WO2017221384A1 - Refrigeration and air conditioning device - Google Patents
Refrigeration and air conditioning device Download PDFInfo
- Publication number
- WO2017221384A1 WO2017221384A1 PCT/JP2016/068704 JP2016068704W WO2017221384A1 WO 2017221384 A1 WO2017221384 A1 WO 2017221384A1 JP 2016068704 W JP2016068704 W JP 2016068704W WO 2017221384 A1 WO2017221384 A1 WO 2017221384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solenoid valve
- pressure
- valve
- expansion valve
- pressure difference
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
Definitions
- the present invention relates to a refrigeration air conditioner that suppresses an impact pressure caused by a liquid shock that is instantaneously generated when the compressor is restarted.
- Some conventional refrigeration air conditioners include a refrigeration cycle device in which a compressor, a condenser, a solenoid valve, an expansion valve, and an evaporator are sequentially connected in a ring shape with a pipe, and the refrigerant circulates.
- a compressor a condenser
- a solenoid valve an expansion valve
- an evaporator a condenser
- the compressor When the compressor is restarted, the pressure in the piping upstream of the solenoid valve is higher than that in the piping downstream of the solenoid valve due to the pump down stop process.
- liquid shock Due to the difference in pressure, the liquid refrigerant in the piping on the upstream side of the solenoid valve collides with the expansion valve on the downstream side of the solenoid valve at the same time as opening the solenoid valve (hereinafter referred to as “liquid shock”).
- the expansion valve and piping vibrate due to the impact pressure when the liquid refrigerant collides with the expansion valve, and if the impact pressure is high, they may be damaged.
- the refrigeration air conditioner is used to cool a refrigerated warehouse
- the expansion valve breaks, the expansion process in the refrigeration cycle device cannot be performed normally, causing the temperature in the warehouse to rise and the quality of the object to be cooled Cause a drop.
- abnormal sounds and abnormal vibrations may be generated.
- Patent Document 1 a technique for suppressing the impact pressure due to the liquid shock generated when the compressor of the refrigeration air conditioner is started has been proposed (see, for example, Patent Document 1 and Patent Document 2).
- Patent Document 1 a bypass circuit pipe having a pressure equalizing solenoid valve connected so as to bypass the pipes before and after the solenoid valve is separately provided, and the bypass circuit side precedes the opening of the solenoid valve when the refrigeration air conditioner is started.
- the pressure equalizing solenoid valve is opened, and the liquid refrigerant in the piping on the upstream side of the solenoid valve is made to flow little by little to the downstream side of the solenoid valve, thereby reducing the pressure difference before and after the solenoid valve. The impact pressure is suppressed.
- Patent Document 2 the space volume of the refrigerant flow path between the opening / closing part of the electromagnetic valve and the flow rate adjusting part of the expansion valve is limited, and the expansion valve is not activated before the refrigerant flowing in from the upstream side of the electromagnetic valve gains momentum. The shock pressure due to the liquid shock is suppressed.
- Patent Document 1 and Patent Document 2 need to add a bypass circuit or limit the space volume between the solenoid valve and the expansion valve, it is necessary to have a pipe shape specialized for liquid shock countermeasures. There is. Moreover, when the pipe diameter of the bypass circuit is too large, the effect of suppressing the impact pressure due to the liquid shock may be reduced, and there is a problem that selection of the pipe is difficult.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigerating and air-conditioning apparatus capable of suppressing impact pressure due to a liquid shock.
- a refrigerating and air-conditioning apparatus includes a compressor, a condenser, a solenoid valve, an expansion valve, and a refrigeration cycle apparatus in which an evaporator is annularly connected by piping, and a control device, and the control device includes: An expansion valve control unit that closes the expansion valve during the pump down stop process, and an electromagnetic valve control unit that closes the electromagnetic valve after the expansion valve is fully closed during the pump down stop process. It is.
- the pipe in the upstream side of the solenoid valve and the downstream side of the solenoid valve are closed.
- An equivalent high-pressure liquid refrigerant is accumulated in both of the pipes, and the impact pressure due to a liquid shock when the compressor is restarted can be suppressed.
- FIG. 1 is a schematic diagram showing a refrigeration cycle apparatus of a refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention.
- the refrigerating and air-conditioning apparatus according to Embodiment 1 includes a compressor 1, a condenser 2, a solenoid valve 3, an expansion valve 4, and an evaporator 5.
- the compressor 1 and the condenser 2 are connected by a first pipe 11, and the condenser 2 and the electromagnetic valve 3 are connected by a second pipe 12.
- the solenoid valve 3 and the expansion valve 4 are connected by a third pipe 13, the expansion valve 4 and the evaporator 5 are connected by a fourth pipe 14, and the evaporator 5 and the compressor 1 are connected by a fifth pipe 15. ing.
- each component is connected cyclically
- the expansion valve 4 shall use the expansion mechanism which can adjust an opening degree arbitrarily, for example, is an electronic expansion valve.
- the 1st piping 11, the 2nd piping 12, the 3rd piping 13, the 4th piping 14, and the 5th piping 15 are not piping shapes specialized for the liquid shock countermeasure, but are normal piping shapes.
- the refrigerating and air-conditioning apparatus according to Embodiment 1 may include components provided to adjust the state of the refrigeration cycle apparatus such as an oil separator, a liquid receiver, and an accumulator, for example.
- the refrigerant sealed in the refrigeration cycle apparatus is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant and discharged to the first pipe 11. Thereafter, heat is exchanged with air, water, and the like by the condenser 2 to condense and become a high-pressure liquid refrigerant, which passes through the second pipe 12 and the electromagnetic valve 3.
- the liquid refrigerant that has passed through the electromagnetic valve 3 passes through the third pipe 13, is decompressed by the expansion valve 4, and changes its state to a low-pressure gas-liquid two-phase refrigerant in which liquid and gas are mixed. Thereafter, the low-pressure gas-liquid two-phase refrigerant passes through the fourth pipe 14 and passes through the evaporator 5. In the evaporator 5, heat is exchanged with air, water, brine, and the like to evaporate, a low-pressure gas refrigerant passes through the fifth pipe 15, and is sucked into the compressor 1 again.
- FIG. 2 is a functional block diagram of the control device 50 of the refrigeration air conditioner according to Embodiment 1 of the present invention.
- the refrigerating and air-conditioning apparatus includes a control device 50 that controls the operation of each component.
- the refrigerating and air-conditioning apparatus is configured so that the control device 50 can adjust the operation start and stop timing of each component.
- the control device 50 includes, for example, dedicated hardware or a CPU (also referred to as a central processing unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory. Is done.
- the control device 50 includes a command receiving unit 51 that receives a stop command or a start command from the outside, a compressor control unit 52 that controls the compressor 1, an electromagnetic valve control unit 53 that controls the electromagnetic valve 3, and an expansion valve. 4, an expansion valve control unit 54 that controls 4, a storage unit 55 that stores control information of each component, and a count unit 56 that counts time.
- the storage unit 55 stores a set time A from when the expansion valve 4 starts to be closed until it is fully closed, and a set time B from when the set time A elapses until the solenoid valve 3 is closed. ing.
- the set time A includes the closing speed V that is unique to the expansion valve 4 and moves in the closing direction, the opening degree of the expansion valve 4 fully opened, or the opening degree of the expansion valve 4 at the start of the pump down stop process.
- a value calculated from X is set.
- the set time B may be set with a margin when a delay occurs in the closing speed V of the expansion valve 4 and the expansion valve 4 is not fully closed within the set time A.
- the control device 50 performs a pump down stop process.
- the pump down stop process is to stop the refrigeration air conditioner, close the solenoid valve 3 before stopping the compressor 1, then operate the compressor 1 with a low capacity for a certain period of time, and compress from the downstream side of the solenoid valve 3.
- the refrigerant up to the suction port of the machine 1, that is, the refrigerant in the third pipe 13, the expansion valve 4, the fourth pipe 14, the evaporator 5, and the fifth pipe 15 flows to the downstream side of the compressor 1. That is.
- the pressure state of the refrigerant in the refrigeration cycle apparatus is partitioned with the electromagnetic valve 3 as a boundary.
- FIG. 3 is a flowchart showing the flow of control processing during pump down stop processing of a conventional refrigeration air conditioner
- FIG. 4 is a time chart showing the flow of control processing during pump down stop processing of a conventional refrigeration air conditioning device. It is.
- the conventional refrigeration air conditioner shall be equipped with the same refrigeration cycle apparatus as this Embodiment 1.
- FIG. 3 is a flowchart showing the flow of control processing during pump down stop processing of a conventional refrigeration air conditioner
- FIG. 4 is a time chart showing the flow of control processing during pump down stop processing of a conventional refrigeration air conditioning device. It is.
- the conventional refrigeration air conditioner shall be equipped with the same refrigeration cycle apparatus as this Embodiment 1.
- FIG. 1 is a flowchart showing the flow of control processing during pump down stop processing of a conventional refrigeration air conditioner
- the conventional refrigeration air conditioner starts the pump down stop process after receiving the stop command (Yes in step S1), and immediately closes the solenoid valve 3 to close the inside of the refrigeration cycle apparatus.
- the pressure state of the third pipe 13, the expansion valve 4, the fourth pipe 14, the evaporator 5, and the fifth pipe 15 is reduced to a low pressure while the compressor 1 is partitioned to a certain capacity (step S2).
- the expansion valve 4 is gradually closed while adjusting (step S3), and after the expansion valve 4 is fully closed, the compressor 1 is stopped (step S4).
- the value of the pressure difference ⁇ P before and after the solenoid valve 3 rises after starting the pump-down stop process as shown in FIG. 4, and becomes larger than the differential pressure value C at which the liquid shock occurs when the compressor 1 is stopped. .
- step S5 in order to receive the start command (Yes in step S5) and start the operation of the refrigerating and air-conditioning apparatus again, the compressor 1 is restarted and the electromagnetic valve 3 is opened (step S6). By doing so, the refrigerant circulates again in the refrigeration cycle apparatus, and the operation of the refrigeration air conditioner resumes.
- liquid shock generally tends to increase the impact pressure as the pressure difference ⁇ P before and after the solenoid valve 3 increases.
- the conventional pump-down stop process is performed, high-pressure liquid refrigerant is accumulated in the second pipe 12 upstream of the solenoid valve 3, whereas the third pipe 13 downstream of the solenoid valve 3 is Low-pressure gas refrigerant is accumulated, and a pressure difference ⁇ P larger than the differential pressure value C is generated before and after the electromagnetic valve 3 as shown in FIG.
- the refrigerating and air-conditioning apparatus performs the closing operation of the expansion valve 4 after starting the pump-down stop process so as not to generate a large pressure difference ⁇ P before and after the electromagnetic valve 3. Start prior to closing.
- FIG. 5 is a flowchart showing the flow of control processing during the pump-down stop process of the refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention.
- FIG. 6 shows the refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention. It is a time chart which shows the flow of the control processing at the time of a pump down stop process.
- the control process at the time of the pump down stop process of the refrigerating and air-conditioning apparatus according to Embodiment 1 will be described.
- the command receiving unit 51 receives a stop command (Yes in step S ⁇ b> 11)
- the refrigeration air conditioner starts a pump down stop process.
- the expansion valve control unit 54 starts closing the expansion valve 4 at the closing speed V, and at the same time, the counting unit 56 starts counting the set time A (step S12). At this time, the expansion valve 4 is gradually closed at the closing speed V until it is fully closed.
- the solenoid valve 3 is in an open state, so that the refrigerant flows from the second pipe 12 upstream of the solenoid valve 3 to the downstream side of the solenoid valve 3, A high-pressure liquid refrigerant equivalent to the second pipe 12 on the upstream side of the solenoid valve 3 can be stored in the three pipes 13.
- the opening / closing operation timing is set so that the solenoid valve 3 is closed after the expansion valve 4 is fully closed by taking a margin of the set time B. Control.
- the count unit 56 starts counting the set time B when the set time A is counted (step S13).
- the compressor control unit 52 stops the compressor 1 (step S14).
- the solenoid valve control unit 53 closes the solenoid valve 3 (step S15).
- the value of the pressure difference ⁇ P before and after the electromagnetic valve 3 temporarily rises and becomes larger than the differential pressure value C after starting the pump down stop process as shown in FIG. 6, but the expansion valve 4 is closed. After the start, it gradually descends, and after the expansion valve 4 is fully closed, becomes smaller than the differential pressure value C.
- Step S16 the compressor control unit 52 restarts the compressor 1 and at the same time, the electromagnetic valve control unit 53 opens the electromagnetic valve 3 ( Step S17).
- the closing operation of the expansion valve 4 is started prior to the closing operation of the electromagnetic valve 3, and is closed over a certain time. After the expansion valve 4 is fully closed, the electromagnetic valve 3 is closed. .
- high-pressure liquid refrigerant can be stored in the third pipe 13 between the electromagnetic valve 3 and the expansion valve 4. .
- a high-pressure liquid refrigerant can be stored in both the second pipe 12 upstream of the solenoid valve 3 and the third pipe 13 downstream of the solenoid valve 3. Since high-pressure liquid refrigerant is accumulated in both the second pipe 12 and the third pipe 13, the pressure difference ⁇ P before and after the solenoid valve 3 is suppressed to zero or a very small value as shown in FIG. Will be.
- the refrigerating and air-conditioning apparatus adjusts the value of the pressure difference ⁇ P before and after the electromagnetic valve 3 by controlling the timing of the opening / closing operation of the electromagnetic valve 3 and the expansion valve 4 with the control device 50. Then, an equivalent high-pressure liquid refrigerant is accumulated in both the second pipe 12 upstream of the solenoid valve 3 and the third pipe 13 downstream of the solenoid valve 3.
- the pressure difference ⁇ P before and after the solenoid valve 3 can be suppressed to zero or a very small value.
- the compressor 1 can be restarted when the pressure difference ⁇ P before and after the solenoid valve 3 is zero or a very small value, so that the shock pressure due to the liquid shock is suppressed without using a pipe shape specialized for liquid shock countermeasures. can do.
- Embodiment 2 of the present invention will be described, but the description overlapping with Embodiment 1 will be omitted, and the same reference numerals will be given to the same or corresponding parts as those in Embodiment 1.
- FIG. 7 is a schematic diagram showing a refrigeration cycle apparatus of a refrigeration air conditioning apparatus according to Embodiment 2 of the present invention
- FIG. 8 is a functional block of a control apparatus 50a of the refrigeration air conditioning apparatus according to Embodiment 2 of the present invention.
- the first pressure sensor 21 is connected to the second pipe 12 upstream of the electromagnetic valve 3, and the first pressure sensor 21 is downstream of the electromagnetic valve 3.
- a second pressure sensor 22 is provided in each of the three pipes 13.
- the control device 50a of the refrigerating and air-conditioning apparatus according to Embodiment 2 includes a pressure information acquisition unit 57 that acquires pressure information detected by the first pressure sensor 21 and the second pressure sensor 22. I have. Further, a differential pressure value C at which a fluid shock occurs and a first control target value D ( ⁇ C) having a margin with respect to the differential pressure value C are set. Is remembered.
- FIG. 9 is a flowchart showing a flow of control processing during the pump-down stop process of the refrigeration air conditioner according to Embodiment 2 of the present invention
- FIG. 10 shows the refrigeration air conditioner according to Embodiment 2 of the present invention. It is a time chart which shows the flow of the control processing at the time of a pump down stop process and a stop.
- FIG. 10 is also used in a third embodiment described later, and the second control target value E in FIG. 10 will be described later in the third embodiment.
- step S21 when the command receiving unit 51 receives a stop command (Yes in step S21), the expansion valve control unit 54 starts closing the expansion valve 4 (step S22). ). At this time, the solenoid valve control unit 53 continues the open state of the solenoid valve 3, and the refrigerant flows from the second pipe 12 on the upstream side of the solenoid valve 3 to the third pipe 13 on the downstream side of the solenoid valve 3. To do. As shown in FIG.
- the pressure difference ⁇ P before and after the electromagnetic valve 3 temporarily rises from the differential pressure value C depending on the operation state of the compressor 1 and the opening state of the expansion valve 4 during the pump down stop process. Also grows. However, as the opening degree of the expansion valve 4 approaches full closure, the high-pressure liquid refrigerant flowing from the second pipe 12 upstream of the solenoid valve 3 is accumulated in the third pipe 13 downstream of the solenoid valve 3. The pressure difference ⁇ P before and after the solenoid valve 3 gradually decreases.
- the compressor control unit 52 stops the compressor 1 after the expansion valve 4 is fully closed (step S24).
- the solenoid valve control unit 53 sets the first control target value D as the control target value of the pressure difference ⁇ P, and the first control target value D where the pressure difference ⁇ P before and after the solenoid valve 3 after receiving the stop command is smaller than the differential pressure value C.
- the electromagnetic valve 3 is closed at the timing below (Yes in step S25, step S26).
- Step S27 the compressor control unit 52 restarts the compressor 1, and at the same time, the electromagnetic valve control unit 53 opens the electromagnetic valve 3 ( Step S28).
- the timing for closing the solenoid valve 3 may be before the expansion valve 4 is fully closed. However, if the closing operation of the expansion valve 4 is stopped halfway, the downstream side of the solenoid valve 3 is closed.
- the high-pressure liquid refrigerant stored in the third pipe 13 may be sent to the fourth pipe 14 on the downstream side of the expansion valve 4, and the value of the pressure difference ⁇ P before and after the electromagnetic valve 3 may increase.
- the refrigerating and air-conditioning apparatus adjusts the value of the pressure difference ⁇ P before and after the electromagnetic valve 3 by controlling the timing of the opening / closing operation of the electromagnetic valve 3 and the expansion valve 4 with the control device 50. Then, an equivalent high-pressure liquid refrigerant is accumulated in both the second pipe 12 upstream of the solenoid valve 3 and the third pipe 13 downstream of the solenoid valve 3.
- the second piping on the upstream side of the solenoid valve 3 is controlled by controlling the timing of the opening and closing operations of the solenoid valve 3 and the expansion valve 4 so that the pressure difference ⁇ P is less than the differential pressure value C at which a fluid shock occurs.
- 12 and the third piping 13 on the downstream side of the solenoid valve 3 are in a state where the same high-pressure liquid refrigerant is accumulated.
- the pressure difference ⁇ P before and after the solenoid valve 3 can be suppressed to zero or a very small value.
- the compressor 1 can be restarted when the pressure difference ⁇ P before and after the solenoid valve 3 is zero or a very small value, so that the shock pressure due to the liquid shock is suppressed without using a pipe shape specialized for liquid shock countermeasures. can do.
- the refrigerating and air-conditioning apparatus controls the opening / closing operation timing of the solenoid valve 3 and the expansion valve 4 using the pressures P1 and P2, the solenoid valve is compared with the first embodiment. 3 and the timing of the opening / closing operation of the expansion valve 4 can be accurately controlled. As a result, the impact pressure due to the liquid shock can be further suppressed.
- FIG. 11 is a schematic diagram illustrating another example of the refrigeration cycle apparatus of the refrigeration air-conditioning apparatus of FIG. As shown in FIG. 11, instead of providing the first pressure sensor 21 and the second pressure sensor 22 before and after the electromagnetic valve 3, a fine differential pressure switch 23 for detecting the pressure difference ⁇ P before and after the electromagnetic valve 3 is provided, The fine differential pressure switch 23 may send a signal to the control device 50 when the difference ⁇ P becomes a preset pressure difference.
- Embodiment 3 FIG.
- Embodiment 3 of the present invention will be described, but the description overlapping with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as those in Embodiments 1 and 2 will be denoted by the same reference numerals. .
- the solenoid valve 3 when the pressure balance around the solenoid valve 3 is lost, the solenoid valve 3 is opened and closed while the compressor 1 is stopped using the second control target value E. Then, control for adjusting the pressure difference ⁇ P before and after the electromagnetic valve 3 is performed to suppress the impact pressure due to the liquid shock.
- a differential pressure value C at which a fluid shock occurs and a first control target value D ( ⁇ C) with a margin for the differential pressure value C are obtained.
- a second control target value E that is less than the differential pressure value C and larger than the first control target value D (D ⁇ E ⁇ C) is set, and the information is stored in the storage unit 55. Yes.
- FIG. 12 is a flowchart showing a flow of control processing for adjusting the pressure difference ⁇ P before and after the electromagnetic valve 3 when the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention is stopped.
- a control process for adjusting the pressure difference ⁇ P before and after the electromagnetic valve 3 when the refrigerating and air-conditioning apparatus according to Embodiment 3 is stopped will be described.
- the pressure in the second pipe 12 on the upstream side of the electromagnetic valve 3 is maintained because it is closed by the electromagnetic valve 3 having better closing performance than the expansion valve 4. Therefore, the pressure difference ⁇ P before and after the electromagnetic valve 3 gradually increases in proportion to the refrigerant leakage amount from the expansion valve 4.
- Step S34 After the solenoid valve 3 is opened, the pressure difference ⁇ P before and after the solenoid valve 3 starts to decrease. Thereafter, when the pressure difference ⁇ P calculated by the pressure information acquisition unit 57 becomes equal to or less than the first control target value D (Yes in Step S34 and Step S35), the electromagnetic valve control unit 53 closes the electromagnetic valve 3 (Step S34). S36).
- Step S31 and Step S32 the electromagnetic valve control unit 53 performs an operation of opening the electromagnetic valve 3 (Step S31). S33), the control device 50a performs adjustment so that the pressure difference ⁇ P before and after the solenoid valve 3 does not exceed the second control target value E.
- the refrigerating and air-conditioning apparatus adjusts the value of the pressure difference ⁇ P before and after the solenoid valve 3 by controlling the timing of the opening / closing operation of the solenoid valve 3 with the control device 50. 3 in the second pipe 12 on the upstream side and the third pipe 13 on the downstream side of the solenoid valve 3 in a state where the same high-pressure liquid refrigerant is accumulated.
- the pressure difference ⁇ P before and after the solenoid valve 3 can be suppressed to zero or a very small value.
- the compressor 1 can be restarted when the pressure difference ⁇ P before and after the solenoid valve 3 is zero or a very small value, so that the shock pressure due to the liquid shock is suppressed without using a pipe shape specialized for liquid shock countermeasures. can do.
- the electromagnetic valve 3 is controlled by opening and closing the solenoid valve 3 while the compressor 1 is stopped. By suppressing the pressure difference before and after the valve 3 to a certain value or less, the impact pressure due to the liquid shock can be suppressed.
- refrigerant leakage may be detected by a refrigerant detection means (not shown) or the like.
- the refrigerant detection means is, for example, a semiconductor gas sensor that detects a change in resistance value that occurs when the metal oxide-semiconductor contacts the refrigerant gas as a refrigerant gas concentration in the air, and a non-detection that detects the amount of infrared rays absorbed by the gas.
- a distributed infrared sensor is a distributed infrared sensor.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
A refrigeration and air conditioning device is provided with: a refrigeration cycle device in which a compressor, a condenser, a solenoid valve, an expansion valve, and an evaporator are annularly connected by piping; and a control device, wherein the control device is provided with an expansion valve control unit for closing the expansion valve at the time of a pump-down stop process, and a solenoid valve control unit for closing the solenoid valve after the expansion valve is completely closed at the time of the pump-down stop process.
Description
本発明は、圧縮機の再起動時に瞬間的に発生する液ショックによる衝撃圧を抑制した冷凍空調装置に関するものである。
The present invention relates to a refrigeration air conditioner that suppresses an impact pressure caused by a liquid shock that is instantaneously generated when the compressor is restarted.
従来の冷凍空調装置において、圧縮機、凝縮器、電磁弁、膨張弁、および、蒸発器が順次配管で環状に接続され、冷媒が循環する冷凍サイクル装置を備えたものがある。圧縮機の再起動時、ポンプダウン停止処理により電磁弁の上流側の配管内は、電磁弁の下流側の配管内に対して高い圧力となっており、電磁弁の上流側と下流側(以下、電磁弁前後と称する)の圧力に高低差が生じている。この圧力の高低差により、電磁弁の上流側の配管にあった液冷媒は、電磁弁を開放すると同時に電磁弁の下流側にある膨張弁に衝突する(以下、液ショックと称する)。
Some conventional refrigeration air conditioners include a refrigeration cycle device in which a compressor, a condenser, a solenoid valve, an expansion valve, and an evaporator are sequentially connected in a ring shape with a pipe, and the refrigerant circulates. When the compressor is restarted, the pressure in the piping upstream of the solenoid valve is higher than that in the piping downstream of the solenoid valve due to the pump down stop process. (Referred to as front and rear solenoid valves). Due to the difference in pressure, the liquid refrigerant in the piping on the upstream side of the solenoid valve collides with the expansion valve on the downstream side of the solenoid valve at the same time as opening the solenoid valve (hereinafter referred to as “liquid shock”).
この液ショックが発生すると、液冷媒が膨張弁に衝突する時の衝撃圧により膨張弁および配管が振動し、衝撃圧が大きい場合はそれらが破損してしまうことがある。例えば、冷凍空調装置が冷蔵倉庫を冷やす用途に用いられている場合、膨張弁が破損すると冷凍サイクル装置内の膨張行程が正常に行えなくなるため、庫内の温度上昇を引き起こし、被冷却物の品質低下を発生させる。また、異常音および異常振動を発生させることもある。
When this liquid shock occurs, the expansion valve and piping vibrate due to the impact pressure when the liquid refrigerant collides with the expansion valve, and if the impact pressure is high, they may be damaged. For example, if the refrigeration air conditioner is used to cool a refrigerated warehouse, if the expansion valve breaks, the expansion process in the refrigeration cycle device cannot be performed normally, causing the temperature in the warehouse to rise and the quality of the object to be cooled Cause a drop. In addition, abnormal sounds and abnormal vibrations may be generated.
また、たとえ液ショックによる衝撃圧が小さい場合でも、圧縮機が起動および停止を頻繁に繰り返すことにより、配管が疲労して折損し、冷媒漏洩を引き起こす場合がある。この冷媒漏洩は、地球環境保護の観点から大きな影響がある。
Also, even if the impact pressure due to the liquid shock is small, if the compressor is frequently started and stopped, the piping may be fatigued and broken, causing refrigerant leakage. This refrigerant leakage has a great influence from the viewpoint of protecting the global environment.
そこで、冷凍空調装置の圧縮機の起動時に発生する液ショックによる衝撃圧を抑制する技術が提案されている(例えば、特許文献1および特許文献2参照)。
Therefore, a technique for suppressing the impact pressure due to the liquid shock generated when the compressor of the refrigeration air conditioner is started has been proposed (see, for example, Patent Document 1 and Patent Document 2).
特許文献1では、電磁弁前後の配管をバイパスするように接続する均圧用の電磁弁を備えたバイパス回路配管を別途設け、冷凍空調装置の起動時に電磁弁の開放よりも先行してバイパス回路側の均圧用の電磁弁を開放し、電磁弁の上流側の配管にある液冷媒を電磁弁の下流側へと少量ずつ流すことで、電磁弁前後の圧力の高低差を小さくし、液ショックによる衝撃圧を抑制している。
In Patent Document 1, a bypass circuit pipe having a pressure equalizing solenoid valve connected so as to bypass the pipes before and after the solenoid valve is separately provided, and the bypass circuit side precedes the opening of the solenoid valve when the refrigeration air conditioner is started. The pressure equalizing solenoid valve is opened, and the liquid refrigerant in the piping on the upstream side of the solenoid valve is made to flow little by little to the downstream side of the solenoid valve, thereby reducing the pressure difference before and after the solenoid valve. The impact pressure is suppressed.
また、特許文献2では、電磁弁の開閉部分と膨張弁の流量調整部分との間の冷媒流路の空間容積に制限を設け、電磁弁の上流側から流れ込んでくる冷媒が勢いづく前に膨張弁を通過するようにし、液ショックによる衝撃圧を抑制している。
Further, in Patent Document 2, the space volume of the refrigerant flow path between the opening / closing part of the electromagnetic valve and the flow rate adjusting part of the expansion valve is limited, and the expansion valve is not activated before the refrigerant flowing in from the upstream side of the electromagnetic valve gains momentum. The shock pressure due to the liquid shock is suppressed.
特許文献1および特許文献2は、バイパス回路を増設したり、電磁弁と膨張弁との間の空間容積に制限を設けたりする必要があるため、液ショック対策に特化した配管形状とする必要がある。また、バイパス回路の配管径について、径が大きすぎる場合などは液ショックによる衝撃圧を抑制する効果が小さくなる場合があり、配管の選定が困難であるという課題がある。
Since Patent Document 1 and Patent Document 2 need to add a bypass circuit or limit the space volume between the solenoid valve and the expansion valve, it is necessary to have a pipe shape specialized for liquid shock countermeasures. There is. Moreover, when the pipe diameter of the bypass circuit is too large, the effect of suppressing the impact pressure due to the liquid shock may be reduced, and there is a problem that selection of the pipe is difficult.
本発明は、以上のような課題を解決するためになされたもので、液ショックによる衝撃圧を抑制することができる冷凍空調装置を提供することを目的としている。
The present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigerating and air-conditioning apparatus capable of suppressing impact pressure due to a liquid shock.
本発明に係る冷凍空調装置は、圧縮機、凝縮器、電磁弁、膨張弁、および、蒸発器が配管により環状に接続された冷凍サイクル装置と、制御装置と、を備え、前記制御装置は、ポンプダウン停止処理時において、前記膨張弁を閉止する膨張弁制御部と、ポンプダウン停止処理時において、前記膨張弁が全閉後、前記電磁弁を閉止する電磁弁制御部と、を備えたものである。
A refrigerating and air-conditioning apparatus according to the present invention includes a compressor, a condenser, a solenoid valve, an expansion valve, and a refrigeration cycle apparatus in which an evaporator is annularly connected by piping, and a control device, and the control device includes: An expansion valve control unit that closes the expansion valve during the pump down stop process, and an electromagnetic valve control unit that closes the electromagnetic valve after the expansion valve is fully closed during the pump down stop process. It is.
本発明に係る冷凍空調装置によれば、ポンプダウン停止処理時において、膨張弁が全閉となった後に電磁弁を閉止することにより、電磁弁の上流側の配管内および電磁弁の下流側の配管内のどちらにも同等の高圧の液冷媒が溜まっている状態にし、圧縮機を再起動時の液ショックによる衝撃圧を抑制することができる。
According to the refrigerating and air-conditioning apparatus according to the present invention, in the pump down stop process, by closing the solenoid valve after the expansion valve is fully closed, the pipe in the upstream side of the solenoid valve and the downstream side of the solenoid valve are closed. An equivalent high-pressure liquid refrigerant is accumulated in both of the pipes, and the impact pressure due to a liquid shock when the compressor is restarted can be suppressed.
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
実施の形態1.
図1は、本発明の実施の形態1に係る冷凍空調装置の冷凍サイクル装置を示した概略図である。
図1に示すように、本実施の形態1に係る冷凍空調装置は、圧縮機1と、凝縮器2と、電磁弁3と、膨張弁4と、蒸発器5とを備えている。また、圧縮機1と凝縮器2とは第一配管11で接続され、凝縮器2と電磁弁3とは第二配管12で接続されている。電磁弁3と膨張弁4とは第三配管13で接続され、膨張弁4と蒸発器5とは第四配管14で接続され、蒸発器5と圧縮機1とは第五配管15で接続されている。そして、各構成部品が各配管で環状に接続されることにより、内部に封入された冷媒が循環する冷凍サイクル装置が構成されている。Embodiment 1 FIG.
1 is a schematic diagram showing a refrigeration cycle apparatus of a refrigeration air-conditioning apparatus according toEmbodiment 1 of the present invention.
As shown in FIG. 1, the refrigerating and air-conditioning apparatus according toEmbodiment 1 includes a compressor 1, a condenser 2, a solenoid valve 3, an expansion valve 4, and an evaporator 5. The compressor 1 and the condenser 2 are connected by a first pipe 11, and the condenser 2 and the electromagnetic valve 3 are connected by a second pipe 12. The solenoid valve 3 and the expansion valve 4 are connected by a third pipe 13, the expansion valve 4 and the evaporator 5 are connected by a fourth pipe 14, and the evaporator 5 and the compressor 1 are connected by a fifth pipe 15. ing. And each component is connected cyclically | annularly by each piping, and the refrigerating-cycle apparatus with which the refrigerant | coolant enclosed inside circulates is comprised.
図1は、本発明の実施の形態1に係る冷凍空調装置の冷凍サイクル装置を示した概略図である。
図1に示すように、本実施の形態1に係る冷凍空調装置は、圧縮機1と、凝縮器2と、電磁弁3と、膨張弁4と、蒸発器5とを備えている。また、圧縮機1と凝縮器2とは第一配管11で接続され、凝縮器2と電磁弁3とは第二配管12で接続されている。電磁弁3と膨張弁4とは第三配管13で接続され、膨張弁4と蒸発器5とは第四配管14で接続され、蒸発器5と圧縮機1とは第五配管15で接続されている。そして、各構成部品が各配管で環状に接続されることにより、内部に封入された冷媒が循環する冷凍サイクル装置が構成されている。
1 is a schematic diagram showing a refrigeration cycle apparatus of a refrigeration air-conditioning apparatus according to
As shown in FIG. 1, the refrigerating and air-conditioning apparatus according to
なお、膨張弁4は、開度を任意に調整できる膨張機構を使用するものとし、例えば電子式膨張弁である。
また、第一配管11、第二配管12、第三配管13、第四配管14、および、第五配管15は、液ショック対策に特化した配管形状ではなく、通常の配管形状である。
また、本実施の形態1に係る冷凍空調装置は、例えば、油分離器、受液器、アキュムレータなどの冷凍サイクル装置の状態を調整するために設けられる構成部品を備えてもよい。 In addition, theexpansion valve 4 shall use the expansion mechanism which can adjust an opening degree arbitrarily, for example, is an electronic expansion valve.
Moreover, the1st piping 11, the 2nd piping 12, the 3rd piping 13, the 4th piping 14, and the 5th piping 15 are not piping shapes specialized for the liquid shock countermeasure, but are normal piping shapes.
Moreover, the refrigerating and air-conditioning apparatus according toEmbodiment 1 may include components provided to adjust the state of the refrigeration cycle apparatus such as an oil separator, a liquid receiver, and an accumulator, for example.
また、第一配管11、第二配管12、第三配管13、第四配管14、および、第五配管15は、液ショック対策に特化した配管形状ではなく、通常の配管形状である。
また、本実施の形態1に係る冷凍空調装置は、例えば、油分離器、受液器、アキュムレータなどの冷凍サイクル装置の状態を調整するために設けられる構成部品を備えてもよい。 In addition, the
Moreover, the
Moreover, the refrigerating and air-conditioning apparatus according to
冷凍サイクル装置内に封入された冷媒は、圧縮機1にて圧縮され高温で高圧のガス冷媒となり、第一配管11へと吐き出される。その後、凝縮器2により空気、水などと熱交換され凝縮し高圧の液冷媒となり、第二配管12および電磁弁3を通過する。電磁弁3を通過した液冷媒は、第三配管13を通り、膨張弁4により減圧され、液とガスとが混ざった低圧の気液二相冷媒へと状態変化する。その後、低圧の気液二相冷媒は第四配管14を通り、蒸発器5内を通過する。蒸発器5では、空気、水、ブラインなどと熱交換され蒸発し、低圧のガス冷媒となり第五配管15を通過し、再び圧縮機1へ吸い込まれる。
The refrigerant sealed in the refrigeration cycle apparatus is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant and discharged to the first pipe 11. Thereafter, heat is exchanged with air, water, and the like by the condenser 2 to condense and become a high-pressure liquid refrigerant, which passes through the second pipe 12 and the electromagnetic valve 3. The liquid refrigerant that has passed through the electromagnetic valve 3 passes through the third pipe 13, is decompressed by the expansion valve 4, and changes its state to a low-pressure gas-liquid two-phase refrigerant in which liquid and gas are mixed. Thereafter, the low-pressure gas-liquid two-phase refrigerant passes through the fourth pipe 14 and passes through the evaporator 5. In the evaporator 5, heat is exchanged with air, water, brine, and the like to evaporate, a low-pressure gas refrigerant passes through the fifth pipe 15, and is sucked into the compressor 1 again.
図2は、本発明の実施の形態1に係る冷凍空調装置の制御装置50の機能ブロック図である。
また、図2に示すように、本実施の形態1に係る冷凍空調装置は、各構成部品の動作を制御する制御装置50を備えている。なお、冷凍空調装置は、制御装置50により各構成部品の動作開始および停止のタイミングを調整できるように構成されている。
制御装置50は、例えば、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。 FIG. 2 is a functional block diagram of thecontrol device 50 of the refrigeration air conditioner according to Embodiment 1 of the present invention.
Moreover, as shown in FIG. 2, the refrigerating and air-conditioning apparatus according to the first embodiment includes acontrol device 50 that controls the operation of each component. The refrigerating and air-conditioning apparatus is configured so that the control device 50 can adjust the operation start and stop timing of each component.
Thecontrol device 50 includes, for example, dedicated hardware or a CPU (also referred to as a central processing unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory. Is done.
また、図2に示すように、本実施の形態1に係る冷凍空調装置は、各構成部品の動作を制御する制御装置50を備えている。なお、冷凍空調装置は、制御装置50により各構成部品の動作開始および停止のタイミングを調整できるように構成されている。
制御装置50は、例えば、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。 FIG. 2 is a functional block diagram of the
Moreover, as shown in FIG. 2, the refrigerating and air-conditioning apparatus according to the first embodiment includes a
The
制御装置50は、外部から停止指令または起動指令などを受信する指令受信部51と、圧縮機1を制御する圧縮機制御部52と、電磁弁3を制御する電磁弁制御部53と、膨張弁4を制御する膨張弁制御部54と、各構成部品の制御情報を記憶した記憶部55と、時間をカウントするカウント部56とを備えている。
The control device 50 includes a command receiving unit 51 that receives a stop command or a start command from the outside, a compressor control unit 52 that controls the compressor 1, an electromagnetic valve control unit 53 that controls the electromagnetic valve 3, and an expansion valve. 4, an expansion valve control unit 54 that controls 4, a storage unit 55 that stores control information of each component, and a count unit 56 that counts time.
また、記憶部55には、膨張弁4の閉止を開始してから全閉となるまでの設定時間Aと、設定時間A経過後から電磁弁3を閉止するまでの設定時間Bとが記憶されている。
Further, the storage unit 55 stores a set time A from when the expansion valve 4 starts to be closed until it is fully closed, and a set time B from when the set time A elapses until the solenoid valve 3 is closed. ing.
なお、設定時間Aは、膨張弁4が固有で持っている、閉止する方向に動く閉速度Vと、膨張弁4の全開の開度またはポンプダウン停止処理の開始時の膨張弁4の開度Xとから算出された値が設定される。また、設定時間Bは、膨張弁4の閉速度Vに遅れが生じ、設定時間Aの時間内に膨張弁4が全閉とならなかった場合の裕度を設定しておくとよい。
Note that the set time A includes the closing speed V that is unique to the expansion valve 4 and moves in the closing direction, the opening degree of the expansion valve 4 fully opened, or the opening degree of the expansion valve 4 at the start of the pump down stop process. A value calculated from X is set. In addition, the set time B may be set with a margin when a delay occurs in the closing speed V of the expansion valve 4 and the expansion valve 4 is not fully closed within the set time A.
制御装置50は、ポンプダウン停止処理を行う。ポンプダウン停止処理とは、冷凍空調装置を停止させる際、圧縮機1の停止前に電磁弁3を閉止した後、圧縮機1を低い容量で一定時間運転させ、電磁弁3の下流側から圧縮機1の吸込口までにある冷媒、つまり、第三配管13、膨張弁4、第四配管14、蒸発器5、および、第五配管15にある冷媒を、圧縮機1の下流側へと流すことである。これにより、冷凍サイクル装置内の冷媒の圧力状態は、電磁弁3を境目として仕切られるようになる。
The control device 50 performs a pump down stop process. The pump down stop process is to stop the refrigeration air conditioner, close the solenoid valve 3 before stopping the compressor 1, then operate the compressor 1 with a low capacity for a certain period of time, and compress from the downstream side of the solenoid valve 3. The refrigerant up to the suction port of the machine 1, that is, the refrigerant in the third pipe 13, the expansion valve 4, the fourth pipe 14, the evaporator 5, and the fifth pipe 15 flows to the downstream side of the compressor 1. That is. Thereby, the pressure state of the refrigerant in the refrigeration cycle apparatus is partitioned with the electromagnetic valve 3 as a boundary.
図3は、従来の冷凍空調装置のポンプダウン停止処理時の制御処理の流れを示すフローチャートであり、図4は、従来の冷凍空調装置のポンプダウン停止処理時の制御処理の流れを示すタイムチャートである。なお、従来の冷凍空調装置は、本実施の形態1と同様の冷凍サイクル装置を備えているものとする。
FIG. 3 is a flowchart showing the flow of control processing during pump down stop processing of a conventional refrigeration air conditioner, and FIG. 4 is a time chart showing the flow of control processing during pump down stop processing of a conventional refrigeration air conditioning device. It is. In addition, the conventional refrigeration air conditioner shall be equipped with the same refrigeration cycle apparatus as this Embodiment 1. FIG.
以下、従来の冷凍空調装置のポンプダウン停止処理時の制御処理について説明する。
図3および図4に示すように、従来の冷凍空調装置は、停止指令を受信後(ステップS1のYes)、ポンプダウン停止処理を開始し、すぐに電磁弁3を閉止して冷凍サイクル装置内の圧力状態を仕切り(ステップS2)、圧縮機1を一定容量まで下げながら、第三配管13、膨張弁4、第四配管14、蒸発器5、および、第五配管15内の圧力を低圧へと調整しながら、膨張弁4を徐々に閉止していき(ステップS3)、膨張弁4が全閉後、圧縮機1を停止させる(ステップS4)。 Hereinafter, the control process at the time of the pump down stop process of the conventional refrigeration air conditioner will be described.
As shown in FIGS. 3 and 4, the conventional refrigeration air conditioner starts the pump down stop process after receiving the stop command (Yes in step S1), and immediately closes thesolenoid valve 3 to close the inside of the refrigeration cycle apparatus. The pressure state of the third pipe 13, the expansion valve 4, the fourth pipe 14, the evaporator 5, and the fifth pipe 15 is reduced to a low pressure while the compressor 1 is partitioned to a certain capacity (step S2). The expansion valve 4 is gradually closed while adjusting (step S3), and after the expansion valve 4 is fully closed, the compressor 1 is stopped (step S4).
図3および図4に示すように、従来の冷凍空調装置は、停止指令を受信後(ステップS1のYes)、ポンプダウン停止処理を開始し、すぐに電磁弁3を閉止して冷凍サイクル装置内の圧力状態を仕切り(ステップS2)、圧縮機1を一定容量まで下げながら、第三配管13、膨張弁4、第四配管14、蒸発器5、および、第五配管15内の圧力を低圧へと調整しながら、膨張弁4を徐々に閉止していき(ステップS3)、膨張弁4が全閉後、圧縮機1を停止させる(ステップS4)。 Hereinafter, the control process at the time of the pump down stop process of the conventional refrigeration air conditioner will be described.
As shown in FIGS. 3 and 4, the conventional refrigeration air conditioner starts the pump down stop process after receiving the stop command (Yes in step S1), and immediately closes the
一方、電磁弁3前後の圧力差ΔPの値は、図4に示すようにポンプダウン停止処理を開始後、上昇し、圧縮機1の停止時には液ショックが発生する差圧値Cよりも大きくなる。
On the other hand, the value of the pressure difference ΔP before and after the solenoid valve 3 rises after starting the pump-down stop process as shown in FIG. 4, and becomes larger than the differential pressure value C at which the liquid shock occurs when the compressor 1 is stopped. .
その後、起動指令を受信して(ステップS5のYes)、再び冷凍空調装置の運転を開始させるには、圧縮機1を再起動させると同時に、電磁弁3を開放する(ステップS6)。こうすることにより、冷凍サイクル装置内を冷媒が再び循環し、冷凍空調装置の運転が再開する。
Then, in order to receive the start command (Yes in step S5) and start the operation of the refrigerating and air-conditioning apparatus again, the compressor 1 is restarted and the electromagnetic valve 3 is opened (step S6). By doing so, the refrigerant circulates again in the refrigeration cycle apparatus, and the operation of the refrigeration air conditioner resumes.
なお、液ショックは、一般的に電磁弁3前後の圧力差ΔPが大きいほど、衝撃圧が大きくなる傾向にある。従来のようなポンプダウン停止処理をした場合、電磁弁3の上流側の第二配管12内は高圧の液冷媒が溜まっているのに対し、電磁弁3の下流側の第三配管13内は低圧力のガス冷媒が溜まっており、図6に示すように電磁弁3前後に差圧値Cよりも大きな圧力差ΔPが生じる状態となる。
Note that the liquid shock generally tends to increase the impact pressure as the pressure difference ΔP before and after the solenoid valve 3 increases. When the conventional pump-down stop process is performed, high-pressure liquid refrigerant is accumulated in the second pipe 12 upstream of the solenoid valve 3, whereas the third pipe 13 downstream of the solenoid valve 3 is Low-pressure gas refrigerant is accumulated, and a pressure difference ΔP larger than the differential pressure value C is generated before and after the electromagnetic valve 3 as shown in FIG.
そのため、圧縮機1の再起動と同時に電磁弁3を開放すると、圧力差ΔPにより電磁弁3の上流側の第二配管12内に溜められていた液冷媒が電磁弁3の下流側の第三配管13へ瞬間的に流れ込む。そして、第三配管13へ瞬間的に流れ込んだ液冷媒は、電磁弁3の下流側にある構成部品および配管に大きな衝撃圧を発生させる。
Therefore, when the solenoid valve 3 is opened simultaneously with the restart of the compressor 1, the liquid refrigerant accumulated in the second pipe 12 upstream of the solenoid valve 3 due to the pressure difference ΔP is transferred to the third downstream side of the solenoid valve 3. It flows into the pipe 13 instantaneously. The liquid refrigerant instantaneously flowing into the third pipe 13 generates a large impact pressure on the components and pipes on the downstream side of the electromagnetic valve 3.
そこで、本実施の形態1に係る冷凍空調装置は、電磁弁3前後に大きな圧力差ΔPを生じさせないようにするため、ポンプダウン停止処理を開始後、膨張弁4の閉止動作を電磁弁3の閉止動作よりも先行してスタートさせる。
Therefore, the refrigerating and air-conditioning apparatus according to Embodiment 1 performs the closing operation of the expansion valve 4 after starting the pump-down stop process so as not to generate a large pressure difference ΔP before and after the electromagnetic valve 3. Start prior to closing.
図5は、本発明の実施の形態1に係る冷凍空調装置のポンプダウン停止処理時の制御処理の流れを示すフローチャートであり、図6は、本発明の実施の形態1に係る冷凍空調装置のポンプダウン停止処理時の制御処理の流れを示すタイムチャートである。
以下、本実施の形態1に係る冷凍空調装置のポンプダウン停止処理時の制御処理について説明する。
図5および図6に示すように、冷凍空調装置は、指令受信部51が停止指令を受信したら(ステップS11のYes)、ポンプダウン停止処理を開始する。ポンプダウン停止処理を開始後、膨張弁制御部54は、閉速度Vの速度で膨張弁4の閉止を開始すると同時に、カウント部56は、設定時間Aのカウントを開始する(ステップS12)。このとき、膨張弁4は全閉するまで閉速度Vで徐々に閉止していく。 FIG. 5 is a flowchart showing the flow of control processing during the pump-down stop process of the refrigeration air-conditioning apparatus according toEmbodiment 1 of the present invention. FIG. 6 shows the refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention. It is a time chart which shows the flow of the control processing at the time of a pump down stop process.
Hereinafter, the control process at the time of the pump down stop process of the refrigerating and air-conditioning apparatus according toEmbodiment 1 will be described.
As shown in FIGS. 5 and 6, when thecommand receiving unit 51 receives a stop command (Yes in step S <b> 11), the refrigeration air conditioner starts a pump down stop process. After starting the pump down stop process, the expansion valve control unit 54 starts closing the expansion valve 4 at the closing speed V, and at the same time, the counting unit 56 starts counting the set time A (step S12). At this time, the expansion valve 4 is gradually closed at the closing speed V until it is fully closed.
以下、本実施の形態1に係る冷凍空調装置のポンプダウン停止処理時の制御処理について説明する。
図5および図6に示すように、冷凍空調装置は、指令受信部51が停止指令を受信したら(ステップS11のYes)、ポンプダウン停止処理を開始する。ポンプダウン停止処理を開始後、膨張弁制御部54は、閉速度Vの速度で膨張弁4の閉止を開始すると同時に、カウント部56は、設定時間Aのカウントを開始する(ステップS12)。このとき、膨張弁4は全閉するまで閉速度Vで徐々に閉止していく。 FIG. 5 is a flowchart showing the flow of control processing during the pump-down stop process of the refrigeration air-conditioning apparatus according to
Hereinafter, the control process at the time of the pump down stop process of the refrigerating and air-conditioning apparatus according to
As shown in FIGS. 5 and 6, when the
また、設定時間Aが経過するまでの間は、電磁弁3が開放状態となっているため、電磁弁3の上流側の第二配管12から電磁弁3の下流側へと冷媒が流れ込み、第三配管13内に電磁弁3の上流側の第二配管12と同等の高圧の液冷媒を溜めることができる。ここで、膨張弁4の閉速度Vに遅れが生じる場合も考慮し、設定時間Bの裕度を取り、膨張弁4が全閉となった後に電磁弁3が閉止するように開閉動作のタイミングの制御を行う。
Further, until the set time A elapses, the solenoid valve 3 is in an open state, so that the refrigerant flows from the second pipe 12 upstream of the solenoid valve 3 to the downstream side of the solenoid valve 3, A high-pressure liquid refrigerant equivalent to the second pipe 12 on the upstream side of the solenoid valve 3 can be stored in the three pipes 13. Here, considering the case where the closing speed V of the expansion valve 4 is delayed, the opening / closing operation timing is set so that the solenoid valve 3 is closed after the expansion valve 4 is fully closed by taking a margin of the set time B. Control.
つまり、カウント部56は、設定時間Aのカウントが終了したら、設定時間Bのカウントを開始する(ステップS13)。そして、設定時間Bのカウントが終了したら、圧縮機制御部52は、圧縮機1を停止する(ステップS14)。圧縮機1を停止後、電磁弁制御部53は、電磁弁3を閉止する(ステップS15)。
That is, the count unit 56 starts counting the set time B when the set time A is counted (step S13). When the set time B is counted, the compressor control unit 52 stops the compressor 1 (step S14). After stopping the compressor 1, the solenoid valve control unit 53 closes the solenoid valve 3 (step S15).
一方、電磁弁3前後の圧力差ΔPの値は、図6に示すようにポンプダウン停止処理を開始後、一時的に上昇して差圧値Cよりも大きくなるが、膨張弁4の閉止を開始後、徐々に下降して膨張弁4の全閉後、差圧値Cよりも小さくなる。
On the other hand, the value of the pressure difference ΔP before and after the electromagnetic valve 3 temporarily rises and becomes larger than the differential pressure value C after starting the pump down stop process as shown in FIG. 6, but the expansion valve 4 is closed. After the start, it gradually descends, and after the expansion valve 4 is fully closed, becomes smaller than the differential pressure value C.
その後、指令受信部51が起動指令を受信したら(ステップS16のYes)、圧縮機制御部52は、圧縮機1を再起動させると同時に、電磁弁制御部53は、電磁弁3を開放する(ステップS17)。
Thereafter, when the command receiving unit 51 receives the start command (Yes in Step S16), the compressor control unit 52 restarts the compressor 1 and at the same time, the electromagnetic valve control unit 53 opens the electromagnetic valve 3 ( Step S17).
以上のように、膨張弁4の閉止動作を電磁弁3の閉止動作よりも先行してスタートさせ、一定時間をかけて閉止し、膨張弁4が全閉となった後に電磁弁3を閉止する。このように電磁弁3よりも下流側にある膨張弁4を先に閉止し始めることで、電磁弁3と膨張弁4との間の第三配管13内に高圧の液冷媒を溜めることができる。
As described above, the closing operation of the expansion valve 4 is started prior to the closing operation of the electromagnetic valve 3, and is closed over a certain time. After the expansion valve 4 is fully closed, the electromagnetic valve 3 is closed. . Thus, by starting to close the expansion valve 4 on the downstream side of the electromagnetic valve 3 in advance, high-pressure liquid refrigerant can be stored in the third pipe 13 between the electromagnetic valve 3 and the expansion valve 4. .
これにより、電磁弁3の上流側の第二配管12内および電磁弁3の下流側の第三配管13内のどちらにも高圧の液冷媒が溜まっている状態にすることができる。第二配管12内および第三配管13内のどちらにも高圧の液冷媒が溜まっていることで、図6に示すように、電磁弁3前後の圧力差ΔPは、ゼロまたはとても小さい値に抑えられることとなる。
Thereby, a high-pressure liquid refrigerant can be stored in both the second pipe 12 upstream of the solenoid valve 3 and the third pipe 13 downstream of the solenoid valve 3. Since high-pressure liquid refrigerant is accumulated in both the second pipe 12 and the third pipe 13, the pressure difference ΔP before and after the solenoid valve 3 is suppressed to zero or a very small value as shown in FIG. Will be.
また、圧縮機1が再起動し、電磁弁3が瞬間的に開放したとしても、電磁弁3前後の圧力差ΔPは小さく抑えられているため、第二配管12内の高圧の液冷媒が電磁弁3の下流側へと瞬間的に流れ込む量を抑えることができる。
Even if the compressor 1 is restarted and the solenoid valve 3 is momentarily opened, the pressure difference ΔP before and after the solenoid valve 3 is kept small, so that the high-pressure liquid refrigerant in the second pipe 12 is The amount of instantaneous flow into the downstream side of the valve 3 can be suppressed.
このように、本実施の形態1に係る冷凍空調装置は、電磁弁3および膨張弁4の開閉動作のタイミングを制御装置50で制御することにより、電磁弁3前後の圧力差ΔPの値を調整し、電磁弁3の上流側の第二配管12内および電磁弁3の下流側の第三配管13内のどちらにも同等の高圧の液冷媒が溜まる状態にする。
As described above, the refrigerating and air-conditioning apparatus according to Embodiment 1 adjusts the value of the pressure difference ΔP before and after the electromagnetic valve 3 by controlling the timing of the opening / closing operation of the electromagnetic valve 3 and the expansion valve 4 with the control device 50. Then, an equivalent high-pressure liquid refrigerant is accumulated in both the second pipe 12 upstream of the solenoid valve 3 and the third pipe 13 downstream of the solenoid valve 3.
こうすることにより、電磁弁3前後の圧力差ΔPをゼロまたはとても小さい値に抑えることができる。その結果、電磁弁3前後の圧力差ΔPがゼロまたはとても小さい値から圧縮機1を再起動させることができるため、液ショック対策に特化した配管形状とせずに、液ショックによる衝撃圧を抑制することができる。
By doing so, the pressure difference ΔP before and after the solenoid valve 3 can be suppressed to zero or a very small value. As a result, the compressor 1 can be restarted when the pressure difference ΔP before and after the solenoid valve 3 is zero or a very small value, so that the shock pressure due to the liquid shock is suppressed without using a pipe shape specialized for liquid shock countermeasures. can do.
実施の形態2.
以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。Embodiment 2. FIG.
Hereinafter,Embodiment 2 of the present invention will be described, but the description overlapping with Embodiment 1 will be omitted, and the same reference numerals will be given to the same or corresponding parts as those in Embodiment 1.
以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Hereinafter,
図7は、本発明の実施の形態2に係る冷凍空調装置の冷凍サイクル装置を示す概略図であり、図8は、本発明の実施の形態2に係る冷凍空調装置の制御装置50aの機能ブロック図である。
FIG. 7 is a schematic diagram showing a refrigeration cycle apparatus of a refrigeration air conditioning apparatus according to Embodiment 2 of the present invention, and FIG. 8 is a functional block of a control apparatus 50a of the refrigeration air conditioning apparatus according to Embodiment 2 of the present invention. FIG.
図7に示すように、本実施の形態2に係る冷凍空調装置の冷凍サイクル装置では、電磁弁3の上流側の第二配管12に第一圧力センサ21が、電磁弁3の下流側の第三配管13に第二圧力センサ22がそれぞれ設けられている。また、図8に示すように、本実施の形態2に係る冷凍空調装置の制御装置50aは、第一圧力センサ21および第二圧力センサ22が検知した圧力情報を取得する圧力情報取得部57を備えている。また、液ショックが発生する差圧値Cと、この差圧値Cに対し裕度を持たせた第一制御目標値D(<C)とが設定されており、それらの情報は記憶部55に記憶されている。
As shown in FIG. 7, in the refrigeration cycle apparatus of the refrigerating and air-conditioning apparatus according to Embodiment 2, the first pressure sensor 21 is connected to the second pipe 12 upstream of the electromagnetic valve 3, and the first pressure sensor 21 is downstream of the electromagnetic valve 3. A second pressure sensor 22 is provided in each of the three pipes 13. Further, as shown in FIG. 8, the control device 50a of the refrigerating and air-conditioning apparatus according to Embodiment 2 includes a pressure information acquisition unit 57 that acquires pressure information detected by the first pressure sensor 21 and the second pressure sensor 22. I have. Further, a differential pressure value C at which a fluid shock occurs and a first control target value D (<C) having a margin with respect to the differential pressure value C are set. Is remembered.
図9は、本発明の実施の形態2に係る冷凍空調装置のポンプダウン停止処理時の制御処理の流れを示すフローチャートであり、図10は、本発明の実施の形態2に係る冷凍空調装置のポンプダウン停止処理時および停止時の制御処理の流れを示すタイムチャートである。なお、図10は後述する実施の形態3でも用い、図10の第二制御目標値Eについては実施の形態3で後述する。
FIG. 9 is a flowchart showing a flow of control processing during the pump-down stop process of the refrigeration air conditioner according to Embodiment 2 of the present invention, and FIG. 10 shows the refrigeration air conditioner according to Embodiment 2 of the present invention. It is a time chart which shows the flow of the control processing at the time of a pump down stop process and a stop. FIG. 10 is also used in a third embodiment described later, and the second control target value E in FIG. 10 will be described later in the third embodiment.
以下、本実施の形態2に係る冷凍空調装置のポンプダウン停止処理時の制御処理について説明する。
図9および図10に示すように、冷凍空調装置は、指令受信部51が停止指令を受信したら(ステップS21のYes)、膨張弁制御部54は、膨張弁4の閉止を開始する(ステップS22)。このとき、電磁弁制御部53は、電磁弁3の開放状態を継続し、電磁弁3の上流側の第二配管12から電磁弁3の下流側の第三配管13へと冷媒が流れる状態とする。図10に示すように、ポンプダウン停止処理時の圧縮機1の運転状態と膨張弁4の開度状態とにより、電磁弁3前後の圧力差ΔPは一時的に上昇して差圧値Cよりも大きくなる。しかし、膨張弁4の開度が全閉に近づくにつれ、電磁弁3の上流側の第二配管12から流れ込んできた高圧の液冷媒が電磁弁3の下流側の第三配管13内に溜められていく状態となり、電磁弁3前後の圧力差ΔPの値は徐々に下降する。 Hereinafter, the control process at the time of the pump down stop process of the refrigeration air conditioner according to the second embodiment will be described.
As shown in FIGS. 9 and 10, in the refrigeration air conditioner, when thecommand receiving unit 51 receives a stop command (Yes in step S21), the expansion valve control unit 54 starts closing the expansion valve 4 (step S22). ). At this time, the solenoid valve control unit 53 continues the open state of the solenoid valve 3, and the refrigerant flows from the second pipe 12 on the upstream side of the solenoid valve 3 to the third pipe 13 on the downstream side of the solenoid valve 3. To do. As shown in FIG. 10, the pressure difference ΔP before and after the electromagnetic valve 3 temporarily rises from the differential pressure value C depending on the operation state of the compressor 1 and the opening state of the expansion valve 4 during the pump down stop process. Also grows. However, as the opening degree of the expansion valve 4 approaches full closure, the high-pressure liquid refrigerant flowing from the second pipe 12 upstream of the solenoid valve 3 is accumulated in the third pipe 13 downstream of the solenoid valve 3. The pressure difference ΔP before and after the solenoid valve 3 gradually decreases.
図9および図10に示すように、冷凍空調装置は、指令受信部51が停止指令を受信したら(ステップS21のYes)、膨張弁制御部54は、膨張弁4の閉止を開始する(ステップS22)。このとき、電磁弁制御部53は、電磁弁3の開放状態を継続し、電磁弁3の上流側の第二配管12から電磁弁3の下流側の第三配管13へと冷媒が流れる状態とする。図10に示すように、ポンプダウン停止処理時の圧縮機1の運転状態と膨張弁4の開度状態とにより、電磁弁3前後の圧力差ΔPは一時的に上昇して差圧値Cよりも大きくなる。しかし、膨張弁4の開度が全閉に近づくにつれ、電磁弁3の上流側の第二配管12から流れ込んできた高圧の液冷媒が電磁弁3の下流側の第三配管13内に溜められていく状態となり、電磁弁3前後の圧力差ΔPの値は徐々に下降する。 Hereinafter, the control process at the time of the pump down stop process of the refrigeration air conditioner according to the second embodiment will be described.
As shown in FIGS. 9 and 10, in the refrigeration air conditioner, when the
圧力情報取得部57は、第一圧力センサ21が検知した電磁弁3の上流側の第二配管12の圧力P1に関する情報と、第二圧力センサ22が検知した電磁弁3の下流側の第三配管13の圧力P2に関する情報とを取得し、圧力P1、P2により圧力差ΔP=|P1-P2|を算出する(ステップS23)。
The pressure information acquisition unit 57 includes information related to the pressure P1 of the second pipe 12 upstream of the electromagnetic valve 3 detected by the first pressure sensor 21 and the third downstream of the electromagnetic valve 3 detected by the second pressure sensor 22. Information on the pressure P2 of the pipe 13 is acquired, and a pressure difference ΔP = | P1−P2 | is calculated from the pressures P1 and P2 (step S23).
圧縮機制御部52は、膨張弁4が全閉後、圧縮機1を停止させる(ステップS24)。
電磁弁制御部53は、第一制御目標値Dを圧力差ΔPの制御目標値とし、停止指令受信後の電磁弁3前後の圧力差ΔPが差圧値Cよりも小さい第一制御目標値D以下となったタイミングで電磁弁3を閉止する(ステップS25のYes、ステップS26)。 Thecompressor control unit 52 stops the compressor 1 after the expansion valve 4 is fully closed (step S24).
The solenoidvalve control unit 53 sets the first control target value D as the control target value of the pressure difference ΔP, and the first control target value D where the pressure difference ΔP before and after the solenoid valve 3 after receiving the stop command is smaller than the differential pressure value C. The electromagnetic valve 3 is closed at the timing below (Yes in step S25, step S26).
電磁弁制御部53は、第一制御目標値Dを圧力差ΔPの制御目標値とし、停止指令受信後の電磁弁3前後の圧力差ΔPが差圧値Cよりも小さい第一制御目標値D以下となったタイミングで電磁弁3を閉止する(ステップS25のYes、ステップS26)。 The
The solenoid
その後、指令受信部51が起動指令を受信したら(ステップS27のYes)、圧縮機制御部52は、圧縮機1を再起動させると同時に、電磁弁制御部53は、電磁弁3を開放する(ステップS28)。
Thereafter, when the command receiving unit 51 receives the start command (Yes in step S27), the compressor control unit 52 restarts the compressor 1, and at the same time, the electromagnetic valve control unit 53 opens the electromagnetic valve 3 ( Step S28).
なお、電磁弁3が閉止するタイミングは、膨張弁4が全閉状態となる前であっても構わないが、膨張弁4の閉止動作を途中で止めてしまった場合、電磁弁3の下流側の第三配管13内に溜められた高圧の液冷媒が膨張弁4の下流側の第四配管14へと送られ、電磁弁3前後の圧力差ΔPの値が大きくなる可能性がある。
The timing for closing the solenoid valve 3 may be before the expansion valve 4 is fully closed. However, if the closing operation of the expansion valve 4 is stopped halfway, the downstream side of the solenoid valve 3 is closed. The high-pressure liquid refrigerant stored in the third pipe 13 may be sent to the fourth pipe 14 on the downstream side of the expansion valve 4, and the value of the pressure difference ΔP before and after the electromagnetic valve 3 may increase.
しかし、液ショックによる衝撃圧を抑制するためには、電磁弁3の下流側の第三配管13内に高圧の液冷媒を溜めて、圧力差ΔPをゼロまたはとても小さい値に抑える必要がある。そのため、膨張弁4が全閉状態となる前に電磁弁3が閉止した場合でも、膨張弁制御部54は、膨張弁4が全閉状態となるまで膨張弁4の閉止動作を継続させる。
However, in order to suppress the impact pressure due to the liquid shock, it is necessary to store a high-pressure liquid refrigerant in the third pipe 13 on the downstream side of the solenoid valve 3 to suppress the pressure difference ΔP to zero or a very small value. Therefore, even when the solenoid valve 3 is closed before the expansion valve 4 is fully closed, the expansion valve control unit 54 continues the closing operation of the expansion valve 4 until the expansion valve 4 is fully closed.
このように、本実施の形態2に係る冷凍空調装置は、電磁弁3および膨張弁4の開閉動作のタイミングを制御装置50で制御することにより、電磁弁3前後の圧力差ΔPの値を調整し、電磁弁3の上流側の第二配管12内および電磁弁3の下流側の第三配管13内のどちらにも同等の高圧の液冷媒が溜まる状態にする。
Thus, the refrigerating and air-conditioning apparatus according to Embodiment 2 adjusts the value of the pressure difference ΔP before and after the electromagnetic valve 3 by controlling the timing of the opening / closing operation of the electromagnetic valve 3 and the expansion valve 4 with the control device 50. Then, an equivalent high-pressure liquid refrigerant is accumulated in both the second pipe 12 upstream of the solenoid valve 3 and the third pipe 13 downstream of the solenoid valve 3.
なお、圧力差ΔPが、液ショックが発生する差圧値C未満となるように、電磁弁3および膨張弁4の開閉動作のタイミングを制御することにより、電磁弁3の上流側の第二配管12内および電磁弁3の下流側の第三配管13内のどちらにも同等の高圧の液冷媒が溜まる状態となる。
Note that the second piping on the upstream side of the solenoid valve 3 is controlled by controlling the timing of the opening and closing operations of the solenoid valve 3 and the expansion valve 4 so that the pressure difference ΔP is less than the differential pressure value C at which a fluid shock occurs. 12 and the third piping 13 on the downstream side of the solenoid valve 3 are in a state where the same high-pressure liquid refrigerant is accumulated.
こうすることにより、電磁弁3前後の圧力差ΔPをゼロまたはとても小さい値に抑えることができる。その結果、電磁弁3前後の圧力差ΔPがゼロまたはとても小さい値から圧縮機1を再起動させることができるため、液ショック対策に特化した配管形状とせずに、液ショックによる衝撃圧を抑制することができる。
By doing so, the pressure difference ΔP before and after the solenoid valve 3 can be suppressed to zero or a very small value. As a result, the compressor 1 can be restarted when the pressure difference ΔP before and after the solenoid valve 3 is zero or a very small value, so that the shock pressure due to the liquid shock is suppressed without using a pipe shape specialized for liquid shock countermeasures. can do.
また、本実施の形態2に係る冷凍空調装置は、電磁弁3および膨張弁4の開閉動作のタイミングを、圧力P1、P2を用いて制御しているため、実施の形態1に比べて電磁弁3および膨張弁4の開閉動作のタイミングの制御を精度よく行える。その結果、液ショックによる衝撃圧をさらに抑制することができる。
Moreover, since the refrigerating and air-conditioning apparatus according to the second embodiment controls the opening / closing operation timing of the solenoid valve 3 and the expansion valve 4 using the pressures P1 and P2, the solenoid valve is compared with the first embodiment. 3 and the timing of the opening / closing operation of the expansion valve 4 can be accurately controlled. As a result, the impact pressure due to the liquid shock can be further suppressed.
図11は、図7の冷凍空調装置の冷凍サイクル装置の別の例を示す概略図である。
なお、図11に示すように、電磁弁3前後に第一圧力センサ21および第二圧力センサ22を設ける代わりに電磁弁3前後の圧力差ΔPを検知する微差圧スイッチ23を設けて、圧力差ΔPがあらかじめ設定した圧力差となったときに、微差圧スイッチ23が制御装置50に信号を送るようにしてもよい。 FIG. 11 is a schematic diagram illustrating another example of the refrigeration cycle apparatus of the refrigeration air-conditioning apparatus of FIG.
As shown in FIG. 11, instead of providing thefirst pressure sensor 21 and the second pressure sensor 22 before and after the electromagnetic valve 3, a fine differential pressure switch 23 for detecting the pressure difference ΔP before and after the electromagnetic valve 3 is provided, The fine differential pressure switch 23 may send a signal to the control device 50 when the difference ΔP becomes a preset pressure difference.
なお、図11に示すように、電磁弁3前後に第一圧力センサ21および第二圧力センサ22を設ける代わりに電磁弁3前後の圧力差ΔPを検知する微差圧スイッチ23を設けて、圧力差ΔPがあらかじめ設定した圧力差となったときに、微差圧スイッチ23が制御装置50に信号を送るようにしてもよい。 FIG. 11 is a schematic diagram illustrating another example of the refrigeration cycle apparatus of the refrigeration air-conditioning apparatus of FIG.
As shown in FIG. 11, instead of providing the
実施の形態3.
以下、本発明の実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。Embodiment 3 FIG.
Hereinafter,Embodiment 3 of the present invention will be described, but the description overlapping with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as those in Embodiments 1 and 2 will be denoted by the same reference numerals. .
以下、本発明の実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
Hereinafter,
本実施の形態3に係る冷凍空調装置では、電磁弁3前後の圧力バランスが崩れた場合に、第二制御目標値Eを用いて圧縮機1の停止中に電磁弁3を開閉動作させることにより、電磁弁3前後の圧力差ΔPを調整する制御を行い、液ショックによる衝撃圧を抑制する。
In the refrigerating and air-conditioning apparatus according to the third embodiment, when the pressure balance around the solenoid valve 3 is lost, the solenoid valve 3 is opened and closed while the compressor 1 is stopped using the second control target value E. Then, control for adjusting the pressure difference ΔP before and after the electromagnetic valve 3 is performed to suppress the impact pressure due to the liquid shock.
本実施の形態3では、図10に示すように、液ショックが発生する差圧値Cと、この差圧値Cに対し裕度を持たせた第一制御目標値D(<C)とに加え、差圧値C未満かつ第一制御目標値Dよりも大きい値(D<E<C)である第二制御目標値Eが設定されており、それらの情報は記憶部55に記憶されている。
In the third embodiment, as shown in FIG. 10, a differential pressure value C at which a fluid shock occurs and a first control target value D (<C) with a margin for the differential pressure value C are obtained. In addition, a second control target value E that is less than the differential pressure value C and larger than the first control target value D (D <E <C) is set, and the information is stored in the storage unit 55. Yes.
図12は、本発明の実施の形態3に係る冷凍空調装置の停止時の電磁弁3前後の圧力差ΔPを調整する制御処理の流れを示すフローチャートである。
以下、本実施の形態3に係る冷凍空調装置の停止時の電磁弁3前後の圧力差ΔPを調整する制御処理について説明する。
圧縮機1の停止中に膨張弁4から下流側の第四配管14へ徐々に冷媒が漏れ出した場合、電磁弁3の下流側の第三配管13の圧力は低下する。それに対し、電磁弁3の上流側の第二配管12の圧力は、膨張弁4よりも閉め切り性のよい電磁弁3により閉め切られているため、保たれる。そのため、電磁弁3前後の圧力差ΔPは、膨張弁4からの冷媒の漏れ量に比例しながら徐々に大きくなる。 FIG. 12 is a flowchart showing a flow of control processing for adjusting the pressure difference ΔP before and after theelectromagnetic valve 3 when the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention is stopped.
Hereinafter, a control process for adjusting the pressure difference ΔP before and after theelectromagnetic valve 3 when the refrigerating and air-conditioning apparatus according to Embodiment 3 is stopped will be described.
When the refrigerant gradually leaks from theexpansion valve 4 to the fourth pipe 14 on the downstream side while the compressor 1 is stopped, the pressure in the third pipe 13 on the downstream side of the solenoid valve 3 decreases. On the other hand, the pressure in the second pipe 12 on the upstream side of the electromagnetic valve 3 is maintained because it is closed by the electromagnetic valve 3 having better closing performance than the expansion valve 4. Therefore, the pressure difference ΔP before and after the electromagnetic valve 3 gradually increases in proportion to the refrigerant leakage amount from the expansion valve 4.
以下、本実施の形態3に係る冷凍空調装置の停止時の電磁弁3前後の圧力差ΔPを調整する制御処理について説明する。
圧縮機1の停止中に膨張弁4から下流側の第四配管14へ徐々に冷媒が漏れ出した場合、電磁弁3の下流側の第三配管13の圧力は低下する。それに対し、電磁弁3の上流側の第二配管12の圧力は、膨張弁4よりも閉め切り性のよい電磁弁3により閉め切られているため、保たれる。そのため、電磁弁3前後の圧力差ΔPは、膨張弁4からの冷媒の漏れ量に比例しながら徐々に大きくなる。 FIG. 12 is a flowchart showing a flow of control processing for adjusting the pressure difference ΔP before and after the
Hereinafter, a control process for adjusting the pressure difference ΔP before and after the
When the refrigerant gradually leaks from the
そこで、図10および図12に示すように、液ショックが発生する条件を満たす前に、つまり圧力情報取得部57が算出した電磁弁3前後の圧力差ΔPが差圧値C以上となる前に、第二制御目標値E以上となった時点で(ステップS31、ステップS32のYes)、電磁弁制御部53は電磁弁3を開放し(ステップS33)、電磁弁3の上流側の第二配管12内に溜められている高圧の液冷媒を電磁弁3の下流側の第三配管13へと送り込む。この電磁弁3の開放時、液ショックの発生が懸念されるが、電磁弁3前後の圧力差ΔPは、この第二制御目標値Eに達した時点では、液ショックが発生する差圧値C未満であるため、衝撃圧は微小に抑えることができる。
Therefore, as shown in FIGS. 10 and 12, before the condition for generating the liquid shock is satisfied, that is, before the pressure difference ΔP before and after the electromagnetic valve 3 calculated by the pressure information acquisition unit 57 becomes equal to or higher than the differential pressure value C. When the second control target value E is reached (Yes in step S31 and step S32), the solenoid valve control unit 53 opens the solenoid valve 3 (step S33), and the second piping upstream of the solenoid valve 3 is opened. The high-pressure liquid refrigerant stored in 12 is sent to the third pipe 13 on the downstream side of the solenoid valve 3. When the electromagnetic valve 3 is opened, there is a concern about the occurrence of a fluid shock, but when the pressure difference ΔP before and after the electromagnetic valve 3 reaches the second control target value E, the differential pressure value C at which a fluid shock occurs. Therefore, the impact pressure can be kept small.
電磁弁3の開放後、電磁弁3前後の圧力差ΔPは下がり始める。その後、圧力情報取得部57が算出した圧力差ΔPが第一制御目標値D以下となった時点で(ステップS34、ステップS35のYes)、電磁弁制御部53は電磁弁3を閉止する(ステップS36)。そして、膨張弁4から下流側の第四配管14へ冷媒が再度漏れ出し、電磁弁3前後の圧力バランスが崩れ、電磁弁3前後の圧力差ΔPが大きくなった場合も同様にして、再び圧力情報取得部57が算出した圧力差ΔPが第二制御目標値E以上となった時点で(ステップS31、ステップS32のYes)、電磁弁制御部53は電磁弁3を開放する動作を行い(ステップS33)、電磁弁3前後の圧力差ΔPが第二制御目標値E以上とならないように制御装置50aにて調整を行う。
After the solenoid valve 3 is opened, the pressure difference ΔP before and after the solenoid valve 3 starts to decrease. Thereafter, when the pressure difference ΔP calculated by the pressure information acquisition unit 57 becomes equal to or less than the first control target value D (Yes in Step S34 and Step S35), the electromagnetic valve control unit 53 closes the electromagnetic valve 3 (Step S34). S36). Then, when the refrigerant leaks again from the expansion valve 4 to the fourth pipe 14 on the downstream side, the pressure balance before and after the solenoid valve 3 is lost, and the pressure difference ΔP before and after the solenoid valve 3 increases, When the pressure difference ΔP calculated by the information acquisition unit 57 becomes equal to or greater than the second control target value E (Yes in Step S31 and Step S32), the electromagnetic valve control unit 53 performs an operation of opening the electromagnetic valve 3 (Step S31). S33), the control device 50a performs adjustment so that the pressure difference ΔP before and after the solenoid valve 3 does not exceed the second control target value E.
このように、本実施の形態3に係る冷凍空調装置は、電磁弁3の開閉動作のタイミングを制御装置50で制御することにより、電磁弁3前後の圧力差ΔPの値を調整し、電磁弁3の上流側の第二配管12内および電磁弁3の下流側の第三配管13内のどちらにも同等の高圧の液冷媒が溜まる状態にする。
As described above, the refrigerating and air-conditioning apparatus according to Embodiment 3 adjusts the value of the pressure difference ΔP before and after the solenoid valve 3 by controlling the timing of the opening / closing operation of the solenoid valve 3 with the control device 50. 3 in the second pipe 12 on the upstream side and the third pipe 13 on the downstream side of the solenoid valve 3 in a state where the same high-pressure liquid refrigerant is accumulated.
こうすることにより、電磁弁3前後の圧力差ΔPをゼロまたはとても小さい値に抑えることができる。その結果、電磁弁3前後の圧力差ΔPがゼロまたはとても小さい値から圧縮機1を再起動させることができるため、液ショック対策に特化した配管形状とせずに、液ショックによる衝撃圧を抑制することができる。
By doing so, the pressure difference ΔP before and after the solenoid valve 3 can be suppressed to zero or a very small value. As a result, the compressor 1 can be restarted when the pressure difference ΔP before and after the solenoid valve 3 is zero or a very small value, so that the shock pressure due to the liquid shock is suppressed without using a pipe shape specialized for liquid shock countermeasures. can do.
また、圧縮機1の停止中に電磁弁3前後の圧力バランスが崩れ、電磁弁3前後の圧力差ΔPが大きくなった場合においても、圧縮機1の停止中の電磁弁3の開閉制御により電磁弁3前後の圧力差を一定値以下に抑えることで、液ショックによる衝撃圧を抑制することができる。
Even when the pressure balance before and after the solenoid valve 3 is lost while the compressor 1 is stopped and the pressure difference ΔP before and after the solenoid valve 3 is increased, the electromagnetic valve 3 is controlled by opening and closing the solenoid valve 3 while the compressor 1 is stopped. By suppressing the pressure difference before and after the valve 3 to a certain value or less, the impact pressure due to the liquid shock can be suppressed.
なお、冷媒検知手段(図示せず)などにより冷媒漏洩の検知を行ってもよい。冷媒検知手段は、例えば、金属酸化物 半導体が冷媒ガスと接触した時に発生する抵抗値の変化を空気中の冷媒ガス濃度として検出する半導体式ガスセンサ、赤外線がガスによって吸収される量で検知する非分散型赤外線方式のセンサなどである。
Note that refrigerant leakage may be detected by a refrigerant detection means (not shown) or the like. The refrigerant detection means is, for example, a semiconductor gas sensor that detects a change in resistance value that occurs when the metal oxide-semiconductor contacts the refrigerant gas as a refrigerant gas concentration in the air, and a non-detection that detects the amount of infrared rays absorbed by the gas. For example, a distributed infrared sensor.
1 圧縮機、2 凝縮器、3 電磁弁、4 膨張弁、5 蒸発器、11 第一配管、12 第二配管、13 第三配管、14 第四配管、15 第五配管、21 第一圧力センサ、22 第二圧力センサ、23 微差圧スイッチ、50 制御装置、50a 制御装置、51 指令受信部、52 圧縮機制御部、53 電磁弁制御部、54 膨張弁制御部、55 記憶部、56 カウント部、57 圧力情報取得部。
1 compressor, 2 condenser, 3 solenoid valve, 4 expansion valve, 5 evaporator, 11 first piping, 12 second piping, 13 third piping, 14 fourth piping, 15 fifth piping, 21 first pressure sensor , 22 second pressure sensor, 23 fine differential pressure switch, 50 control device, 50a control device, 51 command receiving unit, 52 compressor control unit, 53 solenoid valve control unit, 54 expansion valve control unit, 55 storage unit, 56 counts , 57 Pressure information acquisition unit.
Claims (5)
- 圧縮機、凝縮器、電磁弁、膨張弁、および、蒸発器が配管により環状に接続された冷凍サイクル装置と、制御装置と、を備え、
前記制御装置は、
ポンプダウン停止処理時において、前記膨張弁を閉止する膨張弁制御部と、
ポンプダウン停止処理時において、前記膨張弁が全閉後、前記電磁弁を閉止する電磁弁制御部と、を備えた
冷凍空調装置。 A compressor, a condenser, a solenoid valve, an expansion valve, and a refrigeration cycle device in which an evaporator is annularly connected by piping, and a control device,
The control device includes:
An expansion valve control unit for closing the expansion valve during the pump down stop process;
A refrigerating and air-conditioning apparatus comprising: a solenoid valve controller configured to close the solenoid valve after the expansion valve is fully closed during the pump down stop process. - 前記制御装置は、
前記膨張弁の閉止を開始してから全閉となるまでの設定時間Aと、設定時間A経過後から前記電磁弁を閉止するまでの設定時間Bとが記憶された記憶部と、
前記膨張弁が閉止を開始すると同時に前記設定時間Aのカウントを開始し、前記設定時間Aのカウントが終了したら、前記設定時間Bのカウントを開始するカウント部と、を備え、
前記電磁弁制御部は、
前記カウント部が前記設定時間Bのカウントを終了したら、前記膨張弁を閉止するものである
請求項1に記載の冷凍空調装置。 The control device includes:
A storage unit that stores a set time A from the start of closing of the expansion valve until the valve is fully closed, and a set time B after the set time A has elapsed until the solenoid valve is closed;
A counter that starts counting the set time A at the same time as the expansion valve starts to close, and starts counting the set time B when the set time A is counted, and
The solenoid valve control unit
The refrigerating and air-conditioning apparatus according to claim 1, wherein when the counting unit finishes counting the set time B, the expansion valve is closed. - 前記電磁弁の上流側の圧力を検知する第一圧力センサと、
前記電磁弁の下流側の圧力を検知する第二圧力センサと、を備え、
前記記憶部には、液ショックが発生する差圧値Cよりも小さい値であり、該差圧値Cに対し裕度を持たせた第一制御目標値Dが記憶されており、
前記制御装置は、
前記第一圧力センサが検知した圧力P1に関する情報と、前記第二圧力センサが検知した圧力P2に関する情報とを取得し、圧力P1と圧力P2とにより圧力差ΔPを算出する圧力情報取得部を備え、
前記電磁弁制御部は、
前記圧力差ΔPが前記第一制御目標値Dとなったタイミングで前記電磁弁を閉止するものである
請求項2に記載の冷凍空調装置。 A first pressure sensor for detecting pressure upstream of the solenoid valve;
A second pressure sensor for detecting the pressure on the downstream side of the solenoid valve,
The storage unit stores a first control target value D that is smaller than the differential pressure value C at which fluid shock occurs, and has a margin for the differential pressure value C.
The control device includes:
A pressure information acquisition unit that acquires information on the pressure P1 detected by the first pressure sensor and information on the pressure P2 detected by the second pressure sensor and calculates a pressure difference ΔP by the pressure P1 and the pressure P2 is provided. ,
The solenoid valve control unit
The refrigerating and air-conditioning apparatus according to claim 2, wherein the solenoid valve is closed at a timing when the pressure difference ΔP reaches the first control target value D. - 前記電磁弁の上流側と下流側との圧力差ΔPを検知する差圧スイッチを備え、
前記記憶部には、液ショックが発生する差圧値Cよりも小さい値であり、該差圧値Cに対し裕度を持たせた第一制御目標値Dが記憶されており、
前記制御装置は、
前記差圧スイッチが検知した前記圧力差ΔPに関する情報を取得する圧力情報取得部を備え、
前記電磁弁制御部は、
前記圧力差ΔPが前記第一制御目標値Dとなったタイミングで前記電磁弁を閉止するものである
請求項2に記載の冷凍空調装置。 A differential pressure switch for detecting a pressure difference ΔP between the upstream side and the downstream side of the solenoid valve;
The storage unit stores a first control target value D that is smaller than the differential pressure value C at which fluid shock occurs, and has a margin for the differential pressure value C.
The control device includes:
A pressure information acquisition unit for acquiring information on the pressure difference ΔP detected by the differential pressure switch;
The solenoid valve control unit
The refrigerating and air-conditioning apparatus according to claim 2, wherein the solenoid valve is closed at a timing when the pressure difference ΔP reaches the first control target value D. - 前記記憶部には、前記差圧値C未満かつ前記第一制御目標値Dよりも大きい値である第二制御目標値Eが記憶されており、
停止時において、
前記電磁弁制御部は、
前記圧力差ΔPが前記第二制御目標値E以上となったら前記電磁弁を開放し、
前記圧力差ΔPが前記第一制御目標値D以下となったら前記電磁弁を閉止するものである
請求項3または4に記載の冷凍空調装置。 The storage unit stores a second control target value E that is less than the differential pressure value C and greater than the first control target value D,
When stopping
The solenoid valve control unit
When the pressure difference ΔP is greater than or equal to the second control target value E, the solenoid valve is opened,
The refrigerating and air-conditioning apparatus according to claim 3 or 4, wherein the solenoid valve is closed when the pressure difference ΔP becomes equal to or less than the first control target value D.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/068704 WO2017221384A1 (en) | 2016-06-23 | 2016-06-23 | Refrigeration and air conditioning device |
JP2018523239A JP6618622B2 (en) | 2016-06-23 | 2016-06-23 | Refrigeration air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/068704 WO2017221384A1 (en) | 2016-06-23 | 2016-06-23 | Refrigeration and air conditioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017221384A1 true WO2017221384A1 (en) | 2017-12-28 |
Family
ID=60784628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/068704 WO2017221384A1 (en) | 2016-06-23 | 2016-06-23 | Refrigeration and air conditioning device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6618622B2 (en) |
WO (1) | WO2017221384A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0519724Y2 (en) * | 1987-01-30 | 1993-05-24 | ||
JPH11325654A (en) * | 1998-05-15 | 1999-11-26 | Mitsubishi Electric Corp | Refrigeration unit |
JP2009222272A (en) * | 2008-03-14 | 2009-10-01 | Mitsubishi Electric Corp | Refrigerating device |
JP2012215309A (en) * | 2011-03-31 | 2012-11-08 | Mitsubishi Electric Corp | Cooling device, and refrigerating cycle apparatus |
-
2016
- 2016-06-23 JP JP2018523239A patent/JP6618622B2/en not_active Expired - Fee Related
- 2016-06-23 WO PCT/JP2016/068704 patent/WO2017221384A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0519724Y2 (en) * | 1987-01-30 | 1993-05-24 | ||
JPH11325654A (en) * | 1998-05-15 | 1999-11-26 | Mitsubishi Electric Corp | Refrigeration unit |
JP2009222272A (en) * | 2008-03-14 | 2009-10-01 | Mitsubishi Electric Corp | Refrigerating device |
JP2012215309A (en) * | 2011-03-31 | 2012-11-08 | Mitsubishi Electric Corp | Cooling device, and refrigerating cycle apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP6618622B2 (en) | 2019-12-11 |
JPWO2017221384A1 (en) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5495949B2 (en) | Refrigeration equipment | |
EP1826513A1 (en) | Refrigerating air conditioner | |
US9651288B2 (en) | Refrigeration apparatus and refrigeration cycle apparatus | |
JP2011117626A (en) | Air conditioner | |
WO2007083794A1 (en) | Air conditioner | |
JP5761306B2 (en) | Refrigeration unit heat source unit | |
JP2014214913A (en) | Oil return controller and refrigerator | |
JP3982557B2 (en) | Air conditioner | |
JP2010101552A (en) | Gas injection refrigeration system | |
JP2002081769A (en) | Air conditioner | |
JP6618622B2 (en) | Refrigeration air conditioner | |
JPH11230624A (en) | Apparatus and method of controlling electronic expansion valve | |
JP2954259B2 (en) | Air conditioner | |
JP2007101177A (en) | Air conditioner or refrigerating cycle device | |
WO2021111605A1 (en) | Refrigeration cycle device | |
CN106595145B (en) | A kind of control system and method for preventing compressor from returning liquid | |
JPWO2020065999A1 (en) | Outdoor unit of refrigeration cycle equipment, refrigeration cycle equipment, and air conditioner | |
JP6993283B2 (en) | Refrigeration cycle device | |
JP2005274085A (en) | Refrigerating device | |
JP3505209B2 (en) | Refrigeration equipment | |
WO2018011841A1 (en) | Refrigerating and air-conditioning apparatus | |
JP2012127562A (en) | Multi-room type refrigeration cycle device | |
JP7282258B2 (en) | Outdoor unit and refrigeration cycle equipment | |
JP2009186035A (en) | Refrigerating device | |
JPH05133620A (en) | Controller of refrigerating device operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018523239 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16906301 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16906301 Country of ref document: EP Kind code of ref document: A1 |