WO2018000496A1 - 一种投影仪光机检测方法及投影仪 - Google Patents

一种投影仪光机检测方法及投影仪 Download PDF

Info

Publication number
WO2018000496A1
WO2018000496A1 PCT/CN2016/092368 CN2016092368W WO2018000496A1 WO 2018000496 A1 WO2018000496 A1 WO 2018000496A1 CN 2016092368 W CN2016092368 W CN 2016092368W WO 2018000496 A1 WO2018000496 A1 WO 2018000496A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
autofocus
projector
calibration
time
Prior art date
Application number
PCT/CN2016/092368
Other languages
English (en)
French (fr)
Inventor
杨光
董苏袁
马征
李晨阳
李小平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018000496A1 publication Critical patent/WO2018000496A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor

Definitions

  • Embodiments of the present invention relate to, but are not limited to, the field of projection technology, and in particular, to a projector optical machine detection method and a projector.
  • the production test plan used in the industry is: the optical machine manufacturer pre-implants the projection parameters corresponding to the optical machine.
  • the projection quality is judged by the operator visually observing the projection picture.
  • the above-mentioned optical machine manufacturers perform projector testing by pre-implanting projection parameters.
  • the projection parameters are not matched enough. These unmatched projection parameters may affect the focusing time, brightness, contrast and brightness unevenness, and reduce the projection. Quality greatly affects customer experience.
  • the picture quality of the projector and the performance of the whole machine are continuously improved.
  • the original production test plan can not meet the needs of users, and it is imperative to eliminate the old plan.
  • the embodiment of the invention provides a projector optical machine detecting method and a projector to ensure that at least the projector product parameters meet the design requirements, ensure the performance of the projector, optimize the user experience, and discover product defects in time.
  • An embodiment of the present invention provides a projector optical machine detecting method, including performing Home point (initial value) calibration on a projector optical machine, where the Home point calibration step includes:
  • Verifying the calibration parameters the values of the object distances u in the calibration parameters are respectively tested on the condition that 2f 0 >u>f 0 , and the number of failures that do not satisfy the conditions is counted; if the number of failures is less than the failure threshold Then, the calibration is re-executed from the auto focus, and if the number of failures is greater than or equal to the failure threshold, the Home point calibration ends.
  • the step of acquiring the focal length f 0 includes: the step of acquiring the focal length f 0 includes: selecting an initial phase distance v 0 when performing the auto focusing, and acquiring an object distance value inside the optical machine after autofocus as a reference.
  • the initial distance v 0 is a corresponding projection distance value when the projected picture size is 30 feet.
  • the projected distance range corresponds to a projected picture size of 20 feet to 100 feet, and the distance v is stepped through the projection distance range in increments of 0.01 meters.
  • the method further includes generating a projected picture, ie, projecting an image on the projected screen prior to performing the auto focus.
  • the method further includes writing a calibration parameter, that is, in the step of verifying the calibration parameter, if the value of the object distance u satisfies the condition of 2f 0 >u>f 0 , then The calibration parameters are written into the projector optomechanical firmware.
  • the failure threshold of the verification calibration parameter is 2.
  • the method further includes performing an auto focus final measurement on the projector optical machine after the home point calibration is completed, and the step of the auto focus final measurement comprises:
  • Generating a projected picture projecting an image on the projection screen to form a projected picture
  • Autofocusing and measuring time performing autofocus and measuring the time from when the instruction to send the autofocus is started until the autofocus is successfully completed, obtaining an autofocus time;
  • Verifying the autofocus time Check whether the autofocus time is qualified according to the preset upper limit of time. If the autofocus time does not exceed the upper limit of the time, the test result is qualified, otherwise it is unqualified;
  • Output focus final measurement result The inspection result of the verification autofocus time is output, and the auto focus end measurement ends.
  • the upper time limit is set to 1 second.
  • FIG. 1 Another embodiment of the present invention also provides a projector including a Home Point Calibration Module configured to perform the Home Point calibration on a projector optomechanic, the Home Point Calibration Module comprising:
  • the auto focus and focus acquisition unit is set to complete the auto focus and obtain the actual focal length f 0 after the projection lens is automatically focused;
  • a calibration parameter calculation unit configured to traverse the distance v within a range of projection distances, and calculate a value of a plurality of object distances u corresponding to the respective distances v according to the focal length f 0 , and the distances v and the object distances u Corresponding relationships and values are used as the calibration parameters;
  • the calibration parameter verification unit is configured to respectively check the value of the object distance u in the calibration parameter on the condition that 2f 0 >u>f 0 , and count the number of failures that do not satisfy the condition; If the failure threshold is less than the failure threshold, the calibration is re-executed from the auto focus, and if the number of failures is greater than or equal to the failure threshold, the Home point calibration ends.
  • the autofocus and focus acquisition unit is further configured to: select an initial distance v 0 when performing the autofocus, and obtain an object distance value inside the optical machine as a reference object distance u 0 after autofocus, according to Gauss imaging
  • the formula f 0 u 0 ⁇ v 0 /(u 0 +v 0 ) calculates the focal length f 0 .
  • the initial distance v 0 is a corresponding projection distance value when the projected picture size is 30 feet.
  • the projected distance range corresponds to a projected picture size of 20 feet to 100 feet, and the distance v is stepped through the projection distance range in increments of 0.01 meters.
  • the projector further includes a projection unit configured to project an image on the projection screen to form a projection image.
  • the projector further includes a optomechanical firmware writing unit, and the optomechanical firmware writing unit is configured to write the calibration parameter verified by the calibration parameter verification unit to the projector light In the machine firmware.
  • the failure threshold is 2.
  • the projector further includes an autofocus final measurement module configured to perform the AF final measurement on the projector optical machine after the Home point calibration, and the AF final measurement comprises:
  • a focus timing unit configured to measure a time from when an instruction to send an auto focus is started to when the auto focus is completed, to obtain an autofocus time
  • the time checking unit is configured to check whether the auto focus time is qualified according to a preset time upper limit, and if the auto focus time does not exceed the upper limit of the time, the test result is qualified, otherwise it is unqualified;
  • the result output unit is arranged to output the test result of the time check unit.
  • the time limit is set to 1 second.
  • the beneficial effects of the technical solution of the present application are: adjusting the factory parameters of the optical machine through Home point calibration, so that the finished light machine can autofocus more quickly; if the Home point calibration can not calculate the appropriate parameters, the calibration fails, and the optical machine itself can be determined. Flawed.
  • 1a is a flow chart of a method for home point calibration according to an embodiment of the present invention
  • FIG. 1b is a flowchart of a method for home point calibration according to another embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a projector optical focusing principle
  • 3 is a schematic diagram of the principle of projector projection imaging focus
  • FIG. 4 is a schematic diagram of a test environment arrangement and a device connection of a Home point calibration according to an embodiment of the present invention
  • FIG. 5 is a preset image used by Home point calibration autofocus according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a specific step of home point calibration according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for autofocus final measurement in a method for detecting a function of a optomechanical according to an embodiment of the present invention
  • FIG. 8 is a flowchart of specific steps of automatic focus final measurement according to an embodiment of the present invention.
  • 9a is a structural block diagram of an embodiment of a projector according to the present invention.
  • Figure 9b is a block diagram showing the structure of another embodiment of the projector of the present invention.
  • the embodiments of the present invention provide a projector optical machine detection method for related problems.
  • the projector parameters meet the design requirements, improve product quality, optimize user experience, and discover in time. product.
  • An embodiment of the present invention provides a projector optical machine detection method, which is centered on a Home point (origin) calibration.
  • the optional embodiment may further include an AF final measurement.
  • the specific detection method is as follows:
  • the basic steps of Home Point Calibration include:
  • Calculating the calibration parameter traversing the distance v in the range of the projection distance, and calculating a value of the plurality of object distances u corresponding to the distance v according to the focal length f 0 , and the correspondence between the distance v and the object distance u and Describe the value of the distance v and the object distance u as the calibration parameter;
  • Verifying the calibration parameter the value of the object distance u in the calibration parameter is separately tested on the condition that 2f 0 >u>f 0 , and the number of failures that do not satisfy the condition is counted; if the number of failures is less than the preset The failure threshold is re-executed from the auto focus, and if the number of failures is greater than or equal to the failure threshold, the Home point calibration ends.
  • the obtaining the focal length f 0 includes:
  • the projection distance corresponding to the projection distance range may be 20 feet to 100 feet, and the distance v is stepped through the projection distance range in increments of 0.01 meters.
  • the method may further include:
  • the projector optometry calls the factory parameters before the calibration, and the factory parameters cannot be adapted to each optomechanical machine due to the small differences in assembly process, component performance and optical device characteristics. Using the same factory parameters will cause the autofocus time to differ, even making the focus time longer, and in the worst case, the autofocus will fail; at the same time, different optical machines in the same environment, or the same optical machine Different positions, the same picture will have a significant difference in autofocus performance. Therefore, the projector needs to perform Home point calibration on the optical machine before leaving the factory.
  • the Home point calibration is to control the light machine to perform auto focus, obtain new focus parameters, and then generate calibration parameters by calculation and optimization, and store the calibration parameters into the optical machine chip; after the optical machine is restarted, it will be directly projected again. Call calibration parameters to focus for better autofocus.
  • the function of the mirror 13 is to reflect the light emitted from the light source 12 into the condensing mirror 14.
  • the condensing mirror 14 collects the light and projects it to the rear Fresnel lens 16; the rear Fresnel lens 16
  • the light from the condensing mirror 14 is converted into a uniform parallel ray to illuminate the entire rear liquid crystal screen 17; the front Fresnel lens 18 converges the parallel light containing the image emitted from the liquid crystal screen 17 in the projection lens 19, and then passes through the projection lens 19
  • the screen on the liquid crystal is enlarged and projected on the projection screen;
  • the motor is provided with a motor that can move the front and rear positions of the front Fresnel lens 18, and the distance between the front Fresnel lens 18 and the projection lens 19 can be changed by moving to achieve focusing.
  • the heat insulating glass 15 in the figure blocks the heat generated by the light source 12 to prevent the liquid crystal screen 17 from being overheated.
  • Figure 3 shows the principle of convex lens imaging.
  • v 1 and v 2 are the distances
  • u 1 and u 2 are the object distances
  • f is the focal length.
  • 2f>u 1 >f when the imaged object is between the convex lenses 2f and f, an enlarged inverted real image can be formed on the other side of the lens; when u 1 approaches 2f, v 1 It also approaches 2f.
  • u 2 2f
  • the convex lens is a projection lens 19
  • the distance v is the projection distance from the projection lens 19 of the optical machine to the projection screen 3.
  • the object distance u is the distance from the front Fresnel lens 18 to the projection lens 19 inside the optical machine.
  • the illuminating machine projection lens 19 is usually composed of a plurality of lenses. Since each of the combined lenses has different lens processing processes and processing techniques, the actual value of the lens focal length f is different from the nominal value. For the combined lens, the combined lens The focal length difference will be more amplified. Due to the above differences, the conventional projector cannot utilize the f-parameter of the combined lens in autofocus imaging. It is necessary to change the distance between the lens and the projection lens 19 by moving the position of the front Fresnel lens 18, so that the object distance u It traverses in the range of 2f>u>f to search for the best object distance to achieve autofocus.
  • the projector is controlled to complete the autofocus when the 30-inch screen is projected.
  • the initial distance v 0 is known, and the focus parameter of the optical machine, that is, the reference object distance u 0 can be obtained; and the calibration is calculated according to u 0
  • the actual focal length f 0 is calculated according to f 0
  • the object distance u value corresponding to the different distance v of the projector when the projected screen size changes is calculated, and the distance v and The correspondence and value of the object distance u are written as calibration parameters to the optical machine firmware.
  • the calibration test environment and device connections are shown in Figure 4.
  • the optical machine calibration needs to be performed in an illumination environment with an illuminance of not more than 0.01 lux (lx), so the test is performed in the dark box 2 to ensure that the brightness of the projected picture is greater than 10 times the brightness of the projection screen environment; as an embodiment, the black box 2 Use ESD black electric wood quality, the size is 1560 ⁇ 876 ⁇ 1048mm, and the projection screen is set in the inner wall of the dark box 2 opposite to the projection direction of the projector 1.
  • the projection screen uses a white projection screen dedicated to the projector 3;
  • the dark box 2 is placed on the workbench, and the projector 1 to be tested is placed in the dark box 2 at a distance of about 1120 mm from the projection screen 3 (preset to a projection distance of 30 inches), and the projector 1 passes through the USB data cable and the PC host 4. connection.
  • the black box 2 door should be closed before the start of the home point calibration.
  • the PC host 4 sends a control command to the projector 1, and the projector 1 projects the preset image as shown in FIG. 5 on the projection screen 3;
  • the brightness (light flux) of the projector 1 is set to 100 lumens (lm); the optical machine completes the autofocus under the control of the computer command, and obtains the home point calibration parameter to complete the home point calibration.
  • the PC host 4 issues a control command to the projector 1, and the projector 1 projects the preset image on the projection screen 3;
  • A3 Initialize the brightness of the light machine
  • A4 Perform calibration, which in turn includes:
  • the distance v 0 is set to 1120 mm, and the autofocus is performed at v 0 by the usual object distance traversal, thereby determining the distance between the front Fresnel lens and the projection lens, and obtaining the reference object distance u 0 ;
  • A42 Get the focal length f 0 after calibration:
  • the actual focal length of the rear projection lens, the f 0 value is written into the firmware of the optomechanical;
  • N is the total number of distances v taken, and each value of the distance v is substituted into the formula to calculate the corresponding object distance u values u 1 , u 2 , u 3 ... u N , the correspondence relationship and the value of the distance v and the object distance u are used as calibration parameters;
  • the values of u 1 to u N in the obtained calibration parameters should satisfy the condition of 2f 0 >u>f 0 , so that the failure count is not satisfied if the condition is not satisfied; if the failure number is less than the failure threshold
  • the direct jump step A41 restarts the calibration; if the number of failures reaches the failure threshold, the home point calibration ends, the direct jump performs the following step A6; if successful, proceeds to step A5;
  • the failure threshold of the Home point calibration failure is set to 2;
  • the distance v is obtained according to the distance measuring device of the optical machine itself, and then the corresponding u recorded in the firmware is found according to the corresponding relationship between u and v written in the firmware of the optical machine, and the motor is The u value adjusts the amount of traction of the motor, and the focus can be quickly completed without traversing again;
  • A6 release the optical machine
  • the PC host 4 and the projector 1 optical machine interact with each other through the corresponding instructions of the Android debugging bridge ADB (Android Debug Bridge), and some of the instructions involved are as follows Table 2:
  • the above Home Point calibration mainly achieves the effect of enabling the optical machine to achieve faster autofocus by correcting the parameter focal length.
  • the autofocus final measurement is: whether the home machine after the home point calibration can be tested for faster autofocus, as shown in FIG. 7, the basic steps of the auto focus final test include:
  • Generating a projected picture projecting an image on the projection screen to form a projected picture
  • Autofocus and measure time perform autofocus, and measure the time from when the instruction to send the autofocus is started until the autofocus is successfully completed, and the autofocus time is obtained;
  • Checking the autofocus time checking whether the autofocus time is qualified according to the preset upper limit of time (whether the preset time limit is exceeded), if the autofocus time does not exceed the upper limit of the time, the test result is qualified, otherwise To be unqualified;
  • Output autofocus final measurement result The inspection result of the verification autofocus time is output, and the autofocus final measurement ends.
  • the entire timing can be completely completed by the software engineering mode, and of course, hardware or a combination of software and hardware can be used; the calibration device connection and the environment arrangement are the same as the Home point calibration shown in FIG. 4.
  • the PC host 4 issues a control command to the projector 1, and the projector 1 projects the preset image onto the projection. On the curtain 3;
  • step B43 is performed in sequence; if the test fails, the test is a failure.
  • the process directly proceeds to step B41 to re-autofocus and start timing;
  • the auto focus ends, and the direct jump performs the following step B5;
  • the software interface displays “Focus complete”, and the timing stops, and the obtained time is the auto-focus time
  • the upper limit of the time for setting the autofocus of the optical machine is 1 second; the technical performance given by the optical machine supplier combined with the experience of actual use, the autofocus time of the optical machine is no more than 3 seconds, and After the home point calibration, the optomechanical machine should not exceed 1 second when autofocusing;
  • the optical machine displays the result of the output focus final measurement in the software engineering mode
  • the PC host 4 and the projector 1 optical machine interact with each other through the ADB instruction, and some of the instructions involved are as follows:
  • Autofocus final measurement is a test of the projector's optometry calibration results to determine whether the optomechanics after home point calibration has achieved better performance.
  • the projector to be tested has corresponding engineering modes such as software, hardware or a combination of software and hardware.
  • an embodiment of a projector according to the present invention includes a Home Point Calibration Module for performing the Home Point calibration on a projector optical machine, and the Home Point Calibration Module includes:
  • An autofocus and focus acquisition unit for performing autofocus and obtaining an actual focal length f 0 after the projection lens is automatically focused;
  • a calibration parameter calculation unit for traversing the distance v in a range of projection distances, calculating a plurality of values of the object distances u corresponding to the distances v respectively according to the focal length f 0 , and using the distances v and the object distances a correspondence relationship of u and a value of the distance v and the object distance u as the calibration parameter;
  • the distance v is taken as a value of v 1 , v 2 , v 3 in the range of the projection distance, respectively...
  • v N is the total number of values of the distance v, and the values u 1 , u 2 , u 3 , . . . , u N of the object distances respectively corresponding to the distance v are calculated; as an embodiment, the projection distance range The corresponding projected picture size may range from 20 feet to 100 feet, and the distance v is stepped through the range of projection distances in increments of 0.01 meters.
  • a calibration parameter checking unit configured to respectively check values of the object distances u in the calibration parameters on the condition that 2f 0 >u>f 0 , and count the number of failures that do not satisfy the conditions; If the failure threshold is less than the preset failure threshold, the calibration is re-executed from the auto focus, and if the number of failures is greater than or equal to the failure threshold, it is determined that the Home point calibration ends;
  • the failure threshold is 2.
  • the projector further includes:
  • a projection unit configured to project an image on the projection screen to form a projection image before the autofocus and focus acquisition unit performs autofocus
  • a optomechanical firmware writing unit configured to write the calibration parameter that is verified by the calibration parameter verification unit, that is, the corresponding relationship and value of the distance v and the object distance u into the projector optomechanical firmware
  • the autofocus final measurement module is configured to perform the autofocus final measurement on the projector optical machine after the Home point calibration, including:
  • a focus timing unit for measuring a time from when an instruction to send an auto focus is started to when the auto focus is completed, to obtain an autofocus time
  • a time checking unit configured to check whether the autofocus time is qualified according to a preset time upper limit (whether the preset time limit is exceeded), and if the autofocus time does not exceed the upper limit of the time, the test result is qualified, Otherwise it is unqualified;
  • the time limit may be set to 1 second
  • a result output unit configured to output a test result of the time check unit.
  • the projector may further include other aforementioned ones according to actual needs on the basis of an autofocus and focus acquisition unit including a Home point calibration module, a calibration parameter calculation unit, and a calibration parameter verification unit. Units and modules.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the present application provides a projector optical machine detection method and a projector, the detection method includes performing Home point calibration on a projector optical machine, performing autofocus by controlling a projector optical machine, acquiring a new focus parameter, and then calculating and generating a calibration. Parameters, and store calibration parameters; after the optical machine is restarted, the calibration parameters will be directly called to focus when re-projecting, achieving better autofocus effect.
  • the detection method may further include autofocus final measurement after Home point calibration, and the auto focus final measurement is a detection of the home point calibration result of the optical machine, which can conveniently measure whether the home point calibration of the optical machine is successful.

Abstract

一种投影仪光机检测方法及投影仪,所述检测方法包括对投影仪光机进行Home点校准,通过控制投影仪光机进行自动对焦,获取新的对焦参数,再计算生成校准参数,并存储校准参数;光机重启后,再次投影时就会直接调用校准参数进行对焦,达到更好的自动对焦效果。所述检测方法还可包括Home点校准后的自动对焦终测。

Description

一种投影仪光机检测方法及投影仪 技术领域
本发明实施例涉及但不限于投影技术领域,特别涉及一种投影仪光机检测方法及投影仪。
背景技术
随着智能家居概念的提出,智能微型投影仪渐渐的走进了人们的日常生活。对于投影仪产品来说,为保证光机的性能,在投影仪出厂前,需要对光机进行测试。目前,业内使用的生产测试方案为:光机厂商预植入与光机对应的投影参数,投影仪在线生产时,通过操作员肉眼观察投影画面来判断投影质量。
上述光机厂商通过预植入投影参数进行投影仪测试的方式,对于部分光机而言投影参数不够匹配,这些不匹配的投影参数会影响对焦时间、亮度、对比度和亮度不均匀度,降低投影质量,很大程度上影响客户使用感受。而且,随着投影技术的快速发展,投影仪画面质量、整机性能的不断提高,原有的生产测试方案已经不能够满足用户的需求,淘汰旧的方案势在必行。
因此,对于投影仪产品来说,如何保证投影功能正常,使得其保证较好的用户体验,需要一套准确而有效的投影仪光机检测方法。
发明内容
本发明实施例提供了一种投影仪光机检测方法及投影仪,以至少保证投影仪产品各项参数符合设计要求,保证投影仪性能,优化用户体验,并可及时发现产品缺陷。
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例的一个实施例提供一种投影仪光机检测方法,包括对投影仪光机进行Home点(初始值)校准,所述Home点校准的步骤包括:
自动对焦并获取焦距f0:执行自动对焦并获得投影镜头自动对焦后的实际的焦距f0
计算校准参数:在投影距离范围内遍历相距v,根据所述焦距f0计算获得多个分别对应相距v的物距u的值,以所述相距v和所述物距u的对应关系和数值作为所述校准参数;
检验校准参数:以2f0>u>f0为条件对所述校准参数中的所述物距u的值分别进行检验,统计不满足所述条件的失败次数;若所述失败次数小于失败阈值,则从所述自动对焦开始重新执行校准,若失败次数大于等于所述失败阈值,所述Home点校准结束。
可选的,所述获取焦距f0的步骤包括:所述获取焦距f0的步骤包括:进行所述自动对焦时选定初始相距v0,自动对焦后获取光机内部的物距值作为基准物距u0,根据高斯成像公式f0=u0·v0/(u0+v0)计算得到焦距f0
可选的,所述初始相距v0取投影画面尺寸为30英尺时对应的投影距离值。
可选的,所述计算校准参数的步骤包括:根据高斯成像公式得到的物距表达式u=f0·v/(v-f0),将相距v在投影距离范围内分别取值为v1、v2、v3……vN,N为相距v取值的总数,计算得到所述分别对应相距v的物距u的值u1、u2、u3……uN
可选的,所述投影距离范围对应的投影画面尺寸为20英尺至100英尺,所述相距v以0.01米为增量步进遍历投影距离范围。
作为Home点校准的可选,所述方法还包括产生投影画面,即执行所述自动对焦前在投影屏幕上投射图像。
作为Home点校准的可选,所述方法还包括写入校准参数,即在所述检验校准参数步骤中,若所述物距u的值均满足2f0>u>f0条件,则将所述校准参数写入投影仪光机固件中。
可选的,所述检验校准参数的所述失败阈值为2。
作为所述Home点校准的可选,所述方法还包括所述Home点校准完成后对投影仪光机进行自动对焦终测,所述自动对焦终测的步骤包括:
产生投影画面:在投影屏幕上投射图像形成投影画面;
自动对焦并测量时间:执行自动对焦并测量从发送所述自动对焦的指令开始至所述自动对焦成功完成时为止的时间,得到自动对焦时间;
检验自动对焦时间:根据预设的时间上限检验所述自动对焦时间是否合格,若所述自动对焦时间未超过所述时间上限,检验结果为合格,否则为不合格;
输出对焦终测结果:输出所述检验自动对焦时间的检验结果,所述自动对焦终测结束。
作为所述时间上限的一种可选,所述时间上限设为1秒。
本发明的另一个实施例还提供一种投影仪,包括设置为对投影仪光机进行所述Home点校准的Home点校准模块,所述Home点校准模块包括:
自动对焦及焦距获取单元,设置为完成自动对焦并获得投影镜头自动对焦后的实际的焦距f0
校准参数计算单元,设置为在投影距离范围内遍历相距v,根据所述焦距f0计算获得多个分别对应相距v的物距u的值,并以所述相距v和所述物距u的对应关系和数值作为所述校准参数;
校准参数检验单元,设置为以2f0>u>f0为条件对所述校准参数中的所述物距u的值分别进行检验,统计不满足所述条件的失败次数;若所述失败次数小于失败阈值,则从所述自动对焦开始重新执行校准,若失败次数大于等于所述失败阈值,所述Home点校准结束。
可选的,所述自动对焦及焦距获取单元还设置为:进行所述自动对焦时选定初始相距v0,自动对焦后获取光机内部的物距值作为基准物距u0,根据高斯成像公式f0=u0·v0/(u0+v0)计算得到焦距f0
可选的,所述初始相距v0取投影画面尺寸为30英尺时对应的投影距离值。
可选的,所述校准参数计算单元还设置为:根据高斯成像公式得到的物距表达式u=f0·v/(v-f0),将相距v在投影距离范围内分别取值为v1、v2、v3……vN,N为相距v取值的总数,计算得到所述分别对应相距v的物距u的值u1、 u2、u3……uN
可选的,所述投影距离范围对应的投影画面尺寸为20英尺至100英尺,所述相距v以0.01米为增量步进遍历投影距离范围。
作为所述投影仪的可选,所述投影仪还包括投射单元,设置为在投影屏幕上投射图像形成投影画面。
作为所述投影仪的可选,所述投影仪还包括光机固件写入单元,光机固件写入单元,设置为将经过所述校准参数检验单元检验的所述校准参数写入投影仪光机固件中。
可选的,所述失败阈值为2。
作为所述投影仪的可选,所述投影仪还包括设置为所述Home点校准后对投影仪光机进行所述自动对焦终测的自动对焦终测模块,所述自动对焦终测包括:
对焦计时单元,设置为测量从发送自动对焦的指令开始至所述自动对焦完成时为止的时间,得到自动对焦时间;
时间检验单元,设置为根据预设的时间上限检验所述自动对焦时间是否合格,若所述自动对焦时间未超过所述时间上限,检验结果为合格,否则为不合格;
结果输出单元,设置为输出所述时间检验单元的检验结果。
可选的,所述时间上限设为1秒。
本申请技术方案的有益效果为:通过Home点校准调整光机出厂参数,使成品光机能够更快速的自动对焦;如Home点校准将无法计算出合适参数,导致校准失败,可判明光机本身存在缺陷。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的 不当限定。在附图中:
图1a为本发明一实施例中Home点校准的方法流程图;
图1b为本发明另一实施例中Home点校准的方法流程图;
图2为投影仪光学对焦原理示意图;
图3为投影仪投影成像对焦的原理示意图;
图4为本发明实施例Home点校准的测试环境布置和设备连接示意图;
图5为本发明实施例Home点校准自动对焦使用的预置图像;
图6为本发明实施例Home点校准具体步骤的流程图;
图7为本发明实施例光机功能检测方法中自动对焦终测的方法流程图;
图8为本发明实施例自动对焦终测具体步骤的流程图;
图9a为本发明投影仪一实施例的结构框图;
图9b为本发明投影仪另一实施例的结构框图。
[主要元件符号说明]
1-投影仪;11-外壳;12-光源;13-反光镜;14-聚光镜;15-隔热玻璃;16-后菲涅尔透镜;17-液晶屏幕;18-前菲涅尔透镜;19-投影镜头;2-暗箱;3-投影幕布;4-PC主机。
本发明的实施方式
为使本申请要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明实施例针对相关的问题,提供一种投影仪光机检测方法,通过在出厂前进行校准和测试项目,使投影仪各项参数符合设计要求,提高产品质量,优化用户体验,并及时发现产品缺陷。
本发明的实施例提供一种投影仪光机检测方法,以Home点(原点)校准为中心,作为可选的实施方式还可以包括自动对焦终测,具体检测方法如下:
一、Home点校准
如图1a所示,Home点校准的基本步骤包括:
自动对焦并获取焦距f0:执行自动对焦并获得投影镜头自动对焦后的实际的焦距f0
计算校准参数:在投影距离范围内遍历相距v,根据所述焦距f0计算获得多个分别对应相距v的物距u的值,以所述相距v和所述物距u的对应关系以及所述相距v和所述物距u的值作为所述校准参数;
检验校准参数:以2f0>u>f0为条件对所述校准参数中的所述物距u的值分别进行检验,统计不满足所述条件的失败次数;若所述失败次数小于预设的失败阈值,则从所述自动对焦开始重新执行校准,若失败次数大于等于所述失败阈值,所述Home点校准结束。
其中,所述获取焦距f0,包括:
进行所述自动对焦时选定初始相距v0,自动对焦后获取光机内部的物距值作为基准物距u0,根据高斯成像公式f0=u0·v0/(u0+v0)计算得到焦距f0。详细描述见后文。
作为一种实施方式,所述投影距离范围对应的投影画面尺寸可取20英尺至100英尺,所述相距v以0.01米为增量步进遍历投影距离范围。
作为可选的实施例,如图1b所示,所述方法还可以包括:
产生投影画面,即执行所述自动对焦前在投影屏幕上投射图像;以及,写入校准参数,即在所述检验校准参数步骤中,若所述物距u的值均满足2f0>u>f0条件,则将所述校准参数写入投影仪光机固件中。
所述Home点校准的原理如下:
投影仪光机在未进行校准前,工作时调用出厂参数,每个光机在出厂时因装配工艺、元器件性能和光学器件特性等存在的细小差异,出厂参数不能适配每一部光机,使用同样的出厂参数会导致自动对焦的时间产生差异,甚至使对焦时间变长,最差的情况下会导致自动对焦失败;同时,不同的光机在同样的环境下,或同一光机在不同位置,投影同样的画面其自动对焦性能也会有明显的差别。因此,投影仪出厂前需要对光机进行Home点校准。
所述Home点校准是通过指令控制光机进行自动对焦,获取新的对焦参数,再通过推算和优化生成校准参数,将校准参数存储进光机芯片;光机重启后,再次投影时就会直接调用校准参数进行对焦,达到更好的自动对焦效果。
投影仪对焦的原理如图2和图3所示:
图2所示为投影仪的结构,反光镜13的作用是把光源12发出来的光线反射到聚光镜14中,聚光镜14将光线汇集后投射至后菲涅尔透镜16;后菲涅尔透镜16把来自聚光镜14的光线转化为均匀的平行光线照亮后方的整个液晶屏幕17;前菲涅尔透镜18把液晶屏幕17出射的含有图像的平行光线汇聚在投影镜头19中,然后通过投影镜头19把液晶上的画面放大投射在投影幕布上;光机内设置有可移动前菲涅尔透镜18前后位置的马达,可通过移动改变前菲涅尔透镜18与投影镜头19距离实现对焦。图中的隔热玻璃15对光源12产生的热量进行阻挡,防止液晶屏幕17过热。
图3所示为凸透镜成像原理,v1、v2为相距,u1、u2为物距,f为焦距,三者之间满足高斯成像公式1/f=1/u+1/v。鉴于投影仪的工作方式,通常2f>u1>f,成像物体在距凸透镜2f和f之间时,可以在透镜的另一侧形成放大倒立的实像;当u1趋近2f时,v1也趋近2f,当u2=2f时v2=2f,此时物体成等大的倒立实像。在图2中,凸透镜为投影镜头19,相距v即为光机投影镜头19到投影幕布3的投影距离,物距u即为光机内部前菲涅尔透镜18到投影镜头19的距离。
光机投影镜头19通常由多个透镜组合而成,因组合镜头中的每一个分镜头加工过程、加工工艺不同,镜头焦距f的实际值与标称值存在差异,对于组合镜头而言,这种焦距差会更加放大。由于上述差异的存在,传统投影仪在自动对焦成像时,无法利用组合镜头理论上的f参数,需要通过移动前菲涅尔透镜18的位置,改变其与投影镜头19的距离,使物距u在2f>u>f范围内遍历,从而搜索出最佳物距来实现自动对焦。
本实施例中,控制投影仪完成投射30英寸画面时的自动对焦,此时初始相距v0已知,可取得光机的对焦参数,即基准物距u0;根据u0计算出校准后的实际焦距f0,根据f0计算出投影仪在投射画面尺寸变化时(本实施例中尺 寸变化范围为20英寸至100英寸)不同的相距v对应的物距u值,将所述相距v和所述物距u的对应关系和数值作为校准参数写入光机固件。
本发明实施例所涉投射画面尺寸和投影距离参考如下表1:
Figure PCTCN2016092368-appb-000001
校准测试环境和设备连接如图4所示。光机校准需要在照度不大于0.01勒克斯(lx)的光照环境中进行,因此测试在暗箱2中进行,保证投影画面亮度大于10倍的投影屏幕环境亮度;作为一种实施方式,所述暗箱2使用 ESD黑电木材质制作,尺寸为1560×876×1048mm,暗箱2内与投影仪1投射方向相对的一个内侧壁位置设置投影屏幕,本实施例中投影屏幕采用投影仪专用的白色投影幕布3;将暗箱2横放在工作台上,待测试的投影仪1放置于暗箱2中距投影幕布3约1120mm(预设为30英寸画面投影距离)处,投影仪1通过USB数据线与PC主机4连接。
Home点校准开始前应将暗箱2门关闭,校准开始时,PC主机4下发控制指令给投影仪1,投影仪1将如图5所示的预置图像投射在投影幕布3上;所述投影仪1的亮度(光通量)设置为100流明(lm);光机在计算机指令的控制下,完成自动对焦,并获得home点校准参数,即可完成home点校准。
如图6所示的本发明实施例中Home点校准的具体步骤如下:
A1:进入光机测试模式;
A2:初始化校准图像:
PC主机4下发控制指令给投影仪1,投影仪1将预置的图像投射在投影幕布3上;
A3:初始化光机亮度;
A4:执行校准,依次包括:
A41:自动对焦:
校准开始时,取定相距v0为1120mm,利用通常的物距遍历的方式在v0下进行自动对焦,从而确定前菲涅尔透镜与投影镜头间的距离,获得基准物距u0
A42:获取校准后的焦距f0
根据高斯成像公式1/f=1/u+1/v,将已知的v0和u0代入,计算出f0=u0·v0/(u0+v0),f0就是校准后投影镜头的实际焦距,将f0值写入光机固件中;
A43:计算校准参数:
在已知f0的情况下,根据光机能够在约0.7m至3.7m(见表1)投影距离范围内投影的特性,计算出光机在不同的对焦距离(相距)v下,前菲涅尔透镜18与投影镜头19间准确的距离(物距)u。根据1/f=1/u+1/v,得出 u=f·v/(v-f);令f取f0,相距v在0.7m至3.7m范围内以0.01m为增量取值为v1、v2、v3……vN,N为所取的相距v总数,将各个相距v值分别代入公式,计算出对应的物距u值u1、u2、u3……uN,将所述相距v和所述物距u的对应关系和数值作为校准参数;
A44:检验校准参数:
根据投影仪成像理论,获得的校准参数中的u1至uN的值均应满足2f0>u>f0的条件,以不满足所述条件为失败统计失败次数;若失败次数小于失败阈值,直接跳转步骤A41重新开始执行校准;若失败次数达到失败阈值时,Home点校准结束,直接跳转执行以下步骤A6;若成功,则继续执行步骤A5;
作为一种可选的实施方式,将Home点校准失败的失败阈值设定为2;
A5:将校准参数写入光机固件:
当A44中u1至uN的值均满足2f0>u>f0的条件时则判定为成功,将u1、u2、u3……uN与v1、v2、v3……vN的数值和对应关系写入光机固件,待光机重启后,写入固件的参数即生效。校准完成后,光机在自动对焦时,根据光机本身的测距装置获取相距v,然后依据上述光机固件中写入的u与v的对应关系找到固件中记载的对应的u,马达按照u值调整电机牵引量,无需再次遍历即可迅速完成对焦;
A6:释放光机;
A7:退出光机测试模式。
作为可选的实施方式之一,本实施例Home点校准过程中PC主机4与投影仪1光机之间通过安卓调试桥ADB(Android Debug Bridge)的相应指令进行交互,所涉及的部分指令如下表2:
Figure PCTCN2016092368-appb-000002
Figure PCTCN2016092368-appb-000003
上述Home点校准主要通过修正参数焦距,达到使光机能够更快速自动对焦的效果。
二、自动对焦终测
这里,所述自动对焦终测,为:测试Home点校准后的光机能否更快速的自动对焦,如图7所示,自动对焦终测的基本步骤包括:
产生投影画面:在投影屏幕上投射图像形成投影画面;
自动对焦并测量时间:执行自动对焦,并测量从发送所述自动对焦的指令开始至所述自动对焦成功完成时为止的时间,得到自动对焦时间;
检验自动对焦时间:根据预设的时间上限检验所述自动对焦时间是否合格(是否超过所述预设的时间上限),若所述自动对焦时间未超过所述时间上限,检验结果为合格,否则为不合格;
输出自动对焦终测结果:输出所述检验自动对焦时间的检验结果,所述自动对焦终测结束。
本实施例中,可选的,整个计时可完全由软件工程模式完成,当然也可选用硬件或软、硬件结合的工程模式实现;校准设备连接和环境布置与图4所示Home点校准相同。
如图8所示的本发明一实施例中自动对焦终测的具体步骤如下:
B1:进入光机测试模式;
B2:初始化校准图像:
PC主机4下发控制指令给投影仪1,投影仪1将预置的图像投射在投影 幕布3上;
B3:初始化光机亮度;
B4:执行检测,依次包括:
B41:开始自动对焦并计时:
发送自动对焦指令,同时从0开始计时;
B42:检验自动对焦结果:
对自动对焦结果进行检验,检验合格则继续顺序执行以下步骤B43;检验不合格则判定为失败,当失败的次数小于失败阈值时,直接跳转执行步骤B41,重新进行自动对焦并开始计时;当失败的次数达到失败阈值时,自动对焦即结束,直接跳转执行以下步骤B5;
作为一种可选的实施方式,将所述失败阈值设定为2;
B43:自动对焦时间计时停止:
这里,作为一种可选方式,光机自动对焦成功后软件界面显示“对焦完成”,此时计时停止,得到的时间即是自动对焦时间;
B44:检验自动对焦时间:
将取得的所述自动对焦时间与预设的时间上限对比,不超过所述时间上限即判定为自动对焦终测合格,否则判定为不合格;
作为一种可选的实施方式,设定光机自动对焦的时间上限为1秒;光机供应商给出的技术性能结合实际使用的经验感受,光机自动对焦时间最大不超过3秒,而经过Home点校准后的光机在自动对焦时,最大不应超过1秒;
B5:输出自动对焦终测结果:
这里,作为一种可选方式,光机在软件工程模式下显示输出对焦终测的结果;
B6:释放光机;
B7:退出光机测试模式。
作为可选的实施方式之一,本实施例自动对焦终测过程中PC主机4与投影仪1光机之间通过ADB指令进行交互,所涉及的部分指令如下表3:
Figure PCTCN2016092368-appb-000004
自动对焦终测是对投影仪光机校准结果的一项检验,可判别Home点校准后的光机是否获得更好的性能。
为进行上述各项检测,待检测的投影仪具有相应的软件、硬件或软硬件结合等工程模式。
如图9a所示为本发明投影仪的一种实施方式,该投影仪包括用于对投影仪光机进行所述Home点校准的Home点校准模块,所述Home点校准模块包括:
自动对焦及焦距获取单元,用于执行自动对焦并获得投影镜头自动对焦后的实际的焦距f0
具体的,进行所述自动对焦时选定初始相距v0,自动对焦后获取光机内部的物距值作为基准物距u0,根据高斯成像公式f0=u0·v0/(u0+v0)计算得到焦距f0;作为一种实施方式,所述初始相距v0可取投影画面尺寸为30英尺时对应的投影距离值。
校准参数计算单元,用于在投影距离范围内遍历相距v,根据所述焦距f0计算获得多个分别对应所述相距v的物距u的值,并以所述相距v和所述物距u的对应关系以及所述相距v和所述物距u的值作为所述校准参数;
作为一种实施方式,根据高斯成像公式得到的物距表达式u=f0·v/(v-f0), 将相距v在投影距离范围内分别取值为v1、v2、v3……vN,N为相距v取值的总数,计算得到所述分别对应相距v的物距u的值u1、u2、u3……uN;作为一种实施方式,所述投影距离范围对应的投影画面尺寸可取20英尺至100英尺,所述相距v以0.01米为增量步进遍历投影距离范围。
校准参数检验单元,用于以2f0>u>f0为条件对所述校准参数中的所述物距u的值分别进行检验,统计不满足所述条件的失败次数;若所述失败次数小于预设的失败阈值,则从所述自动对焦开始重新执行校准,若失败次数大于等于所述失败阈值,判定所述Home点校准结束;
作为一种可选的实施方式,所述失败阈值取2。
如图9b所示的本发明另一实施例,所述投影仪还包括:
投射单元,用于所述自动对焦及焦距获取单元执行自动对焦前,在投影屏幕上投射图像,形成投影画面;
光机固件写入单元,用于将经过所述校准参数检验单元检验的所述校准参数,即所述相距v和所述物距u的对应关系和数值写入投影仪光机固件中;
自动对焦终测模块,用于所述Home点校准后对投影仪光机进行所述自动对焦终测,包括:
对焦计时单元,用于测量从发送自动对焦的指令开始至所述自动对焦完成时为止的时间,得到自动对焦时间;
时间检验单元,用于根据预设的时间上限检验所述自动对焦时间是否合格(是否超过所述预设的时间上限),若所述自动对焦时间未超过所述时间上限,检验结果为合格,否则为不合格;
作为可选的实施方式,所述时间上限可设为1秒;
结果输出单元,用于输出所述时间检验单元的检验结果。
作为本发明投影仪的其它实施方式,投影仪还可在包括Home点校准模块的自动对焦及焦距获取单元、校准参数计算单元和校准参数检验单元的基础上,根据实际需要选择性的包含其它前述单元和模块。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储 介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
以上所述是本申请的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
工业实用性
本申请提供一种投影仪光机检测方法及投影仪,所述检测方法包括对投影仪光机进行Home点校准,通过控制投影仪光机进行自动对焦,获取新的对焦参数,再计算生成校准参数,并存储校准参数;光机重启后,再次投影时就会直接调用校准参数进行对焦,达到更好的自动对焦效果。所述检测方法还可包括Home点校准后的自动对焦终测,自动对焦终测是对光机Home点校准结果一种检测,可方便的衡量光机Home点校准是否成功。

Claims (15)

  1. 一种投影仪光机检测方法,该方法包括对投影仪光机进行原点Home点校准,所述Home点校准,包括:
    自动对焦并获取焦距f0:执行自动对焦,并获得投影镜头自动对焦后的实际的焦距f0
    计算校准参数:在投影距离范围内遍历相距v,根据所述焦距f0计算获得多个分别对应所述相距v的物距u的值,以所述相距v和所述物距u的对应关系以及所述相距v和所述物距u的值作为所述校准参数;
    检验校准参数:以2f0>u>f0为条件对所述校准参数中的所述物距u的值分别进行检验,统计不满足所述条件的失败次数;若所述失败次数小于预设的失败阈值,则从所述自动对焦开始重新执行校准,若失败次数大于等于所述失败阈值,则所述Home点校准结束。
  2. 根据权利要求1所述的投影仪光机检测方法,其中,所述获取焦距f0,包括:
    进行所述自动对焦时选定初始相距v0,自动对焦后获取光机内部的物距值作为基准物距u0,根据高斯成像公式f0=u0·v0/(u0+v0)计算得到焦距f0
  3. 根据权利要求2所述的投影仪光机检测方法,其中,所述初始相距v0取投影画面尺寸为30英尺时对应的投影距离值。
  4. 根据权利要求1所述的投影仪光机检测方法,其中,所述计算校准参数,包括:
    根据高斯成像公式得到的物距表达式u=f0·v/(v-f0),将相距v在投影距离范围内分别取值为v1、v2、v3……vN,N为相距v取值的总数,计算得到所述分别对应相距v的物距u的值u1、u2、u3……uN
  5. 根据权利要求1至4中任一项所述的投影仪光机检测方法,其中,所述投影距离范围对应的投影画面尺寸为20英尺至100英尺,所述相距v以0.01米为增量步进遍历投影距离范围。
  6. 根据权利要求1至4中任一项所述的投影仪光机检测方法,所述方法还包括:
    产生投影画面:执行所述自动对焦前在投影屏幕上投射图像。
  7. 根据权利要求1至4中任一项所述的投影仪光机检测方法,所述方法还包括:
    写入校准参数:在所述检验校准参数步骤中,若所述物距u的值均满足2f0>u>f0条件,则将所述校准参数写入投影仪光机固件中。
  8. 根据权利要求1至4中任一项所述的投影仪光机检测方法,所述方法还包括:
    所述Home点校准完成后对投影仪光机进行自动对焦终测,所述自动对焦终测,包括:
    产生投影画面:在投影屏幕上投射图像形成投影画面;
    自动对焦并测量时间:执行自动对焦,并测量从发送所述自动对焦的指令开始至所述自动对焦成功完成时为止的时间,得到自动对焦时间;
    检验自动对焦时间:根据预设的时间上限检验所述自动对焦时间是否合格,若所述自动对焦时间未超过所述时间上限,检验结果为合格,否则为不合格;
    输出对焦终测结果:输出所述检验自动对焦时间的检验结果,结束所述自动对焦终测。
  9. 一种投影仪,该投影仪包括用于设置为对投影仪光机进行所述原点Home点校准的Home点校准模块,所述Home点校准模块包括:
    自动对焦及焦距获取单元,设置为完成自动对焦,并获得投影镜头自动对焦后的实际的焦距f0
    校准参数计算单元,设置为在投影距离范围内遍历相距v,根据所述焦距f0计算获得多个分别对应所述相距v的物距u的值,并以所述相距v和所述物距u的对应关系以及所述相距v和所述物距u的值作为所述校准参数;
    校准参数检验单元,设置为以2f0>u>f0为条件对所述校准参数中的所述物距u的值分别进行检验,统计不满足所述条件的失败次数;若所述失败次数小于预设的失败阈值,则从所述自动对焦开始重新执行校准,若失败次数大于等于所述失败阈值,则判定所述Home点校准结束。
  10. 根据权利要求9所述的投影仪,其中,所述自动对焦及焦距获取单元是设置为:
    进行所述自动对焦时选定初始相距v0,自动对焦后获取光机内部的物距值作为基准物距u0,根据高斯成像公式f0=u0·v0/(u0+v0)计算得到焦距f0
  11. 根据权利要求9所述的投影仪,其中,所述校准参数计算单元是设置为:
    根据高斯成像公式得到的物距表达式u=f0·v/(v-f0),将相距v在投影距离范围内分别取值为v1、v2、v3……vN,N为相距v取值的总数,计算得到所述分别对应相距v的物距u的值u1、u2、u3……uN
  12. 根据权利要求9至11中任一项所述的投影仪,所述投影仪还包括:
    投射单元,设置为所述自动对焦及焦距获取单元执行自动对焦前,在投影屏幕上投射图像。
  13. 根据权利要求9至11中任一项所述的投影仪,所述投影仪还包括:
    光机固件写入单元,设置为将经过所述校准参数检验单元检验的所述校准参数写入投影仪光机固件中。
  14. 根据权利要求9至11中任一项所述的投影仪,其中,所述失败阈值为2。
  15. 根据权利要求9至11中任一项所述的投影仪,所述投影仪还包括设置为所述Home点校准后对投影仪光机进行所述自动对焦终测的自动对焦终测模块,所述自动对焦终测包括:
    对焦计时单元,设置为测量从发送自动对焦的指令开始至所述自动对焦完成时为止的时间,得到自动对焦时间;
    时间检验单元,设置为根据预设的时间上限检验所述自动对焦时间是否合格,若所述自动对焦时间未超过所述时间上限,检验结果为合格,否则为不合格;
    结果输出单元,设置为输出所述时间检验单元的检验结果。
PCT/CN2016/092368 2016-06-27 2016-07-29 一种投影仪光机检测方法及投影仪 WO2018000496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610478456.8 2016-06-27
CN201610478456.8A CN107544199A (zh) 2016-06-27 2016-06-27 一种投影仪光机检测方法及投影仪

Publications (1)

Publication Number Publication Date
WO2018000496A1 true WO2018000496A1 (zh) 2018-01-04

Family

ID=60785037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092368 WO2018000496A1 (zh) 2016-06-27 2016-07-29 一种投影仪光机检测方法及投影仪

Country Status (2)

Country Link
CN (1) CN107544199A (zh)
WO (1) WO2018000496A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111225196B (zh) * 2018-11-26 2022-09-27 微鲸科技有限公司 对焦测试方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246446B1 (en) * 1996-06-28 2001-06-12 Texas Instruments Incorporated Auto focus system for a SLM based image display system
CN102354079A (zh) * 2011-09-23 2012-02-15 海信集团有限公司 投影设备和自动对焦方法
CN102375316A (zh) * 2010-08-27 2012-03-14 鸿富锦精密工业(深圳)有限公司 投影仪及其自动对焦方法
CN102629072A (zh) * 2012-02-29 2012-08-08 苏州佳世达光电有限公司 投影装置半自动对焦方法及投影装置
CN102984530A (zh) * 2011-09-02 2013-03-20 宏达国际电子股份有限公司 图像处理系统及自动对焦方法
CN103424974A (zh) * 2012-05-22 2013-12-04 宏碁股份有限公司 投影装置以及对焦方法
CN104184977A (zh) * 2013-05-27 2014-12-03 联想(北京)有限公司 一种投影方法及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246446B1 (en) * 1996-06-28 2001-06-12 Texas Instruments Incorporated Auto focus system for a SLM based image display system
CN102375316A (zh) * 2010-08-27 2012-03-14 鸿富锦精密工业(深圳)有限公司 投影仪及其自动对焦方法
CN102984530A (zh) * 2011-09-02 2013-03-20 宏达国际电子股份有限公司 图像处理系统及自动对焦方法
CN102354079A (zh) * 2011-09-23 2012-02-15 海信集团有限公司 投影设备和自动对焦方法
CN102629072A (zh) * 2012-02-29 2012-08-08 苏州佳世达光电有限公司 投影装置半自动对焦方法及投影装置
CN103424974A (zh) * 2012-05-22 2013-12-04 宏碁股份有限公司 投影装置以及对焦方法
CN104184977A (zh) * 2013-05-27 2014-12-03 联想(北京)有限公司 一种投影方法及电子设备

Also Published As

Publication number Publication date
CN107544199A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
TWI417640B (zh) 鏡頭校準系統
US9354046B2 (en) Three dimensional shape measurement apparatus, control method therefor, and storage medium
US20160033796A1 (en) Method and system for repairing defective pixel, and display panel
US10175041B2 (en) Measuring head and eccentricity measuring device including the same
US9229337B2 (en) Setting method of exposure apparatus, substrate imaging apparatus and non-transitory computer-readable storage medium
CN111629190A (zh) 投影系统以及投影方法
TW201716770A (zh) 基板檢測裝置及其方法
KR20140016168A (ko) 안과장치 및 안과방법
KR20210062708A (ko) 무고정 렌즈미터 시스템
CN106444257A (zh) 光阀接收光斑的调整方法及装置、系统
JP2020086152A (ja) 検査システム、検査方法およびプログラム
WO2018000496A1 (zh) 一种投影仪光机检测方法及投影仪
TW544544B (en) Optical element inspection device and optical element inspection method
TW201443710A (zh) 光學導航裝置以及控制光學導航裝置中多個光學機構的方法
TW201809778A (zh) 自動對焦系統、方法及影像檢測儀器
TW202020438A (zh) 表面形貌檢測方法
TWI696820B (zh) 檢測裝置
CN108282645B (zh) 一种投影触摸校准和梯形校正的方法、装置和智能投影仪
US20150253128A1 (en) Measurement apparatus, measurement method, and method of manufacturing article
TWM579270U (zh) Lens detecting device
TWI652539B (zh) 用以測試多個投影機模組的自動校準裝置與相關方法
TWI805969B (zh) 表面形貌檢測系統
TWI749409B (zh) 光學量測方法
JP2020085678A (ja) 検査システム、検査方法およびプログラム
JP2015105897A (ja) マスクパターンの検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906894

Country of ref document: EP

Kind code of ref document: A1