CN107561699A - 一种近眼显示系统、虚拟现实设备和增强现实设备 - Google Patents

一种近眼显示系统、虚拟现实设备和增强现实设备 Download PDF

Info

Publication number
CN107561699A
CN107561699A CN201610513846.4A CN201610513846A CN107561699A CN 107561699 A CN107561699 A CN 107561699A CN 201610513846 A CN201610513846 A CN 201610513846A CN 107561699 A CN107561699 A CN 107561699A
Authority
CN
China
Prior art keywords
display system
light
eye display
eye
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610513846.4A
Other languages
English (en)
Inventor
黄琴华
周旭东
喻秀英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Idealsee Technology Co Ltd
Original Assignee
Chengdu Idealsee Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Idealsee Technology Co Ltd filed Critical Chengdu Idealsee Technology Co Ltd
Priority to CN201610513846.4A priority Critical patent/CN107561699A/zh
Publication of CN107561699A publication Critical patent/CN107561699A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种近眼显示系统、虚拟现实设备和增强现实设备,近眼显示系统包括光源、MEMS振镜和水平扩展波导;所述光源发出的光线经过所述MEMS振镜后,被所述MEMS振镜进行扫描并反射至所述水平扩展波导,再由所述水平扩展波导传递至人眼。由于通过MEMS振镜对光源发出的光线进行扫描,再通过水平扩展波导对光线在水平方向进行扩展,从而扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备或增强现实设备的适用人群。

Description

一种近眼显示系统、虚拟现实设备和增强现实设备
技术领域
本发明涉及虚拟现实领域和增强现实领域,尤其涉及一种近眼显示系统、虚拟现实设备和增强现实设备。
背景技术
虚拟现实(英文:Virtual Reality;简称:VR)是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,通过交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中,为用户带来超越真实生活环境的感官体验。在视觉方面而言,虚拟现实技术利用计算机设备生成虚拟场景的图像,并通过光学器件将图像光线传递到人眼,使得用户能够在视觉上能够完全感受该虚拟场景。
增强现实(英文:Augmented Reality;简称:AR),是利用虚拟物体或信息对真实场景进行现实增强的技术。增强现实技术通常基于摄像头等图像采集设备获得的真实物理环境影像,通过计算机系统识别分析及查询检索,将与之存在关联的文本内容、图像内容或图像模型等虚拟生成的虚拟图像显示在真实物理环境影像中,从而使用户能够获得身处的现实物理环境中的真实物体的标注、说明等相关扩展信息,或者体验到现实物理环境中真实物体的立体的、突出强调的增强视觉效果。
现有的虚拟现实设备或者增强现实设备一般通过光学透镜将虚拟图像的光线会聚到用户的瞳孔中,对人眼观察的位置有较严格的限制。在用户的瞳孔位置发生变化时,例如用户的眼球转动,或者两个瞳距不同的用户先后使用同一个增强现实设备的时候,需要用户对增强现实设备的瞳距调节,或者由增强现实设备自动进行瞳距调节,但目前这两者的精度都不高,会导致虚拟图像的光线无法全部进入人眼,从而使得增强现实设备无法向用户发送虚拟图像,或者发送的虚拟图像的效果不佳,继而无法给用户以良好的增强现实体验。
因此,现有技术中存在的因增强现实设备对人眼观察的位置有较严格的限制,而导致无法给用户以良好的增强现实体验的技术问题。
发明内容
本发明的目的是提供一种近眼显示系统、虚拟现实设备和增强现实设备,解决现有技术中存在的因增强现实设备对人眼观察的位置有较严格的限制,而导致无法给用户以良好的增强现实体验的技术问题,增加了虚拟现实技术或增强现实技术提供的视场角,使得虚拟现实技术或增强现实技术能够在视觉上满足人眼的观看需求,从而能够向用户提供沉浸式的体验。
为了实现上述发明目的,本发明实施例第一方面提供了一种近眼显示系统,包括光源、MEMS振镜和水平扩展波导;
所述光源发出的光线经过所述MEMS振镜后,被所述MEMS振镜进行扫描并反射至所述水平扩展波导,再由所述水平扩展波导传递至人眼。
2、如权利要求1所述的近眼显示系统,其特征在于,所述MEMS振镜设置于所述光源的出射光路上,所述水平扩展波导设置于所述MEMS振镜的出射光路上。
可选地,所述光源为发光二极管光源或者半导体激光器光源。
可选地,所述光源还包括光纤耦合组件和光纤,所述光纤耦合组件用于将所述发光二极管光源或所述半导体激光器光源发出的光线耦合后至所述光纤中。
可选地,所述光纤的出射端为曲面结构。
可选地,所述光源还包括准直镜组,所述准直镜组设置于所述光纤的出射光路上和所述MEMS振镜的入射光路上,所述准直镜组用于对从所述光纤出射的光线进行准直处理。
可选地,所述近眼显示系统还包括垂直扩展波导,所述垂直扩展波导的入射端设置于所述MEMS振镜的出射光路上,所述垂直扩展波导的出射端设置于所述水平扩展波导的入射光路上,所述垂直扩展波导用于对所述MEMS振镜出射的光线在垂直方向上进行扩束。
可选地,所述近眼显示系统还包括转束棱镜,所述转束棱镜的入射端设置于所述光源的出射端,所述转束棱镜的第一出射端设置于所述MEMS振镜的入射光路上,所述转束棱镜的第二出射端设置于所述垂直扩展波导的入射光路上,所述转束棱镜用于偏转所述光源发出的光线的方向。
可选地,所述转束棱镜具体为棱镜阵列或者单棱镜。
本发明实施例第二方面提供了一种虚拟现实设备,包括两套如第一方面提供的近眼显示系统,其中第一套近眼显示系统出射的光线进入人的左眼,第二套近眼显示系统出射的光线进入人的右眼。
可选地,所述虚拟现实设备还包括挡光结构,所述挡光结构设置于所述第一套近眼显示系统和所述第二套近眼显示系统的水平扩展波导上远离人眼的一侧。
可选地,所述虚拟现实设备还包括变焦透镜,所述变焦透镜设置于所述水平扩展波导上靠近人眼的一侧。
本发明实施例第三方面提供了一种增强现实设备,包括两套如第一方面提供的近眼显示系统,其中第一套近眼显示系统出射的光线进入人的左眼,第二套近眼显示系统出射的光线进入人的右眼;外界环境光线通过所述第一套近眼显示系统的水平扩展波导进入人的左眼,并通过所述第二套近眼显示系统的水平扩展波导进入人的右眼。
可选地,所述增强现实设备还包括四个变焦透镜,所述四个变焦透镜分别设置于所述第一套近眼显示系统的水平扩展波导的靠近人眼的一侧和远离人眼的一侧,以及所述第二套近眼显示系统的水平扩展波导的靠近人眼的一侧和远离人眼的一侧。
本发明实施例中的一个或者多个技术方案,至少具有如下技术特征或者优点:
由于通过MEMS振镜对光源发出的光线进行扫描,再通过水平扩展波导对光线在水平方向进行扩展,从而扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,所以与单一光学透镜的出瞳相比,本方案提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备或增强现实设备的适用人群,并且无需用户对虚拟现实设备或增强现实设备进行瞳距调节,也避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验或增强现实体验的缺陷。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1为激光扫描视网膜成像的原理图;
图2为本实施例提供的近眼显示系统的第一种实现方式的结构示意图;
图3为本实施例提供的光源的结构示意图;
图4为本实施例提供的近眼显示系统的第二种实现方式的结构示意图
图5为本实施例提供的近眼显示系统的第三种实现方式的结构示意图;
图6为本实施例提供的近眼显示系统应用于虚拟现实设备的结构示意图;
图7为本实施例提供的近眼显示系统应用于增强现实设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在介绍本发明实施例中的技术方案之前,先介绍一下激光扫描成像的技术原理,请参考图1,图1为激光扫描视网膜成像的原理图,如图1所示,101为激光发生器,102为二维扫描装置,103为人眼的视网膜。
为方便介绍,以成像的图像的分辨率为5*5为例,在二维扫描装置当前的方向对准白色的像素点时,激光发生器发出白色的激光,并通过二维扫描装置偏转并反射至该像素点,即实现了对该像素点的扫描;在二维扫描装置的下一个位置,若二维扫描装置的方向对准黑色的像素点时,激光发生器发出对应的黑色的激光,通过二维扫描装置偏转并反射至该像素点,或者不发出激光,即实现了对该像素点的扫描,以此类推,即能够实现整个图像的扫描,这样,通过人眼的视觉暂留现象,就能够在人眼的视网膜上呈现出一幅完整的图像,如图1所示,最后能够在人眼中形成一个汉字“王”。在实际应用中,通过激光发生器发出不同颜色的激光,例如可以通过耦合多个单色激光的方式来发出不同颜色的激光,并且完整地扫描出待显示的图像,从而能够在人眼中形成丰富多彩的图像,在此就不再赘述了。
需要说明的是,黑色的激光是指在预设的颜色编码模式下对应的编码值,例如,在RGB颜色模式下,黑色的RGB值为(0,0,0)。
请参考图2,图2为本实施例提供的近眼显示系统的第一种实现方式的结构示意图,如图2所示,该近眼显示系统包括光源1201、MEMS振镜1202和水平扩展波导1203;
光源1201发出的光线经过MEMS振镜1202后,被MEMS振镜1202进行扫描并反射至水平扩展波导1203,再由水平扩展波导1203传递至人眼。
水平扩展波导可以在水平光波导内设置多个成像镜面,例如可以是在多个水平光波导上镀上可反可透膜层并胶合在一起,可反可透膜层即形成一个成像镜面,光线在进入水平光波导后传递至该可反可透膜层时,一部分光线会在该可反可透膜层上发生反射,从而传递至人眼,另一部分光线会透射过可反可透膜层到下一可反可透膜层,以此类推,从而能够实现扩大近眼显示系统的出瞳直径的效果。
当然,为了保证光强度的均匀性,可以根据实际情况设置每个可反可透膜层的反射效率,例如,以水平扩展波导包括5个成像镜面为例,按照光线在水平扩展波导中的传输方向,可以将第1个镜面的反射率设置为20%,将第2个镜面的反射率设置为25%,将第3个镜面的反射率设置为33%,将第4个镜面的反射率设置为50%,将第5个镜面的反射率设置为100%,这样,每个镜面出射的光强度为总光强度的20%,在此就不再赘述了。
可以看出,由于通过MEMS振镜1202对光源1201发出的光线进行扫描,再通过水平扩展波导1203对光线在水平方向进行扩展,从而扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,所以与单一光学透镜的出瞳相比,本方案提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备或增强现实设备的适用人群,并且无需用户对虚拟现实设备或增强现实设备进行瞳距调节,也避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验或增强现实体验的缺陷。
在具体实施过程中,请继续参考图2,如图2所示,MEMS振镜1202设置于光源1201的出射光路上,水平扩展波导1203设置于MEMS振镜1202的出射光路上。
在具体实施过程中,光源1201为发光二极管光源或者半导体激光器光源。
在具体实施过程中,光源1201还包括光纤耦合组件和光纤,光纤耦合组件用于将发光二极管光源或半导体激光器光源发出的光线耦合后至光纤中。
在具体实施过程中,光纤的出射端为曲面结构。
在具体实施过程中,光源1201还包括准直镜组,准直镜组设置于光纤的出射光路上和MEMS振镜1202的入射光路上,准直镜组用于对从光纤出射的光线进行准直处理。
请参考图3,图3为本实施例提供的光源1201的结构示意图,如图3所示,光源1201可以包括红色发光单元2011、绿色发光单元2012、蓝色发光单元2013,以及第一滤波片2014和第二滤波片2015,第一滤波片2014能够反射红色光线且透射蓝色光线和绿色光线,第二滤波片2015能够反射蓝色光线且透射绿色光线,这样,通过第一滤波片2014和第二滤波片2015,即能够将红色发光单元2011、蓝色发光单元2012和绿色发光单元2013各自生成的光线耦合到一起,同时,通过分别控制红色发光单元2011、蓝色发光单元2012和绿色发光单元2013输出的能量,即能够控制耦合后的光线的颜色。
在具体实施过程中,可以在第一滤波片2014和第二滤波片2015上镀上选用二氧化硅(化学式:SiO2)和五氧化二钽(化学式:Ta2O5)等材料形成的薄膜,使得第一滤波片2014能够反射红色激光且透射蓝色激光和绿色激光,且第二滤波片2015能够反射蓝色激光且透射绿色激光,在此就不再赘述了。
在具体实施过程中,每一个发光单元都可以采用对应的发光二极管或者半导体激光器发出对应的光线,例如砷化镓二极管能够发出红光,磷化镓二极管能够发出绿光,氮化镓二极管能够发出蓝光,等等。在另一实施例中,光源201中各个发生单元的颜色可以根据实际需要进行设置,以满足实际情况的需要,在此不做限制。
请继续参考图3,在本实施例中,光源1201还包括光纤耦合组件2016和光纤2017,光纤耦合组件2016用于将发光二极管光源或半导体激光器光源发出的光线耦合后至光纤2017中。
在具体实施过程中,请参考图4,图4为本实施例提供的近眼显示系统的第二种实现方式的结构示意图,如图4所示,近眼显示系统还包括垂直扩展波导1204,垂直扩展波导1204设置于MEMS振镜1202的出射光路上和水平扩展波导1203的入射光路上,垂直扩展波导用于对MEMS振镜1202出射的光线在垂直方向上进行扩束。
可以看出,通过垂直扩展波导1204对MEMS振镜1202出射的光线在垂直方向进行扩束后,再通过水平扩展波导1203在水平方向进行扩束,这样在垂直方向和水平方向上都扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,进一步减少或者避免了对人眼观察的位置的严格限制。
在具体实施过程中,请参考图5,图5为本实施例提供的近眼显示系统的第三种实现方式的结构示意图,如图5所示,近眼显示系统还包括转束棱镜1205,转束棱镜1205的入射端设置于光源1201的出射光路上,转束棱镜1205的第一出射端设置于MEMS振镜1202的入射光路上,转束棱镜1205的第二出射端设置于垂直扩展波导的入射光路上,转束棱镜用于偏转光源1201发出的光线的方向。
由于近眼显示系统能够通过转束棱镜1205来改变光源和MEMS振镜之间的相对位置,所以避免了对光源和MEMS振镜之间的相对位置的限定,使得光源与MEMS振镜之间的相对位置更加自由,能够适用于更多的应用场景。
在具体实施过程中,转束棱镜1205具体可以采用由多个棱镜胶合而成的棱镜阵列,或者可以为单棱镜,在此就不再赘述了。
可以看出,由于通过MEMS振镜1202对光源1201发出的光线进行扫描,再通过水平扩展波导1203对光线在水平方向进行扩展,从而扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,所以与单一光学透镜的出瞳相比,本方案提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备或增强现实设备的适用人群,并且无需用户对虚拟现实设备或增强现实设备进行瞳距调节,也避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验或增强现实体验的缺陷。
在实际应用中,本实施例提供的近眼显示系统能够应用于虚拟现实设备或增强现实设备上,在接下来的部分中,将介绍将近眼显示系统应用于虚拟现实设备或增强现实设备的具体实现过程。
首先,介绍将本实施例提供的近眼显示系统应用于虚拟现实设备的具体实现过程。
请参考图6,图6为本实施例提供的近眼显示系统应用于虚拟现实设备的结构示意图,如图6所示,本实施例提供的虚拟现实设备包括两套如本实施例前述部分介绍的近眼显示系统,其中第一套近眼显示系统151出射的光线进入人的左眼,第二套近眼显示系统152出射的光线进入人的右眼,这样,就能够向用户提供虚拟现实的内容,例如可以是场景展示、视频、游戏内容等等,在此就不再赘述了。
当然了,通过第一套近眼显示系统151和第二套近眼显示系统152在同一时间显示的两帧图像,可以是具有一定视差的图像,这样,向用户提供的虚拟现实的内容具有3D效果,能够提高用户体验。
在具体实施过程中,虚拟现实设备还包括挡光结构153,挡光结构153设置于第一套近眼显示系统151和第二套近眼显示系统152的水平扩展波导上远离人眼的一侧,这样,即能够避免外界环境光线的干扰,从而能够避免因外界环境光线而影响用户在使用虚拟现实设备过程中的沉浸感。
在实际应用中,挡光结构可以是在水平扩展波导上远离人眼的一侧涂覆的全反射膜层,全反射膜层例如可以是由铝、银、金或铜等组成的金属膜,也可以说由一氧化硅、氟化镁、二氧化硅或三氧化二铝等组成的电解质膜层,或者是二者的结合,在此不做限制。当然,挡光结构还可以是挡光片等等,在此就不再赘述了。
在实际应用中,还可以将虚拟现实设备中的近眼显示系统设置在不透光的外壳中,也能够实现避免外界环境光线的干扰的效果,在此就不再赘述了。
在具体实施过程中,虚拟现实设备还包括变焦透镜1504,变焦透镜1504设置于水平扩展波导上靠近人眼的一侧,变焦透镜例如可以是电控液晶菲涅耳透镜,通过改变施加在电控液晶菲涅耳透镜上的电压,即能够改变电控液晶菲涅耳透镜的发散能力,这样,即能够实现对水平扩展波导出射的光线的调整,从而改变向用户提供的图像的景深。
在实际应用中,可以如图6所示,在一个虚拟现实设备中只设置一个变焦透镜,在另一实施例中,也可以分别为左眼和右眼设置一个变焦透镜,在此不做限制。
当然,在具体实施过程中,变焦透镜例如还可以是充液型变焦透镜或者是基于介质电润湿的流体变焦透镜等等,在此就不再赘述了。在实际应用中,还可以通过软件的方式来调整向用户提供的图像的景深,在此就不再赘述了。
在实际使用本实施例提供的虚拟现实设备的过程中,由于第一套近眼显示系统151和第二套近眼显示系统152提供的出瞳直径都较大,所以减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备的适用人群,并且无需用户对虚拟现实设备进行瞳距调节,也避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验的缺陷。
然后,在通过上述部分,介绍完本实施例提供的近眼显示系统应用于虚拟现实设备的具体实现过程之后,在接下来部分中,将介绍本实施例提供的近眼显示系统应用于增强现实设备的具体实现过程。
请参考图7,图7为本实施例提供的近眼显示系统应用于增强现实设备的结构示意图,如图7所示,该增强现实设备包括两套如本实施例前述部分的近眼显示系统,其中第一套近眼显示系统161出射的光线进入人的左眼,第二套近眼显示系统162出射的光线进入人的右眼;外界环境光线通过第一套近眼显示系统161的水平扩展波导进入人的左眼,并通过第二套近眼显示系统162的水平扩展波导进入人的右眼,这样,近眼显示系统提供的图像和外界环境光线形成的图像就叠加在一起,从而能够向用户提供增强现实的内容,例如可以是导航信息、对外界环境中事物的标注信息等等,在此就不再赘述了。
在具体实施过程中,如图7所示,增强现实设备还包括四个变焦透镜1631、1632、1633和1634,变焦透镜1631、1632分别设置于第一套近眼显示系统161的水平扩展波导的靠近人眼的一侧和远离人眼的一侧,变焦透镜1633、1634分别设置于第二套近眼显示系统162的水平扩展波导的靠近人眼的一侧和远离人眼的一侧。
变焦透镜的具体作用及构成在前述部分已经进行了详细的介绍,在此就不再赘述了。
在第一套近眼显示系统161或第二套近眼显示系统162的水平扩展波导的远离人眼的一侧设置变焦透镜,是为了和在第一套近眼显示系统161或第二套近眼显示系统162的水平扩展波导的远离人眼的一侧设置的变焦透镜组成1:1的无焦系统,实现外界环境光线的无扭曲传递,避免外界环境光线在人眼中形成的图像存在变形,影响用户的视觉体验。
在实际使用本实施例提供的增强现实设备的过程中,由于第一套近眼显示系统161和第二套近眼显示系统162提供的出瞳直径都较大,所以减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也避免了用户因调节结果不精确导致无法获得良好的增强现实体验的缺陷。
本发明实施例中的一个或者多个技术方案,至少具有如下技术特征或者优点:
由于通过MEMS振镜对光源发出的光线进行扫描,再通过水平扩展波导对光线在水平方向进行扩展,从而扩大了近眼显示系统的出瞳直径,使得近眼显示系统输出的光线能够在更大的范围上进入眼睛的瞳孔中,所以与单一光学透镜的出瞳相比,本方案提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了虚拟现实设备或增强现实设备的适用人群,并且无需用户对虚拟现实设备或增强现实设备进行瞳距调节,也避免了用户因调节结果不精确导致无法获得良好的虚拟现实体验或增强现实体验的缺陷。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (14)

1.一种近眼显示系统,其特征在于,包括光源、MEMS振镜和水平扩展波导;
所述光源发出的光线经过所述MEMS振镜后,被所述MEMS振镜进行扫描并反射至所述水平扩展波导,再由所述水平扩展波导传递至人眼。
2.如权利要求1所述的近眼显示系统,其特征在于,所述MEMS振镜设置于所述光源的出射光路上,所述水平扩展波导设置于所述MEMS振镜的出射光路上。
3.如权利要求1所述的近眼显示系统,其特征在于,所述光源为发光二极管光源或者半导体激光器光源。
4.如权利要求3所述的近眼显示系统,其特征在于,所述光源还包括光纤耦合组件和光纤,所述光纤耦合组件用于将所述发光二极管光源或所述半导体激光器光源发出的光线耦合后至所述光纤中。
5.如权利要求4所述的近眼显示系统,其特征在于,所述光纤的出射端为曲面结构。
6.如权利要求5所述的近眼显示系统,其特征在于,所述光源还包括准直镜组,所述准直镜组设置于所述光纤的出射光路上和所述MEMS振镜的入射光路上,所述准直镜组用于对从所述光纤出射的光线进行准直处理。
7.如权利要求1-6中任一权项所述的近眼显示系统,其特征在于,所述近眼显示系统还包括垂直扩展波导,所述垂直扩展波导的入射端设置于所述MEMS振镜的出射光路上,所述垂直扩展波导的出射端设置于所述水平扩展波导的入射光路上,所述垂直扩展波导用于对所述MEMS振镜出射的光线在垂直方向上进行扩束。
8.如权利要求7所述的近眼显示系统,其特征在于,所述近眼显示系统还包括转束棱镜,所述转束棱镜的入射端设置于所述光源的出射端,所述转束棱镜的第一出射端设置于所述MEMS振镜的入射光路上,所述转束棱镜的第二出射端设置于所述垂直扩展波导的入射光路上,所述转束棱镜用于偏转所述光源发出的光线的方向。
9.如权利要求8所述的近眼显示系统,其特征在于,所述转束棱镜具体为棱镜阵列或者单棱镜。
10.一种虚拟现实设备,其特征在于,包括两套如权利要求1-9中任一权项所述的近眼显示系统,其中第一套近眼显示系统出射的光线进入人的左眼,第二套近眼显示系统出射的光线进入人的右眼。
11.如权利要求10所述的虚拟现实设备,其特征在于,所述虚拟现实设备还包括挡光结构,所述挡光结构设置于所述第一套近眼显示系统和所述第二套近眼显示系统的水平扩展波导上远离人眼的一侧。
12.如权利要求10所述的虚拟现实设备,其特征在于,所述虚拟现实设备还包括变焦透镜,所述变焦透镜设置于所述水平扩展波导上靠近人眼的一侧。
13.一种增强现实设备,其特征在于,包括两套如权利要求1-9中任一权项所述的近眼显示系统,其中第一套近眼显示系统出射的光线进入人的左眼,第二套近眼显示系统出射的光线进入人的右眼;外界环境光线通过所述第一套近眼显示系统的水平扩展波导进入人的左眼,并通过所述第二套近眼显示系统的水平扩展波导进入人的右眼。
14.如权利要求13所述的增强现实设备,其特征在于,所述增强现实设备还包括四个变焦透镜,所述四个变焦透镜分别设置于所述第一套近眼显示系统的水平扩展波导的靠近人眼的一侧和远离人眼的一侧,以及所述第二套近眼显示系统的水平扩展波导的靠近人眼的一侧和远离人眼的一侧。
CN201610513846.4A 2016-07-01 2016-07-01 一种近眼显示系统、虚拟现实设备和增强现实设备 Pending CN107561699A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610513846.4A CN107561699A (zh) 2016-07-01 2016-07-01 一种近眼显示系统、虚拟现实设备和增强现实设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610513846.4A CN107561699A (zh) 2016-07-01 2016-07-01 一种近眼显示系统、虚拟现实设备和增强现实设备

Publications (1)

Publication Number Publication Date
CN107561699A true CN107561699A (zh) 2018-01-09

Family

ID=60968704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610513846.4A Pending CN107561699A (zh) 2016-07-01 2016-07-01 一种近眼显示系统、虚拟现实设备和增强现实设备

Country Status (1)

Country Link
CN (1) CN107561699A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415162A (zh) * 2018-01-18 2018-08-17 北京灵犀微光科技有限公司 近眼显示设备
CN108717235A (zh) * 2018-08-29 2018-10-30 深圳珑璟光电技术有限公司 一种可调视度波导近眼显示光学装置
CN108803022A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示设备及双目大视场近眼显示设备
CN108983425A (zh) * 2018-08-29 2018-12-11 深圳珑璟光电技术有限公司 一种二维出瞳扩展波导近眼光学显示装置
CN109459859A (zh) * 2018-12-21 2019-03-12 舒伟 一种近眼显示系统及眼镜式虚拟显示器
CN109557550A (zh) * 2018-12-25 2019-04-02 武汉万集信息技术有限公司 三维固态激光雷达装置及系统
CN110261996A (zh) * 2019-05-23 2019-09-20 北京灵犀微光科技有限公司 基于数字光处理的成像镜头及增强现实设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649816A (zh) * 2011-07-12 2014-03-19 谷歌公司 全图像扫描镜显示系统
WO2014180509A1 (en) * 2013-05-10 2014-11-13 Lemoptix Sa A projection device
CN104216120A (zh) * 2014-08-29 2014-12-17 中国科学院长春光学精密机械与物理研究所 半透膜阵列平板波导式头戴显示器光学系统
CN104950442A (zh) * 2014-03-25 2015-09-30 索尼公司 导光单元、图像显示设备和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649816A (zh) * 2011-07-12 2014-03-19 谷歌公司 全图像扫描镜显示系统
WO2014180509A1 (en) * 2013-05-10 2014-11-13 Lemoptix Sa A projection device
CN104950442A (zh) * 2014-03-25 2015-09-30 索尼公司 导光单元、图像显示设备和显示装置
CN104216120A (zh) * 2014-08-29 2014-12-17 中国科学院长春光学精密机械与物理研究所 半透膜阵列平板波导式头戴显示器光学系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415162A (zh) * 2018-01-18 2018-08-17 北京灵犀微光科技有限公司 近眼显示设备
CN108803022A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示设备及双目大视场近眼显示设备
CN108717235A (zh) * 2018-08-29 2018-10-30 深圳珑璟光电技术有限公司 一种可调视度波导近眼显示光学装置
CN108983425A (zh) * 2018-08-29 2018-12-11 深圳珑璟光电技术有限公司 一种二维出瞳扩展波导近眼光学显示装置
CN109459859A (zh) * 2018-12-21 2019-03-12 舒伟 一种近眼显示系统及眼镜式虚拟显示器
CN109557550A (zh) * 2018-12-25 2019-04-02 武汉万集信息技术有限公司 三维固态激光雷达装置及系统
CN110261996A (zh) * 2019-05-23 2019-09-20 北京灵犀微光科技有限公司 基于数字光处理的成像镜头及增强现实设备

Similar Documents

Publication Publication Date Title
CN107561699A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
CN106020496B (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
CN205982823U (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
CN107561698A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
US11960083B2 (en) Near-eye sequential light-field projector with correct monocular depth cues
CN107561696A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
CN107561700A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
US8628196B2 (en) Display device and display method
CN108471487A (zh) 产生全景深度图像的图像装置及相关图像装置
KR20180012057A (ko) 투시형 디스플레이 장치
CN103606182A (zh) 图像渲染方法及装置
CN105911699A (zh) 近眼显示系统、虚拟现实设备及增强现实设备
TW201631358A (zh) 立體光場建立裝置
CN105892064A (zh) 近眼显示系统、虚拟现实设备及增强现实设备
CN108803024A (zh) 一种实现光场显示的近眼显示设备、近眼显示装置和屏幕
CN205983393U (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
CN107561697B (zh) 近眼显示系统、虚拟现实设备及增强现实设备
CN107561702A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
KR20180082810A (ko) 투시형 디스플레이 장치 및 그 동작 방법
CN107562181A (zh) 近眼显示系统、虚拟现实设备及增强现实设备
CN105629475A (zh) 一种增强现实显示设备
CN107561703A (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
CN205787372U (zh) 一种近眼显示系统及增强现实设备
CN108803021A (zh) 一种近眼显示系统、头戴显示设备及光场显示方法
CN109348210A (zh) 图像源模组、近眼显示系统、控制方法及近眼显示设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180109

RJ01 Rejection of invention patent application after publication