WO2018000308A1 - 上行数据传输方法及装置 - Google Patents

上行数据传输方法及装置 Download PDF

Info

Publication number
WO2018000308A1
WO2018000308A1 PCT/CN2016/087856 CN2016087856W WO2018000308A1 WO 2018000308 A1 WO2018000308 A1 WO 2018000308A1 CN 2016087856 W CN2016087856 W CN 2016087856W WO 2018000308 A1 WO2018000308 A1 WO 2018000308A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
extended
resource
symbols
sequence
Prior art date
Application number
PCT/CN2016/087856
Other languages
English (en)
French (fr)
Inventor
邓天乐
周凯捷
王新征
胡星星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/087856 priority Critical patent/WO2018000308A1/zh
Publication of WO2018000308A1 publication Critical patent/WO2018000308A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning

Definitions

  • the present application relates to the field of data transmission technologies, and in particular, to an uplink data transmission method and apparatus.
  • a process of transmitting data to a base station by a user equipment is generally referred to as an uplink data transmission process.
  • the uplink data transmission is divided into uplink scheduled data transmission and uplink unscheduled data transmission.
  • the uplink scheduling data transmission means that the base station allocates transmission resources to the UE, and the UE uses the transmission resources allocated by the base station to transmit data to the base station; the uplink unscheduled data transmission means that the base station does not need to allocate transmission resources for the UE, when the UE has data to be transmitted.
  • the UE autonomously selects transmission resources in a certain manner among all available transmission resources, and transmits data to the base station by using the autonomously selected transmission resources.
  • the uplink unscheduled transmission reduces the interaction step with the base station before transmitting the data, so the transmission delay of the uplink data can be reduced to some extent.
  • uplink unscheduled transmission uses autonomously selected transmission resources to transmit data, different UEs may select the same transmission resource, that is, resource collision occurs between different UEs. Once a resource collision occurs between UEs, the base station It is highly probable that the data of one or more UEs that have collided cannot be correctly received, so that all or part of the UEs that have collided with the resources need to resend the data, which increases the transmission delay of the uplink data, resulting in poor transmission performance of the system.
  • the present application provides an uplink data transmission method and apparatus to solve the problem of degradation of transmission performance caused by data transmission by different UEs using the same transmission resource.
  • an embodiment of the present invention provides an uplink data transmission method, including:
  • the target symbol Enlarging the target symbol into a plurality of extended symbols according to the extended sequence, wherein the extended sequence is one of at least two sequences that are orthogonal or mutually quasi-orthogonal;
  • the UE uses the extended sequence to expand the target symbol into multiple extensions. And mapping the plurality of extended symbols to corresponding resource units for transmission, and when multiple UEs use the same resource unit to transmit extended symbols, it may ensure that the extended symbols of multiple UEs are positive to some extent.
  • the method of the present invention can support multiple UEs to use the same transmission resource to transmit data, and improve the transmission data of multiple UEs occupying the same transmission resource. The success rate and the transmission performance of the uplink data.
  • the method before the expanding the target symbol to a plurality of extended symbols according to the extended sequence, the method further includes:
  • the UE obtains the parameter information of the sequence in which the target symbol is extended by using the broadcast message of the base station, reduces the interaction cost between the UE and the base station, and supports the UE to perform data transmission in a non-scheduled manner.
  • the extended sequence includes a plurality of sequence elements
  • the expanding the target symbol into a plurality of extended symbols according to the extended sequence including:
  • the UE obtains multiple extended symbols by multiplying the target symbols by each sequence element in the extended sequence, and ensures that the extended symbols obtained by multiple UEs are obtained when the extended sequences selected by multiple UEs are different. Orthogonal or quasi-orthogonal, especially when multiple UEs occupy the same transmission resource, it is convenient for the base station to spread the transmission data of each UE from the transmission resource.
  • the determining the resource unit corresponding to the multiple extended symbols respectively includes:
  • the transmission matrix comprises: a time domain extended transmission matrix, a frequency domain extended transmission matrix, or a time domain frequency domain extended transmission matrix;
  • the UE may perform the transmission of the extended sequence by using the time domain, the frequency domain, and the time domain frequency domain extension manner.
  • the determining, according to the transmission matrix of the plurality of extended symbols, the resource units corresponding to the plurality of extended symbols from the available transmission resources including:
  • the determining, according to the transmission matrix of the multiple extended symbols, the reference resource unit from the available transmission resources including:
  • the reference resource unit is determined from a plurality of resource elements having the first specific number of available transmission resources, wherein the plurality of resources having the first specific number The unit occupies the same subcarrier, and the adjacent two resource units having the first specific number are different by N resource units, where N is an integer multiple of the number of resource units occupied by one transmission element;
  • the reference resource unit is determined from a plurality of resource units having the second specific number of available transmission resources, wherein the plurality of resource units having the second specific number are taken in the time domain
  • the values are the same and occupy different subcarriers respectively, and the adjacent two resource units having the second specific number are different by M resource units, and the M is an integer multiple of the number of resource units occupied by one transmission element;
  • the reference resource unit is determined from a plurality of resource units having the third specific number of available transmission resources, wherein the adjacent two have the The time domain values of the three specific numbered resource units are different by X resource units, and the frequency domain values are different by Y resource units, and the X and Y are integer multiples of the number of resource units occupied by one transmission element.
  • the resource units selected by the multiple UEs to transmit the extended symbols may be completely overlapped, not overlapped or partially overlapped, in particular, when multiple UEs are selected.
  • the resource units partially overlap the symbols on the REs that do not overlap between multiple UEs can still form complete information, thereby facilitating the base station to demodulate the complete data from the overlapping units of the UE and the resource elements of the non-overlapping parts. .
  • the determining, according to the transmission matrix of the plurality of extended symbols and the reference resource unit, the resource units corresponding to the plurality of extended symbols from the available transmission resources including:
  • the transmission matrix of the plurality of extended symbols is a time domain extended transmission matrix, determining, according to the reference resource unit, that the plurality of extended symbols correspond to each other by expanding in a time domain direction of the available transmission resource Resource unit
  • the transmission matrix of the plurality of extended symbols is a frequency domain extended transmission matrix, determining, according to the reference resource unit, that the plurality of extended symbols correspond to each other by expanding in a frequency domain direction of the available transmission resource Resource unit
  • the transmission matrix of the plurality of extended symbols is a time domain frequency domain extended transmission matrix, determining, according to the reference resource unit, by expanding in a time domain and a frequency domain direction of the available transmission resource, determining the multiple The resource elements corresponding to the extended symbols.
  • the target symbol is expanded into a plurality of extended symbols according to the extended sequence
  • the method further includes:
  • the UE acquires parameter information of the extended sequence used for extending the target symbol according to the resource scheduling message of the base station, and the scheduling allocation manner ensures that the extended sequences used by the UEs are different, and the base station may have a scheduling. Let multiple UEs use the same transmission resource to increase the user capacity on the same transmission resource.
  • the method further includes:
  • the extension sequence is re-determined, and the target symbol is expanded and re-newed by using the re-determined extension sequence.
  • the extended extension symbol is retransmitted to the base station.
  • the UE may re-extend and transmit the target symbol according to whether the base station feeds back the ACK message, thereby ensuring that the target symbol is successfully transmitted by means of retransmission.
  • the method further includes:
  • the number of times the target symbol transmission fails is sent to the base station, including:
  • the number of times the target symbol transmission fails or the number of transmission failures is added to the target symbol to be transmitted and transmitted to the base station.
  • the UE transmits the failure number information of the target symbol to the base station, so that the base station adjusts the parameters of the sequence provided to each UE according to the number of failures of the target symbol transmission of each UE, thereby improving the adoption of each UE.
  • an embodiment of the present invention provides an uplink data transmission method, including:
  • the UE since the UE uses the extended sequence to spread the target symbol, when the base station receives the data, the received transmission symbol is despread to obtain the original symbol sent by the UE, and
  • the extended sequence used is largely orthogonal or quasi-orthogonal. Therefore, when multiple UEs occupy the same transmission resource, the base station can expand and transmit the data of multiple UEs on the same transmission resource.
  • the method of the embodiment of the invention supports that multiple UEs occupy the same transmission resource for data transmission.
  • the method further includes:
  • the resource scheduling message When receiving the resource scheduling request message sent by the UE, the resource scheduling message is sent to the UE, where the resource scheduling message carries parameter information of one or more of the at least two sequences.
  • the base station may provide the UE with a sequence for expanding the target symbol by using a broadcast message to support the UE to perform uplink unscheduled data transmission.
  • the UE may also use the resource scheduling mode for each UE.
  • the extension sequence and the transmission resource are allocated, thereby ensuring that the extension sequences allocated by the UEs are different, and the UE may intentionally use the same transmission resource to improve the user capacity on the transmission resource.
  • the method further includes:
  • the parameter information of the preset at least two sequences is adjusted according to the number of times of the failure or the interval information of the number of transmission failures.
  • the method further includes:
  • the parameter information of the at least two sequences is adjusted according to the uplink power of the received transmission symbol.
  • the base station further acquires information that the UE fails to transmit the target symbol, and further adjusts the parameters of the sequence provided to each UE according to the number of failures of the target symbol transmission of each UE, thereby improving the use of the present invention by each UE.
  • the success rate when transmitting data in the uplink data transmission mode of the embodiment is not limited to the uplink data transmission mode of the embodiment.
  • the embodiment of the present invention further provides a user equipment corresponding to the method of the foregoing first aspect, including:
  • At least one processor for expanding the target symbol into a plurality of extended symbols according to the extended sequence, wherein
  • the spreading sequence is one of at least two sequences that are mutually orthogonal or mutually quasi-orthogonal; determining resource elements corresponding to the plurality of extended symbols respectively;
  • a transmitter configured to transmit the multiple extended symbols to the base station by using corresponding resource units respectively.
  • the user equipment further includes a receiver
  • the receiver is configured to receive a broadcast message from a base station, where the at least one processor carries a parameter of the at least two sequences, before the at least one processor expands the target symbol into multiple extended symbols according to the extended sequence. information;
  • the at least one processor is further configured to randomly determine a sequence from the at least two sequences as an extended sequence for expanding the target symbol according to the parameter information.
  • the extended sequence includes a plurality of sequence elements
  • the at least one processor expands the target symbol into a plurality of extended symbols according to the extended sequence, including:
  • the at least one processor determines a resource unit corresponding to each of the plurality of extended symbols, including:
  • the transmission matrix comprises: a time domain extended transmission matrix, a frequency domain extended transmission matrix, or a time domain frequency domain extended transmission matrix;
  • a receiver in the user equipment receives a resource scheduling message from a base station, the resource scheduling message, before the at least one processor expands a target symbol into a plurality of extended symbols according to a spreading sequence. Carrying parameter information of the extended sequence for expanding the target symbol;
  • the at least one processor is further configured to determine, according to the parameter information carried in the resource scheduling message, an extended sequence for expanding a target symbol.
  • the at least one processor is further configured to: after the transmitter transmits the multiple extended symbols to the base station by using the corresponding resource units, determining whether to receive in the first preset time To confirm the ACK message;
  • the transmitter is further configured to resend the newly extended extended symbol to the base station.
  • the transmitter is further configured to: send the number of times the target symbol transmission fails to the base station.
  • an uplink data receiving device including:
  • a receiver configured to receive a transmission symbol from a transmission resource, where the transmission resource includes multiple resource units;
  • At least one processor configured to despread the transmission symbols by using at least two sequences, wherein the at least two sequences are mutually orthogonal or mutually quasi-orthogonal sequences; according to the result of the de-spreading, Determining that the symbol transmitted by the at least one UE is received on the transmission resource.
  • the device further includes: a transmitter;
  • the transmitter is configured to send a broadcast message, where the broadcast message carries parameter information of the at least two sequences;
  • the transmitter is configured to: when the receiver receives the resource scheduling request message sent by the user equipment UE, send a resource scheduling message to the UE, where the resource scheduling message carries the at least two sequences Parameter information for one or more sequences.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the user equipment, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the uplink data receiving device, including a program designed to perform the above aspects.
  • the uplink data transmission scheme of the embodiment of the invention supports multiple UEs to transmit data on the same transmission resource, thereby solving the problem that the transmission performance of different UEs using the same transmission resource for data transmission is degraded.
  • FIG. 1 is a flowchart of an uplink data transmission method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of an uplink data transmission method according to Embodiment 2 of the present invention.
  • Figure 3 is a schematic diagram of different extensions of the extended symbols
  • 5 is a schematic diagram of pilot patterns of UE1 and UE2;
  • 6 is a map of extended symbols and REs of UE1;
  • FIG. 8 is a schematic diagram showing a distribution of an extended pilot signal received by a base station
  • FIG. 9 is a schematic diagram of a time-frequency resource offset occupied by UE1 and UE2 transmitting extended symbols
  • FIG. 10 is a flowchart of an uplink data transmission method according to Embodiment 4 of the present invention.
  • FIG. 11 is a schematic structural diagram of a possible frame of a UE involved in an embodiment of the present invention.
  • FIG. 12 is a simplified schematic diagram of a possible design structure of a UE involved in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a possible frame of an uplink data receiving device according to an embodiment of the present invention.
  • FIG. 14 is a simplified schematic diagram of a possible design structure of an uplink data receiving device according to an embodiment of the present invention.
  • the method of repeatedly transmitting data to the base station is often used to achieve the purpose of enhancing the coverage depth.
  • the uplink data transmission may consider a non-scheduled transmission strategy.
  • the repeated transmission mechanism introduced to achieve the deep coverage purpose increases the occupation of the transmission resources by the uplink data, thereby raising the probability of resource collision between the UEs, and thus the actual In the deep coverage application scenario, the uplink unscheduled transmission policy cannot be generally used.
  • LTE Long Term Evolution
  • MIMO Multi-User Multiple Input Multiple Output
  • the base station can correctly solve the data of the UE. Therefore, using multiple UEs with the same time-frequency transmission resources can degrade the performance of data transmission.
  • the present invention provides an uplink data transmission method, in which the UE uses the extended sequence to spread data to be transmitted, wherein the extended sequence used by the UE is orthogonal or quasi-orthogonal to each other.
  • the UE maps the extended data to the transmission resource, and when the data of the multiple UEs is simultaneously transmitted on the corresponding transmission resource, the data of the multiple UEs are orthogonal or quasi-orthogonal,
  • the base station After receiving the extended data transmitted by the multiple UEs, the base station obtains the data transmitted by each UE by despreading, so that when multiple UEs use the same transmission resource to transmit data, the probability of successful data transmission is improved and the data transmission performance is improved.
  • the uplink data transmission method provided in the embodiment of the present invention is applicable to various types of mobile communication systems, and the method according to the embodiment of the present invention can be applied to an LTE system, a machine-to-machine (Machine-to-Machine, M2M) communication system, and a general grouping.
  • Wireless Packet Service (English: General Packet Radio Service, GPRS for short) system, future 5G communication system, and other possible mobile communication systems where multiple UEs use the same transmission for uplink data transmission.
  • the UE may be a handheld device with a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to the wireless modem, and various forms of user equipment (User Equipment, UE for short).
  • Mobile station (MS), terminal, terminal equipment, etc. For convenience of description, in the embodiment of the present invention, it is simply referred to as a user equipment or a UE.
  • FIG. 1 is a flowchart of an uplink data transmission method according to Embodiment 1 of the present invention. The method may be applied to a UE. The processing steps of the method shown in FIG. 1 include:
  • Step S101 The UE expands the target symbol into a plurality of extended symbols according to the extended sequence.
  • the above spreading sequence is one of at least two sequences that are orthogonal or mutually quasi-orthogonal.
  • Step S102 The UE determines a resource unit corresponding to each of the plurality of extended symbols, where the resource unit may also be referred to as a resource particle, which is the smallest resource unit among the physical transmission resources.
  • Step S103 The UE transmits multiple extended symbols to the base station through the corresponding resource units respectively.
  • the target symbols have different meanings.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the target symbol is a discrete Fourier transform of the constellation symbol (English: Discrete Fourier Transform, referred to as DFT).
  • DFT Discrete Fourier Transform
  • the UE expands the target symbol to be transmitted into a plurality of extended symbols by using a spreading sequence, where the multiple extended symbols are respectively mapped to corresponding resource units for transmission, and when multiple UEs use the same resource unit to transmit extended symbols, multiple The extended symbols of the UE are orthogonal or quasi-orthogonal, and the base station can respectively obtain the original symbols sent by each UE by despreading. Therefore, the method in the embodiment of the present invention supports multiple UEs to use the same transmission resource to transmit data, and Compared with the uplink data transmission method, when multiple UEs use the same transmission resource to transmit data, the embodiment of the present invention can improve the success rate of data transmission and improve the data transmission performance.
  • the uplink data transmission method in the embodiment of the present invention may be applied to the uplink unscheduled data transmission process, and may also be applied to the uplink scheduled data transmission process, and the uplinks using the method of the embodiment of the present invention are respectively used in different embodiments.
  • the unscheduled data transmission process and the uplink scheduled data transmission process are described in detail.
  • FIG. 2 is a flowchart of an uplink data transmission method according to Embodiment 2 of the present invention.
  • the method in this embodiment may be applied to an uplink unscheduled data transmission process.
  • the method may be applied to an uplink unscheduled transmission of an LTE system.
  • the method of the embodiment of the present invention will be described in detail by taking the process performed in the LTE system as an example.
  • the processing steps of the method include:
  • Step S201 The UE receives a broadcast message from the base station.
  • the broadcast message sent by the base station carries the parameter information of the at least two sequences, and the at least two sequences indicated by the parameter information are orthogonal or quasi-orthogonal to each other.
  • the parameter information carried in the broadcast message may be a sequence.
  • the above at least two sequences may be a Walsh sequence (or Walsh code), an Orthogonal Variable Spreading Factor (OVSF) code, and a pseudo noise (English: Pseudo Noise) , abbreviated as: PN) sequence and constant amplitude zero autocorrelation (English: Constant Amplitude Zero Autocorrelation, CAZAC) sequence, etc., wherein the PN sequence can be m sequence, M sequence, Gold sequence, etc., CAZAC sequence can be Zadoff-Chu Sequence, Chirp sequence, Frank sequence, and the like.
  • Step S202 The UE determines one sequence from at least two sequences as an extended sequence for expanding the target symbol according to the parameter information in the broadcast message.
  • the UE can randomly determine one sequence from at least two sequences as an extended sequence.
  • Step S203 The UE expands the target symbol into a plurality of extended symbols according to the extended sequence.
  • the method for expanding the target symbol into a plurality of extended symbols by using the extended sequence may be: generally including a plurality of sequence elements in the extended sequence, and multiplying the plurality of sequence elements by the target symbol respectively, according to multiplication The result is a plurality of extension symbols.
  • the extended sequence A (c1, c2, c3, c4) adopted by the UE, the target symbol is a, and the extension symbol A is used to expand the target symbol a into a plurality of extended symbols by: extending each sequence in the sequence A
  • the elements: c1, c2, c3, and c4 are multiplied by the target symbol a, respectively, to obtain a plurality of extended symbols, wherein the obtained plurality of extended symbols are: ac1, ac2, ac3, and ac4.
  • Step S204 The UE determines a transmission matrix of a plurality of extended symbols, where the transmission matrix of the plurality of extended symbols determined by the UE includes: a time domain extended transmission matrix, a frequency domain extended transmission matrix, or a time domain frequency domain extended transmission matrix. formula.
  • one target symbol is extended to N extended symbols by a spreading sequence, where N is an expansion factor equal to the number of sequence elements included in the extended sequence, that is, equal to the length of the extended sequence.
  • the N extended symbols obtained by the above extension may be serially transmitted in time, that is, using a time domain extended transmission matrix; or may be arranged in frequency, that is, using a frequency domain extended transmission matrix; further, in time and frequency
  • the upper layer is spread, that is, the time domain frequency domain extended transmission matrix is adopted.
  • the UE may determine which transmission matrix to use according to the currently available transmission resources and the transmission requirements of the current service, or may be determined according to the indication of the base station.
  • the manner in which the UE obtains the indication of the base station in the uplink unscheduled data transmission process includes: the broadcast message sent by the base station carries the transmission matrix indication information, or the UE and the base station pre-agreed the transmission matrix determination rule.
  • Step S205 The UE determines resource units corresponding to the plurality of extended symbols respectively.
  • the foregoing resource unit may be simply referred to as RE, and the full name in English is: Resource Element.
  • the UE After the UE determines the transmission matrix used to transmit the plurality of extended symbols, the UE determines the REs corresponding to the plurality of extended symbols in the available transmission resources according to the transmission matrix.
  • a plurality of available REs are included in the available transmission resources, and the UE determines the REs corresponding to the respective extended symbols from the plurality of available REs respectively.
  • the time domain unit of the RE is a symbol
  • the frequency domain unit is Subcarrier.
  • Step S206 The UE transmits multiple extended symbols to the base station through the corresponding RE.
  • Step S207 The UE determines whether an acknowledgment (English: ACKnowledgement, ACK) message or a Negative ACKnowledgement (NACK) message is received in the first preset time. If the ACK message is received, step S208 is performed. If the NACK message is received, step S209 is performed. If neither the ACK message nor the NACK message is received within the first preset time, step S211 is performed.
  • an acknowledgment English: ACKnowledgement, ACK
  • NACK Negative ACKnowledgement
  • the UE transmits uplink data to the base station, where the transmitted uplink data includes pilot information and control information in addition to the data to be transmitted.
  • the base station receives the uplink data from the transmission resource according to the pilot information, and then demodulates the uplink data to obtain the control information, and obtains the data transmitted by the UE according to the control information, and the base station further sends an ACK to the UE according to the result of the uplink data demodulation.
  • the message determines whether the target symbol is successfully received by the base station according to whether the ACK message is received within a preset time.
  • Step S208 When the UE receives the ACK message within the first preset time, the UE determines that the target symbol is successfully received by the base station.
  • the base station When the base station demodulates the control information and the data information in the uplink data sent by the UE, the base station feeds back an ACK message to the UE, and the UE determines that the target symbol is successfully received by the base station according to the ACK message received in the first preset time.
  • Step S209 When the UE receives the NACK message within the first preset time, the UE determines whether the number of retransmissions of the target symbol reaches the preset maximum number of retransmissions.
  • the base station When the base station demodulates the control information in the uplink data sent by the UE, and the data information fails to be demodulated, the base The station feeds back a NACK message to the UE, indicating that the base station does not correctly demodulate the data sent by the UE.
  • the UE After receiving the NACK message sent by the base station, the UE determines the number of times the target symbol has been retransmitted. If the number of retransmissions of the target symbol reaches the preset maximum number of retransmissions, the UE may determine that the target symbol retransmission fails and perform step S211. The UE adds one to the number of failures of the target symbol transmission.
  • the target symbol can be retransmitted.
  • the UE may directly return to step S202 for retransmission if the UE uses the Hybrid Automatic Repeat Request (HARQ), if the UE uses the retransmission request; If the HARQ is synchronous, the UE performs step S210.
  • HARQ Hybrid Automatic Repeat Request
  • Step S210 After delaying the second preset time, the UE returns to step S202 to retransmit the target symbol by using the above symbol extension manner.
  • the target data is transmitted according to the process, for example, all data to be transmitted is allocated to 6 processes, and the data in process 1, process 2, ... process 6 is sequentially transmitted in chronological order, wherein, in the transmission
  • the UE may Receiving the ACK or NACK feedback information of the base station to the process 1, after the UE transmits the data packet of the process 6, the UE may determine whether to retransmit the data of the process 1 according to the received feedback information, and the data retransmission rules of the other processes are analogy.
  • Step S211 The UE increases the number of times the target symbol transmission fails by one.
  • Step S212 After delaying the third preset time, the UE returns to step S202, that is, retransmitting the target symbol by using the above symbol extension manner.
  • the base station After the UE sends the uplink data to the base station, the base station further includes the control information demodulation failure according to the demodulation of the uplink data, because the control information includes a modulation and coding scheme used for demodulating the data information (English: Modulation and Coding Scheme (MCS), so when the control information demodulation fails, the data information will also be demodulated, and the base station may not be able to determine whether the UE has sent the uplink data. At this time, the base station neither feeds back the NACK message to the UE. The ACK message is also not fed back to the UE.
  • MCS Modulation and Coding Scheme
  • the execution S211 increments the number of times the target symbol transmission fails, and the step S212 returns to step S202 after delaying the third preset time.
  • the reason for returning to the step of performing the target symbol retransmission after delaying the third time includes:
  • the target symbol is uploaded in a prescribed process by delay.
  • the delay here also includes a backoff mechanism similar to WiFi, that is, the random delay is retransmitted for a period of time, because in the uplink unscheduled data transmission, the UE transmission failure may be due to a resource collision, that is, more The UEs select the same time-frequency resource, and the sequence used for the extension is also the same. If the signal is retransmitted without delay, then multiple UEs are likely to collide again.
  • a backoff mechanism similar to WiFi that is, the random delay is retransmitted for a period of time, because in the uplink unscheduled data transmission, the UE transmission failure may be due to a resource collision, that is, more The UEs select the same time-frequency resource, and the sequence used for the extension is also the same. If the signal is retransmitted without delay, then multiple UEs are likely to collide again.
  • the parameters for the extended sequence are obtained according to the broadcast message sent by the base station, so that the control right of the base station to the UE can be maintained, and the UE independently selects the extended sequence within the control range of the base station, thereby Multiple UEs can be supported to transmit data using the same transmission resource, and when multiple UEs use the same transmission resource to transmit data, mutual interference between users in collision can be mitigated, and the success rate of data transmission and the performance of data transmission can be improved.
  • the plurality of extended symbols need to be mapped to the corresponding RE for transmission, and the method for mapping the multiple extended symbols to the corresponding RE is detailed below. Description.
  • the UE can autonomously determine which RE transmission extension symbols are used.
  • the UE determines the reference RE from the available transmission resources according to the transmission matrix of the plurality of extended symbols; and the UE determines the RE corresponding to each extended symbol from the available transmission resources according to the determined transmission matrix and the reference RE.
  • the UE may randomly determine the reference RE from each of the REs included in the available transmission resources.
  • the UE After determining the reference RE from the available transmission resources, the UE determines, according to the determined transmission matrix of the plurality of extended symbols and the reference RE, the REs corresponding to the respective extended symbols from the respective REs included in the available transmission resources, including:
  • the transmission matrix of the plurality of extended symbols is a time domain extended transmission matrix, determining, according to the reference RE, the RE corresponding to the plurality of extended symbols by expanding in the time domain direction of the available transmission resources;
  • the transmission matrix of the plurality of extended symbols is a frequency domain extended transmission matrix, determining, according to the reference RE, the RE corresponding to the plurality of extended symbols by expanding in the frequency domain direction of the available transmission resources;
  • the transmission matrix of the plurality of extended symbols is a time domain frequency domain extended transmission matrix
  • the REs corresponding to the plurality of extended symbols are determined according to the reference RE by expanding in the time domain and the frequency domain direction of the available transmission resources.
  • Figure 3 is a schematic illustration of different extensions of the extended symbols. As shown in FIG. 3, it is assumed that the target symbol to be transmitted is a, the spreading sequence is c1, c2, c3, and c4, and the target symbol a is multiplied by c1, c2, c3, and c4, respectively, and the obtained extended symbols are ac1 and ac2, respectively. , ac3 and ac4.
  • the transmission matrix of the above extended symbols includes: a time domain extended transmission matrix, a frequency domain extended transmission matrix, or a time domain frequency domain extended transmission matrix.
  • the time domain extended transmission matrix means that the UE sends the extended symbols ac1, ac2, ac3, and ac4 serially in the time domain after determining the reference RE.
  • the transmission extension symbols ac1, ac2, and ac3 are transmitted.
  • the subcarrier frequency of ac4 is the same.
  • the frequency domain extended array refers to that the UE transmits the extended symbols ac 1 , ac 2 , ac 3 , and ac 4 on different subcarriers after determining the reference RE, and optionally, each subcarrier transmission.
  • the extension symbols ac 1 , ac 2 , ac 3 , and ac 4 have the same time.
  • the time domain frequency domain extended array refers to that the UE expands the extended symbols ac 1 , ac 2 , ac 3 , and ac 4 in the time domain and the frequency domain respectively after determining the reference RE, such as the extended symbol ac 1 . , ac 2 , ac 3 , and ac 4 are transmitted by 2 ⁇ 2 arrays.
  • the extension symbols ac 1 , ac 2 , ac 3 , and ac 4 may be transmitted by using four adjacent REs, or may be selected REs. Specify a number of REs between intervals.
  • the UE After determining the REs corresponding to the respective extended symbols obtained by the target symbol, the UE transmits the extended symbols to the base station by using corresponding REs, and the base station receives the uplink data sent by the UE on the corresponding transmission resource.
  • FIG. 4 is a flowchart of an uplink data transmission method according to Embodiment 3 of the present invention.
  • the method is performed by a base station.
  • the method is a method for a base station to receive uplink data sent by a UE from a transmission resource.
  • FIG. 4 The processing steps of the method include:
  • Step S301 The base station receives the transmission symbol from the transmission resource, where the transmission resource includes multiple REs, the time domain unit of the RE is a symbol, and the frequency domain unit is a subcarrier.
  • Step S302 The base station despreads the received transmission symbols by using at least two sequences, wherein the at least two sequences are orthogonal or quasi-orthogonal between each other.
  • the spreading sequence used by the UE to extend the symbols to be transmitted is one of the at least two sequences.
  • Step S303 The base station determines, according to the result of the de-spreading, a symbol that is received on the corresponding transmission resource and is sent by the at least one UE.
  • the base station receives the transmission symbol sent by the UE from the transmission resource, where the base station does not determine whether the received symbol is transmitted by one UE or multiple UEs occupy the same transmission resource when receiving the corresponding transmission symbol.
  • the symbol at this time, the UE de-spreads the received transmission symbol by using at least two preset sequences, where the at least two sequences include an extended sequence used by the UE to extend the symbol, when the extended sequence used by multiple UEs is not
  • the extended symbols transmitted by the multiple UEs are mutually orthogonal or quasi-orthogonal, and the base station obtains the original symbols sent by the at least one UE according to the result of the de-spreading.
  • UE1 and UE2 have a resource collision according to the methods in Embodiment 1 and Embodiment 2 of the present invention, wherein UE1 and UE2 use the same time-frequency transmission resource, but the extension sequence used to extend the target symbol is different.
  • FIG. 5 is a schematic diagram of pilot patterns of UE1 and UE2.
  • FIG. 5 is a schematic diagram of pilot symbol distribution before pilot symbol spreading. It can be seen from FIG. 5 that UE1 and UE2 use the same time-frequency resource transmission pilot.
  • the UE1 and the UE2 use different spreading sequences to extend the pilot symbols.
  • the extended sequence used by the UE1 is
  • the extended sequence used by UE2 is Assume
  • the two sequences used by UE1 and UE2 are mutually orthogonal sequences.
  • the pilot symbols occupying the same time-frequency resource before the UE1 and the UE2 are extended are SP, and the UE1 and the UE2 respectively extend the pilot symbol SP, and the extended symbols obtained by the UE1 are: and The extension symbols obtained by UE2 are: and Both UE1 and UE2 use 2x2 time domain frequency domain extended transmission to obtain extended symbols.
  • FIG. 6 is a mapping diagram of extended symbols and REs of UE1
  • FIG. 7 is a mapping diagram of extended symbols and REs of UE2. It can be seen from FIG. 6 and FIG. 7 that UE1 and UE2 adopt the same time-frequency resource transmission SP extension. Symbol number.
  • FIG. 8 is a schematic diagram showing the distribution of the spread pilot signals received by the base station. As shown in FIG. 8, the signals received by the base station from the above four REs are respectively recorded as R1, R2, R3, and R4, where:
  • W n represents the interference superimposed on the RE 4 and the thermal noise and neighbor.
  • the channel frequency response can be represented by H (1) and H (2) .
  • the base station needs to perform despreading, that is, the four REs are changed back to one RE, and the base station de-spreads to obtain the pilot symbols before the extension transmitted by the UE1 is as follows:
  • the pilot symbols before the extension transmitted by the UE 2 are obtained as follows:
  • the foregoing two UEs transmit a pilot resource collision as an example.
  • the method in the embodiment of the present invention is also applicable to an application scenario in which one UE transmits a pilot, another UE sends service data, or two UEs send service data.
  • the signal-to-noise ratio improvement is equivalent to expanding the coverage, for example, setting the UE's transmit power to a fixed value (such as the UE transmitting data at the maximum transmit power), and ensuring that the signal-to-noise ratio obtained by the base station is not lower than a certain threshold.
  • the UE can transmit signals relatively farther from the base station.
  • the foregoing uplink data transmission method in the embodiment of the present invention supports the repeated transmission mechanism of the UE, and at the same time, the resource collision between the UEs is avoided or mitigated to some extent by the extension of the extended sequence. Based on this, with the uplink data transmission method of the embodiment of the present invention, an uplink unscheduled transmission policy can be used in the deep coverage application scenario.
  • the REs occupied by the extended symbols transmitted by UE1 and UE2 are completely consistent, that is, the REs of UE1 and UE2 transmitting extended symbols are aligned in time and frequency, which is beneficial to base station despreading.
  • the occupied REs partially overlap, that is, there is an offset between the time-frequency resources of UE1 and UE2 transmitting extended symbols.
  • FIG. 9 is a schematic diagram of the presence of time-frequency resource offsets occupied by UE1 and UE2 transmitting extended symbols.
  • UE1 transmits data starting from the second symbol in the figure, and UE2 develops transmission data from the first symbol in the illustration, thus causing the symbols transmitted by UE1 and UE2 to be in the time domain and the frequency domain.
  • the interference power is completely overlapped with the video resources that are used, the interference power of the video resources is completely overlapped.
  • the method may be as follows:
  • the available means include:
  • the reference RE is determined from a plurality of REs having the first specific number of available transmission resources, wherein, wherein the plurality of REs having the first specific number are Occupying the same subcarrier, and two adjacent REs having the first specific number differ by N REs, the N An integer multiple of the number of REs occupied by a transport element.
  • the reference RE is determined from a plurality of REs having the second specific number of available transmission resources, wherein the plurality of RE time domains having the second specific number The values are the same and occupy different subcarriers respectively.
  • the two adjacent REs with the second specific number are different by M REs, and the M is an integer multiple of the number of REs occupied by one transmission element.
  • the reference RE is determined from a plurality of REs having the third specific number of available transmission resources, wherein the adjacent two have the third specific
  • the time domain values of the numbered REs differ by X REs, and the frequency domain values differ by Y REs, and the X and Y are integer multiples of the number of REs occupied by one transmission element.
  • a transmission element represents a complete information
  • channel estimation, channel equalization, demodulation, decoding, and cyclic redundancy check (English: Cyclic Redundancy Check, CRC) are performed on a transmission element. Get the original information sent by the sender. If A is a transmission element, in the process of uplink data transmission, the extended symbol of A occupies X REs, and when the extended symbol of A is transmitted by the time domain extended transmission mode, the extended symbol of A is on the timing of the first subcarrier.
  • the direction is arranged according to this, and a total of X REs are occupied, wherein when the reference RE is determined from the first subcarrier, the RE is selected from the first number, and in the first carrier, the adjacent two have the first
  • the numbered REs differ by an integer multiple of the number of REs, such as the first first specific number in the first subcarrier is 1, the second first specific number is 1+nX, and the third first specific number is 1. +2nX...
  • the REs selected by the multiple UEs may be completely overlapped, not overlapped at all or partially overlapped, especially when multiple REs selected by multiple UEs overlap, for example, when UE1 and UE2 transmit data AB, A, B Representing one transmission element separately, UE1 and UE2 transmitting AB
  • the REs partially overlap, wherein the symbols on the REs of the non-overlapping portions of UE1 and UE2 are symbols constituting the transmission element A, thereby being able to ensure that the base station demodulates the complete information from both the overlapping portion and the non-overlapping portion, thereby demodulating and receiving Complete transmission data of UE1 and UE2.
  • the spreading symbols of the transmission element A are a1 and a2, respectively, and the spreading symbols of B are b1 and b2, and both UE1 and UE2 transmit the spreading symbols of AB (a1, a2, b1, b2).
  • the four REs of the transmission (a1, a2, b1, b2) selected by UE1 and UE2 are completely overlapped, completely non-overlapping or partially overlapped, especially when partially overlapping, the overlapping part is The (a1, a2) occupied RE, or the overlapping portion is the RE occupied by (b1, b2), thereby ensuring that the base station can extract complete information from both the overlapping portion of the RE and the non-overlapping portion of the RE.
  • the UE divides the available transmission resources into multiple sub-resources, each sub-resource includes multiple REs, REs included in the plurality of sub-resources do not overlap, and the array of REs included in the sub-resources and the transmission array of multiple extended symbols
  • the method is consistent; determining one sub-resource from the plurality of sub-resources as the target transmission resource; determining, according to the transmission matrix of the plurality of extended symbols, the RE corresponding to the plurality of extended symbols from the target transmission resource.
  • the arrangement matrix of the REs included in the sub-resources is consistent with the transmission matrix of the plurality of extended symbols, which means that the arrangement matrix of the REs included in the sub-resources is completely consistent with the transmission matrix of the plurality of extended symbols.
  • the UE may divide multiple 2x2 RE blocks from the available transmission resources, and multiple 2x2 RE blocks do not overlap, and the UE may from multiple 2x2 RE blocks.
  • a 2x2 RE block is randomly selected to transmit the extended symbol.
  • the base station divides the transmission resource into a plurality of sub-areas in advance, each of the sub-areas includes a plurality of REs, and the REs included in the plurality of sub-areas do not overlap, and the base station notifies the UE of the division manner of the transmission resources by using a notification message, so that the UE
  • the transmission matrix of the extended symbols and the transmission resources to be occupied are determined according to the division manner of the transmission resource sub-areas.
  • the sequence that the base station provides to the UE for the UE to extend the target symbol is a sequence of autocorrelation and cross-correlation that is as small as possible under non-zero offset, thus reducing resource collisions. Interference between UEs.
  • the base station further receives the number of times the corresponding symbol transmission failure is sent by each UE; and the base station adds, according to the number of received symbol transmission failures, the extended sequence that is provided to the UE for expanding the target symbol. The parameters are adjusted.
  • the manner in which the base station receives the number of failures of the corresponding symbol transmission sent by each UE includes:
  • the UE sends a preamble of a specific format to the base station at the preset time-frequency resource, and the base station determines, according to the received preamble format, the number of times the UE fails to transmit the target symbol or the interval in which the number of failures occurs.
  • the base station receives the number of times the symbol transmission failure is transmitted as part of the transmission data or the interval in which the number of transmission failures is located.
  • the base station can adjust the parameters of the sequence for extending the target symbol according to the interval in which the number of failures or the number of failures sent by the UE is adjusted, and the base station can further adjust the uplink power according to the received symbol. Adjusting the parameters of at least two sequences described above.
  • the base station may receive the total broadband power (Received Total Wideband Power, RT: for short) or the received signal strength indicator according to the signal transmitted by each UE (English: Received Signal Strength) Indicator (abbreviation: RSSI) adjusts the parameters of at least two sequences described above.
  • RT Received Total Wideband Power
  • RSSI Received Signal Strength Indicator
  • FIG. 10 is a flowchart of an uplink data transmission method according to Embodiment 4 of the present invention.
  • the method in this embodiment may be applied to an uplink scheduled data transmission process.
  • the processing steps of the method include:
  • Step S401 When the UE has a target symbol to be transmitted, the UE sends a resource scheduling request message to the base station.
  • Step S402 The UE receives a resource scheduling message from the base station, where the resource scheduling message carries parameter information of an extended sequence for expanding the target symbol.
  • Step S403 The UE determines an extended sequence for expanding the target symbol according to the parameter information carried in the resource scheduling message.
  • the resource scheduling message carries a sequence of parameter information, and the UE uses the sequence corresponding to the parameter information as an extended sequence for extending the target symbol; or the resource scheduling message carries parameter information of at least two sequences, where the at least The two sequences are mutually orthogonal or quasi-orthogonal, and the UE randomly selects one sequence from at least two sequences as an extended sequence for expanding the target symbol according to the parameter information in the resource scheduling message.
  • the resource scheduling message carries a sequence of parameter information, so that the base station can allocate the same time-frequency transmission resource to different UEs, and allocate different spreading sequences to each UE to avoid different UE-selected extensions. The same sequence occurs.
  • Step S404 The UE expands the target symbol into a plurality of extended symbols according to the extended sequence.
  • Step S405 The UE determines, according to the resource scheduling message, the REs corresponding to the respective extended symbols.
  • the resource scheduling message sent by the base station to the UE may further carry the transmission matrix indication information and the resource allocation indication information, and the UE determines the transmission matrix of each extended symbol according to the transmission matrix indication information, and determines each extension symbol according to the resource allocation indication information. Corresponding REs.
  • Step S406 The UE transmits multiple extended symbols to the base station through the corresponding RE.
  • the method of the fourth embodiment of the present invention is applicable to a scenario in which uplink scheduling data is transmitted.
  • the base station may specify an extended sequence for extension for each UE, and may allocate multiple extension sequences for each UE.
  • the UE uses the same time-frequency transmission resource, which can increase the flexibility of time-frequency transmission resource scheduling, and the UE can more easily allocate the time-frequency transmission resource for uplink data transmission and reduce the waiting time.
  • the method for receiving the uplink data sent by the UE by the base station is also provided, and the method is the same as the method of the third embodiment, except that in the uplink scheduling data transmission method, the base station sends the UE to the UE according to the request of the UE.
  • the base station Providing a resource scheduling message, where the base station allocates the UE for extension by using a resource scheduling message The extended sequence and the time-frequency transmission resource for transmitting the extended symbol.
  • the base station sends a broadcast message in the target cell, where the broadcast message carries at least two sequence parameter information, and the UE in the target cell determines the target according to the parameter information in the received broadcast message.
  • the extended sequence used by the symbol for extension.
  • the present invention further provides an uplink data transmission method according to the fifth embodiment.
  • the UE feeds back the number of failures of the target symbol transmission to the base station, where the UE
  • the manner in which the number of failed destination symbol transmissions is fed back to the base station includes:
  • the UE sends a preamble of a specific format to the base station at a preset time-frequency resource, where the preamble of the different format corresponds to a different transmission failure number or an interval in which the number of transmission failures is located.
  • the UE transmits the number of failures of the target symbol transmission or the interval in which the number of transmission failures is transmitted to the base station as part of the symbol to be transmitted.
  • the UE sends a preamble of a specific format to the base station at a preset time-frequency resource, and a specific implementation manner in which the preamble of different formats corresponds to a different number of transmission failures or the number of transmission times may be:
  • the preamble sent by the UE may be a Zadoff-Chu sequence, and the cyclic shift is a parameter of the preamble.
  • the UE randomly selects a cyclic shift, then transmits a preamble, and can only transmit on a specified time-frequency resource.
  • the UE does not need to send a preamble to complete the random access procedure, but according to the unscheduled uplink transmission scheme, the UE may perform other purposes by sending a preamble, for example, reporting an ACK message or a NACK message.
  • the UE may send a range of the number of transmission failures or the number of transmission failures in a period of time before the preamble is reported.
  • the eight paging shifts can be divided into four groups of two, each group of cyclic shifts representing different ranges of the number of transmission failures, for example, respectively, no failure, one failure, two failures, failure More than 2 times.
  • the UE randomly selects a cyclic shift in the corresponding group according to the number of failed transmissions, and then randomly selects one time-frequency resource to transmit the preamble among the two predetermined time-frequency resources.
  • the base station can recognize that two UEs are transmitting preambles as long as the cyclic shift or one of the transmitted time-frequency resources is different, and the base station can perform the cyclic shift according to the preamble. Get the information that the UE wants to convey. If the cyclic shift and the time-frequency resources of the two UEs transmitting the preamble are the same, the base station can only consider that one UE is transmitting the preamble. In order to further reduce the collision probability of the UE transmitting the preamble, The UEs can be grouped. For example, in some groups, UEs can only transmit preambles in odd TTIs.
  • UEs can only transmit preambles in even TTIs.
  • the preamble is not required to be sent immediately, and can wait for a period of time before sending.
  • the base station since the base station only needs to count the number of times the UE fails to transmit data, the base station does not care about which UE fails to transmit. Therefore, the UE does not need to carry the identification information of the UE in the preamble.
  • FIG. 11 is a schematic diagram of a possible frame structure of a UE involved in the foregoing embodiment.
  • the UE includes: an extension unit 1101, a determining unit 1102, and a transmission unit 1103;
  • the extension unit 1101 is configured to expand the target symbol into a plurality of extended symbols according to the extended sequence, where the extended sequence is one of at least two sequences that are orthogonal or mutually quasi-orthogonal; the determining unit 1102 is configured to: Determining resource units corresponding to the plurality of extension symbols respectively; the transmission unit 1103 is configured to transmit the plurality of extension symbols to the base station by using the corresponding resource units respectively.
  • the transmitting unit 1103 is further configured to: before the extension unit 1101 expands the target symbol into multiple extended symbols, receive a broadcast message from the base station, where the broadcast message carries at least two sequence parameter information;
  • the determining unit 1102 is further configured to randomly determine, from the at least two sequences, a sequence as an extended sequence for expanding the target symbol according to the parameter information.
  • the extended sequence includes multiple sequence elements
  • the expansion unit 1101 is specifically configured to: multiply a plurality of sequence elements by a target symbol to obtain a plurality of extended symbols.
  • the determining unit 1102 determines the resource unit corresponding to the multiple extended symbols respectively. For details, refer to the method embodiment, and details are not described herein again.
  • the transmitting unit 1103 is further configured to: before the target symbol is expanded into multiple extended symbols, receive a resource scheduling message from the base station, where the resource scheduling message carries an extended sequence for expanding the target symbol.
  • the parameter information determining unit 1102 is further configured to determine, according to the parameter information carried in the resource scheduling message, an extended sequence for expanding the target symbol.
  • the determining unit 1102 is further configured to: after transmitting the multiple extended symbols to the base station by using the corresponding resource units, determining whether an acknowledgement ACK message is received in the first preset time; If the ACK message is not received within the set time, the extension sequence is re-determined after the second preset time delay; the extension unit 1101 is further configured to: expand the target symbol by using the re-determined extension sequence; the transmission unit 1103 is further configured to The extended symbol obtained by the new extension is resent to the base station.
  • the transmitting unit 1103 is further configured to send the number of times the target symbol transmission fails to the base station.
  • FIG. 11 is a schematic structural diagram of a frame of a UE involved in the method according to the embodiment of the present invention.
  • the specific structure of the UE may be implemented by using any hardware structure.
  • FIG 12 is a simplified schematic diagram of one possible design structure of a UE involved in the above embodiment.
  • the UE includes a transmitter 1201, a receiver 1202, a controller/processor 1203, a memory 1204, and a modem processor 1205.
  • Transmitter 1201 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Receiver 1202 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 1206 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 1207 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 1209 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1208 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 1206, modulator 1207, demodulator 1209, and decoder 1208 may be implemented by a composite modem processor 1205. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 1203 performs control management on the actions of the UE for performing the processing performed by the UE in the above embodiment. For example, other processes for controlling the UE to extend the target symbols according to the spreading sequence and/or the techniques described herein. As an example, the controller/processor 1203 is configured to support the UE in performing the processes in FIGS. 1, 2, and 10.
  • the memory 1204 is used to store program codes and data for the UE.
  • the uplink data transmission method performed by the foregoing user equipment in the embodiment of the present invention supports that multiple UEs use the same transmission resource to transmit data, improve the success rate of multiple UEs occupying the same transmission resource transmission data, and improve the uplink data transmission performance. .
  • FIG. 13 is a schematic structural diagram of a possible frame of an uplink data receiving device according to an embodiment of the present invention.
  • the uplink data receiving device includes: a transceiver unit 1301, a despreading unit 1302, and a determining unit 1303, where:
  • the transceiver unit 1301 is configured to receive a transmission symbol from a transmission resource, where the transmission resource includes multiple resource units, and the de-spreading unit 1302 is configured to despread the transmission symbol by using at least two sequences respectively.
  • the at least two sequences are mutually orthogonal or mutually quasi-orthogonal sequences.
  • the determining unit 1303 is configured to determine, according to the result of the de-spreading, that the symbols sent by the at least one UE are received on the transmission resource.
  • the transceiver unit 1301 is further configured to send a broadcast message, where the broadcast message carries at least two sequence parameter information;
  • the transceiver unit 1301 is further configured to: when receiving the resource scheduling request message sent by the UE, send a resource scheduling message to the UE, where the resource scheduling message carries one or more sequences in at least two sequences. Parameter information.
  • the transceiver unit 1301 is further configured to receive the number of times the symbol transmission failure sent by the UE or the interval information of the number of transmission failures;
  • the parameter data adjustment device further includes a parameter adjustment unit, configured to adjust parameter information of the preset at least two sequences according to the number of failures or the interval information of the number of transmission failures.
  • the parameter adjustment unit may further adjust the parameter information of the at least two sequences according to the uplink power of the received transmission symbol.
  • FIG. 13 is a schematic diagram of a frame structure of an uplink data receiving device involved in the method according to the embodiment of the present invention.
  • the specific structure of the uplink data receiving device may be implemented by using any hardware structure.
  • FIG. 14 is a simplified schematic diagram of a possible design structure of an uplink data receiving device according to an embodiment of the present invention.
  • the uplink data receiving device may be a network element device having a function of receiving data transmitted by the UE, such as a data center in a future 5G network, in addition to the base station involved in the foregoing embodiment.
  • the data receiving device includes a transmitter/receiver 1401, a controller/processor 1402, a memory 1403, and a communication unit 1404.
  • the transmitter/receiver 1401 is for supporting transmission and reception of information between the data receiving device and the UE in the above embodiment, and supporting radio communication between the UE and other UEs.
  • the controller/processor 1402 performs various functions for communicating with the UE.
  • On the uplink the uplink signal from the UE is received via the antenna, coordinated by the receiver 1401, and further processed by the controller/processor 1402 to recover the traffic data and signaling information transmitted by the UE.
  • traffic data and signaling messages are processed by controller/processor 1402 and conditioned by transmitter 1401 to generate downlink signals for transmission to the UE via the antenna.
  • Controller/processor 1402 also performs the processes involved in FIG. 4 and/or other processes for the techniques described herein.
  • the memory 1403 is for storing program codes and data of the data receiving device.
  • the communication unit 1404 is configured to support the data receiving device to communicate with other network entities. For example, it is used to support data receiving devices to communicate with MMEs, SGWs, or PGWs and the like located in the core network EPC.
  • Figure 14 only shows a simplified design of the data receiving device.
  • the receiving device can include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all data receiving devices that can implement the present invention are within the scope of the present invention.
  • the uplink data transmission method performed by the foregoing uplink data receiving device in the embodiment of the present invention supports that multiple UEs use the same transmission resource to transmit data, improve the success rate of multiple UEs occupying the same transmission resource transmission data, and improve uplink data. Transmission performance.
  • the size of the sequence numbers of the processes does not imply a sequence of executions, and the order of execution of the processes should be determined by its function and internal logic, and should not be construed as an embodiment of the present invention.
  • the implementation process constitutes any limitation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本申请涉及数据传输技术领域,尤其涉及一种上行数据传输方法及装置。其中,上行数据传输方法,根据扩展序列,将目标符号扩展为多个扩展符号,其中,所述扩展序列为相互正交或相互准正交的至少两个序列中的一个序列;确定所述多个扩展符号分别对应的资源单元;将所述多个扩展符号通过分别对应的资源单元传输至基站。本申请的上行数据传输方法及装置,能够解决不同的UE使用相同的传输资源进行数据传输带来的传输性能下降的问题。

Description

上行数据传输方法及装置 技术领域
本申请涉及数据传输技术领域,尤其涉及一种上行数据传输方法及装置。
背景技术
在移动通信系统中,通常将用户设备(英文:User Equipment,简称:UE)向基站传输数据的过程称为上行数据传输过程。具体的,上行数据传输分为上行有调度数据传输和上行无调度数据传输。
其中,上行有调度数据传输是指基站为UE分配传输资源,UE利用基站分配的传输资源向基站发送数据;上行无调度数据传输是指基站无需为UE分配传输资源,当UE有数据需要发送时,UE在所有可用传输资源中按照某种方式自主选择传输资源,并利用自主选择的传输资源向基站发送数据。
相较于上行有调度传输,上行无调度传输在发送数据之前减少了与基站的交互步骤,因此在一定程度上可以减小上行数据的发送时延。但是,由于上行无调度传输是采用自主选择的传输资源传输数据,会导致不同的UE选择相同传输资源情况的发生,也就是不同UE之间发生了资源碰撞,一旦UE之间发生资源碰撞,基站很有可能无法正确接收出现碰撞的一个或多个UE的数据,使得发生资源碰撞的全部或部分UE需要重新发送数据,增大了上行数据的发送时延,导致系统传输性能变差。
发明内容
本申请提供了一种上行数据传输方法及装置,以解决不同的UE使用相同的传输资源进行数据传输带来的传输性能下降的问题。
第一方面,本发明实施例提供了一种上行数据传输方法,包括:
根据扩展序列,将目标符号扩展为多个扩展符号,其中,所述扩展序列为相互正交或相互准正交的至少两个序列中的一个序列;
确定所述多个扩展符号分别对应的资源单元;
将所述多个扩展符号通过分别对应的资源单元传输至基站。
在本发明实施例实现方案中,UE利用扩展序列将目标符号扩展成多个扩展符 号,并将该多个扩展符号分别映射至相应的资源单元上进行传输,当多个UE使用了相同的资源单元传输扩展符号时,可以在一定程度上确保多个UE的扩展符号之间正交或准正交,使得基站可以通过去扩展得到各个UE传输的数据,可见,本发明实施例方法能够支持多个UE使用相同的传输资源传输数据,提高多个UE占用相同的传输资源传输数据的成功率以及提高上行数据的传输性能。
在一个可能的设计中,所述根据扩展序列,将目标符号扩展为多个扩展符号之前,所述方法还包括:
接收来自基站的广播消息,所述广播消息中携带所述至少两个序列的参数信息;
根据所述参数信息,从所述至少两个序列中随机确定一个序列作为对所述目标符号进行扩展的扩展序列。
在本发明实施例方案中,UE通过基站的广播消息获取对目标符号进行扩展的序列的参数信息,降低UE与基站的交互成本,支持UE采用无调度方式进行数据传输。
在一个可能的设计中,所述扩展序列中包括多个序列元素;
所述根据扩展序列,将目标符号扩展为多个扩展符号,包括:
将所述多个序列元素分别与所述目标符号相乘,得到多个所述扩展符号。
在本发明实施例方案中,UE采用目标符号分别与扩展序列中的各序列元素相乘的方式获取多个扩展符号,当多个UE选用的扩展序列不同时,确保多个UE得到的扩展符号之间正交或准正交,尤其当多个UE占用了相同的传输资源时,便于基站从该传输资源上去扩展得到各个UE的传输数据。
在一个可能的设计中,所述确定所述多个扩展符号分别对应的资源单元,包括:
确定所述多个扩展符号的传输阵式,其中,所述传输阵式包括:时域扩展传输阵式、频域扩展传输阵式或时域频域扩展传输阵式;
根据所述多个扩展符号的传输阵式,从可用传输资源中确定所述多个扩展符号分别对应的资源单元,其中,所述可用传输资源包括多个资源单元。
在本发明实施例方案中,UE可以采用时域、频域以及时域频域扩展方式进行扩展序列的传输。
在一个可能的设计中,所述根据所述多个扩展符号的传输阵式,从可用传输资源中确定所述多个扩展符号分别对应的资源单元,包括:
根据所述多个扩展符号的传输阵式,从所述可用传输资源中确定基准资源单元;
根据所述多个扩展符号的传输阵式以及所述基准资源单元,从所述可用传输资源中确定所述多个扩展符号分别对应的资源单元。
在一个可能的设计中,所述根据所述多个扩展符号的传输阵式,从所述可用传输资源中确定基准资源单元,包括:
当多个扩展符号的传输阵式为时域扩展传输阵式时,从可用传输资源的具有第一特定编号的多个资源单元中确定基准资源单元,其中,具有第一特定编号的多个资源单元占用相同的子载波,并且相邻的两个具有第一特定编号的资源单元之间相差N个资源单元,所述N为一个传输元素所占用资源单元个数的整数倍;当多个扩展符号的传输阵式为频域扩展传输阵式时,从可用传输资源的具有第二特定编号的多个资源单元中确定基准资源单元,其中,具有第二特定编号的多个资源单元时域取值相同并且分别占用不同的子载波,相邻的两个具有第二特定编号的资源单元之间相差M个资源单元,所述M为一个传输元素所占用资源单元个数的整数倍;
当多个扩展符号的传输阵式为时域频域扩展传输阵式时,从可用传输资源的具有第三特定编号的多个资源单元中确定基准资源单元,其中,相邻的两个具有第三特定编号的资源单元的时域取值相差X个资源单元,频域取值相差Y个资源单元,所述X、Y均为一个传输元素所占用资源单元个数的整数倍。
在本发明实施例方案中,通过对基准资源单元的限定,可以在一定程度上确保多个UE传输扩展符号时选用的资源单元完全重叠、完全不重叠或者部分重叠,尤其,当多个UE选用的资源单元部分重叠时,多个UE之间不重叠的RE上的符号仍然能够组成完整的信息,由此以便于基站从UE重叠部分和不重叠部分的资源单元上均解调出完整的数据。
在一个可能的设计中,所述根据所述多个扩展符号的传输阵式以及所述基准资源单元,从所述可用传输资源中确定所述多个扩展符号分别对应的资源单元,包括:
当所述多个扩展符号的传输阵式为时域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的时域方向进行扩展,确定所述多个扩展符号分别对应的资源单元;
当所述多个扩展符号的传输阵式为频域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的频域方向进行扩展,确定所述多个扩展符号分别对应的资源单元;
当所述多个扩展符号的传输阵式为时域频域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的时域及频域方向进行扩展,确定所述多个扩展符号分别对应的资源单元。
在一个可能的设计中,所述根据扩展序列,将目标符号扩展为多个扩展符号之 前,所述方法还包括:
接收来自基站的资源调度消息,所述资源调度消息中携带用于对目标符号进行扩展的扩展序列的参数信息;
根据所述资源调度消息中携带的所述参数信息,确定用于对目标符号进行扩展的扩展序列。
本发明实施例方案,UE根据基站的资源调度消息获取用于对目标符号进行扩展的扩展序列的参数信息,此种调度分配方式可以确保各个UE使用的扩展序列均不相同,而且基站可以有调度的令多个UE使用相同的传输资源,提高相同传输资源上的用户容量。
在一个可能的设计中,所述将所述多个扩展符号通过分别对应的资源单元传输至基站之后,所述方法还包括:
确定在第一预设时间内是否接收到确认ACK消息;
若在所述第一预设时间内未接收到所述ACK消息,则延时第二预设时间后,重新确定扩展序列,并利用重新确定的扩展序列对所述目标符号进行扩展以及将新扩展得到的扩展符号重新发送给所述基站。
在本发明实施例方案中,UE可以根据基站是否反馈ACK消息,重新对目标符号进行扩展和发送,由此以通过重新发送的方式确保目标符号发送成功。
在一个可能的设计中,所述方法还包括:
将所述目标符号传输失败的次数发送给基站。
在一个可能的设计中,所述将目标符号传输失败的次数发送给基站,包括:
在预设时频资源处向基站发送特定格式的前导,其中,所述特定格式的前导对应不同的传输失败次数或者传输失败次数所在的区间;
或者,
将目标符号传输失败的次数或者传输失败次数所在的区间信息添加在所述待传输的目标符号中并传输给基站。
在本发明实施例方案中,UE将目标符号的失败次数信息传输给基站,以便于基站根据各UE目标符号传输失败的次数对提供给各UE的序列的参数进行调整,从而提高各UE在采用本发明实施例的上行数据传输方式传输数据时的成功率。
第二方面,本发明实施例提供了一种上行数据传输方法,包括:
从传输资源上接收传输符号,其中,所述传输资源包括多个资源单元;
利用至少两个序列分别对所述传输符号进行去扩展,其中,所述至少两个序列为 相互正交或相互准正交的序列;
根据所述去扩展的结果,确定在所述传输资源上接收到的是至少一个UE发送的符号。
在本发明实施例方案中,由于UE采用了扩展序列对目标符号进行扩展,因此当基站接收数据时,对接收到的传输符号进行去扩展以得到UE发送的原始符号,而且由于各个UE之间采用的扩展序列在很大程度上是正交或准正交的,因此当多个UE占用了相同的传输资源时,基站可以在相同的传输资源上去扩展得到多个UE的传输数据,可见,本发明实施例方法支持多个UE占用相同的传输资源进行数据传输。
在一个可能的设计中,所述方法还包括:
发送广播消息,其中,所述广播消息中携带所述至少两个序列的参数信息;
或者,
当接收到UE发送的资源调度请求消息时,向所述UE发送资源调度消息,所述资源调度消息中携带所述至少两个序列中的其中一个或多个序列的参数信息。
在本发明实施例方案中,基站可以通过广播消息方式为UE提供用于对目标符号进行扩展的序列,以支持各UE进行上行无调度数据传输;另外,UE也可以通过资源调度方式为各UE分配扩展序列以及传输资源,由此可以确保各UE分配到的扩展序列均不相同,而且可以有意令多个UE使用相同的传输资源,以提高传输资源上的用户容量。
在一个可能的设计中,所述方法还包括:
接收UE发送的符号传输失败的次数或者传输失败次数所在的区间信息;
根据所述失败的次数或者传输失败次数所在的区间信息,对所述预设的至少两个序列的参数信息进行调整。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述方法还包括:
根据接收到的传输符号的上行功率,对所述至少两个序列的参数信息进行调整。
在本发明实施例方案中,基站还获取UE目标符号发送失败的信息,并且还根据各UE目标符号传输失败的次数对提供给各UE的序列的参数进行调整,从而提高各UE在采用本发明实施例的上行数据传输方式传输数据时的成功率。
第三方面,本发明实施例还提供了一种与上述第一方面方法对应的用户设备,包括:
至少一个处理器,用于根据扩展序列,将目标符号扩展为多个扩展符号,其中, 所述扩展序列为相互正交或相互准正交的至少两个序列中的一个序列;确定所述多个扩展符号分别对应的资源单元;
发射器,用于将所述多个扩展符号通过分别对应的资源单元传输至基站。
在一个可能的设计中,所述用户设备还包括接收器;
所述接收器,用于在所述至少一个处理器根据扩展序列,将目标符号扩展为多个扩展符号之前,接收来自基站的广播消息,所述广播消息中携带所述至少两个序列的参数信息;
所述至少一个处理器,还用于根据所述参数信息,从所述至少两个序列中随机确定一个序列作为对所述目标符号进行扩展的扩展序列。
在一个可能的设计中,所述扩展序列中包括多个序列元素;
所述至少一个处理器根据扩展序列,将目标符号扩展为多个扩展符号,包括执行:
将所述多个序列元素分别与所述目标符号相乘,得到多个所述扩展符号。
在一个可能的设计中,所述至少一个处理器确定所述多个扩展符号分别对应的资源单元,包括执行:
确定所述多个扩展符号的传输阵式,其中,所述传输阵式包括:时域扩展传输阵式、频域扩展传输阵式或时域频域扩展传输阵式;
根据所述多个扩展符号的传输阵式,从可用传输资源中确定所述多个扩展符号分别对应的资源单元,其中,所述可用传输资源包括多个资源单元。
在一个可能的设计中,所述用户设备中的接收器,在所述至少一个处理器根据扩展序列将目标符号扩展为多个扩展符号之前,接收来自基站的资源调度消息,所述资源调度消息中携带用于对目标符号进行扩展的扩展序列的参数信息;
所述至少一个处理器,还用于根据所述资源调度消息中携带的所述参数信息,确定用于对目标符号进行扩展的扩展序列。
在一个可能的设计中,所述至少一个处理器,还用于在所述发射器将所述多个扩展符号通过分别对应的资源单元传输至基站之后,确定在第一预设时间内是否接收到确认ACK消息;
若在所述第一预设时间内未接收到所述ACK消息,则延时第二预设时间后,重新确定扩展序列,并利用重新确定的扩展序列对所述目标符号进行扩展;
所述发射器,还用于将新扩展得到的扩展符号重新发送给所述基站。
在一个可能的设计中,所述发射器还用于:将所述目标符号传输失败的次数发送给基站。
第四方面,本发明实施例提供了一种上行数据接收设备,包括:
接收器,用于从传输资源上接收传输符号,其中,所述传输资源包括多个资源单元;
至少一个处理器,用于利用至少两个序列分别对所述传输符号进行去扩展,其中,所述至少两个序列为相互正交或相互准正交的序列;根据所述去扩展的结果,确定在所述传输资源上接收到的是至少一个UE发送的符号。
在一个可能的设计中,所述设备还包括:发射器;
所述发射器,用于发送广播消息,其中,所述广播消息中携带所述至少两个序列的参数信息;
或者,
所述发射器,用于当所述接收器接收到用户设备UE发送的资源调度请求消息时,向所述UE发送资源调度消息,所述资源调度消息中携带所述至少两个序列中的其中一个或多个序列的参数信息。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述上行数据接收设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例的上行数据传输方案,支持多个UE在相同的传输资源上传输数据,由此以解决不同的UE使用相同的传输资源进行数据传输带来的传输性能下降的问题。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的上行数据传输方法的流程图;
图2是本发明实施例二提供的上行数据传输方法的流程图;
图3是扩展符号的不同扩展方式的示意图;
图4是本发明实施例三提供的上行数据传输方法的流程图;
图5是UE1和UE2的导频图案示意图;
图6是UE1的扩展符号与RE的映射图;
图7是UE2的扩展符号与RE的映射图;
图8是基站接收到的扩展后的导频信号的分布示意图;
图9是UE1和UE2传输扩展符号所占用的时频资源存在偏移的示意图;
图10是本发明实施例四提供的上行数据传输方法的流程图;
图11是本发明实施例中所涉及的UE的一种可能的框架结构示意图;
图12是本发明实施例中所涉及的UE的一种可能的设计结构的简化示意图;
图13是本发明实施例上行数据接收设备的一种可能的框架结构示意图;
图14是本发明实施例上行数据接收设备的一种可能的设计结构的简化示意图。
具体实施方式
在移动通信系统中,当多个UE使用相同的传输资源向基站传输数据时,会引起数据传输失败或者数据传输性能降低等问题。
例如在有深度覆盖要求的通信系统中,通常会采用重复向基站发送数据的方式来达到增强覆盖深度的目的。为了降低时延,延长UE电池寿命,上行数据传输可以考虑采用无调度传输策略。但是当上行采用无调度传输策略时,为了达到深度覆盖目的而引入的重复发送机制会增大上行数据对传输资源的占用,由此会抬高UE之间发生资源碰撞的概率,因此在实际的深度覆盖应用场景中,一般无法使用上行无调度传输策略。
又例如,在长期演进(英文:Long Term Evolution,简称:LTE)系统或者在与LTE系统具有类似时频传输资源的系统中,如果基站不使用多用户多输入多输出(英文:Multi-User Multiple Input Multiple Output,简称:MU-MIMO)检测技术,或者即使使用多用户多输入多输出检测技术,但基站的接收天线数目小于使用同一时频传输资源的单发射天线的UE的个数时,基站很有可能无法解对占用同一时频传输资源的所有UE的数据。只有当某个UE传输的数据到达基站的功率远大于使用同一时频资源的其他UE传输的数据到达基站的功率时,基站才有可能正确解出该UE的数据。因此,多个UE使用相同的时频传输资源会降低数据传输的性能。
为了解决现有技术中不同的UE使用相同的传输资源进行数据传输带来的传输性 能下降的问题,本发明实施例提供了一种上行数据传输方法,该方法中,UE利用扩展序列对待传输的数据进行扩展,其中UE所使用的扩展序列为相互正交或准正交的至少两个序列中的其中一个序列,UE将扩展后的数据映射到传输资源上传输,当相应传输资源上同时传输多个UE的数据时,多个UE的数据之间正交或准正交,基站在接收到多个UE传输的扩展数据后,通过去扩展得到各个UE传输的数据,从而当多个UE使用相同的传输资源传输数据时,提高数据传输成功的概率以及提高数据传输性能。
本发明实施例提供的上行数据传输方法适用于各类移动通信系统中,如本发明实施例方法可以应用于LTE系统、机器与机器(英文:Machine-to-Machine,M2M)通信系统、通用分组无线业务(英文:General Packet Radio Service,简称:GPRS)系统、未来5G通信系统以及其它可能的会出现多个UE使用相同传输进行上行数据传输的移动通信系统。
本发明实施例中,UE可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,简称UE),移动台(Mobile station,简称MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本发明实施例中,简称为用户设备或UE。
图1是本发明实施例一提供的上行数据传输方法的流程图,该方法可以应用于UE中,图1所示方法的处理步骤包括:
步骤S101:UE根据扩展序列,将目标符号扩展为多个扩展符号。
上述扩展序列为相互正交或相互准正交的至少两个序列中的其中一个序列。
步骤S102:UE确定多个扩展符号分别对应的资源单元,其中,资源单元也可称为资源粒子,是物理传输资源中最小的资源单位。
步骤S103:UE将多个扩展符号通过分别对应的资源单元传输至基站。
在不同的空口技术中,目标符号有不同的含义,例如在正交频分复用(英文:Orthogonal Frequency Division Multiplexing,简称:OFDM)系统中,目标符号来自星座图,叫做星座图符号;又例如在单载波频分多址(英文:Single Carrier–Frequency Division Multiple Access,简称:SC-FDMA)系统中,目标符号是星座图符号的离散傅里叶变换(英文:Discrete Fourier Transform,简称:DFT)。从涉及的具体内容上 看,目标符号可以是业务数据符号、导频符号,也可以是业务数据符号及导频符号构成的序列的某种变换,例如,DFT。
UE利用扩展序列将待传输的目标符号扩展成多个扩展符号,该多个扩展符号分别映射至相应的资源单元上进行传输,当多个UE使用了相同的资源单元传输扩展符号时,多个UE的扩展符号之间正交或准正交,基站通过去扩展可以分别得到每个UE发送的原始符号,因此本发明实施例方法支持多个UE使用相同的传输资源传输数据,并且与已有上行数据传输方法相比,当多个UE使用相同的传输资源传输数据时,本发明实施例能够提高数据传输的成功率以及提高数据的传输性能。
本发明实施例的上行数据传输方法可以应用在上行无调度数据传输过程中,也可以应用在上行有调度数据传输过程中,以下将通过不同的实施例分别对采用了本发明实施例方法的上行无调度数据传输过程以及上行有调度数据传输过程进行详细说明。
图2是本发明实施例二提供的上行数据传输方法的流程图,本实施例方法可以应用在上行无调度数据传输过程中,例如,该方法可以应用在LTE系统的上行无调度传输中,以下也将以在LTE系统中执行过程为例对本发明实施例方法进行详细说明,对于在其它通信系统中采用本发明实施例方法,可以参照下述实施例进行适应性应用。如图2所示,本方法处理步骤包括:
步骤S201:UE接收来自基站的广播消息。
在基站发送的广播消息中携带至少两个序列的参数信息,该参数信息所指示的至少两个序列相互之间正交或准正交,具体的,广播消息中携带的参数信息可以是序列的名称、序列的长度(或者是序列的阶数、周期等)、序列在一组序列中的编号范围(如可用序列为四个,编号分别为1、2、3及4,广播消息中可以限定只使用编号为1、2及3的序列)。
上述的至少两个序列可以是沃尔什(Walsh)序列(或者叫Walsh码)、正交可变扩频因子(英文:Orthogonal Variable Spreading Factor,简称:OVSF)码、伪噪声(英文:Pseudo Noise,简称:PN)序列及恒幅零自相关(英文:Constant Amplitude Zero Autocorrelation,简称:CAZAC)序列等,其中,PN序列可以是m序列、M序列、Gold序列等,CAZAC序列可以是Zadoff–Chu序列、Chirp序列、Frank序列等。
上述所列举的各类序列具有不同的自相关和互相关特性。例如,考虑给定长度的 Walsh码或OVSF码,不同的码在零偏移处是正交的(即互相关为0),但频移量不为0时自相关和互相关并不等于0,一般将Walsh码和OVSF码归为正交序列。PN序列在非零偏移的自相关与零偏移的自相关的比值较小,但并不为0,不同PN序列在零偏移和非零偏移处的互相关取值也较小,这类序列被归为准正交序列。
步骤S202:UE根据广播消息中的参数信息,从至少两个序列中确定一个序列作为对目标符号进行扩展的扩展序列。
由于是在上行无调度数据传输过程中,UE可以随机从至少两个序列中确定一个序列作为扩展序列。
步骤S203:UE根据扩展序列,将目标符号扩展为多个扩展符号。
本发明实施例中,利用扩展序列将目标符号扩展为多个扩展符号的方式可以是:在扩展序列中通常包括多个序列元素,将多个序列元素分别与目标符号相乘,根据相乘的结果得到多个扩展符号。
例如,UE采用的扩展序列A=(c1,c2,c3,c4),目标符号为a,利用扩展序列A将目标符号a扩展为多个扩展符号的方式为:将扩展序列A中的各个序列元素即:c1、c2、c3及c4分别与目标符号a相乘,得到多个扩展符号,其中,得到的多个扩展符号分别为:ac1、ac2、ac3及ac4。
步骤S204:UE确定多个扩展符号的传输阵式,其中,UE确定的多个扩展符号的传输阵式包括:时域扩展传输阵式、频域扩展传输阵式或时域频域扩展传输阵式。
本发明实施例中,一个目标符号通过扩展序列扩展为N个扩展符号,其中N为扩展因子,等于扩展序列包括的序列元素的个数,即等于扩展序列的长度。
上述扩展得到的N个扩展符号可以在时间上串行发出,即采用时域扩展传输阵式;也可以在频率上排开,即采用频域扩展传输阵式;进一步,还可以在时间和频率上铺开,即采用时域频域扩展传输阵式。
在上行无调度数据传输进程中,UE可以根据当前可用的传输资源以及当前业务的传输需求自主确定采用哪种传输阵式,也可以根据基站的指示确定。
其中,在上行无调度数据传输进程中,UE获取基站指示的方式包括:基站发送的广播消息中携带传输阵式指示信息,或者,UE与基站预先约定了传输阵式确定规则。
步骤S205:UE确定多个扩展符号分别对应的资源单元。
具体的,当在LTE系统执行本发明实施例方法时,上述资源单元可简称为RE,英文全称为:Resource Element。
UE确定传输多个扩展符号所采用的传输阵式后,UE根据传输阵式,在可用传输资源中确定多个扩展符号分别对应的RE。
其中,在可用传输资源中包括多个可用的RE,UE从多个可用的RE中分别确定各个扩展符号分别对应的RE,在可用传输资源中,RE的时域单位为符号,频域单位为子载波。
步骤S206:UE将多个扩展符号通过对应的RE传输至基站。
步骤S207:UE确定在第一预设时间内是否接收到确认(英文:ACKnowledgement,简称:ACK)消息或者否定确认(英文:Negative ACKnowledgement,简称:NACK)消息,若接收到ACK消息执行步骤S208,若接收到NACK消息执行步骤S209,若在第一预设时间内既没有接收到ACK消息也没有接收到NACK消息,则执行步骤S211。
在上行无调度数据传输中,UE向基站传输上行数据,其中在传输的上行数据中除了包括要传输的数据外,还包括导频信息及控制信息。
基站根据导频信息从传输资源中接收上行数据,之后对上行数据进行解调得到控制信息,并根据控制信息去获取UE传输的数据,基站还进一步根据上行数据解调的结果,向UE发送ACK消息,UE根据是否在预设时间内接收到ACK消息确定目标符号是否被基站成功接收。
步骤S208:当UE在第一预设时间内接收到ACK消息时,UE确定目标符号被基站成功接收。
当基站对UE发送的上行数据中的控制信息及数据信息均解调正确时,基站向UE反馈ACK消息,UE根据在第一预设时间内接收到的ACK消息确定目标符号被基站成功接收。
步骤S209:当UE在第一预设时间内接收到NACK消息时,UE确定目标符号的重传次数是否达到了预设的最大重传次数。
当基站对UE发送的上行数据中的控制信息解调正确,数据信息解调失败时,基 站向UE反馈NACK消息,表示基站对UE发送的数据没有正确解调。
UE接收到基站发送的NACK消息后,确定目标符号已经发生重传的次数,如果目标符号重传的次数达到了预设的最大重传次数,可以确定目标符号重传失败并执行步骤S211,即UE对目标符号传输失败的次数加一。
如果目标符号重传的次数没有达到预设的最大重传次数,可以对目标符号进行重传。
具体的,在对目标符号进行重传时,如果UE采用的是异步混合自动重传请求(英文:Hybrid Automatic Repeat Request,简称:HARQ),UE可以直接返回步骤S202进行重传;如果UE采用的是同步HARQ,则UE执行步骤S210。
步骤S210:UE延时第二预设时间后返回步骤S202,即采用上述符号扩展方式对目标符号进行重传。
在同步HARQ中,目标数据按照进程传输,例如,将待传输的所有数据分配到6个进程中,并按照时间先后顺序依次传输进程1、进程2……进程6中的数据,其中,在传输各进程的数据时,并不需要知道其它进程的数据是否被正确传输,例如,在传输进程2的数据时不需要知道进程1的数据是否被正确传输,在传到进程4时,UE可能会接收到基站对进程1的ACK或NACK反馈信息,当UE传递完进程6的数据包后,可以根据接收到的反馈信息确定是否对进程1的数据重传,其它各进程数据重传规则以此类推。
可见,在同步HARQ中,当目标符号重传时,需要延时一定时间,等达到规定的进程时,再对目标符号进行重传。
步骤S211:UE将目标符号传输失败的次数加一。
步骤S212:UE在延时第三预设时间后返回步骤S202,即采用上述符号扩展方式对目标符号进行重传。
UE向基站发送上行数据后,基站根据对上行数据的解调还包括控制信息解调失败的情况,由于在控制信息中包含用于供解调数据信息时使用的调制编码方案(英文:Modulation and Coding Scheme,简称:MCS),因此当控制信息解调失败时,数据信息也会解调失败,而且基站有可能无法确定是否有UE发送了上行数据,此时基站既不向UE反馈NACK消息,也不向UE反馈ACK消息。
因此当UE发送上行数据之后的第一预设时间内若既没有接收到ACK消息也没 有接收到NACK消息时,执行S211将目标符号传输失败的次数加一以及步骤S212在延时第三预设时间后返回步骤S202。
本发明实施例中,当UE确定目标符号传输失败时,延时第三时间后再返回执行目标符号重传的步骤的原因包括:
(1)在同步HARQ重传机制中,通过延时以在规定的进程中对目标符号进行上传。
(2)此处的延时还包含类似WiFi中的退避机制,即随机延时一段时间再发,因为在上行无调度数据传输时,UE传输失败有可能是因为发生了资源碰撞,就是说多个UE选择了相同的时频资源,并且用于扩展的序列也相同,若不延时立刻重新发送,那么多个UE很有可能再次碰撞。
本发明实施例方法中,UE发送数据之前根据基站发送的广播消息获取用于扩展的序列的参数,从而可以保持基站对UE的控制权,UE在基站的控制范围内自主选择扩展序列,由此可以支持多个UE使用相同的传输资源传输数据,并且当多个UE使用相同的传输资源传输数据时,减轻碰撞的用户之间的相互干扰,能够提高数据传输的成功率以及提高数据的传输性能。
本发明实施例方法中,在确定多个扩展符号的传输阵式后,需要将多个扩展符号映射到相应的RE上进行传输,以下将对多个扩展符号映射到相应RE上的方法进行详细说明。
在上行无调度数据传输中,UE确定扩展符号的传输阵式后,UE可以自主确定采用哪些RE传输扩展符号。
其中,UE根据多个扩展符号的传输阵式,从可用传输资源中确定多个扩展符号分别对应的RE的方式包括:
UE根据多个扩展符号的传输阵式,从可用传输资源中确定基准RE;UE根据确定出的传输阵式以及基准RE,从可用传输资源中确定各个扩展符号分别对应的RE。
在上行无调度数据传输中,UE可以随机从可用传输资源所包括的各个RE中确定基准RE。
当UE从可用传输资源中确定基准RE后,UE根据确定出的多个扩展符号的传输阵式以及基准RE,从可用传输资源包括的各个RE中确定各个扩展符号分别对应的RE包括:
当多个扩展符号的传输阵式为时域扩展传输阵式时,根据基准RE,通过在可用传输资源的时域方向进行扩展,确定多个扩展符号分别对应的RE;
当多个扩展符号的传输阵式为频域扩展传输阵式时,根据基准RE,通过在可用传输资源的频域方向进行扩展,确定多个扩展符号分别对应的RE;
当多个扩展符号的传输阵式为时域频域扩展传输阵式时,根据基准RE,通过在可用传输资源的时域及频域方向进行扩展,确定多个扩展符号分别对应的RE。
图3是扩展符号的不同扩展方式的示意图。如图3所示,假设待传输的目标符号为a,扩展序列为c1、c2、c3及c4,目标符号a分别与c1、c2、c3及c4相乘,得到的扩展符号分别为ac1、ac2、ac3及ac4。
上述扩展符号的传输阵式包括:时域扩展传输阵式、频域扩展传输阵式或者时域频域扩展传输阵式。
如图3所示,时域扩展传输阵式是指UE在确定基准RE后将扩展符号ac1、ac2、ac3及ac4在时域上串行发出,可选的,传输扩展符号ac1、ac2、ac3及ac4的子载波频率相同。
如图3所示,频域扩展阵式是指UE在确定基准RE后将扩展符号ac1、ac2、ac3及ac4分别在不同的子载波上传输,可选的,各个子载波传输扩展符号ac1、ac2、ac3及ac4的时间相同。
如图3所示,时域频域扩展阵式是指UE在确定基准RE后将扩展符号ac1、ac2、ac3及ac4在时域及频域上分别展开,如扩展符号ac1、ac2、ac3及ac4采用2x2阵式传输,如图3中,扩展符号ac1、ac2、ac3及ac4可以采用相邻的四个RE进行传输,也可以是选择的RE之间间隔指定个数的RE。
UE确定根据目标符号得到的各个扩展符号分别对应的RE后,将各个扩展符号通过分别对应的RE传输至基站,基站在相应的传输资源上接收UE发送的上行数据。
图4是本发明实施例三提供的上行数据传输方法的流程图,该方法的执行主体为基站,本方法即对应基站从传输资源上接收UE发送的上行数据的方法,具体的,图4所示方法的处理步骤包括:
步骤S301:基站从传输资源上接收传输符号,其中,传输资源包括多个RE,RE的时域单位为符号,频域单位为子载波。
步骤S302:基站利用至少两个序列分别对接收到的传输符号进行去扩展,其中,上述至少两个序列之间相互正交或准正交。UE对待传输的符号进行扩展使用的扩展序列为该至少两个序列中的其中一个。
步骤S303:基站根据去扩展的结果,确定在相应传输资源上接收到的为至少一个UE发送的符号。
本发明实施例中,基站从传输资源上接收UE发送的传输符号,其中,基站在接收相应的传输符号时,不确定接收到的是一个UE传输的符号还是多个UE占用相同的传输资源传输的符号,此时,UE使用预设的至少两个序列对接收到的传输符号进行去扩展,该至少两个序列包括UE对符号进行扩展使用的扩展序列,当多个UE使用的扩展序列不同时,该多个UE传输的扩展符号之间相互正交或准正交,基站根据去扩展的结果得到至少一个UE发送的原始符号,可见本发明实施例方法,支持多个UE使用相同的传输资源传输数据。
假设UE1和UE2按照本发明实施例一及实施例二的方法发生了资源碰撞,其中UE1和UE2使用了相同的时频传输资源,但用于对目标符号进行扩展的扩展序列不同。
图5是UE1和UE2的导频图案示意图。其中,图5中示出的是导频符号扩展之前的导频符号分布示意图,从图5中可以看出UE1和UE2使用了相同的时频资源传输导频。
当UE1和UE2采用本发明实施例一或实施例二方法进行导频符号传输时,UE1和UE2采用不同的扩展序列对导频符号进行扩展,例如UE1采用的扩展序列为
Figure PCTCN2016087856-appb-000001
UE2采用的扩展序列为
Figure PCTCN2016087856-appb-000002
Figure PCTCN2016087856-appb-000003
UE1和UE2采用的这两个序列为相互正交的序列。
假设,UE1和UE2扩展前的一个占用相同时频资源的导频符号为SP,UE1和UE2分别对导频符号SP进行扩展,UE1得到的扩展符号为:
Figure PCTCN2016087856-appb-000004
Figure PCTCN2016087856-appb-000005
UE2得到的扩展符号为:
Figure PCTCN2016087856-appb-000006
Figure PCTCN2016087856-appb-000007
UE1和UE2均采用2x2时域频域扩展传输阵式传输得到的扩展符号。
图6是UE1的扩展符号与RE的映射图,图7是UE2的扩展符号与RE的映射图,从图6和图7中可以看出UE1和UE2采用了相同的时频资源传输SP的扩展符 号。
图8是基站接收到的扩展后的导频信号的分布示意图。如图8所示,基站从上述四个RE上接收到的信号分别记为R1、R2、R3和R4,其中:
Figure PCTCN2016087856-appb-000008
上述计算式中,
Figure PCTCN2016087856-appb-000009
Figure PCTCN2016087856-appb-000010
分别表示UE1和UE2到基站的信道在R1、R2、R3和R4所对应的4个RE上的频率响应,Wn表示叠加在该4个RE上的热噪和邻区干扰之和。
可以认为
Figure PCTCN2016087856-appb-000011
由此可以用H(1)和H(2)表示信道频率响应。
基站要进行去扩展,就是由4个RE变回到1个RE,基站去扩展后得到UE1发送的扩展前的导频符号如下:
Figure PCTCN2016087856-appb-000012
基站去扩展后得到UE2发送的扩展前的导频符号如下:
Figure PCTCN2016087856-appb-000013
由此可见,有了扩展和去扩展的操作,导频符号由SP变为了4SP,功率变为原来的16倍,而噪声由1项变为4项,可以近似认为噪声项不相关,这样噪声功率就变为原来的4倍。从信噪比的角度看,扩展带来了信噪比的提升。从R(1)及R(2)的表示 公式可以看出,当不同的UE用来对目标符号进行扩展的序列之间是正交的,并且互相关的偏移量为0时,发生资源碰撞的UE传输信号能够被分离开。
上述两个UE发送导频发生资源碰撞仅为一个示例,本发明实施例方法同样适用于一个UE发送导频,另一个UE发送业务数据,或两个UE都发业务数据的应用场景。
从上述分析可以看出,当多个UE使用了相同的传输资源传输数据,且每个UE使用的扩展序列不同的前提下,基站在相应传输资源上接收到的信号的信噪比得到提升。信噪比提升相当于扩大了覆盖范围,例如:设定UE的发射功率为固定值(如UE以最大发射功率发射数据),在保证基站获得的信噪比不低于某个门限值时,UE可以在距离基站相对更远的地方发射信号。
本发明实施例的上述上行数据传输方法,支持UE的重复发送机制,同时通过扩展序列的扩展,在一定程度上避免或减轻了UE之间的资源碰撞。基于此,利用本发明实施例的上行数据传输方法,可以在深度覆盖应用场景中,使用上行无调度传输策略。
在图6和图7的示例中,UE1和UE2发送的扩展符号所占用的RE是完全一致的,即UE1和UE2传输扩展符号的RE在时间和频率上是对齐的,有利于基站去扩展得到UE1和UE2发送的原始符号。
在另外一种场景下,UE1和UE2发送扩展符号时,所占用的RE之间部分重叠,即UE1和UE2传输扩展符号的时频资源之间有偏移。
图9是UE1和UE2传输扩展符号所占用的时频资源存在偏移的示意图。如图9所示,UE1从图示中的第二个符号开始传输数据,UE2从图示中的第一个符号开发传输数据,如此导致UE1和UE2发送的符号在时域和频域上是相互错开的,会导致比使用的视频资源完全重叠更高的干扰功率,为了降低此种情况导致的干扰功率相对比较高的情况,本发明实施例方法中可以采用如下方式:
(1)尽量保证各个UE所使用的时频资源在时域和频域上对齐,可采取的手段包括:
当多个扩展符号的传输阵式为时域扩展传输阵式时,从可用传输资源的具有第一特定编号的多个RE中确定基准RE,其中,其中,具有第一特定编号的多个RE占用相同的子载波,并且相邻的两个具有第一特定编号的RE之间相差N个RE,所述N 为一个传输元素所占用RE个数的整数倍。
当多个扩展符号的传输阵式为频域扩展传输阵式时,从可用传输资源的具有第二特定编号的多个RE中确定基准RE,其中,具有第二特定编号的多个RE时域取值相同并且分别占用不同的子载波,相邻的两个具有第二特定编号的RE之间相差M个RE,所述M为一个传输元素所占用RE个数的整数倍。
当多个扩展符号的传输阵式为时域频域扩展传输阵式时,从可用传输资源的具有第三特定编号的多个RE中确定基准RE,其中,相邻的两个具有第三特定编号的RE的时域取值相差X个RE,频域取值相差Y个RE,所述X、Y均为一个传输元素所占用RE个数的整数倍。
本发明实施例中一个传输元素代表一个完整的信息,对一个传输元素进行信道估计、信道均衡、解调、译码和循环冗余校验(英文:Cyclic Redundancy Check,简称:CRC)等操作就得到发送端发送的原始信息。如A为一个传输元素,在上行数据传输的过程中,A的扩展符号占用X个RE,当采用时域扩展传输方式传输A的扩展符号时,A的扩展符号在第一子载波上沿时序方向依此排开,共占用X个RE,其中,在从第一子载波上确定基准RE时,从具有第一编号的RE中选取,在第一载波中,相邻的两个具有第一编号的RE之间相差X的整数倍个RE,如第一子载波中第一个第一特定编号为1,第二个第一特定编号为1+nX,第三个第一特定编号为1+2nX……依此类推,由此以确保不同的UE在传输A元素或者其它时,不同UE选择的RE完全重合或者完全不重合;另外当不同UE传输的数据中包括多个传输元素时,通过对基准RE的设定,可以使多个UE选择的RE完全重叠、完全不重叠或者部分重叠,尤其当多个UE选择的RE部分重叠时,例如UE1和UE2传输数据AB时,A、B分别表示一个传输元素,UE1和UE2传输AB占用的RE部分重叠,其中UE1和UE2不重叠部分的RE上的符号为组成传输元素A的符号,由此能够确保基站从重叠部分和不重叠部分均解调出完整的信息,进而解调接收到完整的UE1和UE2的传输数据。
在一个更为具体的例子中,假设传输元素A的扩展符号分别为a1及a2,B的扩展符号为b1及b2,UE1及UE2均传输AB的扩展符号(a1,a2,b1,b2)时,通过设定可选择使用的基准RE,使UE1及UE2选择的传输(a1,a2,b1,b2)的四个RE完全重叠、完全不重叠或者部分重叠,尤其在部分重叠时,重叠部分为(a1,a2)占用的RE,或者重叠部分为(b1,b2)占用的RE,由此以确保基站能够从重叠部分的RE和不重叠部分的RE中均提取出完整的信息。
或者,
UE将可用传输资源划分为多个子资源,每个子资源均包括多个RE,多个子资源之间包括的RE不重叠,且子资源中包括的RE的排列阵式与多个扩展符号的传输阵式一致;从多个子资源中确定一个子资源作为目标传输资源;根据多个扩展符号的传输阵式,从目标传输资源中确定多个扩展符号分别对应的RE。
本发明实施例中,子资源中包括的RE的排列阵式与多个扩展符号的传输阵式一致是指子资源中包括的RE的排列阵式与多个扩展符号的传输阵式完全一致。
例如,多个扩展符号的传输阵式为2x2,则UE可以从可用传输资源中划分出多个2x2的RE块,多个2x2的RE块之间不重叠,UE可以从多个2x2的RE块中随机选择一个2x2的RE块传输扩展符号。
又或者,基站预先将传输资源划分为多个子区域,每个子区域均包括多个RE,多个子区域之间包括的RE不重叠,基站通过通知消息将传输资源的划分方式通知UE,以使UE按照传输资源子区域的划分方式确定扩展符号的传输阵式以及所要占用的传输资源。
(2)如果无法保证序列不错开,则基站提供给UE供UE对目标符号进行扩展的序列为在非零偏移下的自相关和互相关的模尽量小的序列,如此可以降低发生资源碰撞的UE之间的干扰。
在本发明实施例的方案中,基站还接收各个UE发送的相应符号传输失败的次数;基站根据接收到的符号传输失败的次数,对提供给UE的用于对目标符号进行扩展的扩展序列的参数进行调整。
具体的,基站接收各个UE发送的相应符号传输失败的次数的方式包括:
(1)UE在预设时频资源处向基站发送特定格式的前导,基站根据接收到的前导格式确定UE发送目标符号失败的次数或者失败次数所在的区间。
(2)基站接收作为传输数据的一部分发送的符号传输失败的次数或者传输失败次数所在的区间。
另一方面,基站除可以根据UE发送的失败次数或失败次数所在的区间对提供给UE的用于对目标符号进行扩展的序列的参数进行调整外,基站还可以根据接收到的符号的上行功率,对上述的至少两个序列的参数进行调整。
具体的,基站可以根据各个UE发送信号的接收总宽带功率(英文:Received Total Wideband Power,简称:RTWP)或者接收信号强度指示(英文:Received Signal Strength  Indicator,简称:RSSI)对上述至少两个序列的参数进行调整。
图10是本发明实施例四提供的上行数据传输方法的流程图,本实施例方法可以应用在上行有调度数据传输过程中,如图10所示,本方法的处理步骤包括:
步骤S401:当UE有目标符号需要传输时,UE向基站发送资源调度请求消息。
步骤S402:UE接收来自基站的资源调度消息,资源调度消息中携带用于对目标符号进行扩展的扩展序列的参数信息。
步骤S403:UE根据资源调度消息中携带的参数信息,确定用于对目标符号进行扩展的扩展序列。
可选的,资源调度消息中携带一个序列的参数信息,UE将该参数信息对应的序列作为对目标符号进行扩展的扩展序列;或者,资源调度消息中携带至少两个序列的参数信息,该至少两个序列之间相互正交或准正交,UE根据资源调度消息中的参数信息,从至少两个序列中随机选择一个序列作为对目标符号进行扩展的扩展序列。
可选的,资源调度消息中携带一个序列的参数信息,由此,基站可以为不同的UE分配使用相同的时频传输资源,且分配给各个UE不同的扩展序列,避免不同的UE选择的扩展序列相同的状况发生。
步骤S404:UE根据扩展序列,将目标符号扩展为多个扩展符号。
步骤S405:UE根据资源调度消息确定各个扩展符号分别对应的RE。
基站发送给UE的资源调度消息中还可以进一步携带传输阵式指示信息以及资源分配指示信息,UE根据传输阵式指示信息确定各个扩展符号的传输阵式以及根据资源分配指示信息,确定各个扩展符号分别对应的RE。
步骤S406:UE将多个扩展符号通过对应的RE传输至基站。
本发明实施例四的方法适用于上行有调度数据传输的场景,在该场景中,基站可以为每个UE指定用于扩展的扩展序列,且通过为各个UE分配不同的扩展序列可以令多个UE使用相同的时频传输资源,如此可以增加时频传输资源调度的灵活性,并且UE可以更加容易分得时频传输资源进行上行数据传输,减少等待时间。
对应本发明实施例四,还提供了基站接收UE发送的上行数据的方法,该方法与实施例三的方法相同,区别在于在上行有调度数据传输方法中,基站会根据UE的请求,向UE提供资源调度消息,其中,基站通过资源调度消息为UE分配用于扩展的 扩展序列以及传输扩展符号的时频传输资源。
而在上行无调度数据传输中,基站在目标小区内发送广播消息,其中,广播消息中携带至少两个序列的参数信息,目标小区内的UE根据接收到的广播消息中的参数信息确定对目标符号进行扩展使用的扩展序列。
基于上述实施例一、实施例二或实施例四,本发明还提供了实施例五的上行数据传输方法,本实施例方法中,UE将目标符号发送失败的次数反馈给基站,其中,UE将目标符号发送失败的次数反馈给基站的方式包括:
(1)UE在预设时频资源处向基站发送特定格式的前导,其中,不同格式的前导对应不同的传输失败次数或者传输失败次数所在的区间。
(2)UE将目标符号传输失败的次数或者传输失败次数所在的区间作为待传输符号的其中一部分传输给基站。
本发明实施例中,UE在预设时频资源处向基站发送特定格式的前导,不同格式的前导对应不同的传输失败次数或者传输次数所在的区间的一种具体实施方式可以是:
UE发送的前导可以是Zadoff–Chu序列,循环移位是前导的一个参数。在LTE系统中,UE随机选择循环移位,然后发送前导,并且只能在规定的时频资源上发送。在上行无调度数据传输中,UE无需发送前导完成随机接入过程,但根据无调度上行传输方案中UE可以通过发送前导完成其它目的,例如,上报ACK消息或NACK消息。在本发明实施例中,UE可以通过发送前导上报之前一段时间内传输失败的次数或传输失败的次数所在的范围。
假设循环移位有8种选择,在一个传输时间间隔(英文:Transmission Time Interval,简称:TTI)中有2个时频资源用来发送前导。可以将8个寻呼移位分为4组,每组2个,每组循环移位代表传输失败的次数的不同范围,例如,分别代表没有失败,失败了1次,失败了2次,失败了超过2次。UE根据发送的失败次数在对应的组里随机选择一个循环移位,然后在2个预先规定的时频资源中随机选择一个时频资源发送前导。即使两个UE在同一个TTI内发送前导,只要循环移位或发送的时频资源中有一个不一样,基站就能识别出有两个UE在发前导,基站根据前导的循环移位就能获得UE想传达的信息。如果两个UE发送前导的循环移位和时频资源都相同,那么基站只能认为有一个UE在发送前导。为了进一步降低UE发送前导的碰撞概率, 可以将UE分组。例如,有的组里的UE只能在奇数TTI发送前导,有的组里的UE只能在偶数TTI发送前导,前导并不要求立刻就被发送出去,可以等待一段时间再发。另外,由于基站只需统计UE发送数据失败的次数,对于是哪个UE传输失败的,基站并不关心,因此UE在前导中无需携带UE的标识信息。
图11是上述实施例中所涉及的UE的一种可能的框架结构示意图。如图11所示,该UE包括:扩展单元1101、确定单元1102以及传输单元1103;
其中,扩展单元1101用于根据扩展序列,将目标符号扩展为多个扩展符号,其中,扩展序列为相互正交或相互准正交的至少两个序列中的一个序列;确定单元1102,用于确定多个扩展符号分别对应的资源单元;传输单元1103,用于将多个扩展符号通过分别对应的资源单元传输至基站。
在本发明实施例中,传输单元1103还用于在扩展单元1101将目标符号扩展为多个扩展符号之前,接收来自基站的广播消息,广播消息中携带至少两个序列的参数信息;
确定单元1102,还用于根据参数信息,从至少两个序列中随机确定一个序列作为对目标符号进行扩展的扩展序列。
在本发明实施例中,扩展序列中包括多个序列元素;
扩展单元1101具体用于:将多个序列元素分别与目标符号相乘,得到多个扩展符号。
在本发明实施例中,确定单元1102确定多个扩展符号分别对应的资源单元的步骤参见方法实施例,此处不再赘述。
在本发明实施例中,传输单元1103,还用于在将目标符号扩展为多个扩展符号之前,接收来自基站的资源调度消息,资源调度消息中携带用于对目标符号进行扩展的扩展序列的参数信息;确定单元1102,还用于根据资源调度消息中携带的参数信息,确定用于对目标符号进行扩展的扩展序列。
在本发明实施例中,确定单元1102,还用于将多个扩展符号通过分别对应的资源单元传输至基站之后,确定在第一预设时间内是否接收到确认ACK消息;若在第一预设时间内未接收到ACK消息,则延时第二预设时间后,重新确定扩展序列;扩展单元1101还用于,用重新确定的扩展序列对目标符号进行扩展;传输单元1103还用于将新扩展得到的扩展符号重新发送给基站。
在本发明实施例中,传输单元1103还用于将目标符号传输失败的次数发送给基站。
其中,传输单元1103将目标符号传输失败的次数发送给基站的方式参见方法实施例,此处不再赘述。
图11示出仅为本发明实施例方法所涉及的UE的一种框架结构示意图,该UE的具体结构可以通过任意的硬件结构进行实现。
图12是上述实施例中所涉及的UE的一种可能的设计结构的简化示意图。所述UE包括发射器1201,接收器1202,控制器/处理器1203,存储器1204和调制解调处理器1205。
发射器1201调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器1202调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1205中,编码器1206接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1207进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1209处理(例如,解调)该输入采样并提供符号估计。解码器1208处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器1206、调制器1207、解调器1209和解码器1208可以由合成的调制解调处理器1205来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器1203对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理。例如用于控制UE根据扩展序列对目标符号进行扩展和/或本发明所描述的技术的其他过程。作为示例,控制器/处理器1203用于支持UE执行图1、图2及图10中的过程。存储器1204用于存储用于UE的程序代码和数据。
本发明实施例的上述用户设备所执行的上行数据传输方法,支持多个UE使用相同的传输资源传输数据,提高多个UE占用相同的传输资源传输数据的成功率,以及提高上行数据的传输性能。
图13是本发明实施例上行数据接收设备的一种可能的框架结构示意图。如图13所示,该上行数据接收设备包括:收发单元1301、去扩展单元1302以及确定单元1303,其中:
收发单元1301,用于从传输资源上接收传输符号,其中,传输资源包括多个资源单元;去扩展单元1302,用于利用至少两个序列分别对传输符号进行去扩展,其 中,至少两个序列为相互正交或相互准正交的序列;确定单元1303,用于根据去扩展的结果,确定在传输资源上接收到的是至少一个UE发送的符号。
在本发明实施例中,收发单元1301,还用于发送广播消息,其中,广播消息中携带至少两个序列的参数信息;
在本发明实施例中,收发单元1301,还用于当接收到UE发送的资源调度请求消息时,向UE发送资源调度消息,资源调度消息中携带至少两个序列中的其中一个或多个序列的参数信息。
在本发明实施例中,收发单元1301还用于接收UE发送的符号传输失败的次数或者传输失败次数所在的区间信息;
在上行数据接收设备中还包括参数调整单元,用于根据失败的次数或者传输失败次数所在的区间信息,对预设的至少两个序列的参数信息进行调整。
在本发明实施例中,参数调整单元,还可以根据接收到的传输符号的上行功率,对至少两个序列的参数信息进行调整。
图13示出的仅为本发明实施例方法所涉及的上行数据接收设备的一种框架结构示意图,该上行数据接收设备的具体结构可以通过任意的硬件结构进行实现。
图14是本发明实施例上行数据接收设备的一种可能的设计结构的简化示意图。该上行数据接收设备除可以是上述实施例中所涉及的基站外,还可以为移动通信网络中具有接收UE所发送的数据功能的各类网元设备,如未来5G网络中的数据中心等。
数据接收设备包括发射器/接收器1401,控制器/处理器1402,存储器1403以及通信单元1404。发射器/接收器1401用于支持数据接收设备与上述实施例中的的UE之间收发信息,以及支持UE与其他UE之间进行无线电通信。控制器/处理器1402执行各种用于与UE通信的功能。在上行链路,来自UE的上行链路信号经由天线接收,由接收器1401进行调解,并进一步由控制器/处理器1402进行处理来恢复UE所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1402进行处理,并由发射器1401进行调解来产生下行链路信号,并经由天线发射给UE。控制器/处理器1402还执行图4中所涉及的处理过程和/或用于本申请所描述的技术的其他过程。存储器1403用于存储数据接收设备的程序代码和数据。通信单元1404用于支持数据接收设备与其他网络实体进行通信。例如,用于支持数据接收设备与位于核心网EPC中的MME,SGW和或PGW等通信。
可以理解的是,图14仅仅示出了数据接收设备的简化设计。在实际应用中,数 据接收设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的数据接收设备都在本发明的保护范围之内。
本发明实施例的上述上行数据接收设备所执行的上行数据传输方法,支持多个UE使用相同的传输资源传输数据,提高多个UE占用相同的传输资源传输数据的成功率,以及提高上行数据的传输性能。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于用户设备及上行数据接收设备而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
还应理解,在本发明的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,在其他实施例不再一一赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种上行数据传输方法,其特征在于,包括:
    根据扩展序列,将目标符号扩展为多个扩展符号,其中,所述扩展序列为相互正交或相互准正交的至少两个序列中的一个序列;
    确定所述多个扩展符号分别对应的资源单元;
    将所述多个扩展符号通过分别对应的资源单元传输至基站。
  2. 根据权利要求1所述的方法,其特征在于,所述根据扩展序列,将目标符号扩展为多个扩展符号之前,所述方法还包括:
    接收来自基站的广播消息,所述广播消息中携带所述至少两个序列的参数信息;
    根据所述参数信息,从所述至少两个序列中随机确定一个序列作为对所述目标符号进行扩展的扩展序列。
  3. 根据权利要求1或2所述的方法,其特征在于,所述扩展序列中包括多个序列元素;
    所述根据扩展序列,将目标符号扩展为多个扩展符号,包括:
    将所述多个序列元素分别与所述目标符号相乘,得到多个所述扩展符号。
  4. 根据权利要求1~3中任一项所述的方法,其特征在于,所述确定所述多个扩展符号分别对应的资源单元,包括:
    确定所述多个扩展符号的传输阵式,其中,所述传输阵式包括:时域扩展传输阵式、频域扩展传输阵式或时域频域扩展传输阵式;
    根据所述多个扩展符号的传输阵式,从可用传输资源中确定所述多个扩展符号分别对应的资源单元,其中,所述可用传输资源包括多个资源单元。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述多个扩展符号的传输阵式,从可用传输资源中确定所述多个扩展符号分别对应的资源单元,包括:
    根据所述多个扩展符号的传输阵式,从所述可用传输资源中确定基准资源单元;
    根据所述多个扩展符号的传输阵式以及所述基准资源单元,从所述可用传输资源中确定所述多个扩展符号分别对应的资源单元。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述多个扩展符号 的传输阵式,从所述可用传输资源中确定基准资源单元,包括:
    当多个扩展符号的传输阵式为时域扩展传输阵式时,从可用传输资源的具有第一特定编号的多个资源单元中确定基准资源单元,其中,具有第一特定编号的多个资源单元占用相同的子载波,并且相邻的两个具有第一特定编号的资源单元之间相差N个资源单元,所述N为一个传输元素所占用资源单元个数的整数倍;
    当多个扩展符号的传输阵式为频域扩展传输阵式时,从可用传输资源的具有第二特定编号的多个资源单元中确定基准资源单元,其中,具有第二特定编号的多个资源单元时域取值相同并且分别占用不同的子载波,相邻的两个具有第二特定编号的资源单元之间相差M个资源单元,所述M为一个传输元素所占用资源单元个数的整数倍;
    当多个扩展符号的传输阵式为时域频域扩展传输阵式时,从可用传输资源的具有第三特定编号的多个资源单元中确定基准资源单元,其中,相邻的两个具有第三特定编号的资源单元的时域取值相差X个资源单元,频域取值相差Y个资源单元,所述X、Y均为一个传输元素所占用资源单元个数的整数倍。
  7. 根据权利要求5或6所述的方法,其特征在于,所述根据所述多个扩展符号的传输阵式以及所述基准资源单元,从所述可用传输资源中确定所述多个扩展符号分别对应的资源单元,包括:
    当所述多个扩展符号的传输阵式为时域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的时域方向进行扩展,确定所述多个扩展符号分别对应的资源单元;
    当所述多个扩展符号的传输阵式为频域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的频域方向进行扩展,确定所述多个扩展符号分别对应的资源单元;
    当所述多个扩展符号的传输阵式为时域频域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的时域及频域方向进行扩展,确定所述多个扩展符号分别对应的资源单元。
  8. 根据权利要求1所述的方法,其特征在于,所述根据扩展序列,将目标符号扩展为多个扩展符号之前,所述方法还包括:
    接收来自基站的资源调度消息,所述资源调度消息中携带用于对目标符号进行扩展的扩展序列的参数信息;
    根据所述资源调度消息中携带的所述参数信息,确定用于对目标符号进行扩展的扩展序列。
  9. 根据权利要求1~8中任一项所述的方法,其特征在于,所述将所述多个扩展符号通过分别对应的资源单元传输至基站之后,所述方法还包括:
    确定在第一预设时间内是否接收到确认ACK消息;
    若在所述第一预设时间内未接收到所述ACK消息,则延时第二预设时间后,重新确定扩展序列,并利用重新确定的扩展序列对所述目标符号进行扩展以及将新扩展得到的扩展符号重新发送给所述基站。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    将所述目标符号传输失败的次数发送给基站。
  11. 根据权利要求10所述的方法,其特征在于,所述将目标符号传输失败的次数发送给基站,包括:
    在预设时频资源处向基站发送特定格式的前导,其中,所述特定格式的前导对应不同的传输失败次数或者传输失败次数所在的区间;
    或者,
    将目标符号传输失败的次数或者传输失败次数所在的区间信息添加在所述待传输的目标符号中并传输给基站。
  12. 一种上行数据传输方法,其特征在于,包括:
    从传输资源上接收传输符号,其中,所述传输资源包括多个资源单元;
    利用至少两个序列分别对所述传输符号进行去扩展,其中,所述至少两个序列为相互正交或相互准正交的序列;
    根据所述去扩展的结果,确定在所述传输资源上接收到的是至少一个UE发送的符号。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    发送广播消息,其中,所述广播消息中携带所述至少两个序列的参数信息;
    或者,
    当接收到UE发送的资源调度请求消息时,向所述UE发送资源调度消息,所述资源调度消息中携带所述至少两个序列中的其中一个或多个序列的参数信息。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    接收UE发送的符号传输失败的次数或者传输失败次数所在的区间信息;
    根据所述失败的次数或者传输失败次数所在的区间信息,对所述预设的至少两个序列的参数信息进行调整。
  15. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    根据接收到的传输符号的上行功率,对所述至少两个序列的参数信息进行调整。
  16. 一种用户设备,其特征在于,包括:
    至少一个处理器,用于根据扩展序列,将目标符号扩展为多个扩展符号,其中,所述扩展序列为相互正交或相互准正交的至少两个序列中的一个序列;确定所述多个扩展符号分别对应的资源单元;
    发射器,用于将所述多个扩展符号通过分别对应的资源单元传输至基站。
  17. 根据权利要求16所述的用户设备,其特征在于,所述用户设备还包括接收器;
    所述接收器,用于在所述至少一个处理器根据扩展序列,将目标符号扩展为多个扩展符号之前,接收来自基站的广播消息,所述广播消息中携带所述至少两个序列的参数信息;
    所述至少一个处理器,还用于根据所述参数信息,从所述至少两个序列中随机确定一个序列作为对所述目标符号进行扩展的扩展序列。
  18. 根据权利要求16或17所述的用户设备,其特征在于,所述扩展序列中包括多个序列元素;
    所述至少一个处理器根据扩展序列,将目标符号扩展为多个扩展符号,包括执行:
    将所述多个序列元素分别与所述目标符号相乘,得到多个所述扩展符号。
  19. 根据权利要求16~18中任一项所述的用户设备,其特征在于,所述至少一个处理器确定所述多个扩展符号分别对应的资源单元,包括执行:
    确定所述多个扩展符号的传输阵式,其中,所述传输阵式包括:时域扩展传输阵式、频域扩展传输阵式或时域频域扩展传输阵式;
    根据所述多个扩展符号的传输阵式,从可用传输资源中确定所述多个扩展符号分别对应的资源单元,其中,所述可用传输资源包括多个资源单元。
  20. 根据权利要求19所述的用户设备,其特征在于,所述至少一个处理器根据所述多个扩展符号的传输阵式,从可用传输资源中确定所述多个扩展符号分别对应的资源单元,包括执行:
    根据所述多个扩展符号的传输阵式,从所述可用传输资源中确定基准资源单元;
    根据所述多个扩展符号的传输阵式以及所述基准资源单元,从所述可用传输资源中确定所述多个扩展符号分别对应的资源单元。
  21. 根据权利要求20所述的用户设备,其特征在于,所述至少一个处理器根据所述多个扩展符号的传输阵式,从所述可用传输资源中确定基准资源单元,包括执行:
    当多个扩展符号的传输阵式为时域扩展传输阵式时,从可用传输资源的具有第一特定编号的多个资源单元中确定基准资源单元,其中,具有第一特定编号的多个资源单元占用相同的子载波,并且相邻的两个具有第一特定编号的资源单元之间相差N个资源单元,所述N为一个传输元素所占用资源单元个数的整数倍;当多个扩展符号的传输阵式为频域扩展传输阵式时,从可用传输资源的具有第二特定编号的多个资源单元中确定基准资源单元,其中,具有第二特定编号的多个资源单元时域取值相同并且分别占用不同的子载波,相邻的两个具有第二特定编号的资源单元之间相差M个资源单元,所述M为一个传输元素所占用资源单元个数的整数倍;
    当多个扩展符号的传输阵式为时域频域扩展传输阵式时,从可用传输资源的具有第三特定编号的多个资源单元中确定基准资源单元,其中,相邻的两个具有第三特定编号的资源单元的时域取值相差X个资源单元,频域取值相差Y个资源单元,所述X、Y均为一个传输元素所占用资源单元个数的整数倍。
  22. 根据权利要求20或21所述的用户设备,其特征在于,所述至少一个处理器根据所述多个扩展符号的传输阵式以及所述基准资源单元,从所述可用传输资源中确定所述多个扩展符号分别对应的资源单元,包括执行:
    当所述多个扩展符号的传输阵式为时域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的时域方向进行扩展,确定所述多个扩展符号分别对应的资源单元;
    当所述多个扩展符号的传输阵式为频域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的频域方向进行扩展,确定所述多个扩展符号分别对应的资源单元;
    当所述多个扩展符号的传输阵式为时域频域扩展传输阵式时,根据所述基准资源单元,通过在所述可用传输资源的时域及频域方向进行扩展,确定所述多个扩展符号分别对应的资源单元。
  23. 根据权利要求16所述的用户设备,其特征在于,所述用户设备还包括接收器;
    所述接收器,用于在所述至少一个处理器根据扩展序列,将目标符号扩展为多个扩展符号之前,接收来自基站的资源调度消息,所述资源调度消息中携带用 于对目标符号进行扩展的扩展序列的参数信息;
    所述至少一个处理器,还用于根据所述资源调度消息中携带的所述参数信息,确定用于对目标符号进行扩展的扩展序列。
  24. 根据权利要求16~23中任一项所述的用户设备,其特征在于,所述至少一个处理器,还用于在所述发射器将所述多个扩展符号通过分别对应的资源单元传输至基站之后,确定在第一预设时间内是否接收到确认ACK消息;
    若在所述第一预设时间内未接收到所述ACK消息,则延时第二预设时间后,重新确定扩展序列,并利用重新确定的扩展序列对所述目标符号进行扩展;
    所述发射器,还用于将新扩展得到的扩展符号重新发送给所述基站。
  25. 根据权利要求24所述的用户设备,其特征在于,所述发射器还用于:
    将所述目标符号传输失败的次数发送给基站。
  26. 根据权利要求25所述的用户设备,其特征在于,所述发射器将目标符号传输失败的次数发送给基站,包括执行:
    所述发射器在预设时频资源处向基站发送特定格式的前导,其中,所述特定格式的前导对应不同的传输失败次数或者传输失败次数所在的区间;
    或者,
    所述发射器将目标符号传输失败的次数或者传输失败次数所在的区间信息添加在所述待传输的目标符号中并传输给基站。
  27. 一种上行数据接收设备,其特征在于,包括:
    接收器,用于从传输资源上接收传输符号,其中,所述传输资源包括多个资源单元;
    至少一个处理器,用于利用至少两个序列分别对所述传输符号进行去扩展,其中,所述至少两个序列为相互正交或相互准正交的序列;根据所述去扩展的结果,确定在所述传输资源上接收到的是至少一个UE发送的符号。
  28. 根据权利要求27所述的接收设备,其特征在于,所述设备还包括:发射器;
    所述发射器,用于发送广播消息,其中,所述广播消息中携带所述至少两个序列的参数信息;
    或者,
    所述发射器,用于当所述接收器接收到用户设备UE发送的资源调度请求消息时,向所述UE发送资源调度消息,所述资源调度消息中携带所述至少两个序列中的其中一个或多个序列的参数信息。
  29. 根据权利要求28所述的接收设备,其特征在于,所述接收器还用于:接收UE发送的符号传输失败的次数或者传输失败次数所在的区间信息;
    所述至少一个处理器,还用于根据所述失败的次数或者传输失败次数所在的区间信息,对所述预设的至少两个序列的参数信息进行调整。
  30. 根据权利要求28所述的接收设备,其特征在于,所述至少一个处理器,还用于:根据接收到的传输符号的上行功率,对所述至少两个序列的参数信息进行调整。
PCT/CN2016/087856 2016-06-30 2016-06-30 上行数据传输方法及装置 WO2018000308A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087856 WO2018000308A1 (zh) 2016-06-30 2016-06-30 上行数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087856 WO2018000308A1 (zh) 2016-06-30 2016-06-30 上行数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018000308A1 true WO2018000308A1 (zh) 2018-01-04

Family

ID=60785599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087856 WO2018000308A1 (zh) 2016-06-30 2016-06-30 上行数据传输方法及装置

Country Status (1)

Country Link
WO (1) WO2018000308A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132358A (zh) * 2019-12-19 2020-05-08 RealMe重庆移动通信有限公司 数据包的传输方法、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228649A (zh) * 1997-12-31 1999-09-15 Lg情报通信株式会社 防止扩展正交码发生碰撞的方法
WO2007133860A2 (en) * 2006-05-08 2007-11-22 Motorola, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
CN103312438A (zh) * 2012-03-12 2013-09-18 中兴通讯股份有限公司 上行信息发送方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228649A (zh) * 1997-12-31 1999-09-15 Lg情报通信株式会社 防止扩展正交码发生碰撞的方法
WO2007133860A2 (en) * 2006-05-08 2007-11-22 Motorola, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
CN103312438A (zh) * 2012-03-12 2013-09-18 中兴通讯股份有限公司 上行信息发送方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132358A (zh) * 2019-12-19 2020-05-08 RealMe重庆移动通信有限公司 数据包的传输方法、终端及存储介质

Similar Documents

Publication Publication Date Title
KR102422168B1 (ko) 데이터 전송 방법, 기지국 및 단말기
US11076365B2 (en) Method and apparatus for transmitting and receiving data of terminal
CN110999335B (zh) 用于侧行反馈的系统和方法
CN107736064B (zh) 用于在终端之间发送信号的方法及其设备
US9967075B2 (en) Radio communication system, base station, radio communication apparatus, and radio communication method
JP5972953B2 (ja) 移動通信システムにおけるハイブリッド自動再送要求ack/nack信号を送受信する装置及び方法
JP6779289B2 (ja) 基地局装置、端末装置およびその通信方法
JP5596170B2 (ja) 通信装置およびharqタイミングを通信装置において決定する方法
KR101456711B1 (ko) 제어 시그널링을 줄이는 데이터 전송 방법
WO2013077339A1 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
KR20170114980A (ko) 확장 상향링크 서브프레임을 이용한 상향링크 전송 방법 및 장치
CN113692768A (zh) 无线通信系统中免许可数据传输的方法和装置
JP2018524951A (ja) アップリンクデータ送信装置および方法、ならびにアップリンクデータ受信装置および方法
KR20090017284A (ko) Tdd에 기반한 무선통신 시스템에서 데이터 전송 방법
KR20180105555A (ko) 네트워크 협력통신을 위한 하향링크 컨트롤 정보 설정 방법
KR20200017710A (ko) 무선 셀룰라 통신 시스템에서 상향링크 제어 채널의 참조 신호 설정 방법 및 장치
JP2013021416A (ja) 移動通信システム、基地局装置、移動局装置および通信方法
WO2018000308A1 (zh) 上行数据传输方法及装置
KR20200004159A (ko) 무선 셀룰라 통신 시스템에서 상향링크 제어 채널 설정 방법 및 장치
KR20190115703A (ko) 무선 통신 시스템에서 상향제어채널의 전송자원 결정방법 및 장치
KR20180105403A (ko) 통신 시스템에서 제어 정보의 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906709

Country of ref document: EP

Kind code of ref document: A1