WO2018000872A1 - 碳基电容电池组的充电方法及装置 - Google Patents

碳基电容电池组的充电方法及装置 Download PDF

Info

Publication number
WO2018000872A1
WO2018000872A1 PCT/CN2017/078778 CN2017078778W WO2018000872A1 WO 2018000872 A1 WO2018000872 A1 WO 2018000872A1 CN 2017078778 W CN2017078778 W CN 2017078778W WO 2018000872 A1 WO2018000872 A1 WO 2018000872A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
charging
based capacitor
capacitor battery
battery pack
Prior art date
Application number
PCT/CN2017/078778
Other languages
English (en)
French (fr)
Inventor
郑东冬
郑路
郑役军
Original Assignee
深圳市图门新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市图门新能源有限公司 filed Critical 深圳市图门新能源有限公司
Publication of WO2018000872A1 publication Critical patent/WO2018000872A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage technologies, and in particular, to a charging method and device for a carbon-based capacitor battery pack.
  • a conventional lead-acid battery or a lithium battery is widely used as an energy storage device in an electric drive device.
  • conventional batteries generally cannot meet the requirements of power-type equipment, and the temperature adaptability is not strong.
  • the present application aims to solve at least one of the above technical problems to some extent.
  • the present application provides a charging method of a carbon-based capacitor battery pack, the carbon-based capacitor battery pack comprising: a plurality of single-cell carbon-based capacitor batteries, the single-carbon-based capacitor battery comprising: a plate, an electrolyte located between the plates, and a capacitive paper or film located in the electrolyte, the plate comprising: a current collector of a metallic material, and carbon coated on the current collector a lithium mixed nano-scale porous material layer, wherein the carbon-lithium mixed nano-scale porous material layer is formed by mixing a nano-scale porous carbon element substrate and lithium powder,
  • the charging method of the carbon-based capacitor battery pack includes:
  • the carbon-based capacitor battery pack is integrally charged in a constant voltage charging manner until a real-time power of at least one of the single-cell carbon-based capacitor batteries in the carbon-based capacitor battery pack reaches a preset power amount.
  • the real-time power amount in the carbon-based capacitor battery pack does not reach the preset A part or all of the single-cell carbon-based capacitor battery of the constant amount is charged in a constant voltage charging manner until the real-time power of the single-cell carbon-based capacitor battery corresponding to the unit charging reaches the preset power.
  • the charging method of the carbon-based capacitor battery pack further includes:
  • the real-time power is reflected by the real-time voltage, and the preset voltage corresponds to the preset power.
  • the preset voltage is 85%-100% of the rated working voltage of the single carbon-based capacitor battery, and the rated working voltage of the single carbon-based capacitor battery is 2.5-3 volts.
  • the charging voltage applied to the single-cell carbon-based capacitor battery used for the overall charging is smaller than the charging voltage applied to the single-cell carbon-based capacitor battery for charging the unit.
  • the nano-scale porous carbon element substrate adopts activated carbon and/or graphene;
  • the electrolyte uses propylene carbonate or acetonitrile as a solvent, tetraethylammonium tetrafluoroborate or triethyl-methyltetrafluoro Ammonium borate is a solute;
  • the film is a plastic film;
  • the present application provides a charging device for a carbon-based capacitor battery pack, the carbon-based capacitor battery pack comprising: a plurality of single-cell carbon-based capacitor batteries, the single-carbon-based capacitor battery comprising: a plate, an electrolyte located between the plates, and a capacitive paper or film located in the electrolyte, the plate comprising: a current collector of a metallic material, and carbon coated on the current collector a lithium mixed nano-scale porous material layer, wherein the carbon-lithium mixed nano-scale porous material layer is formed by mixing a nano-scale porous carbon element substrate and lithium powder,
  • the charging device of the carbon-based capacitor battery pack includes:
  • a monitoring module for real-time power monitoring of the single carbon-based capacitor battery
  • a charging module for integrally charging the carbon-based capacitor battery pack in a constant voltage charging manner
  • monitoring module and the charging module are configured to control the charging module to work according to the monitoring information obtained by the monitoring module until at least one of the single carbon-based capacitor batteries is present in the carbon-based capacitor battery group.
  • the charging module includes:
  • a first charging unit that is integrally charged by the control module to charge the carbon-based capacitor battery pack in a constant voltage charging manner
  • Controlled by the control module after the operation of the first charging unit is completed, a constant pressure is applied to some or all of the single carbon-based capacitor batteries in which the real-time power in the carbon-based capacitor battery group does not reach the preset power amount.
  • the charging mode performs unit charging until the real-time power of the single-cell carbon-based capacitor battery corresponding to the charging of the unit reaches the second charging unit of the preset power amount.
  • the monitoring module adopts a voltage sampling circuit that performs real-time voltage sampling on the single carbon-based capacitor battery, and reflects the real-time power with the real-time voltage, and the preset voltage corresponds to the preset power.
  • the preset voltage is 85%-100% of a rated working voltage of the single carbon-based capacitor battery, and the rated working voltage of the single carbon-based capacitor battery is 2.5-3 volts;
  • the charging voltage used to load the monomer carbon-based capacitor battery is smaller than that used for charging the unit a charging voltage of a single carbon-based capacitor battery, a charging voltage applied to the single-cell carbon-based capacitor battery used for overall charging, and a charging voltage applied to the single-cell carbon-based capacitor battery used for charging the unit
  • the value ranges from 2.5 to 3 volts;
  • the nano-scale porous carbon substrate is made of activated carbon and/or graphene;
  • the electrolyte is made of propylene carbonate or acetonitrile, tetraethylammonium tetrafluoroborate or Ammonium triethyl monomethyltetrafluoroborate is a solute;
  • the film is a plastic film.
  • the single-carbon carbon-based capacitor battery involved includes: a bipolar plate, an electrolyte, and a capacitor paper or film, the plate includes: a current collector, and a cover
  • the carbon-lithium on the fluid is mixed with the nano-scale porous material layer, and the charging method integrally charges the carbon-based capacitor battery pack by constant voltage charging until the real-time power of at least one single-cell carbon-based capacitor battery in the carbon-based capacitor battery pack reaches Pre-set the battery.
  • the carbon-based capacitor battery can meet the requirements of the power type device, and has a strong temperature adaptability, and the constant voltage charging mode can ensure the safety of charging the carbon-based capacitor battery pack.
  • FIG. 1 is a schematic structural view of a carbon-based capacitor battery pack according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural view of a single carbon-based capacitor battery according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic structural view of a charging device of a carbon-based capacitor battery pack according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic flow chart of a charging method of a carbon-based capacitor battery pack according to Embodiment 2 of the present application.
  • FIG. 5 is a schematic structural diagram of a charging device of a carbon-based capacitor battery pack according to Embodiment 2 of the present application.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying relative Importance or implied indicates the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or connected integrally; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • installation shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or connected integrally; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present application can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides a charging method of a carbon-based capacitor battery pack.
  • the charging method is applicable to a carbon-based capacitor battery pack.
  • the carbon-based capacitor battery pack includes: a plurality of single-cell carbon-based capacitor batteries. 101.
  • the single carbon-based capacitor battery 101 can be formed by series, parallel or series-parallel combination, wherein the single carbon-based capacitor battery 101 comprises the structure shown in FIG.
  • a first plate 201 and a second plate 202 includes: a current collector 200 of a metal material (eg, aluminum or copper, etc.), and a carbon-lithium hybrid nano-scale porous material layer 100 coated on the current collector 200, the carbon-lithium hybrid nano-scale porous material layer being composed of nano-scale porous carbon
  • the element substrate is mixed with lithium powder.
  • the nano-scale porous carbon element substrate is made of activated carbon and/or graphene, etc.
  • the electrolyte 203 is made of propylene carbonate and/or acetonitrile, and the tetraethyl tetrafluoroborate ammonium salt or triethyl one.
  • the methyl tetrafluoroborate or the like is a solute;
  • the film 204 may be a polyethylene microporous film or a plastic film.
  • Activated carbon or graphene, or a mixture of activated carbon and graphene can effectively reduce the leakage rate of a single carbon-based capacitor battery, and the annual leakage rate corresponding to the experimental data can reach 10% or less.
  • the charging method of the above carbon-based capacitor battery pack includes:
  • the carbon-based capacitor battery pack is integrally charged by a constant voltage charging method until the real-time power of at least one of the single-cell carbon-based capacitor batteries 101 in the carbon-based capacitor battery pack reaches a preset power amount.
  • the carbon-based capacitor battery pack when the carbon-based capacitor battery pack is integrally charged, when the real-time power of at least one of the single-cell carbon-based capacitor batteries reaches a preset power amount, the overall charging is stopped, and the single-carbon-based capacitor battery is not overcharged. Thereby ensuring the normal working performance of the carbon-based capacitor battery and prolonging the service life of the carbon-based capacitor battery.
  • the overall charging by the constant charging method can achieve the effect of fast charging. For example, charging the battery for 10 seconds to 10 minutes can make the real-time power of the single carbon-based capacitor battery reach the preset power.
  • the constant voltage charging method also simplifies the charging control mode, so that the control is simple and easy, and the cost is reduced.
  • the charging method of the carbon-based capacitor battery pack further includes: monitoring the real-time voltage of the single-carbon carbon-based capacitor battery 101; reflecting the real-time power amount with the real-time voltage, and correspondingly setting the power to the preset voltage.
  • the preset voltage can usually be set to 85%-100% of the rated working voltage of the single carbon-based capacitor battery, which may be 85%, 90%, 95% or the rated working voltage of the single carbon-based capacitor battery. 100% and so on.
  • the single carbon-based capacitor battery has a rated operating voltage of 2.5-3 volts, and may be 2.5, 2.61, 2.62, 2.7, 2.8, 2.85 or 3 volts.
  • the real-time voltage of a single carbon-based capacitor battery has an almost linear relationship with its real-time power, when it is necessary to monitor the real-time power of a single carbon-based capacitor battery, it is only necessary to monitor the real-time voltage of the single carbon-based capacitor battery. ,easy and convenient.
  • the remaining power of the carbon-based capacitor battery can also be reflected by its voltage and available for reading.
  • the embodiment further provides a charging device for a carbon-based capacitor battery pack.
  • the carbon-based capacitor battery pack includes the structure shown in FIG. 1, and the single-carbon-based capacitor battery includes FIG. The structure shown is not described here.
  • the charging device of the above carbon-based capacitor battery pack includes the structure as shown in FIG. 3:
  • the charging module 302 is connected to the monitoring module 301 and the charging module 302 for controlling the charging module 302 according to the monitoring information obtained by the monitoring module 301 until the real-time power of the at least one single-cell carbon-based capacitor battery 101 in the carbon-based capacitor battery pack reaches a preset power amount.
  • Control module 303 is connected to the monitoring module 301 and the charging module 302 for controlling the charging module 302 according to the monitoring information obtained by the monitoring module 301 until the real-time power of the at least one single-cell carbon-based capacitor battery 101 in the carbon-based capacitor battery pack reaches a preset power amount.
  • the control module controls the charging module to stop the overall charging.
  • the single carbon-based capacitor battery does not overcharge, thus ensuring The normal operation of carbon-based capacitor batteries extends the life of carbon-based capacitor batteries.
  • the overall charging by the constant charging method can achieve the effect of fast charging. For example, charging the battery for 10 seconds to 10 minutes can make the real-time power of the single carbon-based capacitor battery reach the preset power.
  • the constant voltage charging method also simplifies the structure of the charging device, thereby simplifying the structure and reducing the cost.
  • the monitoring module 301 adopts a voltage sampling circuit for real-time voltage sampling of the single carbon-based capacitor battery 101, and reflects the real-time power with a real-time voltage, and the preset voltage corresponds to the preset power.
  • the preset voltage can usually be set to 85%-100% of the rated working voltage of the single carbon-based capacitor battery, which may be 85%, 90%, 95% or the rated working voltage of the single carbon-based capacitor battery. 100% and so on.
  • the single-carbon carbon-based capacitor battery has a rated operating voltage of 2.8-3 volts, and may be 2.5, 2.61, 2.62, 2.8, 2.85 or 3 volts.
  • the real-time voltage of a single carbon-based capacitor battery has an almost linear relationship with its real-time power, when it is necessary to monitor the real-time power of a single carbon-based capacitor battery, it is only necessary to monitor the real-time voltage of the single carbon-based capacitor battery. ,easy and convenient.
  • the remaining power of the carbon-based capacitor battery can also be reflected by its voltage and available for reading.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the charging method of the carbon-based capacitor battery pack of this embodiment includes, in addition to the flow 401 as shown in the first embodiment, a flow as shown in FIG. 4: 402, at least one single in the carbon-based capacitor battery pack.
  • a part or all of the single-carbon carbon-based capacitor battery 101 in which the real-time power in the carbon-based capacitor battery pack does not reach the preset power amount is monotonically charged and charged. Charging until the real-time power of the single-cell carbon-based capacitor battery 101 corresponding to the charging of the unit reaches a preset amount of power.
  • the constant voltage charging method can also simplify the charging control mode, for example, no charging current detection, no current discharge, etc., so that the control is simple and easy, and the cost is reduced.
  • the charging voltage applied to the single-cell carbon-based capacitor battery used for the overall charging is generally smaller than the charging voltage applied to the single-cell carbon-based capacitor battery used for the charging of the unit, and the charging used for the overall charging is applied.
  • Charging voltage of a single carbon-based capacitor battery and loading of the monomer used for charging the unit The charging voltage of a carbon-based capacitor battery ranges from 2.5 to 3 volts.
  • the charging voltage applied to a single-cell carbon-based capacitor battery used for overall charging can be 2.5-2.7 volts, and the charging of the unit is used.
  • the charging voltage applied to the single-cell carbon-based capacitor battery can be 2.6-2.85 volts, so that the overall charging can be charged with a small voltage and constant voltage, which can achieve fast charging and can prevent large current surge, and the single charging can be performed with a larger voltage. Pressing in the way of constant pressure charging ensures complete charging process.
  • the charging module 302 includes:
  • the control module 303 controls the first charging unit 501 that integrally charges the carbon-based capacitor battery pack in a constant voltage charging mode
  • the controlled module 303 controls, after the first charging unit 501 is completed, to charge a part or all of the single carbon-based capacitor battery 101 in the carbon-based capacitor battery group that does not reach the preset power amount in a constant-voltage charging manner until the unit is charged.
  • the real-time power of the single-cell carbon-based capacitor battery 101 corresponding to the unit charging reaches the second charging unit 502 of the preset power amount.
  • the control module controls the second charging unit to stop the single unit. Charging ensures that the single carbon-based capacitor battery will not overcharge, thus ensuring the normal working performance of the carbon-based capacitor battery, prolonging the service life of the carbon-based capacitor battery, and ensuring the individual monomer carbon in the carbon-based capacitor battery pack.
  • the voltage between the base capacitor cells is balanced.
  • the constant voltage charging method can also simplify the structure of the charging device, for example, no charging current detecting circuit, no current bleeder circuit, etc., thereby simplifying the structure and reducing the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种碳基电容电池组的充电方法及装置,所涉及的单体碳基电容电池包括:双极板、电解液以及电容纸或膜,极板包括:集流体,以及覆设于集流体上的碳锂混合纳米级多孔材料层,并且充电方法以定压充电方式对碳基电容电池组进行整体充电,直至碳基电容电池组中存在至少一个单体碳基电容电池的实时电量达到预设定电量。这样,碳基电容电池可满足功率型设备要求,并且有较强的温度适应能力,并且定压的充电方式可保证碳基电容电池组充电的安全性。

Description

碳基电容电池组的充电方法及装置 技术领域
本申请涉及储能技术领域,尤其涉及一种碳基电容电池组的充电方法及装置。
背景技术
目前,为满足供能需求,传统铅酸电池或锂电池作为常用的储能器件,被广泛用在电力驱动设备中。但是,传统电池一般无法满足功率型设备要求,并且温度适应能力不强。
发明内容
本申请旨在至少在一定程度上解决上述技术问题之一。
根据本申请的第一方面,本申请提供一种碳基电容电池组的充电方法,所述碳基电容电池组包括:若干单体碳基电容电池,所述单体碳基电容电池包括:双极板、位于所述极板之间的电解液,以及位于所述电解液中的电容纸或膜,所述极板包括:金属材料的集流体,以及涂覆于所述集流体上的碳锂混合纳米级多孔材料层,所述碳锂混合纳米级多孔材料层由纳米级多孔碳元素基材与锂粉混合而成,
所述碳基电容电池组的充电方法包括:
以定压充电方式对所述碳基电容电池组进行整体充电,直至所述碳基电容电池组中存在至少一个所述单体碳基电容电池的实时电量达到预设定电量。
进一步的,在所述碳基电容电池组中存在至少一个所述单体碳基电容电池的实时电量达到预设定电量后,对所述碳基电容电池组中实时电量未达到所述预设定电量的部分或全部所述单体碳基电容电池以定压充电方式进行单体充电,直至单体充电所对应的所述单体碳基电容电池的实时电量达到所述预设定电量。
进一步的,所述碳基电容电池组的充电方法还包括:
监控所述单体碳基电容电池的实时电压;
以所述实时电压反映所述实时电量,以预设定电压对应所述预设定电量。
进一步的,所述预设定电压为所述单体碳基电容电池的额定工作电压的85%-100%,所述单体碳基电容电池的额定工作电压为2.5-3伏特。
进一步的,整体充电所使用的加载于所述单体碳基电容电池的充电电压小于单体充电所使用加载于所述单体碳基电容电池的的充电电压。
进一步的,所述纳米级多孔碳元素基材采用活性炭和/或石墨烯;所述电解液采用丙烯碳酸酯或乙腈为溶剂,四乙基四氟硼酸铵盐或三乙基一甲基四氟硼酸铵为溶质;所述膜采用为塑料膜;整体充电所使用的加载于所述单体碳基电容电池的充电电压以及单体充电所使用的加载于所述单体碳基电容电池的充电电压的取值范围均为2.5-3伏特。
根据本申请的第二方面,本申请提供一种碳基电容电池组的充电装置,所述碳基电容电池组包括:若干单体碳基电容电池,所述单体碳基电容电池包括:双极板、位于所述极板之间的电解液,以及位于所述电解液中的电容纸或膜,所述极板包括:金属材料的集流体,以及涂覆于所述集流体上的碳锂混合纳米级多孔材料层,所述碳锂混合纳米级多孔材料层由纳米级多孔碳元素基材与锂粉混合而成,
所述碳基电容电池组的充电装置包括:
用于对所述单体碳基电容电池进行实时电量监控的监控模块;
用于以定压充电方式对所述碳基电容电池组进行整体充电的充电模块;以及,
与所述监控模块及所述充电模块相连的、用于根据所述监控模块所得监控信息控制所述充电模块工作直至所述碳基电容电池组中存在至少一个所述单体碳基电容电池的实时电量达到预设定电量的控制模块。
进一步的,所述充电模块包括:
受所述控制模块控制以定压充电方式对所述碳基电容电池组进行整体充电的第一充电单元;以及,
受所述控制模块控制在所述第一充电单元工作完成之后对所述碳基电容电池组中实时电量未达到所述预设定电量的部分或全部所述单体碳基电容电池以定压充电方式进行单体充电直至单体充电所对应的所述单体碳基电容电池的实时电量达到所述预设定电量的第二充电单元。
进一步的,所述监控模块采用对所述单体碳基电容电池进行实时电压采样的电压采样电路,以所述实时电压反映所述实时电量,以预设定电压对应所述预设定电量。
进一步的,所述预设定电压为所述单体碳基电容电池的额定工作电压的85%-100%,所述单体碳基电容电池的额定工作电压为2.5-3伏特;整体充电所使用的加载于所述单体碳基电容电池的充电电压小于单体充电所使用加载于所 述单体碳基电容电池的的充电电压,整体充电所使用的加载于所述单体碳基电容电池的充电电压以及单体充电所使用的加载于所述单体碳基电容电池的充电电压的取值范围均为2.5-3伏特;所述纳米级多孔碳元素基材采用活性炭和/或石墨烯;所述电解液采用丙烯碳酸酯或乙腈为溶剂,四乙基四氟硼酸铵盐或三乙基一甲基四氟硼酸铵为溶质;所述膜采用为塑料膜。
本申请的有益效果是:
通过提供一种碳基电容电池组的充电方法及装置,所涉及的单体碳基电容电池包括:双极板、电解液以及电容纸或膜,极板包括:集流体,以及覆设于集流体上的碳锂混合纳米级多孔材料层,并且充电方法以定压充电方式对碳基电容电池组进行整体充电,直至碳基电容电池组中存在至少一个单体碳基电容电池的实时电量达到预设定电量。这样,碳基电容电池可满足功率型设备要求,并且有较强的温度适应能力,并且定压的充电方式可保证碳基电容电池组充电的安全性。
附图说明
图1为本申请实施例一的碳基电容电池组的结构示意图。
图2为本申请实施例一的单体碳基电容电池的结构示意图。
图3为本申请实施例一的碳基电容电池组的充电装置的结构示意图。
图4为本申请实施例二的碳基电容电池组的充电方法的流程示意图。
图5为本申请实施例二的碳基电容电池组的充电装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对 重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面通过具体实施方式结合附图对本申请作进一步详细说明。
实施例一:
本实施例提供了一种碳基电容电池组的充电方法,该充电方法适用于一种碳基电容电池组,如图1所示,该碳基电容电池组包括:若干单体碳基电容电池101,单体碳基电容电池101可通过串联、并联或串并联结合的方式组成上述碳基电容电池组,其中,单体碳基电容电池101包括如图2所示的结构:第一极板201、第二极板202、位于第一极板201与第二极板202之间的电解液203,以及位于电解液203中的电容纸或膜204,第一极板201及第二极板202均包括:金属材料的集流体200(例如铝或铜等),以及涂覆于集流体200上的碳锂混合纳米级多孔材料层100,碳锂混合纳米级多孔材料层由纳米级多孔碳元素基材与锂粉混合而成。
在本实施例中,纳米级多孔碳元素基材采用活性炭和/或石墨烯等;电解液203采用丙烯碳酸酯和/或乙腈等为溶剂,四乙基四氟硼酸铵盐或三乙基一甲基四氟硼酸铵等为溶质;膜204可采用为聚乙烯微孔膜或塑料膜等。采用活性炭或石墨烯,或者活性炭与石墨烯的混合材料,这样,可有效降低单体碳基电容电池的漏电率,实验数据对应的年漏电率可达到10%甚至以下。
上述碳基电容电池组的充电方法包括:
以定压充电方式对碳基电容电池组进行整体充电,直至碳基电容电池组中存在至少一个单体碳基电容电池101的实时电量达到预设定电量。
这样,在进行碳基电容电池组整体充电时,当其中至少有一个单体碳基电容电池的实时电量达到预设定电量时停止整体充电,保证了单体碳基电容电池不会过充,从而保证了碳基电容电池的正常工作性能,延长了碳基电容电池的使用寿命。另外,以定压的充电方式进行整体充电,可达到快充的效果,例如,充电10秒-10分钟即可使其中单体碳基电容电池的实时电量就达到预设定电量。定压的充电方式还可以简化充电控制方式,从而控制简单易行,降低了成本。
在本实施例中,碳基电容电池组的充电方法还包括:监控单体碳基电容电池101的实时电压;以实时电压反映实时电量,以预设定电压对应预设定电量。预设定电压通常可设为单体碳基电容电池的额定工作电压的85%-100%,具体可取值为单体碳基电容电池的额定工作电压的85%、90%、95%或100%等。而单体碳基电容电池的额定工作电压为2.5-3伏特,具体可取值为2.5、2.61、2.62、2.7、2.8、2.85或3伏特等。由于单体碳基电容电池的实时电压与其实时电量存在几乎线性的对应关系,这样,当需要监控单体碳基电容电池的实时电量时,只需要监控单体碳基电容电池的实时电压即可,简单方便。另外,根据碳基电容电池的实时电量与实时电压的对应关系,碳基电容电池使用后的剩余电量也可以通过其电压反映并可供读数。
相应的,本实施例还提供了一种碳基电容电池组的充电装置,如图3所示,碳基电容电池组包括如图1所示的结构,单体碳基电容电池包括如图2所示的结构,此处不再赘述。
上述碳基电容电池组的充电装置包括如图3所示的结构:
用于对单体碳基电容电池101进行实时电量监控的监控模块301;
用于以定压充电方式对碳基电容电池组进行整体充电的充电模块302;以及,
与监控模块301及充电模块302相连的、用于根据监控模块301所得监控信息控制充电模块302工作直至碳基电容电池组中存在至少一个单体碳基电容电池101的实时电量达到预设定电量的控制模块303。
这样,在利用充电模块进行碳基电容电池组整体充电时,当监控模块监控到其中至少有一个单体碳基电容电池的实时电量达到预设定电量时,控制模块控制充电模块停止整体充电,保证了单体碳基电容电池不会过充,从而保证了 碳基电容电池的正常工作性能,延长了碳基电容电池的使用寿命。另外,以定压的充电方式进行整体充电,可达到快充的效果,例如,充电10秒-10分钟可使其中单体碳基电容电池的实时电量就达到预设定电量。定压的充电方式还可以简化充电装置的结构,从而简化了结构,降低了成本。
在本实施例中,监控模块301采用对单体碳基电容电池101进行实时电压采样的电压采样电路,以实时电压反映实时电量,以预设定电压对应预设定电量。预设定电压通常可设为单体碳基电容电池的额定工作电压的85%-100%,具体可取值为单体碳基电容电池的额定工作电压的85%、90%、95%或100%等。而单体碳基电容电池的额定工作电压为2.8-3伏特,具体可取值为2.5、2.61、2.62、2.8、2.85或3伏特等。由于单体碳基电容电池的实时电压与其实时电量存在几乎线性的对应关系,这样,当需要监控单体碳基电容电池的实时电量时,只需要监控单体碳基电容电池的实时电压即可,简单方便。另外,根据碳基电容电池的实时电量与实时电压的对应关系,碳基电容电池使用后的剩余电量也可以通过其电压反映并可供读数。
实施例二:
本实施例与其它实施例区别主要在于:
本实施例的碳基电容电池组的充电方法除包括如实施例一中所示流程401之外,还进一步包括如图4所示的流程:402,在碳基电容电池组中存在至少一个单体碳基电容电池101的实时电量达到预设定电量后,对碳基电容电池组中实时电量未达到预设定电量的部分或全部单体碳基电容电池101以定压充电方式进行单体充电,直至单体充电所对应的单体碳基电容电池101的实时电量达到预设定电量。
这样,对碳基电容电池进行单体充电时,当其中单体碳基电容电池的实时电量达到预设定电量时停止单体充电,保证了单体碳基电容电池不会过充,从而保证了碳基电容电池的正常工作性能,延长了碳基电容电池的使用寿命,也保证了碳基电容电池组中各个单体碳基电容电池之间电压均衡。另外,定压的充电方式还可以简化充电控制方式,例如无需充电电流检测、无需电流泄放等,从而控制简单易行,降低了成本。
在本实施例中,整体充电所使用的加载于单体碳基电容电池的充电电压一般会小于单体充电所使用加载于单体碳基电容电池的的充电电压,整体充电所使用的加载于单体碳基电容电池的充电电压以及单体充电所使用的加载于单体 碳基电容电池的充电电压的取值范围均为2.5-3伏特,例如,整体充电所使用的加载于单体碳基电容电池的充电电压可为2.5-2.7伏特,而单体充电所使用的加载于单体碳基电容电池的充电电压可为2.6-2.85伏特,这样,整体充电可使用小电压定压充电,实现快速充电且可以防止大电流冲击,单体充电可采用较大的电压以压入的方式定压充电,可保证充电过程的完全。
相应的,如图5所示,本实施例的碳基电容电池组的充电装置中,充电模块302包括:
受控制模块303控制以定压充电方式对碳基电容电池组进行整体充电的第一充电单元501;以及,
受控制模块303控制在第一充电单元501工作完成之后对碳基电容电池组中实时电量未达到预设定电量的部分或全部单体碳基电容电池101以定压充电方式进行单体充电直至单体充电所对应的单体碳基电容电池101的实时电量达到预设定电量的第二充电单元502。
这样,利用第二充电单元对碳基电容电池进行单体充电时,当监控模块监控到其中单体碳基电容电池的实时电量达到预设定电量时,控制模块控制第二充电单元停止单体充电,保证了单体碳基电容电池不会过充,从而保证了碳基电容电池的正常工作性能,延长了碳基电容电池的使用寿命,也保证了碳基电容电池组中各个单体碳基电容电池之间电压均衡。另外,定压的充电方式还可以简化充电装置的结构,例如无需充电电流检测电路、无需电流泄放电路等,从而简化了结构,降低了成本。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种碳基电容电池组的充电方法,其特征在于,所述碳基电容电池组包括:若干单体碳基电容电池,所述单体碳基电容电池包括:双极板、位于所述极板之间的电解液,以及位于所述电解液中的电容纸或膜,所述极板包括:金属材料的集流体,以及涂覆于所述集流体上的碳锂混合纳米级多孔材料层,所述碳锂混合纳米级多孔材料层由纳米级多孔碳元素基材与锂粉混合而成,
    所述碳基电容电池组的充电方法包括:
    以定压充电方式对所述碳基电容电池组进行整体充电,直至所述碳基电容电池组中存在至少一个所述单体碳基电容电池的实时电量达到预设定电量。
  2. 如权利要求1所述的碳基电容电池组的充电方法,其特征在于,在所述碳基电容电池组中存在至少一个所述单体碳基电容电池的实时电量达到预设定电量后,对所述碳基电容电池组中实时电量未达到所述预设定电量的部分或全部所述单体碳基电容电池以定压充电方式进行单体充电,直至单体充电所对应的所述单体碳基电容电池的实时电量达到所述预设定电量。
  3. 如权利要求2所述的碳基电容电池组的充电方法,其特征在于,所述碳基电容电池组的充电方法还包括:
    监控所述单体碳基电容电池的实时电压;
    以所述实时电压反映所述实时电量,以预设定电压对应所述预设定电量。
  4. 如权利要求3所述的碳基电容电池组的充电方法,其特征在于,所述预设定电压为所述单体碳基电容电池的额定工作电压的85%-100%,所述单体碳基电容电池的额定工作电压为2.5-3伏特。
  5. 如权利要求2所述的碳基电容电池组的充电方法,其特征在于,整体充电所使用的加载于所述单体碳基电容电池的充电电压小于单体充电所使用加载于所述单体碳基电容电池的的充电电压。
  6. 如权利要求5所述的碳基电容电池组的充电方法,其特征在于,所述纳米级多孔碳元素基材采用活性炭和/或石墨烯;所述电解液采用丙烯碳酸酯或乙腈为溶剂,四乙基四氟硼酸铵盐或三乙基一甲 基四氟硼酸铵为溶质;所述膜采用为塑料膜;整体充电所使用的加载于所述单体碳基电容电池的充电电压以及单体充电所使用的加载于所述单体碳基电容电池的充电电压的取值范围均为2.5-3伏特。
  7. 一种碳基电容电池组的充电装置,其特征在于,所述碳基电容电池组包括:若干单体碳基电容电池,所述单体碳基电容电池包括:双极板、位于所述极板之间的电解液,以及位于所述电解液中的电容纸或膜,所述极板包括:金属材料的集流体,以及涂覆于所述集流体上的碳锂混合纳米级多孔材料层,所述碳锂混合纳米级多孔材料层由纳米级多孔碳元素基材与锂粉混合而成,
    所述碳基电容电池组的充电装置包括:
    用于对所述单体碳基电容电池进行实时电量监控的监控模块;
    用于以定压充电方式对所述碳基电容电池组进行整体充电的充电模块;以及,
    与所述监控模块及所述充电模块相连的、用于根据所述监控模块所得监控信息控制所述充电模块工作直至所述碳基电容电池组中存在至少一个所述单体碳基电容电池的实时电量达到预设定电量的控制模块。
  8. 如权利要求7所述的碳基电容电池组的充电装置,其特征在于,所述充电模块包括:
    受所述控制模块控制以定压充电方式对所述碳基电容电池组进行整体充电的第一充电单元;以及,
    受所述控制模块控制在所述第一充电单元工作完成之后对所述碳基电容电池组中实时电量未达到所述预设定电量的部分或全部所述单体碳基电容电池以定压充电方式进行单体充电直至单体充电所对应的所述单体碳基电容电池的实时电量达到所述预设定电量的第二充电单元。
  9. 如权利要求8所述的碳基电容电池组的充电装置,其特征在于,所述监控模块采用对所述单体碳基电容电池进行实时电压采样的电压采样电路,以所述实时电压反映所述实时电量,以预设定电压对应所述预设定电量。
  10. 如权利要求9所述的碳基电容电池组的充电装置,其特征 在于,所述预设定电压为所述单体碳基电容电池的额定工作电压的85%-100%,所述单体碳基电容电池的额定工作电压为2.5-3伏特;整体充电所使用的加载于所述单体碳基电容电池的充电电压小于单体充电所使用加载于所述单体碳基电容电池的的充电电压,整体充电所使用的加载于所述单体碳基电容电池的充电电压以及单体充电所使用的加载于所述单体碳基电容电池的充电电压的取值范围均为2.5-3伏特;所述纳米级多孔碳元素基材采用活性炭和/或石墨烯;所述电解液采用丙烯碳酸酯或乙腈为溶剂,四乙基四氟硼酸铵盐或三乙基一甲基四氟硼酸铵为溶质;所述膜采用为塑料膜。
PCT/CN2017/078778 2016-06-27 2017-03-30 碳基电容电池组的充电方法及装置 WO2018000872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610481694.4 2016-06-27
CN201610481694.4A CN105932347A (zh) 2016-06-27 2016-06-27 碳基电容电池组的充电方法及装置

Publications (1)

Publication Number Publication Date
WO2018000872A1 true WO2018000872A1 (zh) 2018-01-04

Family

ID=56829229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078778 WO2018000872A1 (zh) 2016-06-27 2017-03-30 碳基电容电池组的充电方法及装置

Country Status (2)

Country Link
CN (1) CN105932347A (zh)
WO (1) WO2018000872A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022125825A3 (en) * 2020-12-11 2022-07-21 Aspen Aerogels, Inc. Carbon aerogel-based lithium metal anode materials and methods of manufacture thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895386A (zh) * 2016-06-27 2016-08-24 深圳市图门新能源有限公司 碳基电容电池及碳基电容电池组
CN105932347A (zh) * 2016-06-27 2016-09-07 深圳市图门新能源有限公司 碳基电容电池组的充电方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079510A (zh) * 2007-06-25 2007-11-28 中南大学 一种超级电容电池
CN101436784A (zh) * 2007-10-15 2009-05-20 布莱克和戴克公司 用于在电池组中平衡电池单元的方法
CN101777675A (zh) * 2009-01-14 2010-07-14 常州麦科卡电动车辆科技有限公司 均衡充电方法及均衡充电器
CN104835652A (zh) * 2015-03-24 2015-08-12 中航锂电(洛阳)有限公司 锂超级电容电池用嵌锂负极片及制备方法、锂超级电容电池
CN105895386A (zh) * 2016-06-27 2016-08-24 深圳市图门新能源有限公司 碳基电容电池及碳基电容电池组
CN105932347A (zh) * 2016-06-27 2016-09-07 深圳市图门新能源有限公司 碳基电容电池组的充电方法及装置
CN205752430U (zh) * 2016-06-27 2016-11-30 深圳市图门新能源有限公司 碳基电容电池组的充电装置
CN205751881U (zh) * 2016-06-27 2016-11-30 深圳市图门新能源有限公司 碳基电容电池及碳基电容电池组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE507339C2 (sv) * 1995-10-31 1998-05-18 Xicon Battery Electronics Ab System för utjämning av laddningsnivå i batterier bestående av seriekopplade battericeller eller batteriblock
CN1315239C (zh) * 2003-09-04 2007-05-09 北京市世纪博纳能源技术有限责任公司 具有均衡充电控制电路的电池组
CN2919644Y (zh) * 2006-01-26 2007-07-04 北京长力联合能源技术有限公司 大功率启动电源
CN103680972B (zh) * 2012-09-10 2016-08-03 中国科学院金属研究所 一种高能量高功率密度的锂离子超级电容器及其组装方法
CN203859547U (zh) * 2014-03-25 2014-10-01 陕西科技大学 超级电容充电控制装置
CN105375539B (zh) * 2014-08-21 2021-02-09 上海稳得新能源科技有限公司 动力电池自动均衡充电器
CN104617614B (zh) * 2015-01-15 2018-01-09 国家电网公司 超级电容器充电装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079510A (zh) * 2007-06-25 2007-11-28 中南大学 一种超级电容电池
CN101436784A (zh) * 2007-10-15 2009-05-20 布莱克和戴克公司 用于在电池组中平衡电池单元的方法
CN101777675A (zh) * 2009-01-14 2010-07-14 常州麦科卡电动车辆科技有限公司 均衡充电方法及均衡充电器
CN104835652A (zh) * 2015-03-24 2015-08-12 中航锂电(洛阳)有限公司 锂超级电容电池用嵌锂负极片及制备方法、锂超级电容电池
CN105895386A (zh) * 2016-06-27 2016-08-24 深圳市图门新能源有限公司 碳基电容电池及碳基电容电池组
CN105932347A (zh) * 2016-06-27 2016-09-07 深圳市图门新能源有限公司 碳基电容电池组的充电方法及装置
CN205752430U (zh) * 2016-06-27 2016-11-30 深圳市图门新能源有限公司 碳基电容电池组的充电装置
CN205751881U (zh) * 2016-06-27 2016-11-30 深圳市图门新能源有限公司 碳基电容电池及碳基电容电池组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022125825A3 (en) * 2020-12-11 2022-07-21 Aspen Aerogels, Inc. Carbon aerogel-based lithium metal anode materials and methods of manufacture thereof

Also Published As

Publication number Publication date
CN105932347A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN1954397B (zh) 锂离子电容器
Du Pasquier et al. Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes
CN103825060B (zh) 电池的低温预热与充电方法
JP5092387B2 (ja) 電池
US20090087723A1 (en) Heat generation mechanism-provided secondary battery
JP5689926B2 (ja) リチウムイオンセルの充電制御
JP5990619B2 (ja) 高エネルギー密度および高出力密度を有するバッテリ装置
WO2018000872A1 (zh) 碳基电容电池组的充电方法及装置
CN101141010A (zh) 高电压动力型锂离子可充电电池
WO2018000873A1 (zh) 碳基电容电池及碳基电容电池组
CN104201327A (zh) 一种锂离子储能电池极片及其制作方法
CN111883879A (zh) 一种具有低温自加热功能的锂电池及其工作方法
CN110416640A (zh) 组合动力电池充放电控制方法、系统及汽车
CN205752430U (zh) 碳基电容电池组的充电装置
Wang et al. Design and experiment of a novel stepwise preheating system for battery packs coupled with non-dissipative balancing function based on supercapacitors
Rose et al. Performance testing of zinc-bromine flow batteries for remote telecom sites
CN203617407U (zh) 储能蓄电池
JP4526718B2 (ja) 蓄電装置
CN202014109U (zh) 一种调整电池充电电压的电源
TW202127785A (zh) 能量儲存系統
CN205751881U (zh) 碳基电容电池及碳基电容电池组
CN201084789Y (zh) 高电压动力型锂离子可充电电池
JP2014131386A (ja) 二次電池システムおよび二次電池制御装置
CN206893692U (zh) 一种汽车电池组及汽车
JP2021514518A (ja) 内部加熱装置を備えたリチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818871

Country of ref document: EP

Kind code of ref document: A1