WO2018000194A1 - 信号发生器及发射器 - Google Patents

信号发生器及发射器 Download PDF

Info

Publication number
WO2018000194A1
WO2018000194A1 PCT/CN2016/087481 CN2016087481W WO2018000194A1 WO 2018000194 A1 WO2018000194 A1 WO 2018000194A1 CN 2016087481 W CN2016087481 W CN 2016087481W WO 2018000194 A1 WO2018000194 A1 WO 2018000194A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
waveguide
electrodes
microring
digital signal
Prior art date
Application number
PCT/CN2016/087481
Other languages
English (en)
French (fr)
Inventor
戴竞
叶志成
高建河
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/087481 priority Critical patent/WO2018000194A1/zh
Priority to CN201680086716.5A priority patent/CN109314678B/zh
Publication of WO2018000194A1 publication Critical patent/WO2018000194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L21/00Apparatus or local circuits for mosaic printer telegraph systems

Definitions

  • the present application relates to the field of communications, and more particularly to signal generators and transmitters.
  • Pulse Amplitude Modulation is a modulation method in which the amplitude of a pulse carrier varies with the baseband signal. Based on the network's need for high-rate transmission and the superior spectral efficiency of PAM, PAM has become a popular alternative modulation method in both optical access networks and optical transmission networks. Studies have shown that the use of PAM can effectively reduce the cost of the system. The generation of PAM multi-level signals is the key to adopting PAM technology.
  • DAC digital to analog conversion
  • the present application provides a signal generator and transmitter for solving the problem of high cost of the existing PAM signal generator.
  • a first aspect of the present application provides a signal generator comprising a drive circuit, a straight waveguide, and a microring waveguide coupled to the straight waveguide.
  • the microring waveguide is provided with N electrodes, N is an integer and N ⁇ 1.
  • the driving circuit is configured to convert the received N-bit digital signal N voltage signals are applied to the N electrodes, respectively, such that a region of the micro-ring waveguide covered by the N electrodes generates a PAM signal. Since the signal generator generates a PAM signal using an electrode covered on the microring waveguide without using a DAC, cost can be reduced.
  • a second aspect of the present application provides a transmitter comprising M driving circuits, a straight waveguide, and M microring waveguides coupled to the straight waveguide, wherein the M microring waveguides have different central resonant wavelengths, each The micro-ring waveguide performs PAM on the optical signal having the central resonant wavelength of the micro-ring waveguide.
  • the M microring waveguides and the M driving circuits are in one-to-one correspondence, and in a corresponding set of microring waveguides and driving circuits, the microring waveguides are provided with N electrodes, N is an integer and N ⁇ 1 , M is an integer and M ⁇ 1; the driving circuit is configured to convert the received N-bit digital signal into N voltage signals, and apply the N voltage signals to the N electrodes respectively, A PAM signal is generated in a region of the micro-ring waveguide that is covered by the N electrodes.
  • the N is an integer greater than or equal to 2, and the length relationship of the N electrodes is L 0 ⁇ L 1 ⁇ ... ⁇ L N-1 .
  • the drive circuit includes a receiver, a clock source, and a driver.
  • the receiver is configured to receive the N-bit digital signal.
  • the clock source is for outputting a clock signal for synchronizing the N-bit digital signal.
  • the driver is configured to convert the N-bit digital signal into the N voltage signals, and the N voltage signals are one by one according to a bit from high to low and the electrodes from long to short. Correspondingly applied to the N electrodes. It can be seen that the structure of the receiver is simple and easy to implement.
  • the receiver is specifically configured to receive the N-bit digital signal generated according to a modulation rule.
  • the modulation rule includes a digital signal, a voltage signal, and the micro Correspondence between the power of the optical signals output by the ring waveguide.
  • the driving circuit further includes: a biaser.
  • a bias is used to turn on the power and apply a voltage signal of the power to the longest of the N electrodes to set a center resonant wavelength of the microring waveguide. Because the central resonant wavelength of the micro-ring waveguide determines which wavelength of the optical signal the micro-ring waveguide can perform PAM, the biasing device makes it possible to adjust the central resonant wavelength of the micro-ring waveguide, so that it can be applied to different wavelengths. The PAM of the light signal.
  • the microring waveguide comprises a racetrack type microring waveguide.
  • the N electrodes are disposed on a straight waveguide of the racetrack type microring waveguide.
  • the racetrack type microring waveguide is easier to implement in practice and has stable performance.
  • FIG. 1 is a schematic structural diagram of a signal generator according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a signal generator for generating a 4th order PAM signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a working transmission spectrum curve of a microring waveguide corresponding to different voltage combinations
  • FIG. 4 is a signal generator for generating an 8th order PAM signal according to an embodiment of the present invention. Schematic;
  • FIG. 5 is a schematic structural diagram of still another signal generator according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another signal generator for generating a fourth-order PAM signal according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another signal generator for generating an 8th order PAM signal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a signal transmitter according to an embodiment of the present invention.
  • the micro-ring waveguide 102 is provided with N electrodes, N is an integer and N ⁇ 1. It should be noted that, in the case of N ⁇ 2, the relationship of the lengths of the N electrodes (indicated by L) is L 0 ⁇ L 1 ⁇ ... ⁇ L N-1 .
  • the driving circuit 103 is configured to convert the received N-bit digital signals DATA0, DATA1, ... DATAN-1 into N voltage signals, and output voltage signals to the N electrodes on the micro-ring waveguide 102, specifically, according to the bits. From the high to the low and the order of the electrodes from long to short, N voltage signals are applied to the N electrodes in a one-to-one correspondence. For example, as shown in FIG. 1, a voltage signal obtained by converting DATAN-1 is applied to an electrode having a length of L N-1 (ie, the longest), and a voltage signal obtained by converting DATA0 is applied to a length L 0 (ie, the shortest). On the electrode.
  • the drive circuit 103 includes a receiver 1031, a clock source 1032, and a driver 1033.
  • the receiver 1031 is configured to receive digital signals DATA0...DATAN-1
  • the clock source 1032 is configured to output a clock signal, such as a square wave signal of a fixed frequency, and a clock signal is used for Synchronous digital signals DATA0...DATAN-1.
  • the driver may specifically be a CMOS inverter. Each CMOS inverter corresponds to a bit of the digital signal for converting the corresponding bit to a voltage signal.
  • the micro-ring waveguide 102 may be a conventional circular micro-ring waveguide, or may be a racetrack-type micro-ring waveguide as shown in FIG. 1 .
  • the micro-ring waveguide 102 is preferably a track-type micro-ring waveguide shown in FIG. 1 , specifically, the track-type micro-ring waveguide includes two parallel straight waveguides, and An arcuate waveguide connecting ends of two parallel straight waveguides, wherein one of the two parallel straight waveguides is close to the straight waveguide 101, the other is close to the driving circuit 103, and the N electrodes are disposed close to the driving circuit 103.
  • the driving circuit shown in FIG. 1 is only an example, and any circuit that can convert a digital signal into a voltage signal and output can be used only in the signal generator described in the present application.
  • any one of the electrodes of FIG. 1 covers a region of the micro-ring waveguide 102.
  • the length of the cover region is equal to the length of the electrode.
  • the electrode applies a voltage to the electrode cover.
  • the signal generator shown in FIG. 1 generates a PAM signal by inputting a digital signal to the driving circuit according to a modulation rule, and the driving circuit converts the digital signal into The voltage signal is applied to the N electrodes.
  • the driving circuit converts the digital signal into The voltage signal is applied to the N electrodes.
  • the light of the wavelength ⁇ enters the straight waveguide 101, it is coupled into the micro-ring waveguide 102 from the straight waveguide 101.
  • the area covered by the N electrodes is covered by the N electrodes.
  • the optical path of the region is different, so a 2 N- order PAM optical signal is formed.
  • the modulation rule includes a correspondence relationship between the digital signal, the voltage signal, and the power of the optical signal output by the micro-ring waveguide 102.
  • the conversion relationship between the bit signal and the voltage signal is as shown in Table 1, wherein V 0 represents a low level voltage signal, and V 1 represents a high level voltage signal.
  • the signal generator shown in Figure 1 uses different lengths of segmented electrodes to obtain different waveguide optical paths, a 2 N- order PAM optical signal can be obtained without a DAC. Compared with the conventional PAM signal generator, it has the advantage of low cost, and because of its simple structure, it also has high signal generation efficiency.
  • the signal generator shown in Fig. 1 can generate a 4th-order PAM signal, that is, a PAM4 signal.
  • Figure 2 shows the PAM4 signal generator with electrode 1 and electrode 0.
  • the length L 1 of electrode 1 is greater than the length L 0 of electrode 0 .
  • the receiver is configured to receive 2-bit digital signals DATA1 and DATA0, and the digital signal may be an OOK digital signal, wherein DATA1 is a high bit, corresponding to a high bit in the PAM4 signal, and DATA0 is a low bit corresponding to the PAM4 signal. Low bit.
  • the clock signal generated by the clock source is used to synchronize DATA1 and DATA0.
  • the driver 1 is used to convert DATA1 into a voltage signal and is applied to the electrode 1
  • the driver 0 is used to convert DATA0 into a voltage signal applied to the electrode 0.
  • the working transmission spectrum curve of the micro-ring waveguide corresponding to different voltage combinations is shown in FIG. 3. It can be seen that when the input light is a laser of ⁇ wavelength, the power value corresponding to the output light of the signal generator shown in FIG. 2 Different, there are four corresponding levels, so the PAM4 signal can be generated.
  • the driving circuit specifically includes a receiver, a clock source, and a driver.
  • the receiver is used to receive 3-bit digital signals DATA2, DATA1 and DATA0, DATA2 is the highest bit, corresponding to the highest bit in the PAM8 signal, DATA1 is the intermediate bit, corresponding to the intermediate bit in the PAM8 signal, DATA0 is the lowest The bit corresponds to the lowest bit in the PAM8 signal.
  • the clock source is used to output the clock signal, and the clock signal is used to synchronize DATA2, DATA1, and DATA0.
  • FIG. 4 includes three drivers for converting DATA2, DATA1, and DATA0 into voltage signals, and applying voltage signals to respective electrodes, wherein a voltage signal obtained by DATA2 conversion is applied to the electrodes 2, and DATA1 is converted. The voltage signal is applied to the electrode 1, and the voltage signal obtained by the DATA0 conversion is applied to the electrode 0.
  • FIG. 5 shows another signal generator, which differs from the signal generator shown in FIG. 1 in that the driving circuit in FIG. 5 includes a biasing device, and the biasing device functions as an external power supply.
  • a bias voltage signal is applied to the long electrode for setting the center resonant wavelength of the microring waveguide. Since the light modulated by the micro-ring waveguide is related to the wavelength of the light, by setting the central resonance wavelength of the micro-ring waveguide, it is possible to determine which wavelength of light the micro-ring waveguide performs PAM. For example, if the central resonant wavelength of the micro-ring waveguide is ⁇ 1 , the micro-ring waveguide only modulates light having a wavelength of ⁇ 1 and has no modulation effect on light of other wavelengths.
  • the center resonance wavelength of the signal generators shown in FIGS. 1, 2, and 4 is a fixed value, and the signal generator shown in FIG. 5 can adjust the center resonance wavelength through the bias, so that it can be applied to different wavelengths.
  • the light of the PAM is a fixed value
  • the application also discloses a signal transmitter, as shown in Fig. 8, comprising a straight waveguide, M micro-ring waveguides coupled to a straight waveguide, and M drive circuits.
  • the M micro-ring waveguides have different central resonance wavelengths, wherein M is an integer and M ⁇ 1.
  • the micro-ring waveguide and the driving circuit are in one-to-one correspondence, and the structure of each corresponding micro-ring waveguide and driving circuit is as shown in FIG. 1 , FIG. 2 or FIG. 4 , and details are not described herein again.
  • a biasing device may be disposed in one or more driving circuits for setting and adjusting the central resonant wavelength of the micro-ring waveguide corresponding to the driving circuit.
  • the bias circuit may not be provided in the drive circuit. If the bias is not provided, the center resonance wavelength of the micro-ring waveguide is a fixed value set in advance.
  • each of the driving circuits respectively receives an N-bit digital signal, converts the digital signal into a voltage signal, and applies the voltage signal to the electrode of the micro-ring waveguide corresponding to the driving circuit.
  • the input light composed of the light of the wavelengths ⁇ 1 ... ⁇ M enters from one end of the straight waveguide and is coupled into the M micro-ring waveguides.
  • Each micro-ring waveguide acts only on the light having the same wavelength and the same central resonant wavelength. .
  • Light modulated by each microring waveguide is output from the other end of the straight waveguide.
  • the transmitter shown in Figure 8 integrates multiple PAM signal generators to perform 2 N- order PAM for different wavelengths of light, with the advantages of high efficiency and low cost.
  • micro-ring waveguide in the above figure may be a conventional waveguide or a slit waveguide.
  • the manufacturing process of the micro-ring waveguide can adopt a typical SOI process and has the advantage of being highly integrated.
  • the specific material process of the micro-ring waveguide is not limited, and the typical material is a silicon waveguide, which adopts an SOI (Insulator Wafer) process and is compatible with the CMOS process.
  • SOI Insulator Wafer
  • Specific rule of key structural parameters The inch is from tens of micrometers to several hundred micrometers, including the radius of the microring, the straight waveguide, the length of the electrode, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种信号发生器,包括驱动电路、直波导以及与所述直波导耦合的微环波导。其中,所述微环波导上设置有N个电极,N为整数且N≥1。所述驱动电路将接收到的N比特的数字信号转换为N个电压信号,并将N个电压信号一一对应施加在N个电极上,以使所述微环波导上被所述N个电极覆盖的区域产生PAM信号。因为信号发生器利用覆盖在微环波导上的电极产生PAM信号,而无需使用DAC,所以,能够降低成本。

Description

信号发生器及发射器 技术领域
本申请涉及通信领域,尤其涉及信号发生器及发射器。
背景技术
脉冲振幅调制(Pulse Amplitude Modulation,PAM)是脉冲载波的幅度随基带信号变化的一种调制方式。基于网络对于高速率传输的需求,以及PAM具有的高光谱效率的优势,无论是光接入网还是光传输网中,PAM已成为热门的备选调制方式。研究表明,采用PAM可以有效降低系统的成本。而PAM多阶信号的产生是采用PAM技术的关键。
目前,在发射端使用数模转换(Digital To Analogue Conversion,DAC)模块产生多电平射频信号,再将多电平射频信号加载到调制器上产生PAM信号。而因为DAC模块具有成本高的缺陷,所以,现有的PAM信号发生器具有较高的成本。
发明内容
本申请提供了一种信号发生器及发射器,目的在于解决现有的PAM信号发生器成本高的问题。
本申请的第一方面提供了一种信号发生器,包括驱动电路、直波导以及与所述直波导耦合的微环波导。其中,所述微环波导上设置有N个电极,N为整数且N≥1。所述驱动电路用于将接收到的N比特的数字信号转换 为N个电压信号,并将所述N个电压信号分别施加在所述N个电极上,以使所述微环波导上被所述N个电极覆盖的区域产生PAM信号。因为信号发生器利用覆盖在微环波导上的电极产生PAM信号,而无需使用DAC,所以,能够降低成本。
本申请的第二方面提供了一种发射器,包括M个驱动电路、直波导以及M个与所述直波导耦合的微环波导,其中,M个微环波导具有不同的中心谐振波长,每个微环波导对具有该微环波导的中心谐振波长的光信号进行PAM。所述M个微环波导和所述M个驱动电路一一对应,在一组对应的微环波导和驱动电路中:所述微环波导上设置有N个电极,N为整数且N≥1,M为整数且M≥1;所述驱动电路用于将接收到的N比特的数字信号转换为N个电压信号,并将所述N个电压信号分别施加在所述N个电极上,以使所述微环波导上被所述N个电极覆盖的区域产生PAM信号。
在一种实现方式中,所述N为大于或等于2的整数,所述N个电极的长度关系为L0<L1<……<LN-1
在一种实现方式中,所述驱动电路包括:接收器、时钟源和驱动器。其中,所述接收器用于接收所述N比特的数字信号。所述时钟源用于输出用于同步所述N比特的数字信号的时钟信号。所述驱动器用于将所述N比特的数字信号转换为所述N个电压信号,并按照比特位从高到低以及所述电极从长到短的顺序,将所述N个电压信号一一对应施加在所述N个电极上。可见,接收器的结构简单,易于实现。
在一个实现方式中,所述接收器具体用于接收依据调制规则生成的所述N比特的数字信号。所述调制规则包括数字信号、电压信号以及所述微 环波导输出的光信号的功率之间的对应关系。
在一个实现方式中,所述驱动电路还包括:偏置器。偏置器用于接通电源,并将所述电源的电压信号施加在所述N个电极中最长的电极上,以设置所述微环波导的中心谐振波长。因为微环波导的中心谐振波长决定着微环波导可以对哪种波长的光信号进行PAM,因此,偏置器的设置使得对微环波导的中心谐振波长调整成为可能,从而可以适用于不同波长的光信号的PAM。
在一个实现方式中,所述微环波导包括跑道型微环波导。所述N个电极设置在所述跑道型微环波导的直波导上。跑道型微环波导在实际中更易于实现,并且性能稳定。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例公开一种信号发生器的结构示意图;
图2为本发明实施例公开的用于产生4阶PAM信号的信号发生器的结构示意图;
图3为不同电压组合对应的微环波导的工作透射频谱曲线的示意图;
图4为本发明实施例公开的用于产生8阶PAM信号的信号发生器的 结构示意图;
图5为本发明实施例公开的又一种信号发生器的结构示意图;
图6为本发明实施例公开的又一种用于产生4阶PAM信号的信号发生器的结构示意图;
图7为本发明实施例公开的又一种用于产生8阶PAM信号的信号发生器的结构示意图;
图8为本发明实施例公开的一种信号发射器的结构示意图。
具体实施方式
图1所示为本申请公开的一种信号发生器,包括直波导101、与直波导101耦合的微环波导102和驱动电路103。其中,微环波导102上设置有N个电极,N为整数且N≥1。需要说明的是,在N≥2的情况下,N个电极的长度(使用L表示)关系为L0<L1<……<LN-1
驱动电路103用于将接收到的N比特的数字信号DATA0、DATA1……DATAN-1转换为N个电压信号,并向微环波导102上的N个电极输出电压信号,具体地,按照比特位从高到低以及电极从长到短的顺序,将N个电压信号一一对应施加在所述N个电极上。例如图1中所示,将DATAN-1转换得到的电压信号施加在长度为LN-1(即最长)的电极上,将DATA0转换得到的电压信号施加在长度L0(即最短)的电极上。
图1中,具体地,驱动电路103包括接收器1031、时钟源1032和驱动器1033。其中,接收器1031用于接收数字信号DATA0……DATAN-1,时钟源1032用于输出时钟信号,例如固定频率的方波信号,时钟信号用于 同步数字信号DATA0……DATAN-1。驱动器具体可以为CMOS反相器。每一个CMOS反相器对应数字信号的一个比特位,用于将对应的比特位转换为电压信号。
需要说明的是,微环波导102可以为传统的圆环形微环波导,也可以为图1所示的跑道型微环波导。考虑到设备的可实现性和性能,本申请实施例中,微环波导102优选为图1所示的跑道型微环波导,具体地,跑道型微环波导包括两段平行的直波导,以及将两条平行的直波导的端部相连接的弧形波导,其中,两段平行的直波导中的一段接近直波导101,另一段接近驱动电路103,N个电极设置在接近驱动电路103的一段直波导上。
需要说明的是,图1中所示的驱动电路仅为一种示例,只要能将数字信号转换为电压信号并输出的电路,仅可以使用在本申请所述的信号发生器中。
图1中的任意一个电极覆盖在微环波导102上的一个区域,覆盖区域的长度与该电极的长度相等,在驱动电路将电压施加在该电极上后,该电极将电压施加在该电极覆盖的区域,以改变该电极覆盖的区域的光程。因为N个电极的长度不同,所以,即使驱动电路施加在N个电极上的电压相同,N个电极各自覆盖的区域的光程也不同。
假设图1所示的微环波导102的中心谐振波长为λ,图1所示的信号发生器产生PAM信号的过程为:依据调制规则,向驱动电路输入数字信号,驱动电路将数字信号转换为电压信号,并将电压信号施加在N个电极上。在波长为λ的光进入直波导101后,从直波导101耦合进入微环波导102中,光在微环波导102中传输的过程中,经过N个电极覆盖的区域, 因为N个电极各自覆盖的区域的光程不同,所以,形成2N阶PAM光信号。
其中,调制规则包括数字信号、电压信号以及微环波导102输出的光信号的功率之间的对应关系。本申请实施例中,比特位信号与电压信号的转换关系如表1所示,其中,V0表示低电平电压信号,V1表示高电平电压信号。
表1
数字信号 电压信号
DATA1=0 VDATA1=V0
DATA1=1 VDATA1=V1
DATA0=0 VDATA0=V0
DATA0=1 VDATA0=V1
因为图1所示的信号发生器利用不同长度的分段电极获得不同的波导光程,所以无需DAC即可获得2N阶PAM光信号。与传统的PAM信号发生器相比,具有成本低的优点,并且,因为结构简单,还具有较高的信号发生效率。
下面分别假设N=2和N=3,对图1所示的信号发生器进行举例说明。
N=2时,图1所示的信号发生器可以产生4阶PAM信号即PAM4信号。
图2所示为PAM4信号发生器,具有电极1和电极0,电极1的长度 L1大于电极0的长度L0
接收器用于接收2比特的数字信号DATA1和DATA0,数字信号可以为OOK数字信号,其中,DATA1为高比特位,对应于PAM4信号中的高比特位,DATA0为低比特位,对应于PAM4信号中的低比特位。时钟源产生的时钟信号用于同步DATA1和DATA0。
驱动器1用于将DATA1转换为电压信号并施加在电极1上,驱动器0用于将DATA0转换为电压信号施加在电极0上。
针对图2所示的信号发生器,调整规则包括表2和图3所示:
2比特的数字信号对应4种电压信号的组合,即(1)VDATA1=V0 VDATA0=V0;(2)VDATA1=V0 VDATA0=V1;(3)VDATA1=V1 VDATA0=V0;(4)VDATA1=V1 VDATA0=V1,。因此,输入的数字信号与输出光信号的对应关系如表2所示。
表2
Figure PCTCN2016087481-appb-000001
不同电压组合对应的微环波导的工作透射频谱曲线如图3所示。可见,输入光为λ波长的激光时,图2所示的信号发生器的输出光对应的功率值 不同,有四个对应的电平,因此,可以生成PAM4信号。
图4为N=3时的PAM8的信号发生器,与图2相比,区别在于具有三个电极,按照长度从大到小排序为:电极2、电极1和电极0。
驱动电路具体包括接收器、时钟源和驱动器。接收器用于接收3比特的数字信号DATA2、DATA1和DATA0,DATA2为最高比特位,对应于PAM8信号中的最高比特位,DATA1为中间比特位,对应于PAM8信号中的中间比特位,DATA0为最低比特位,对应于PAM8信号中的最低比特位。时钟源用于输出时钟信号,时钟信号用于同步DATA2、DATA1和DATA0。
图4中包括三个驱动器,分别用于将DATA2、DATA1和DATA0转换为电压信号,并将电压信号施加在相应的电极上,其中,DATA2转换得到的电压信号施加在电极2上,DATA1转换得到的电压信号施加在电极1上,DATA0转换得到的电压信号施加在电极0上。
3比特的数字信号与输出的光信号的对应关系如表3所示
表3
Figure PCTCN2016087481-appb-000002
Figure PCTCN2016087481-appb-000003
可见,通过电极的数量的设置,可以产生不同阶的PAM信号。
图5所示为又一种信号发生器,与图1所示的信号发生器的区别在于:图5中的驱动电路中包括偏置器,偏置器的作用为在外接电源后,在最长的电极上施加偏置电压信号,用于设置所述微环波导的中心谐振波长。因为微环波导可调制的光与光的波长相关,所以,通过设置微环波导的中心谐振波长,可以决定微环波导对哪种波长的光进行PAM。举例说明,微环波导的中心谐振波长为λ1,则微环波导只对波长为λ1的光有调制作用,而对其它波长的光无调制作用。
所以,图1、图2及图4所述的信号发生器的中心谐振波长为固定值,而图5所示的信号发生器可以通过偏置器调节中心谐振波长,因此,可以适用于不同波长的光的PAM。
图2和图4所示的信号发生器加上偏置器后的结构分别如图6和图7所示。
基于信号发生器的中心谐振波长和可调节的光的波长相同的原理,本 申请还公开了一种信号发射器,如图8所示,包括直波导、M个与直波导耦合的微环波导和M个驱动电路。其中,M个微环波导具有不同的中心谐振波长,其中,M为整数且M≥1。微环波导和驱动电路一一对应,每一组对应的微环波导和驱动电路的结构如图1、图2或图4所示,这里不再赘述。
需要说明的是,一个或多个驱动电路中可以设置偏置器,用于为此驱动电路对应的微环波导设置并调整中心谐振波长。驱动电路中也可以不设置偏置器,如果不设置偏置器,则微环波导的中心谐振波长为预先设置的固定值。
图8所示的发射器产生PAM信号的过程为:每个驱动电路分别接收N比特数字信号,将数字信号转换为电压信号,将电压信号施加到此驱动电路对应的微环波导的电极上。由波长为λ1……λM的光组合而成的输入光从直波导的一端进入后,耦合进入M个微环波导,每个微环波导只对波长与中心谐振波长相同的光起作用。经过每个微环波导调制后的光从直波导的另一端输出。
图8所示的发射器将多个PAM信号发生器集成在一起,可以对不同波长的光进行2N阶PAM,具有高效和成本低的优点。
需要说明的是,以上图示中的微环波导可以为常规波导,还可以为狭缝波导。微环波导的制作工艺可以采用典型的SOI工艺,具有可高度集成的优点。
微环波导的具体材料工艺不限,其中典型的材料是硅波导,采用SOI(绝缘体硅片)工艺,可以与CMOS工艺兼容。关键结构参数的具体的尺 寸为几十微米~几百微米,其中包括了微环的半径,直波导,电极长度等。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。

Claims (12)

  1. 一种信号发生器,其特征在于,包括:
    驱动电路、直波导以及与所述直波导耦合的微环波导,所述微环波导上设置有N个电极,N为整数且N≥1;
    所述驱动电路用于将接收到的N比特的数字信号转换为N个电压信号,并将所述N个电压信号分别施加在所述N个电极上,以使所述微环波导上被所述N个电极覆盖的区域产生PAM信号。
  2. 根据权利要求1所述的信号发生器,其特征在于,所述N为大于或等于2的整数,所述N个电极的长度关系为L0<L1<……<LN-1。
  3. 根据权利要求1或2所述的信号发生器,其特征在于,所述驱动电路包括:
    接收器、时钟源和驱动器;
    所述接收器用于接收所述N比特的数字信号;
    所述时钟源用于输出时钟信号,所述时钟信号用于同步所述N比特的数字信号;
    所述驱动器用于将所述N比特的数字信号转换为所述N个电压信号,并按照比特位从高到低以及所述电极从长到短的顺序,将所述N个电压信号一一对应施加在所述N个电极上。
  4. 根据权利要求3所述的方法,其特征在于,所述接收器用于接收所述N比特的数字信号包括:
    所述接收器具体用于,接收所述N比特的数字信号,所述N比特的数字信号依据调制规则生成,所述调制规则包括数字信号、电压信号以及所 述微环波导输出的光信号的功率之间的对应关系。
  5. 根据权利要求1至4任一项所述的信号发生器,其特征在于,所述驱动电路还包括:
    偏置器,用于接通电源,并将所述电源的电压信号施加在所述N个电极中最长的电极上,以设置所述微环波导的中心谐振波长。
  6. 根据权利要求1至5任一项所述的信号发生器,其特征在于,所述微环波导包括:
    跑道型微环波导,所述N个电极设置在所述跑道型微环波导的直波导上。
  7. 一种发射器,其特征在于,包括:
    M个驱动电路、直波导以及M个与所述直波导耦合的微环波导,其中,M个微环波导具有不同的中心谐振波长,每个微环波导对具有该微环波导的中心谐振波长的光信号进行PAM;
    所述M个微环波导和所述M个驱动电路一一对应,在一组对应的微环波导和驱动电路中:所述微环波导上设置有N个电极,N为整数且N≥1,M为整数且M≥1;所述驱动电路用于将接收到的N比特的数字信号转换为N个电压信号,并将所述N个电压信号分别施加在所述N个电极上,以使所述微环波导上被所述N个电极覆盖的区域产生PAM信号。
  8. 根据权利要求7所述的发射器,其特征在于,所述N为大于或等于2的整数,所述N个电极的长度关系为L0<L1<……<LN-1。
  9. 根据权利要求7或8所述的发射器,其特征在于,所述驱动电路包括:
    接收器、时钟源和驱动器;
    所述接收器用于接收所述N比特的数字信号;
    所述时钟源用于输出时钟信号,所述时钟信号用于同步所述N比特的数字信号;
    所述驱动器用于将所述N比特的数字信号转换为所述N个电压信号,并按照比特位从高到低以及所述电极从长到短的顺序,将所述N个电压信号一一对应施加在所述N个电极上,以改变所述电极在所述微环波导上覆盖的区域的光程,使得所述微环波导上被所述N个电极覆盖的区域的光程不同。
  10. 根据权利要求9所述的发射器,其特征在于,所述接收器用于接收所述N比特的数字信号包括:
    所述接收器具体用于,接收所述N比特的数字信号,所述N比特的数字信号依据调制规则生成,所述调制规则包括数字信号、电压信号以及所述微环波导输出的光信号的功率之间的对应关系。
  11. 根据权利要求7至10任一项所述的发射器,其特征在于,所述驱动电路还包括:
    偏置器,用于接通电源,并将所述电源的电压信号施加在所述N个电极中最长的电极上,以设置所述微环波导的中心谐振波长。
  12. 根据权利要求7至11任一项所述的发射器,其特征在于,所述微环波导包括:
    跑道型微环波导,所述N个电极设置在所述跑道型微环波导的直波导上。
PCT/CN2016/087481 2016-06-28 2016-06-28 信号发生器及发射器 WO2018000194A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/087481 WO2018000194A1 (zh) 2016-06-28 2016-06-28 信号发生器及发射器
CN201680086716.5A CN109314678B (zh) 2016-06-28 2016-06-28 信号发生器及发射器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087481 WO2018000194A1 (zh) 2016-06-28 2016-06-28 信号发生器及发射器

Publications (1)

Publication Number Publication Date
WO2018000194A1 true WO2018000194A1 (zh) 2018-01-04

Family

ID=60785012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087481 WO2018000194A1 (zh) 2016-06-28 2016-06-28 信号发生器及发射器

Country Status (2)

Country Link
CN (1) CN109314678B (zh)
WO (1) WO2018000194A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620375B2 (en) * 2016-02-09 2020-04-14 Ramot at Tel-Aviv University Ldt. Modulator using a micro-ring resonator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904731B (zh) * 2021-12-08 2022-03-22 杭州芯耘光电科技有限公司 一种调制器及实现pam4调制的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472868A (zh) * 2009-08-19 2012-05-23 光导束公司 硅基光调制器的先进调制格式
CN102648434A (zh) * 2009-10-09 2012-08-22 日本电气株式会社 光调制器模块和调制光信号的方法
CN104246583A (zh) * 2012-04-27 2014-12-24 日本电气株式会社 马赫-曾德尔型光调制器、光发射/接收系统和马赫-曾德尔型光调制器的控制方法
US20160103382A1 (en) * 2014-10-09 2016-04-14 Odile Liboiron-Ladouceur Methods and devices for photonic m-ary pulse amplitude modulation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099543A1 (ja) * 2011-12-28 2013-07-04 株式会社村田製作所 高周波信号処理装置および無線通信装置
WO2015059511A1 (en) * 2013-10-22 2015-04-30 Commissariat à l'énergie atomique et aux énergies alternatives Optomechanical device with mechanical elements and optical filters for actuating and/or detecting the movement of the elements
CN105388638B (zh) * 2015-12-24 2018-01-12 上海交通大学 一种硅波导热光调节结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472868A (zh) * 2009-08-19 2012-05-23 光导束公司 硅基光调制器的先进调制格式
CN102648434A (zh) * 2009-10-09 2012-08-22 日本电气株式会社 光调制器模块和调制光信号的方法
CN104246583A (zh) * 2012-04-27 2014-12-24 日本电气株式会社 马赫-曾德尔型光调制器、光发射/接收系统和马赫-曾德尔型光调制器的控制方法
US20160103382A1 (en) * 2014-10-09 2016-04-14 Odile Liboiron-Ladouceur Methods and devices for photonic m-ary pulse amplitude modulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620375B2 (en) * 2016-02-09 2020-04-14 Ramot at Tel-Aviv University Ldt. Modulator using a micro-ring resonator
US11294123B2 (en) 2016-02-09 2022-04-05 Ramot At Tel-Aviv University Ltd. Modulator using a micro-ring resonator

Also Published As

Publication number Publication date
CN109314678A (zh) 2019-02-05
CN109314678B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
US10164713B2 (en) Optical transmitter, optical modulator module, and optical transmission system
Moazeni et al. A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS
US9470951B2 (en) Methods and devices for photonic M-ary pulse amplitude modulation
Xiong et al. A monolithic 56 Gb/s CMOS integrated nanophotonic PAM-4 transmitter
US7809280B2 (en) Chirp-managed, electroabsorption-modulated laser
US20060029358A1 (en) Optical system comprising an FM source and a spectral reshaping element
Roshan-Zamir et al. A two-segment optical DAC 40 Gb/s PAM4 silicon microring resonator modulator transmitter in 65nm CMOS
Roshan-Zamir et al. A 40 Gb/s PAM4 silicon microring resonator modulator transmitter in 65nm CMOS
US20180259797A1 (en) In-situ ring-resonator-modulator calibration
US9523867B2 (en) Off quadrature biasing of Mach Zehnder modulator for improved OSNR performance
EP3185065B1 (en) Multi-segment ring modulator
CN105765884A (zh) 一种带有间隙分离的不平衡光边带的光发射器
US10715255B2 (en) Off quadrature mach-zehnder modulator biasing
WO2014141337A1 (ja) 光変調器、光送信器、光送受信システム及び光変調器の制御方法
JP2020505634A (ja) 光送信機
Dubray et al. 30Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator
WO2018000194A1 (zh) 信号发生器及发射器
JP2008004633A (ja) 光モジュール及び実装方法
US7257330B2 (en) Duobinary optical transmission apparatus using a semiconductor optical amplifier
Yamanaka et al. 100 Gb/s CFP coherent transceiver enabled by power-optimized DSP
US10892831B2 (en) Mach-zehnder optical modulator and optical modulation method
JP6032274B2 (ja) 光送信器、光送受信システム及び駆動回路
Park et al. Comparison of DAC-less PAM4 modulation in segmented ring resonator and dual cascaded ring resonator
JP2018093429A (ja) 光送信モジュール
US20230078976A1 (en) Mach-zehnder modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906596

Country of ref document: EP

Kind code of ref document: A1