WO2017222215A1 - 이차 전지 및 이차 전지의 전류 차단 방법 - Google Patents

이차 전지 및 이차 전지의 전류 차단 방법 Download PDF

Info

Publication number
WO2017222215A1
WO2017222215A1 PCT/KR2017/005970 KR2017005970W WO2017222215A1 WO 2017222215 A1 WO2017222215 A1 WO 2017222215A1 KR 2017005970 W KR2017005970 W KR 2017005970W WO 2017222215 A1 WO2017222215 A1 WO 2017222215A1
Authority
WO
WIPO (PCT)
Prior art keywords
bimetal
secondary battery
electrode tab
safety vent
temperature
Prior art date
Application number
PCT/KR2017/005970
Other languages
English (en)
French (fr)
Inventor
배영산
류덕현
이관수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/757,844 priority Critical patent/US11139532B2/en
Priority to CN201780003183.4A priority patent/CN108028349B/zh
Priority to JP2018527216A priority patent/JP6605143B2/ja
Priority to EP17815628.7A priority patent/EP3333939A4/en
Publication of WO2017222215A1 publication Critical patent/WO2017222215A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/101Bimetal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery and a method for interrupting current of a secondary battery, and to a device and a method for interrupting an emergency current such as a short circuit occurring in a secondary battery.
  • Secondary batteries mean batteries that can be repeatedly charged and discharged, and various types of secondary batteries are used according to electronic devices that require secondary batteries. Normally, these secondary batteries operate normally while being charged or discharged depending on the purpose, but gas is generated inside the battery due to a short circuit due to an external shock or the like, so that pressure is generated or the temperature inside the battery is generated. May occur. In this case, a fire or explosion may occur when gas is not released to the outside or when the temperature inside the battery is continuously raised. To prevent this, the secondary battery may be equipped with a device for blocking the flow of current of the secondary battery in an emergency.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a secondary battery according to the prior art.
  • the secondary battery 1 constitutes a case of a secondary battery, and is provided on a battery can 2 having an open upper portion, an upper portion of the battery can 2, and sealing an upper portion of the battery can 2.
  • Cap plate 3 may be included. It may include a safety vent (5) provided between the battery can (2) and the cap plate (3)
  • a safety vent (5) provided between the battery can (2) and the cap plate (3)
  • a gasket 4 may be interposed to seal it.
  • a CID filter (Current Interrupting Device) 6 may be attached to the lower portion of the safety vent 5 in a welded state with the safety vent 5.
  • the CID filter 6 is a path through which current flows from the electrode assembly through the CID filter 6 to the safety vent 5.
  • the entire safety vent 5 or the center of the safety vent 5 is swollen. Therefore, part or all of the safety vent 5 breaks.
  • the safety vent 5 breaks, the safety vent 5 is separated from the CID filter 6 to cut off the current and discharge the gas inside the secondary battery 1.
  • an object of the present invention is to cut off the current when the temperature inside the secondary battery reaches a certain temperature even before the pressure inside the secondary battery reaches a certain pressure to effectively cut off the current in an emergency. To prevent explosion or fire.
  • an electrode assembly for achieving the above object, an electrode assembly; An electrode tab extending from the electrode assembly; A can member accommodating the electrode assembly and having an open top; A cap assembly coupled to the top of the can member and closing the top of the can member; And a bimetal contacting the electrode tab and the cap assembly below a strain temperature; It includes, wherein the bimetal is provided with a secondary battery spaced apart from the cap assembly above the deformation temperature.
  • the cap assembly may include a cap plate provided at the outermost part; And a safety vent positioned between the cap plate and the electrode assembly and having a notch formed on a surface thereof.
  • the electrode tab includes a positive electrode tab; And negative electrode tabs;
  • the bimetal may be provided between the safety vent and the electrode assembly. The bimetal may be in contact with the safety vent and the positive electrode tab below the deformation temperature, and may be spaced apart from the safety vent above the deformation temperature. .
  • the electrical resistance of the material used to make the negative electrode tab may be less than the electrical resistance of nickel (Ni).
  • the material used to make the negative electrode tab may be nickel-clad.
  • the bimetal may include an upper bimetal forming an upper portion of the bimetal; A lower bimetal forming a lower part of the bimetal; It includes, the thermal expansion coefficient of the lower bimetal may be smaller than the thermal expansion coefficient of the upper bimetal.
  • the bimetal may be a shape memory alloy.
  • the deformation temperature may be 75 degrees Celsius or more and 85 degrees or less.
  • a short-circuit step of shorting the electrode inside the secondary battery A temperature raising step of increasing the temperature of the bimetal as an abnormal current generated in the shorting step flows into the bimetal contacting at least part of the cap assembly of the secondary battery and the electrode tab connected to the electrode; And blocking the current flowing into the cap assembly when the bimetal is bent by the temperature raising step so that the bimetal is spaced apart from the cap assembly when the temperature of the bimetal becomes greater than the deformation temperature.
  • a current blocking method of a secondary battery including a is provided.
  • the secondary battery includes an electrode assembly; A can member accommodating the electrode assembly; And a cap assembly coupled to the top of the can member. It includes, The cap assembly, Cap plate provided on the outermost portion; And a safety vent provided between the cap plate and the electrode assembly and having a notch formed on a surface thereof. An electrode tab extending from the electrode assembly; And a negative electrode tab, wherein the bimetal is in contact with the safety vent and the positive electrode tab in the temperature raising step, the temperature is increased by a current flowing from the positive electrode tab, and the bimetal is the safety in the blocking step. A current flowing from the vent to the safety vent may be blocked.
  • the electrical resistance of the negative electrode tab may be smaller than that of nickel (Ni).
  • the material of the negative electrode tab may be nickel-clad.
  • the bimetal may include an upper bimetal forming an upper portion of the bimetal; A lower bimetal forming a lower part of the bimetal; It includes, the thermal expansion coefficient of the lower bimetal may be smaller than the thermal expansion coefficient of the upper bimetal.
  • the bimetal may be a shape memory alloy.
  • the deformation temperature may be 75 degrees Celsius or more and 85 degrees or less.
  • an object of the present invention is to effectively cut off a current in an emergency by blocking current when the temperature inside the secondary battery reaches a predetermined temperature even before the pressure inside the secondary battery reaches a predetermined pressure. Prevent explosion or fire.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a secondary battery according to the prior art.
  • FIG. 2 is a cross-sectional view showing the structure of a normal secondary battery according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing the structure of a secondary battery in an emergency according to an embodiment of the present invention.
  • FIG. 4 is a plan view illustrating a structure of an electrode assembly that may be applied to a rechargeable battery according to an exemplary embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a current blocking method of a secondary battery according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing the structure of an emergency secondary battery according to an embodiment of the present invention.
  • the secondary battery 10 may have various shapes.
  • the secondary battery 10 may be, for example, a cylindrical secondary battery having a cylindrical shape.
  • the secondary battery 10 may include a can member 110 for receiving an internal configuration of an electrode assembly of the secondary battery.
  • the can member 110 may have a structure in which an upper portion thereof is open.
  • the can member 110 may also have a cylindrical shape.
  • the cap plate 120 may be provided at an upper portion of the can member 110.
  • the cap plate 120 may be configured to block an upper portion of the can member 110, and may be configured to isolate an inner space of the can member 110 from the outside by sealing an upper portion of the can member 110. It may be a structure which forms the electrode terminal (especially positive electrode terminal in this invention) of a secondary battery.
  • the gasket 130 may be interposed between the inner surface of the can member 110 and the cap plate 120 to improve the sealing property of the inside of the can member 110 (or inside the secondary battery 10).
  • a safety vent 140 may be provided below the cap plate 120.
  • the safety vent 140 may be provided between the cap plate 120 and the electrode assembly (see FIG. 4).
  • the safety vent 140 may be formed with one or more notches 140a. When the notch 140a is formed in the safety vent 140, when the pressure inside the secondary battery increases, the safety vent is broken at the boundary of the notch, and a part of the safety vent is spaced apart from another part of the safety vent to prevent the flow of current. You can block. Meanwhile, the cap plate 120, the gasket 130, and the safety vent 140 described above may be gathered and coupled to an upper portion of the can member 110 to form a cap assembly blocking the upper portion of the can member 110.
  • the secondary battery 10 may include a bimetal 150.
  • Bimetal is a composition made of different kinds of metals.
  • Bimetal means that the prefix 'bi' means originally made of two different metals, but the bimetal used herein is interpreted to include not only two kinds but also three or more kinds of metals. Can be.
  • the bimetal 150 may be in contact with the safety vent 140 in a normal operation of the secondary battery.
  • the bimetal 150 may also be in contact with the positive electrode tab of the electrode assembly.
  • the meaning of “contacting” may be interpreted to include not only being in direct contact but also being indirectly contacted through another configuration.
  • the bimetal 150 may normally be in contact with the safety vent 140 and be spaced apart from the safety vent 140 by bending when the electrode of the secondary battery is shorted.
  • the bimetal 150 is spaced apart from the safety vent 140 by bending downward in an emergency in which an electrode of the secondary battery is shorted. Therefore, the stability of the secondary battery may be ensured by blocking current from flowing in the safety vent 140.
  • the bimetal 150 may be bent because the temperature of the bimetal increases. That is, according to an embodiment of the present invention, the shape of the bimetal is changed according to temperature by applying bimetals having metals having different coefficients of thermal expansion to secondary batteries. When the bimetal 150 reaches a predetermined temperature or more, the bimetal 150 ) May be spaced apart from the safety vent 140.
  • a 'strain temperature' the temperature at which the bimetal 150 begins to be spaced apart from the safety vent 140 or the cap assembly.
  • the deformation temperature of the bimetals 150 may be around 80 degrees Celsius. That is, according to the exemplary embodiment of the present invention, the bimetals 150 are normally in contact with the safety vent 140, and when the bimetals 150 are approximately 80 degrees or more, the bimetals 150 are spaced apart from the safety vents. To block the flow of current in the safety vent 140.
  • the deformation temperature of the bimetals 150 may be 75 degrees Celsius or more and 85 degrees or less.
  • the bimetal 150 is a bar manufactured by attaching two or more kinds of metals, the upper bimetal 152 constituting the upper portion of the bimetal 150 and the lower bimetal 154 provided on the lower portion of the upper bimetal 152 It may include.
  • the upper bimetal 152 may be in contact with the safety vent 140 normally.
  • the bimetal according to an embodiment of the present invention needs to be bent downward at the deformation temperature because it should be spaced apart from the safety vent at the deformation temperature or more.
  • the thermal expansion coefficient of the lower bimetal 154 may be smaller than the thermal expansion coefficient of the upper bimetal 152.
  • the bimetal 150 may include a shape memory alloy.
  • the shape memory alloy When the shape memory alloy is applied to the bimetal 150, since the shape of the bimetal 150 is constant according to the temperature of the bimetal 150, the bimetal 150 contacts the safety vent 140 at a deformation temperature or is safe. It can be ensured that the spaced apart from the vent 140, the stability of the secondary battery is increased when a short circuit occurs.
  • FIG. 4 is a plan view illustrating a structure of an electrode assembly that may be applied to a rechargeable battery according to an exemplary embodiment of the present invention.
  • the electrode assembly 160 is manufactured by alternately stacking electrodes and separators, and may be manufactured by various manufacturing methods, and may have various shapes.
  • a positive electrode tab 162 and a negative electrode tab 164 extending from the electrode assembly 160 may be formed at ends of the electrode assembly 160.
  • the positive electrode tab 162 may be in contact with the bimetal.
  • the negative electrode tab 164 may be manufactured using various materials. According to one embodiment of the present invention, the electrical resistance of the material used to manufacture the negative electrode tab 164 may be smaller than that of nickel (Ni). have. In addition, the material used to make the negative electrode tab 164 may be nickel-clad.
  • the temperature of the bimetal also increases as the temperature of the positive electrode tab which is in contact with the bimetal increases in an emergency in which the electrode is shorted.
  • the temperature of the positive electrode tab needs to be increased quickly.
  • the resistance of the negative electrode tab is relatively large, the current intensity decreases, so that the temperature of the positive electrode tab rises relatively slowly, and thus the temperature of the bimetal rises relatively slowly.
  • the resistance of the negative electrode tab is relatively large, the temperature of the bimetal rises relatively slowly, so that the current is not cut off quickly when a short circuit occurs.
  • the electrical resistance of the material used in the manufacture of the negative electrode tab 164 may be less than the electrical resistance of nickel (Ni) conventionally used in the manufacture of negative electrode tabs.
  • the material used to make the negative electrode tab 164 may be, for example, nickel-clad formed by attaching nickel to a metal surface such as copper.
  • Nickel-clads have a lower electrical resistance than nickel, so when nickel-clad is used as the material of the negative electrode tab, the strength of the current increases during short-circuit of the electrode, causing the temperature of the positive electrode tab to rise considerably faster. Accordingly, the temperature of the bimetal in contact with the positive electrode tab also rises rapidly and rapidly, so that the current can be effectively cut off before an accident occurs even when the electrode is shorted.
  • the positive electrode tab 162 may be made of aluminum.
  • FIG. 5 is a flowchart illustrating a current blocking method of a secondary battery according to an embodiment of the present invention.
  • the current blocking method of the secondary battery may include a short circuiting step in which an electrode inside the secondary battery is shorted.
  • the short-circuit step occurs, the temperature of the bimetal rises as the abnormal current generated in the short-circuit step flows into the bimetal contacting at least part of the safety vent of the secondary battery and the electrode tab (more specifically, the positive electrode tab) connected to the electrode.
  • a temperature raising step can be made.
  • the temperature rising step is performed, the bimetal is bent by the temperature rising step, so that a blocking step may be performed in which the bimetal is spaced apart from the safety vent to block the current flowing to the safety vent. It has been described above that the temperature of the bimetal when the bimetal is spaced from the safety vent is defined herein as the 'strain temperature'.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

이차 전지 및 이차 전지의 전류 차단 방법이 개시된다. 본 발명에 따르면, 이차 전지에 바이메탈을 적용함으로써, 이차 전지 내부의 압력이 일정 압력에 도달하기 전이라도 이차 전지 내부의 온도가 일정 온도에 도달하는 경우 전류를 차단할 수 있도록 함으로써 비상시에 전류 차단이 효과적으로 이루어질 수 있도록 하여 전지의 폭발 또는 발화를 방지할 수 있다.

Description

이차 전지 및 이차 전지의 전류 차단 방법
관련출원과의 상호인용
본 출원은 2016년 6월 22일자 한국특허출원 제10-2016-0077867호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차 전지 및 이차 전지의 전류 차단 방법에 관한 것으로서, 이차 전지에서 단락이 발생하는 등의 비상시 전류를 차단하기 위한 장치 및 방법에 관한 것이다.
이차전지는 반복적인 충전과 방전이 가능한 전지를 의미하는 것으로서, 이차전지를 필요로 하는 전자 기기에 따라 다양한 종류의 이차전지가 사용되고 있다. 이러한 이차 전지는 평상시에는 용도에 따라 충전 또는 방전이 되면서 정상적으로 작동하는 것이 일반적이지만, 외부의 충격 등으로 인해 전지가 단락이 되는 등을 이유로 전지 내부에 가스가 발생하여 압력이 발생하거나 전지 내부의 온도가 발생하는 경우가 발생할 수 있다. 이러한 경우, 가스가 외부로 방출되지 않거나 전지 내부의 온도가 지속적으로 상승하는 경우 화재 또는 폭발이 발생할 수 있다. 이를 방지하기 위해서 이차 전지에는 비상시에 이차 전지의 전류의 흐름을 차단하기 위한 장치가 탑재될 수 있다.
도 1은 종래 기술에 따른 이차 전지의 구조의 일 예를 도시한 단면도이다.
도 1에 도시된 바와 같이 이차 전지(1)는 이차 전지의 케이스를 구성하고 상부가 개방되어 있는 전지 캔(2), 전지 캔(2)의 상부에 구비되며 전지 캔(2)의 상부를 밀봉하는 캡 플레이트(3)를 포함할 수 있다. 전지 캔(2)과 캡 플레이트(3) 사이에 구비되는 안전 벤트(5)를 포함할 수 있다또한, 전지 캔(2)의 내측면과 캡 플레이트(3) 사이에는 이차 전지 내부를 외부로부터 보다 밀봉하기 위해 가스켓(4)이 개재될 수 있다. 또한, 안전 벤트(5)의 하부에는 CID 필터(Current Interrupting Device)(6)가 안전 벤트(5)와 용접된 상태로 부착될 수 있다. CID 필터(6)는 전류가 흐르는 경로로서 전극 조립체로부터 CID 필터(6)를 거친 전류는 안전 벤트(5)를 흐르게 된다.
종래 기술에 따르면, 이차 전지(1)의 단락 등으로 인해 이차 전지(1) 내부의 압력이 올라가는 경우 안전 벤트(5) 전체 또는 안전 벤트(5)의 중심부가 부풀어 오르게 된다. 따라서, 안전 벤트(5)의 일부 또는 전부가 파단한다. 안전 벤트(5)가 파단하면, 안전 벤트(5)가 CID 필터(6)로부터 떨어지게 됨으로써 전류를 차단하고 이차 전지(1) 내부의 가스를 배출하게 된다.
그러나, 이러한 종래 기술에 따른 비상시의 이차 전지의 전류 차단 원리는 이차 전지의 내부 압력이 증가한 후 전류를 차단하는 것이므로 이차 전지가 제대로 밀봉되지 않는 등의 이유로 이차 전지의 내부 압력이 충분히 증가하지 않는 경우 전류가 제대로 차단되지 않는 문제점이 있었다. 또한, 이차 전지의 내부 압력이 일정 압력에 도달하기 이전에 단락 등으로 인해 과전류가 흘러 이차 전지 내부의 온도가 비정상적으로 올라간 경우에는 전류가 차단되기 이전에 발화가 이미 발생하는 문제점도 있었다.
따라서, 본 발명의 목적은 이차 전지 내부의 압력이 일정 압력에 도달하기 전이라도 이차 전지 내부의 온도가 일정 온도에 도달하는 경우 전류를 차단할 수 있도록 함으로써 비상시에 전류 차단이 효과적으로 이루어질 수 있도록 하여 전지의 폭발 또는 발화를 방지하는 데 있다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 전극 조립체; 상기 전극 조립체로부터 연장되어 형성되는 전극 탭; 상기 전극 조립체를 수용하며 상부가 개방되어 있는 캔 부재; 상기 캔 부재의 상부에 결합되며 상기 캔 부재의 상부를 막는 캡 어셈블리; 및 변형 온도 이하에서 상기 전극 탭 및 상기 캡 어셈블리와 접촉하는 바이메탈; 을 포함하고, 상기 바이메탈은 상기 변형 온도 이상에서 상기 캡 어셈블리로부터 이격되는 이차 전지가 제공된다.
상기 캡 어셈블리는, 최외각부에 구비되는 캡 플레이트; 및 상기 캡 플레이트와 상기 전극 조립체 사이에 위치되고 표면에 노치가 형성되는 안전 벤트; 를 포함하고, 상기 전극 탭은 양극 탭; 및 음극 탭; 을 포함하며, 상기 바이메탈은, 상기 안전 벤트와 상기 전극 조립체의 사이에 구비되며, 상기 변형 온도 이하에서 상기 안전 벤트 및 상기 양극 탭과 접촉하고, 상기 변형 온도 이상에서 상기 안전 벤트와 이격될 수 있다.
상기 음극 탭의 제조에 사용된 재료의 전기 저항은 니켈(Ni)의 전기 저항보다 작을 수 있다.
상기 음극 탭의 제조에 사용된 재료는 니켈-클래드(Ni-Clad)일 수 있다.
상기 바이메탈은, 상기 바이메탈의 상부를 형성하는 상부 바이메탈; 및 상기 바이메탈의 하부를 형성하는 하부 바이메탈; 을 포함하고, 상기 하부 바이메탈의 열팽창계수는 상기 상부 바이메탈의 열팽창계수보다 작을 수 있다.
상기 바이메탈은 형상기억합금일 수 있다.
상기 변형 온도는 섭씨 75도 이상 85도 이하일 수 있다.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따르면, 이차 전지 내부의 전극이 단락되는 단락 단계; 상기 이차 전지의 캡 어셈블리 및 상기 전극에 연결된 전극 탭에 적어도 일부가 접촉하는 바이메탈에 상기 단락 단계에서 발생된 이상 전류가 흐름에 따라 상기 바이메탈의 온도가 상승하는 온도 상승 단계; 및 상기 온도 상승 단계에 의해 상기 바이메탈이 휨으로써, 상기 바이메탈의 온도가 변형 온도 이상이 되면 상기 바이메탈이 상기 캡 어셈블리로부터 이격되어 상기 캡 어셈블리로 흐르는 전류가 차단되는 차단 단계; 를 포함하는 이차 전지의 전류 차단 방법이 제공된다.
상기 이차 전지는, 전극 조립체; 상기 전극 조립체를 수용하는 캔 부재; 및 상기 캔 부재의 상부에 결합되는 캡 어셈블리; 를 포함하고, 상기 캡 어셈블리는, 최외각부에 구비되는 캡 플레이트; 및 상기 캡 플레이트와 상기 전극 조립체 사이에 구비되고 표면에 노치가 형성되는 안전 벤트; 를 포함하며, 상기 전극 조립체로부터 연장 형성되는 전극 탭은 양극 탭; 및 음극 탭을 포함하고, 상기 온도 상승 단계에서 상기 바이메탈은 상기 안전 벤트 및 상기 양극 탭과 접촉하고 있으며, 상기 양극 탭으로부터 흘러 들어오는 전류에 의해 온도가 상승하고, 상기 차단 단계에서 상기 바이메탈은 상기 안전 벤트로부터 이격되어 상기 안전 벤트로 흐르는 전류가 차단될 수 있다.
상기 음극 탭의 전기 저항은 니켈(Ni)의 전기 저항보다 작을 수 있다.
상기 음극 탭의 재료는 니켈-클래드(Ni-Clad)일 수 있다.
상기 바이메탈은, 상기 바이메탈의 상부를 형성하는 상부 바이메탈; 및 상기 바이메탈의 하부를 형성하는 하부 바이메탈; 을 포함하고, 상기 하부 바이메탈의 열팽창계수는 상기 상부 바이메탈의 열팽창계수보다 작을 수 있다.
상기 바이메탈은 형상기억합금일 수 있다.
상기 변형 온도는 섭씨 75도 이상 85도 이하일 수 있다.
본 발명에 따르면, 목적은 이차 전지 내부의 압력이 일정 압력에 도달하기 전이라도 이차 전지 내부의 온도가 일정 온도에 도달하는 경우 전류를 차단할 수 있도록 함으로써 비상시에 전류 차단이 효과적으로 이루어질 수 있도록 하여 전지의 폭발 또는 발화를 방지할 수 있다.
도 1은 종래 기술에 따른 이차 전지의 구조의 일 예를 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 평상시의 이차 전지의 구조를 도시한 단면도이다.
도 3은 본 발명의 일 실시예에 따른 비상시의 이차 전지의 구조를 도시한 단면도이다.
도 4는 본 발명의 일 실시예에 따른 이차 전지에 적용될 수 있는 전극 조립체의 구조를 도시한 평면도이다.
도 5는 본 발명의 일 실시예에 따른 이차 전지의 전류 차단 방법을 설명한 흐름도이다.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 이차 전지의 구조에 대해 설명하도록 한다.
이차 전지
도 2는 본 발명의 일 실시예에 따른 평상시의 이차 전지의 구조를 도시한 단면도이고, 도 3은 본 발명의 일 실시예에 따른 비상시의 이차 전지의 구조를 도시한 단면도이다.
도 2에는 본 발명의 일 실시예에 따른 이차 전지(10)가 도시되어 있다. 이차 전지(10)는 다양한 형상을 가질 수 있다. 이차 전지(10)는, 예를 들어, 원통 형상을 갖는 원통형 이차 전지일 수 있다.
이차 전지(10)는 이차 전지의 전극 조립체 등의 내부 구성을 수용하기 위한 캔 부재(110)를 포함할 수 있다. 캔 부재(110)는 상부가 개방된 구조를 가질 수 있다. 이차 전지(10)가 원통 형상을 가질 수 있는 것과 대응하여, 캔 부재(110) 역시 원통 형상을 가질 수 있다.
캔 부재(110)의 상부에는 캡 플레이트(120)가 구비될 수 있다. 캡 플레이트(120)는 캔 부재(110)의 상부를 막기 위한 구성일 수 있으며, 캔 부재(110)의 상부를 밀봉함으로써 캔 부재(110)의 내부 공간을 외부로부터 격리시키기 위한 구성일 수 있고, 이차 전지의 전극 단자(본 발명에서는 특히 양극 단자)를 형성하는 구성일 수 있다.
캔 부재(110) 내부(또는, 이차 전지(10) 내부)의 밀봉성을 향상시키기 위해 캔 부재(110)의 내측면과 캡 플레이트(120) 사이에는 가스켓(130)이 개재될 수 있다.
또한, 캡 플레이트(120)의 하부에는 안전 벤트(140)가 구비될 수 있다. 안전 벤트(140)는 캡 플레이트(120)와 전극 조립체(도 4 참조)의 사이에 구비될 수 있다. 안전 벤트(140)는 하나 이상의 노치(140a)가 형성될 수 있다. 안전 벤트(140)에 노치(140a)가 형성되는 경우 이차 전지 내부의 압력이 상승하였을 때, 노치를 경계로 안전 벤트가 파단되어 안전 벤트의 일부가 안전 벤트의 다른 부분으로부터 이격됨으로써 전류의 흐름을 차단할 수 있다. 한편, 상기에서 설명한 캡 플레이트(120), 가스켓(130) 및 안전 벤트(140)가 모여 캔 부재(110)의 상부에 결합되며 캔 부재(110)의 상부를 막는 캡 어셈블리를 구성할 수 있다.
한편, 본 발명의 일 실시예에 따른 이차 전지(10)는 바이메탈(150)을 포함할 수 있다.
바이메탈(bimetal)은 다른 종류의 금속을 붙여 만든 하나의 구성이다. 바이메탈은 접두사인 'bi'의 의미상 본래 서로 다른 '두 종류'의 금속을 붙여 만들어진 것을 의미하는 것이나, 본 명세서에서 사용된 바이메탈은 두 종류 뿐만 아니라 세 종류 이상의 금속을 붙여 만든 것도 포함하는 것으로 해석될 수 있다.
*도 2에 도시된 바와 같이 이차 전지가 정상적으로 작동하는 평상시에 바이메탈(150)은 안전 벤트(140)와 접촉하고 있을 수 있다. 또한, 도면에 도시되지는 않았지만 바이메탈(150)은 전극 조립체의 양극 탭과도 접촉하고 있을 수 있다. 이때, '접촉한다'는 의미는 직접적으로 맞닿아 있는 것뿐만 아니라, 다른 구성을 통해 간접적으로 맞닿아 있는 것을 포함하는 것으로 해석될 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 바이메탈(150)은 평상시에는 안전 벤트(140)와 접촉하고 있다가 이차 전지의 전극이 단락되는 경우 휨으로써 안전 벤트(140)로부터 이격될 수 있다.
보다 상세하게는, 도 3에 도시된 바와 같이 이차 전지의 전극이 단락되는 비상시에 바이메탈(150)은 아래 방향으로 휨으로써 안전 벤트(140)로부터 이격된다. 따라서, 안전 벤트(140)에 전류가 흐르는 것을 차단함으로써 이차 전지의 안정성이 보장될 수 있다.
이때, 바이메탈(150)이 휘는 것은 바이메탈의 온도가 상승하기 때문일 수 있다. 즉, 본 발명의 일 실시예에 따르면 서로 다른 열팽창계수를 갖는 금속을 붙인 바이메탈을 이차 전지에 적용함으로써 온도에 따라 바이메탈의 형상이 변하게 되는데, 바이메탈(150)이 일정 온도 이상에 도달하면 바이메탈(150)이 안전 벤트(140)로부터 이격될 수 있다. 이하, 본 명세서 및 청구범위에서는, 바이메탈(150)이 안전 벤트(140) 또는 캡 어셈블리로부터 이격되기 시작하는 온도를 '변형 온도'라 부르기로 한다.
본 발명에 따르면, 바이메탈(150)의 변형 온도는 섭씨 80도 부근일 수 있다. 즉, 본 발명의 일 실시예에 따르면 평소에는 바이메탈(150)이 안전 벤트(140)와 접촉하고 있다가, 바이메탈(150)이 대략 섭씨 80도 이상이 되는 경우 바이메탈(150)이 안전 벤트로부터 이격되어 안전 벤트(140)에서의 전류의 흐름을 차단할 수 있다. 예를 들어, 본 발명의 일 실시예에 따르면, 바이메탈(150)의 변형 온도는 섭씨 75도 이상 85도 이하일 수 있다.
한편, 바이메탈(150)은 두 종류 이상의 금속을 붙여서 제조한 구성인 바, 바이메탈(150)의 상부를 구성하는 상부 바이메탈(152) 및 상부 바이메탈(152)의 하부에 구비되는 하부 바이메탈(154)를 포함할 수 있다. 상부 바이메탈(152)은 평상시 안전 벤트(140)와 접촉할 수 있다.
한편, 본 발명의 일 실시예에 따른 바이메탈은 변형 온도 이상에서 안전 벤트로부터 이격되어야 하므로 변형 온도 이상에서 아래로 휘어질 필요가 있다. 이를 위해, 하부 바이메탈(154)의 열팽창계수는 상부 바이메탈(152)의 열팽창계수보다 작을 수 있다. 또한, 바이메탈(150)은 형상기억합금을 포함할 수 있다.
바이메탈(150)에 형상기억합금이 적용되는 경우, 바이메탈(150)이 갖는 온도에 따라 갖는 바이메탈(150)의 형상이 일정하기 때문에 변형 온도에서 바이메탈(150)이 안전 벤트(140)와 접촉하거나 안전 벤트(140)로부터 이격되는 것을 보장할 수 있어 단락이 발생시 이차 전지의 안정성이 보다 증대된다.
도 4는 본 발명의 일 실시예에 따른 이차 전지에 적용될 수 있는 전극 조립체의 구조를 도시한 평면도이다.
전극 조립체(160)는 전극 및 분리막이 교대로 적층되어 제조된 구성으로서 다양한 제조 방법에 의해 제조될 수 있고, 다양한 형상을 가질 수 있다.
도 4에 도시된 바와 같이 전극 조립체(160)의 끝부에는 전극 조립체(160)로부터 연장되어 형성되는 양극 탭(162) 및 음극 탭(164)이 형성될 수 있다. 이때, 양극 탭(162)은 바이메탈과 접촉할 수 있음은 전술한 바 있다.
음극 탭(164)은 다양한 재료를 이용하여 제조될 수 있는데, 본 발명의 일 실시예에 따르면, 음극 탭(164)의 제조에 사용된 재료의 전기 저항은 니켈(Ni)의 전기 저항보다 작을 수 있다. 또한, 음극 탭(164)의 제조에 사용된 재료는 니켈-클래드(Ni-Clad)일 수 있다.
본 발명의 일 실시예에 따르면, 전극이 단락되는 비상시, 바이메탈과 접촉하고 있던 양극 탭의 온도가 올라감에 따라 바이메탈의 온도도 올라가게 된다. 이때, 비상시에 바이메탈이 안전 벤트로부터 보다 빨리 이격될 수 있도록 하기 위해서는, 양극 탭의 온도가 빨리 올라갈 필요가 있다. 이때, 동일하게 전극의 단락이 발생하더라도 음극 탭의 저항이 상대적으로 큰 경우 전류의 세기가 작아지게 되므로 양극 탭의 온도가 상대적으로 천천히 올라가게 되고, 이에 따라 바이메탈의 온도도 상대적으로 천천히 올라가게 된다. 결과적으로, 음극 탭의 저항이 상대적으로 큰 경우 바이메탈의 온도가 상대적으로 천천히 올라가게 되므로 단락 발생시 신속한 전류 차단이 이루어지지 않게 된다.
따라서, 본 발명의 일 실시예에 따르면, 음극 탭(164)의 제조에 사용된 재료의 전기 저항은 종래에 음극 탭의 제조에 일반적으로 사용되는 니켈(Ni)의 전기 저항보다 작을 수 있다.
특히, 음극 탭(164)의 제조에 사용된 재료는, 예를 들어, 구리 등의 금속 표면에 니켈을 부착함으로써 형성되는 니켈-클래드(Ni-Clad)일 수 있다. 니켈-클래드는 니켈에 비해 전기 저항이 작으므로, 음극 탭의 재료로서 니켈-클래드를 사용할 경우 전극의 단락 시 전류의 세기가 더 크게 되므로 양극 탭의 온도가 상당히 빨리 상승하게 된다. 그에 따라서, 양극 탭과 접촉하고 있는 바이메탈의 온도도 빠르고 급격하게 상승하게 되므로 전극의 단락 시에도 사고 발생 전에 전류를 효과적으로 차단할 수 있게 된다. 한편, 양극 탭(162)은 알루미늄으로 제조될 수 있다.
이하, 본 발명의 일 실시예에 따른 이차 전지의 전류 차단 방법을 설명하도록 한다.
이차 전지의 전류 차단 방법
도 5는 본 발명의 일 실시예에 따른 이차 전지의 전류 차단 방법을 설명한 흐름도이다.
도 5에 도시된 바와 같이, 본 발명의 일 실시예에 따른 이차 전지의 전류 차단 방법은, 이차 전지 내부의 전극이 단락되는 단락 단계를 포함할 수 있다. 단락 단계가 이루어지면, 이차 전지의 안전 벤트 및 전극에 연결된 전극 탭(보다 상세하게는, 양극 탭)에 적어도 일부가 접촉하는 바이메탈에 단락 단계에서 발생된 이상 전류가 흐름에 따라 바이메탈의 온도가 상승하는 온도 상승 단계가 이루어질 수 있다. 온도 상승 단계가 이루어지면, 상기 온도 상승 단계에 의해 바이메탈이 휨으로써, 바이메탈이 안전 벤트로부터 이격되어 안전 벤트로 흐르는 전류가 차단되는 차단 단계가 이루어질 수 있다. 바이메탈이 안전 벤트로부터 이격될 때의 바이메탈의 온도를 본 명세서에서는 '변형 온도'로 정의하였음은 전술한 바 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 실시가 가능함은 물론이다.

Claims (14)

  1. 전극 조립체;
    상기 전극 조립체로부터 연장되어 형성되는 전극 탭;
    상기 전극 조립체를 수용하며 상부가 개방되어 있는 캔 부재;
    상기 캔 부재의 상부에 결합되며 상기 캔 부재의 상부를 막는 캡 어셈블리; 및
    변형 온도 이하에서 상기 전극 탭 및 상기 캡 어셈블리와 접촉하는 바이메탈; 을 포함하고,
    상기 바이메탈은 상기 변형 온도 이상에서 상기 캡 어셈블리로부터 이격되는 이차 전지.
  2. 청구항 1에 있어서,
    상기 캡 어셈블리는,
    최외각부에 구비되는 캡 플레이트; 및 상기 캡 플레이트와 상기 전극 조립체 사이에 위치되고 표면에 노치가 형성되는 안전 벤트; 를 포함하고,
    상기 전극 탭은 양극 탭; 및 음극 탭; 을 포함하며,
    상기 바이메탈은,
    상기 안전 벤트와 상기 전극 조립체의 사이에 구비되며, 상기 변형 온도 이하에서 상기 안전 벤트 및 상기 양극 탭과 접촉하고, 상기 변형 온도 이상에서 상기 안전 벤트와 이격되는 이차 전지.
  3. 청구항 2에 있어서,
    상기 음극 탭의 제조에 사용된 재료의 전기 저항은 니켈(Ni)의 전기 저항보다 작은 이차 전지.
  4. 청구항 3에 있어서,
    상기 음극 탭의 제조에 사용된 재료는 니켈-클래드(Ni-Clad)인 이차 전지.
  5. 청구항 1에 있어서,
    상기 바이메탈은,
    상기 바이메탈의 상부를 형성하는 상부 바이메탈; 및
    상기 바이메탈의 하부를 형성하는 하부 바이메탈; 을 포함하고,
    상기 하부 바이메탈의 열팽창계수는 상기 상부 바이메탈의 열팽창계수보다 작은 이차 전지.
  6. 청구항 1에 있어서,
    상기 바이메탈은 형상기억합금인 이차 전지.
  7. 청구항 1에 있어서,
    상기 변형 온도는 섭씨 75도 이상 85도 이하인 이차 전지.
  8. 이차 전지 내부의 전극이 단락되는 단락 단계;
    상기 이차 전지의 캡 어셈블리 및 상기 전극에 연결된 전극 탭에 적어도 일부가 접촉하는 바이메탈에 상기 단락 단계에서 발생된 이상 전류가 흐름에 따라 상기 바이메탈의 온도가 상승하는 온도 상승 단계; 및
    상기 온도 상승 단계에 의해 상기 바이메탈이 휨으로써, 상기 바이메탈의 온도가 변형 온도 이상이 되면 상기 바이메탈이 상기 캡 어셈블리로부터 이격되어 상기 캡 어셈블리로 흐르는 전류가 차단되는 차단 단계; 를 포함하는 이차 전지의 전류 차단 방법.
  9. 청구항 8에 있어서,
    상기 이차 전지는,
    전극 조립체;
    상기 전극 조립체를 수용하는 캔 부재; 및
    상기 캔 부재의 상부에 결합되는 캡 어셈블리; 를 포함하고,
    상기 캡 어셈블리는,
    최외각부에 구비되는 캡 플레이트; 및
    상기 캡 플레이트와 상기 전극 조립체 사이에 구비되고 표면에 노치가 형성되는 안전 벤트; 를 포함하며,
    상기 전극 조립체로부터 연장 형성되는 전극 탭은 양극 탭; 및 음극 탭을 포함하고,
    상기 온도 상승 단계에서 상기 바이메탈은 상기 안전 벤트 및 상기 양극 탭과 접촉하고 있으며, 상기 양극 탭으로부터 흘러 들어오는 전류에 의해 온도가 상승하고,
    상기 차단 단계에서 상기 바이메탈은 상기 안전 벤트로부터 이격되어 상기 안전 벤트로 흐르는 전류가 차단되는 이차 전지의 전류 차단 방법.
  10. 청구항 9에 있어서,
    상기 음극 탭의 전기 저항은 니켈(Ni)의 전기 저항보다 작은 이차 전지의 전류 차단 방법.
  11. 청구항 10에 있어서,
    상기 음극 탭의 재료는 니켈-클래드(Ni-Clad)인 이차 전지의 전류 차단 방법.
  12. 청구항 8에 있어서,
    상기 바이메탈은,
    상기 바이메탈의 상부를 형성하는 상부 바이메탈; 및
    상기 바이메탈의 하부를 형성하는 하부 바이메탈; 을 포함하고,
    상기 하부 바이메탈의 열팽창계수는 상기 상부 바이메탈의 열팽창계수보다 작은 이차 전지의 전류 차단 방법.
  13. 청구항 8에 있어서,
    상기 바이메탈은 형상기억합금인 이차 전지의 전류 차단 방법.
  14. 청구항 8에 있어서,
    상기 변형 온도는 섭씨 75도 이상 85도 이하인 이차 전지의 전류 차단 방법.
PCT/KR2017/005970 2016-06-22 2017-06-08 이차 전지 및 이차 전지의 전류 차단 방법 WO2017222215A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/757,844 US11139532B2 (en) 2016-06-22 2017-06-08 Secondary battery and method for interrupting current of secondary battery
CN201780003183.4A CN108028349B (zh) 2016-06-22 2017-06-08 二次电池和中断二次电池的电流的方法
JP2018527216A JP6605143B2 (ja) 2016-06-22 2017-06-08 二次電池及び二次電池の電流遮断方法
EP17815628.7A EP3333939A4 (en) 2016-06-22 2017-06-08 Secondary battery and current blocking method for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0077867 2016-06-22
KR1020160077867A KR102093386B1 (ko) 2016-06-22 2016-06-22 이차 전지 및 이차 전지의 전류 차단 방법

Publications (1)

Publication Number Publication Date
WO2017222215A1 true WO2017222215A1 (ko) 2017-12-28

Family

ID=60783531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005970 WO2017222215A1 (ko) 2016-06-22 2017-06-08 이차 전지 및 이차 전지의 전류 차단 방법

Country Status (6)

Country Link
US (1) US11139532B2 (ko)
EP (1) EP3333939A4 (ko)
JP (1) JP6605143B2 (ko)
KR (1) KR102093386B1 (ko)
CN (1) CN108028349B (ko)
WO (1) WO2017222215A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102263435B1 (ko) * 2017-09-13 2021-06-11 주식회사 엘지에너지솔루션 비딩부가 생략된 원통형 전지셀
CN110120557B (zh) * 2018-02-05 2021-01-15 宁德新能源科技有限公司 保护装置及电池
KR102443898B1 (ko) * 2018-11-12 2022-09-15 주식회사 엘지에너지솔루션 과충전 방지가 가능한 구조를 갖는 배터리 팩 충전 시스템 및 이를 포함하는 자동차
TWI715406B (zh) 2020-01-06 2021-01-01 財團法人工業技術研究院 電池安全裝置
KR20220018735A (ko) * 2020-08-07 2022-02-15 주식회사 엘지에너지솔루션 바이메탈을 이용한 전류차단장치를 가진 배터리 팩 및 그 작동 방법
CN114865236B (zh) * 2021-01-20 2024-04-12 东莞新能安科技有限公司 电芯及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970024353U (ko) * 1995-11-08 1997-06-20 벤틸레이티드 디스크 브레이크
KR100778977B1 (ko) * 2006-01-18 2007-11-22 삼성에스디아이 주식회사 원통형 리튬 이차전지
KR20120022994A (ko) * 2010-03-08 2012-03-12 히다치 막셀 에너지 가부시키가이샤 리튬 이온 이차 전지
KR20130008330A (ko) * 2011-07-12 2013-01-22 주식회사 엘지화학 이차전지용 캡 조립체 및 이를 채용한 이차전지
KR20160034794A (ko) * 2014-09-19 2016-03-30 신흥에스이씨주식회사 우수한 전기차단성을 구비한 이차전지용 캡조립체 및 그 이차전지

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106804A (ja) 1995-10-09 1997-04-22 Wako Denshi Kk 電池の安全装置
US5879832A (en) * 1996-10-02 1999-03-09 Duracell Inc. Current interrupter for electrochemical cells
US5750277A (en) * 1996-04-10 1998-05-12 Texas Instruments Incorporated Current interrupter for electrochemical cells
US6342826B1 (en) * 1999-08-11 2002-01-29 Therm-O-Disc, Incorporated Pressure and temperature responsive switch assembly
KR100342052B1 (ko) 1999-10-27 2002-06-27 김순택 밀폐전지
CN100487969C (zh) * 2003-01-31 2009-05-13 株式会社汤浅开发 密封碱性蓄电池、其电极结构体和充电方法及密封碱性蓄电池用充电器
EP1598893A1 (en) * 2003-01-31 2005-11-23 Yuasa Corporation Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
JP2004235044A (ja) * 2003-01-31 2004-08-19 Yuasa Corp 密閉式蓄電池とその充電器
JP2004273139A (ja) 2003-03-05 2004-09-30 Canon Inc リチウム二次電池
KR100614377B1 (ko) * 2004-11-15 2006-08-21 삼성에스디아이 주식회사 리튬 이차전지
US20090317707A1 (en) * 2008-06-20 2009-12-24 Seungyeob Cha Lithium secondary battery
JP2013069611A (ja) * 2011-09-26 2013-04-18 Panasonic Corp 非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970024353U (ko) * 1995-11-08 1997-06-20 벤틸레이티드 디스크 브레이크
KR100778977B1 (ko) * 2006-01-18 2007-11-22 삼성에스디아이 주식회사 원통형 리튬 이차전지
KR20120022994A (ko) * 2010-03-08 2012-03-12 히다치 막셀 에너지 가부시키가이샤 리튬 이온 이차 전지
KR20130008330A (ko) * 2011-07-12 2013-01-22 주식회사 엘지화학 이차전지용 캡 조립체 및 이를 채용한 이차전지
KR20160034794A (ko) * 2014-09-19 2016-03-30 신흥에스이씨주식회사 우수한 전기차단성을 구비한 이차전지용 캡조립체 및 그 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333939A4 *

Also Published As

Publication number Publication date
CN108028349A (zh) 2018-05-11
JP2019500723A (ja) 2019-01-10
KR20180000115A (ko) 2018-01-02
EP3333939A1 (en) 2018-06-13
EP3333939A4 (en) 2018-06-13
US20200144574A1 (en) 2020-05-07
KR102093386B1 (ko) 2020-03-25
US11139532B2 (en) 2021-10-05
JP6605143B2 (ja) 2019-11-13
CN108028349B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2017222215A1 (ko) 이차 전지 및 이차 전지의 전류 차단 방법
US20210036285A1 (en) Battery module, secondary battery and cap plate assembly thereof
WO2018105847A1 (ko) 원통형 이차전지 모듈
JP5175627B2 (ja) 二次電池
KR101268332B1 (ko) 내 충격성 및 내 진동성에 우수한 2차 전지
US9819005B2 (en) Secondary battery
JP6162899B2 (ja) 過電圧保護装置を備えたバッテリセル
WO2012053688A1 (ko) 캡 조립체 및 이를 이용한 이차 전지
KR101772415B1 (ko) 캡 조립체 및 이를 포함하는 이차 전지
KR20100044487A (ko) 보호회로모듈 및 보호회로모듈을 포함하는 이차전지
KR101678735B1 (ko) 이차전지 탑 캡 어셈블리
WO2018030836A1 (en) Cap assembly for secondary battery and secondary battery including the cap assembly
CN108511670B (zh) 一种电池电极组件、盖板组件及电池
WO2019151646A1 (ko) 이차 전지
WO2018216930A1 (ko) 이차전지 및 그러한 이차전지의 제조방법
WO2018174621A2 (ko) 안전벤트의 이탈을 방지하는 가이드 부재를 포함하는 캡 어셈블리
WO2016039503A1 (ko) 과전류 차단수단이 구비된 이차전지
WO2018030679A1 (en) Cap assembly for preventing electrical shorting and secondary battery including the same
WO2022196942A1 (ko) 이차 전지
WO2022092662A1 (ko) 캡 조립체 및 이를 포함하는 이차 전지
GB1559872A (en) Current limiting fuse device for relatively high curren
WO2022114537A1 (ko) 이차전지용 보호소자 및 이를 포함하는 배터리 팩
KR100354254B1 (ko) 리튬 이차 전지
WO2018093224A1 (ko) 이차전지
WO2018117684A1 (ko) 내구성이 우수한 이차전지 캡어셈블리

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017815628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018527216

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE