WO2017221294A1 - Coating composition - Google Patents

Coating composition Download PDF

Info

Publication number
WO2017221294A1
WO2017221294A1 PCT/JP2016/068247 JP2016068247W WO2017221294A1 WO 2017221294 A1 WO2017221294 A1 WO 2017221294A1 JP 2016068247 W JP2016068247 W JP 2016068247W WO 2017221294 A1 WO2017221294 A1 WO 2017221294A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
antifreeze
polysaccharide
item
ice
Prior art date
Application number
PCT/JP2016/068247
Other languages
French (fr)
Japanese (ja)
Inventor
秀久 河原
芳栄 小出
克彰 守田
Original Assignee
学校法人 関西大学
有限会社一栄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 関西大学, 有限会社一栄 filed Critical 学校法人 関西大学
Priority to PCT/JP2016/068247 priority Critical patent/WO2017221294A1/en
Publication of WO2017221294A1 publication Critical patent/WO2017221294A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds

Definitions

  • the present invention relates to a coating composition, a coating method, a coated specimen, and the like.
  • the coating of the present invention can reduce ice adhesion to the coating surface.
  • Non-Patent Documents 1 to 5 Non-Patent Documents 1 to 5).
  • antifreeze polysaccharides are natural polysaccharides having a function of inhibiting the growth of ice crystals, and were found from polysaccharides constituting the cell walls of fungi such as enokitake (Patent Document 1). Based on this function, antifreeze polysaccharides are used to prevent quality degradation due to freezing storage of foods. In addition, since antifreeze polysaccharides are excellent in heat resistance and acid resistance, they can also be used as quality improvers such as frozen fried foods and frozen fried foods.
  • An object of the present invention is to provide a coating technique that can reduce the adhesion of ice to the surface. Furthermore, another object of the present invention is to provide a coating technique that can reduce ice adhesion to the surface without depending on the uneven structure.
  • the present invention includes the following aspects.
  • Item 1 A coating composition containing an antifreeze polysaccharide.
  • Item 2. Item 4. The composition according to Item 1, further comprising hydrophobin.
  • Item 3. Item 3.
  • Item 4. Item 4. The composition according to any one of Items 1 to 3, comprising a solvent, wherein the solvent has a Snyder polarity parameter of 2.5 to 5.5.
  • Item 5. Item 5.
  • composition according to Item 4 wherein the solvent is at least one selected from the group consisting of chloromethane, dichloromethane, 2-propanol, tetrahydrofuran, n-propanol, chloroform, ethanol, and ethyl acetate.
  • Item 6. The composition according to any one of Items 1 to 5, further comprising a binder.
  • Item 7. The composition according to Item 6, wherein the binder is a moisture curable binder.
  • composition according to Item 8 wherein the antifreeze polysaccharide is a purified antifreeze polysaccharide derived from a fungus, the Snyder polarity parameter of the solvent is 2.5 to 5.5, and the binder is a moisture curable binder. object.
  • Item 10. Item 10. The composition according to Item 9, wherein the solvent is at least one selected from the group consisting of chloromethane, dichloromethane, 2-propanol, tetrahydrofuran, n-propanol, chloroform, ethanol, and ethyl acetate.
  • Item 11 Item 11.
  • Item 12. Item 12.
  • a coating method comprising contacting the composition according to any one of Items 1 to 11 with a part or all of a surface of a test object.
  • Item 13 A test object, wherein a part or all of the surface is coated with the composition according to any one of Items 1 to 11.
  • Item 9. A method for imparting ice resistance to a surface of a test object, comprising bringing the composition according to any one of Items 1 to 8 into contact with a part or all of the surface of the test object.
  • Item 15. Item 12.
  • the coating technique of the present invention it is possible to reduce ice adhesion to the surface. As a result, even if the water adhering to the surface freezes or ice adheres due to snowfall or the like, it becomes easier to peel off due to wind or the like, and the work of removing the adhering ice becomes easier.
  • the coating technique of the present invention it is possible to reduce the ice adhesion force without forming an uneven structure on the coating surface. For this reason, it is possible to solve the problem when the coating surface has an uneven structure, that is, the problem that ice can strongly adhere to the surface due to the anchor effect and the problem that the coating surface becomes brittle.
  • the antifreeze polysaccharide is a natural polysaccharide, even if the coating film peels off and diffuses into the natural environment, it is considered that the adverse effect on the natural environment is low.
  • the schematic diagram of the load apparatus used for the measurement test (Example 3) of an ice adhesion force, and the coating board set to this in the state to which the ice adhered was shown.
  • the measurement test result of ice adhesion force is shown.
  • the upper row shows the results when the freezing temperature is ⁇ 4 ° C.
  • the reduction shows the results when the freezing temperature is ⁇ 8 ° C.
  • Coating composition TECHNICAL FIELD This invention relates to the coating composition (it may show as "the coating composition of this invention” in this specification) containing antifreeze polysaccharide. This will be described below.
  • Antifreeze polysaccharides are natural polysaccharides having a function of inhibiting the growth of ice crystals, and are components found from polysaccharides that constitute fungal cell walls such as enokitake (Patent Document 1).
  • polysaccharide generally refers to a polymer in which 10 or more monosaccharides are polymerized linearly or branched by glycosidic bonds.
  • the antifreeze polysaccharide is not particularly limited, but for example, a polysaccharide containing at least one monosaccharide selected from the group consisting of galactose, mannose, xylose, glucose, and rhamnose, preferably two or more A polysaccharide containing a monosaccharide, more preferably a polysaccharide containing xylose and mannose, and more preferably a xylomannan.
  • Xylomannan is a generic name for heteropolysaccharides in which one molecule of xylose as a side chain is bonded via a 1,4-bond to a mannan main chain composed of ⁇ -1,3-mannose.
  • xylomannan is not limited to those composed only of mannose and xylose, but may have other sugars as side chains in addition to xylose.
  • composition ratio of mannose and xylose constituting xylomannan is not particularly limited.
  • mannose is 1.5 to 2.5 mol, preferably 1.7 mol to 2.3 mol, more preferably 1 mol of xylose. It can be from 1.9 mol to 2.1 mol, more preferably about 2 mol.
  • the molecular weight of the antifreeze polysaccharide is not particularly limited, but may be, for example, 100,000 to 1,000,000 as an average molecular weight measured by gel filtration chromatography.
  • the lower limit of the average molecular weight is preferably 150,000, more preferably 200,000, still more preferably 240,000, and still more preferably 280,000.
  • the upper limit of the average molecular weight is preferably 500,000, more preferably 400,000, still more preferably 370,000, and still more preferably 340,000.
  • antifreeze polysaccharide for example, one chemically synthesized according to a known method may be used, but preferably a purified product obtained by purifying the antifreeze polysaccharide from a fungus according to a known method (antifreeze derived from a fungus). Polysaccharide purified product) can be used.
  • basidiomycetes are preferable.
  • basidiomycetes include those belonging to the order Agaric.
  • basidiomycetes belonging to the order Agaricaceae include, for example, Numerigidae (goattake, etc.), Kishimeji (Kishimeji, Murasakimeji, Oshiroi-shimeji, Kakumino-shimeji, Shakashimeji, Harushimeji, Hatake-shimeji, Buna-shimeji, Hon-shimeji, Ohoriraitake, Hagihiratake, Sugihiratake , Fox, bamboo shoots, mushrooms, mushrooms, white mushrooms, shiitake mushrooms, enokitake, etc.
  • Etc. Fusentaceae (such as Astragalus), Iguchi (Yamatake, etc.), Agaricaceae (such as Aitake), Sarnochoke (such as Maitake), and Oyster (such as Eringi).
  • Fusentaceae such as Astragalus
  • Iguchi Yamatake, etc.
  • Agaricaceae such as Aitake
  • Sarnochoke such as Maitake
  • Oyster such as Eringi
  • the culture is preferably performed at a low temperature.
  • basidiomycetes obtained by culturing basidiomycetes at a relatively low temperature (cold acclimation) as an extraction source it is possible to obtain antifreeze polysaccharides more efficiently.
  • cultivation temperature 25 degrees C or less is preferable, for example, and 20 degrees C or less is more preferable.
  • the temperature is lower than the freezing point, the liquid medium may freeze.
  • the culture period is not particularly limited, but it is preferably 3 days or more, more preferably 1 week or more, further preferably 2 weeks or more, and particularly preferably 1 month or more.
  • the upper limit of the culture period is not particularly limited, but may be until the basidiomycete becomes confluent or the concentration of the ice crystallization inhibitor in the medium does not increase any more. For example, preferably 6 Months or less, more preferably 5 months or less, even more preferably 4 months or less, and particularly preferably 3 months or less.
  • antifreeze polysaccharides from fungi can be performed according to known methods. For example, it is known that antifreeze polysaccharides can hardly be extracted with hot water, but can be extracted by heat treatment in an alkaline aqueous solution (Patent Document 1). Based on this finding, as the above-mentioned “purified product of antifreeze polysaccharide derived from fungi”, for example, a fungal hot water extraction residue, a fungal hot alkali extract and the like can be used. Among these, a fungal hot water extraction residue is preferable. It is known that hydrophobin, which will be described later, is also present in fungal cell walls and cannot be extracted with hot water (Patent Documents 2 to 3). It is preferable because it can include a phobin.
  • the fungal hot water extraction residue can be obtained, for example, by collecting the residue after the hot water extraction treatment of the fungus.
  • the fungus is preferably degreased before the hot water extraction treatment.
  • Degreasing can be performed by leaving fungi (preferably fungal fruit bodies) in an organic solvent such as hexane.
  • the degreasing time can be appropriately adjusted depending on the temperature, and can be, for example, about 6 to 24 hours at room temperature. After the degreasing treatment, it is preferable to remove the supernatant by centrifugation, filtration, etc., and then subject to the next treatment.
  • the fungus is preferably acid-treated before the hot water extraction treatment.
  • the purpose of the acid treatment is to remove acid-soluble components in the fungus, and so long as the acid treatment conditions are not particularly limited, it can be performed according to a known method.
  • the acid treatment can be performed, for example, by suspending a fungus (preferably a residue obtained after the degreasing treatment of the fungus) in an acid aqueous solution (preferably a weak acid aqueous solution) such as acetic acid and citric acid.
  • the pH of the aqueous acid solution is not particularly limited, but may be, for example, about pH 1.0 to 3.0, preferably about 1.0 to 2.0.
  • the supernatant is preferably removed by centrifugation, filtration or the like, and then subjected to the next treatment.
  • the fungus may be subjected to alcohol treatment before hot water extraction treatment (preferably after degreasing and acid treatment and before hot water extraction treatment).
  • the alcohol is not particularly limited, and examples thereof include ethanol, methanol, 1-propanol, and preferably ethanol.
  • the temperature of the alcohol treatment is preferably a low temperature, and can be, for example, about ⁇ 80 to ⁇ 10 ° C. After the alcohol treatment, it is preferable to remove the supernatant by centrifugation, filtration, etc., and then subject to the next treatment.
  • the hot water extraction treatment can be performed by immersing the fungus in high-temperature water and stirring as necessary.
  • the temperature of water can be 80 degreeC or more, for example, Preferably it is 90 degreeC or more, More preferably, it is 95 degreeC or more, More preferably, it can be 99 degreeC or more.
  • the treatment time is not particularly limited, but can be, for example, about 10 to 120 minutes, preferably about 30 to 90 minutes.
  • the fungal hot water extraction residue can be obtained by removing the supernatant by centrifugation, filtration or the like.
  • the particle size of the hot water extraction residue can be, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the fungal hot alkali extract can be obtained, for example, by subjecting a fungus to heat extraction treatment in an alkaline aqueous solution.
  • the fungus may be subjected to the hot water extraction treatment before the heat extraction treatment in an alkaline aqueous solution. By doing in this way, hot water soluble components other than an antifreeze polysaccharide can be removed.
  • the alkaline substance used for the preparation of the alkaline aqueous solution is not particularly limited, but for example, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium polyphosphate, trisodium citrate, sodium bicarbonate, sodium acetate, Sodium pyrophosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, trisodium phosphate, tripotassium phosphate, calcined calcium, etc. can be used, and when used, they can be used alone or as a mixture of two or more. it can.
  • the concentration of the aqueous alkali solution may be adjusted as appropriate.
  • the lower limit is, for example, 0.1 w / v%, preferably 1.0 w / v%, more preferably 2.0 w / v%, still more preferably 5.0 w from the viewpoint that the antifreeze polysaccharide can be extracted more efficiently.
  • / V% more preferably 10.0 w / v%, even more preferably 15.0 w / v%, particularly preferably 20.0 w / v%.
  • the upper limit can be, for example, 50 w / v%, preferably 30 w / v%, more preferably 25 w / v% from the viewpoint of cost and safety.
  • the temperature of the heat extraction treatment is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, further preferably 90 ° C. or higher, and most preferably about 100 ° C.
  • a method of the heat extraction treatment for example, after adding an alkaline aqueous solution, it may be extracted while being heated to a predetermined temperature, or an alkaline aqueous solution heated in advance to a predetermined temperature is added and kept warm. You may extract by.
  • the time for the heat extraction treatment may be appropriately adjusted according to the temperature, the concentration of the alkaline substance, and the like.
  • the heat extraction treatment time can be, for example, about 0.5 to 8 hours, preferably 1 to 5 hours, and more preferably about 2 to 3 hours.
  • the extraction may be performed once, but from the viewpoint of obtaining more antifreeze polysaccharides, the same extraction process may be repeated once or a plurality of times for the residue obtained after extraction once. .
  • the extract obtained as described above may be used as it is, or may be used after removing an alkaline substance by a known method such as neutralization or dialysis.
  • contaminant components may be removed by suitably combining decantation, filtration, centrifugation, and the like.
  • salt precipitation, precipitation with an organic solvent, affinity chromatography, ion exchange column chromatography, gel filtration, purification by binding to ice using a low-speed cooling device, and concentration by dialysis or ultrafiltration are suitable. You may carry out in combination.
  • the content of the antifreeze polysaccharide is not particularly limited as long as the ice adhesion to the surface can be reduced.
  • 0.001 to 20% by mass preferably 100% by mass with respect to 100% by mass of the coating composition of the present invention. May be from 0.01 to 10% by weight, more preferably from 0.1 to 10% by weight.
  • Antifreeze polysaccharides may be used alone or in combination of two or more.
  • the coating composition of the present invention preferably contains hydrophobin.
  • hydrophobin By containing hydrophobin, it is considered that the antifreeze polysaccharide can be more firmly retained in the coating film.
  • Hydrophobin is a protein rich in hydrophobic amino acids that is secreted by fungi such as filamentous fungi and has a very characteristic pattern of eight conserved cysteine residues. These residues form four intramolecular disulfide bridges.
  • Examples of hydrophobin-derived organisms include basidiomycetes.
  • basidiomycetes include those belonging to the order Agaric.
  • basidiomycetes belonging to the order Agaricaceae include, for example, Numerigidae (goattake, etc.), Kishimeji (Kishimeji, Murasakimeji, Oshiroi-shimeji, Kakumino-shimeji, Shakashimeji, Harushimeji, Hatake-shimeji, Buna-shimeji, Hon-shimeji, Ohoriraitake, Hagihiratake, Sugihiratake , Fox, bamboo shoots, mushrooms, mushrooms, white mushrooms, shiitake mushrooms, enokitake, etc.
  • Etc. Fusentaceae (such as Astragalus), Iguchi (Yamatake, etc.), Agaricaceae (such as Aitake), Sarnochoke (such as Maitake), and Oyster (such as Eringi).
  • Fusentaceae such as Astragalus
  • Iguchi Yamatake, etc.
  • Agaricaceae such as Aitake
  • Sarnochoke such as Maitake
  • Oyster such as Eringi
  • Hydrophobin has 8 cysteines (amino acids 34, 44, 45, 81, 94, 100, 101, and 114 in SEQ ID NO: 1) conserved, and the proportion of hydrophobic amino acids (hydrophobic) The number of amino acids / total number of amino acids) is relatively high (about 62.8% in SEQ ID NO: 1), and hydrophobins derived from any organism may be used as long as this is the case.
  • Hydrophobins are natural hydrophobins as long as the above characteristics (characteristics that eight cysteine residues are conserved and characteristics that a relatively high proportion of hydrophobic amino acids are retained) are retained.
  • One or a plurality (for example, 2 to 50, preferably 2 to 30, more preferably 2 to 10, and more preferably 2 to 5) of amino acids may be deleted, substituted, added, inserted, or the like.
  • the proportion of hydrophobic amino acids can be preferably 50% or more, more preferably 55% or more, and even more preferably 60% or more.
  • hydrophobins those chemically synthesized according to known methods may be used, those obtained as recombinant proteins according to known methods may be used, and hydrophobins may be purified from fungi according to known methods. The purified product obtained in this way may be used.
  • hydrophobin Purification of hydrophobin from fungi can be performed according to a known method. For example, as described above, it is known that hydrophobin is present in fungal cell walls and cannot be extracted with hot water (Patent Documents 2 to 3). Based on this knowledge, for example, hydrophobin can be obtained by recovering a residue (fungal hot water extraction residue) after hot water extraction treatment of the fungus. Various conditions for the hot water extraction treatment are the same as the hot water extraction treatment in the purification of the antifreeze polysaccharide. As described above, it is known that antifreeze polysaccharides are also present in fungal cell walls and cannot be extracted with hot water (Patent Document 1). Frozen polysaccharides can also be included, which is preferable.
  • the content of hydrophobin is not particularly limited, but is, for example, 0.001 to 10% by mass, preferably 0.01 to 5% by mass, more preferably 0 with respect to 100% by mass of the coating composition of the present invention. 1 to 5% by weight.
  • Hydrophobin may be used alone or in combination of two or more.
  • the coating composition of the present invention can be a solid composition such as a powder, but is preferably a liquid composition from the viewpoint of ease of coating treatment.
  • the solvent is not particularly limited as long as it is usually used in a coating composition.
  • the solvent preferably has a Snyder polarity parameter of 2.5 to 5.5, more preferably 2.8 to 5 from the viewpoint that an antifreeze polysaccharide (particularly fungal hot water extraction residue) can be more uniformly dispersed. 0.0, more preferably 2.9 to 4.5, and still more preferably 3.0 to 4.3. Note that “more uniformly dispersed” means that there is less precipitate when the antifreeze polysaccharide and the solvent are stirred and allowed to stand for a certain period of time and then visually observed.
  • the solvent examples include chloromethane (3.1), dichloromethane (3.5), 2-propanol (3.9), tetrahydrofuran (4.0) , N-propanol (4.0), chloroform (4.1), ethanol (4.3), ethyl acetate (4.4), methyl ethyl ketone (4.7), dioxane (4.8), acetone (5. 1), methanol (5.1) and the like.
  • the content of the solvent is not particularly limited, but is, for example, 50 to 99% by mass, preferably 70 to 95% by mass, and more preferably 80 to 90% by mass with respect to 100% by mass of the coating composition of the present invention. be able to.
  • Solvents may be used alone or in combination of two or more.
  • the coating composition of the present invention preferably contains a binder.
  • the binder By including the binder, the coating film can be more firmly attached to the surface.
  • a curing catalyst can also be included as necessary.
  • binders can be widely used for surface coating, preferably for surface coating of objects used outdoors.
  • Specific examples include a fluororesin, a silica-based special binder, and a moisture curable silicone oligomer.
  • a moisture curable silicone oligomer is preferable. By using the moisture curable silicone oligomer, it is possible to improve water resistance, moisture resistance, weather resistance and the like.
  • the moisture curable silicone oligomer is, for example, a low molecular weight silicone alkoxy oligomer having an alkoxysilyl group at the molecular end, and cured at room temperature by crosslinking of the alkoxysilyl group in the presence of a curing catalyst described later. It is done.
  • a moisture-curable silicone oligomer is represented by the following general formula (1), for example.
  • R 1 represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group
  • R 2 represents an alkyl group
  • n represents an integer of 0 to 3.
  • 1 and R 2 may be the same or different from each other.
  • Examples of R 1 include a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group.
  • examples of the unsubstituted monovalent hydrocarbon group include an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • alkyl group examples include methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, iso-pentyl, sec-pentyl, hexyl, heptyl, n-octyl, isooctyl.
  • Alkyl groups having 1 to 18 carbon atoms such as 2-ethylhexyl, nonyl, decyl, isodecyl, dodecyl, tetradecyl, hexadecyl, octadecyl and the like.
  • cycloalkyl group examples include cycloalkyl groups having 3 to 8 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
  • aryl group examples include aryl groups having 6 to 14 carbon atoms such as phenyl, tolyl, xylyl, biphenyl, naphthyl, anthryl, phenanthryl.
  • aralkyl group examples include benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, 2-phenylpropyl, 3-phenylpropyl, diphenylmethyl, o, m or p-methylbenzyl, o, m or Examples thereof include aralkyl groups having 7 to 13 carbon atoms such as p-ethylbenzyl.
  • examples of the substituted monovalent hydrocarbon group include those obtained by substituting the above-described unsubstituted monovalent hydrocarbon group with a substituent.
  • examples of such a substituent include a halogen atom. (For example, chlorine, fluorine, bromine and iodine), hydroxyl, cyano, amino, carboxyl and the like. These substituents may be the same or different, and may be substituted, for example, 1 to 3.
  • R 1 preferably includes at least a monovalent hydrocarbon group having 4 or more carbon atoms, and more specifically, R 1 is an unsubstituted monovalent hydrocarbon group having 1 to 3 carbon atoms.
  • R 1 is an unsubstituted monovalent hydrocarbon group having 1 to 3 carbon atoms.
  • R 2 includes an alkyl group, preferably an alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, and the like. .
  • R 1 and R 2 are independent of each other and may be the same or different from each other.
  • N represents, for example, an integer of 0 to 3, preferably 1 or 2.
  • alkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, and dimethyldimethoxysilane.
  • a partially hydrolyzed condensate of an alkoxysilane compound means that water is added to the above alkoxysilane compound and heated while stirring in the presence of a catalyst to cause partial hydrolysis and condensation. Is obtained.
  • the moisture curable silicone oligomer may be used alone or in combination of two or more.
  • the curing catalyst is not particularly limited as long as it is a catalyst capable of curing a moisture curable silicone oligomer.
  • organotin compounds such as dibutyltin diacetate, dibutyltin dioctylate and dibutyltin dilaurate, for example, aluminum tris (acetylacetone)
  • Organic aluminum compounds such as aluminum tris (acetoacetate ethyl) and aluminum diisopropoxy (acetoacetate ethyl), such as zirconium (acetylacetone), zirconium tris (acetylacetone), zirconium tetrakis (ethylene glycol monomethyl ether), zirconium tetrakis (ethylene) Glycol monoethyl ether) and zirconium tetrakis (ethylene glycol monobutyl ether)
  • Products such as organic metal compounds such as titanium tetrakis (ethylene glycol monomethyl ether), titanium tetrakis (ethylene glyco
  • These curing catalysts may be used alone or in combination of two or more.
  • moisture curable silicone oligomer it is preferable to use a commercially available product that contains a curing catalyst in advance.
  • commercially available products include X-40-175 (curing catalyst DX-175; containing 5% by weight), X-40-2327 (curing catalyst X-40-2309A; containing 30% by weight), KR- 400 (curing catalyst DX-9740; containing 10 wt%) (above, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the content of the binder (when the curing catalyst is also included, the combined content of the binder and the curing catalyst) is not particularly limited, but for example 1 to 20% by mass with respect to 100% by mass of the coating composition of the present invention, The amount may preferably be 4 to 15% by mass.
  • the coating composition of the present invention may contain components other than the above as long as the ice adhesion to the surface can be reduced.
  • examples of other components include wax-based water repellents.
  • the present invention comprises contacting the coating composition of the present invention with a part or all of the surface of the specimen (in this specification, “coating treatment”).
  • the present invention relates to a coating method (which may be referred to herein as “the coating method of the present invention”).
  • the present invention also relates to a test object in which a part or all of the surface is coated with the coating composition of the present invention.
  • the test object is an object to be coated with the coating composition of the present invention, and is not particularly limited as long as it is an object that can be coated.
  • the test object is an object used in an environment where ice can adhere.
  • Specific examples of such objects include vehicles such as airplanes, ships, trains, automobiles, roofs and outer walls of buildings, antennas, electric wires, cold protection equipment, traffic lights, heat exchangers, and the like.
  • Contact is not particularly limited as long as the coating composition of the present invention can be brought into contact with part or all of the surface of the test object.
  • coating, etc. are mentioned, From a viewpoint that it can contact more simply, Preferably a spray is mentioned.
  • the coating composition of the present invention may be brought into contact with the specimen as it is, but may be mixed with another coating composition and then brought into contact with the specimen, and coated with another coating composition. You may make it contact with the processed test object.
  • the amount of the coating composition of the present invention to be brought into contact with the test object is not particularly limited as long as it is an amount that can cover part or all of the surface of the test object.
  • it can be about 0.5 to 10 mL, preferably about 1.5 to 5 mL with respect to a surface of 5 cm ⁇ 5 cm.
  • a coating film can be formed on the surface of the test object by performing drying, binder curing treatment or the like as necessary.
  • Example 1 Preparation of basidiomycetous extract containing antifreeze polysaccharide and hydrophobin It is known that antifreeze polysaccharide and hydrophobin exist in the cell wall of basidiomycete (Patent Documents 1 to 3). Antifreeze polysaccharides can hardly be extracted with hot water, but can be extracted by heat treatment in an alkaline aqueous solution (Patent Document 1). Hydrophobin cannot be extracted with hot water, but can be extracted with trifluoroacetic acid or a surfactant (Patent Documents 2 to 3).
  • enokitake a kind of basidiomycete, is extracted with a solvent (hot water) in which antifreeze polysaccharides and hydrophobins are difficult to dissolve, thereby removing residues (basidiomycetes).
  • the hot water extraction residue was used as an antifreeze polysaccharide and hydrophobin-containing extract. Specifically, it was performed as follows.
  • Enokitake fruit body powder (5 g) was suspended in hexane (200 mL) and allowed to stand at room temperature for 16 hours (degreasing treatment). Centrifugation (7500 ⁇ g, 4 ° C., 15 minutes) (HITACHI High Technologies) gave a residue. 1.5 g of the residue was suspended in a mixed solution of 2 mL of 10% acetic acid solution and 20 mL of washing buffer (0.1 MTris-HCl pH 8.0, 10 mM MgSO 4 , 1 mM PMSF), and then centrifuged (10000 g, 4 ° C. For 15 minutes) to obtain a precipitate.
  • washing buffer 0.1 MTris-HCl pH 8.0, 10 mM MgSO 4 , 1 mM PMSF
  • the precipitate was suspended in 20 mL of 10% acetic acid and 10 mM MgSO 4 solution, and then centrifuged (10000 g, 4 ° C., 15 minutes) to obtain a precipitate.
  • 1.4 g of the precipitate was placed in 20 mL of ethanol ( ⁇ 20 ° C.), and centrifuged (10000 g, 4 ° C., 15 minutes) to collect the precipitate (washing treatment). This washing was performed twice in total.
  • the collected precipitate was dried in a draft chamber, and the obtained dried product was immersed in water at 100 ° C. for 60 minutes (hot water treatment). Then, it cooled to normal temperature and centrifuged (10000g, 4 degreeC, 15 minutes), and obtained the deposit.
  • the resulting precipitate is crushed (2700 rpm, 4 minutes) with a pulverizer (multi-bead shocker (product name), Yasui machine (manufacturer)), passed through a sieve having openings of 212 ⁇ m, 106 ⁇ m, and 53 ⁇ m, and a powder having a diameter of about 50 ⁇ m or less. Got the body.
  • This powder was used in the following examples as an antifreeze polysaccharide and hydrophobin-containing extract.
  • Comparative Example 1 Preparation of hydrophobin-containing basidiomycete extract
  • the powder (antifreeze polysaccharide and hydrophobin-containing extract) obtained in Example 1 was prepared using a strongly alkaline aqueous solution (prepared with pH 12 NaOH) or strongly alkaline ionized water. In (Alpha water, Fuji High-Tech Co., Ltd.), extraction was performed at 100 ° C. for 3 hours. The precipitate was collected by centrifugation (7500 g, 4 ° C., 15 minutes). The precipitate was freeze-dried and used in the following examples as a powder (hydrophobin-containing extract) containing no antifreeze polysaccharide.
  • Example 2 Mixing with a solvent and dispersibility test Glass vials containing 0.01 g of antifreeze polysaccharide and hydrophobin-containing extract (Example 1) and 1 ml of various solvents (Table 1) in equal amounts (volumes) The mixture was stirred for 5 minutes with an ultrasonic cleaner (US-1, manufactured by SND Corporation). After stirring, the glass vial was allowed to stand for 1 hour, and the dispersion state of the antifreeze polysaccharide and the hydrophobin-containing extract (powder) was visually observed and evaluated. The evaluation results are shown in Table 1. Both dichloromethane and 2-propanol were able to disperse the powder almost uniformly, but the powder was more evenly dispersed when 2-propanol was used. Based on this result, 2-propanol was used as the solvent in the following examples.
  • Example 3 Coating treatment ⁇ 3-1. Preparation of coating solution> Antifreeze polysaccharide and hydrophobin-containing extract (Example 1) 0.1 g, moisture curable silicone oligomer (X-40-2327, manufactured by Shin-Etsu Chemical Co., Ltd.) 200 ⁇ L, 2-propanol 2.5 mL were mixed, A coating solution was prepared (Coating Solution 1). Furthermore, 0.1 g of a hydrophobin-containing extract (Comparative Example 1), a moisture-curable silicone oligomer (X-40-2327, manufactured by Shin-Etsu Chemical Co., Ltd.) 200 ⁇ L, and 2-propanol 2.5 mL were mixed to obtain a coating solution. Was prepared (coating solution 2).
  • Pencil hardness measurement test> When the pencil hardness test was performed on the coated surface of the coated plate obtained in 3-2 according to JIS K5600-5-4, the pencil hardness was 4B.
  • Ice adhesion test> As test objects, the coated plate obtained in 3-2 above and the aluminum plate adjusted to have the same surface roughness (RMS of about 1 to 1.5 ⁇ m) were prepared. A stainless steel ring (inner diameter: 1 inch, height: 1.5 cm) was placed on the coating surface of the coating plate obtained in 3-2 or on an aluminum plate, and the ring was filled with water. This was left at -4 ° C or -8 ° C for 1 hour to freeze the water in the ring. This was set in an ice adhesion tester as shown in FIG. 1, a load was applied to the side surface of the stainless steel ring with a pusher, and the pressure when the ice peeled was measured. This measured value is defined as ice adhesion. This test was performed 10 times, and the average value of the measured pressure values was obtained and graphed (FIG. 2).
  • the ice adhesion force on the surface coated with the coating solution containing no antifreeze polysaccharide was the same as or slightly higher than the ice adhesion force on the aluminum plate surface.
  • the ice adhesion force to the surface coated with the coating solution containing antifreeze polysaccharide (coating solution 1) is coated with the ice adhesion force to the aluminum plate surface and the coating solution not containing antifreeze polysaccharide (coating solution 2).
  • the ice adhesion to the surface was significantly lower. From this result, it was shown that the ice adhesion force on the coating surface can be reduced by coating the antifreeze polysaccharide.
  • the antifreeze polysaccharide exists on the surface itself has reduced the ice adhesion force. From this, it is considered that the effect of reducing the ice adhesion force due to the antifreeze polysaccharide is an effect that can be exhibited without creating an uneven structure on the coating surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

Provided is a coating technique with which it is possible to reduce the adhesive force of ice to a surface. A coating composition containing an antifreeze polysaccharide.

Description

コーティング用組成物Coating composition
 本発明は、コーティング用組成物、コーティング方法、コーティングされた被検物等に関する。本発明のコーティングにより、コーティング表面への氷付着力を低下させることができる。 The present invention relates to a coating composition, a coating method, a coated specimen, and the like. The coating of the present invention can reduce ice adhesion to the coating surface.
 航空機、アンテナ、電線、電車等、比較的低温下で使用され得る物は、表面への氷付着を防止するためにコーティング処理されることがある。従来は、通常、撥水性材料でコーティングし、且つコーティング面を凸凹構造として一定の表面粗さを作り出すことにより、氷又は水とコーティング表面との接触面積を小さくし、これにより氷付着力を低下させていた(非特許文献1~5)。 Objects that can be used at relatively low temperatures, such as aircraft, antennas, electric wires, and trains, may be coated to prevent the surface from adhering to ice. Conventionally, it is usually coated with a water-repellent material and the coating surface is made uneven to create a certain surface roughness, thereby reducing the contact area between ice or water and the coating surface, thereby reducing ice adhesion (Non-Patent Documents 1 to 5).
 しかしながら、凸凹構造表面に対して垂直方向に風等で圧力がかかると、水が凸凹構造に入り込んでしまう。この状態で氷が形成されると、その氷はアンカー効果により強力に表面に付着することとなる。また、凸凹構造は、コーティング表面を脆くしてしまい、コーティング効果の持続性を低下させてしまうという問題もあった。このため、表面への氷付着力を低減できる新たなコーティング技術の開発が求められている。 However, when pressure is applied by a wind or the like in a direction perpendicular to the surface of the uneven structure, water enters the uneven structure. When ice is formed in this state, the ice strongly adheres to the surface by the anchor effect. In addition, the uneven structure has a problem that the coating surface becomes brittle and the sustainability of the coating effect is lowered. For this reason, development of a new coating technology that can reduce ice adhesion to the surface is required.
 一方、不凍多糖は氷結晶の成長抑制機能を有する天然の多糖類であり、エノキタケ等の真菌の細胞壁を構成する多糖類から見出された(特許文献1)。不凍多糖は、この機能に基づいて、食品の凍結保存による品質劣化を防止するために利用されている。また、不凍多糖は、耐熱性、耐酸性に優れていることから、冷凍フライ、冷凍から揚げなどの品質改良剤としても利用することができる。 On the other hand, antifreeze polysaccharides are natural polysaccharides having a function of inhibiting the growth of ice crystals, and were found from polysaccharides constituting the cell walls of fungi such as enokitake (Patent Document 1). Based on this function, antifreeze polysaccharides are used to prevent quality degradation due to freezing storage of foods. In addition, since antifreeze polysaccharides are excellent in heat resistance and acid resistance, they can also be used as quality improvers such as frozen fried foods and frozen fried foods.
国際公開第2012/026339号International Publication No. 2012/026339 特表2008-529484号公報Special table 2008-529484 特表2009-511689号公報JP-T 2009-511689
 本発明は、表面への氷付着力を低減できるコーティング技術を提供することを課題とする。さらには、凸凹構造に依らなくとも表面への氷付着力を低減できるコーティング技術を提供することも課題とする。 An object of the present invention is to provide a coating technique that can reduce the adhesion of ice to the surface. Furthermore, another object of the present invention is to provide a coating technique that can reduce ice adhesion to the surface without depending on the uneven structure.
 本発明者等は上記課題に鑑みて鋭意研究した結果、不凍多糖をコーティングすることによって表面への氷付着力を低減できることを見出した。また、この効果は、コーティング表面の凸凹構造とは関係なく発揮される効果であることも見出した。これらの知見に基づいてさらに研究を進めた結果、本発明が完成した。 As a result of intensive studies in view of the above problems, the present inventors have found that ice adhesion to the surface can be reduced by coating with antifreeze polysaccharide. It has also been found that this effect is exhibited regardless of the uneven structure on the coating surface. As a result of further research based on these findings, the present invention was completed.
 即ち、本発明は、下記の態様を包含する。 That is, the present invention includes the following aspects.
 項1.不凍多糖を含有する、コーティング用組成物.
 項2.さらにハイドロフォビンを含有する、項1に記載の組成物.
 項3.前記不凍多糖が真菌由来の不凍多糖精製物である、項1又は2に記載の組成物.
 項4.溶媒を含む液状組成物であって、該溶媒のSnyder極性パラメータが2.5~5.5である、項1~3のいずれかに記載の組成物.
 項5.前記溶媒が、クロロメタン、ジクロロメタン、2-プロパノール、テトラヒドロフラン、n-プロパノール、クロロホルム、エタノール、及び酢酸エチルからなる群より選択される少なくとも1種である、項4に記載の組成物.
 項6.さらにバインダーを含有する、項1~5のいずれかに記載の組成物.
 項7.前記バインダーが湿気硬化性バインダーである、項6に記載の組成物.
 項8.不凍多糖、ハイドロフォビン、溶媒、及びバインダーを含有する、項1~7のいずれかに記載の組成物。
 項9.前記不凍多糖が真菌由来の不凍多糖精製物であり、前記溶媒のSnyder極性パラメータが2.5~5.5であり、且つ前記バインダーが湿気硬化性バインダーである、項8に記載の組成物。
 項10.前記溶媒が、クロロメタン、ジクロロメタン、2-プロパノール、テトラヒドロフラン、n-プロパノール、クロロホルム、エタノール、及び酢酸エチルからなる群より選択される少なくとも1種である、項9に記載の組成物.
 項11.氷付着抑制用である、項1~10のいずれかに記載のコーティング用組成物.
 項12.項1~11のいずれかに記載の組成物と、被検物の表面の一部又は全部とを接触させることを含む、コーティング方法.
 項13.項1~11のいずれかに記載の組成物を用いて表面の一部又は全部がコーティング処理された、被検物.
 項14.項1~8のいずれかに記載の組成物と、被検物の表面の一部又は全部とを接触させることを含む、被検物の表面に耐氷付着性を付与する方法.
 項15.不凍多糖を配合することを含む、項1~11のいずれかに記載の組成物を製造する方法。
Item 1. A coating composition containing an antifreeze polysaccharide.
Item 2. Item 4. The composition according to Item 1, further comprising hydrophobin.
Item 3. Item 3. The composition according to Item 1 or 2, wherein the antifreeze polysaccharide is a fungus-derived purified antifreeze polysaccharide.
Item 4. Item 4. The composition according to any one of Items 1 to 3, comprising a solvent, wherein the solvent has a Snyder polarity parameter of 2.5 to 5.5.
Item 5. Item 5. The composition according to Item 4, wherein the solvent is at least one selected from the group consisting of chloromethane, dichloromethane, 2-propanol, tetrahydrofuran, n-propanol, chloroform, ethanol, and ethyl acetate.
Item 6. Item 6. The composition according to any one of Items 1 to 5, further comprising a binder.
Item 7. Item 7. The composition according to Item 6, wherein the binder is a moisture curable binder.
Item 8. Item 8. The composition according to any one of Items 1 to 7, comprising an antifreeze polysaccharide, hydrophobin, a solvent, and a binder.
Item 9. Item 9. The composition according to Item 8, wherein the antifreeze polysaccharide is a purified antifreeze polysaccharide derived from a fungus, the Snyder polarity parameter of the solvent is 2.5 to 5.5, and the binder is a moisture curable binder. object.
Item 10. Item 10. The composition according to Item 9, wherein the solvent is at least one selected from the group consisting of chloromethane, dichloromethane, 2-propanol, tetrahydrofuran, n-propanol, chloroform, ethanol, and ethyl acetate.
Item 11. Item 11. The coating composition according to any one of Items 1 to 10, which is used for inhibiting ice adhesion.
Item 12. Item 12. A coating method comprising contacting the composition according to any one of Items 1 to 11 with a part or all of a surface of a test object.
Item 13. A test object, wherein a part or all of the surface is coated with the composition according to any one of Items 1 to 11.
Item 14. Item 9. A method for imparting ice resistance to a surface of a test object, comprising bringing the composition according to any one of Items 1 to 8 into contact with a part or all of the surface of the test object.
Item 15. Item 12. A method for producing the composition according to any one of Items 1 to 11, comprising blending an antifreeze polysaccharide.
 本発明のコーティング技術によれば、表面への氷付着力を低減することができる。これにより、表面に付着した水が凍ることや降雪等により氷が付着しても、風等によってより剥離し易くなり、また付着した氷の除去作業も容易になる。 According to the coating technique of the present invention, it is possible to reduce ice adhesion to the surface. As a result, even if the water adhering to the surface freezes or ice adheres due to snowfall or the like, it becomes easier to peel off due to wind or the like, and the work of removing the adhering ice becomes easier.
 本発明のコーティング技術によれば、コーティング表面に凸凹構造を形成しなくとも、氷付着力を低減することができる。このため、コーティング表面を凸凹構造とした場合の問題、すなわち氷がアンカー効果により強力に表面に付着し得るという問題や、コーティング表面が脆くなってしまうという問題を解消することが可能である。 According to the coating technique of the present invention, it is possible to reduce the ice adhesion force without forming an uneven structure on the coating surface. For this reason, it is possible to solve the problem when the coating surface has an uneven structure, that is, the problem that ice can strongly adhere to the surface due to the anchor effect and the problem that the coating surface becomes brittle.
 また、不凍多糖は天然の多糖類であることから、コーティング膜が剥離等して自然環境中に拡散しても、自然環境に対する悪影響は低いと考えられる。 In addition, since the antifreeze polysaccharide is a natural polysaccharide, even if the coating film peels off and diffuses into the natural environment, it is considered that the adverse effect on the natural environment is low.
氷付着力の測定試験(実施例3)に使用した荷重装置、及びこれにセットされた、氷が付着した状態のコーティング板の模式図を示す。The schematic diagram of the load apparatus used for the measurement test (Example 3) of an ice adhesion force, and the coating board set to this in the state to which the ice adhered was shown. 氷付着力の測定試験結果を示す。上段は、凍結温度が-4℃の場合の結果を示し、減断は、凍結温度が-8℃の場合の結果を示す。縦軸は、氷が剥離した際の荷重圧力(=氷付着力)を示す。The measurement test result of ice adhesion force is shown. The upper row shows the results when the freezing temperature is −4 ° C., and the reduction shows the results when the freezing temperature is −8 ° C. A vertical axis | shaft shows the load pressure (= ice adhesion force) at the time of ice peeling.
 1.コーティング用組成物
 本発明は、不凍多糖を含有する、コーティング用組成物(本明細書において、「本発明のコーティング用組成物」と示すこともある。)に関する。以下、これについて説明する。
1. Coating composition TECHNICAL FIELD This invention relates to the coating composition (it may show as "the coating composition of this invention" in this specification) containing antifreeze polysaccharide. This will be described below.
 不凍多糖は、氷結晶の成長抑制機能を有する天然の多糖類であり、エノキタケ等の真菌の細胞壁を構成する多糖類から見出された成分である(特許文献1)。なお、本明細書において、多糖類とは、通常、10個以上の単糖がグリコシド結合により直鎖状または分枝鎖状に重合したものをいう。 Antifreeze polysaccharides are natural polysaccharides having a function of inhibiting the growth of ice crystals, and are components found from polysaccharides that constitute fungal cell walls such as enokitake (Patent Document 1). In the present specification, the term “polysaccharide” generally refers to a polymer in which 10 or more monosaccharides are polymerized linearly or branched by glycosidic bonds.
 不凍多糖は、特に限定されるものではないが、例えば、ガラクトース、マンノース、キシロース、グルコース、及びラムノースからなる群より選択される少なくとも1種の単糖を含む多糖類、好ましくは2種以上の単糖を含む多糖類、より好ましくはキシロース及びマンノースを含む多糖類、さらに好ましくはキシロマンナンであることができる。 The antifreeze polysaccharide is not particularly limited, but for example, a polysaccharide containing at least one monosaccharide selected from the group consisting of galactose, mannose, xylose, glucose, and rhamnose, preferably two or more A polysaccharide containing a monosaccharide, more preferably a polysaccharide containing xylose and mannose, and more preferably a xylomannan.
 キシロマンナンは、α-1,3-マンノースで構成されるマンナン主鎖に、側鎖として1分子ずつのキシロースが1,4-結合を介して結合したヘテロ多糖類の総称である。ただし、キシロマンナンは、マンノースとキシロースのみから構成されるものに限られず、キシロース以外に他の糖を側鎖として有してもよい。 Xylomannan is a generic name for heteropolysaccharides in which one molecule of xylose as a side chain is bonded via a 1,4-bond to a mannan main chain composed of α-1,3-mannose. However, xylomannan is not limited to those composed only of mannose and xylose, but may have other sugars as side chains in addition to xylose.
 キシロマンナンを構成するマンノースとキシロースの構成比は特に制限されないが、キシロース1モルに対して、例えばマンノース1.5~2.5モル、好ましくは1.7モル~2.3モル、より好ましくは1.9モル~2.1モル、さらに好ましくは約2モルであることができる。 The composition ratio of mannose and xylose constituting xylomannan is not particularly limited. For example, mannose is 1.5 to 2.5 mol, preferably 1.7 mol to 2.3 mol, more preferably 1 mol of xylose. It can be from 1.9 mol to 2.1 mol, more preferably about 2 mol.
 不凍多糖の分子量は、特に限定されるものではないが、ゲル濾過クロマトグラフィーにて測定した平均分子量で、例えば100,000~1,000,000であることができる。当該平均分子量の下限は、好ましくは150,000、より好ましくは200,000、さらに好ましくは240,000、よりさらに好ましくは280,000であることができる。当該平均分子量の上限は、好ましくは500,000、より好ましくは400,000、さらに好ましくは370,000、よりさらに好ましくは340,000であることができる。 The molecular weight of the antifreeze polysaccharide is not particularly limited, but may be, for example, 100,000 to 1,000,000 as an average molecular weight measured by gel filtration chromatography. The lower limit of the average molecular weight is preferably 150,000, more preferably 200,000, still more preferably 240,000, and still more preferably 280,000. The upper limit of the average molecular weight is preferably 500,000, more preferably 400,000, still more preferably 370,000, and still more preferably 340,000.
 不凍多糖としては、例えば、公知の方法に従って化学合成したものを用いてもよいが、好ましくは、真菌から公知の方法に従って不凍多糖を精製して得られた精製物(真菌由来の不凍多糖精製物)を用いることができる。 As the antifreeze polysaccharide, for example, one chemically synthesized according to a known method may be used, but preferably a purified product obtained by purifying the antifreeze polysaccharide from a fungus according to a known method (antifreeze derived from a fungus). Polysaccharide purified product) can be used.
 真菌の中でも好ましくは担子菌が挙げられる。担子菌としては、例えばハラタケ目に属するものを挙げることができる。ハラタケ目に属する担子菌としては、例えば、ヌメリガサ科(ヤギタケ等)、キシメジ科(キシメジ、ムラサキシメジ、オシロイシメジ、カクミノシメジ、シャカシメジ、ハルシメジ、ハタケシメジ、ブナシメジ、ホンシメジ、オオホウライタケ、スギヒラタケ、ハリガネオチバタケ、キツネタケ、ナラタケ、ムキタケ、マツタケ、シロマツタケモドキ、シイタケ、エノキタケ等)、テングタケ科(タマゴタケ、カバイロツルタケ等)、ハラタケ科(ハラタケ、シロオオハラタケ等)、ヒトヨタケ科(ヒトヨタケ等)、モエギタケ科(ナメコ等)、フウセンタケ科(ショウゲンジ等)、イグチ科(ヤマドリタケ等)、ベニタケ科(アイタケ等)、サルノコシカケ科(マイタケ等)、ヒラタケ科(エリンギ等)に属するものが挙げられる。これらの中でも、好ましくはキシメジ科、ヒラタケ科、モエギタケ科等に属するもの、より好ましくはキシメジ科に属するもの、さらに好ましくはエノキタケが挙げられる。 Among the fungi, basidiomycetes are preferable. Examples of basidiomycetes include those belonging to the order Agaric. Examples of basidiomycetes belonging to the order Agaricaceae include, for example, Numerigidae (goattake, etc.), Kishimeji (Kishimeji, Murasakimeji, Oshiroi-shimeji, Kakumino-shimeji, Shakashimeji, Harushimeji, Hatake-shimeji, Buna-shimeji, Hon-shimeji, Ohoriraitake, Hagihiratake, Sugihiratake , Fox, bamboo shoots, mushrooms, mushrooms, white mushrooms, shiitake mushrooms, enokitake, etc. Etc.), Fusentaceae (such as Astragalus), Iguchi (Yamatake, etc.), Agaricaceae (such as Aitake), Sarnochoke (such as Maitake), and Oyster (such as Eringi). Among these, preferred are those belonging to the family Asteraceae, oyster mushrooms, Moegiaceae and the like, more preferably those belonging to the family Asteraceae, and more preferably enokitake.
 不凍多糖を含有する生物として担子菌を用いる場合、培養は低温下で行うことが好ましい。比較的低温で担子菌を培養(低温馴化)した担子菌を抽出源として用いることにより、不凍多糖をより効率的に得ることができる。培養温度としては、例えば、25℃以下が好ましく、20℃以下がより好ましい。一方、氷点未満では液体培地が凍結するおそれがあるため、0℃以上とすることが好ましい。 When basidiomycetes are used as an organism containing an antifreeze polysaccharide, the culture is preferably performed at a low temperature. By using basidiomycetes obtained by culturing basidiomycetes at a relatively low temperature (cold acclimation) as an extraction source, it is possible to obtain antifreeze polysaccharides more efficiently. As culture | cultivation temperature, 25 degrees C or less is preferable, for example, and 20 degrees C or less is more preferable. On the other hand, if the temperature is lower than the freezing point, the liquid medium may freeze.
 培養期間は特に制限されないが、3日以上行うことが好ましく、より好ましくは1週間以上、さらに好ましくは2週間以上、特に好ましくは1ヶ月以上である。また、培養期間の上限も特に制限されないが、担子菌がコンフルエントな状態となるまでや、培地中の氷結晶化阻害剤の濃度がそれ以上向上しなくなるまでとすればよく、例えば、好ましくは6ヶ月以下、より好ましくは5ヶ月以下、さらに好ましくは4ヶ月以下、特に好ましくは3ヶ月以下である。 The culture period is not particularly limited, but it is preferably 3 days or more, more preferably 1 week or more, further preferably 2 weeks or more, and particularly preferably 1 month or more. The upper limit of the culture period is not particularly limited, but may be until the basidiomycete becomes confluent or the concentration of the ice crystallization inhibitor in the medium does not increase any more. For example, preferably 6 Months or less, more preferably 5 months or less, even more preferably 4 months or less, and particularly preferably 3 months or less.
 真菌からの不凍多糖の精製は、公知の方法に従って行うことができる。例えば、不凍多糖は、熱水ではほとんど抽出できないが、アルカリ水溶液中で加熱処理することにより抽出できることが知られている(特許文献1)。この知見に基づいて、上記「真菌由来の不凍多糖精製物」としては、例えば真菌熱水抽出残渣、真菌熱アルカリ抽出物等を用いることができる。これらの中でも、好ましくは真菌熱水抽出残渣が挙げられる。なお、後述のハイドロフォビンも、真菌の細胞壁に存在し、且つ熱水では抽出することはできないことが知られており(特許文献2~3)、この観点から、真菌熱水抽出残渣はハイドロフォビンも含み得るので好ましい。 Purification of antifreeze polysaccharides from fungi can be performed according to known methods. For example, it is known that antifreeze polysaccharides can hardly be extracted with hot water, but can be extracted by heat treatment in an alkaline aqueous solution (Patent Document 1). Based on this finding, as the above-mentioned “purified product of antifreeze polysaccharide derived from fungi”, for example, a fungal hot water extraction residue, a fungal hot alkali extract and the like can be used. Among these, a fungal hot water extraction residue is preferable. It is known that hydrophobin, which will be described later, is also present in fungal cell walls and cannot be extracted with hot water (Patent Documents 2 to 3). It is preferable because it can include a phobin.
 真菌熱水抽出残渣は、例えば真菌を熱水抽出処理した後の残渣を回収することにより得ることができる。 The fungal hot water extraction residue can be obtained, for example, by collecting the residue after the hot water extraction treatment of the fungus.
 真菌は、熱水抽出処理前に、脱脂処理することが好ましい。脱脂は、例えばヘキサンなどの有機溶媒中に真菌(好ましくは真菌子実体)を放置することにより行うことができる。脱脂時間は、温度によって適宜調整することができるが、例えば室温下で6~24時間程度であることができる。脱脂処理後は、遠心分離、ろ過等により上清を除去してから、次の処理に供することが好ましい。 The fungus is preferably degreased before the hot water extraction treatment. Degreasing can be performed by leaving fungi (preferably fungal fruit bodies) in an organic solvent such as hexane. The degreasing time can be appropriately adjusted depending on the temperature, and can be, for example, about 6 to 24 hours at room temperature. After the degreasing treatment, it is preferable to remove the supernatant by centrifugation, filtration, etc., and then subject to the next treatment.
 真菌は、熱水抽出処理前に、酸処理することが好ましい。酸処理は、真菌中の酸可溶成分を除くことが目的であり、この限りにおいて酸処理の条件は特に限定されず、公知の方法に従って行うことができる。酸処理は、例えば、酢酸、クエン酸等の酸水溶液(好ましくは弱酸水溶液)中に真菌(好ましくは真菌の脱脂処理後に得られる残渣)を懸濁することにより行うことができる。酸水溶液のpHは特に限定されないが、例えばpH1.0~3.0、好ましくは1.0~2.0程度であることができる。酸処理後は、遠心分離、ろ過等により上清を除去してから、次の処理に供することが好ましい。 The fungus is preferably acid-treated before the hot water extraction treatment. The purpose of the acid treatment is to remove acid-soluble components in the fungus, and so long as the acid treatment conditions are not particularly limited, it can be performed according to a known method. The acid treatment can be performed, for example, by suspending a fungus (preferably a residue obtained after the degreasing treatment of the fungus) in an acid aqueous solution (preferably a weak acid aqueous solution) such as acetic acid and citric acid. The pH of the aqueous acid solution is not particularly limited, but may be, for example, about pH 1.0 to 3.0, preferably about 1.0 to 2.0. After the acid treatment, the supernatant is preferably removed by centrifugation, filtration or the like, and then subjected to the next treatment.
 真菌は、熱水抽出処理前に(好ましくは脱脂処理及び酸処理後、熱水抽出処理前に)、アルコール処理に供してもよい。アルコールとしては、特に限定されるものではないが、例えばエタノール、メタノール、1-プロパノール等、好ましくはエタノールが挙げられる。アルコール処理の温度は、低温が好ましく、例えば-80~-10℃程度であることができる。アルコール処理後は、遠心分離、ろ過等により上清を除去してから、次の処理に供することが好ましい。 The fungus may be subjected to alcohol treatment before hot water extraction treatment (preferably after degreasing and acid treatment and before hot water extraction treatment). The alcohol is not particularly limited, and examples thereof include ethanol, methanol, 1-propanol, and preferably ethanol. The temperature of the alcohol treatment is preferably a low temperature, and can be, for example, about −80 to −10 ° C. After the alcohol treatment, it is preferable to remove the supernatant by centrifugation, filtration, etc., and then subject to the next treatment.
 熱水抽出処理は、高温の水に真菌を浸漬し、必要に応じて撹拌することにより行うことができる。水の温度は、例えば80℃以上、好ましくは90℃以上、より好ましくは95℃以上、さらに好ましくは99℃以上であることができる。処理時間は、特に限定されないが、例えば10~120分間、好ましくは30~90分間程度であることができる。熱水抽出処理後は、遠心分離、ろ過等により上清を除去することにより、真菌熱水抽出残渣を得ることができる。 The hot water extraction treatment can be performed by immersing the fungus in high-temperature water and stirring as necessary. The temperature of water can be 80 degreeC or more, for example, Preferably it is 90 degreeC or more, More preferably, it is 95 degreeC or more, More preferably, it can be 99 degreeC or more. The treatment time is not particularly limited, but can be, for example, about 10 to 120 minutes, preferably about 30 to 90 minutes. After the hot water extraction treatment, the fungal hot water extraction residue can be obtained by removing the supernatant by centrifugation, filtration or the like.
 真菌熱水抽出残渣は、粒径が大きすぎる場合には、均一に表面にコーティングさせることが困難になるため、必要に応じて粉砕することが望ましい。熱水抽出残渣の粒径は、例えば300μm以下、好ましくは200μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下であることができる。 If the particle size of the fungal hot water extraction residue is too large, it is difficult to uniformly coat the surface, so it is desirable to grind as necessary. The particle size of the hot water extraction residue can be, for example, 300 μm or less, preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 50 μm or less.
 真菌熱アルカリ抽出物は、例えば真菌をアルカリ水溶液中で加熱抽出処理することにより得ることができる。 The fungal hot alkali extract can be obtained, for example, by subjecting a fungus to heat extraction treatment in an alkaline aqueous solution.
 アルカリ水溶液中での加熱抽出処理の前に、真菌を上記熱水抽出処理してもよい。このようにすることにより、不凍多糖以外の熱水溶解性の成分を除去することができる。 The fungus may be subjected to the hot water extraction treatment before the heat extraction treatment in an alkaline aqueous solution. By doing in this way, hot water soluble components other than an antifreeze polysaccharide can be removed.
 アルカリ水溶液の調製に供されるアルカリ物質としては、特に限定されないが、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、ポリリン酸ナトリウム、クエン酸三ナトリウム、重炭酸ナトリウム、酢酸ナトリウム、ピロリン酸ナトリウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸三ナトリウム、リン酸三カリウム、焼成カルシウム等を用いることができ、その使用に際しては単独もしくは2種以上の混合物として用いることができる。 The alkaline substance used for the preparation of the alkaline aqueous solution is not particularly limited, but for example, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium polyphosphate, trisodium citrate, sodium bicarbonate, sodium acetate, Sodium pyrophosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, trisodium phosphate, tripotassium phosphate, calcined calcium, etc. can be used, and when used, they can be used alone or as a mixture of two or more. it can.
 アルカリ水溶液の濃度は、適宜調整すればよい。下限は、より効率的に不凍多糖を抽出できるという観点から、例えば0.1w/v%、好ましくは1.0w/v%、より好ましくは2.0w/v%、さらに好ましくは5.0w/v%、よりさらに好ましくは10.0w/v%、よりさらに好ましくは15.0w/v%、特に好ましくは20.0w/v%であることができる。また、上限は、コスト面や安全面の観点から、例えば50w/v%、好ましくは30w/v%、より好ましくは25w/v%であることができる。 The concentration of the aqueous alkali solution may be adjusted as appropriate. The lower limit is, for example, 0.1 w / v%, preferably 1.0 w / v%, more preferably 2.0 w / v%, still more preferably 5.0 w from the viewpoint that the antifreeze polysaccharide can be extracted more efficiently. / V%, more preferably 10.0 w / v%, even more preferably 15.0 w / v%, particularly preferably 20.0 w / v%. Further, the upper limit can be, for example, 50 w / v%, preferably 30 w / v%, more preferably 25 w / v% from the viewpoint of cost and safety.
 加熱抽出処理の温度としては、70℃以上が好ましく、より好ましくは80℃以上、さらに好ましくは90℃以上、最も好ましくは約100℃である。加熱抽出処理の方法としては、例えば、アルカリ水溶液を加えた後にこれを所定の温度まで加熱しながら抽出してもよいし、予め所定の温度に加温したアルカリ水溶液を加えてこれを保温した状態で抽出してもよい。 The temperature of the heat extraction treatment is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, further preferably 90 ° C. or higher, and most preferably about 100 ° C. As a method of the heat extraction treatment, for example, after adding an alkaline aqueous solution, it may be extracted while being heated to a predetermined temperature, or an alkaline aqueous solution heated in advance to a predetermined temperature is added and kept warm. You may extract by.
 加熱抽出処理の時間は、温度、アルカリ物質の濃度等に応じて適宜調整すればよい。加熱抽出処理の時間は、例えば0.5~8時間、好ましくは1~5時間、より好ましくは2~3時間程度であることができる。 The time for the heat extraction treatment may be appropriately adjusted according to the temperature, the concentration of the alkaline substance, and the like. The heat extraction treatment time can be, for example, about 0.5 to 8 hours, preferably 1 to 5 hours, and more preferably about 2 to 3 hours.
 抽出は、1回でもよいが、より多くの不凍多糖を得るという観点からは、1回抽出した後に得られた残渣に対して同様の抽出処理を1回又は複数回繰り返して行ってもよい。 The extraction may be performed once, but from the viewpoint of obtaining more antifreeze polysaccharides, the same extraction process may be repeated once or a plurality of times for the residue obtained after extraction once. .
 上記により得られた抽出液は、そのまま用いてもよいが、中和や透析などの周知の方法によりアルカリ物質を除去してから用いてもよい。また、必要に応じてさらに精製を行ってもよい。例えば、デカンテーション、濾過、遠心分離などを好適に組み合わせて夾雑成分を除去してもよい。また例えば、塩析や有機溶媒による沈殿や、アフィニティークロマトグラフィー、イオン交換カラムクロマトグラフィー、ゲル濾過、低速冷却装置を用いた氷への結合などによる精製、透析や限外濾過などによる濃縮を好適に組み合わせて行ってもよい。 The extract obtained as described above may be used as it is, or may be used after removing an alkaline substance by a known method such as neutralization or dialysis. Moreover, you may refine | purify further as needed. For example, contaminant components may be removed by suitably combining decantation, filtration, centrifugation, and the like. In addition, for example, salt precipitation, precipitation with an organic solvent, affinity chromatography, ion exchange column chromatography, gel filtration, purification by binding to ice using a low-speed cooling device, and concentration by dialysis or ultrafiltration are suitable. You may carry out in combination.
 不凍多糖の含有量は、表面への氷付着力を低減することができる限り特に限定されないが、本発明のコーティング用組成物100質量%に対して、例えば0.001~20質量%、好ましくは0.01~10質量%、より好ましくは0.1~10質量%であることができる。 The content of the antifreeze polysaccharide is not particularly limited as long as the ice adhesion to the surface can be reduced. For example, 0.001 to 20% by mass, preferably 100% by mass with respect to 100% by mass of the coating composition of the present invention. May be from 0.01 to 10% by weight, more preferably from 0.1 to 10% by weight.
 不凍多糖は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Antifreeze polysaccharides may be used alone or in combination of two or more.
 本発明のコーティング用組成物はハイドロフォビン(hydrophobin)を含むことが好ましい。ハイドロフォビンを含むことにより、不凍多糖をより強固にコーティング膜中に留めることができると考えられる。 The coating composition of the present invention preferably contains hydrophobin. By containing hydrophobin, it is considered that the antifreeze polysaccharide can be more firmly retained in the coating film.
 ハイドロフォビンは、糸状菌等の真菌によって分泌される、疎水性アミノ酸を多く含むタンパク質であり、8個の保存システイン残基からなる非常に特徴的なパターンを有している。これらの残基は、四個の分子内ジスルフィド架橋を形成する。 Hydrophobin is a protein rich in hydrophobic amino acids that is secreted by fungi such as filamentous fungi and has a very characteristic pattern of eight conserved cysteine residues. These residues form four intramolecular disulfide bridges.
 ハイドロフォビンの由来生物としては、例えば担子菌が挙げられる。担子菌としては、例えばハラタケ目に属するものを挙げることができる。ハラタケ目に属する担子菌としては、例えば、ヌメリガサ科(ヤギタケ等)、キシメジ科(キシメジ、ムラサキシメジ、オシロイシメジ、カクミノシメジ、シャカシメジ、ハルシメジ、ハタケシメジ、ブナシメジ、ホンシメジ、オオホウライタケ、スギヒラタケ、ハリガネオチバタケ、キツネタケ、ナラタケ、ムキタケ、マツタケ、シロマツタケモドキ、シイタケ、エノキタケ等)、テングタケ科(タマゴタケ、カバイロツルタケ等)、ハラタケ科(ハラタケ、シロオオハラタケ等)、ヒトヨタケ科(ヒトヨタケ等)、モエギタケ科(ナメコ等)、フウセンタケ科(ショウゲンジ等)、イグチ科(ヤマドリタケ等)、ベニタケ科(アイタケ等)、サルノコシカケ科(マイタケ等)、ヒラタケ科(エリンギ等)に属するものが挙げられる。これらの中でも、好ましくはキシメジ科、ヒラタケ科、モエギタケ科等に属するもの、より好ましくはキシメジ科に属するもの、さらに好ましくはエノキタケが挙げられる。 Examples of hydrophobin-derived organisms include basidiomycetes. Examples of basidiomycetes include those belonging to the order Agaric. Examples of basidiomycetes belonging to the order Agaricaceae include, for example, Numerigidae (goattake, etc.), Kishimeji (Kishimeji, Murasakimeji, Oshiroi-shimeji, Kakumino-shimeji, Shakashimeji, Harushimeji, Hatake-shimeji, Buna-shimeji, Hon-shimeji, Ohoriraitake, Hagihiratake, Sugihiratake , Fox, bamboo shoots, mushrooms, mushrooms, white mushrooms, shiitake mushrooms, enokitake, etc. Etc.), Fusentaceae (such as Astragalus), Iguchi (Yamatake, etc.), Agaricaceae (such as Aitake), Sarnochoke (such as Maitake), and Oyster (such as Eringi). Among these, preferred are those belonging to the family Asteraceae, oyster mushrooms, Moegiaceae and the like, more preferably those belonging to the family Asteraceae, and more preferably enokitake.
 ハイドロフォビンとして、具体的には下記を例示することができる。ここでは、由来生物名とNCBI(National Center for Biotechnology Information)プロテインデータベース(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein)のAccession No.をそれぞれ示した。なお、ハイドロフォビンはこれら以外にも多く知られており、本発明において使用するハイドロフォビンは上記のものに限定されない。
トリコデルマ・リーセイ(Trichoderma reesei) P52754,P79073ギベレラ・モニリフォルミス(Gibberella moniliformis) AAO16867-16870アガリクス・ビスポラス(Agaricus bisporus) CAA61530プレウロタス・オストレアタス(Pleurotus ostreatus) CAD12829-12834シゾフィルム・コミュネ(Schizophyllum commune) CAA07545ヒポクレア・ジェコリナ(Hypocrea jecorina) CAA92208クラドスポリウム・フルバム(Cladosporium fulvum) CAA67187,CAB39309-39312アスペルギルス・フミガタス(Aspergillus fumigatus) AAC13524フラムリナ・ヴェルチペス(Flammulina velutipes:エノキタケ) BAD08615レンチヌラ・エドデス(Lentinula edodes) AAG00900-00901ピソリザス・チンクトリウス(Pisolithus tinctorius) AAC49307-49308ヒポクレア・リクシイ(Hypocrea lixii) CAA72539
ネオサルトルヤ・アウレオラ(Neosartorya aureola) AAC13528アスペルギルス・デュリカウリス(Aspergillus duricaulis) AAC13522ディクチオネマ・グラブラタム(Dictyonema glabratum) CAC86002,86005,86006 これらの中でも、エノキタケ由来のハイドロフォビン(BAD08615、アミノ酸配列は配列番号1で示される)が好ましく挙げられる。
Specific examples of the hydrophobin include the following. Here, the name of the origin organism and the Accession No. of NCBI (National Center for Biotechnology Information) protein database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein) are shown respectively. . Many hydrophobins are known besides these, and the hydrophobin used in the present invention is not limited to the above.
Trichoderma reesei P52754, P79073 Gibberella moniliformis AAO16867-16870 Agaricus bisporus CAA61530 Pleurotus ostreatus CA128615-128 (Hypocrea jecorina) CAA92208 Cladosporium fulvum CAA67187, CAB39309-39312 Aspergillus fumigatus AAC13524 Flammulina velutipes AD08 615 (Pisolithus tinctorius) AAC49307-49308 Hypocrea lixii CAA72539
Neosartorya aureola AAC13528 Aspergillus duricaulis AAC13522 Dictyonema glabratum CAC86002, 86005, 86006 Among these, hydrophobins derived from enokitake (sequence number BAD08615, sequence number BAD08615) ) Is preferred.
 ハイドロフォビンは、8個のシステイン(配列番号1においては34、44、45、81、94、100、101、及び114番目のアミノ酸)が保存されており、且つ疎水性アミノ酸の割合(疎水性アミノ酸数/全アミノ酸数)が比較的高いという点(配列番号1においては約62.8%)で共通しており、この限りにおいていずれの生物由来のハイドロフォビンを使用してもよい。 Hydrophobin has 8 cysteines (amino acids 34, 44, 45, 81, 94, 100, 101, and 114 in SEQ ID NO: 1) conserved, and the proportion of hydrophobic amino acids (hydrophobic) The number of amino acids / total number of amino acids) is relatively high (about 62.8% in SEQ ID NO: 1), and hydrophobins derived from any organism may be used as long as this is the case.
 ハイドロフォビンは、上記特徴(8つのシステイン残基が保存されているという特徴、及び比較的疎水性アミノ酸の割合が比較的高いという特徴)が保持されている限りにおいて、天然のハイドロフォビンにおいて1又は複数(例えば2~50、好ましくは2~30、より好ましくは2~10、さらに好ましくは2~5)のアミノ酸が欠失、置換、付加、挿入等されたものであってもよい。疎水性アミノ酸の割合は、好ましくは50%以上であることができ、より好ましくは55%以上であることができ、さらに好ましくは60%以上であることができる。 Hydrophobins are natural hydrophobins as long as the above characteristics (characteristics that eight cysteine residues are conserved and characteristics that a relatively high proportion of hydrophobic amino acids are retained) are retained. One or a plurality (for example, 2 to 50, preferably 2 to 30, more preferably 2 to 10, and more preferably 2 to 5) of amino acids may be deleted, substituted, added, inserted, or the like. The proportion of hydrophobic amino acids can be preferably 50% or more, more preferably 55% or more, and even more preferably 60% or more.
 ハイドロフォビンとしては、公知の方法に従って化学合成したものを用いてもよいし、公知の方法に従って組み換えタンパク質として得た物を用いてもよいし、真菌から公知の方法に従ってハイドロフォビンを精製して得られた精製物を用いてもよい。 As hydrophobins, those chemically synthesized according to known methods may be used, those obtained as recombinant proteins according to known methods may be used, and hydrophobins may be purified from fungi according to known methods. The purified product obtained in this way may be used.
 真菌からのハイドロフォビンの精製は、公知の方法に従って行うことができる。例えば、前述したとおり、ハイドロフォビンは、真菌の細胞壁に存在し、且つ熱水では抽出することはできないことが知られている(特許文献2~3)。この知見に基づいて、例えば真菌を熱水抽出処理した後の残渣(真菌熱水抽出残渣)を回収することによりハイドロフォビンを得ることができる。熱水抽出処理の各種条件については、上記不凍多糖の精製における熱水抽出処理と同様である。なお、前述したとおり、不凍多糖も、真菌の細胞壁に存在し、且つ熱水では抽出することはできないことが知られており(特許文献1)、この観点から、真菌熱水抽出残渣は不凍多糖も含み得るので好ましい。 Purification of hydrophobin from fungi can be performed according to a known method. For example, as described above, it is known that hydrophobin is present in fungal cell walls and cannot be extracted with hot water (Patent Documents 2 to 3). Based on this knowledge, for example, hydrophobin can be obtained by recovering a residue (fungal hot water extraction residue) after hot water extraction treatment of the fungus. Various conditions for the hot water extraction treatment are the same as the hot water extraction treatment in the purification of the antifreeze polysaccharide. As described above, it is known that antifreeze polysaccharides are also present in fungal cell walls and cannot be extracted with hot water (Patent Document 1). Frozen polysaccharides can also be included, which is preferable.
 ハイドロフォビンの含有量は、特に限定されないが、本発明のコーティング用組成物100質量%に対して、例えば0.001~10質量%、好ましくは0.01~5質量%、より好ましくは0.1~5質量%であることができる。 The content of hydrophobin is not particularly limited, but is, for example, 0.001 to 10% by mass, preferably 0.01 to 5% by mass, more preferably 0 with respect to 100% by mass of the coating composition of the present invention. 1 to 5% by weight.
 ハイドロフォビンは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Hydrophobin may be used alone or in combination of two or more.
 本発明のコーティング用組成物は、粉末状等の固体状組成物であることもできるが、コーティング処理の容易性等の観点から、液状組成物であることが好ましい。 The coating composition of the present invention can be a solid composition such as a powder, but is preferably a liquid composition from the viewpoint of ease of coating treatment.
 この場合の溶媒としては、コーティング用組成物に通常用いられるものである限り特に限定されない。溶媒としては、不凍多糖(特に真菌熱水抽出残渣)をより均一に分散させることができるという観点から、好ましくはSnyder極性パラメータが2.5~5.5、より好ましくは2.8~5.0、さらに好ましくは2.9~4.5、よりさらに好ましくは3.0~4.3である溶媒が挙げられる。なお、「より均一に分散」とは、不凍多糖と溶媒を撹拌し、一定時間放置した後に目視で観察した場合に、沈殿物がより少ないことを意味する。溶媒の具体例(溶媒右側の括弧内の数値はSnyder極性パラメータ)としては、クロロメタン(3.1)、ジクロロメタン(3.5)、2-プロパノール(3.9)、テトラヒドロフラン(4.0)、n-プロパノール(4.0)、クロロホルム(4.1)、エタノール(4.3)、酢酸エチル(4.4)、メチルエチルケトン(4.7)、ジオキサン(4.8)、アセトン(5.1)、メタノール(5.1)等が挙げられる。 In this case, the solvent is not particularly limited as long as it is usually used in a coating composition. The solvent preferably has a Snyder polarity parameter of 2.5 to 5.5, more preferably 2.8 to 5 from the viewpoint that an antifreeze polysaccharide (particularly fungal hot water extraction residue) can be more uniformly dispersed. 0.0, more preferably 2.9 to 4.5, and still more preferably 3.0 to 4.3. Note that “more uniformly dispersed” means that there is less precipitate when the antifreeze polysaccharide and the solvent are stirred and allowed to stand for a certain period of time and then visually observed. Specific examples of the solvent (the values in parentheses on the right side of the solvent are Snyder polar parameters) include chloromethane (3.1), dichloromethane (3.5), 2-propanol (3.9), tetrahydrofuran (4.0) , N-propanol (4.0), chloroform (4.1), ethanol (4.3), ethyl acetate (4.4), methyl ethyl ketone (4.7), dioxane (4.8), acetone (5. 1), methanol (5.1) and the like.
 溶媒の含有量は、特に限定されないが、本発明のコーティング用組成物100質量%に対して、例えば50~99質量%、好ましくは70~95質量%、より好ましくは80~90質量%であることができる。 The content of the solvent is not particularly limited, but is, for example, 50 to 99% by mass, preferably 70 to 95% by mass, and more preferably 80 to 90% by mass with respect to 100% by mass of the coating composition of the present invention. be able to.
 溶媒は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Solvents may be used alone or in combination of two or more.
 本発明のコーティング用組成物は、バインダーを含むことが好ましい。バインダーを含むことにより、コーティング膜をより強固に表面に付着させることができる。また、バインダーを含む場合、必要に応じて硬化触媒を含むこともできる。 The coating composition of the present invention preferably contains a binder. By including the binder, the coating film can be more firmly attached to the surface. Moreover, when a binder is included, a curing catalyst can also be included as necessary.
 バインダーは、表面コーティング、好ましくは屋外で使用される物の表面コーティングに用いられるバインダーとして公知のものを広く使用することができる。具体的には、フッ素樹脂、シリカ系特殊バインダー、湿気硬化性シリコーンオリゴマー等が挙げられる。これらの中でも、好ましくは湿気硬化性シリコーンオリゴマーが挙げられる。湿気硬化性シリコーンオリゴマーを用いることにより、耐水性、耐湿性、耐候性等を向上させることが可能である。 As the binder, known binders can be widely used for surface coating, preferably for surface coating of objects used outdoors. Specific examples include a fluororesin, a silica-based special binder, and a moisture curable silicone oligomer. Among these, a moisture curable silicone oligomer is preferable. By using the moisture curable silicone oligomer, it is possible to improve water resistance, moisture resistance, weather resistance and the like.
 湿気硬化性シリコーンオリゴマーは、例えば、分子末端にアルコキシシリル基を有する低分子量のシリコーンアルコキシオリゴマーであって、後述する硬化触媒の存在下で、アルコキシシリル基の架橋により、常温で硬化するものが挙げられる。このような湿気硬化性シリコーンオリゴマーは、例えば、下記一般式(1)で示される。
Si(OR4-n (1)
(一般式(1)中、Rは、水素原子、または、置換もしくは非置換の1価の炭化水素基を、Rはアルキル基を、nは0~3の整数を示す。また、RおよびRは、同一またはそれぞれ相異なっていてもよい。)
 Rとしては、例えば、水素原子、または、置換もしくは非置換の1価の炭化水素基が挙げられる。
The moisture curable silicone oligomer is, for example, a low molecular weight silicone alkoxy oligomer having an alkoxysilyl group at the molecular end, and cured at room temperature by crosslinking of the alkoxysilyl group in the presence of a curing catalyst described later. It is done. Such a moisture-curable silicone oligomer is represented by the following general formula (1), for example.
R 1 n Si (OR 2 ) 4-n (1)
(In the general formula (1), R 1 represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, R 2 represents an alkyl group, and n represents an integer of 0 to 3. 1 and R 2 may be the same or different from each other.
Examples of R 1 include a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group.
 Rにおいて、非置換の1価の炭化水素基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基などが挙げられる。 In R 1 , examples of the unsubstituted monovalent hydrocarbon group include an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
 アルキル基としては、例えば、メチル、エチル、プロピル、iso-プロピル、ブチル、iso-ブチル、sec-ブチル、tert-ブチル、ペンチル、iso-ペンチル、sec-ペンチル、ヘキシル、ヘプチル、n-オクチル、イソオクチル、2-エチルヘキシル、ノニル、デシル、イソデシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシルなどの炭素数1~18のアルキル基が挙げられる。 Examples of the alkyl group include methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, iso-pentyl, sec-pentyl, hexyl, heptyl, n-octyl, isooctyl. Alkyl groups having 1 to 18 carbon atoms such as 2-ethylhexyl, nonyl, decyl, isodecyl, dodecyl, tetradecyl, hexadecyl, octadecyl and the like.
 シクロアルキル基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルなどの炭素数3~8のシクロアルキル基などが挙げられる。 Examples of the cycloalkyl group include cycloalkyl groups having 3 to 8 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
 アリール基としては、例えば、フェニル、トリル、キシリル、ビフェニル、ナフチル、アントリル、フェナントリルなどの炭素数6~14のアリール基が挙げられる。 Examples of the aryl group include aryl groups having 6 to 14 carbon atoms such as phenyl, tolyl, xylyl, biphenyl, naphthyl, anthryl, phenanthryl.
 アラルキル基としては、例えば、ベンジル、1-フェニルエチル、2-フェニルエチル、1-フェニルプロピル、2-フェニルプロピル、3-フェニルプロピル、ジフェニルメチル、o、mまたはp-メチルベンジル、o、mまたはp-エチルベンジルなどの炭素数7~13のアラルキル基が挙げられる。 Examples of the aralkyl group include benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, 2-phenylpropyl, 3-phenylpropyl, diphenylmethyl, o, m or p-methylbenzyl, o, m or Examples thereof include aralkyl groups having 7 to 13 carbon atoms such as p-ethylbenzyl.
 Rにおいて、置換の1価の炭化水素基としては、上記した非置換の1価の炭化水素基を、置換基で置換したものが挙げられ、このような置換基としては、例えば、ハロゲン原子(例えば、塩素、フッ素、臭素およびヨウ素など)、ヒドロキシル、シアノ、アミノ、カルボキシルなどが挙げられる。これらの置換基は、同一であっても、それぞれ異なっていてもよく、また、例えば、1~3個置換していてもよい。 In R 1 , examples of the substituted monovalent hydrocarbon group include those obtained by substituting the above-described unsubstituted monovalent hydrocarbon group with a substituent. Examples of such a substituent include a halogen atom. (For example, chlorine, fluorine, bromine and iodine), hydroxyl, cyano, amino, carboxyl and the like. These substituents may be the same or different, and may be substituted, for example, 1 to 3.
 また、Rは、好ましくは、少なくとも炭素数が4以上の1価の炭化水素基を含んでおり、より具体的には、Rは、炭素数が1~3の非置換の1価の炭化水素基および炭素数が4以上の非置換の1価の炭化水素基との組合せであり、さらに好ましくは、炭素数が1~3のアルキル基および炭素数が6~14のアリール基との組合せである。 R 1 preferably includes at least a monovalent hydrocarbon group having 4 or more carbon atoms, and more specifically, R 1 is an unsubstituted monovalent hydrocarbon group having 1 to 3 carbon atoms. A combination of a hydrocarbon group and an unsubstituted monovalent hydrocarbon group having 4 or more carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 to 14 carbon atoms. It is a combination.
 Rとしては、アルキル基が挙げられ、好ましくは、メチル、エチル、プロピル、iso-プロピル、ブチル、iso-ブチル、sec-ブチル、tert-ブチルなどの炭素数1~4のアルキル基が挙げられる。 R 2 includes an alkyl group, preferably an alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, and the like. .
 また、RとRとは、各々独立し、同一またはそれぞれ相異なっていてもよい。 R 1 and R 2 are independent of each other and may be the same or different from each other.
 nは、例えば、0~3の整数を示し、好ましくは、1または2を示す。 N represents, for example, an integer of 0 to 3, preferably 1 or 2.
 このようなアルコキシシラン化合物としては、具体的には、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、または、これらの混合物などが挙げられる。 Specific examples of such alkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, and dimethyldimethoxysilane. , Phenyltrimethoxysilane, diphenyldimethoxysilane, phenylmethyldimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, or a mixture thereof.
 アルコキシシラン化合物の部分加水分解縮合物とは、上記したアルコキシシラン化合物に水を加えて、触媒の存在下で撹拌しながら昇温することにより、部分的に加水分解を生じさせるとともに、縮合させることにより得られるものである。 A partially hydrolyzed condensate of an alkoxysilane compound means that water is added to the above alkoxysilane compound and heated while stirring in the presence of a catalyst to cause partial hydrolysis and condensation. Is obtained.
 湿気硬化性シリコーンオリゴマーは、単独で用いてもよく、また、2種以上併用してもよい。 The moisture curable silicone oligomer may be used alone or in combination of two or more.
 硬化触媒は、湿気硬化性シリコーンオリゴマーを硬化させ得る触媒であれば、特に制限されないが、例えば、ジブチル錫ジアセテート、ジブチル錫ジオクチレート、ジブチル錫ジラウレートなどの有機錫化合物、例えば、アルミニウムトリス(アセチルアセトン)、アルミニウムトリス(アセトアセテートエチル)、アルミニウムジイソプロポキシ(アセトアセテートエチル)などの有機アルミニウム化合物、例えば、ジルコニウム(アセチルアセトン)、ジルコニウムトリス(アセチルアセトン)、ジルコニウムテトラキス(エチレングリコールモノメチルエーテル)、ジルコニウムテトラキス(エチレングリコールモノエチルエーテル)、ジルコニウムテトラキス(エチレングリコールモノブチルエーテル)などの有機ジルコニウム化合物、例えば、チタニウムテトラキス(エチレングリコールモノメチルエーテル)、チタニウムテトラキス(エチレングリコールモノエチルエーテル)、チタニウムテトラキス(エチレングリコールモノブチルエーテル)などの有機チタニウム化合物などの有機金属化合物、例えば、塩酸、硝酸、硫酸、リン酸などの鉱酸類や、ギ酸、酢酸、シュウ酸、トリフルオロ酢酸などの有機酸類などの酸、例えば、アンモニア、水酸化ナトリウム、水酸化カリウムなどの無機塩基や、エチレンジアミン、アルカノールアミンなどの有機塩基などのアルカリ、例えば、アミノ変性シリコーン、アミノシラン、シラザン、アミン類などのアミノ化合物などが挙げられる。 The curing catalyst is not particularly limited as long as it is a catalyst capable of curing a moisture curable silicone oligomer. For example, organotin compounds such as dibutyltin diacetate, dibutyltin dioctylate and dibutyltin dilaurate, for example, aluminum tris (acetylacetone) Organic aluminum compounds such as aluminum tris (acetoacetate ethyl) and aluminum diisopropoxy (acetoacetate ethyl), such as zirconium (acetylacetone), zirconium tris (acetylacetone), zirconium tetrakis (ethylene glycol monomethyl ether), zirconium tetrakis (ethylene) Glycol monoethyl ether) and zirconium tetrakis (ethylene glycol monobutyl ether) Products such as organic metal compounds such as titanium tetrakis (ethylene glycol monomethyl ether), titanium tetrakis (ethylene glycol monoethyl ether), titanium tetrakis (ethylene glycol monobutyl ether), such as hydrochloric acid, nitric acid, sulfuric acid, Mineral acids such as phosphoric acid, acids such as organic acids such as formic acid, acetic acid, oxalic acid and trifluoroacetic acid, for example, inorganic bases such as ammonia, sodium hydroxide and potassium hydroxide, and organic such as ethylenediamine and alkanolamine Examples include alkalis such as bases, and amino compounds such as amino-modified silicones, aminosilanes, silazanes, and amines.
 これら硬化触媒は、単独で用いてもよく、また、2種以上併用してもよい。 These curing catalysts may be used alone or in combination of two or more.
 上記湿気硬化性シリコーンオリゴマーとしては、予め硬化触媒も共に含有されている市販品を用いることが好ましい。そのような市販品としては、例えば、X-40-175(硬化触媒DX-175;5重量%含有)、X-40-2327(硬化触媒X-40-2309A;30重量%含有)、KR-400(硬化触媒DX-9740;10重量%含有)(以上、信越化学社製)等が挙げられる。 As the moisture curable silicone oligomer, it is preferable to use a commercially available product that contains a curing catalyst in advance. Examples of such commercially available products include X-40-175 (curing catalyst DX-175; containing 5% by weight), X-40-2327 (curing catalyst X-40-2309A; containing 30% by weight), KR- 400 (curing catalyst DX-9740; containing 10 wt%) (above, manufactured by Shin-Etsu Chemical Co., Ltd.).
 バインダーの含有量(硬化触媒も含む場合は、バインダー及び硬化触媒を合わせた含有量)は、特に限定されないが、本発明のコーティング用組成物100質量%に対して、例えば1~20質量%、好ましく4~15質量%であることができる。 The content of the binder (when the curing catalyst is also included, the combined content of the binder and the curing catalyst) is not particularly limited, but for example 1 to 20% by mass with respect to 100% by mass of the coating composition of the present invention, The amount may preferably be 4 to 15% by mass.
 本発明のコーティング用組成物は、表面への氷付着力を低減することができる限りにおいて、上記以外の他の成分を含んでいてもよい。他の成分としては、例えばワックス系の撥水剤等が挙げられる。 The coating composition of the present invention may contain components other than the above as long as the ice adhesion to the surface can be reduced. Examples of other components include wax-based water repellents.
 2.コーティング方法、及びコーティング処理された被検物
 本発明は、本発明のコーティング用組成物と、被検物の表面の一部又は全部とを接触させること(本明細書において、「コーティング処理」と示すこともある)を含む、コーティング方法(本明細書において、「本発明のコーティング方法」と示すこともある。)に関する。さらに、本発明のコーティング用組成物を用いて表面の一部又は全部がコーティング処理された、被検物にも関する。以下、これらについて説明する。
2. Coating method and coated specimen The present invention comprises contacting the coating composition of the present invention with a part or all of the surface of the specimen (in this specification, “coating treatment”). The present invention relates to a coating method (which may be referred to herein as “the coating method of the present invention”). Furthermore, the present invention also relates to a test object in which a part or all of the surface is coated with the coating composition of the present invention. Hereinafter, these will be described.
 被検物は、本発明のコーティング用組成物でコーティング処理する対象物であり、コーティング処理し得る対象物である限り特に限定されない。被検物として、好ましくは、氷が付着し得る環境下で使用される物が挙げられる。このような物の具体例としては、航空機、船舶、電車、自動車等の乗り物、建造物の屋根や外壁、アンテナ、電線、防寒具、信号機、熱交換器等が挙げられる。 The test object is an object to be coated with the coating composition of the present invention, and is not particularly limited as long as it is an object that can be coated. Preferably, the test object is an object used in an environment where ice can adhere. Specific examples of such objects include vehicles such as airplanes, ships, trains, automobiles, roofs and outer walls of buildings, antennas, electric wires, cold protection equipment, traffic lights, heat exchangers, and the like.
 接触は、本発明のコーティング用組成物と、被検物の表面の一部又は全部とが接触できる態様であれば特に限定されない。例えば、スプレー、塗布等が挙げられ、より簡便に接触できるという観点から、好ましくはスプレーが挙げられる。 Contact is not particularly limited as long as the coating composition of the present invention can be brought into contact with part or all of the surface of the test object. For example, spraying, application | coating, etc. are mentioned, From a viewpoint that it can contact more simply, Preferably a spray is mentioned.
 本発明のコーティング用組成物は、そのまま被検物に接触させてもよいが、他のコーティング用組成物と混合してから被検物に接触させてもよく、他のコーティング用組成物でコーティング処理された被検物と接触させてもよい。 The coating composition of the present invention may be brought into contact with the specimen as it is, but may be mixed with another coating composition and then brought into contact with the specimen, and coated with another coating composition. You may make it contact with the processed test object.
 被検物と接触させる本発明のコーティング用組成物の量については、被検物の表面の一部又は全部を覆うことができる量である限り特に限定されない。例えば、5cm×5cmの表面に対して0.5~10mL、好ましくは1.5~5mL程度であることができる。 The amount of the coating composition of the present invention to be brought into contact with the test object is not particularly limited as long as it is an amount that can cover part or all of the surface of the test object. For example, it can be about 0.5 to 10 mL, preferably about 1.5 to 5 mL with respect to a surface of 5 cm × 5 cm.
 コーティング処理後は、必要に応じて、乾燥、バインダー硬化処理等を行うことにより、コーティング膜を被検物表面に形成することができる。 After the coating treatment, a coating film can be formed on the surface of the test object by performing drying, binder curing treatment or the like as necessary.
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 実施例1:不凍多糖及びハイドロフォビン含有担子菌抽出物の調製
 不凍多糖及びハイドロフォビンは担子菌の細胞壁に存在することが知られている(特許文献1~3)。不凍多糖は、熱水ではほとんど抽出できないが、アルカリ水溶液中で加熱処理することにより抽出できる(特許文献1)。また、ハイドロフォビンも、熱水では抽出することはできず、トリフルオロ酢酸や界面活性剤により抽出できる(特許文献2~3)。これらの知見に基づいて、担子菌の一種であるエノキタケを、不凍多糖及びハイドロフォビンが溶解し難い溶媒(熱水)で抽出処理することにより、余分な成分が除かれた残渣(担子菌熱水抽出残渣)を、不凍多糖及びハイドロフォビン含有抽出物とした。具体的には次のように行った。
Example 1: Preparation of basidiomycetous extract containing antifreeze polysaccharide and hydrophobin It is known that antifreeze polysaccharide and hydrophobin exist in the cell wall of basidiomycete (Patent Documents 1 to 3). Antifreeze polysaccharides can hardly be extracted with hot water, but can be extracted by heat treatment in an alkaline aqueous solution (Patent Document 1). Hydrophobin cannot be extracted with hot water, but can be extracted with trifluoroacetic acid or a surfactant (Patent Documents 2 to 3). Based on these findings, enokitake, a kind of basidiomycete, is extracted with a solvent (hot water) in which antifreeze polysaccharides and hydrophobins are difficult to dissolve, thereby removing residues (basidiomycetes). The hot water extraction residue was used as an antifreeze polysaccharide and hydrophobin-containing extract. Specifically, it was performed as follows.
 エノキタケの子実体の粉末(5g)を、ヘキサン(200mL)中に懸濁した後、室温、16時間放置した(脱脂処理)。遠心分離(7500×g、4℃、15分)(HITACHIハイテクノロジーズ)し、残渣を得た。残渣1.5gを、10%酢酸溶液2mLとWashing buffer 20mL (0.1MTris-HCl pH 8.0, 10 mM MgSO4, 1 mM PMSF)との混合溶液に懸濁させた後、遠心分離(10000g、4℃、15分間)して沈殿物を得た。該沈殿物を、10%酢酸 10 mM MgSO4溶液20mLに懸濁させた後、遠心分離(10000g、4℃、15分間)して沈殿物を得た。該沈殿物1.4gを、エタノール(-20℃)20mL中に入れ、遠心分離(10000g、4℃、15分間)して沈殿を回収した(洗浄処理)。この洗浄は計2回行った。回収した沈殿物をドラフトチャンバー内で乾燥させ、得られた乾燥物を100℃の水に60分間浸した(熱水処理)。その後、常温になるまで冷却し、遠心分離(10000g、4℃、15分間)して沈殿物を得た。得られた沈殿物を粉砕機(マルチビーズショッカー(製品名)、安井器械(製造元))で破砕(2700rpm、4分間)し、目開き212μm、106μm、53μmの篩にかけ、直径約50μm以下の粉体を得た。この粉体を、不凍多糖及びハイドロフォビン含有抽出物として、以下の実施例で用いた。 Enokitake fruit body powder (5 g) was suspended in hexane (200 mL) and allowed to stand at room temperature for 16 hours (degreasing treatment). Centrifugation (7500 × g, 4 ° C., 15 minutes) (HITACHI High Technologies) gave a residue. 1.5 g of the residue was suspended in a mixed solution of 2 mL of 10% acetic acid solution and 20 mL of washing buffer (0.1 MTris-HCl pH 8.0, 10 mM MgSO 4 , 1 mM PMSF), and then centrifuged (10000 g, 4 ° C. For 15 minutes) to obtain a precipitate. The precipitate was suspended in 20 mL of 10% acetic acid and 10 mM MgSO 4 solution, and then centrifuged (10000 g, 4 ° C., 15 minutes) to obtain a precipitate. 1.4 g of the precipitate was placed in 20 mL of ethanol (−20 ° C.), and centrifuged (10000 g, 4 ° C., 15 minutes) to collect the precipitate (washing treatment). This washing was performed twice in total. The collected precipitate was dried in a draft chamber, and the obtained dried product was immersed in water at 100 ° C. for 60 minutes (hot water treatment). Then, it cooled to normal temperature and centrifuged (10000g, 4 degreeC, 15 minutes), and obtained the deposit. The resulting precipitate is crushed (2700 rpm, 4 minutes) with a pulverizer (multi-bead shocker (product name), Yasui machine (manufacturer)), passed through a sieve having openings of 212 μm, 106 μm, and 53 μm, and a powder having a diameter of about 50 μm or less. Got the body. This powder was used in the following examples as an antifreeze polysaccharide and hydrophobin-containing extract.
 比較例1:ハイドロフォビン含有担子菌抽出物の調製
 実施例1で得られた粉体(不凍多糖及びハイドロフォビン含有抽出物)を強アルカリ水溶液(pH12 NaOHで調製)あるいは強アルカリイオン水(Alpha water、富士ハイテック(株))中で、100℃、3時間抽出処理した。遠心分離(7500g、4℃、15分間)して沈殿物を回収した。その沈殿物は凍結乾燥して、不凍多糖を含まない紛体(ハイドロフォビン含有抽出物)として、以下の実施例で使用した
Comparative Example 1: Preparation of hydrophobin-containing basidiomycete extract The powder (antifreeze polysaccharide and hydrophobin-containing extract) obtained in Example 1 was prepared using a strongly alkaline aqueous solution (prepared with pH 12 NaOH) or strongly alkaline ionized water. In (Alpha water, Fuji High-Tech Co., Ltd.), extraction was performed at 100 ° C. for 3 hours. The precipitate was collected by centrifugation (7500 g, 4 ° C., 15 minutes). The precipitate was freeze-dried and used in the following examples as a powder (hydrophobin-containing extract) containing no antifreeze polysaccharide.
 実施例2:溶媒との混合、及び分散性試験
 不凍多糖及びハイドロフォビン含有抽出物(実施例1)0.01gと各種溶媒(表1)1mlとを、等量(容量)ずつガラスバイアルに入れ、超音波洗浄機(US-1、株式会社エスエヌディ社製)にて5分撹拌した。撹拌後、ガラスバイアルを1時間静置し、不凍多糖及びハイドロフォビン含有抽出物(粉体)の分散状態を目視で観察し、評価した。評価結果を表1に示す。ジクロロメタン、及び2-プロパノールのいずれも粉体をほぼ均一に分散させることができたが、2-プロパノールを用いた場合の方が、より均一に粉体が分散していた。この結果に基づいて、以下の実施例では、溶媒として2-プロパノールを用いた。
Example 2: Mixing with a solvent and dispersibility test Glass vials containing 0.01 g of antifreeze polysaccharide and hydrophobin-containing extract (Example 1) and 1 ml of various solvents (Table 1) in equal amounts (volumes) The mixture was stirred for 5 minutes with an ultrasonic cleaner (US-1, manufactured by SND Corporation). After stirring, the glass vial was allowed to stand for 1 hour, and the dispersion state of the antifreeze polysaccharide and the hydrophobin-containing extract (powder) was visually observed and evaluated. The evaluation results are shown in Table 1. Both dichloromethane and 2-propanol were able to disperse the powder almost uniformly, but the powder was more evenly dispersed when 2-propanol was used. Based on this result, 2-propanol was used as the solvent in the following examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例3:コーティング処理
 <3-1.コーティング溶液の調製>
 不凍多糖及びハイドロフォビン含有抽出物(実施例1)0.1g、湿気硬化性シリコーンオリゴマー(X-40-2327、信越化学工業社製)200μL、2-プロパノール2.5mLを混合して、コーティング溶液を調製した(コーティング溶液1)。さらに、ハイドロフォビン含有抽出物(比較例1)0.1g、湿気硬化性シリコーンオリゴマー(X-40-2327、信越化学工業社製)200μL、2-プロパノール2.5mLを混合して、コーティング溶液を調製した(コーティング溶液2)。
Example 3: Coating treatment <3-1. Preparation of coating solution>
Antifreeze polysaccharide and hydrophobin-containing extract (Example 1) 0.1 g, moisture curable silicone oligomer (X-40-2327, manufactured by Shin-Etsu Chemical Co., Ltd.) 200 μL, 2-propanol 2.5 mL were mixed, A coating solution was prepared (Coating Solution 1). Furthermore, 0.1 g of a hydrophobin-containing extract (Comparative Example 1), a moisture-curable silicone oligomer (X-40-2327, manufactured by Shin-Etsu Chemical Co., Ltd.) 200 μL, and 2-propanol 2.5 mL were mixed to obtain a coating solution. Was prepared (coating solution 2).
 <3-2.コーティング処理>
 アルミ板(50cm×50cm)をアクリルウレタンコーティングし、表面をヤスリがけした(#800、1200)。ここに、コーティング溶液1又は2を均一にスプレー噴霧した。噴霧後、空気中で60分間放置することによりコーティング膜を硬化させ、コーティング板を得た。
<3-2. Coating treatment>
An aluminum plate (50 cm × 50 cm) was coated with acrylic urethane, and the surface was filed (# 800, 1200). Here, the coating solution 1 or 2 was sprayed uniformly. After spraying, the coating film was cured by leaving it in the air for 60 minutes to obtain a coated plate.
 <3-3.表面粗さの測定試験>
 上記3-2で得たコーティング板のコーティング面の表面粗さを非接触表面粗さ計(: LASER Focus Displacement Meter LT―8105、LT―V201、株式会社KEYENCE社製)にて測定したところ、RMS約1~1.5(μm)であった。
<3-3. Surface roughness measurement test>
When the surface roughness of the coating surface of the coating plate obtained in 3-2 above was measured with a non-contact surface roughness meter (: LASER Focus Displacement Meter LT-8105, LT-V201, manufactured by KEYENCE Corporation), RMS It was about 1 to 1.5 (μm).
 <3-4.鉛筆硬度の測定試験>
 上記3-2で得たコーティング板のコーティング面について、JIS K5600-5-4に従って鉛筆硬度試験を行ったところ、鉛筆硬度は4Bであった。
<3-4. Pencil hardness measurement test>
When the pencil hardness test was performed on the coated surface of the coated plate obtained in 3-2 according to JIS K5600-5-4, the pencil hardness was 4B.
 <3-5.水への溶解試験>
 上記3-2で得たコーティング板を蒸留水内に浸漬し、常温で2日間放置した後、コーティング面を目視で観察したところ、コーティングが溶解している様子は見られなかった。
<3-5. Dissolution test in water>
The coating plate obtained in 3-2 above was immersed in distilled water and allowed to stand at room temperature for 2 days. The coating surface was visually observed, and no coating was dissolved.
 <3-6.氷付着力の測定試験>
 試験対象として、上記3-2で得たコーティング板と、これらと同等の表面粗さ(RMS約1~1.5μm)になるように調整したアルミ板を用意した。上記3-2で得たコーティング板のコーティング面上又はアルミ板上にステンレスリング(内径1インチ、高さ1.5cm)を載せ、該リング内に水を満たした。これを、-4℃又は-8℃で1時間放置し、リング内の水を凍結させた。これを、図1に示されるように氷付着試験機にセットし、ステンレスリングの側面にPusherで荷重をかけ、氷が剥離した際の圧力を測定した。この測定値を氷付着力とする。この試験を10回行い、圧力の測定値の平均値を求め、グラフ化した(図2)。
<3-6. Ice adhesion test>
As test objects, the coated plate obtained in 3-2 above and the aluminum plate adjusted to have the same surface roughness (RMS of about 1 to 1.5 μm) were prepared. A stainless steel ring (inner diameter: 1 inch, height: 1.5 cm) was placed on the coating surface of the coating plate obtained in 3-2 or on an aluminum plate, and the ring was filled with water. This was left at -4 ° C or -8 ° C for 1 hour to freeze the water in the ring. This was set in an ice adhesion tester as shown in FIG. 1, a load was applied to the side surface of the stainless steel ring with a pusher, and the pressure when the ice peeled was measured. This measured value is defined as ice adhesion. This test was performed 10 times, and the average value of the measured pressure values was obtained and graphed (FIG. 2).
 図2に示されるように、不凍多糖を含まないコーティング溶液(コーティング溶液2)でコーティングした表面への氷付着力は、アルミ板表面への氷付着力と同程度又はこれよりも若干高かった。一方、不凍多糖を含むコーティング溶液(コーティング溶液1)でコーティングした表面への氷付着力は、アルミ板表面への氷付着力、及び不凍多糖を含まないコーティング溶液(コーティング溶液2)でコーティングした表面への氷付着力よりも顕著に低かった。この結果より、不凍多糖をコーティングすることにより、コーティング表面への氷付着力を低減できることが示された。また、上記結果は、表面粗さが同程度の場合の結果であることから、不凍多糖が表面に存在すること自体が氷付着力を低下させていることが示された。このことから、不凍多糖による氷付着力の低減効果は、コーティング表面に凸凹構造を作り出さなくとも発揮される効果であると考えられる。 As shown in FIG. 2, the ice adhesion force on the surface coated with the coating solution containing no antifreeze polysaccharide (Coating Solution 2) was the same as or slightly higher than the ice adhesion force on the aluminum plate surface. . On the other hand, the ice adhesion force to the surface coated with the coating solution containing antifreeze polysaccharide (coating solution 1) is coated with the ice adhesion force to the aluminum plate surface and the coating solution not containing antifreeze polysaccharide (coating solution 2). The ice adhesion to the surface was significantly lower. From this result, it was shown that the ice adhesion force on the coating surface can be reduced by coating the antifreeze polysaccharide. Moreover, since the said result is a result in case surface roughness is comparable, it was shown that the antifreeze polysaccharide exists on the surface itself has reduced the ice adhesion force. From this, it is considered that the effect of reducing the ice adhesion force due to the antifreeze polysaccharide is an effect that can be exhibited without creating an uneven structure on the coating surface.

Claims (9)

  1. 不凍多糖を含有する、コーティング用組成物。 A coating composition containing an antifreeze polysaccharide.
  2. さらにハイドロフォビンを含有する、請求項1に記載の組成物。 Furthermore, the composition of Claim 1 containing a hydrophobin.
  3. 前記不凍多糖が真菌由来の不凍多糖精製物である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the antifreeze polysaccharide is a purified antifreeze polysaccharide derived from a fungus.
  4. 溶媒を含む液状組成物であって、該溶媒のSnyder極性パラメータが2.5~5.5である、請求項1~3のいずれかに記載の組成物。 The composition according to any one of claims 1 to 3, which is a liquid composition containing a solvent, wherein the Snyder polarity parameter of the solvent is 2.5 to 5.5.
  5. 前記溶媒が、クロロメタン、ジクロロメタン、2-プロパノール、テトラヒドロフラン、n-プロパノール、クロロホルム、エタノール、及び酢酸エチルからなる群より選択される少なくとも1種である、請求項4に記載の組成物。 The composition according to claim 4, wherein the solvent is at least one selected from the group consisting of chloromethane, dichloromethane, 2-propanol, tetrahydrofuran, n-propanol, chloroform, ethanol, and ethyl acetate.
  6. さらにバインダーを含有する、請求項1~5のいずれかに記載の組成物。 The composition according to any one of claims 1 to 5, further comprising a binder.
  7. 前記バインダーが湿気硬化性バインダーである、請求項6に記載の組成物。 The composition of claim 6, wherein the binder is a moisture curable binder.
  8. 請求項1~7のいずれかに記載の組成物と、被検物の表面の一部又は全部とを接触させることを含む、コーティング方法。 A coating method comprising contacting the composition according to any one of claims 1 to 7 with a part or all of a surface of a test object.
  9. 請求項1~7のいずれかに記載の組成物を用いて表面の一部又は全部がコーティング処理された、被検物。 A test object, wherein a part or all of the surface is coated with the composition according to any one of claims 1 to 7.
PCT/JP2016/068247 2016-06-20 2016-06-20 Coating composition WO2017221294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068247 WO2017221294A1 (en) 2016-06-20 2016-06-20 Coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068247 WO2017221294A1 (en) 2016-06-20 2016-06-20 Coating composition

Publications (1)

Publication Number Publication Date
WO2017221294A1 true WO2017221294A1 (en) 2017-12-28

Family

ID=60784240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068247 WO2017221294A1 (en) 2016-06-20 2016-06-20 Coating composition

Country Status (1)

Country Link
WO (1) WO2017221294A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254675A (en) * 1985-05-02 1986-11-12 Daikin Ind Ltd Icing-preventive coating composition
JPH05239381A (en) * 1991-10-14 1993-09-17 Osaka Gas Co Ltd Anti-icing coating composition preventive of attaching snow and icing
JP2011089112A (en) * 2009-09-25 2011-05-06 Kobe Steel Ltd Resin composition exhibiting high performance in inhibition of ice and frost formation, and laminated metal plate on which ice/frost-formation inhibition layer is formed
WO2012026339A1 (en) * 2010-08-25 2012-03-01 株式会社カネカ Ice crystallization inhibitor derived from basidiomycetes
WO2013172304A1 (en) * 2012-05-16 2013-11-21 学校法人関西大学 Process for producing enokitake mushroom extract, enokitake mushroom extract, and food additive
JP2014514412A (en) * 2011-04-25 2014-06-19 ダウ グローバル テクノロジーズ エルエルシー Moisture curable composition and low surface energy coating composition comprising the composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254675A (en) * 1985-05-02 1986-11-12 Daikin Ind Ltd Icing-preventive coating composition
JPH05239381A (en) * 1991-10-14 1993-09-17 Osaka Gas Co Ltd Anti-icing coating composition preventive of attaching snow and icing
JP2011089112A (en) * 2009-09-25 2011-05-06 Kobe Steel Ltd Resin composition exhibiting high performance in inhibition of ice and frost formation, and laminated metal plate on which ice/frost-formation inhibition layer is formed
WO2012026339A1 (en) * 2010-08-25 2012-03-01 株式会社カネカ Ice crystallization inhibitor derived from basidiomycetes
JP2014514412A (en) * 2011-04-25 2014-06-19 ダウ グローバル テクノロジーズ エルエルシー Moisture curable composition and low surface energy coating composition comprising the composition
WO2013172304A1 (en) * 2012-05-16 2013-11-21 学校法人関西大学 Process for producing enokitake mushroom extract, enokitake mushroom extract, and food additive

Similar Documents

Publication Publication Date Title
CN107312446B (en) A kind of preparation method of poly-dopamine nano zine oxide super-hydrophobic coat
CN100473469C (en) Corrosion protection on metals
CN102808357B (en) Super-hydrophobic paper and production method thereof
JP5670736B2 (en) Antifouling composition comprising airgel
CN100572386C (en) Composition for coating of aluminum
CN107652887B (en) Environmentally friendly anti-fouling material based on silicon hydrogel resin and natural anti-fouling agent
CN107141992B (en) A kind of super-hydrophobic transparent coating liquid and preparation method thereof
CN101982560B (en) Low-cost superhydrophobic surface treatment method of aluminum alloy
JP6523755B2 (en) Coating composition
CN105111908A (en) Primer-topcoat combined anti-corrosion paint suitable for various base materials and preparation method thereof
RU2015122750A (en) COMPOSITION FOR STIMULATING OILING OF PLANT ROOTS
CN102015955A (en) Use of hydrophobins to prevent ice from forming on surfaces
WO2017221294A1 (en) Coating composition
CN113150284B (en) Triple-repaired double-crosslinked polysiloxane super-hydrophobic elastomer and preparation method thereof
CN107629657B (en) Attapulgite/aqueous polyurethane coating and its application
CN109439189B (en) Method for immobilizing antifouling enzyme on surface of inorganic coating
KR20110089762A (en) One-component type, room-temperature curing and water-soluble top coating composition
KR102421237B1 (en) Paint composition for repelling aquatic organisms
CN107556879A (en) A kind of heat-insulating nano composite coating and preparation method thereof
CN107189669B (en) A kind of low-surface-energy aqueous polyurethane/nano SiO2Marine anti-pollution coating material and preparation method
Javmen et al. Purification and partial characterization of a novel β-1, 3-endoglucanase from Streptomyces rutgersensis
CN105238185A (en) Anti-stripping wood coating and preparation method therefor
Zeynali et al. Evaluation of chitin-glucan complex production in submerged culture of medicinal mushroom of Schizophilum commune: Optimization and growth kinetic
EP3228192A2 (en) Extraction and use of melanin or melanin particles for solar thermal energy conversion
CN107963868A (en) A kind of ceramic coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP