WO2017220031A1 - 定位方法及装置 - Google Patents

定位方法及装置 Download PDF

Info

Publication number
WO2017220031A1
WO2017220031A1 PCT/CN2017/089870 CN2017089870W WO2017220031A1 WO 2017220031 A1 WO2017220031 A1 WO 2017220031A1 CN 2017089870 W CN2017089870 W CN 2017089870W WO 2017220031 A1 WO2017220031 A1 WO 2017220031A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
module
location
instruction
data
Prior art date
Application number
PCT/CN2017/089870
Other languages
English (en)
French (fr)
Inventor
冯永华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017220031A1 publication Critical patent/WO2017220031A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications

Definitions

  • the present disclosure relates to the field of communications, for example, to a positioning method and apparatus.
  • the Internet of Things is one of the Internet-connected objects.
  • the core and foundation of the Internet of Things is still the Internet. It is an extended and expanded network based on the Internet.
  • the second is that the user end of the Internet of Things extends and extends to any item. Exchange and communication of information with items.
  • the Internet of Things is widely used in all walks of life through technologies such as intelligent sensing, identification technology, and positioning. It is also called the third wave of the development of the world information industry after computers and the Internet.
  • Figure 1 is based on the Internet of Things in related technologies.
  • Figure 1 of the architecture as shown in Figure 1.
  • the concept of M2M is often introduced, which can be explained as Man to Man, Man to Machine, Machine to Machine, in essence, The interaction between people and machines, machines and machines is mostly to achieve information exchange between people.
  • the main focus of the Internet of Things is the relationship between people and things.
  • Mutual perception, mutual recognition and mutual positioning are the core functions of the Internet of Things.
  • the three core technologies of the Internet of Things are sensor technology and RFID (Radio Frequency Identification) technology.
  • 2 is a schematic diagram of the architecture of the Internet of Things according to the related art. As shown in FIG. 2, people use sensors to obtain various kinds of information from the physical world, and the information is finally transmitted to the application system through the network. Users provide a variety of services, all collected information must be associated with the specific location information of the sensor, otherwise this information has no meaning, it can be said that the sensor positioning technology is an important basis of the Internet of Things.
  • the connection between any time, anything, and any place must be supported by positioning technology, and the connection between the objects itself contains the location information between the objects.
  • Many positioning technologies can be applied under the Internet of Things. It is only necessary to investigate the environmental adaptability, the positioning accuracy and the application cost. In general, the Internet of Things positioning technology should conform to the combination of wide-area and local, and the positioning accuracy is scalable. High adaptability and low cost requirements.
  • satellite positioning technology is more suitable for outdoor positioning, positioning accuracy of several meters to several hundred meters, positioning time of several tens of seconds.
  • the infrared positioning technology has high precision and is suitable for indoor positioning accuracy requirements, but cannot pass obstacles.
  • Bluetooth positioning technology utilizes Bluetooth communication chip, which is extremely high Equipment reusability, however, is susceptible to noise signal interference and poor stability.
  • WiFi (Wireless-Fidelity) positioning technology utilizes WiFi devices, the accuracy depends on the number of base stations, and is also susceptible to interference from other signals.
  • the Zigbee positioning technology utilizes the Zigbee communication chip to achieve positioning through thousands of Zigbee communication chips, and the positioning accuracy is related to the node size, and the deployment limitations are relatively large.
  • IR-UWB Impulse Radio Ultra Wide Band positioning technology uses pulses with a time interval smaller than nanometers, without using cosine wave modulation, because the occupied bandwidth is very wide, the spectrum power is very concentrated, and the penetration is strong and accurate.
  • the advantage of high is that the cost is high.
  • RFID positioning technology uses the direct exchange of position information between the reader and the tag in the sensor network to achieve the purpose of positioning. However, the RFID positioning accuracy is related to the reader density, the deployment is inconvenient, and the anti-interference ability is caused by the existence of multipath effect. weak.
  • the embodiment provides a positioning method and device, which at least solves the problem that the positioning technology in the Internet of Things environment has low adaptability and high cost.
  • the embodiment provides a positioning device, including: a location sensing module, a location processing module, and a positioning decision module, wherein the location sensing module is configured to collect positioning sensing information of a target to be located in the positioning area;
  • the location processing module is configured to establish a relative coordinate system with the location processing module as an origin on the location area, receive the location sensing information collected by the location sensing module, and establish a network connection with the positioning decision module. as well as
  • the positioning decision module is configured to receive, by using the network connection, the location sensing information uploaded by the location processing module and the relative coordinate system, and the relative coordinates of the target to be located according to the location sensing information Position in the system for positioning.
  • the location processing module is further configured to perform format conversion and application protocol conversion and buffering on the location sensing information, so that the location sensing information is identified and processed by the positioning decision module.
  • the positioning decision module is further configured to load a positioning rule, and calculate, according to the positioning sensing information, three-dimensional coordinates on the relative coordinate system where the target to be located is located, where The positioning rule specifies the positioning algorithm to be loaded and the loading order of the positioning algorithm.
  • the positioning decision module and the location processing module are respectively disposed in a data center IoT platform software, a service system software, an Internet of Things gateway, or a terminal.
  • the location sensing module uses ultrasonic positioning, radio frequency identification (RFID) positioning, laser positioning, and ultra-wideband pulse radio (Impulse Radio Ultra Wide Band, referred to as IR-UWB) positioning, long-term Evolution (Long Term Evaluation, LTE for short) positioning or wireless fidelity WIFI positioning.
  • RFID radio frequency identification
  • IR-UWB ultra-wideband pulse radio
  • the location sensing module is further configured to receive a start command, a close command, a transmit command, or a reflection command, and return according to the start command, the close command, the transmit command, or the reflective command. Start the result, close the result, fire the result, or reflect the result.
  • the location sensing module includes a signal transceiver, a processor, a memory, and an interface, where the interface resides on the target to be located, and the processor is configured to control an instruction with the target to be located. Formal interaction.
  • the location processing module is further configured to receive a start command, a close command, a data initial command, or a data transfer instruction, according to the start command, the close command, the data initial command, or the data
  • the transmission instruction correspondingly returns a result of the startup, the shutdown result, the data initial result or the data transmission, wherein the data initial instruction is used to verify the received location sensing information according to a predetermined rule, the predetermined The rule includes at least one of historical data deviation, insufficient signal strength, and initial data deviation; the data transmission instruction is used to indicate that the location sensing information that passes the verification is transmitted to the positioning decision module.
  • the location processing module includes: a communication component, a processor, a memory, and an interface, where the interface resides on the target to be located, and the communication component establishes a network connection with the positioning decision module,
  • the memory is configured to store the location sensing information, and the processor is configured to control an instruction form interaction with the target to be located.
  • the positioning decision module is configured to receive a registration instruction, a logout instruction, a raw data delivery instruction, a raw data acquisition instruction, a positioning result acquisition instruction, a report acquisition instruction, or a positioning rule setting instruction, and according to the registration instruction,
  • the logout instruction, the original data delivery instruction, the original data acquisition instruction, the positioning result acquisition instruction, the report acquisition instruction or the positioning rule setting instruction return a corresponding result, wherein the original data delivery instruction is used
  • transmitting the location sensing information, and generating a positioning decision task where the positioning decision task comprises obtaining according to the positioning sensing information a positioning result; the original data obtaining instruction is used to return the positioning sensing information; the positioning result obtaining instruction is used to return the positioning result data of the specified coordinate system; and the report obtaining instruction is used to return an analysis report of the to-be-positioned area.
  • the positioning decision module includes: a data management component, a positioning rule management component, a positioning algorithm component, a coordinate system management component, and a network service interface, where the network service interface is used to cause the positioning decision module to reside in On the management platform, and interacting with the target to be located in an instruction form.
  • the embodiment further provides a positioning method applied to the Internet of Things and applied to the Internet of Things.
  • the method includes:
  • the positioning decision module Sending the location sensing information and the relative coordinate system to the positioning decision module, so that the positioning decision module locates the position of the to-be-targeted target in the relative coordinate system according to the positioning sensing information.
  • the embodiment further provides a computer readable storage medium storing computer executable instructions for performing the above method.
  • the disclosure solves the problem that the positioning technology in the Internet of Things environment has low adaptability and high cost in the IoT environment, and improves the accuracy of positioning in the Internet of Things environment.
  • FIG. 1 is a first structural diagram of the Internet of Things according to the related art
  • FIG. 2 is a second structural diagram of the Internet of Things according to the related art
  • FIG. 3 is a flow chart of a positioning method according to the present embodiment
  • FIG. 4 is a block diagram of an Internet of Things modular positioning apparatus according to the present embodiment.
  • FIG. 5 is a first schematic diagram of a positioning system in an Internet of Things environment according to the embodiment.
  • FIG. 6 is a block diagram 1 of a positioning device in an Internet of Things environment according to the embodiment.
  • FIG. 7 is a second schematic diagram of a positioning system in an Internet of Things environment according to the embodiment.
  • FIG. 8 is a block diagram 2 of a positioning device in an Internet of Things environment according to the embodiment.
  • FIG. 9 is a schematic diagram 3 of a positioning system in an Internet of Things environment according to the embodiment.
  • FIG. 10 is a block diagram 3 of a positioning apparatus in an Internet of Things environment according to the embodiment.
  • FIG. 11 is a schematic diagram 4 of a positioning system in an Internet of Things environment according to the embodiment.
  • FIG. 12 is a block diagram 4 of a positioning apparatus in an Internet of Things environment according to the embodiment.
  • FIG. 13 is a block diagram of a location aware module in an Internet of Things environment according to the present embodiment.
  • FIG. 14 is a block diagram of a location processing module in an Internet of Things environment according to the present embodiment.
  • 15 is a block diagram of a positioning decision module in an Internet of Things environment according to the present embodiment.
  • the positioning technologies in the related art have their own advantages and disadvantages, and generally do not fit in the Internet of Things environment.
  • the Internet of Things resources such as sensors and sensors, have not been fully utilized.
  • Network communication network.
  • the present disclosure proposes a replaceable, modular and multi-signal positioning device that seamlessly integrates radio frequency positioning technology and non-radio frequency positioning technology in related technologies to overcome
  • mainstream positioning technologies such as mismatching in accuracy, inconvenient deployment, and high cost, and satisfying the requirements of the Internet of Things for people and articles, have the advantages of high compatibility of the Internet of Things environment.
  • the replaceable positioning device the hardware module that can be replaced on one side of the terminal (for example, a label) includes: a non-radio frequency location sensing module, a radio frequency positioning communication module, and is located at the location processing end (exemplary may be a base station or a read
  • the hardware module replaceable on one side of the card holder includes a non-radio frequency location sensing module, a radio frequency positioning communication module, a position processing module, and a software module that can be replaced on the positioning platform side (for example, a server), including: a positioning decision module.
  • the embodiment provides a positioning device, including a location sensing module, a location processing module, and a positioning decision module, where
  • the location sensing module is configured to collect location sensing information of a target to be located in the positioning area;
  • the location processing module is configured to establish a relative coordinate system on the positioning area, receive the location sensing information collected by the location sensing module, and establish a network connection with the positioning decision module; wherein the network may be a wired network or a wireless The internet.
  • the location processing module and the location aware module may communicate through a host bus.
  • the positioning decision module is configured to receive the location sensing information uploaded by the location processing module by using the network connection, and locate the to-be-targeted object according to the location sensing information.
  • the location processing module is further configured to perform format processing and application protocol conversion and buffering on the location sensing information.
  • the positioning decision module is further configured to load a positioning rule, and calculate, according to the positioning sensing information, three-dimensional coordinates on a coordinate system of the positioning area where the target to be located is located.
  • the location decision module and the location processing module are disposed in a data center Internet of Things platform software, a service system software, an Internet of Things gateway, or a terminal.
  • the location sensing module adopts ultrasonic positioning, radio frequency identification (RFID) positioning, laser positioning, IR-UWB positioning, long-term evolution LTE positioning, or wireless fidelity WIFI positioning.
  • RFID radio frequency identification
  • the location sensing module is further configured to receive a start command, a close command, a transmit command, or a reflection command, and return to start and close according to the start command, the close command, the transmit command, or the reflective command. , launch or reflect the result.
  • the location sensing module includes a signal transceiver, a processor, a memory, and an interface, where the interface resides on the target to be located, and the processor is configured to control an instruction form with the target to be located. Interaction.
  • the location processing module is further configured to receive a start command, a close command, a data initial command, or a data transfer instruction, according to the start command, the close command, the data initial command, or the data
  • the transmission instruction returns a result of starting, shutting down, data initializing, or data transmission, wherein the data initial command is used to verify the received location sensing information according to a predetermined rule, where the predetermined rule includes: historical data At least one of a deviation, insufficient signal strength, and initial data deviation, etc.; the data transmission instruction is for indicating that the location sensing information that passes the verification is transmitted to the positioning decision module.
  • the historical data deviation refers to comparing the existing data with the historical data.
  • the signal strength refers to the slave terminal (location awareness module).
  • the received strength of the wireless signal transmitted from the base station is based on the signal strength to determine the location; initial data Refers to the original location data of the base station/card reader (location processing module) and the initial location of the terminal/tag (location aware module), if the terminal/tag location, especially the initial location, deviates from the original location of the base station/card reader Coverage is called initial data deviation.
  • the location processing module includes: a communication component, a processor, a memory, and an interface, where the USB interface resides on the target to be located, and the communication component establishes a network connection with the positioning decision module.
  • the memory is configured to store the location sensing information
  • the processor is configured to control an instruction form interaction with the target to be located.
  • the positioning decision module is configured to receive a registration instruction, a logout instruction, a raw data delivery instruction, a raw data acquisition instruction, a positioning result acquisition instruction, a report acquisition instruction, or a positioning rule setting instruction, according to the registration instruction, the The logout instruction, the original data delivery instruction, the original data acquisition instruction, the positioning result acquisition instruction, the report acquisition instruction, or the positioning rule setting instruction return a corresponding result, wherein the original data delivery instruction is used Transmitting the location sensing information, and generating a positioning decision task; the original data obtaining instruction is used to return positioning sensing information; the positioning result obtaining instruction is used to return positioning result data of a specified coordinate system; the report obtaining instruction is used to Returning an analysis report of the to-be-positioned area, the analysis report may be a list including the positioning result data.
  • the positioning decision module includes: a data management component, a positioning rule management component, configured to be responsible for managing the positioning rule, including adding, deleting, or modifying the positioning rule; and positioning algorithm components for providing algorithm and application programming An interface; a coordinate system management component for managing different coordinate systems; and a network service interface, where the network service interface resides on the management platform, and interacts with the target to be located in an instruction form.
  • FIG. 3 is a flowchart of the positioning method according to the embodiment. As shown in FIG. 3, the method includes the following steps:
  • the location sensing information is received through the established network connection, where the location sensing information is location sensing information of the target to be located received after establishing a relative coordinate system on the positioning area;
  • the target to be located is located according to the location sensing information.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S1 Receive location sensing information through the established network connection, where the location sensing information Is the location sensing information of the target to be located received after establishing the relative coordinate system on the positioning area;
  • Step S2 Position the target to be located according to the location sensing information.
  • the foregoing storage medium may be transient or non-transitory, including: a USB flash drive, a read-only memory (ROM), and a random access memory (RAM).
  • ROM read-only memory
  • RAM random access memory
  • the positioning device includes a positioning decision module, a position processing module, and at least one of a non-radio frequency location sensing module and a radio frequency positioning communication module.
  • the positioning device includes a positioning decision module, a position processing module, and at least one of a non-radio frequency location sensing module and a radio frequency positioning communication module.
  • the position processing module acts on a positioning area (abbreviated as a bit area), that is, a daily activity area of the target to be positioned or a fixed place where the target is located.
  • the module establishes a relative coordinate system on the location area, and then receives the location sensing information of all the to-be-targeted objects in the bit area collected by the location sensing module, and performs format conversion and application protocol conversion and buffering.
  • the module is also responsible for establishing a network connection with the positioning decision module for data and instruction interaction.
  • the positioning decision module is configured to receive the location sensing information uploaded by the location processing module, and load the positioning rule, so as to calculate the three-dimensional coordinates expressed on the coordinate system of the location target (ie, the relative coordinate system with the base station as the origin).
  • the module also provides mapping of multiple coordinate systems to meet user needs.
  • the positioning decision module and the location processing module are all modules with low coupling degree, and can be set in the data center Internet of Things platform software, the business system software or the Internet of Things gateway or even the terminal.
  • the non-radio frequency location sensing module is a replaceable positioning module and is also one of the location sensing modules.
  • the module uses a non-radio frequency positioning technology, and each non-radio frequency positioning technology can provide a corresponding non-radio frequency location sensing module.
  • the radio frequency positioning communication module is a replaceable positioning module and is also one of position sensing modules.
  • the module uses radio frequency positioning communication technology, and each radio frequency positioning communication technology can provide a corresponding radio frequency positioning communication module.
  • the replaceable positioning module has the following features: the replaceable positioning modules adopting different technologies can replace each other; a uniform interface is adopted between the replaceable positioning module and the host, and the interface is responsible for controlling signal exchange and data exchange; wherein the interface is The versatility is strong, as long as it is a physical, pluggable interface, it can be a serial interface, a parallel interface or a custom interface.
  • the interface can be a USB interface.
  • a pairing relationship can be established between the replaceable positioning modules of the same technology, and the pairing relationship includes a 1:1 primary-secondary relationship, a 1:N primary-secondary relationship, a 1:1 peer-to-peer relationship, or an N:N self-organizing network relationship.
  • 1 or N in front of the colon refers to the number of location processing terminals
  • 1 or N after the colon refers to the number of terminals
  • the former refers to the number of base stations
  • the latter refers to the number of mobile phones.
  • the non-radio frequency positioning technology includes an ultrasonic positioning technology, a computer vision positioning technology, and a laser positioning technology, and has the following features:
  • the radio frequency positioning communication technology includes RFID communication/positioning technology, IR-UWB communication/positioning technology, WiFi communication/positioning technology, and Zigbee communication/positioning technology, and has the following features: basic characteristics of radio communication, transmitter and receiver Pairs appear in the range of RF radio (300 kHz to 300 GHz); can receive the received signal strength indication (Resived Signal Strength Indication, RSS for short), and the time when the signal arrives at the mobile terminal (Time of Arrival, referred to as TOA) ), the position sensing information such as the Time Difference of Arrival (TDOA) and the Angle of Arrival (AOA).
  • TDOA Time Difference of Arrival
  • AOA Angle of Arrival
  • the positioning rule is a dynamic ordered set of positioning algorithms, inputting location sensing information (from a location aware module), and outputting a target location.
  • the positioning algorithm is divided into a radio frequency positioning algorithm and a non-radio frequency positioning algorithm.
  • the radio frequency positioning algorithm includes a plurality of algorithms, such as an RSSI positioning algorithm, a TOA positioning algorithm, a TDOA positioning algorithm, an AOA positioning algorithm, and a comprehensive positioning algorithm, and is not a radio frequency.
  • the positioning algorithm includes computer vision positioning algorithm, ultrasonic positioning algorithm, laser positioning algorithm, radar positioning algorithm and comprehensive positioning algorithm.
  • the positioning is performed, the stability is high, the anti-interference ability is strong, and the signals are various.
  • multiple positioning methods are selected, especially when the non-RF position sensing module is used with the RF positioning communication module, the anti-interference ability is stronger;
  • the coverage is wider and the networking mode is more flexible.
  • the self-organizing network allows the coverage to vary from 10 meters to 10 kilometers; the positioning accuracy and the application system are fully matched. Support a variety of precise positioning algorithms, as long as the appropriate positioning technology can be used to achieve positioning accuracy of millimeters; deployment is quick and convenient, highly modular structure simplifies the system architecture, easy installation and debugging, easy troubleshooting; low cost. Making full use of the Internet of Things technology and resources in related technologies, the structure is simple, and the manufacturing cost, engineering cost, and use cost are all reduced.
  • FIG. 5 is a schematic diagram 1 of a positioning system in an Internet of Things environment according to the embodiment.
  • modern warehouse management is a core part of smart logistics.
  • This embodiment constructs a warehouse management system, mainly by The warehouse management platform, the warehouse patrol car and the label are composed, and other devices and software are not listed in this embodiment.
  • the warehouse management platform is located at the application layer and deployed in the data center.
  • the warehouse patrol car is located at the sensing level and deployed in the warehouse. Labels are placed on shelves and goods, and labels are placed on workers.
  • the warehouse patrol car is connected through the network layer and the warehouse management platform.
  • FIG. 6 is a block diagram of a positioning apparatus in an Internet of Things environment according to the present embodiment.
  • the positioning apparatus includes a positioning decision module, a position processing module, and a non-radio frequency location sensing module.
  • Multiple modules are low-coupling modules that are spread across multiple devices in a smart warehouse management system.
  • the internal components of the non-RF position sensing module include an ultrasonic transceiver, a multi-point control unit, also known as a Micro Controller Unit (MCU), RAM memory, ROM memory, and USB interface. Due to the use of ultrasonic positioning technology, the non-RF position The sensing module is also referred to as an ultrasonic positioning module.
  • the ultrasonic positioning module resides on warehouse patrol cars and tags, and warehouse patrol cars and tags are the host. In order to reduce the coupling degree, the ultrasonic positioning module resident interface adopts a USB interface, and the host and the ultrasonic positioning module interact with each other through the USB interface, and the information exchanged between the instruction and the instruction is as follows:
  • the start command the host sends power to the ultrasonic positioning module via USB
  • the internal positioning component is initialized after the ultrasonic positioning module is started
  • the internal component status is monitored
  • the startup result is reported to the host, and the startup result is: “success”, “ultrasonic transceiver error” or “ Other errors”
  • the host turns off the USB power after receiving the last two states.
  • the shutdown command sends the shutdown command to the ultrasonic positioning module.
  • the ultrasonic positioning module closes the internal components and reports the shutdown result to the host.
  • the shutdown result is: “success” or “failure”.
  • the host closes the USB power after receiving the report of the ultrasonic positioning module. .
  • the transmitting command the host sends a transmitting command to the ultrasonic positioning module
  • the ultrasonic positioning module self-tests the ultrasonic transceiver, controls the ultrasonic transceiver to transmit the ultrasonic wave to the front, and waits to receive the echo, and once the echo is received, reports the position sensing result to the host, the position
  • the perceived results are: ultrasonic emission time, ultrasonic emission angle, echo duration, and echo reception angle.
  • the angle correction instruction the host sends an angle correction instruction to the ultrasonic positioning module, the ultrasonic positioning module self-tests the ultrasonic transceiver, controls the ultrasonic transceiver to perform angle fine adjustment, and reports the angle fine-tuning result to the host, and the result is: “success” or “failure”.
  • the reflection command the host sends a reflection instruction to the ultrasonic positioning module, the ultrasonic positioning module self-tests the ultrasonic transceiver, controls the ultrasonic transceiver to wait to receive the ultrasonic wave, and once the ultrasonic wave is received, the connection is performed.
  • the received ultrasonic wave emits ultrasonic waves to enhance the reflected wave, and reports the reflection result to the host.
  • the result is: "success" or "failure".
  • the internal components of the position processing module include GPRS communication components, MCU, RAM memory, ROM memory and USB interface, and reside on the warehouse patrol car.
  • the host and the location processing module interact with each other in the form of instructions.
  • the instructions and exchanges are as follows:
  • the startup command the host sends power to the location processing module through the USB
  • the location processing module initializes the internal components after startup, monitors the internal component status, and reports the startup result to the host, and the startup result is: "success”, "GPRS error” or “other error” ", the host turns off the USB power after receiving the last two states.
  • the shutdown instruction sends a shutdown instruction to the location processing module.
  • the location processing module closes the internal component and reports the shutdown result to the host.
  • the shutdown result is: "success” or "failure", and the host turns off the USB power after receiving the report.
  • the data is initialized, the host sends a data initial command to the position processing module, and the position processing module initially checks the position sensing information from the ultrasonic positioning module, and the verification rule can be defined.
  • the initial rules include: historical data deviation, insufficient signal strength, and initial At least one of the data deviations. If the location awareness information meets the verification rules, the verification result is reported to the host.
  • the data transfer instruction the host sends a data transfer instruction to the position processing module, and the position processing module converts the position sensing information from the ultrasonic positioning module into an XML format for temporary storage, and then establishes a network connection with the warehouse management platform through the GPRS communication component, and uploads the XML.
  • File to location decision module for further processing. According to whether the upload is successful, the corresponding processing result is reported to the host, and the processing result is: "success", “format conversion failure", "GPRS connection failure” or "upload data failure”.
  • the XML Schema file is defined as follows:
  • the internal components of the positioning decision module include a data management component, a positioning rule management component, a positioning algorithm component, a coordinate system management component, and a web service interface, and reside on the warehouse management platform.
  • the host and the positioning decision module interact with each other in the form of instructions.
  • the instructions and exchange information are as follows:
  • the registration and location decision module exists as a web service (SOAP (Simple Object Access Protocol)), and the host is responsible for registration of the web service.
  • SOAP Simple Object Access Protocol
  • Logout the location decision module exists as a web service (SOAP), and the host is responsible for the logout of the web service.
  • SOAP web service
  • the original data is transmitted, the host issues an instruction to the module, and the positioning sensing information is sent to the module to generate a positioning decision task.
  • the module pushes the task into the stack and waits for execution.
  • the original data is acquired, the host issues an instruction to the module, and the module returns the location sensing information.
  • the positioning result is obtained, the host issues an instruction to the module, and the module returns the positioning result data of the specified coordinate system.
  • the report is obtained, the host issues an instruction to the module, and the module returns an analysis report of the specified bit area.
  • the analysis report may be a list including the positioning result data.
  • the positioning rule is set, the host issues an instruction to the module, and the module modifies the positioning rule, which is responsible for the positioning rule management component.
  • the positioning rule uses a Java rule engine that specifies which positioning algorithms need to be loaded and the positioning order of the positioning algorithm.
  • the positioning algorithm component describes the parameters such as input, output, accuracy estimation and calculation duration estimation of the positioning algorithm, and gives the API of the specific algorithm. If there is no release command to modify the positioning rule, the positioning rule defaults to:
  • Each module of the embodiment is a passive module, and the host needs to be configured by the instruction to complete the positioning function.
  • the warehouse patrol car is centrally equipped with the relationship between the ultrasonic positioning module and the position processing module, and the warehouse management platform is disposed in the position processing module and the positioning decision module. Relationship.
  • the label in this embodiment does not communicate with the outside world and does not interact with the ultrasonic positioning module.
  • the label is used to accommodate the ultrasonic positioning module.
  • the main function of the label is to provide a power supply and a docking position of the ultrasonic positioning module, which may be Set on the shelves and goods, mainly on the goods.
  • the ultrasonic positioning module automatically executes the "reflection command" after being powered on, and is waiting to receive the ultrasonic state.
  • the ultrasonic positioning module in the tag reflects the ultrasonic wave, it requires a certain response time, which affects the positioning accuracy. Therefore, the response time needs to be measured and processed by the positioning algorithm.
  • shift is the patrol period of the warehouse patrol car, which is managed by the warehouse management platform. After the warehouse management platform sets shifts and routes to the warehouse patrol car, the warehouse patrol car judges whether it is on duty or not. When the shift arrives, it automatically patrols according to the route.
  • the warehouse patrol car sends a command to the ultrasonic positioning module during the patrol process, and the ultrasonic positioning module transmits the ultrasonic wave and receives the echo.
  • the warehouse patrol car After the data is first verified, the warehouse patrol car issues a data initial test command to the position processing module to determine whether the echo data is valid. If it is invalid, the angle correction command is issued to the ultrasonic positioning module, and then the launch command is issued to recollect the position sensing information.
  • the data is reported, and the warehouse patrol car issues a data delivery instruction to the location processing module to upload the data to the warehouse management platform.
  • Position calculation after the warehouse management platform obtains the report from the warehouse patrol car, the original data delivery instruction of the positioning decision module is called to perform position calculation.
  • the warehouse management platform calls the positioning result module to obtain the positioning result, and obtains a large
  • the coordinates of the ground coordinate system are marked on the GIS (Geographic Information System), and the historical patrol path is obtained by scribing.
  • GIS Geographic Information System
  • the embodiment is quick and convenient to deploy, and the highly modular structure simplifies the system architecture, is simple to install and debug, and is easy to debug. It is matched with the application scenario of the warehouse management, and the precision reaches the centimeter level, and the situation that the warehouse patrol car hits the shelf occurs.
  • FIG. 7 is a schematic diagram 2 of a positioning system in an Internet of Things environment according to the present embodiment.
  • the terminal container management is a core part of the smart logistics.
  • the present embodiment constructs a terminal container management system, mainly by a terminal container management platform.
  • the RFID reader and the RFID tag are composed, and other devices and software are not listed in this embodiment.
  • the terminal container management platform is located at the application layer and deployed in the data center.
  • the RFID reader is located at the sensing layer and is deployed in multiple locations on the dock.
  • the RFID tag is placed on the container.
  • the RFID reader is connected through the network layer and the terminal container management platform.
  • FIG. 8 is a block diagram 2 of a positioning apparatus in an Internet of Things environment according to the embodiment.
  • the positioning apparatus includes a positioning decision module, a position processing module, and a radio frequency positioning communication module.
  • the above modules are low-coupling modules that are distributed across multiple devices in the terminal container management system.
  • the internal components of the RF positioning communication module include a signal transceiver (such as an RF transceiver), a processor, a memory, and a USB interface.
  • the radio frequency identification (RFID) positioning technology is also called a radio frequency positioning communication module.
  • RFID positioning module The RFID location module resides on an RFID reader and RFID tag, and the RFID reader and RFID tag are the host. In order to reduce the degree of coupling, the RFID positioning module resides on the interface using a standard USB interface. Through the USB interface, the host and the RFID positioning module interact with each other in the form of instructions.
  • the instructions and exchange information are as follows:
  • the host sends power to the RFID positioning module (referred to as the module) via USB, initializes the internal components after the module starts, monitors the internal component status, and reports the startup result to the host, the startup result is: "success”, “transceiver error” or “Other errors”, the host turns off the USB power after receiving the last two states.
  • the RFID positioning module referred to as the module
  • the startup result is: "success”, “transceiver error” or "Other errors”
  • the host turns off the USB power after receiving the last two states.
  • the shutdown instruction sends a shutdown instruction to the module.
  • the module closes the internal component and reports the shutdown result to the host.
  • the shutdown result is: "success” or "failure”.
  • the host closes the USB power after receiving the report from the module.
  • the host sends the command to the module, the module self-checks the transceiver, and adjusts the communication message.
  • the system is controlled to control the transceiver to transmit a 2.4 GHz radio wave signal.
  • the communication message at the RFID reader end includes: a timestamp and a reader ID, and the communication message at the tag end includes the size of the container, the owner, the entry time, the packing time, and the planned departure time.
  • the module reports the result of the transmission to the host: "success" or "failure".
  • the host sends a receiving command to the module, the module self-checks the transceiver, and waits to receive the 2.4 GHz radio wave signal.
  • the signal in the signal is demodulated, and the position sensing information in the signal is obtained: RSSI, AOA At least one of TOA and TDOA, finally reporting the reception result to the host, forwarding the communication message, and returning the location sensing information.
  • the internal components of the location processing module include an Ethernet port, an ARM processor, a memory, and a USB interface that reside on the RFID reader.
  • the host and the location processing module interact with each other in the form of instructions.
  • the instructions and exchanges are as follows:
  • the host sends power to the module through USB, initializes the internal components after the module starts, monitors the internal component status, and reports the startup result to the host.
  • the startup result is: "success”, "network port error” or "other error”, host Turn off the USB power after receiving the last two states.
  • the shutdown instruction the host sends a shutdown instruction to the module, the module closes the internal components, and reports the shutdown result to the host.
  • the shutdown result is: "success” or "failure”, and the host turns off the USB power after receiving the report.
  • the data is sent to the module, and the location processing module initially checks the location sensing information from the RFID positioning module.
  • the verification rule may be defined.
  • the verification rule may include: historical data deviation, initial data. Deviation, non-logical errors, and at least one of the values not in the range. If the location awareness information meets the verification rules, the verification result is reported to the host so that the host can reacquire the data.
  • the data transfer instruction the host sends a data transfer instruction to the module, and the location processing module converts the location sensing information from the RFID positioning module into an XML format for temporary storage, and then establishes a network connection with the dock container management platform through the Ethernet port, and uploads the XML file. Go to the location decision module for further processing. According to whether the upload is successful, the corresponding processing result is reported to the host, and the processing result is: "success", “format conversion failure”, "network connection failure” or "upload data failure".
  • the internal components of the positioning decision module include a data management component, a positioning rule management component, a positioning algorithm component, a coordinate system management component, and a web service interface, and reside on the dock container management platform.
  • the positioning algorithm component provides a positioning algorithm, describes the parameters such as the input, output, accuracy estimation and calculation duration estimation of the positioning algorithm, and gives the API for executing the specific positioning algorithm (Application Programming). Interface, application programming interface), the API may be for the platform or other module to call, the positioning algorithm may be executed inside the API, the above parameters are passed in through the API, and finally used by the positioning algorithm.
  • the location decision module can include a processor and a memory associated therewith, the memory can store executable instructions that implement the functionality of the location decision module.
  • the data management component is configured to manage the collected raw data and the result data obtained by the analysis, including record deletion, modification, query, and the like.
  • the coordinate system management component is used to manage different coordinate systems (including a relative coordinate system and a geodetic coordinate system), and the coordinate system may refer to various coordinate systems used in the GIS.
  • a network service interface for managing different general-purpose networks such as ZigBee, 3G, 4G, or Ethernet.
  • the host and the positioning decision module interact with each other in the form of instructions.
  • the instructions and exchange information are as follows:
  • the host is responsible for registering the module as a web service.
  • Logout the host is responsible for logging out the module as a web service.
  • the original data is transmitted, the host issues an instruction to the module, and the positioning sensing information is sent to the module to generate a positioning decision task.
  • the module pushes the task into the stack and waits for execution.
  • the positioning decision task includes obtaining a positioning result according to the positioning sensing information.
  • the original data is acquired, the host issues an instruction to the module, and the module returns the location sensing information.
  • the positioning result is obtained, the host issues an instruction to the module, and the module returns the positioning result data of the specified coordinate system.
  • the report is obtained, the host issues an instruction to the module, and the module returns an analysis report of the specified bit area.
  • the positioning rule is set, the host issues an instruction to the module, and the module modifies the positioning rule, which is responsible for the positioning rule management component.
  • the positioning rule uses an ordered collection, which specifies which positioning algorithms need to be loaded, and the positioning order of the positioning algorithm.
  • the RFID reader of this embodiment centrally adjusts the relationship between the RFID positioning module and the position processing module, and the dock container management platform centers the relationship between the location processing module and the positioning decision module.
  • Import and export inspection, dock import and export personnel or automatic inspection equipment is responsible for checking whether the container is equipped with RFID tags, unmounted containers need to install RFID tags, and the RFID tags are in the state of being received by issuing instructions.
  • Perceive location information and update tracking status readers locate RFID during container movement
  • the module issues a transmission instruction, and the RFID positioning module transmits a message to the RFID tag.
  • the RFID tag updates the tracking status inside the tag: tracking time stamp and the reader ID, and responds to the message by transmitting the command, and the reader obtains the positioning awareness by receiving the command. information.
  • the RFID reader sends a data initial test command to the position processing module to determine whether the location sensing information is valid. If it is invalid, the location sensing information is collected again.
  • the data is reported, and the RFID reader sends a data transfer instruction to the location processing module to upload the data to the dock container management platform.
  • Position calculation after the terminal container management platform obtains the RFID reader report, the original data delivery instruction of the positioning decision module is called to perform position calculation.
  • the terminal container management platform calls the positioning result acquisition command of the positioning decision module to obtain the coordinates of the geodetic coordinate system, and marks the GIS, and draws the container to move the road.
  • the terminal container management platform calls the original data acquisition instruction of the positioning decision module to extract the current information of the container: the size of the container, the owner, the entry time, the packing time or the planned departure time, and display it on the GIS.
  • the embodiment has low cost, uses a wired connection reader, is stable and reliable, and has low maintenance cost, thereby further reducing the Total Cost of Ownership (TCO).
  • TCO Total Cost of Ownership
  • the positioning accuracy fluctuates greatly, reaching 1 to 10 meters, but it matches the size of the container, so that the positioning of the container is not affected.
  • the information of the container is preserved inside the RFID, and the container is fully tracked and monitored and managed.
  • FIG. 9 is a schematic diagram 3 of the positioning system in the Internet of Things environment according to the embodiment.
  • mine disaster often occurs. Because the fault cannot be accurately located and the rescue is not timely, the present embodiment constructs a mine positioning and rescue system. It is mainly composed of a mine management platform, a positioning terminal, and a positioning tag. Other devices and software are not listed in this embodiment.
  • the mine management platform is located at the application level and deployed in the data center.
  • the positioning terminal is located at the sensing level and is deployed on the top of the mine and on the locomotive. Positioning tags are placed on the staff helmet and rescue items.
  • the positioning terminal and the positioning tag form an Ad hoc ad hoc network, which is connected to the mine management platform through the gateway and the mine local area network.
  • the positioning apparatus includes a positioning decision module, a position processing module, a non-radio frequency location sensing module, and a radio frequency positioning pass. Module.
  • the above modules are low-coupling modules that are distributed over multiple devices in the mine location and rescue system.
  • the internal components of the positioning decision module include a main control component, a data management component, a positioning rule management component, a positioning algorithm component, a coordinate system management component, and a web service interface component, and reside on a mine management platform (host).
  • the positioning decision module has autonomous processing capability, and uses the web service interface component to interact with the external (location processing module, host and other application systems).
  • the main interfaces of the web service interface component are defined as follows:
  • the caller invokes this interface to apply for resources on the positioning decision module, and can only continue to call other interfaces after registration.
  • the caller invokes the interface to revoke the resource on the positioning decision module. After logging out, it cannot call other interfaces except the registered interface.
  • the original data transmission interface the caller invokes the interface, and transmits the location sensing information to the module to generate a positioning decision task.
  • the module pushes the task onto the stack and waits for execution.
  • the original data acquisition interface the caller invokes the interface, and the module returns the location sensing information.
  • the positioning result obtains the interface, the caller invokes the interface, and the module returns the positioning result data of the specified coordinate system.
  • the report acquires the interface, the caller invokes the interface, and the module returns an analysis report of the specified bit area.
  • the positioning rule sets the interface, the caller invokes the interface, and the module modifies the positioning rule, which is responsible for the positioning rule management component.
  • the positioning rule uses a rule engine that specifies which positioning algorithms need to be loaded and the positioning order of the positioning algorithm.
  • the internal components of the position processing module include an MCU, a RAM memory, a ROM memory, a USB interface, and a display, and reside on the positioning terminal through the USB interface.
  • two USB interfaces are provided to connect the non-RF position sensing module and the RF positioning communication module.
  • the location processing module has autonomous processing capabilities, and its functions are as follows:
  • the position processing module takes power through the USB, initializes the internal components at the power take-off, monitors the internal component status, and displays the startup result.
  • the data is initially checked, and the position processing module docks the RF positioning communication module for initial positioning, obtains the initial positioning sensing information, and performs data initial operation (the verification rule can be defined). If the location-aware information of the initial location meets the verification rule, the location processing module performs secondary positioning on the non-RF location sensing module, acquires secondary location sensing information, and performs data initial operation (the verification rule can be defined). If the secondary location sensing information meets the verification rule, the two pieces of the location sensing information that have been verified are merged and transferred. Change to an XML file and save it in memory.
  • the self-organizing network is constructed, and the location processing module adds itself as a node to the mine Ad hoc ad hoc network through the radio frequency positioning communication module.
  • the location processing module is connected to the mine Ad hoc ad hoc network through the radio frequency positioning communication module, and the web service interface is used to upload the XML file to the positioning decision module for further processing.
  • the internal components of the non-RF position sensing module include an infrared laser transceiver, a processor, a memory, and a host interface. Because of the laser positioning technology, it is also called a laser positioning module.
  • the laser positioning module resides on the position processing module, which is the host. In order to reduce the coupling degree, the laser positioning module resident interface adopts the standard USB interface. Through the USB interface, the host and the module interact with each other in the form of instructions.
  • the instructions and exchange information are as follows:
  • the host sends power to the module through USB, initializes internal components after the module starts, monitors the internal component status, and reports the startup result to the host.
  • the startup result is: "success”, “transceiver error” or “other error”, host connection Turn off the USB power after the last two states.
  • shuttdown the host sends a shutdown command to the module, the module closes the internal components, and reports the shutdown result to the host.
  • the shutdown result is: "success” or "failure”.
  • the host closes the USB power after receiving the report from the module.
  • the transmitting command sends a transmitting command to the module, and the module self-checks the transceiver, controls the transceiver to excite the infrared laser to the front, and waits to receive the reflected light.
  • the position sensing result is reported to the host, and the position sensing result is: launch time, Launch angle, receive time, and receive angle.
  • the angle correction instruction the host sends an angle correction instruction to the module, the module self-checks the transceiver, controls the transceiver to perform fine-tuning of the angle, and reports the angle fine-tuning result to the host, and the result is: “success” or “failure”.
  • the internal components of the RF positioning communication module include the IR-UWB transceiver, processor, memory, and USB interface. Because of the IR-UWB positioning technology, it is also called the UWB positioning module.
  • the UWB positioning module resides on the positioning terminal and the positioning tag, respectively, and the positioning terminal and the positioning tag are hosts. In order to reduce the degree of coupling, the UWB positioning module resides on the interface using a standard USB interface. Through the USB interface, the host and the UWB positioning module interact with each other in the form of instructions.
  • the instructions and exchange information are as follows:
  • the host sends power to the module through USB, initializes internal components after the module starts, monitors the internal component status, and reports the startup result to the host.
  • the startup result is: "success”, “transceiver error” or “other error”, host connection Turn off the USB power after the last two states.
  • shuttdown the host sends a shutdown command to the module, the module closes the internal components, and reports the shutdown result to the host.
  • the shutdown result is: "success” or "failure”.
  • the host closes the USB power after receiving the report from the module.
  • the host sends a command to the module, the module self-checks the transceiver, and modulates the communication message, and controls the transceiver to transmit the ultra-wideband pulse radio wave signal.
  • the module reports the result of the transmission to the host: "success" or "failure”.
  • the host sends a receiving command to the module, the module self-checks the transceiver, and waits to receive the ultra-wideband pulsating signal.
  • the communication message in the signal is demodulated, and the positioning sensing information in the signal is acquired: RSSI, AOA, TOA And at least one of the TDOA, finally reporting the reception result to the host, forwarding the communication message, and returning the location sensing information.
  • the self-organizing network instruction the host sends an ad hoc network instruction to the module, and the module provides functions such as IEEE 802.15.4 protocol parsing, full intelligent automatic routing, broadcast message sending, and data message forwarding, thereby allowing itself to join as a node of the ad hoc network. In the network.
  • the positioning device of the embodiment is an active device, and the positioning function is completed autonomously, wherein the positioning terminal only supplies power to the position processing module, and the position processing module is responsible for fusion laser positioning and IR-UWB positioning, thereby achieving the purpose of accurately positioning personnel and materials.
  • the mine management platform uses the precise positioning results to improve the rescue effect and improve the reaction speed through GIS and emergency dispatching.
  • Perceive location information During the movement of personnel, locomotives and key materials, the location processing module of the positioning terminal is responsible for collecting location sensing information of personnel, locomotives and key materials.
  • the data is reported, and the location processing module uploads the data to the positioning decision module of the mine management platform.
  • Position calculation the positioning decision module of the mine management platform processes the raw data for position calculation.
  • the mine container management platform calls the positioning result acquisition module to obtain the coordinates of the geodetic coordinate system, and further processes it on the GIS and the emergency dispatch system.
  • the stability of the embodiment is high, and the advantages of laser positioning and IR-UWB positioning technology are utilized to overcome the shortcomings and improve the stability and anti-interference ability of the device.
  • the coverage is suitable for the mine environment.
  • the infrared laser positioning uses a lower transmission function, covering a range of 300 meters.
  • the laser is a line-of-sight positioning method, so the omnidirectional coverage provided by IR-UWB is required, which can both locate and communicate, and also provide self-organization.
  • the network function fully meets the positioning and rescue needs in the mine environment.
  • Embodiment 4 Seamless positioning indoors and outdoors in the park
  • FIG. 11 is a schematic diagram 4 of a positioning system in an Internet of Things environment according to the present embodiment.
  • the present embodiment constructs an indoor and outdoor seamless positioning system of a campus, which is mainly composed of a positioning platform, a gateway, a base station, and a mobile terminal.
  • the devices and software are not listed in this embodiment.
  • the positioning platform is located at the application layer and deployed in the campus data center.
  • the gateway is located at the network layer and is deployed at the boundary between the outdoor network and the indoor network.
  • the base station is located at the sensing layer and is deployed in multiple locations in the campus. It corresponds to the outdoor network and the indoor network.
  • the indoor base station and the indoor base station are different.
  • the mobile terminal contains an LTE communication chip and a WiFi communication chip, which can be connected to the base station and placed on the vehicle and personnel.
  • the base station is connected through a gateway and a positioning platform.
  • FIG. 12 is a block diagram 4 of a positioning apparatus in an Internet of Things environment according to the present embodiment.
  • the positioning apparatus includes a positioning decision module, a position processing module, a non-radio frequency location sensing module, and a radio frequency positioning communication module.
  • the above modules are low-coupling modules, which are distributed on multiple devices in the indoor and outdoor seamless positioning system of the campus.
  • the internal components of the positioning decision module include a main control component, a data management component, a positioning rule management component, a positioning algorithm component, a coordinate system management component, and a web service interface component, and reside on the positioning platform (host).
  • the positioning decision module has autonomous processing capability, and uses the web service interface component to interact with the external (location processing module, host and other application systems).
  • the main interfaces of the web service interface component are defined as follows:
  • the caller invokes this interface to apply for resources on the positioning decision module, and can only continue to call other interfaces after registration.
  • the caller invokes the interface to revoke the resource on the positioning decision module. After logging out, it cannot call other interfaces except the registered interface.
  • the positioning rule sets the interface, the caller invokes the interface, and the module modifies the positioning rule.
  • the positioning rule includes three types: the initial positioning rule, the secondary positioning rule, and the indoor and outdoor bit zone crossing switching rules, which are responsible for the positioning rule management component.
  • the positioning rule uses a rule engine that specifies which positioning algorithms need to be loaded and the positioning order of the positioning algorithm.
  • the original data transmission interface the caller invokes the interface, and delivers the initial positioning sensing information and the secondary positioning sensing information to the module.
  • the positioning decision interface the caller invokes the interface to generate a positioning decision task, and when the task is more, the module pushes the task onto the stack and waits for execution.
  • the positioning decision task execution steps include: first, constructing the campus coordinates Then, loading the initial location sensing information and the location of the base station, calling the initial positioning rule, calculating the initial position coordinates; again, loading the secondary positioning sensing information and the base station position, calling the secondary positioning rule, and calculating the secondary position coordinate; finally, calling The indoor and outdoor zones cross the switching rules to perform the fusion correction of the initial position coordinates and the secondary position coordinates to obtain the final coordinate based on the campus coordinate system.
  • the original data acquisition interface the caller invokes the interface, and the module returns the location sensing information.
  • the positioning result obtains the interface, the caller invokes the interface, and the module returns the positioning result data of the specified coordinate system.
  • the report acquires the interface, the caller invokes the interface, and the module returns an analysis report of the specified bit area.
  • the internal components of the location processing module include an MCU, a RAM memory, a ROM memory, a host interface, and a display.
  • the host interface resides on the gateway and supports hot swapping.
  • the location processing module has autonomous processing capabilities, and its functions are as follows:
  • the position processing module takes power through the host interface, initializes the internal components at the power take-off, monitors the internal component status, and displays the startup results.
  • the data is initially checked, and the location processing module receives the location sensing information of the radio frequency positioning communication module and the non-radio frequency location sensing module, and performs data initial operation (the verification rule can be defined). If the verification rule is met, the verified location sensing information is converted into an XML file and saved in the memory.
  • the location processing module is connected to the campus network through the radio frequency positioning communication module, and the web service interface is used to upload the XML file to the positioning decision module for further processing.
  • the internal components of the non-RF position sensing module include an infrared camera, a processor, a memory, and a host interface. Because of the computer vision positioning technology, it is also called a camera positioning module.
  • the camera positioning module resides on the base station and supports hot plugging, and the base station is the host. The module functions are as follows:
  • the camera positioning module takes power to the host, the module starts and initializes the internal components, and monitors the internal component status.
  • the module self-test infrared camera, control the infrared camera to adjust the angle, and report the angle adjustment result to the host, the result is: “success” or "failure”.
  • the internal components of the RF positioning communication module include a transceiver, a processor, a memory, and a host interface.
  • the radio frequency positioning communication module resides on the indoor base station and the outdoor base station, and supports hot plugging.
  • the outdoor base station constructs an outdoor network through the radio frequency positioning communication module
  • the indoor base station constructs an indoor network through the radio frequency positioning communication module.
  • the RF positioning communication module is also divided into two types: one is outdoor and adopts LTE technology, so it is also called LTE positioning module.
  • the host constructs an outdoor LTE micro base station eNodeB through an LTE positioning module to form an outdoor LTE network; It adopts Wireless Fidelity (WiFi) technology, so it is also called WiFi positioning module.
  • the host builds an indoor hotspot AP (Wireless Access Point) through the WiFi positioning module to form an indoor WiFi network.
  • the module functions are as follows:
  • the module takes power through the host interface, starts and initializes internal components, and monitors the internal component status.
  • the module self-checks the transceiver, and modulates the communication message to control the transceiver to transmit radio wave signals.
  • the module reports the result of the transmission to the host: "success" or "failure”.
  • the module self-checks the transceiver, and waits for the received signal. Once received, the communication message in the signal is demodulated, and the location sensing information in the signal is acquired: at least one of RSSI, AOA, TOA, and TDOA, and finally reported to the host. Receive the result, forward the communication message, and return the location awareness information.
  • the module provides communication protocol resolution, automatic routing, broadcast message transmission and data message forwarding, so that it can be added as a node to the indoor network or outdoor network.
  • the signal is boosted and the module increases the signal transmission power of the transceiver.
  • the positioning device of this embodiment is a relatively active device that performs the positioning function autonomously, wherein the mobile phone terminal adopts an off-the-shelf commercial product, and the product supports the LTE and WiFi communication functions, and can be connected to the indoor base station and the outdoor base station without a tag.
  • the LTE positioning module of the outdoor base station or the WiFi positioning module in the indoor base station is responsible for the initial positioning of the mobile terminal, obtaining the initial positioning sensing information, and uploading it to the location processing module of the gateway.
  • the non-radio location sensing module of the base station is responsible for the secondary positioning of the mobile terminal, obtaining the secondary positioning sensing information, that is, the video data, and uploading it to the location processing module of the gateway.
  • the data is initially checked, and the location processing module in the gateway performs initial verification on the data. If the data does not meet the initial verification rule, the base station is required to perform data collection again.
  • the data is reported, and the location processing module in the gateway uploads the data to the positioning decision module of the positioning platform.
  • the positioning decision module of the positioning platform processes the raw data for position calculation.
  • Position correction, positioning platform decision module requires the gateway and base station to calculate the location based on the location Information, position correction of the specified target, including transceiver signal enhancement or camera angle adjustment, re-acquisition of data, upload and calculation.
  • the location service is provided, and the positioning platform invokes the positioning result acquisition instruction of the positioning decision module to obtain the coordinates of the geodetic coordinate system, and provides further processing to other application systems such as property management, garage management, and emergency dispatch system.
  • the utility model has strong practicability, and the positioning platform uses the indoor network and the outdoor network to complete the positioning and communication functions, and solves the trouble that the park personnel are unwilling to replace the terminal.
  • the coverage is suitable for the campus environment.
  • the LTE micro base stations are deployed every 300 to 400 meters outdoors.
  • the WiFi hotspots are deployed at 100 meters each in the garage, and one or more are deployed on each floor of the housing to cover every corner.
  • the anti-interference ability is strong, and the computer vision technology and the radio frequency positioning technology are seamlessly combined to overcome the problem of more interference sources in the park.
  • the positioning accuracy is high, at least up to the meter level, to meet the needs of the campus application system.
  • modules or steps of the present disclosure described above may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by a computing device such that they may be stored in a storage device by a computing device and, in some cases, may be executed in a different order than herein.
  • the steps shown or described are either made separately into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • FIG. 13 is a block diagram of a location aware module in an Internet of Things environment according to the present embodiment.
  • the location sensing module provided by the embodiment of the present disclosure may be disposed on the terminal side or the positioning processing end side, and includes a processor 1301, a memory 1302, a bus 1303, a signal transceiver 1304, and an interface 1305.
  • the location awareness module resides on the target to be located through the interface 1305, and the processor 1301 is configured to control interaction with the target to be located through an instruction form.
  • the processor 1301, the interface 1305, and the memory 1302 can complete communication with each other through the bus 1303.
  • the processor 1301 can invoke logic instructions in the memory 1302 to perform the positioning method of the above-described embodiment on the location aware module side.
  • the logic instructions in the memory 1302 described above may be implemented in the form of software functional units and sold or used as separate products, and may be stored in a computer readable storage medium.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device ( All or part of the steps of the method of the various embodiments of the present disclosure are performed by a personal computer, server, or network device.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • FIG. 14 is a block diagram of a location processing module in an Internet of Things environment according to the present embodiment.
  • the location processing module provided by the embodiment of the present disclosure may be disposed on the positioning processing end side, and includes: a processor 1401, a memory 1402, a bus 1403, a communication component 1404, and an interface 1405.
  • the processor 1401, the interface 1405, and the memory 1402 can complete communication with each other through the bus 1403.
  • the location processing module resides on the target to be located through the interface 1405, and establishes a network connection with the positioning decision module through the communication component 1404, wherein the memory 1402 is configured to store the location sensing information.
  • the processor 1401 is configured to control an instruction form interaction with the target to be located.
  • the processor 1401 can call logic instructions in the memory 1402 to perform the positioning method of the above-described embodiment on the position processing module side.
  • the logic instructions in the memory 1402 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • a medium that can store program code, or a transitory storage medium including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the positioning decision module provided by the embodiment of the present disclosure is disposed on the positioning platform side, and includes: a processor 1501, a memory 1502, a bus 1503, a communication component 1504, and an interface 1505.
  • the network component is connected to the location processing module by using the communication component 1504.
  • the interface 1505 may be a network service interface, where the network service interface resides on the management platform, and is used between the target to be located. Instruction form interaction.
  • the processor 1501 may include: a data management component 15011, a positioning rule management component 15012, a positioning algorithm component 15013, and a coordinate system management component.
  • the processor 1501, the interface 1505, and the memory 1502 can complete communication with each other through the bus 1503.
  • the processor 1501 can call the logic instructions in the memory 1502 to perform the positioning method of the above-described embodiment on the positioning decision module side.
  • the logic instructions in the memory 1502 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • a medium that can store program code, or a transitory storage medium including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the present disclosure receives the location sensing information by using the established network connection, where the location sensing information is location sensing information of the to-be-targeted target that is received after the relative coordinate system is established on the positioning area; and the to-be-positioned according to the positioning sensing information
  • the target is positioned to solve the problem of low adaptability and high cost of the positioning technology in the related art in the related art, and the accuracy of positioning in the Internet of Things environment is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种定位方法及装置,该方法包括:在待定位目标所在的定位区域上建立以位置处理模块自身为原点的相对坐标系;通过建立的网络连接接收位置感知模块发送的待定位目标的定位感知信息;以及将所述定位感知信息以及所述相对坐标系发送至定位决策模块,以便所述定位决策模块根据所述定位感知信息对所述待定位目标在所述相对坐标系中的位置进行定位。

Description

定位方法及装置 技术领域
本公开涉及通信领域,例如涉及一种定位方法及装置。
背景技术
物联网就是物物相连的互联网,内涵之一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;内涵之二,物联网的用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网通过智能感知、识别技术、定位等技术,广泛应用于各行各业,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮,图1是根据相关技术中的物联网的体系架构图一,如图1所示。在讨论物联网中,经常会引入一个M2M的概念,可以解释成为人到人(Man to Man)、人到机器(Man to Machine)、机器到机器(Machine to Machine),从本质上而言,在人与机器、机器与机器的交互,大部分是为了实现人与人之间的信息交互。
物联网重点关注就是人和物之间的关系,相互感知、相互识别和相互定位是物联网的核心功能。物联网的三项核心技术是传感器技术、RFID(Radio Frequency Identification,射频识别)技术等。图2是根据相关技术中的物联网的体系架构图二,如图2所示,人们使用传感器,从物理世界当中获取各种各样的信息,这些信息又通过网络最后传到应用系统,为用户提供各种各样的服务,所有采集的信息必须和传感器的具体位置信息相关联,否则这个信息就没有任何意义,可以说传感器的定位技术是物联网一个重要的基础。从物联网的三个目标来看,要实现任何时间、任何事物、任何地点之间的连接其中必须有定位技术的支持,而且在任何地方的连接里面本身就包含着物体之间的位置信息。物联网下很多定位技术都能应用,只是需要考察环境适应性、定位精度适配度以及应用成本,总的来讲,物联网定位技术应该符合广域和局域结合,定位精度可伸缩,环境适应能力高,成本较低的要求。
下面简单比较主流定位技术:卫星定位技术更适合室外定位,定位精度几米到几百米,定位时间达到几十秒。红外定位技术精度较高,适合室内定位精度要求,但是不能穿越障碍物。蓝牙定位技术利用蓝牙通讯芯片,具有极高的 设备复用性,但是,易受噪声信号干扰,稳定性差。WiFi(Wireless-Fidelity,无线保真)定位技术利用WiFi设备,精度取决于基站数量,也容易受其他信号干扰。紫蜂定位技术利用Zigbee(紫蜂)通讯芯片,通过成千上万个Zigbee通讯芯片相互协调通讯实现定位,定位精度和节点规模有关,部署局限性比较大。IR-UWB(Impulse Radio Ultra Wide Band,超带宽脉冲无线电)定位技术采用时间间隔小于纳米级的脉冲,不利用余弦波调制,因为占用带宽非常宽,频谱功率非常集中,具有穿透力强、精度高的优点,缺点是成本高。RFID定位技术利用传感网络之中的阅读器和标签之间直接交换位置信息而达到定位目的,不过RFID定位精度和阅读器密度有关,部署不方便,而且由于多径效应的存在导致抗干扰能力弱。
针对相关技术中物联网环境下的定位技术环境适应能力低,成本较高的要求的问题,还未提出有效的解决方案。
发明内容
本实施例提供了一种定位方法及装置,至少解决了相关技术中物联网环境下的定位技术环境适应能力低,成本较高的要求的问题。
本实施例提供了一种定位装置,包括:位置感知模块、位置处理模块以及定位决策模块,其中,所述位置感知模块,设置为采集定位区域中待定位目标的定位感知信息;
所述位置处理模块,设置为在定位区域上建立以所述位置处理模块为原点的相对坐标系,接收所述位置感知模块采集的所述定位感知信息,与所述定位决策模块建立网络连接;以及
所述定位决策模块,设置为通过所述网络连接接收所述位置处理模块上传的所述定位感知信息以及所述相对坐标系,根据所述定位感知信息对所述待定位目标在所述相对坐标系中的位置进行定位。
可选的,所述位置处理模块,还设置为对所述定位感知信息进行格式转换和应用协议转换并缓存,以便所述定位感知信息被所述定位决策模块识别以及处理。
可选的,所述定位决策模块,还设置为加载定位规则,根据所述定位感知信息计算出在所述待定位目标所在所述相对坐标系上的三维坐标,其中,所述 定位规则规定了需要加载的定位算法以及所述定位算法的加载顺序。
可选的,所述定位决策模块和所述位置处理模块分别设置于数据中心物联网平台软件、业务系统软件、物联网网关或终端中。
可选的,所述位置感知模块采用超声波定位,无线射频识别(Radio Frequency Identification,简称为RFID)定位、激光定位、超带宽脉冲无线电(Impulse Radio Ultra Wide Band,简称为IR-UWB)定位、长期演进(Long Term Evaluation,简称为LTE)定位或无线保真WIFI定位。
可选的,所述位置感知模块,还设置为接收启动指令、关闭指令、发射指令或反射指令,并根据所述启动指令、所述关闭指令、所述发射指令或所述反射指令相应地返回启动结果、关闭结果、发射结果或反射结果。
可选的,所述位置感知模块包括信号收发机、处理器,存储器以及接口,通过所述接口驻留在所述待定位目标上,所述处理器设置为控制与所述待定位目标通过指令形式交互。
可选的,所述位置处理模块,还设置为接收启动指令、关闭指令、数据初验指令或数据传输指令,根据所述启动指令、所述关闭指令、所述数据初验指令或所述数据传输指令相应地返回启动结果、关闭结果、数据初验结果或数据传输的结果,其中,所述数据初验指令用于对接收到的所述定位感知信息根据预定规则进行校验,所述预定规则包括:历史数据偏离、信号强度不够和初始数据偏离中的至少一项;所述数据传输指令用于指示将通过校验的所述定位感知信息传输给所述定位决策模块。
可选的,所述位置处理模块包括:通讯部件、处理器、存储器以及接口,通过所述接口驻留在所述待定位目标上,通过所述通讯部件与所述定位决策模块建立网络连接,其中,所述存储器设置为存储所述定位感知信息,所述处理器设置为控制与所述待定位目标之间采用指令形式交互。
可选的,所述定位决策模块,设置为接收注册指令、注销指令、原始数据输送指令、原始数据获取指令、定位结果获取指令、报告获取指令或定位规则设置指令,并根据所述注册指令、所述注销指令、所述原始数据输送指令、所述原始数据获取指令、所述定位结果获取指令、所述报告获取指令或所述定位规则设置指令返回相应的结果,其中,原始数据输送指令用于输送所述定位感知信息,并生成定位决策任务,定位决策任务包括根据所述定位感知信息获得 定位结果;所述原始数据获取指令用于返回定位感知信息;所述定位结果获取指令用于返回指定坐标系的定位结果数据;所述报告获取指令用于返回待定位区域的分析报告。
可选的,所述定位决策模块包括:数据管理部件、定位规则管理部件、定位算法部件、坐标系管理部件、以及网络服务接口,所述网络服务接口用于使得所述定位决策模块驻留在管理平台上,并与所述待定位目标之间采用指令形式交互。
本实施例还提供了一种定位方法,应用于物联网,应用于物联网,该方法包括:
在待定位目标所在的定位区域上建立以位置处理模块自身为原点的相对坐标系;
通过建立的网络连接接收位置感知模块发送的待定位目标的定位感知信息;以及
将所述定位感知信息以及所述相对坐标系发送至定位决策模块,以便所述定位决策模块根据所述定位感知信息对所述待定位目标在所述相对坐标系中的位置进行定位。
本实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。本公开解决了相关技术中物联网环境下的定位技术环境适应能力低,成本较高的要求的问题,提高了物联网环境下定位的精度。
附图概述
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本示意性实施例及其说明用于解释本公开。在附图中:
图1是根据相关技术中的物联网的体系架构图一;
图2是根据相关技术中的物联网的体系架构图二;
图3是根据本实施例的定位方法的流程图;
图4是根据本实施例的物联网模块化定位装置的框图;
图5是根据本实施例的物联网环境下定位系统的示意图一;
图6是根据本实施例的物联网环境下定位装置的框图一;
图7是根据本实施例的物联网环境下定位系统的示意图二;
图8是根据本实施例的物联网环境下定位装置的框图二;
图9是根据本实施例的物联网环境下定位系统的示意图三;
图10是根据本实施例的物联网环境下定位装置的框图三;
图11是根据本实施例的物联网环境下定位系统的示意图四;
图12是根据本实施例的物联网环境下定位装置的框图四;
图13是根据本实施例的物联网环境下位置感知模块的框图;
图14是根据本实施例的物联网环境下位置处理模块的框图;
图15是根据本实施例的物联网环境下定位决策模块的框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
相关技术中的定位技术都有各自的优缺点,总体上不切合在物联网环境,除了部署不便、精度不匹配、抗干扰弱等原因外,还没有充分利用物联网资源,例如传感器、传感网络、通讯网络。
为了在物联网环境中充分利用相关技术中的资源,本公开提出一种可更换式、模块化并且多信号的定位装置,无缝融合相关技术中的射频定位技术和非射频定位技术,以克服相关技术中主流定位技术诸如精度不匹配、部署不便并且成本高等问题和缺点,并满足物联网对人们及物品的定位要求,具有物联网环境适配度高等优点。其中,可更换式定位装置中,位于终端(例如为标签)的一侧可以更换的硬件模块包括:非射频位置感知模块、射频定位通讯模块,位于位置处理端(示例性的可以是基站或者读卡器)的一侧可以更换的硬件模块包括非射频位置感知模块、射频定位通讯模块、位置处理模块,以及定位平台侧(例如为服务器)可以更换的软件模块包括:定位决策模块。
本实施例提供了一种定位装置,包括位置感知模块、位置处理模块以及定位决策模块,其中,
所述位置感知模块,设置为采集定位区域中待定位目标的定位感知信息;
所述位置处理模块,设置为在定位区域上建立相对坐标系,接收所述位置感知模块采集的所述定位感知信息,与所述定位决策模块建立网络连接;其中该网络可以是有线网络或无线网络。其中,所述位置处理模块与所述位置感知模块之间可以是通过宿主的总线进行通讯。
所述定位决策模块,设置为通过所述网络连接接收所述位置处理模块上传的所述定位感知信息,根据所述定位感知信息对所述待定位目标进行定位。
可选地,所述位置处理模块,还设置为对所述定位感知信息做格式化处理和应用协议转换并缓存。
可选地,所述定位决策模块,还设置为加载定位规则,根据所述定位感知信息计算出在所述待定位目标所在定位区域坐标系上的三维坐标。
可选地,所述定位决策模块和所述位置处理模块设置于数据中心物联网平台软件、业务系统软件、物联网网关或终端中。
可选地,所述位置感知模块采用超声波定位,无线射频识别RFID定位、激光定位、IR-UWB定位、长期演进LTE定位或无线保真WIFI定位。
可选地,所述位置感知模块,还设置为接收启动指令、关闭指令、发射指令或反射指令,根据所述启动指令、所述关闭指令、所述发射指令或所述反射指令返回启动、关闭、发射或反射结果。
可选地,所述位置感知模块包括信号收发机、处理器,存储器以及接口,通过所述接口驻留在所述待定位目标上,所述处理器用于控制与所述待定位目标通过指令形式交互。
可选地,所述位置处理模块,还设置为接收启动指令、关闭指令、数据初验指令或数据传输指令,根据所述启动指令、所述关闭指令、所述数据初验指令或所述数据传输指令返回启动、关闭、数据初验或数据传输的结果,其中,所述数据初验指令用于对接收到的所述定位感知信息根据预定规则进行校验,所述预定规则包括:历史数据偏离、信号强度不够以及初始数据偏离等等其中的至少一项;所述数据传输指令用于指示将通过校验的所述定位感知信息传输给所述定位决策模块。其中,历史数据偏离是指将现有数据与历史数据进行比较,当现有数据与历史数据的偏离值大于等于预设阈值时,则判定历史数据偏离;信号强度是指从终端(位置感知模块)接收到的从基站(位置处理模块)发送的无线信号的强度,例如RSSI就是根据信号强度来判定位置的;初始数据 指基站/读卡器(位置处理模块)的原始位置数据和终端/标签(位置感知模块)初始位置,如果终端/标签位置尤其是初始位置偏离了所述基站/读卡器的原始位置的信号覆盖范围,则称为初始数据偏离。
可选地,所述位置处理模块包括:通讯部件、处理器、存储器、接口,通过所述USB接口驻留在所述待定位目标上,通过所述通讯部件与所述定位决策模块建立网络连接,其中,所述存储器设置为存储所述定位感知信息,所述处理器设置为控制与所述待定位目标之间采用指令形式交互。
可选地,所述定位决策模块,设置为接收注册指令、注销指令、原始数据输送指令、原始数据获取指令、定位结果获取指令、报告获取指令或定位规则设置指令,根据所述注册指令、所述注销指令、所述原始数据输送指令、所述原始数据获取指令、所述定位结果获取指令、所述报告获取指令或所述定位规则设置指令返回相应的结果,其中,原始数据输送指令用于输送所述定位感知信息,并生成定位决策任务;所述原始数据获取指令用于返回定位感知信息;所述定位结果获取指令用于返回指定坐标系的定位结果数据;所述报告获取指令用于返回待定位区域的分析报告,所述分析报告可以是一包括所述定位结果数据的列表。
可选地,所述定位决策模块包括:数据管理部件、定位规则管理部件,用于负责管理定位规则,包括增加、删除或者修改所述定位规则;定位算法部件,用于提供算法和应用程序编程接口;坐标系管理部件,用于对不同的坐标系进行管理;以及网络服务接口,通过所述网络服务接口驻留在管理平台上,与所述待定位目标之间采用指令形式交互。
本实施例还提供了一种定位方法,应用于物联网,可以是由上述定位装置执行,图3是根据本实施例的定位方法的流程图,如图3所示,该方法包括如下步骤:
在S302中,通过建立的网络连接接收定位感知信息,其中,该定位感知信息是在定位区域上建立相对坐标系后接收的待定位目标的定位感知信息;
在S304中,根据该定位感知信息对该待定位目标进行定位。
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S1,通过建立的网络连接接收定位感知信息,其中,该定位感知信息 是在定位区域上建立相对坐标系后接收的待定位目标的定位感知信息;
步骤S2,根据该定位感知信息对该待定位目标进行定位。
可选地,在本实施例中,上述存储介质可以是暂态或非暂态,包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
图4是根据本实施例的物联网模块化定位装置的框图,如图4所示,该定位装置包括定位决策模块、位置处理模块,以及非射频位置感知模块和射频定位通讯模块中的至少一种。
所述位置处理模块,作用于定位区域(简称位区),即待定位目标的日常活动区域或者所在的固定场所。该模块在所在位区上建立相对坐标系,然后接收来自位置感知模块采集的该位区所有待定位目标的定位感知信息,做格式转换和应用协议转换并缓存起来。该模块还负责和定位决策模块建立网络连接,进行数据和指令交互。
所述定位决策模块,设置为接收位置处理模块上传的定位感知信息,加载定位规则,从而计算出在定位目标所在位区坐标系(即以基站为原点的相对坐标系)上表述的三维坐标。该模块还提供多种坐标系的映射以迎合用户需求。
所述定位决策模块和位置处理模块均是耦合度较低的模块,可以设置于数据中心物联网平台软件、业务系统软件或者物联网网关甚至终端中。
所述非射频位置感知模块是可更换定位模块,也是位置感知模块之一,该模块采用非射频定位技术,每种非射频定位技术都可以提供对应的非射频位置感知模块。
所述射频定位通讯模块是可更换定位模块,也是位置感知模块之一,该模块采用射频定位通讯技术,每种射频定位通讯技术都可以提供对应的射频定位通讯模块。
所述可更换定位模块具有如下特征:采用不同技术的可更换定位模块可互相替代;可更换定位模块和宿主之间采用统一的接口,该接口负责控制信号交换和数据交换;其中,所述接口通用性较强,只要是物理的、可插拔的接口即可,可以是串行接口,并行接口或者自定义接口。例如所述接口可以是USB接口。采用同一种技术的可更换定位模块之间能够建立配对关系,该配对关系包括1:1主次关系、1:N主次关系、1:1对等关系或者N:N自组网关系,所述配对 关系中冒号前面的1或N是指位置处理端的数量,冒号后面的1或N是指终端的数量,例如前者是指基站的数量,后者是指手机的数量。
所述非射频定位技术包括超声波定位技术、计算机视觉定位技术、激光定位技术,具有如下特征:
不具备无线电通讯功能;但具有位置感知功能,包括距离、方位以及到达时间等定位感知信息。
所述射频定位通讯技术包括RFID通讯/定位技术、IR-UWB通讯/定位技术、WiFi通讯/定位技术以及Zigbee通讯/定位技术,具有如下特征:具有无线电通讯基本特征,发信机和收信机成对出现,工作在RF射频(300KHz~300GHz)范围内;能够获取无线信号接收的信号强度指示(Received Signal Strength Indication,简称为RSSI)、信号到达移动终端的时间(Time of Arrival,简称为TOA)、检测信号到达两个基站的时间差(Time Difference of Arrival,TDOA)以及到达角度(Angle of Arrival,简称为AOA)等定位感知信息。
所述定位规则是定位算法的动态有序集合,输入定位感知信息(来自位置感知模块),输出目标位置。对应两种位置感知模块,定位算法分为射频定位算法和非射频定位算法,射频定位算法包括RSSI定位算法、TOA定位算法、TDOA定位算法、AOA定位算法及综合定位算法等多种算法,非射频定位算法包括计算机视觉定位算法、超声波定位算法、激光定位算法、雷达定位算法及综合定位算法等多种算法。
通过本实施例进行定位,稳定性高,抗干扰能力强,信号多种多样,当选择多种定位方法,尤其是采用非射频位置感知模块与射频定位通讯模块配合时,抗干扰能力更强;当采用自组网时,覆盖范围更广,组网方式更加灵活,其中自组网让覆盖范围达到从10米到10公里任意变化;定位精度和应用系统充分匹配。支持多种精准定位算法,只要采用合适的定位技术即可让定位精度达到毫米级;部署快捷方便,高度模块化结构简化了系统架构,安装调试简单,排错容易;成本低。充分利用相关技术中物联网技术和资源,结构简单,制造成本、工程成本以及使用成本都有下降。
实施例1:仓库巡逻
图5是根据本实施例的物联网环境下定位系统的示意图一,如图5所示,现代仓库管理是智慧物流的一个核心部分,本实施例构建仓库管理系统,主要由 仓库管理平台、仓库巡逻车以及标签组成,其他设备和软件不在本实施例中列出。
仓库管理平台位于应用层,部署在数据中心。仓库巡逻车位于感知层,部署在仓库。标签放置在货架及货物上,还有工作人员身上也要放置标签。仓库巡逻车通过网络层和仓库管理平台连接。
图6是根据本实施例的物联网环境下定位装置的框图一,如图6所示,定位装置包括定位决策模块、位置处理模块以及非射频位置感知模块。多个模块均是低耦合模块,分散在智慧仓库管理系统的多个设备上。
非射频位置感知模块内部部件含超声波收发机、多点控制单元,又称微型单片机(Micro Controller Unit,简称为MCU)、RAM存储器、ROM存储器以及USB接口,由于采用超声波定位技术,因此非射频位置感知模块也称为超声波定位模块。超声波定位模块驻留在仓库巡逻车和标签上,仓库巡逻车和标签是宿主。为了降低耦合度,超声波定位模块驻留接口采用USB接口,通过USB接口,宿主和超声波定位模块之间采用指令形式交互,指令及该指令交换的信息如下:
启动指令,宿主通过USB向超声波定位模块送电,超声波定位模块启动后初始化内部部件,监测内部部件状态,并向宿主报告启动结果,启动结果为:“成功”、“超声波收发机错误”或者“其他错误”,宿主接到后两种状态后关闭USB电源。
关闭指令,宿主向超声波定位模块发送关闭指令,超声波定位模块关闭内部部件,并向宿主报告关闭结果,关闭结果为:“成功”或“失败”,宿主收到超声波定位模块的报告后关闭USB电源。
发射指令,宿主向超声波定位模块发送发射指令,超声波定位模块自检超声波收发机,控制超声波收发机向前方发射超声波,并等待接收回波,一旦接收回波后,向宿主报告位置感知结果,位置感知结果为:超声波发射时间、超声波发射角度、回波时长以及回波接收角度。
角度矫正指令,宿主向超声波定位模块发送角度矫正指令,超声波定位模块自检超声波收发机,控制超声波收发机进行角度微调,并向宿主报告角度微调结果,结果为:“成功”或“失败”。
反射指令,宿主向超声波定位模块发送反射指令,超声波定位模块自检超声波收发机,控制超声波收发机等待接收超声波,一旦接收到超声波,则按接 收到的超声波方向发射超声波以强化反射波,向宿主报告反射结果,结果为:“成功”或“失败”。
位置处理模块内部部件含GPRS通讯部件、MCU、RAM存储器、ROM存储器以及USB接口,驻留在仓库巡逻车上。宿主和位置处理模块之间采用指令形式交互,指令及交换的信息如下:
启动指令,宿主通过USB向位置处理模块送电,位置处理模块启动后初始化内部部件,监测内部部件状态,并向宿主报告启动结果,启动结果为:“成功”、“GPRS错误”或“其他错误”,宿主接到后两种状态后关闭USB电源。
关闭指令,宿主向位置处理模块发送关闭指令,位置处理模块关闭内部部件,并向宿主报告关闭结果,关闭结果为:“成功”或“失败”,宿主收到报告后关闭USB电源。
数据初验指令,宿主向位置处理模块发送数据初验指令,位置处理模块初步校验来自超声波定位模块的定位感知信息,校验规则可定义,初始规则包括:历史数据偏离、信号强度不够和初始数据偏离中的至少一个。如果定位感知信息符合校验规则,那么向宿主报告校验结果。
数据输送指令,宿主向位置处理模块发送数据输送指令,位置处理模块把来自超声波定位模块的定位感知信息转换为XML格式暂存起来,然后通过GPRS通讯部件建立和仓库管理平台的网络连接,上传XML文件到定位决策模块供进一步处理。根据是否上传成功,向宿主报告相应的处理结果,处理结果为:“成功”、“格式转换失败”、“GPRS连接失败”或者“上传数据失败”。XML Schema文件定义如下:
Figure PCTCN2017089870-appb-000001
Figure PCTCN2017089870-appb-000002
Figure PCTCN2017089870-appb-000003
定位决策模块内部部件含数据管理部件、定位规则管理部件、定位算法部件、坐标系管理部件以及web service接口,驻留在仓库管理平台上。宿主和定位决策模块之间采用指令形式交互,指令及交换的信息如下:
注册,定位决策模块作为web服务(SOAP(Simple Object Access Protocol,简单对象访问协议))存在,宿主负责web服务的注册。
注销,定位决策模块作为web服务(SOAP)存在,宿主负责web服务的注销。
原始数据输送,宿主下达指令给模块,并输送定位感知信息给模块,生成定位决策任务,任务较多时模块把任务压入堆栈等待执行。
原始数据获取,宿主下达指令给模块,模块返回定位感知信息。
定位结果获取,宿主下达指令给模块,模块返回指定坐标系的定位结果数据。
报告获取,宿主下达指令给模块,模块返回指定位区的分析报告。示例性的,所述分析报告可以是一包括所述定位结果数据的列表。
定位规则设置,宿主下达指令给模块,模块修改定位规则,由定位规则管理部件负责。定位规则采用Java规则引擎,规定需要加载哪些定位算法,以及定位算法加载次序。定位算法部件描述了定位算法的输入、输出、精度估计、计算时长估计等参数,并给出了具体算法的API。如果没有下达指令修改定位规则,则定位规则默认为:
Figure PCTCN2017089870-appb-000004
Figure PCTCN2017089870-appb-000005
本实施例的每个模块均是被动模块,需要宿主通过指令调配以完成定位功能,其中仓库巡逻车居中调配超声波定位模块和位置处理模块的关系,仓库管理平台居中调配位置处理模块和定位决策模块的关系。但是,本实施例中的标签并不和外界通讯,也不和超声波定位模块交互,标签用于容纳超声波定位模块,所述标签的主要功能是提供电源和超声波定位模块的插接位置,可以是设置在货架以及货物上,主要是设置在货物上。超声波定位模块通电后自动执行“反射指令”,处于等待接收超声波状态。另外,由于标签中超声波定位模块反射超声波需要一定的响应时间,从而影响定位精度,因此,这个响应时间需要经过试验测定后由定位算法进行处理。
系统定位总体处理流程如下:
轮班和路线安排,轮班就是仓库巡逻车的巡逻时段,由仓库管理平台负责管理。仓库管理平台向仓库巡逻车设定轮班和路线后,仓库巡逻车自行判断是否当班,轮班到了则自动在按路线进行巡逻。
发射超声波,仓库巡逻车在巡逻过程中向超声波定位模块下达发射指令,超声波定位模块发射超声波,并接收回波。
数据初验,仓库巡逻车向位置处理模块下达数据初验指令,判断回波数据是否有效,无效则向超声波定位模块下达角度矫正指令,然后下达发射指令重新收集定位感知信息。
数据上报,仓库巡逻车向位置处理模块下达数据输送指令,把数据上传给仓库管理平台。
位置计算,仓库管理平台获得仓库巡逻车上报后,调用定位决策模块的原始数据输送指令进行位置计算。
展示位置,仓库管理平台调用定位决策模块的定位结果获取指令,得到大 地坐标系的坐标,在GIS(Geographic Information System,地理信息系统)上标注展示,并划线得到历史巡逻路径。
本实施例部署快捷方便,高度模块化结构简化了系统架构,安装调试简单,排错容易,与仓库管理这个应用场景十分匹配,精度达到厘米级,杜绝了仓库巡逻车撞货架的情况发生。
实施例2:码头集装箱管理
图7是根据本实施例的物联网环境下定位系统的示意图二,如图7所示,码头集装箱管理是智慧物流的一个核心部分,本实施例构建码头集装箱管理系统,主要由码头集装箱管理平台、RFID阅读器以及RFID标签组成,其他设备和软件不在本实施例中列出。
码头集装箱管理平台位于应用层,部署在数据中心。RFID阅读器位于感知层,分散部署在码头多处。RFID标签放置在集装箱上。RFID阅读器通过网络层和码头集装箱管理平台连接。
图8是根据本实施例的物联网环境下定位装置的框图二,如图8所示,定位装置包括定位决策模块、位置处理模块以及射频定位通讯模块。上述模块均是低耦合模块,分散在码头集装箱管理系统的多个设备上。
射频定位通讯模块内部部件含信号收发机(例如RF收发机)、处理器、存储器以及USB接口,由于采用无线射频识别(Radio Frequency Identification,简称为RFID)定位技术,因此射频定位通讯模块也称为RFID定位模块。RFID定位模块驻留在RFID阅读器和RFID标签上,RFID阅读器和RFID标签是宿主。为了降低耦合度,RFID定位模块驻留接口采用标准USB接口,通过USB接口,宿主和RFID定位模块之间采用指令形式交互,指令及交换的信息如下:
启动指令,宿主通过USB向RFID定位模块(简称模块)送电,模块启动后初始化内部部件,监测内部部件状态,并向宿主报告启动结果,启动结果为:“成功”、“收发机错误”或“其他错误”,宿主接到后两种状态后关闭USB电源。
关闭指令,宿主向模块发送关闭指令,模块关闭内部部件,并向宿主报告关闭结果,关闭结果为:“成功”或“失败”,宿主收到模块的报告后关闭USB电源。
发送指令,宿主向模块下达发送指令,模块自检收发机,并把通讯消息调 制好,控制收发机发射2.4GHz的无线电波信号。其中,RFID阅读器端的通讯消息含:时间戳以及阅读器ID等,标签端的通讯消息含集装箱的大小、拥有者、进入时间、装箱时间以及计划出发时间等。模块向宿主报告发送结果:“成功”或“失败”。
接收指令,宿主向模块下达接收指令,模块自检收发机,并等待接收2.4GHz的无线电波信号,一旦接收,则解调出信号中通讯消息,并获取信号中的定位感知信息:RSSI、AOA、TOA和TDOA中的至少一个,最后向宿主报告接收结果,转发通讯消息,返回定位感知信息。
位置处理模块内部部件含以太网口、ARM处理器、存储器以及USB接口,驻留在RFID阅读器上。宿主和位置处理模块之间采用指令形式交互,指令及交换的信息如下:
启动指令,宿主通过USB向模块送电,模块启动后初始化内部部件,监测内部部件状态,并向宿主报告启动结果,启动结果为:“成功”、“网口错误”或“其他错误”,宿主接到后两种状态后关闭USB电源。
关闭指令,宿主向模块发送关闭指令,模块关闭内部部件,并向宿主报告关闭结果,关闭结果为:“成功”或“失败”,宿主收到报告后关闭USB电源。
数据初验指令,宿主向模块发送数据初验指令,位置处理模块初步校验来自RFID定位模块的定位感知信息,校验规则可定义,所述校验规则可以是包括:历史数据偏离、初始数据偏离、不符逻辑的错误以及数值不在范围内的至少一个。如果定位感知信息符合校验规则,那么向宿主报告校验结果,以便宿主重新采集数据。
数据输送指令,宿主向模块发送数据输送指令,位置处理模块把来自RFID定位模块的定位感知信息转换为XML格式暂存起来,然后通过以太网口建立和码头集装箱管理平台的网络连接,上传XML文件到定位决策模块供进一步处理。根据是否上传成功,向宿主报告相应的处理结果,处理结果为:“成功”、“格式转换失败”、“网络连接失败”或者“上传数据失败”。
定位决策模块内部部件含数据管理部件、定位规则管理部件、定位算法部件、坐标系管理部件、web service接口,驻留在码头集装箱管理平台上。定位算法部件提供了定位算法,描述了定位算法的输入、输出、精度估计以及计算时长估计等参数,并给出了执行具体定位算法的API(Application Programming  Interface,应用程序编程接口),所述API可以是供平台或者其他模块调用,所述定位算法可以是在API内部执行,上述参数是通过API传入,最终供所述定位算法使用。
定位决策模块可以包括处理器和与其关联的存储器,存储器可存储有实现定位决策模块功能的可执行指令。
其中,数据管理部件用于对采集得到的原始数据和分析获得的结果数据进行管理,包括记录删除、修改、查询等。
坐标系管理部件用于对不同的坐标系(包括相对坐标系和大地坐标系)进行管理,所述坐标系可以是指GIS里面用到的多种坐标系。
网络服务接口,用于管理不同的通用网络,例如ZigBee、3G、4G或者Ethernet等等。宿主和定位决策模块之间采用指令形式交互,指令及交换的信息如下:
注册,宿主负责把模块作为web服务进行注册。
注销,宿主负责把模块作为web服务进行注销。
原始数据输送,宿主下达指令给模块,并输送定位感知信息给模块,生成定位决策任务,任务较多时模块把任务压入堆栈等待执行。其中,定位决策任务包括根据所述定位感知信息获得定位结果。
原始数据获取,宿主下达指令给模块,模块返回定位感知信息。
定位结果获取,宿主下达指令给模块,模块返回指定坐标系的定位结果数据。
报告获取,宿主下达指令给模块,模块返回指定位区的分析报告。
定位规则设置,宿主下达指令给模块,模块修改定位规则,由定位规则管理部件负责。定位规则采用有序集合,规定需要加载哪些定位算法,以及定位算法加载次序。
本实施例的RFID阅读器居中调配RFID定位模块和位置处理模块的关系,码头集装箱管理平台居中调配位置处理模块和定位决策模块的关系。
系统总体处理流程如下:
进出口检查,码头进出口安排人员或者自动检查装备,负责检查集装箱是否安装RFID标签,没有安装的集装箱需要安装RFID标签,并通过下达接收指令让RFID标签处于待接收状态。
感知位置信息和更新跟踪状态,在集装箱移动过程中,阅读器向RFID定位 模块下达发射指令,RFID定位模块向RFID标签发射消息,RFID标签接收消息后在标签内部更新跟踪状态:跟踪时间戳以及阅读器ID等,并通过发射指令应答消息,阅读器通过接收指令获得定位感知信息。
数据初验,RFID阅读器向位置处理模块下达数据初验指令,判断定位感知信息是否有效,无效则重新收集定位感知信息。
数据上报,RFID阅读器向位置处理模块下达数据输送指令,把数据上传给码头集装箱管理平台。
位置计算,码头集装箱管理平台获得RFID阅读器上报后,调用定位决策模块的原始数据输送指令进行位置计算。
展示位置,码头集装箱管理平台调用定位决策模块的定位结果获取指令,得到大地坐标系的坐标,在GIS上标注,划线得到集装箱移动路劲。码头集装箱管理平台调用定位决策模块的原始数据获取指令,抽取集装箱当前信息:集装箱的大小、拥有者、进入时间、装箱时间或计划出发时间等,并在GIS上显示。
本实施例成本低,使用有线连接阅读器,稳定可靠,维护成本低,从而进一步降低了总体拥有成本(Total Cost of Ownership,TCO)。定位精度波动较大,达到1到10米,但是和集装箱尺寸匹配,从而不影响集装箱的定位,同时RFID内部保存了集装箱的信息,真正做到了集装箱的全方位跟踪和监控管理。
实施例3:矿井定位救援
系统架构
图9是根据本实施例的物联网环境下定位系统的示意图三,如图9所示,矿难经常发生,由于不能准确定位遇难人员和车辆导致救援不及时,本实施例构建矿井定位救援系统,主要由矿井管理平台、定位终端以及定位标签组成,其他设备和软件不在本实施例中列出。
矿井管理平台位于应用层,部署在数据中心。定位终端位于感知层,部署在矿井顶部和机车上。定位标签放置在工作人员头盔和救援物品上。定位终端和定位标签组成Ad hoc自组网,通过网关和矿山局域网对接,从而和矿井管理平台连接起来。
图10是根据本实施例的物联网环境下定位装置的框图三,如图10所示,定位装置包括定位决策模块、位置处理模块、非射频位置感知模块和射频定位通 讯模块。上述模块均是低耦合模块,分散在矿井定位救援系统的多个设备上。
定位决策模块内部部件含主控部件、数据管理部件、定位规则管理部件、定位算法部件、坐标系管理部件以及web service接口部件,驻留在矿井管理平台(宿主)上。定位决策模块具有自主处理能力,利用web service接口部件对外(位置处理模块、宿主和其他应用系统)交互,web service接口部件主要接口定义如下:
注册接口,调用者调用本接口在定位决策模块上申请资源,只有注册后才能继续调用其他接口。
注销接口,调用者调用本接口在定位决策模块上撤销资源,注销后不能调用除注册接口外的其他接口。
原始数据输送接口,调用者调用本接口,输送定位感知信息给模块,生成定位决策任务,任务较多时模块把任务压入堆栈等待执行。
原始数据获取接口,调用者调用本接口,模块返回定位感知信息。
定位结果获取接口,调用者调用本接口,模块返回指定坐标系的定位结果数据。
报告获取接口,调用者调用本接口,模块返回指定位区的分析报告。
定位规则设置接口,调用者调用本接口,模块修改定位规则,由定位规则管理部件负责。定位规则采用规则引擎,规定需要加载哪些定位算法,以及定位算法加载次序。
位置处理模块内部部件含MCU、RAM存储器、ROM存储器、USB接口以及显示器,通过USB接口驻留在定位终端上,另外还提供两个USB接口以连接非射频位置感知模块以及射频定位通讯模块。位置处理模块具有自主处理能力,其功能如下:
启动,位置处理模块通过USB取电,取电之处初始化内部部件,监测内部部件状态,并显示启动结果。
数据初验,位置处理模块对接射频定位通讯模块进行初次定位,获取初次定位感知信息,并做数据初验操作(校验规则可定义)。如果初次定位的定位感知信息符合校验规则,那么位置处理模块对接非射频位置感知模块进行二次定位,获取二次定位感知信息,并做数据初验操作(校验规则可定义)。如果二次定位感知信息符合校验规则,那么把校验过的两次定位感知信息进行融合,转 换为XML文件,在存储器中保存起来。
自组网构建,位置处理模块通过射频定位通讯模块把自身作为节点加入到矿井Ad hoc自组网络中。
数据输送,位置处理模块通过射频定位通讯模块连接到矿井Ad hoc自组网络,利用web service接口上传XML文件到定位决策模块供进一步处理。
非射频位置感知模块内部部件含红外激光收发机、处理器、存储器以及宿主接口,由于采用激光定位技术,因此也称为激光定位模块。激光定位模块驻留在位置处理模块上,位置处理模块是宿主。为了降低耦合度,激光定位模块驻留接口采用标准USB接口,通过USB接口,宿主和模块之间采用指令形式交互,指令及交换的信息如下:
启动,宿主通过USB向模块送电,模块启动后初始化内部部件,监测内部部件状态,并向宿主报告启动结果,启动结果为:“成功”、“收发机错误”或“其他错误”,宿主接到后两种状态后关闭USB电源。
关闭,宿主向模块发送关闭指令,模块关闭内部部件,并向宿主报告关闭结果,关闭结果为:“成功”或“失败”,宿主收到模块的报告后关闭USB电源。
发射指令,宿主向模块发送发射指令,模块自检收发机,控制收发机向前方激发红外激光,并等待接收反射光,一旦接收后,向宿主报告位置感知结果,位置感知结果为:发射时间、发射角度、接收时间以及接收角度。
角度矫正指令,宿主向模块发送角度矫正指令,模块自检收发机,控制收发机进行角度微调,并向宿主报告角度微调结果,结果为:“成功”或“失败”。
射频定位通讯模块内部部件含IR-UWB收发机、处理器、存储器、USB接口,由于采用IR-UWB定位技术,因此也称为UWB定位模块。UWB定位模块分别驻留在定位终端和定位标签上,定位终端和定位标签是宿主。为了降低耦合度,UWB定位模块驻留接口采用标准USB接口,通过USB接口,宿主和UWB定位模块之间采用指令形式交互,指令及交换的信息如下:
启动,宿主通过USB向模块送电,模块启动后初始化内部部件,监测内部部件状态,并向宿主报告启动结果,启动结果为:“成功”、“收发机错误”或“其他错误”,宿主接到后两种状态后关闭USB电源。
关闭,宿主向模块发送关闭指令,模块关闭内部部件,并向宿主报告关闭结果,关闭结果为:“成功”或“失败”,宿主收到模块的报告后关闭USB电源。
发送指令,宿主向模块下达发送指令,模块自检收发机,并把通讯消息调制好,控制收发机发射超宽带脉冲无线电波信号。模块向宿主报告发送结果:“成功”或“失败”。
接收指令,宿主向模块下达接收指令,模块自检收发机,并等待接收超宽带脉动信号,一旦接收,则解调出信号中通讯消息,并获取信号中的定位感知信息:RSSI、AOA、TOA和TDOA中的至少一个,最后向宿主报告接收结果,转发通讯消息,返回定位感知信息。
自组网指令,宿主向模块下达自组网指令,模块提供IEEE 802.15.4协议解析、全智能自动路由、广播消息发送以及数据消息转发等功能,从而让自身作为自组网的一个节点加入自组网中。
本实施例的定位装置是一个主动装置,自主完成定位功能,其中定位终端仅仅向位置处理模块提供电源,位置处理模块负责融合激光定位和IR-UWB定位,从而达到精确定位人员和物资的目的。矿井管理平台利用精确定位结果,通过GIS以及应急调度等手段改善救援效果并提高反应速度。
系统总体处理流程如下:
矿井检查点核查,在矿井设置多个检查点,安排人员或者自动检查装备,负责检查人员、机车和关键物资是否安装定位终端和定位标签,没有安装的需要加装,并进行正确的初始设置。
感知位置信息,在人员、机车和关键物资移动过程中,定位终端的位置处理模块负责采集人员、机车和关键物资的定位感知信息。
数据上报,位置处理模块把数据上传给矿井管理平台的定位决策模块。
位置计算,矿井管理平台的定位决策模块处理原始数据进行位置计算。
展示位置
矿井集装箱管理平台调用定位决策模块的定位结果获取指令,得到大地坐标系的坐标,在GIS以及应急调度系统上进行进一步处理。
本实施例稳定性高,利用激光定位和IR-UWB定位技术的优点,克服缺点,提高装置的稳定性和抗干扰能力。覆盖范围适合矿井环境,红外激光定位采用较低发送功能,覆盖300米范围,但是激光是视距定位方式,所以需要IR-UWB提供的全向覆盖,既能定位又能通讯,还提供自组网功能,完全满足矿井环境下的定位救援需求。
实施例4:园区室内外无缝定位
图11是根据本实施例的物联网环境下定位系统的示意图四,如图11所示,本实施例构建园区室内室外无缝定位系统,主要由定位平台、网关、基站以及手机终端组成,其他设备和软件不在本实施例中列出。
定位平台位于应用层,部署在园区数据中心。网关位于网络层,部署在室外网络和室内网络边界,基站位于感知层,部署在园区多处,对应室外网络和室内网络,室内基站和室内基站有所不同。手机终端含有LTE通讯芯片和WiFi通讯芯片,能连接到基站,放置在车辆和人员上。基站通过网关和定位平台连接。
图12是根据本实施例的物联网环境下定位装置的框图四,如图12所示,定位装置包括定位决策模块、位置处理模块、非射频位置感知模块和射频定位通讯模块。上述模块均是低耦合模块,分散在园区室内外无缝定位系统的多个设备上。
定位决策模块内部部件含主控部件、数据管理部件、定位规则管理部件、定位算法部件、坐标系管理部件以及web service接口部件,驻留在定位平台(宿主)上。定位决策模块具有自主处理能力,利用web service接口部件对外(位置处理模块、宿主和其他应用系统)交互,web service接口部件主要接口定义如下:
注册接口,调用者调用本接口在定位决策模块上申请资源,只有注册后才能继续调用其他接口。
注销接口,调用者调用本接口在定位决策模块上撤销资源,注销后不能调用除注册接口外的其他接口。
定位规则设置接口,调用者调用本接口,模块修改定位规则,定位规则包含三种:初次定位规则、二次定位规则和室内外位区跨越切换规则,由定位规则管理部件负责。定位规则采用规则引擎,规定需要加载哪些定位算法,以及定位算法加载次序。
原始数据输送接口,调用者调用本接口,输送初次定位感知信息和二次定位感知信息给模块。
定位决策接口,调用者调用本接口,生成定位决策任务,任务较多时模块把任务压入堆栈等待执行。定位决策任务执行步骤包括:首先,构建园区坐标 系;然后,加载初次定位感知信息和基站位置,调用初次定位规则,计算初次位置坐标;再次,加载二次定位感知信息和基站位置,调用二次定位规则,计算二次位置坐标;最后,调用室内外位区跨越切换规则进行初次位置坐标和二次位置坐标的融合修正,得到最终的基于园区坐标系的坐标。
原始数据获取接口,调用者调用本接口,模块返回定位感知信息。
定位结果获取接口,调用者调用本接口,模块返回指定坐标系的定位结果数据。
报告获取接口,调用者调用本接口,模块返回指定位区的分析报告。
位置处理模块内部部件含MCU、RAM存储器、ROM存储器、宿主接口以及显示器,通过宿主接口驻留在网关上,支持热插拔。位置处理模块具有自主处理能力,其功能如下:
启动,位置处理模块通过宿主接口取电,取电之处初始化内部部件,监测内部部件状态,并显示启动结果。
数据初验,位置处理模块接收射频定位通讯模块和非射频位置感知模块的定位感知信息,并做数据初验操作(校验规则可定义)。如果符合校验规则,那么把校验过的定位感知信息转换为XML文件,在存储器中保存起来。
数据输送,位置处理模块通过射频定位通讯模块连接到园区网络,利用web service接口上传XML文件到定位决策模块供进一步处理。
非射频位置感知模块内部部件含红外摄像机、处理器、存储器以及宿主接口,由于采用计算机视觉定位技术,因此也称为摄像定位模块。摄像定位模块驻留在基站上,支持热插拔,基站是宿主。模块功能如下:
启动,摄像定位模块向宿主取电,模块启动并初始化内部部件,监测内部部件状态。
发射,模块自检红外摄像机,控制红外摄像机采集视频,向宿主传送视频数据。
角度调整,模块自检红外摄像机,控制红外摄像机进行角度调整,并向宿主报告角度调整结果,结果为:“成功”或“失败”。
射频定位通讯模块内部部件含收发机、处理器、存储器以及宿主接口。射频定位通讯模块分别驻留在室内基站和室外基站上,支持热插拔,室外基站通过射频定位通讯模块构建室外网,室内基站通过射频定位通讯模块构建室内网, 射频定位通讯模块也分为两种:一种在室外,采用LTE技术,因此也称为LTE定位模块,宿主通过LTE定位模块构建室外LTE微基站eNodeB,从而组成室外LTE网络;另外一种在室内,采用无线保真(Wireless Fidelity,简称为WiFi)技术,因此也称为WiFi定位模块,宿主通过WiFi定位模块构建室内热点AP(无线访问接入点,Wireless Access Point),从而组成室内WiFi网络。模块功能如下:
启动,模块通过宿主接口取电,启动并初始化内部部件,监测内部部件状态。
发送,模块自检收发机,并把通讯消息调制好,控制收发机发射无线电波信号。模块向宿主报告发送结果:“成功”或“失败”。
接收,模块自检收发机,并等待接收信号,一旦接收,则解调出信号中通讯消息,并获取信号中的定位感知信息:RSSI、AOA、TOA和TDOA中的至少一个,最后向宿主报告接收结果,转发通讯消息,返回定位感知信息。
网络接入,模块提供通讯协议解析、自动路由、广播消息发送以及数据消息转发等功能,从而让自身作为节点加入室内网或者室外网中。
信号加强,模块提高收发机的信号发射功率。
本实施例的定位装置是一个相对主动的装置,自主完成定位功能,其中手机终端采用现成的商业产品,这种产品支持LTE和WiFi通讯功能,不需要标签就能够连接到室内基站和室外基站。
系统总体处理流程如下:
初次感知,在手机终端移动过程中,室外基站的LTE定位模块或者室内基站中的WiFi定位模块负责手机终端的初次定位,获得初次定位感知信息,并上传到网关的位置处理模块。
二次感知,在手机终端移动过程中,基站的非射频位置感知模块负责手机终端的二次定位,获得二次定位感知信息,即视频数据,并上传到网关的位置处理模块。
数据初验,网关中的位置处理模块对数据进行初验,如果数据不符合初验规则,则要求基站重新进行数据采集。
数据上报,网关中的位置处理模块把数据上传给定位平台的定位决策模块。
位置计算,定位平台的定位决策模块处理原始数据进行位置计算。
位置矫正,定位平台的定位决策模块要求网关和基站基于所计算的位置信 息,对指定目标进行位置矫正,包括收发机信号加强或者摄像机角度调整,重新采集数据、上传以及计算。
提供位置服务,定位平台调用定位决策模块的定位结果获取指令,得到大地坐标系的坐标,提供给其他应用系统诸如物业管理、车库管理以及应急调度系统进行进一步处理。
本实施例实用性强,定位平台利用室内网和室外网完成定位和通讯功能,解决了园区人员不愿意更换终端的烦恼。覆盖范围适合园区环境,LTE微基站在室外每隔300到400米部署,WiFi热点在车库每个100米部署一个,在住房每层楼部署1到多个,能够充分覆盖每个角落。抗干扰能力强,让计算机视觉技术和射频定位技术无缝结合,克服园区干扰源较多的难题。定位精度高,至少达到米级,满足园区应用系统的需求。
本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
图13是根据本实施例的物联网环境下位置感知模块的框图。本公开实施例提供的所述位置感知模块可以是设置在终端侧或者定位处理端侧,包括处理器(processor)1301、存储器(memory)1302、总线1303、信号收发机1304、以及接口1305,其中,所述位置感知模块通过所述接口1305驻留在所述待定位目标上,所述处理器1301设置为控制与所述待定位目标通过指令形式交互。处理器1301、接口1305、存储器1302可以通过总线1303完成相互间的通信。处理器1301可以调用存储器1302中的逻辑指令,以执行所述位置感知模块侧的上述实施例的定位方法。
此外,上述的存储器1302中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可 以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,也可以是暂态存储介质。
图14是根据本实施例的物联网环境下位置处理模块的框图。本公开实施例提供的所述位置处理模块可以是设置在定位处理端侧,包括:处理器1401、存储器1402、总线1403、通讯部件1404、以及接口1405。
其中,处理器1401、接口1405、存储器1402可以通过总线1403完成相互间的通信。所述位置处理模块通过所述接口1405驻留在所述待定位目标上,通过所述通讯部件1404与所述定位决策模块建立网络连接,其中,所述存储器1402设置为存储所述定位感知信息,所述处理器1401设置为控制与所述待定位目标之间采用指令形式交互。处理器1401可以调用存储器1402中的逻辑指令,以执行所述位置处理模块侧的上述实施例的定位方法。
此外,上述的存储器1402中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,也可以是暂态存储介质。
图15是根据本实施例的物联网环境下定位决策模块的框图。本公开实施例提供的所述定位决策模块设置在定位平台侧,包括:处理器1501、存储器1502、总线1503、通讯部件1504、以及接口1505。
其中,通过所述通讯部件1504与所述位置处理模块建立网络连接,所述接口1505可以是网络服务接口,通过所述网络服务接口驻留在管理平台上,与所述待定位目标之间采用指令形式交互。所述处理器1501可以是包括:数据管理部件15011、定位规则管理部件15012、定位算法部件15013、坐标系管理部件 15015;处理器1501、接口1505、存储器1502可以通过总线1503完成相互间的通信。处理器1501可以调用存储器1502中的逻辑指令,以执行所述定位决策模块侧的上述实施例的定位方法。
此外,上述的存储器1502中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,也可以是暂态存储介质。
工业实用性
本公开通过建立的网络连接接收定位感知信息,其中,所述定位感知信息是在定位区域上建立相对坐标系后接收的待定位目标的定位感知信息;根据所述定位感知信息对所述待定位目标进行定位,解决了相关技术中针对物联网环境下的定位技术环境适应能力低,成本较高的要求的问题,提高了物联网环境下定位的精度。

Claims (13)

  1. 一种定位装置,包括:位置感知模块、位置处理模块以及定位决策模块,其中,所述位置感知模块,设置为采集定位区域中待定位目标的定位感知信息;
    所述位置处理模块,设置为在定位区域上建立以所述位置处理模块为原点的相对坐标系,接收所述位置感知模块采集的所述定位感知信息,与所述定位决策模块建立网络连接;
    所述定位决策模块,设置为通过所述网络连接接收所述位置处理模块上传的所述定位感知信息以及所述相对坐标系,根据所述定位感知信息对所述待定位目标在所述相对坐标系中的位置进行定位。
  2. 根据权利要求1所述的装置,其中,所述位置处理模块,还设置为对所述定位感知信息进行格式转换和应用协议转换并缓存,以便所述定位感知信息被所述定位决策模块识别以及处理。
  3. 根据权利要求1所述的装置,其中,所述定位决策模块,还设置为加载定位规则,根据所述定位感知信息计算出在所述待定位目标所在所述相对坐标系上的三维坐标,其中,所述定位规则规定了需要加载的定位算法以及所述定位算法的加载顺序。
  4. 根据权利要求1至3中任一项所述的装置,其中,所述定位决策模块和所述位置处理模块分别设置于数据中心物联网平台软件、业务系统软件、物联网网关或终端中。
  5. 根据权利要求4所述的装置,其中,所述位置感知模块采用超声波定位,无线射频识别RFID定位、激光定位、超带宽脉冲无线电IR-UWB定位、长期演进LTE定位或无线保真WIFI定位。
  6. 根据权利要求5所述的装置,其中,所述位置感知模块,还设置为接收启动指令、关闭指令、发射指令或反射指令,并根据所述启动指令、所述关闭指令、所述发射指令或所述反射指令相应地返回启动结果、关闭结果、发射结果或反射结果。
  7. 根据权利要求6所述的装置,其中,所述位置感知模块包括信号收发机、处理器,存储器以及接口,通过所述接口驻留在所述待定位目标上,所述处理器设置为控制与所述待定位目标通过指令形式交互。
  8. 根据权利要求5所述的装置,其中,所述位置处理模块,还设置为接收启动指令、关闭指令、数据初验指令或数据传输指令,根据所述启动指令、所述 关闭指令、所述数据初验指令或所述数据传输指令相应地返回启动结果、关闭结果、数据初验结果或数据传输的结果,其中,所述数据初验指令用于对接收到的所述定位感知信息根据预定规则进行校验,所述预定规则包括:历史数据偏离、信号强度不够和初始数据偏离中的至少一项;所述数据传输指令用于指示将通过校验的所述定位感知信息传输给所述定位决策模块。
  9. 根据权利要求8所述的装置,其中,所述位置处理模块包括:通讯部件、处理器、存储器以及接口,通过所述接口驻留在所述待定位目标上,通过所述通讯部件与所述定位决策模块建立网络连接,其中,所述存储器设置为存储所述定位感知信息,所述处理器设置为控制与所述待定位目标之间采用指令形式交互。
  10. 根据权利要求5所述的装置,其中,所述定位决策模块,设置为接收注册指令、注销指令、原始数据输送指令、原始数据获取指令、定位结果获取指令、报告获取指令或定位规则设置指令,并根据所述注册指令、所述注销指令、所述原始数据输送指令、所述原始数据获取指令、所述定位结果获取指令、所述报告获取指令或所述定位规则设置指令返回相应的结果,其中,原始数据输送指令用于输送所述定位感知信息,并生成定位决策任务,定位决策任务包括根据所述定位感知信息获得定位结果;所述原始数据获取指令用于返回定位感知信息;所述定位结果获取指令用于返回指定坐标系的定位结果数据;所述报告获取指令用于返回待定位区域的分析报告。
  11. 根据权利要求10所述的装置,其中,所述定位决策模块包括:数据管理部件、定位规则管理部件、定位算法部件、坐标系管理部件、以及网络服务接口,所述网络服务接口用于使得所述定位决策模块驻留在管理平台上,并与所述待定位目标之间采用指令形式交互。
  12. 一种定位方法,应用于物联网,该方法包括:
    在待定位目标所在的定位区域上建立以位置处理模块自身为原点的相对坐标系;
    通过建立的网络连接接收位置感知模块发送的待定位目标的定位感知信息;以及
    将所述定位感知信息以及所述相对坐标系发送至定位决策模块,以便所述定位决策模块根据所述定位感知信息对所述待定位目标在所述相对坐标系中的 位置进行定位。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求12所述的方法。
PCT/CN2017/089870 2016-06-24 2017-06-23 定位方法及装置 WO2017220031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610475936.9 2016-06-24
CN201610475936.9A CN107547587A (zh) 2016-06-24 2016-06-24 一种定位方法及装置

Publications (1)

Publication Number Publication Date
WO2017220031A1 true WO2017220031A1 (zh) 2017-12-28

Family

ID=60783900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089870 WO2017220031A1 (zh) 2016-06-24 2017-06-23 定位方法及装置

Country Status (2)

Country Link
CN (1) CN107547587A (zh)
WO (1) WO2017220031A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110363064A (zh) * 2019-05-20 2019-10-22 菜鸟智能物流控股有限公司 物流对象定位系统、方法以及电子设备
CN110381435A (zh) * 2019-05-31 2019-10-25 菜鸟智能物流控股有限公司 物联设备的定位系统和方法以及电子设备
CN110444043A (zh) * 2019-09-16 2019-11-12 深圳普智联科机器人技术有限公司 一种基于定位技术的停车位巡检系统及其方法
CN110874143A (zh) * 2019-11-14 2020-03-10 东莞市小精灵教育软件有限公司 传感器数据获取方法、智能终端、存储介质及电子设备
CN112085478A (zh) * 2020-09-17 2020-12-15 国网冀北电力有限公司计量中心 电力系统内外网穿透组合式营销现场核查系统及方法
CN114364018A (zh) * 2021-12-24 2022-04-15 盒马(中国)有限公司 定位方法以及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932684A (zh) * 2019-03-28 2019-06-25 招商局重庆交通科研设计院有限公司 基于超宽带距离交汇算法的隧道平面定位方法
CN111836409B (zh) * 2020-06-30 2023-06-09 镇江宇诚智能装备科技有限责任公司 一种多智能体系统结构及其控制方法
CN113504506A (zh) * 2021-06-07 2021-10-15 上海工程技术大学 一种基于远程控制的室内定位方法及系统
WO2024087224A1 (zh) * 2022-10-28 2024-05-02 Oppo广东移动通信有限公司 感知测量方法、装置、设备、介质和程序产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186242A (zh) * 2011-05-09 2011-09-14 江南大学 固定区域无线传感器网络移动节点定位方法
CN102215565A (zh) * 2011-06-13 2011-10-12 苏州两江科技有限公司 基于wsn技术的室内三维精确定位方法
CN102685886A (zh) * 2012-04-16 2012-09-19 浙江大学城市学院 一种应用于移动传感网的室内定位方法
US20130217333A1 (en) * 2012-02-22 2013-08-22 Qualcomm Incorporated Determining rewards based on proximity of devices using short-range wireless broadcasts
CN105676179A (zh) * 2016-01-26 2016-06-15 儒安科技有限公司 一种基于433MHz信号的室内定位方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8271626B2 (en) * 2001-01-26 2012-09-18 American Power Conversion Corporation Methods for displaying physical network topology and environmental status by location, organization, or responsible party
CN102307384B (zh) * 2011-08-08 2014-01-08 浙江大学 一种大量离散节点的并行定位方法的修正方法
CN103281778B (zh) * 2013-06-03 2016-04-13 上海北大方正科技电脑系统有限公司 基于无线传感网络的物联网智能手机室内定位方法及系统
CN204462839U (zh) * 2015-03-12 2015-07-08 青岛云连网络科技有限公司 电动汽车远程故障诊断系统
CN105547284B (zh) * 2015-12-31 2018-08-07 杭州网策通信技术有限公司 基于485通信的室内定位导航系统及监测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186242A (zh) * 2011-05-09 2011-09-14 江南大学 固定区域无线传感器网络移动节点定位方法
CN102215565A (zh) * 2011-06-13 2011-10-12 苏州两江科技有限公司 基于wsn技术的室内三维精确定位方法
US20130217333A1 (en) * 2012-02-22 2013-08-22 Qualcomm Incorporated Determining rewards based on proximity of devices using short-range wireless broadcasts
CN102685886A (zh) * 2012-04-16 2012-09-19 浙江大学城市学院 一种应用于移动传感网的室内定位方法
CN105676179A (zh) * 2016-01-26 2016-06-15 儒安科技有限公司 一种基于433MHz信号的室内定位方法和系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110363064A (zh) * 2019-05-20 2019-10-22 菜鸟智能物流控股有限公司 物流对象定位系统、方法以及电子设备
CN110381435A (zh) * 2019-05-31 2019-10-25 菜鸟智能物流控股有限公司 物联设备的定位系统和方法以及电子设备
CN110444043A (zh) * 2019-09-16 2019-11-12 深圳普智联科机器人技术有限公司 一种基于定位技术的停车位巡检系统及其方法
CN110874143A (zh) * 2019-11-14 2020-03-10 东莞市小精灵教育软件有限公司 传感器数据获取方法、智能终端、存储介质及电子设备
CN110874143B (zh) * 2019-11-14 2024-04-12 东莞市小精灵教育软件有限公司 传感器数据获取方法、智能终端、存储介质及电子设备
CN112085478A (zh) * 2020-09-17 2020-12-15 国网冀北电力有限公司计量中心 电力系统内外网穿透组合式营销现场核查系统及方法
CN114364018A (zh) * 2021-12-24 2022-04-15 盒马(中国)有限公司 定位方法以及装置
CN114364018B (zh) * 2021-12-24 2023-10-13 盒马(中国)有限公司 定位方法以及装置

Also Published As

Publication number Publication date
CN107547587A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
WO2017220031A1 (zh) 定位方法及装置
US7630323B2 (en) Self-configuring wireless personal area network
US10303905B2 (en) Method and system for asset tracking in an enterprise environment
US10037445B2 (en) Systems and methods for managing coverage area of wireless communication devices
Chen et al. A localization method for the Internet of Things
US7403744B2 (en) Self-associating wireless personal area network
CN107251623A (zh) 定位移动设备
CN113543094A (zh) 与无线节点网络中的id节点相关的事件候选的事件监测
KR101608976B1 (ko) 인프라 없는 환경에서의 근거리 무선통신망 기반 협업 위치 측정 방법 및 시스템
WO2019007257A1 (zh) 定位方法及系统、电子设备、计算机可读存储介质
CN103369671A (zh) 一种基于wifi的近距离定位系统及定位方法
US8761934B2 (en) Method and system for performing seamless localization
US20120013468A1 (en) Wireless object localization and registration system and method
CN102264128A (zh) 基于无线传感网的人员实时定位装置
US20240080796A1 (en) Methods, Systems and Computer Program Products for Determining Location of Tags in an Environment Using Mobile Antennas
CN102572695B (zh) 一种基于Zigbee技术的定位系统
Yang et al. Positioning using wireless networks: Applications, recent progress and future challenges
CN109922426A (zh) 平面二维基站定位方法及装置
US20230009721A1 (en) Wireless sensor network system, and device and method thereof
KR100991020B1 (ko) 유비쿼터스 센서 네트워크를 이용한 지정된 공간의 이동체 위치 추적 시스템
CN105759297A (zh) 追踪定位监控方法及智能穿戴装置、定位器、服务器
KR101065445B1 (ko) Rfid 태그의 이동을 감지하여 태그의 위치 정보를 자동으로 구하고 설정하는 rfid 시스템과 그 방법
CN103826324A (zh) 基于蓝牙捕捉移动智能终端进行信息交互的系统及方法
CN212876117U (zh) 一种特定区域内精准定位系统
WO2023185420A1 (zh) 用于定位的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814769

Country of ref document: EP

Kind code of ref document: A1