 (en) * 2005-02-10 2019-06-19 Lumus Ltd Substrate-guided optical device utilizing thin transparent layer
JP5226528B2 (ja) * 2005-11-21 2013-07-03 マイクロビジョン,インク. 像誘導基板を有するディスプレイ
CN107315249B (zh) * 2013-11-27 2021-08-17 奇跃公司 虚拟和增强现实系统与方法
CN103885184B (zh) * 2014-04-10 2016-04-27 北京理工大学 一种投影式平面波导头盔显示器
CN104216120B (zh) * 2014-08-29 2016-11-02 中国科学院长春光学精密机械与物理研究所 半透膜阵列平板波导式头戴显示器光学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201974578U (zh) * 2011-01-26 2011-09-14 中国科学院光电研究院 连续光学扫描装置
US20150077312A1 (en) * 2011-05-13 2015-03-19 Google Inc. Near-to-eye display having adaptive optics
CN104570352A (zh) * 2015-01-06 2015-04-29 华为技术有限公司 一种近眼显示器
CN104536136A (zh) * 2015-01-25 2015-04-22 上海理湃光晶技术有限公司 一种用于显示的折叠准直光学波导器件
CN104614858A (zh) * 2015-01-25 2015-05-13 上海理湃光晶技术有限公司 增强现实的锯齿结构平面波导目视光学显示器件
CN105629474A (zh) * 2016-03-07 2016-06-01 成都理想境界科技有限公司 一种近眼显示系统及头戴显示设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640710B1 (en) * 2018-10-15 2023-04-19 Coretronic Corporation Near-eye display apparatus
WO2022271329A1 (en) * 2021-06-24 2022-12-29 Microsoft Technology Licensing, Llc Spectrally diverse laser-based near-eye display
US11656467B2 (en) 2021-06-24 2023-05-23 Microsoft Technology Licensing, Llc Compact laser-based near-eye display
US11899211B2 (en) 2021-06-24 2024-02-13 Microsoft Technology Licensing, Llc Pulse-modulated laser-based near-eye display

Also Published As

Publication number Publication date
CN107561698A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2018001318A1 (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
WO2018001322A1 (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
CN108463767B (zh) 虚拟/增强现实系统中的光束角度传感器
AU2013217496B2 (en) Image generation systems and image generation methods
EP3686649A1 (en) Prismatic ar display apparatus
WO2017181864A1 (zh) 一种近眼显示系统
JP2021517663A (ja) 超高屈折率接眼レンズ基板ベースの視認光学系アセンブリアーキテクチャ
US8628196B2 (en) Display device and display method
WO2018001320A1 (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
JP2022189914A (ja) 改良された回折格子構造を有する仮想および拡張現実システムおよび方法
CN205982823U (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
US10852558B2 (en) Near-eye display (NED) system and method using flexible reflector
CN107561699A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
US11841510B1 (en) Scene camera
KR20200103777A (ko) 도파관 디스플레이를 위한 애플리케이션 특정 집적 회로
CN107561696A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
US20200264436A1 (en) Display device and display method
US11122256B1 (en) Mixed reality system
WO2018001321A1 (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
CN108072975A (zh) 一种用于单目的近眼显示系统以及虚拟现实设备
TWI669533B (zh) 頭戴式顯示器以及多深度的成像裝置
CN105629475A (zh) 一种增强现实显示设备
US10585284B1 (en) Systems and methods to provide an interactive environment over a wide field of view
CN107561703A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
JP2023537897A (ja) Pic入力を有するビーム走査器及びそれに基づくニアアイディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819315

Country of ref document: EP

Kind code of ref document: A1