WO2018000848A1 - 一种通信设备的电路板及散热方法、通信设备 - Google Patents

一种通信设备的电路板及散热方法、通信设备 Download PDF

Info

Publication number
WO2018000848A1
WO2018000848A1 PCT/CN2017/075356 CN2017075356W WO2018000848A1 WO 2018000848 A1 WO2018000848 A1 WO 2018000848A1 CN 2017075356 W CN2017075356 W CN 2017075356W WO 2018000848 A1 WO2018000848 A1 WO 2018000848A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
working medium
dissipation channel
circuit board
power consumption
Prior art date
Application number
PCT/CN2017/075356
Other languages
English (en)
French (fr)
Inventor
贾晖
田伟强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018000848A1 publication Critical patent/WO2018000848A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/064Fluid cooling, e.g. by integral pipes

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a circuit board, a heat dissipation method, and a communication device of a communication device.
  • the circuit board includes the substrate, and a plurality of devices disposed on the substrate.
  • a plurality of devices dissipate heat through the heat dissipating device
  • the heat dissipating device includes a heat sink module corresponding to each device, and the plurality of heat sink modules are connected in series through the pipeline, and the heat dissipation is solved by controlling the flow rate and the dryness, but the inside of the pipeline After the gasification of the working medium, it will float upward due to the lighter weight, and will not flow in the pipeline, thus affecting the heat dissipation effect of the entire device.
  • the invention provides a circuit board, a heat dissipation method and a communication device of a communication device, which are used for improving the heat dissipation effect of the circuit board, thereby improving the heat dissipation effect of the communication device.
  • the embodiment of the present application provides a circuit board of a communication device, where the circuit board includes:
  • the substrate being divided into at least one low power consumption region and at least one high power consumption region;
  • a low power device disposed in the at least one low power consumption region
  • a high power device disposed in the at least one high power consumption region
  • the heat dissipation device includes a first heat dissipation channel and a second heat dissipation channel that communicates with the first heat dissipation channel, and the first heat dissipation channel and the second heat dissipation channel are configured to receive a working medium, wherein the first heat dissipation channel is The working medium is a liquid phase and is used for dissipating heat to the low-power device, and the junction of the first heat dissipation channel and the second heat dissipation channel is provided with a flow blocking device for reducing a sudden change in the cross section of the first heat dissipation channel.
  • the flow blocking device is configured to reduce a working medium pressure of a liquid phase flowing from the first heat dissipation channel, and the working medium is configured to flow into the second heat dissipation channel to dissipate the high-power device and Partially vaporized.
  • the heat dissipation structure formed on the substrate is formed by the first heat dissipation channel, the second heat dissipation channel, and the flow blocking device disposed between the first heat dissipation channel and the second heat dissipation channel, so that the working medium of the liquid phase
  • the working medium in the gas phase dissipates heat from high-power heat-dissipating electrical components.
  • the working medium is vaporized in the second heat dissipation channel, and the gas flow is prevented from flowing back through the flow blocking device, thereby improving the heat dissipation effect of the working medium on the electrical components.
  • the choke device is a structure in which the cross section of the first heat dissipating channel is abruptly shortened. That is, the pressure loss is achieved by the abrupt reduction of the channel, so that the working medium of the liquid phase can achieve partial gasification.
  • the flow blocking device may be any device or structure capable of reducing the pressure of the working medium.
  • the flow blocking device is a baffle, and the baffle is provided with a plurality of passes. Hole or slit or notch. That is, the flow blocking device adopts a structure on the baffle plate to change the pressure of the liquid medium, so that the flow blocking device can enter the second heat dissipation channel. gasification.
  • the above-mentioned through holes, slits or notches and the like are arranged in a single row in a specific arrangement, so that the working medium can smoothly flow into the second heat dissipation channel.
  • the first heat dissipation channel and the second heat dissipation channel in the above solution may be formed on the substrate by using different structures.
  • the first heat dissipation channel and the second heat dissipation channel are pipes or grooves formed on the substrate
  • the second heat dissipation channel is a pipe or a groove formed on the substrate, When setting, you can set it according to the actual situation.
  • the setting may be performed according to actual conditions.
  • the number of the low power consumption areas is one and is located in the middle of the circuit board.
  • Position, the number of the high power consumption areas is two, and two high power consumption sections are listed on both sides of the low power consumption area.
  • the embodiment of the present application further provides a heat dissipation method of a circuit board of a communication device, where the circuit board is the above circuit board, and the method includes the following steps:
  • the pressure of the working medium in the liquid phase is lowered and remains in a liquid phase state
  • At least a portion of the working medium Upon entering the high power consumption region, at least a portion of the working medium changes from a liquid phase to a gas phase and carries away heat generated by the high power device.
  • the low-power electrical component is dissipated through the working medium of the liquid phase, and the working medium of the gas phase dissipates heat to the high-power heat dissipating electrical component.
  • the working medium of the gas phase dissipates heat to the high-power heat dissipating electrical component.
  • Improve heat dissipation efficiency due to the arranged flow blocking device, the working medium is vaporized in the second heat dissipation channel, and the gas flow is prevented from flowing back through the flow blocking device, thereby improving the heat dissipation effect of the working medium on the electrical components.
  • the heat dissipation of the low-power devices in the low-power region through the working medium of the liquid phase includes:
  • the temperature & pressure of the too cold working medium enters the first heat dissipation channel for T1&P1, and passes through all the low-power devices through the first heat dissipation channel. In this region, the working medium adopts pure single-phase heat exchange, and is replaced. After the heat is completed, the temperature & pressure of the working medium reaches T2 & P2, wherein P2 is greater than the saturation pressure corresponding to T2.
  • the pressure of the working medium in the liquid phase is lowered, and the liquid phase is still maintained; after entering the high power consumption region, at least a part of the working medium changes from the liquid phase to the gas phase and takes the high work.
  • the heat generated by the device specifically includes:
  • the working medium of the liquid phase generates a pressure drop dP when flowing through the choke device, and the temperature and pressure of the working medium entering the high power consumption device region are T2&(P2-dP), wherein P2-dP is greater than or equal to the saturation under T2. Under pressure, at least a portion of the working medium becomes a gas phase and then enters a high power consumption region to dissipate heat from the high power device.
  • the present application also provides a communication device, and a plurality of circuit boards disposed in the cabinet, the circuit board being the circuit board according to any one of the above, the communication device further comprising a condenser
  • An outlet of the condenser is in communication with a first heat dissipation channel of each circuit board, and a working medium enters a first heat dissipation channel of each of the circuit boards from an outlet of the condenser, and an inlet and a a second heat dissipation channel of the circuit board is in communication, and at least a portion of the working medium that is converted into a gas phase enters the condenser from a second heat dissipation channel of each of the circuit boards through an inlet of the condenser, the condenser being used to At least a portion of the working medium that is converted to the gas phase is cooled, and the working medium is all converted to a liquid phase.
  • the heat dissipation structure formed on the substrate is formed by the first heat dissipation channel, the second heat dissipation channel, and the flow blocking device disposed between the first heat dissipation channel and the second heat dissipation channel, so that the working medium of the liquid phase
  • the working medium in the gas phase dissipates heat from high-power heat-dissipating electrical components.
  • the working medium is vaporized in the second heat dissipation channel, and the gas flow is prevented from flowing back through the flow blocking device. The heat dissipation effect of the working medium on the electrical components is improved.
  • the communication device further includes control means for controlling the condenser input to the first according to the heat dissipated by the circuit board and the power consumption of the low power consumption region.
  • control means for controlling the condenser input to the first according to the heat dissipated by the circuit board and the power consumption of the low power consumption region. a flow rate of the working medium of a heat dissipation channel and a temperature of the working medium at the inlet and a pressure of the working medium at the inlet such that the working medium located in the first heat dissipation channel maintains a liquid phase .
  • the working medium delivered by the condenser is kept in the first heat dissipation channel by the control device provided.
  • the communication device further comprises a detecting device for detecting the dryness of the working medium at the inlet of the Su Soo condenser;
  • the control device is further configured to adjust the liquid discharge flow rate of the condenser when the dryness detected by the detecting device exceeds a set value.
  • the heat dissipation efficiency of the entire communication device is adjusted by adjusting the dryness by the control device.
  • the dryness setting value is in the range of 0.1 to 0.6.
  • FIG. 1 is a top plan view of a circuit board according to an embodiment of the present application.
  • FIG. 2 is a bottom view of a circuit board according to an embodiment of the present application.
  • FIG. 3 to FIG. 5 are schematic structural diagrams of a flow blocking device according to an embodiment of the present application.
  • the circuit board provided by the embodiment of the present application is applied to a communication device, especially a communication cabinet, and a circuit board with different functions is provided when being disposed in the communication cabinet.
  • the circuit board provided by the present application is for solving When the condenser is used to dissipate the circuit board, the working medium used in the condenser is vaporized. Under the action of gravity, the vaporized working medium is located above, and the liquid working medium is located below, causing the vaporized working medium to not flow back. The problem of cooling in the condenser.
  • the power consumption of the device is less than 50W, which is a low power consumption device, but the division of the low power consumption device is not limited to the above conditions, and can be determined according to the actual power consumption device on the circuit board.
  • the area where the low-power device is placed is a low-power area, and the area where the high-power device is placed is a high-power area.
  • FIG. 1 and FIG. 2 respectively show a schematic structural diagram of a circuit board of a communication device according to an embodiment of the present application.
  • the application provides a circuit board of a communication device, the circuit board comprising:
  • the substrate 10 is divided into at least one low power consumption region 11 and at least one high power consumption region 12;
  • a low power device 40 disposed in at least one low power region 11;
  • a high power device 30 disposed in at least one high power region 12;
  • the heat dissipating device 20 includes a first heat dissipating channel 21 and a second heat dissipating channel 23 communicating with the first heat dissipating channel 21, and the first heat dissipating channel 21 and the second heat dissipating channel 23 are configured to receive the working medium, and the first heat dissipating channel 21
  • the working medium is in the liquid phase and is used for dissipating heat to the low-power device 40.
  • the junction of the first heat dissipation channel 21 and the second heat dissipation channel 23 is provided with a flow blocking device 22 for reducing the cross-section of the first heat dissipation channel 21 to be abruptly reduced.
  • the device 22 is for reducing the working medium pressure of the liquid phase flowing in from the first heat dissipation passage 21, and the working medium is for flowing into the second heat dissipation passage 23 to dissipate heat and partially vaporize the high power consumption device 30.
  • the heat dissipation structure formed on the substrate 10 is formed by the first heat dissipation channel 21, the second heat dissipation channel 23, and the flow blocking device 22 disposed between the first heat dissipation channel 21 and the second heat dissipation channel 23,
  • the working medium of the liquid phase is cooled to the low-power electrical components, and the working medium of the gas phase dissipates heat to the high-power heat-dissipating electrical components.
  • the working medium is vaporized in the second heat dissipation channel 23 due to the provided flow blocking device 22, and the vaporized working medium is prevented from flowing back through the flow blocking device 22, thereby improving the heat dissipation effect of the working medium on the electrical components.
  • the circuit board in this embodiment is divided into two areas, one is a low power consumption area 11, and the other is a high power consumption area 12, wherein the low power consumption area 11 and high power consumption
  • the number of regions 12 can be determined based on the actual conditions of the device on the substrate 10.
  • the number of low power consumption regions 11 is one and is located in the middle of the circuit board, and the number of high power consumption regions 12 is two, and two high power consumptions
  • the area 12 is listed on both sides of the low power consumption area 11.
  • the low power consumption region 11 is provided with a plurality of low power consumption devices 40
  • the high power consumption region 12 is provided with a plurality of high power consumption devices 30.
  • the first heat dissipation channel 21 of the heat dissipation device 20 corresponds to the low power consumption region 11 one by one
  • the second heat dissipation channel 23 corresponds to the high power consumption region 12 one by one
  • a flow blocking device 22 capable of achieving a pressure reduction is provided.
  • the working medium (T1&P1) of the supercooled liquid phase passes through all the low-power devices 40 through the first heat-dissipating passage 21, and in this region, the pure single-phase heat exchange and the liquid phase after the endothermic work
  • the medium temperature & pressure reaches T2 & P2, wherein P2 is greater than the saturation pressure corresponding to the T2 temperature of the working medium, thereby ensuring that the working medium remains in the liquid phase state in the first heat dissipation passage 21.
  • the heat sink of the low-power device 40 may be connected in series or in parallel or a combination thereof; the working medium of the liquid phase after the heat absorption enters the choke device 22, and blocks the flow.
  • the inlet restriction zone of the device 22 is where the flow area suddenly shrinks, at which time a pressure drop dP is generated; after that, the working medium enters the high power consumption device 30 zone, and its temperature & pressure is T2 & (P2-dP), in this embodiment
  • the working medium at this time is slightly greater than or equal to the saturation pressure corresponding to the working medium at the temperature T2, and the working medium undergoes a phase change in the second heat dissipation channel 23,
  • the liquid phase becomes a gas phase, and the working medium of the gas phase dissipates heat to the high power device 30 within the high power consumption region 12.
  • the first heat dissipation channel 21, the second heat dissipation channel 23, and the flow blocking device 22 disposed between the first heat dissipation channel 21 and the second heat dissipation channel 23 are formed.
  • the heat dissipation structure on the substrate 10 causes the working medium of the liquid phase to dissipate heat to the low-power electrical components, and the working medium of the gas phase dissipates heat to the high-power heat-dissipating electrical components.
  • the flow blocking device 22 since the flow blocking device 22 is arranged to make the working medium vaporize in the second heat dissipation passage 23, the flow blocking device 22 avoids the backflow of the vaporized working medium, thereby overcoming the gravity and improving the working medium to the electrical components. heat radiation.
  • the first heat dissipation channel 21 and the second heat dissipation channel 23 may be formed by different structures.
  • the first heat dissipation channel 21 and the second heat dissipation channel 23 are pipes or trenches formed on the substrate 10 . .
  • the pipe is fixed on the side of the substrate 10 facing away from the low-power device 40, and the pipe is fixed on the substrate 10 through a thermal conductive adhesive, a connecting member or other common fixing means, and the pipe passes through each low-power device 40 and a high-power device. 30, and when the structure is employed, the flow blocking device 22 is plugged into the pipe to divide the pipe into the first heat dissipation passage 21 and the second heat dissipation passage 23.
  • the slot structure is formed by the tool on the substrate 10, and the slot structure serves as the first heat dissipation channel 21 and the second heat dissipation channel 23. It should be understood that when the slot structure is adopted, the package should be used.
  • the half and the substrate 10 are opposite to each other, and the grooves are sealed, and only the openings at both ends are flowed out, thereby ensuring that the working medium can flow in the grooves.
  • FIG. 3 to FIG. 5 show the flow blocking devices of different structures.
  • the flow blocking device 22 can be implemented by using different structures.
  • the flow blocking device The device 22 includes a baffle 221 on which a plurality of through holes 223, slits 222 or notches 224 are disposed. That is, the flow blocking device 22 adopts a structure on the baffle 221 to change the pressure of the liquid medium, so that the choke device 22 can be vaporized when entering the second heat dissipating passage 23.
  • the above-mentioned structures such as the through hole 223, the slit 222 or the notch 224 are arranged in a single row when they are specifically arranged.
  • the flow blocking device 22 adopts a structure as shown in FIG. 3, that is, a slit 222 is disposed on the baffle 221, and the slit 222 forms a passage through which the working medium flows, and the pressure of the working medium is achieved by the slit 222 provided.
  • the flow blocking device 22 has a plurality of through holes 223 disposed on the baffle 221 , and the through holes 223 may have different shapes such as a square shape, a rectangular shape, a pentagonal shape, and the like. Different shapes such as a hexagon or a profile are not limited to the square through holes 223 shown in FIG. As can be seen from FIG.
  • the plurality of through holes 223 are arranged in a single row, and the number of the through holes 223 is determined according to the actual situation, that is, the working medium can be ensured to reduce the pressure of the dP after flowing through the through holes 223, thereby ensuring It can be vaporized in the second heat dissipation passage 23.
  • a structure as shown in FIG. 5 may be employed, that is, a plurality of notches 224 are provided on the plate, and the pressure of the working medium is reduced by the notches 224.
  • the embodiment of the present application further provides a heat dissipation method for a circuit board, where the circuit board is the above circuit board, and the method includes the following steps:
  • the pressure of the working medium in the liquid phase is lowered and remains in a liquid phase state
  • At least a portion of the working medium Upon entering the high power consumption region, at least a portion of the working medium changes from a liquid phase to a gas phase and carries away heat generated by the high power device.
  • the low-power electrical component is dissipated through the working medium of the liquid phase, and the working medium of the gas phase dissipates heat to the high-power heat dissipating electrical component.
  • Improve heat dissipation efficiency due to the arranged flow blocking device, the working medium is vaporized in the second heat dissipation channel, and the gas flow is prevented from flowing back through the flow blocking device, thereby improving the heat dissipation effect of the working medium on the electrical components.
  • the embodiment of the present application further provides a communication device, which includes a cabinet body, and a plurality of circuit boards disposed in the cabinet.
  • the circuit board is the circuit board described in the foregoing specific embodiment, and the communication device further includes The condenser, the outlet of the condenser is in communication with the first heat dissipation channel of each circuit board, the working medium enters the first heat dissipation channel of each circuit board from the outlet of the condenser, the inlet of the condenser and the second heat dissipation of each circuit board
  • the channel is connected, and at least a part of the working medium transformed into the gas phase enters the condenser from the second heat dissipation channel of each circuit board through the inlet of the condenser, and the condenser is used to cool at least a part of the working medium transformed into the gas phase, so that the working medium is completely converted into Liquid phase.
  • the first heat dissipation channel 21, the second heat dissipation channel 23, and the flow blocking device 22 disposed between the first heat dissipation channel 21 and the second heat dissipation channel 23 are provided.
  • the heat dissipation structure formed on the substrate 10 causes the working medium of the liquid phase to dissipate heat to the low-power electrical component, and the working medium of the gas phase dissipates heat to the high-power heat-dissipating electrical component.
  • the working medium is vaporized in the second heat dissipation channel 23 due to the provided flow blocking device 22, and the resistance is blocked.
  • the flow device 22 avoids the recirculation of the vaporized working medium, thereby improving the heat dissipation effect of the working medium on the electrical components.
  • the communication device further includes a control device, and the control device is configured to control the condenser input according to the heat dissipated by the circuit board and the power consumption of the low power consumption region.
  • a flow rate of the working medium of the first heat dissipation passage and a temperature of the working medium at the inlet and a pressure of the working medium at the inlet so that the working medium located in the first heat dissipation passage Keep the liquid phase.
  • the pressure and flow rate of the control medium controlled by the control device enable the working medium to enter the first heat dissipation channel in a suitable state, and to ensure that the liquid phase can be maintained after absorbing heat in the low power consumption region.
  • the communication device provided in this embodiment further includes a detecting device for detecting the dryness of the working medium at the inlet of the condenser; the control device further uses When the dryness detected by the detecting device exceeds a set value, the flow rate of the condenser is adjusted to improve the condensation effect of the condenser.
  • the heat dissipation efficiency of the entire communication device is adjusted by adjusting the dryness by the control device.
  • the dryness setting value is in the range of 0.1 to 0.6, such as 0.3, 0.35, 0.4, etc., any value between 0.3 and 0.4, that is, by setting the detecting device and the control device to control the dryness. The range can effectively improve the heat dissipation effect of the condenser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种通信设备的电路板及散热方法、通信设备,电路板包括:基板(10),基板(10)上划分成至少一个低功耗区(11)和至少一个高功耗区(12);散热装置(20),包括第一散热通道(21)及与第一散热通道(21)连通的第二散热通道(23),第一散热通道(21)内的工作介质为液相且用于对低功耗区(11)内器件散热,第一散热通道(21)和第二散热通道(23)的连接处设置有使第一散热通道(21)截面突变减小的阻流装置(22),阻流装置(22)用于使从第一散热通道(21)内流入的液相的工作介质压力降低,工作介质流入到第二散热通道(23)对高功耗区(12)内的器件进行散热并气化。通过设置的阻流装置(22)使得工作介质在第二散热通道(23)内形成气化,通过阻流装置(22)避免了气化的工作介质回流,从而提高了工作介质对电器元件的散热效果。

Description

一种通信设备的电路板及散热方法、通信设备
本申请要求在2016年6月29日提交中国专利局、申请号为201610507027.9、发明名称为“一种通信设备的电路板及散热方法、通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信设备的电路板及散热方法、通信设备。
背景技术
部分通信设备中,电路板上分布多个不同的发热器件,功率密度差异大,同时存在上下框完全镜像的架构,需要克服重力影响,电路板包括基板,以及设置在基板上的多个器件,且多个器件散热通过散热装置进行散热,该散热装置包括与每个器件对应的热沉模块,多个热沉模块通过管道串联在一起,通过控制流量和干度来解决散热,但是管道内的工作介质在气化后由于质量比较轻会向上浮起,不会在管道内进行流通,从而影响到整个装置的散热效果。
发明内容
本发明提供了一种通信设备的电路板及散热方法、通信设备,用以提高电路板的散热效果,进而提高通信设备的散热效果。
本申请实施例提供了一种通信设备的电路板,该电路板包括:
基板,所述基板上划分成至少一个低功耗区和至少一个高功耗区;
设置在所述至少一个低功耗区内的低功耗器件;
设置在所述至少一个高功耗区内的高功耗器件;
还包括:
散热装置,包括第一散热通道及与所述第一散热通道连通的第二散热通道,且所述第一散热通道及所述第二散热通道用于容纳工作介质,所述第一散热通道内的工作介质为液相且用于对所述低功耗器件散热,所述第一散热通道和第二散热通道的连接处设置有使所述第一散热通道截面突变减小的阻流装置,所述阻流装置用于使从所述第一散热通道内流入的液相的工作介质压力降低,所述工作介质用于流入到所述第二散热通道对所述高功耗器件进行散热并部分气化。
在上述实施方案中,通过设置的第一散热通道、第二散热通道及设置在第一散热通道和第二散热通道之间的阻流装置形成在基板上的散热结构,使得液相的工作介质对低功耗电器元件散热,气相的工作介质对高功耗散热电器元件散热。同时,由于设置的阻流装置使得工作介质在第二散热通道内形成气化,通过阻流装置避免了气化的工作介质回流,从而提高了工作介质对电器元件的散热效果。
其中的阻流装置为使得第一散热通道的截面突变缩小的结构。即通过通道的突变缩小实现压力损耗,使得液相的工作介质能够实现部分气化。在具体设置时,阻流装置可以为任意的能够实现降低工作介质压力的装置或者结构,在一个具体的实施方案中,所述阻流装置为挡板,所述挡板上设置有多个通孔或狭缝或者缺口。即该阻流装置采用在挡板上设置一些结构实现改变液相介质的压力,从而使得阻流装置在进入到第二散热通道内时可以 气化。上述通孔、狭缝或缺口等结构在具体设置时,采用单排排列,从而使得工作介质能够顺畅的流入到第二散热通道。
上述方案中的第一散热通道和第二散热通道可以采用不同的结构形成在基板上。具体的,所述第一散热通道及所述第二散热通道为管道或开设在所述基板上的沟槽,所述第二散热通道为管道或开设在所述基板上的沟槽,在具体设置时,可以根据实际的情况进行设置。
在基板上设置低功耗区和高功耗区时,可以根据实际的情况进行设置,在一个具体的实施方案中,所述低功耗区的个数为一个且位于所述电路板的中间位置,所述高功耗区的个数为两个,且两个高功耗区分列在所述低功耗区的两侧。
本申请实施例还提供了一种通信设备的电路板的散热方法,所述电路板为上述的电路板,所述方法包括以下步骤:
通过液相的工作介质对低功耗区内的低功耗区内的低功耗器件进行散热;
在阻流装置中,液相的工作介质的压力降低,且仍保持液相状态;
进入高功耗区后,至少一部分所述工作介质由液相变成气相并带走高功耗器件产生的热量。
在上述实施方案中,通过液相的工作介质对低功耗电器元件散热,气相的工作介质对高功耗散热电器元件散热。提高了散热效率。同时,由于设置的阻流装置使得工作介质在第二散热通道内形成气化,通过阻流装置避免了气化的工作介质回流,从而提高了工作介质对电器元件的散热效果。
其中的通过液相的工作介质对低功耗区内的低功耗器件进行散热具体包括:
过冷的工作介质的温度&压力为T1&P1进入到第一散热通道,并通过第一散热通道依次经过所有低功耗器件,在这段区域,所述工作介质采用纯单相换热,在换热完成后达工作介质的温度&压力达到T2&P2,其中,P2大于T2对应的饱和压力。
其中的所述在阻流装置中,液相的工作介质的压力降低,且仍保持液相状态;进入高功耗区后,至少一部分所述工作介质由液相变成气相并带走高功耗器件产生的热量具体包括:
液相的工作介质流经阻流装置时产生压降dP,进入高功耗器件区的工作介质的温度和压力为T2&(P2-dP),其中,P2-dP大于或等于T2对应下的饱和压力,所述工作介质至少一部分变成气相后进入到高功耗区内对所述高功耗器件进行散热。
本申请还提供了一种通信设备,该通信设备包以及设置在所述柜体内的多个电路板,所述电路板为上述任一项所述的电路板,所述通信设备还包括冷凝器,所述冷凝器的出口与每个电路板的第一散热通道连通,工作介质自所述冷凝器的出口进入所述每个电路板的第一散热通道,所述冷凝器的进口与每个电路板的第二散热通道连通,至少一部分转变为气相的工作介质自所述每个电路板的第二散热通道通过所述冷凝器的进口进入所述冷凝器,所述冷凝器用于对所述至少一部分转变为气相的工作介质冷却,使所述工作介质全部转变为液相。
在上述实施方案中,通过设置的第一散热通道、第二散热通道及设置在第一散热通道和第二散热通道之间的阻流装置形成在基板上的散热结构,使得液相的工作介质对低功耗电器元件散热,气相的工作介质对高功耗散热电器元件散热。同时,由于设置的阻流装置使得工作介质在第二散热通道内形成气化,通过阻流装置避免了气化的工作介质回流,从 而提高了工作介质对电器元件的散热效果。
此外,为了进一步的提高散热效果,所述通信设备还包括控制装置,所述控制装置用于根据所述电路板散发的热量和低功耗区的功耗控制所述冷凝器输入到所述第一散热通道的工作介质的流量和所述工作介质在所述进口处的温度以及所述工作介质在所述进口处的压力,使得位于所述第一散热通道内的所述工作介质保持液相。通过设置的控制装置保证送冷凝器输送的工作介质在第一散热通道内保持液相。
更佳的,所述通信设备还包括检测装置,所述检测装置用于检测苏搜狐冷凝器的进口处的工作介质的干度;
控制装置还用于在所述检测装置检测到的干度超过设定值,调整所述冷凝器的出液流量。通过控制装置调整干度从而调整整个通信设备的散热效率。在具体设置时,所述干度设定值位于0.1~0.6范围内。通过设置检测装置和控制装置控制干度的范围,从而能够有效的提高冷凝器的散热效果。
附图说明
图1为本申请实施例提供的电路板的俯视图;
图2为本申请实施例提供的电路板的仰视图;
图3~图5为本申请实施例提供的阻流装置的结构示意图。
附图标记:
10-基板 11-低功耗区 12-高功耗区
20-散热装置 21-第一散热通道 22-阻流装置
221-挡板 222-狭缝 223-通孔 224-缺口
23-第二散热通道 30-高功耗器件 40-低功耗器件
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
首先需要说明的是本申请实施例提供的电路板应用在通信设备中,尤其是通信柜体内,在设置在通信柜体内时,设置有不同功能的电路板,本申请提供的电路板是为了解决在采用冷凝器对电路板进行散热时,冷凝器使用的工作介质会气化,在重力作用下,气化的工作介质位于上方,液态的工作介质位于下方,导致气化的工作介质无法流回到冷凝器中进行降温的问题。
此外,在本实施例中,器件的功耗<50W的为低功耗器件,但是低功耗器件的划分不仅限于上述条件,可以根据实际的电路板上的功耗器件来定。放置低功耗器件的区域为低功耗区,放置高功耗器件的区域为高功耗区。
如图1及图2所示,图1及图2分别示出了本申请实施例提供的通信设备的电路板的结构示意图。
本申请提供了一种通信设备的电路板,该电路板包括:
基板10,基板10上划分成至少一个低功耗区11和至少一个高功耗区12;
设置在至少一个低功耗区11内的低功耗器件40;
设置在至少一个高功耗区12内的高功耗器件30;
还包括:
散热装置20,包括第一散热通道21及与第一散热通道21连通的第二散热通道23,且第一散热通道21及第二散热通道23用于容纳工作介质,第一散热通道21内的工作介质为液相且用于对低功耗器件40散热,第一散热通道21和第二散热通道23的连接处设置有使第一散热通道21截面突变减小的阻流装置22,阻流装置22用于使从第一散热通道21内流入的液相的工作介质压力降低,工作介质用于流入到第二散热通道23对高功耗器件30进行散热并部分气化。
在上述实施方案中,通过设置的第一散热通道21、第二散热通道23及设置在第一散热通道21和第二散热通道23之间的阻流装置22形成在基板10上的散热结构,使得液相的工作介质对低功耗电器元件散热,气相的工作介质对高功耗散热电器元件散热。同时,由于设置的阻流装置22使得工作介质在第二散热通道23内形成气化,通过阻流装置22避免了气化的工作介质回流,从而提高了工作介质对电器元件的散热效果。
为了方便理解本实施例提供的电路板的结构以及工作原理,下面结合具体的附图以及实施例对其进行详细的说明。
继续参考图1,本实施例中的电路板上上划分成两种区域,一种为低功耗区11,另一种为高功耗区12,其中,低功耗区11及高功耗区12的个数可以根据实际的基板10上的器件实际情况而定。在本实施例中,为了方便说明,采用一个低功耗区11,两个高功耗区12的实例进行详细说明。具体的如图1所示,在本实施例中,低功耗区11的个数为一个且位于电路板的中间位置,高功耗区12的个数为两个,且两个高功耗区12分列在低功耗区11的两侧。其中,低功耗区11内设置有多个低功耗器件40,高功耗区12内设置有多个高功耗器件30。
散热装置20中的第一散热通道21与低功耗区11一一对应,第二散热通道23与高功耗区12一一对应,且在第一散热通道21和第二散热通道23的连接处设置了能够实现压力降低的阻流装置22。在具体使用时:过冷的液相的工作介质(T1&P1)通过第一散热通道21依次经过所有低功耗器件40,在这段区域,纯单相换热,吸热后的液相的工作介质温度&压力达到T2&P2,其中P2大于工作介质的T2温度对应的饱和压力,从而保证工作介质在第一散热通道21内一直保持液相的状态。其中,低功耗器件40在设置时,低功耗器件40的散热器可以是串联也可以是并联或者其组合;吸热后的液相的工作介质进入到阻流装置22中,在阻流装置22的入口限流区为流通面积突然缩小的地方,此时产生压力降低dP;之后工作介质进入高功耗器件30区,并且其温度&压力为T2&(P2-dP),在本实施例中,通过设置阻流装置22的结构,使得此时工作介质在P2-dP略大于或等于工作介质在温度为T2时对应的饱和压力,工作介质在第二散热通道23内发生相变,由液相变成气相,并且气相的工作介质对高功耗区12内的高功耗器件30进行散热。
由上述描述可以看出,在本实施例中,通过设置的第一散热通道21、第二散热通道23及设置在第一散热通道21和第二散热通道23之间的阻流装置22形成在基板10上的散热结构,使得液相的工作介质对低功耗电器元件散热,气相的工作介质对高功耗散热电器元件散热。同时,由于设置的阻流装置22使得工作介质在第二散热通道23内形成气化,通过阻流装置22避免了气化的工作介质回流,从而克服了重力,提高了工作介质对电器元件的散热效果。
在本实施例中,第一散热通道21和第二散热通道23可以采用不同的结构形成,具体的,第一散热通道21及第二散热通道23均为管道或开设在基板10上的沟槽。在采用管道时,即 将管道固定在基板10上背离低功耗器件40的一面,通过导热胶、连接件或者其他的常见固定方式将管道固定在基板10上,且管道经过各个低功耗器件40和高功耗器件30,且在采用该结构时,阻流装置22塞在管道内,将管道分割成第一散热通道21和第二散热通道23。在采用沟槽结构时,即在基板10上通过工具开设出槽结构,该槽结构即作为第一散热通道21和第二散热通道23,应当理解的是,在采用槽结构时,应该采用封装半与基板10对盒,将沟槽封住,仅流出在两端的开口,从而保证工作介质能够在沟槽内流动。
一并参考图3~图5,图3~图5示出了不同结构的阻流装置,在具体设置时,阻流装置22可以采用不同的结构实现,在一个具体的实施方式中,阻流装置22包括挡板221,挡板221上设置有多个通孔223、狭缝222或者缺口224。即该阻流装置22采用在挡板221上设置一些结构实现改变液相介质的压力,从而使得阻流装置22在进入到第二散热通道23内时可以气化。上述通孔223、狭缝222或缺口224等结构在具体设置时,采用单排排列。具体的,阻流装置22采用如图3所示的结构,即在挡板221上设置狭缝222,该狭缝222形成工作介质流通的通道,通过设置的狭缝222实现对工作介质的压力降低;或者如图4所示,该阻流装置22为在挡板221上设置了多个通孔223,该通孔223的横截面可以为不同的形状,如正方形、长方形、五角星形、六边形或者异形等不同的形状,不仅限于图4中所示的方形通孔223。由图4可以看出,多个通孔223单排设置,且通孔223设置的个数根据实际的情况而定,即能够保证工作介质在流经通孔223后实现dP的压力降低,保证在第二散热通道23中能够气化。或者采用如图5所示的结构,即在当板上设置多个缺口224,通过缺口224实现对工作介质的压力降低。
本申请实施例还提供了一种电路板的散热方法,该电路板为上述的电路板,所述方法包括以下步骤:
通过液相的工作介质对低功耗区内的低功耗器件进行散热;
在阻流装置中,液相的工作介质的压力降低,且仍保持液相状态;
进入高功耗区后,至少一部分所述工作介质由液相变成气相并带走高功耗器件产生的热量。
在上述实施方案中,通过液相的工作介质对低功耗电器元件散热,气相的工作介质对高功耗散热电器元件散热。提高了散热效率。同时,由于设置的阻流装置使得工作介质在第二散热通道内形成气化,通过阻流装置避免了气化的工作介质回流,从而提高了工作介质对电器元件的散热效果。该方法的详细工作过程在上述结构实施例中进行了详细的描述,在此不再赘述。
此外,本申请实施例还提供了一种通信设备,该通信设备包括柜柜体,以及设置在柜体内的多个电路板,电路板为上述具体实施例中描述的电路板,通信设备还包括冷凝器,冷凝器的出口与每个电路板的第一散热通道连通,工作介质自冷凝器的出口进入每个电路板的第一散热通道,冷凝器的进口与每个电路板的第二散热通道连通,至少一部分转变为气相的工作介质自每个电路板的第二散热通道通过冷凝器的进口进入冷凝器,冷凝器用于对至少一部分转变为气相的工作介质冷却,使工作介质全部转变为液相。
在上述实施方案中,如图2及图3所示,通过设置的第一散热通道21、第二散热通道23及设置在第一散热通道21和第二散热通道23之间的阻流装置22形成在基板10上的散热结构,使得液相的工作介质对低功耗电器元件散热,气相的工作介质对高功耗散热电器元件散热。同时,由于设置的阻流装置22使得工作介质在第二散热通道23内形成气化,通过阻 流装置22避免了气化的工作介质回流,从而提高了工作介质对电器元件的散热效果。
此外,为了进一步的提高散热效果,该通信设备所述通信设备还包括控制装置,所述控制装置用于根据所述电路板散发的热量和低功耗区的功耗控制所述冷凝器输入到所述第一散热通道的工作介质的流量和所述工作介质在所述进口处的温度以及所述工作介质在所述进口处的压力,使得位于所述第一散热通道内的所述工作介质保持液相。通过控制装置的控制工作介质的压力以及流量使得工作介质能够以一个合适的状态进入到第一散热通道,并且保证在吸收低功耗区的热量后仍能够保持液相。
为了更进一步的提高散热的效果,较佳的,本实施例提供的通信设备还包括检测装置,所述检测装置用于检测所述冷凝器的进口处的工作介质的干度;控制装置进一步用于在所述检测装置检测到的干度超过设定值,调整所述冷凝器的出液流量,以提高冷凝器的冷凝效果。通过控制装置调整干度从而调整整个通信设备的散热效率。在具体设置时,所述干度设定值位于0.1~0.6的范围内,如0.3、0.35、0.4等任意介于0.3~0.4之间的数值,即通过设置检测装置和控制装置控制干度的范围,从而能够有效的提高冷凝器的散热效果。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种电路板,其特征在于,包括:
    基板,所述基板上划分成至少一个低功耗区和至少一个高功耗区;
    设置在所述至少一个低功耗区内的低功耗器件;
    设置在所述至少一个高功耗区内的高功耗器件;
    还包括:
    散热装置,包括第一散热通道及与所述第一散热通道连通的第二散热通道,且所述第一散热通道及所述第二散热通道用于容纳工作介质,所述第一散热通道内的工作介质为液相且用于对所述低功耗器件散热,所述第一散热通道和第二散热通道的连接处设置有使所述第一散热通道截面突变减小的阻流装置,所述阻流装置用于使从所述第一散热通道内流入的液相的工作介质压力降低,所述工作介质用于流入到所述第二散热通道对所述高功耗器件进行散热并且至少一部分气化。
  2. 如权利要求1所述的电路板,其特征在于,所述阻流装置为使得第一散热通道的截面突变缩小的结构。
  3. 如权利要求2所述的电路板,其特征在于,所述阻流装置为挡板,所述挡板上设置有多个通孔或狭缝或者缺口。
  4. 如权利要求3所述的电路板,其特征在于,所述通孔或狭缝或缺口单排排列。
  5. 如权利要求1所述的电路板,其特征在于,所述第一散热通道为管道或开设在所述基板上的沟槽;
    所述第二散热通道为管道或开设在所述基板上的沟槽。
  6. 一种通信设备的电路板的散热方法,所述电路板为如权利要求1所述的电路板,其特征在于,所述方法包括以下步骤:
    通过液相的工作介质对低功耗区内的低功耗器件进行散热;
    在阻流装置中,液相的工作介质的压力降低,且仍保持液相状态;
    进入高功耗区后,至少一部分所述工作介质由液相变成气相并带走高功耗器件产生的热量。
  7. 如权利要求6所述的电路板的散热方法,其特征在于,所述通过液相的工作介质对低功耗区内的低功耗器件进行散热具体包括:
    过冷的工作介质的温度&压力为T1&P1进入到第一散热通道,并通过第一散热通道依次经过所有低功耗器件,在这段区域,所述工作介质采用纯单相换热,在换热完成后达工作介质的温度&压力达到T2&P2,其中,P2大于T2对应的饱和压力。
  8. 如权利要求7所述的电路板的散热方法,其特征在于,所述在阻流装置中,液相的工作介质的压力降低,且仍保持液相状态;进入高功耗区后,至少一部分所述工作介质由液相变成气相并带走高功耗器件产生的热量具体包括:
    液相的工作介质流经阻流装置时产生压降dP,进入高功耗器件区的工作介质的温度和压力为T2&(P2-dP),其中,P2-dP大于或等于T2对应下的饱和压力,所述工作介质至少一部分变成气相后进入到高功耗区内对所述高功耗器件进行散热。
  9. 一种通信设备,其特征在于,包括柜体,以及设置在所述柜体内的多个电路板,所述电路板为如权利要求1~5中任一项所述的电路板,所述通信设备还包括冷凝器,所述 冷凝器的出口与每个电路板的第一散热通道连通,工作介质自所述冷凝器的出口进入所述每个电路板的第一散热通道,所述冷凝器的进口与每个电路板的第二散热通道连通,至少一部分转变为气相的工作介质自所述每个电路板的第二散热通道通过所述冷凝器的进口进入所述冷凝器,所述冷凝器用于对所述至少一部分转变为气相的工作介质冷却,使所述工作介质全部转变为液相。
  10. 如权利要求9所述的通信设备,其特征在于,所述通信设备还包括控制装置,所述控制装置用于根据所述电路板散发的热量和低功耗区的功耗控制所述冷凝器输入到所述第一散热通道的工作介质的流量和所述工作介质在所述进口处的温度以及所述工作介质在所述进口处的压力,使得位于所述第一散热通道内的所述工作介质保持液相。
  11. 如权利要求10所述的通信设备,其特征在于,所述通信设备还包括检测装置,所述检测装置用于检测所述冷凝器的进口处的工作介质的干度;
    控制装置进一步用于在所述检测装置检测到的干度超过设定值,调整所述冷凝器的出液流量,以提高冷凝器的冷凝效果。
  12. 如权利要求11所述的通信设备,其特征在于,所述干度设定值位于0.1~0.6的范围内。
PCT/CN2017/075356 2016-06-29 2017-03-01 一种通信设备的电路板及散热方法、通信设备 WO2018000848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610507027.9 2016-06-29
CN201610507027.9A CN106102306B (zh) 2016-06-29 2016-06-29 一种通信设备的电路板及散热方法、通信设备

Publications (1)

Publication Number Publication Date
WO2018000848A1 true WO2018000848A1 (zh) 2018-01-04

Family

ID=57214320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075356 WO2018000848A1 (zh) 2016-06-29 2017-03-01 一种通信设备的电路板及散热方法、通信设备

Country Status (2)

Country Link
CN (1) CN106102306B (zh)
WO (1) WO2018000848A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698230A (zh) * 2022-02-23 2022-07-01 中国电子科技集团公司第二十九研究所 一种内嵌微流道的印制电路板三维集成结构及其制备方法
US11665816B2 (en) 2019-03-28 2023-05-30 Huawei Technologies Co., Ltd. Circuit board, method for manufacturing circuit board, and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102306B (zh) * 2016-06-29 2019-08-06 华为技术有限公司 一种通信设备的电路板及散热方法、通信设备
CN209069695U (zh) * 2018-07-24 2019-07-05 江苏苏净集团有限公司 一种气溶胶稀释装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020039280A1 (en) * 2000-09-29 2002-04-04 Nanostream, Inc. Microfluidic devices for heat transfer
CN1815721A (zh) * 2005-01-31 2006-08-09 杨开艳 一种cpu散热器
CN202476021U (zh) * 2012-02-07 2012-10-03 山东大学 含双梯形截面肋片的电力电子集成模块微小通道液冷基板
CN102954723A (zh) * 2011-08-17 2013-03-06 富士通株式会社 回路热管以及包括回路热管的电子设备
CN106102306A (zh) * 2016-06-29 2016-11-09 华为技术有限公司 一种通信设备的电路板及散热方法、通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363864C (zh) * 2005-02-25 2008-01-23 富准精密工业(深圳)有限公司 用于若干发热元件的冷却装置
CN101150101B (zh) * 2007-10-23 2010-11-10 华为技术有限公司 整合式散热方法、系统及对应散热装置
CN103672814B (zh) * 2013-12-16 2017-10-13 深圳市华星光电技术有限公司 散热回路管及用该散热回路管的背光模组
JP2016054248A (ja) * 2014-09-04 2016-04-14 富士通株式会社 冷却モジュール、冷却モジュール搭載基板および電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020039280A1 (en) * 2000-09-29 2002-04-04 Nanostream, Inc. Microfluidic devices for heat transfer
CN1815721A (zh) * 2005-01-31 2006-08-09 杨开艳 一种cpu散热器
CN102954723A (zh) * 2011-08-17 2013-03-06 富士通株式会社 回路热管以及包括回路热管的电子设备
CN202476021U (zh) * 2012-02-07 2012-10-03 山东大学 含双梯形截面肋片的电力电子集成模块微小通道液冷基板
CN106102306A (zh) * 2016-06-29 2016-11-09 华为技术有限公司 一种通信设备的电路板及散热方法、通信设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11665816B2 (en) 2019-03-28 2023-05-30 Huawei Technologies Co., Ltd. Circuit board, method for manufacturing circuit board, and electronic device
CN114698230A (zh) * 2022-02-23 2022-07-01 中国电子科技集团公司第二十九研究所 一种内嵌微流道的印制电路板三维集成结构及其制备方法

Also Published As

Publication number Publication date
CN106102306A (zh) 2016-11-09
CN106102306B (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2018000848A1 (zh) 一种通信设备的电路板及散热方法、通信设备
WO2017028512A1 (zh) 单板液冷散热系统及机柜
US9502329B2 (en) Semiconductor module cooler
US8472193B2 (en) Semiconductor device
US5232047A (en) Heat exchanger for solid-state electronic devices
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
US9875953B2 (en) Interlayer chip cooling apparatus
US20090139693A1 (en) Two phase micro-channel heat sink
US8897011B2 (en) Heat dissipation system for power module
JP6482954B2 (ja) 液冷式冷却装置
CN100461995C (zh) 阵列射流式微型换热器
WO2016192482A1 (zh) 插箱及其插卡
WO2021218213A1 (zh) 一种液冷散热器及通信设备
JP2016540371A (ja) 熱を放散する装置
CN115332204A (zh) 一种低热阻低泵功稳定性好的歧管微通道散热器
JP2008249314A (ja) サーマルサイフォン式沸騰冷却器
WO2010099545A1 (en) Microscale heat transfer systems
JP2005197454A (ja) 冷却装置
KR102539336B1 (ko) 반도체 소자 열관리 모듈 및 이의 제조 방법
CN113115578A (zh) 散热设备
JP2008235572A (ja) 電子部品冷却装置
CN208242062U (zh) 热收集端及散热装置
CN206118284U (zh) 一种板翅式微循环散热器及微循环换热系统
WO2017046986A1 (ja) 冷却装置およびこれを搭載した電子機器
CN214800461U (zh) 散热设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818847

Country of ref document: EP

Kind code of ref document: A1