WO2017220025A1 - 复位控制方法及装置 - Google Patents

复位控制方法及装置 Download PDF

Info

Publication number
WO2017220025A1
WO2017220025A1 PCT/CN2017/089798 CN2017089798W WO2017220025A1 WO 2017220025 A1 WO2017220025 A1 WO 2017220025A1 CN 2017089798 W CN2017089798 W CN 2017089798W WO 2017220025 A1 WO2017220025 A1 WO 2017220025A1
Authority
WO
WIPO (PCT)
Prior art keywords
odu
service
reset
signal
unit
Prior art date
Application number
PCT/CN2017/089798
Other languages
English (en)
French (fr)
Inventor
张雪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017220025A1 publication Critical patent/WO2017220025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery

Definitions

  • the present disclosure relates to the field of communications, and in particular to a reset control method and apparatus.
  • An optical transport network is a comprehensive bearer device that uses Wavelength Division Multiplexing (WDM) technology.
  • WDM Wavelength Division Multiplexing
  • C-RAN new radio access network architecture
  • CPRI Common Public Radio Interface
  • the various mapping schemes of CPRI over OTN are specified in the ITU-T G.709 standard.
  • a scenario with tight fiber resources or long transmission distance supports multiple topologies such as ring topology, chain topology, and ring chain.
  • the use of OTN bearers while increasing the cost of OTN transmission equipment, greatly reduces the demand for optical fibers, and is suitable for large-scale C-RAN networking.
  • the OTN can also implement integrated bearer services for existing SDH/MSTP/PTN transmission, PON/Ethernet and other bare fiber services.
  • the OTN bearer has complete protection, operation management and maintenance (OAM) and Fault diagnosis capability.
  • the OTN bearer mode of the C-RAN architecture has become an inevitable choice for the commercialization of the long-term evolution (LTE) system in the future, and has also become a development trend of the radio access network architecture.
  • the architecture consists of three components: a distributed network of remote radio units (RRUs) and antennas; a high-bandwidth, low-latency optical transport network (OTN) that connects remote radio units and baseband units (BBUs); A centralized baseband processing pool consisting of a general-purpose processor and real-time virtualization technology.
  • CPRI requires high latency performance and requires symmetry of transmission and reception.
  • OTN bearer mode also has its own shortcomings, and the delay stability is not very high.
  • the embodiment of the present disclosure provides a reset control method and apparatus to solve at least the problem of poor delay stability of an OTN bearer in the related art.
  • a reset control method includes: controlling, according to first service layer service information, a data cache unit reset in a service transmission direction in an OTN bearer architecture of an optical transport network; according to a second service layer service The information controls a data buffer unit reset in a service receiving direction in the OTN bearer architecture.
  • controlling the data buffer unit reset in the service sending direction in the OTN bearer architecture according to the first service layer service information includes: determining whether a predetermined service in the service sending direction jumps from an abnormal state Go to a normal state; in a case where it is determined that the predetermined service jumps from the abnormal state to the normal state, detecting a first frame header signal of the first optical line data unit ODU; and detecting the first In the case of the first frame header signal of the ODU, the first frame header signal of the first ODU is used as the first service layer service information, and the direction of the service sending direction in the OTN bearer architecture is controlled.
  • the data cache unit is reset.
  • the first frame header signal of the first ODU is used as the first service layer service information
  • the data buffer unit reset in the service sending direction in the OTN bearer architecture is controlled to include: Generating a first reset signal when an first frame header signal of an ODU arrives; transmitting the first reset signal to a data buffer unit in a client side receiving direction in the service sending direction, so that the client side receives the direction The data buffer unit on the reset.
  • the method further The method includes: determining whether the missing signal of the ODU frame of the second ODU disappears, wherein the second ODU is an ODU lower than the first ODU; and determining that the loss signal of the ODU frame of the second ODU disappears In the case that the first frame header signal of the first ODU after the missing signal of the ODU frame of the second ODU disappears; the first after the loss signal of the ODU frame of the second ODU disappears When the first frame header signal of the ODU arrives, a second reset signal is generated; the second reset signal is sent to the data buffer unit in the line side transmission direction to reset the data buffer unit in the line side transmission direction.
  • controlling the data buffer unit reset in the service receiving direction in the OTN bearer architecture according to the second service layer service information includes: determining whether a missing signal of the ODU frame of the third ODU disappears; The first frame header signal of the fourth ODU is detected when the lost signal of the ODU frame of the third ODU disappears, wherein the fourth ODU is a higher order ODU than the third ODU; A third reset signal is generated when the first frame header signal of the ODU arrives; and the third reset signal is sent to the data buffer unit in the service receiving direction to reset the data buffer unit in the service receiving direction.
  • a reset control apparatus including: a first control module, configured to control, according to the first service layer service information, a data cache unit in a service sending direction in an optical transport network OTN bearer architecture And a second control module, configured to control, according to the second service layer service information, a data cache unit reset in a service receiving direction in the OTN bearer architecture.
  • the first control module includes: a first determining unit, configured to determine whether the predetermined service in the service sending direction changes from an abnormal state to a normal state; and the first detecting unit is configured to determine the location The first frame header signal of the first optical line data unit ODU is detected when the predetermined service is hopped from the abnormal state to the normal state; and the control unit is configured to detect the first ODU
  • the first frame header signal of the first ODU is used as the first service layer service information, and the data buffer unit in the service sending direction in the OTN bearer architecture is controlled. Reset.
  • control unit is configured to: generate a first reset signal when a first frame header signal of the first ODU arrives; and send the first reset signal to a client side in a service sending direction
  • a data buffer unit in the receiving direction resets the data buffer unit in the receiving direction of the client side.
  • control unit is further configured to: determine whether the missing signal of the ODU frame of the second ODU disappears, wherein the second ODU is an ODU lower than the first ODU; If the lost signal of the ODU frame of the second ODU disappears, the first frame header signal of the first ODU after the missing signal of the ODU frame of the second ODU disappears; and the ODU frame of the second ODU The first after the lost signal disappears
  • a second reset signal is generated; the second reset signal is sent to the data buffer unit in the line side transmission direction to reset the data buffer unit in the line side transmission direction.
  • the second control module includes: a second determining unit, configured to determine whether a missing signal of the ODU frame of the third ODU is lost; and a second detecting unit, configured to determine an ODU frame of the third ODU
  • the first frame header signal of the fourth ODU is detected in the case that the lost signal disappears, wherein the fourth ODU is a higher order ODU than the third ODU; and the generating unit is configured to be in the fourth ODU a third reset signal is generated when the first frame header signal arrives; the processing unit is configured to send the third reset signal to the data buffer unit in the service receiving direction to enable data buffering in the service receiving direction Unit reset.
  • a storage medium for storing program code for performing the reset control method according to any one of the preceding claims.
  • the data cache unit reset in the service sending direction in the OTN bearer architecture of the optical transport network is controlled according to the first service layer service information; and the service receiving direction in the OTN bearer architecture is controlled according to the second service layer service information.
  • the data buffer unit is reset. It can be seen that the data cache unit in the service sending direction and the data buffer unit in the service receiving direction are reset by using the foregoing solution, so that the data buffer unit in the OTN bearer architecture is reset step by step, thereby improving
  • the delay stability of the OTN bearer solves the problem of poor delay stability of the OTN bearer in the related art.
  • FIG. 1 is a flow chart of a reset control method in accordance with an embodiment of the present disclosure
  • FIG. 2 is a structural block diagram 1 of a reset control device according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram 2 of a reset control device according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram 3 of a structure of a reset control device according to an embodiment of the present disclosure
  • FIG. 5 is a structural block diagram of a reset control apparatus according to an alternative embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a reset control method in accordance with an alternative embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of a reset control apparatus according to an alternative example 1 of the present disclosure.
  • FIG. 8 is a flowchart of a reset control method according to an alternative example 1 of the present disclosure.
  • FIG. 9 is a block diagram showing the structure of a reset control device according to an alternative example 2 of the present disclosure.
  • FIG. 10 is a block diagram showing the structure of a reset control apparatus according to an alternative example 3 of the present disclosure.
  • FIG. 1 is a flowchart of a reset control method according to an embodiment of the present disclosure. As shown in FIG. 1, the flow includes the following steps:
  • Step S102 controlling, according to the first service layer service information, a data cache unit reset in a service sending direction in an OTN bearer architecture of the optical transport network;
  • Step S104 Control, according to the second service layer service information, a data buffer unit reset in a service receiving direction in the OTN bearer architecture.
  • the above reset control method may be, but is not limited to, applied to a scenario in which OTN bears data transmission.
  • OTN carries the scenario of transmission of CPRI data.
  • the data cache unit reset in the service sending direction in the OTN bearer architecture of the optical transport network is controlled according to the foregoing service layer service information; and the data cache in the service receiving direction in the OTN bearer architecture is controlled according to the second service layer service information.
  • the unit is reset, and it can be seen that the data buffer unit in the service sending direction and the data buffer unit in the service receiving direction are reset by using the foregoing solution, and the data buffer unit in the OTN bearer architecture is reset step by step, thereby improving the OTN.
  • the delay stability of the bearer solves the problem of poor delay stability of the OTN bearer in the related art.
  • step S102 determining whether to detect the first service layer service information (for example, the first frame header signal of the first ODU) by determining the status of the predetermined service in the service sending direction, if the first When the service layer service information is detected, the data cache unit in the service sending direction is reset by the first service layer service information.
  • the first service layer service information for example, the first frame header signal of the first ODU
  • determining whether the predetermined service in the service sending direction jumps from the abnormal state to the normal state, and detecting that the predetermined service jumps from the abnormal state to the normal state, detecting the first frame of the first optical line data unit ODU detecting the first frame of the first optical line data unit ODU
  • the header signal when the first frame header signal of the first ODU is detected, uses the first frame header signal of the first ODU as the first service layer service information, and controls the service sending direction in the OTN bearer architecture.
  • the data cache unit is reset.
  • the predetermined service in the service sending direction may include, but is not limited to, including a client side service.
  • the first frame header signal of the first ODU may be triggered to generate the first A reset signal is used to reset the data buffer unit in the receiving direction of the client side by using the first reset signal.
  • a first reset signal is generated, and the first reset signal is sent to a data buffer unit in a receiving direction of the client side in the service sending direction, so that the client side receives the direction.
  • the data cache unit is reset.
  • the ODU frame of the second ODU may also be determined. Whether the lost signal disappears, wherein the second ODU is an ODU lower than the first ODU, and after detecting that the lost signal of the ODU frame of the second ODU disappears, detecting that the lost signal of the ODU frame of the second ODU disappears.
  • the first frame header signal of the first ODU, the first of the first ODU after the loss signal of the ODU frame of the second ODU disappears When the frame header signal arrives, a second reset signal is generated, and the second reset signal is sent to the data buffer unit in the line side transmission direction to reset the data buffer unit in the line side transmission direction.
  • the second reset signal is generated when the first frame header signal of the first ODU after the missing signal of the ODU frame of the second ODU disappears,
  • the data buffer unit in the line side transmission direction is reset by the second reset signal.
  • step S104 it may be, but is not limited to, determining whether to detect the first frame header signal of the fourth ODU by determining whether the lost signal of the ODU frame of the third ODU in the service receiving direction disappears.
  • a third reset signal is generated when the first frame header signal of the fourth ODU is detected, and the data buffer unit in the service receiving direction is reset by generating the third reset signal.
  • the data cache unit is reset.
  • a reset control device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram 1 of a reset control apparatus according to an embodiment of the present disclosure. As shown in FIG. 2, the apparatus includes:
  • the first control module 22 is configured to control, according to the first service layer service information, a data cache unit reset in a service sending direction in an OTN bearer architecture of the optical transport network;
  • the second control module 24 is coupled to the first control module 22 for controlling the data buffer unit reset in the service receiving direction in the OTN bearer architecture according to the second service layer service information.
  • the above reset control device may be, but is not limited to, applied to a scenario in which OTN bears data transmission.
  • OTN carries the scenario of transmission of CPRI data.
  • the first control module controls the data buffer unit reset in the service sending direction in the OTN bearer architecture of the optical transport network according to the first service layer service information; the second control module controls the OTN bearer architecture according to the second service layer service information.
  • the data buffer unit in the service receiving direction is reset. It can be seen that the data buffer unit in the service sending direction and the data buffer unit in the service receiving direction are reset by using the foregoing solution, and the data buffer unit in the OTN bearer architecture is implemented.
  • the level reset therefore, improves the delay stability of the OTN bearer, thereby solving the problem of poor delay stability of the OTN bearer in the related art.
  • FIG. 3 is a structural block diagram 2 of a reset control apparatus according to an embodiment of the present disclosure.
  • the first control module 22 includes:
  • the first determining unit 32 is configured to determine whether the predetermined service in the service sending direction jumps from the abnormal state to the normal state;
  • the first detecting unit 34 is coupled to the first determining unit 32, for detecting the first frame header signal of the first optical line data unit ODU in the case that it is determined that the predetermined service jumps from the abnormal state to the normal state;
  • the control unit 36 is coupled to the first detecting unit 34, configured to use the first frame header signal of the first ODU as the first service layer service information, in the case that the first frame header signal of the first ODU is detected. Controlling data buffer unit reset in the direction of service transmission in the OTN bearer architecture.
  • control unit 36 is configured to: generate a first reset signal when the first frame header signal of the first ODU arrives; and send the first reset signal to the data buffer unit in the client side receiving direction in the service sending direction. , the data buffer unit in the receiving direction of the client side is reset.
  • control unit 36 is further configured to: determine whether the missing signal of the ODU frame of the second ODU disappears, where the second ODU is an ODU lower than the first ODU; and the ODU frame of the second ODU is determined to be lost.
  • the signal disappears detecting the first frame header signal of the first ODU after the missing signal of the ODU frame of the second ODU disappears; the first of the first ODU after the missing signal of the ODU frame of the second ODU disappears
  • a second reset signal is generated; the second reset signal is sent to the data buffer unit in the line side transmission direction to reset the data buffer unit in the line side transmission direction.
  • FIG. 4 is a structural block diagram 3 of a reset control apparatus according to an embodiment of the present disclosure.
  • the second control module 24 includes:
  • the second determining unit 42 is configured to determine whether the missing signal of the ODU frame of the third ODU disappears
  • the second detecting unit 44 is coupled to the second determining unit 42 for detecting the first frame header signal of the fourth ODU in the case that it is determined that the missing signal of the ODU frame of the third ODU disappears, wherein the fourth ODU Is a higher order ODU than the third ODU;
  • a generating unit 46 coupled to the second detecting unit 44, for generating a third reset signal when the first frame header signal of the fourth ODU arrives;
  • the processing unit 48 is coupled to the generating unit 46 for transmitting the third reset signal to the data buffer unit in the service receiving direction to reset the data buffer unit in the service receiving direction.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Alternative embodiments of the present disclosure may be, but are not limited to, applied to a high-bandwidth, low-latency optical transmission network connecting a remote radio unit and a baseband unit (BBU), and an alternative embodiment of the present disclosure provides a reset control method and apparatus.
  • CPRI CPRI over OTN scheme
  • OTN bearer mode also has its own shortcomings, and the delay stability is not very high.
  • the reset control method and device provided by the optional embodiment of the present disclosure can achieve the effect of delay stability, so that the delay of the OTN device transmission reaches a stable value, thereby can It satisfies the need to carry CPRI services in OTN equipment.
  • the problem of delay in the OTN bearer service is unstable.
  • the optional embodiment of the present disclosure performs step-by-step resetting of each part of the cache unit that is internally processed by the OTN service to ensure the stability of the service during the recovery process. Therefore, in the C-RAN architecture solution, after the OTN device is accessed, the wireless device meets the requirement for delay stability.
  • FIG. 5 is a structural block diagram of a reset control apparatus according to an alternative embodiment of the present disclosure. As shown in FIG. 5, the reset control apparatus may be applied in an OTN step-by-step mapping system, and the reset control apparatus includes:
  • Customer service detection module used to detect whether the customer side service is normal, and output an indication signal (clt_lof) to the client side to receive a reset generation module.
  • the indication signal is hopping, when the service is from abnormal to normal or from normal to abnormal. Produce a jump.
  • Reset control signal extraction module This signal is used as an input signal for the client to receive the reset generation module, and is mainly derived from the downstream to be mapped to the ODU.
  • This signal is the frame header signal of the ODU. If the entire service processing only includes the first-level mapping, the frame header signal That is, the frame header signal of the ODU; if it is a two-level mapping, this signal is the frame header signal (hi_odu_fp) of the high-order ODU.
  • the client receives a reset generation module: for generating a reset signal (corresponding to a first reset signal), which resets the client receiving data buffer unit and the client service to the low-order ODU mapping buffer unit.
  • This signal generation needs to satisfy two conditions: 1), receiving an indication signal output by the detection module on the client side, when the signal jumps from a service failure (corresponding to the abnormal state described above) to a normal operation (corresponding to the normal state described above). 2) After the customer service is normal, waiting for the signal extracted by the reset control signal extraction module, detecting that the first frame header indication signal of the reset control signal extraction module is valid. The reset signal is generated when both of the above conditions are satisfied.
  • Low-order ODU detection module used to detect whether the low-order ODU frame is lost. If the service is from normal to lost, the output signal (lo_odu_lof) will change from low level to high level. If it is from loss to normal, this signal is high. The level goes low.
  • the line transmission reset generation module is configured to generate a control reset signal (corresponding to the second reset signal), and reset the low-order ODU to the high-order ODU mapping buffer unit.
  • the reset signal is generated after the falling edge of the low-order lo_odu_lof signal, and when the first high-order ODU header indication signal (hi_odu_fp) is valid, the control generates a reset.
  • the client sends a reset generation module: from the line side to the client side, the entire direction is demapped, and the most serious accumulation of all data is the transmission data buffer unit of the client port.
  • a reset signal (corresponding to the third reset signal described above) is generated. This reset signal controls the reset of the data storage unit associated with the client's transmit port.
  • the data storage unit in the receiving direction of the client side is first reset by the method of step-by-step resetting, and then the data buffer unit in the direction of the line side transmission is reset along the service flow direction, and finally The traffic flow resets the data storage unit on the sending side of the client.
  • the entire process resets the data cache unit from the client layer to the service layer across the clock according to the information carried in the service layer service, ensuring that all the entire service path is The data stored by the data buffer unit is stable within a prescribed value, thereby solving the problem that the data cache unit stores data changes due to clock fluctuations during the service interruption and recovery.
  • the delay stability over the entire data path is ensured, thereby meeting the requirements for delay stability when the bearer network carries wireless services.
  • the mapping of the client service to the ODU service layer is generally involved, or the step-by-step mapping or the step-by-step mapping.
  • the method of the alternative embodiment of the present disclosure may be used to make the mapping and demapping.
  • the delay of the entire data processing path such as direction is stable.
  • FIG. 6 is a flowchart of a reset control method according to an alternative embodiment of the present disclosure.
  • the customer service detection module detects a customer service and detects whether the service has an abnormality. If the service is abnormal, a high level is output as an indication signal; if the service is normal, the high level flag signal is pulled low to become a low level. Then, the detection result is sent to the next judgment selection module, and the indication signal outputted by the previous stage is judged.
  • the indication signal is always high level, indicating that the service abnormality still exists, and does not disappear, and the customer service detection operation is continued at this time.
  • FIG. 7 is a structure of a reset control apparatus according to an alternative example 1 of the present disclosure.
  • the block diagram, as shown in Figure 7, includes:
  • GXB Used to convert high-speed serial client data through a high-speed serial interface, convert it to parallel data, and recover the data clock.
  • the client receives the first-in first-out buffer (fifo): the clock domain converts the fifo, and converts the data in the client recovery clock domain to the data in the local clock domain of the board for subsequent processing.
  • the clock domain converts the fifo, and converts the data in the client recovery clock domain to the data in the local clock domain of the board for subsequent processing.
  • Clt_rx_dalay_rst module After detecting that the customer received service lof alarm disappears, a reset signal is generated when the first frame header of the high-order ODU2 arrives.
  • Odu0 to odu2 map fifo This fifo controls the data of ODU0 to cache data in the mapping process of ODU2 service.
  • Line_tx_delay_rst The line side sends a reset module. This module detects the overhead of the low-order ODU0. After the ODU0 frame loss returns to normal, it waits for the first frame header indication signal of the ODU2 to arrive, generates a reset signal, and resets the ODU0 to ODU2 mapping module.
  • OTU2_tx OTU2 framing module, which packages ODU2 data into OTU2 format and converts it to the line side transmission clock domain and sends it to the downstream module.
  • SFI4.2 interface High-speed interface for parallel-to-serial conversion, high-speed transmission on the upper line side.
  • OTU2_rx Performs bit-width conversion and framing on the data received by the parallel interface, and outputs OTU2 frames.
  • Odu2 to ODU0 unmap fifo ODU2 service to ODU0 demapping data buffer fifo.
  • Odu0 overhead locating the ODU0 data solved by the demapping and related overhead detection processing, and outputting the ODU0 frame loss lof/oof signal.
  • Odu0 to customer service demapping fifo Data cache unit for solving customer service from ODU0 service.
  • the customer sends fifo: the clock domain conversion fifo between the customer service and the high-speed interface, to realize the switching of the customer data to the clock domain.
  • Clt_tx_delay_rst The client sends a side delay reset control module. After the ODU0 lost signal output according to the upstream ODU0 overhead disappears, when the first frame header of the OTU2 arrives, the two data buffers fifo in the direction of the client transmission are reset. The water level is kept at the ideal waterline.
  • the reset operation is performed according to the service processing flow.
  • the entire service mapping direction is controlled according to the client side state and the frame header of the high-order ODU finally mapped.
  • the service demapping direction is based on the state of the low-order ODU and the high-order.
  • the ODU's frame header signal controls the reset.
  • the reset process is performed step by step, first receiving the direction and then sending the direction, so that the operation can finally achieve the desired effect.
  • FIG. 8 is a flowchart of a reset control method according to an alternative example 1 of the present disclosure. As shown in FIG. 8, the flow includes:
  • Step S802 detecting whether the customer service reception is normal.
  • Step S804 if the customer service changes from abnormal to normal, the process proceeds to step S806 to detect the frame header signal of the ODU2; if the customer service is not normal, the process proceeds to step S802 to continue the detection.
  • Step S806 after the service is normal, detecting the first frame header of the ODU2, and when the first frame header of the ODU2 comes, generating a first reset signal.
  • Step S808 resetting the customer receiving fifo.
  • Step S812 detecting whether the ODU0 frame is normal.
  • step S814 if the ODU0 frame is lost, the process returns to step S812 to continue the detection; if the ODU0 frame loss signal disappears, the process proceeds to step S816.
  • Step S816 after the ODU0 frame loss signal disappears, the first frame header signal of the ODU2 is detected, and a reset signal is generated after the detection.
  • step S818 the mapping fifo of ODU0 to ODU2 is reset.
  • Step S822 detecting whether the ODU0 frame decoded by the demapping is correct in the direction of the client sending.
  • step S824 if the ODU0 frame is incorrect, the process returns to step S822 for detection; if the ODU0 service is lost from the frame to the normal service, the operation proceeds to step S826.
  • Step S826 after the ODU0 service is normal, the ODU2 frame header signal is detected, and when the first frame header comes, a reset pulse is generated.
  • step S828 the fifo of the client sending direction is reset.
  • FIG. 9 is a structural block diagram of a reset control apparatus according to an alternative example 2 of the present disclosure, as shown in FIG.
  • the device includes:
  • the client receives the data buffer unit (clock domain conversion fifo): the service flow direction is viewed. After the service enters the high-speed serial interface from the external fiber, it is converted into low-speed data for processing.
  • the clock recovered generally here is different from the subsequent OTN mapping processing clock. Therefore, a data buffer unit is required to perform clock domain conversion. If the data cache unit is not well controlled, the storage capacity will be different each time the power is turned off or the service is disconnected, thereby affecting the delay variation of the entire data path.
  • Customer service to ODUk mapping module The main function of this module is to control the mapping of the previously converted customer service data to the corresponding ODUk according to the OTN related standard, and then uniformly encapsulate it into the standard OTU on the line side transmission.
  • This example is the customer service stm. -4 is first asynchronously mapped to the ODU1_TS, and then the ODU1 is converted into an OTU1 frame and then transmitted by the high-speed serial interface and then transmitted on the line side.
  • ODUk to customer service demapping For the reverse process of the mapping module, the payload data mapped to the ODUk is solved. Here, the stm-4 service is demapped from the ODU1_ts.
  • the client sends the direction data buffer unit: converts the demapped stm-4 service data into a clock domain, converts it to the customer service clock domain, and then returns to the client port fiber for transmission through the high-speed serial interface.
  • the device also includes:
  • Control delay reset module 1 (delay_rst_1): This module is applied in the direction of service transmission.
  • the access signal is jointly controlled by the upstream service monitoring signal and the ODU1 service frame header signal to be mapped downstream.
  • the upstream monitoring signal detects that the service is invalid.
  • a valid signal is generated.
  • the control When the valid signal is further according to the first frame header of the downstream ODU1, the control generates a reset signal (RST1) to reset the two data buffer units (fifo) on the receiving side of the client, thereby The data depth of this cache unit is controlled to be stable, and the delay of this part is stabilized.
  • Control delay reset module 2 (delay_rst_2): This module is applied in the service receiving direction, waits for the OTU1 frame header to generate a pulse, and resets the client's sending part of the buffer unit (fifo), so that the receiving direction path buffer The unit storage condition reaches a steady state, and finally the purpose of this part of the delay is stabilized.
  • the two-part reset module can be flexibly applied in the vicinity of the data buffer unit of the entire data path, and according to the upstream and downstream service flow direction, the signal related to the depth of the data of the storage unit is first controlled and reset from the upstream sending direction of the service flow. Then, according to the service flow direction, the data storage unit in the receiving direction is reset, thereby achieving the purpose of step-by-step resetting of the service, and finally the water level of the data storage unit of the entire data path is in a stable state, thereby ensuring the delay in the entire customer service transmission process. Time stability.
  • a flow chart of a reset control method is also provided in Optional Example 2.
  • the process of the method includes the following steps:
  • the first step is to reset the data storage unit that controls the sending direction according to the service flow direction and the service mapping process.
  • Step 2 Corresponding to the sending direction, the control data storage unit is reset in the service receiving direction
  • FIG. 10 is a structural block diagram of a reset control apparatus according to the optional example 3 of the present disclosure, as shown in FIG.
  • the device includes:
  • Receive clock domain and bit width conversion unit clock domain conversion and bit width conversion fifo or data storage unit, in order to cache some data in the data processing process.
  • GFP-T encapsulation and ODU0 framing GE data from the client side is encapsulated into ODU0 after being encapsulated by GFP-T. At this time, the data is continuously transmitted in the frame structure of ODU0.
  • ODU1 framing and encapsulation to OTU1 Mapping ODU0 to ODU1, including the data buffer unit used in the conversion, and the framing and clock domain conversion fifo required for OTU1 framing.
  • ODU1 to ODU0 demapping including OTU1 to ODU1 clock domain conversion unit and ODU1 to ODU0 demapping unit, here also refers to the data storage unit, but the data stored here is small and the water level is stable.
  • GFP-T decapsulation The data encapsulated in the GFP-T format is decoded out of the client side data.
  • Transmit bit width and clock domain conversion unit a bit width conversion data storage unit and a clock domain conversion unit required for decapsulation.
  • the device also includes the following reset control sections:
  • Control delay reset module 1 (delay_rst_1): according to the service performance monitoring module accessed by the client side, whether the service output module loses the alarm, wait for the first frame header signal to come after the alarm disappears, and generate a reset signal (rst1), the frame
  • the header signal is the frame header signal that the client service will eventually map to the ODU1 frame structure, because the client service needs to be loaded into the payload in the ODU1 frame structure, and the ODU1 frame header has a portion that does not need to be filled, so the control is performed at this vacancy. Reset.
  • Control delay reset module 2 (delay_rst_2): This module is applied in the ODU0 to ODU1 mapping process, similar to the control delay reset module 1.
  • the ODU0 is mapped into the ODU1 as the payload data, and the ODU0 service is detected as invalid. After the service is normal, when the first frame header of the ODU1 is approached, a reset signal is generated, and the storage unit in the ODU0 to ODU1 mapping process is reset to stabilize the water level.
  • Control delay reset module 3 (delay_rst_3): This module is applied to the downstream module and monitors the demapped ODU0. When the ODU0 service is lost from service to service, it waits for the first frame header of ODU1 to temporarily generate a reset. The signal resets the downstream related business storage unit (customer port fifo) so that these fifo reach the desired water level.
  • a flow chart of a reset control method is also provided in Optional Example 2.
  • the process of the method includes the following steps:
  • the first step according to the flow of the service, first at the customer receiving port, according to the relevant signal of the next level mapping, return to the data storage unit that controls the level to perform resetting, and the reset should be performed first in time. It can maintain the water level of the data storage unit that can store the service to an ideal stable state.
  • Step 2 Perform a reset operation on the relevant data storage unit of the next level mapping, so that the water level of the relevant business data storage unit in this part is stabilized to an ideal state.
  • the third step the reset operation of the upper level will affect the next level along the service flow.
  • the ODU0 is invalidated.
  • the first frame header of the ODU1 is waited for the reset operation.
  • the fifo buffer unit is reset, so that the water level of the data buffer unit is maintained near the ideal water level, thereby achieving the whole
  • the path data buffer unit is stable in water level, and finally achieves the effect of stable delay after each service change or failure.
  • the reset control method and apparatus provided by the embodiments of the present disclosure and the optional embodiment firstly control the data storage unit of the receiving part of the client side to perform resetting by means of step-by-step resetting, and then control the line along the service flow direction.
  • the data buffer unit in the side transmission direction performs resetting, and finally resets along the traffic flow to the data storage unit on the transmitting side of the control client.
  • the entire process resets the data buffer unit of the client layer to the service layer across the clock according to the information carried by the service layer service, thereby ensuring that the data stored in all the data cache units in the entire service path is stable within a prescribed value, thereby solving the problem.
  • the data cache unit stores data changes due to clock fluctuations. The delay stability on the entire data path is ensured, so as to meet the delay stability requirement when the bearer network carries the wireless service.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor executes the method steps described in the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the reset control method provided by the embodiment of the present disclosure may be implemented in the OTN bearer architecture by resetting the data buffer unit in the service sending direction and the data buffer unit in the service receiving direction in the scenario of applying the OTN bearer data transmission.
  • the data buffer unit performs step-by-step resetting, thereby improving the delay stability of the OTN bearer, thereby solving the problem of poor delay stability of the OTN bearer in the related art.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供了一种复位控制方法及装置,其中,该方法包括:根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;根据第二服务层业务信息控制所述OTN承载架构中的业务接收方向上的数据缓存单元复位,解决了相关技术中OTN承载的延时稳定性差的问题,提高了OTN承载的延时稳定性。 (图1)

Description

复位控制方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种复位控制方法及装置。
背景技术
光传输网络(Optical Transport Network,简称为OTN)是采用波分复用(Wavelength Division Multiplexing,简称为WDM)技术的综合承载设备,在新型无线接入网架构(C-RAN)承载方案中,把通用公共无线电接口(Common Public Radio Interface,简称为CPRI)作为其承载的业务类型之一,CPRI over OTN的各种映射方案在ITU-T G.709标准中已有规定,这种承载方式适用于光纤资源紧张或者传输距离长的场景,支持环形拓扑、链形拓扑,环带链等多种拓扑结构。采用OTN承载,虽然增加了OTN传输设备成本,但极大降低了对光纤的需求,适合大规模C-RAN组网。同时OTN除了可以承载C-RAN外,还可以对已有的SDH/MSTP/PTN传输、PON/以太网等裸纤业务实现综合承载,同时OTN承载具备完善的保护、操作管理维护(OAM)和故障诊断能力。
C-RAN构架的OTN承载方式成为未来长期演进(LTE)制式规模商用的必然选择,也成为无线接入网构架发展趋势。架构主要包含三个组成部分:由远端射频单元(RRU)和天线组成的分布式网络;连接远端射频单元和基带单元(BBU)的高宽带低延迟的光传输网络(OTN);由高性能通用处理器和实时虚拟技术组成的集中式基带处理池。
CPRI over OTN方案中,CPRI对延时性能要求较高,而且要求传送与接收的对称性。OTN承载方式也有自身缺点,延时稳定性不是很高。
针对相关技术中OTN承载的延时稳定性差的问题,目前还没有有效地解决方案。
发明内容
本公开实施例提供了一种复位控制方法及装置,以至少解决相关技术中OTN承载的延时稳定性差的问题。
根据本公开的一个实施例,提供了一种复位控制方法,包括:根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;根据第二服务层业务信息控制所述OTN承载架构中的业务接收方向上的数据缓存单元复位。
可选地,根据所述第一服务层业务信息控制所述OTN承载架构中的所述业务发送方向上的数据缓存单元复位包括:判断所述业务发送方向上的预定业务是否从异常状态跳变到正常状态;在判断出所述预定业务从所述异常状态跳变到所述正常状态的情况下,检测第一光线路数据单元ODU的第一个帧头信号;在检测到所述第一ODU的第一个帧头信号的情况下,将所述第一ODU的第一个帧头信号作为所述第一服务层业务信息,控制所述OTN承载架构中的所述业务发送方向上的数据缓存单元复位。
可选地,将所述第一ODU的第一个帧头信号作为所述第一服务层业务信息,控制OTN承载架构中的所述业务发送方向上的数据缓存单元复位包括:在所述第一ODU的第一个帧头信号到来时产生第一复位信号;将所述第一复位信号发送至所述业务发送方向上的客户侧接收方向上的数据缓存单元,使所述客户侧接收方向上的数据缓存单元复位。
可选地,在将所述第一复位信号发送至所述业务发送方向上的客户侧接收方向上的数据缓存单元,使所述客户侧接收方向上的数据缓存单元复位之后,所述方法还包括:判断第二ODU的ODU帧的丢失信号是否消失,其中,所述第二ODU是比所述第一ODU低阶的ODU;在判断出所述第二ODU的ODU帧的丢失信号消失的情况下,检测所述第二ODU的ODU帧的丢失信号消失后的所述第一ODU的第一个帧头信号;在所述第二ODU的ODU帧的丢失信号消失后的所述第一ODU的第一个帧头信号到来时,产生第二复位信号;将所述第二复位信号发送至线路侧发送方向上的数据缓存单元,使所述线路侧发送方向上的数据缓存单元复位。
可选地,根据所述第二服务层业务信息控制所述OTN承载架构中的业务接收方向上的数据缓存单元复位包括:判断第三ODU的ODU帧的丢失信号是否消失;在判断出所述第三ODU的ODU帧的丢失信号消失的情况下,检测第四ODU的第一个帧头信号,其中,所述第四ODU是比所述第三ODU高阶的ODU;在所述第四ODU的第一个帧头信号到来时产生第三复位信号;将所述第三复位信号发送至所述业务接收方向上的数据缓存单元,使所述业务接收方向上的数据缓存单元复位。
根据本公开的另一个实施例,提供了一种复位控制装置,包括:第一控制模块,用于根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;第二控制模块,用于根据第二服务层业务信息控制所述OTN承载架构中的业务接收方向上的数据缓存单元复位。
可选地,所述第一控制模块包括:第一判断单元,用于判断所述业务发送方向上的预定业务是否从异常状态跳变到正常状态;第一检测单元,用于在判断出所述预定业务从所述异常状态跳变到所述正常状态的情况下,检测第一光线路数据单元ODU的第一个帧头信号;控制单元,用于在检测到所述第一ODU的第一个帧头信号的情况下,将所述第一ODU的第一个帧头信号作为所述第一服务层业务信息,控制所述OTN承载架构中的所述业务发送方向上的数据缓存单元复位。
可选地,所述控制单元用于:在所述第一ODU的第一个帧头信号到来时产生第一复位信号;将所述第一复位信号发送至所述业务发送方向上的客户侧接收方向上的数据缓存单元,使所述客户侧接收方向上的数据缓存单元复位。
可选地,所述控制单元还用于:判断第二ODU的ODU帧的丢失信号是否消失,其中,所述第二ODU是比所述第一ODU低阶的ODU;在判断出所述第二ODU的ODU帧的丢失信号消失的情况下,检测所述第二ODU的ODU帧的丢失信号消失后的所述第一ODU的第一个帧头信号;在所述第二ODU的ODU帧的丢失信号消失后的所述第一 ODU的第一个帧头信号到来时,产生第二复位信号;将所述第二复位信号发送至线路侧发送方向上的数据缓存单元,使所述线路侧发送方向上的数据缓存单元复位。
可选地,所述第二控制模块包括:第二判断单元,用于判断第三ODU的ODU帧的丢失信号是否消失;第二检测单元,用于在判断出所述第三ODU的ODU帧的丢失信号消失的情况下,检测第四ODU的第一个帧头信号,其中,所述第四ODU是比所述第三ODU高阶的ODU;产生单元,用于在所述第四ODU的第一个帧头信号到来时产生第三复位信号;处理单元,用于将所述第三复位信号发送至所述业务接收方向上的数据缓存单元,使所述业务接收方向上的数据缓存单元复位。
根据本公开的再一个实施例,提供了一种存储介质,用于存储程序代码,所述程序代码用于执行如上任一项所述的复位控制方法。
通过本公开,根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;根据第二服务层业务信息控制所述OTN承载架构中的业务接收方向上的数据缓存单元复位,由此可见,采用上述方案复位业务发送方向上的数据缓存单元和业务接收方向上的数据缓存单元,实现了对OTN承载架构中的数据缓存单元进行逐级复位,因此,提高了OTN承载的延时稳定性,从而解决了相关技术中OTN承载的延时稳定性差的问题。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的一种复位控制方法的流程图;
图2是根据本公开实施例的一种复位控制装置的结构框图一;
图3是根据本公开实施例的一种复位控制装置的结构框图二;
图4是根据本公开实施例的一种复位控制装置的结构框图三;
图5是根据本公开可选实施例的一种复位控制装置的结构框图;
图6是根据本公开可选实施例的一种复位控制方法的流程图;
图7是根据本公开可选示例一的一种复位控制装置的结构框图;
图8是根据本公开可选示例一的一种复位控制方法的流程图;
图9是根据本公开可选示例二的一种复位控制装置的结构框图;
图10是根据本公开可选示例三的一种复位控制装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二” 等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种复位控制方法,图1是根据本公开实施例的一种复位控制方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;
步骤S104,根据第二服务层业务信息控制OTN承载架构中的业务接收方向上的数据缓存单元复位。
可选地,上述复位控制方法可以但不限于应用于OTN承载数据传输的场景中。例如:OTN承载CPRI数据的传输的场景。
通过上述步骤,根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;根据第二服务层业务信息控制OTN承载架构中的业务接收方向上的数据缓存单元复位,由此可见,采用上述方案复位业务发送方向上的数据缓存单元和业务接收方向上的数据缓存单元,实现了对OTN承载架构中的数据缓存单元进行逐级复位,因此,提高了OTN承载的延时稳定性,从而解决了相关技术中OTN承载的延时稳定性差的问题。
可选地,在上述步骤S102中,可以通过判断业务发送方向上的预定业务的状态确定是否检测第一服务层业务信息(例如:第一ODU的第一个帧头信号),如果对第一服务层业务信息进行检测,则通过第一服务层业务信息控制业务发送方向上的数据缓存单元复位。例如:判断业务发送方向上的预定业务是否从异常状态跳变到正常状态,在判断出预定业务从异常状态跳变到正常状态的情况下,检测第一光线路数据单元ODU的第一个帧头信号,在检测到第一ODU的第一个帧头信号的情况下,将第一ODU的第一个帧头信号作为第一服务层业务信息,控制OTN承载架构中的业务发送方向上的数据缓存单元复位。
可选地,业务发送方向上的预定业务可以但不限于包括客户侧业务。
可选地,在第一服务层业务信息为第一ODU的第一个帧头信号的情况下,在上述步骤S102中,可以但不限于通过第一ODU的第一个帧头信号触发产生第一复位信号,从而利用第一复位信号复位客户侧接收方向上的数据缓存单元。例如:在第一ODU的第一个帧头信号到来时产生第一复位信号,将第一复位信号发送至业务发送方向上的客户侧接收方向上的数据缓存单元,使客户侧接收方向上的数据缓存单元复位。
可选地,在将第一复位信号发送至业务发送方向上的客户侧接收方向上的数据缓存单元,使客户侧接收方向上的数据缓存单元复位之后,还可以判断第二ODU的ODU帧的丢失信号是否消失,其中,第二ODU是比第一ODU低阶的ODU,在判断出第二ODU的ODU帧的丢失信号消失的情况下,检测第二ODU的ODU帧的丢失信号消失后的第一ODU的第一个帧头信号,在第二ODU的ODU帧的丢失信号消失后的第一ODU的第一 个帧头信号到来时,产生第二复位信号,将第二复位信号发送至线路侧发送方向上的数据缓存单元,使线路侧发送方向上的数据缓存单元复位。
通过上述步骤,在使客户侧接收方向上的数据缓存单元复位后,在第二ODU的ODU帧的丢失信号消失后的第一ODU的第一个帧头信号到来时,产生第二复位信号,利用第二复位信号使线路侧发送方向上的数据缓存单元复位。实现了业务发送方向上的数据缓存单元的逐级复位,提高了OTN承载的延时稳定性。
可选地,在上述步骤S104中,可以但不限于通过对业务接收方向上的第三ODU的ODU帧的丢失信号是否消失的判断,确定是否检测第四ODU的第一个帧头信号,并在检测到第四ODU的第一个帧头信号时产生第三复位信号,利用产生第三复位信号使业务接收方向上的数据缓存单元复位。例如:判断第三ODU的ODU帧的丢失信号是否消失,在判断出第三ODU的ODU帧的丢失信号消失的情况下,检测第四ODU的第一个帧头信号,其中,第四ODU是比第三ODU高阶的ODU,在第四ODU的第一个帧头信号到来时产生第三复位信号,将第三复位信号发送至业务接收方向上的数据缓存单元,使业务接收方向上的数据缓存单元复位。
实施例2
在本实施例中还提供了一种复位控制装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本公开实施例的一种复位控制装置的结构框图一,如图2所示,该装置包括:
第一控制模块22,用于根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;
第二控制模块24,耦合至第一控制模块22,用于根据第二服务层业务信息控制OTN承载架构中的业务接收方向上的数据缓存单元复位。
可选地,上述复位控制装置可以但不限于应用于OTN承载数据传输的场景中。例如:OTN承载CPRI数据的传输的场景。
通过上述装置,第一控制模块根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;第二控制模块根据第二服务层业务信息控制OTN承载架构中的业务接收方向上的数据缓存单元复位,由此可见,采用上述方案复位业务发送方向上的数据缓存单元和业务接收方向上的数据缓存单元,实现了对OTN承载架构中的数据缓存单元进行逐级复位,因此,提高了OTN承载的延时稳定性,从而解决了相关技术中OTN承载的延时稳定性差的问题。
图3是根据本公开实施例的一种复位控制装置的结构框图二,如图3所示,可选地,第一控制模块22包括:
第一判断单元32,用于判断业务发送方向上的预定业务是否从异常状态跳变到正常状态;
第一检测单元34,耦合至第一判断单元32,用于在判断出预定业务从异常状态跳变到正常状态的情况下,检测第一光线路数据单元ODU的第一个帧头信号;
控制单元36,耦合至第一检测单元34,用于在检测到第一ODU的第一个帧头信号的情况下,将第一ODU的第一个帧头信号作为第一服务层业务信息,控制OTN承载架构中的业务发送方向上的数据缓存单元复位。
可选地,控制单元36用于:在第一ODU的第一个帧头信号到来时产生第一复位信号;将第一复位信号发送至业务发送方向上的客户侧接收方向上的数据缓存单元,使客户侧接收方向上的数据缓存单元复位。
可选地,控制单元36还用于:判断第二ODU的ODU帧的丢失信号是否消失,其中,第二ODU是比第一ODU低阶的ODU;在判断出第二ODU的ODU帧的丢失信号消失的情况下,检测第二ODU的ODU帧的丢失信号消失后的第一ODU的第一个帧头信号;在第二ODU的ODU帧的丢失信号消失后的第一ODU的第一个帧头信号到来时,产生第二复位信号;将第二复位信号发送至线路侧发送方向上的数据缓存单元,使线路侧发送方向上的数据缓存单元复位。
图4是根据本公开实施例的一种复位控制装置的结构框图三,如图4所示,可选地,第二控制模块24包括:
第二判断单元42,用于判断第三ODU的ODU帧的丢失信号是否消失;
第二检测单元44,耦合至第二判断单元42,用于在判断出第三ODU的ODU帧的丢失信号消失的情况下,检测第四ODU的第一个帧头信号,其中,第四ODU是比第三ODU高阶的ODU;
产生单元46,耦合至第二检测单元44,用于在第四ODU的第一个帧头信号到来时产生第三复位信号;
处理单元48,耦合至产生单元46,用于将第三复位信号发送至业务接收方向上的数据缓存单元,使业务接收方向上的数据缓存单元复位。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合本公开可选实施例进行详细说明。
本公开可选实施例可以但不限于应用于连接远端射频单元和基带单元(BBU)的高宽带低延迟的光传输网络中,本公开可选实施例提供了一种复位控制方法和装置。在CPRI over OTN方案中,考虑到CPRI对延时性能要求较高,而且要求传送与接收的对称性。OTN承载方式也有自身缺点,延时稳定性不是很高,本公开可选实施例提供的一种复位控制方法和装置可以实现延时稳定的效果,让OTN设备传输的延时达到稳定值,从而能 够满足在OTN设备中承载CPRI业务的需求。
针对OTN承载业务中存在的延时不稳定的问题。本公开可选实施例对OTN业务内部处理的各部分缓存单元进行逐级复位,以保障业务在恢复过程中延时的稳定。从而满足在C-RAN架构方案中,接入OTN设备后达到无线设备对延时稳定的要求。
图5是根据本公开可选实施例的一种复位控制装置的结构框图,如图5所示,该复位控制装置可以应用在OTN逐级映射系统中,该复位控制装置包括:
客户业务检测模块:用于检测客户侧业务是否正常,并输出指示信号(clt_lof)给客户侧接收复位产生模块,此指示信号是存在跳变的,当业务从异常到正常或从正常到异常都会产生跳变。
复位控制信号提取模块:此信号作为客户接收复位产生模块的输入信号,来源于下游最终要映射到ODU,此信号为ODU的帧头信号,如果整个业务处理只包括一级映射,此帧头信号即为ODU的帧头信号;如果是两级映射,此信号为高阶ODU的帧头信号(hi_odu_fp)。
客户接收复位产生模块:用于产生一个复位信号(相当于第一复位信号),这个信号对客户接收数据缓存单元以及客户业务到低阶ODU映射缓存单元进行复位。此信号产生需要满足两个条件:1)、在客户侧接收检测模块输出的指示信号,当此信号从业务失效(相当于上述异常状态)跳变成业务正常(相当于上述正常状态)后。2)、在客户业务正常后,等待复位控制信号提取模块提取的信号,检测到复位控制信号提取模块的第一个帧头指示信号有效。当同时满足以上两个条件时,产生该复位信号。
低阶ODU检测模块:用于检测低阶ODU帧是否丢失,业务如果从正常到丢失,输出信号(lo_odu_lof)会从低电平变成高电平,如果从丢失再到正常,此信号从高电平变成低电平。
线路发送复位产生模块:用于产生一个控制复位信号(相当于上述第二复位信号),对低阶ODU到高阶ODU映射缓存单元进行复位。此复位信号的产生是在低阶lo_odu_lof信号下降沿后,等到的第一个高阶ODU的帧头指示信号(hi_odu_fp)有效时,控制产生复位。
客户发送复位产生模块:从线路侧到客户侧解映射整个方向上,所有的数据累积最严重的是客户口的发送数据缓存单元。等待低阶ODU检测模块输出(lo_odu_lof)信号从业务异常到正常后,继续等待高阶ODU的第一个帧头(hi_odu_fp)到来时,产生复位信号(相当于上述第三复位信号)。此复位信号控制对客户发送口相关的数据存储单元进行复位。
本公开可选实施例通过逐级复位的方法,先进行客户侧接收方向上的数据存储单元进行复位,然后沿着业务流向,再对线路侧发送方向的数据缓存单元进行复位,最后还是沿着业务流向对客户发送侧的数据存储单元进行复位。整个流程根据服务层业务携带的相关信息将客户层到服务层跨时钟转换的数据缓存单元进行复位,保证了整个业务路径中所有 的数据缓存单元存储的数据稳定在一个规定的值内,从而解决了在业务断掉再恢复的过程中,由于时钟波动导致数据缓存单元存储数据变化的问题。通过本公开的方法和装置的工作,保证了整个数据路径上的延时稳定性,从而满足承载网承载无线业务时,对延时稳定性的要求。
在OTN设备承载业务传输过程中,一般都会涉及到客户业务到ODU服务层的映射,或者是逐级映射或者是越级映射,此处都可以采用本公开可选实施例的方法使得映射与解映射方向等整个数据处理路径的延时稳定。
图6是根据本公开可选实施例的一种复位控制方法的流程图,如图6所示,首先,客户业务检测模块对客户业务进行检测,检测出此业务是否存在异常。如果业务异常的情况下,会输出高电平作为指示信号;如果业务正常后,将此高电平标志信号拉低,变成低电平。然后将此检测结果送入下一步的判断选择模块,对上一级输出的指示信号进行判断,指示信号是一直是高电平说明业务异常还存在,没有消失,此时继续执行客户业务检测操作,直到业务异常信号消失为止,再继续向下执行客户接收复位,对上游输入的业务异常信号以及服务层业务帧头信号进行判断,当上游业务异常信号消失后的第一个服务层业务帧头信号来的时候输出一个周期的复位脉冲信号,对客户侧到服务层映射的数据缓存单元进行复位操作。
下面根据可选示例对本公开可选实施例提供的复位控制方法和装置进行说明和描述。
在可选示例一中提供了一种OTN承载CPRI2业务的复位控制方法和装置,实现了OTN承载CPRI2业务的稳定延时,图7是根据本公开可选示例一的一种复位控制装置的结构框图,如图7所示,该装置包括:
GXB:用于将高速串行客户数据先经过高速串行接口转换,转换成并行数据,并且恢复出数据时钟。
客户接收先进先出缓存器(fifo):时钟域转换fifo,将客户恢复时钟域下的数据转换到单板本地时钟域的数据进行接下来的处理。
odu0映射fifo:此处为cpri2业务到ODU0映射的数据缓存单元,将客户侧cpri2业务按照ODU0的帧格式装入到净荷中。
Clt_rx_dalay_rst模块:在检测客户接收业务lof告警消失以后,高阶ODU2的第一个帧头到来时,产生复位信号。
odu0到odu2映射fifo:此fifo控制ODU0的数据向ODU2业务中映射过程中缓存数据。
Line_tx_delay_rst:线路侧发送复位模块,此模块根据低阶ODU0的开销检测,ODU0帧丢失恢复正常后等待ODU2的第一个帧头指示信号到来,产生复位信号,对ODU0到ODU2映射模块进复位操作。
OTU2_tx:OTU2成帧模块,将ODU2数据包装成OTU2格式,同时转换到线路侧发送时钟域下,发给下游模块。
SFI4.2接口:并串转换的高速接口,上线路侧进行高速传输。
OTU2_rx:对并行接口接收的数据进行位宽转换以及定帧,输出OTU2帧。
odu2到ODU0解映射fifo:ODU2业务到ODU0解映射数据缓存fifo。
odu0开销:对解映射解出的ODU0数据进行定帧以及相关开销检测处理,输出ODU0帧丢失lof/oof信号。
odu0到客户业务解映射fifo:从ODU0业务解出客户业务的数据缓存单元。
客户发送fifo:客户业务到高速接口之间的时钟域转换fifo,实现将客户数据进行时钟域的切换。
Clt_tx_delay_rst:客户发送侧延时复位控制模块,根据上游ODU0开销输出的ODU0丢失信号消失后,等待OTU2的第一个帧头到来时,对客户发送方向的两个数据缓存fifo进行复位操作,使其水位保持在理想水线。
复位操作是根据业务处理流程进行的,整个业务映射方向,是根据客户侧状态以及最终映射到的高阶ODU的帧头来控制复位;业务解映射方向,是根据低阶ODU的状态以及高阶ODU的帧头信号控制复位。复位过程是逐级进行的,先接收方向后发送方向,这样操作最终才能实现理想效果。
图8是根据本公开可选示例一的一种复位控制方法的流程图,如图8所示,该流程包括:
客户接收部分:
步骤S802,检测客户业务接收是否正常。
步骤S804,如果客户业务从不正常到正常跳变后,进入步骤S806进行检测ODU2的帧头信号;如果客户业务一直不正常,就跳入步骤S802继续进行检测。
步骤S806,在业务正常后,检测ODU2第一个帧头,ODU2第一个帧头来的时候,产生第一复位信号。
步骤S808,对客户接收fifo进行复位。
线路发送部分:
步骤S812,检测ODU0帧是否正常。
步骤S814,如果ODU0帧丢失,返回步骤S812继续进行检测;如果ODU0帧丢失信号消失,就进入步骤S816操作。
步骤S816,当ODU0帧丢失信号消失以后,检测ODU2的第一个帧头信号,检测到后产生复位信号。
步骤S818,对ODU0到ODU2的映射fifo进行复位。
客户发送部分:
步骤S822,检测客户发送方向上,解映射解出的ODU0帧是否正确。
步骤S824,如果ODU0帧不正确,就继续返回步骤S822进行检测;如果ODU0业务从帧丢失到业务正常后,就跳入步骤S826操作。
步骤S826,在ODU0业务正常后,检测ODU2帧头信号,当第一个帧头来时,产生复位脉冲。
步骤S828,对客户发送方向的fifo进行复位。
在可选示例二中,提供了一种在OTN承载SDH业务时复位控制的方法和装置,图9是根据本公开可选示例二的一种复位控制装置的结构框图,如图9所示,该装置包括:
客户接收数据缓存单元(时钟域转换fifo):延业务流向看,业务从外部光纤进入高速串行接口后,转换成低速数据进行处理,此处一般恢复出的时钟与后续OTN映射处理时钟会不同,所以需要一个数据缓存单元进行时钟域的转换,此数据缓存单元如果控制不好,就会导致每次掉上电或者业务断通之后存储容量不同,从而影响了整个数据路径的延时变化。
客户业务到ODUk映射模块:此模块主要功能为控制将前面转换好的客户业务数据按照OTN相关标准映射到对应的ODUk中,再统一封装成标准的OTU上线路侧传送,此实例为客户业务stm-4先异步映射到ODU1_TS中,然后ODU1再成OTU1帧后经高速串行接口转换后上线路侧传送。
ODUk到客户业务解映射:为映射模块的反过程,将映射到ODUk中的净荷数据解出来,此处是将stm-4业务从ODU1_ts中解映射出来。
客户发送方向数据缓存单元:将解映射出的stm-4业务数据进行时钟域转换,转换到客户业务时钟域后,经过高速串行接口,恢复到客户口光纤进行传送。
除了以上模块,该装置还包括:
控制延时复位模块1(delay_rst_1):此模块应用在业务发送方向上,接入信号由上游业务监测信号和下游将要映射的ODU1业务帧头信号共同进行控制,当上游监测信号监测到业务从无效变成有效时产生一个有效信号,此有效信号再根据下游ODU1第一个帧头来之时,控制产生复位信号(RST1)对客户接收侧的两个数据缓存单元(fifo)进行复位操作,从而控制此缓存单元的数据深度保持稳定,达到此部分延时稳定的目的。
控制延时复位模块2(delay_rst_2):此模块应用在业务接收方向上,等待OTU1帧头来的时候产生一个脉冲,对客户发送部分的缓存单元(fifo)进行复位操作,从而使得接收方向路径缓存单元存储情况达到稳定状态,最终达到此部分延时稳定的目的。
此两部分复位模块,分别可以灵活的应用在整个数据路径的数据缓存单元附近,根据上下游业务流向中涉及到能导致存储单元数据深浅的信号,先从业务流向的上游发送方向进行控制复位,然后按照业务流向再对接收方向的数据存储单元进行复位,从而实现了业务逐级复位的目的,最终让整个数据路径的数据存储单元水位处于稳定状态,从而确保了整个客户业务传送过程中的延时稳定性。
在可选示例二中还提供了一种复位控制方法的流程图,该方法的流程包括以下步骤:
第一步:根据业务流向,以及业务映射过程,控制发送方向的数据存储单元进行复位。
第二步:与发送方向相对应,在业务接收方向上,控制数据存储单元进行复位
在可选示例三中,提供了一种在OTN承载GE业务时的复位控制方法和装置,图10是根据本公开可选示例三的一种复位控制装置的结构框图,如图10所示,该装置包括:
接收时钟域及位宽转换单元:时钟域转换以及位宽转化的fifo或数据存储单元,目的为了缓存在数据处理过程中的一些数据。
GFP-T封装、ODU0成帧:将从客户侧过来的GE数据经过GFP-T封装后,映射到ODU0中,此时数据以ODU0的帧结构继续传输。
ODU1成帧及封装到OTU1:将ODU0映射到ODU1,其中包括转换时用到的数据缓存单元,以及OTU1成帧时需要的成帧及时钟域转换fifo。
ODU1到ODU0解映射:包括OTU1到ODU1的时钟域转换单元及ODU1到ODU0解映射单元,此处也涉及到数据存储单元,不过此处存储数据很少且水位很稳定。
GFP-T解封装:将GFP-T格式封装的数据解出客户侧数据。
发送位宽及时钟域转换单元:解封装需要的位宽转换数据存储单元以及时钟域转换单元。
除了以上模块,该装置还包括以下复位控制部分:
控制延时复位模块1(delay_rst_1):根据客户侧接入的业务性能监测模块输出的业务是否丢失告警,在此告警消失后等待第一个帧头信号来临时,产生复位信号(rst1),帧头信号为客户业务最终将要映射到ODU1帧结构的帧头信号,因为客户业务需要装入ODU1帧结构内的净荷中,ODU1帧头位置有一段不需要填充的部分,所以在此空缺处控制复位。
控制延时复位模块2(delay_rst_2):此模块应用在ODU0到ODU1映射过程中,与控制延时复位模块1类似,此处将ODU0当成净荷数据映射到ODU1中,当监测到ODU0业务从失效到业务正常之后,等待后续ODU1第一个帧头来临的时候,产生复位信号,对ODU0到ODU1映射过程中的存储单元进行复位操作,使其水位稳定。
控制延时复位模块3(delay_rst_3):此模块应用于下游模块中,根据对解映射出的ODU0进行监测,当ODU0业务从业务丢失到业务恢复后,等待ODU1第一个帧头来临时产生复位信号,对其下游相关的业务存储单元(客户发送口fifo)进行复位,使这些fifo达到我们想要的理想水位。
在可选示例二中还提供了一种复位控制方法的流程图,该方法的流程包括以下步骤:
第一步:根据业务流向,首先在客户接收口,根据下一级映射的相关信号返回控制此级的数据存储单元进行复位,此复位在时间上应该是最先执行的。能保持存储可以业务的数据存储单元水位保持到理想的稳定状态。
第二步:对下一级映射的相关数据存储单元进行复位操作,从而使得此部分相关的业务数据存储单元水位稳定到理想状态。
第三步:上一级的复位操作会沿着业务流向影响到下一级,当业务传送到接收方向,导致ODU0失效,当ODU0失效后等待ODU1第一帧头来之后进行复位操作,对后续fifo缓存单元进行复位,从而使得此部分数据缓存单元水位保持在理想水位附近,从而达到整 个路径数据缓存单元水位稳定,最终达到每次业务变化或失效后延时稳定的效果。
综上所述,本公开实施例和可选实施例提供的复位控制方法和装置通过逐级复位的方式,先控制客户侧接收部分的数据存储单元进行复位,然后沿着业务流向,再控制线路侧发送方向的数据缓存单元进行复位,最后还是沿着业务流向控制客户发送侧的数据存储单元进行复位。整个流程根据服务层业务携带的相关信息将客户层到服务层跨时钟转换的数据缓存单元进行复位,保证了整个业务路径中所有的数据缓存单元存储的数据稳定在一个规定的值内,从而解决了在业务断掉再恢复的过程中,由于时钟波动导致数据缓存单元存储数据变化的问题。保证了整个数据路径上的延时稳定性,从而满足承载网承载无线业务时,对延时稳定性的要求。
实施例3
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;
S2,根据第二服务层业务信息控制OTN承载架构中的业务接收方向上的数据缓存单元复位。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例记载的方法步骤。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的复位控制方法可以但不限于应用于OTN承载数据传输的场景中,通过复位业务发送方向上的数据缓存单元和业务接收方向上的数据缓存单元,实现了对OTN承载架构中的数据缓存单元进行逐级复位,因此,提高了OTN承载的延时稳定性,从而解决了相关技术中OTN承载的延时稳定性差的问题。

Claims (11)

  1. 一种复位控制方法,包括:
    根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;
    根据第二服务层业务信息控制所述OTN承载架构中的业务接收方向上的数据缓存单元复位。
  2. 根据权利要求1所述的方法,其中,根据所述第一服务层业务信息控制所述OTN承载架构中的所述业务发送方向上的数据缓存单元复位包括:
    判断所述业务发送方向上的预定业务是否从异常状态跳变到正常状态;
    在判断出所述预定业务从所述异常状态跳变到所述正常状态的情况下,检测第一光线路数据单元ODU的第一个帧头信号;
    在检测到所述第一ODU的第一个帧头信号的情况下,将所述第一ODU的第一个帧头信号作为所述第一服务层业务信息,控制所述OTN承载架构中的所述业务发送方向上的数据缓存单元复位。
  3. 根据权利要求2所述的方法,其中,将所述第一ODU的第一个帧头信号作为所述第一服务层业务信息,控制OTN承载架构中的所述业务发送方向上的数据缓存单元复位包括:
    在所述第一ODU的第一个帧头信号到来时产生第一复位信号;
    将所述第一复位信号发送至所述业务发送方向上的客户侧接收方向上的数据缓存单元,使所述客户侧接收方向上的数据缓存单元复位。
  4. 根据权利要求3所述的方法,其中,在将所述第一复位信号发送至所述业务发送方向上的客户侧接收方向上的数据缓存单元,使所述客户侧接收方向上的数据缓存单元复位之后,所述方法还包括:
    判断第二ODU的ODU帧的丢失信号是否消失,其中,所述第二ODU是比所述第一ODU低阶的ODU;
    在判断出所述第二ODU的ODU帧的丢失信号消失的情况下,检测所述第二ODU的ODU帧的丢失信号消失后的所述第一ODU的第一个帧头信号;
    在所述第二ODU的ODU帧的丢失信号消失后的所述第一ODU的第一个帧头信号到来时,产生第二复位信号;
    将所述第二复位信号发送至线路侧发送方向上的数据缓存单元,使所述线路侧发送方向上的数据缓存单元复位。
  5. 根据权利要求1至4中任一项所述的方法,其中,根据所述第二服务层业务信息控制所述OTN承载架构中的业务接收方向上的数据缓存单元复位包括:
    判断第三ODU的ODU帧的丢失信号是否消失;
    在判断出所述第三ODU的ODU帧的丢失信号消失的情况下,检测第四ODU的第一个帧头信号,其中,所述第四ODU是比所述第三ODU高阶的ODU;
    在所述第四ODU的第一个帧头信号到来时产生第三复位信号;
    将所述第三复位信号发送至所述业务接收方向上的数据缓存单元,使所述业务接收方向上的数据缓存单元复位。
  6. 一种复位控制装置,包括:
    第一控制模块,设置为根据第一服务层业务信息控制光传输网络OTN承载架构中的业务发送方向上的数据缓存单元复位;
    第二控制模块,设置为根据第二服务层业务信息控制所述OTN承载架构中的业务接收方向上的数据缓存单元复位。
  7. 根据权利要求6所述的装置,其中,所述第一控制模块包括:
    第一判断单元,设置为判断所述业务发送方向上的预定业务是否从异常状态跳变到正常状态;
    第一检测单元,设置为在判断出所述预定业务从所述异常状态跳变到所述正常状态的情况下,检测第一光线路数据单元ODU的第一个帧头信号;
    控制单元,设置为在检测到所述第一ODU的第一个帧头信号的情况下,将所述第一ODU的第一个帧头信号作为所述第一服务层业务信息,控制所述OTN承载架构中的所述业务发送方向上的数据缓存单元复位。
  8. 根据权利要求7所述的装置,其中,所述控制单元设置为:
    在所述第一ODU的第一个帧头信号到来时产生第一复位信号;
    将所述第一复位信号发送至所述业务发送方向上的客户侧接收方向上的数据缓存单元,使所述客户侧接收方向上的数据缓存单元复位。
  9. 根据权利要求8所述的装置,其中,所述控制单元还设置为:
    判断第二ODU的ODU帧的丢失信号是否消失,其中,所述第二ODU是比所述第一ODU低阶的ODU;
    在判断出所述第二ODU的ODU帧的丢失信号消失的情况下,检测所述第二ODU的ODU帧的丢失信号消失后的所述第一ODU的第一个帧头信号;
    在所述第二ODU的ODU帧的丢失信号消失后的所述第一ODU的第一个帧头信号到来时,产生第二复位信号;
    将所述第二复位信号发送至线路侧发送方向上的数据缓存单元,使所述线路侧发送方向上的数据缓存单元复位。
  10. 根据权利要求6至9中任一项所述的装置,其中,所述第二控制模块包括:
    第二判断单元,设置为判断第三ODU的ODU帧的丢失信号是否消失;
    第二检测单元,设置为在判断出所述第三ODU的ODU帧的丢失信号消失的情况下,检测第四ODU的第一个帧头信号,其中,所述第四ODU是比所述第三ODU高阶的ODU;
    产生单元,设置为在所述第四ODU的第一个帧头信号到来时产生第三复位信号;
    处理单元,设置为将所述第三复位信号发送至所述业务接收方向上的数据缓存单元,使所述业务接收方向上的数据缓存单元复位。
  11. 一种存储介质,用于存储程序代码,所述程序代码用于执行权利要求1至5中任一项所述的复位控制方法。
PCT/CN2017/089798 2016-06-24 2017-06-23 复位控制方法及装置 WO2017220025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610476117.6A CN107547124B (zh) 2016-06-24 2016-06-24 复位控制方法及装置
CN201610476117.6 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017220025A1 true WO2017220025A1 (zh) 2017-12-28

Family

ID=60784330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089798 WO2017220025A1 (zh) 2016-06-24 2017-06-23 复位控制方法及装置

Country Status (2)

Country Link
CN (1) CN107547124B (zh)
WO (1) WO2017220025A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109922490B (zh) * 2019-01-28 2022-01-28 广东中视信息科技有限公司 一种数据防中断持续传输管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098192A (zh) * 2006-06-27 2008-01-02 中兴通讯股份有限公司 一种基于光传输系统的监控信息传送装置和方法
CN102318362A (zh) * 2011-06-03 2012-01-11 华为技术有限公司 一种无源光网络的数据发送方法及设备
CN102395058A (zh) * 2011-10-27 2012-03-28 中兴通讯股份有限公司 一种处理ODUk帧的方法及装置
JP2014212478A (ja) * 2013-04-19 2014-11-13 株式会社日立製作所 光伝送装置、光伝送システム、及び伝送方法
CN104734992A (zh) * 2015-03-30 2015-06-24 华为技术有限公司 一种业务数据传输方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107820B2 (en) * 2006-10-13 2012-01-31 Menara Networks, Inc. Systems and methods for the integration of framing, OAM&P, and forward error correction in SFP optical transceiver devices
CN100539514C (zh) * 2006-03-13 2009-09-09 华为技术有限公司 具有双中央处理器的智能光网络设备及其实现方法
EP2296300B1 (en) * 2009-09-14 2012-05-02 Alcatel Lucent Method and apparatus for automatic discovery in optical transport networks
KR101484267B1 (ko) * 2013-04-18 2015-01-28 (주)유비쿼스 장애 감지/복구/차단 및 상기 정보저장 기능을 가지는 광 통신 단말장치
CN204481838U (zh) * 2015-02-26 2015-07-15 北京奥普维尔科技有限公司 一种多业务集成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098192A (zh) * 2006-06-27 2008-01-02 中兴通讯股份有限公司 一种基于光传输系统的监控信息传送装置和方法
CN102318362A (zh) * 2011-06-03 2012-01-11 华为技术有限公司 一种无源光网络的数据发送方法及设备
CN102395058A (zh) * 2011-10-27 2012-03-28 中兴通讯股份有限公司 一种处理ODUk帧的方法及装置
JP2014212478A (ja) * 2013-04-19 2014-11-13 株式会社日立製作所 光伝送装置、光伝送システム、及び伝送方法
CN104734992A (zh) * 2015-03-30 2015-06-24 华为技术有限公司 一种业务数据传输方法及装置

Also Published As

Publication number Publication date
CN107547124A (zh) 2018-01-05
CN107547124B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
EP2451186B1 (en) Method for assigning and processing label in optical network, optical communication device and optical communication system
US10090960B2 (en) Method, apparatus and system for processing flexible-rate signal
US10218455B2 (en) Method and apparatus for increasing and decreasing variable optical channel bandwidth
JP6784777B2 (ja) サービス伝送方法および第1の伝送デバイス
WO2011106974A1 (zh) 基于通用成帧规程的灵活光通道数据单元带宽调整方法及系统
EP2451185B1 (en) Method and device for cross-dispatching optical channel data unit
WO2017124787A1 (zh) 一种传输公共无线接口信号的方法和设备
BRPI0707114A2 (pt) método de transporte e recepção de serviço sdh (hierarquia digital sìncrona) através de pon (rede ótica passiva), método de serviço sdh em pon, dispositivo de transmissão e recepção de serviço sdh, método de mapeamento de quadro de dados sdh em quadro gem
EP3208971B1 (en) Method, device and system for reducing centralized protection switching time in potn system
US10575074B2 (en) Fault detection method and device
WO2020001127A1 (zh) 使用灵活光网络的业务传输方法、装置、设备及存储介质
JP5313351B2 (ja) 10ギガビット光ファイバーチャネルサービスを光伝送ネットワークに伝送する方法及び装置
EP3716641A1 (en) Data transport method, device and system
US8166183B2 (en) Method and system for fast virtual concatenation setup in a communication network
WO2019047110A1 (zh) 一种光传送网中时延测量的方法、装置和系统
EP2549682B1 (en) Method and apparatus for implementing frame header alignment and multi-frame zeroing
EP3755001A1 (en) Method, apparatus and system for processing ethernet data in optical network
WO2017220025A1 (zh) 复位控制方法及装置
WO2020051851A1 (zh) 光传送网中的数据传输方法及装置
CN101951532A (zh) Otn网络业务缺陷信息传输、获取方法及装置、系统
JP2013038578A (ja) 光ネットワーク装置
US20170005934A1 (en) Apparatus and method for transferring data onto another network depending on an amount of data flow in a network
US10079641B1 (en) Systems and methods of transporting data over an optical transport network
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置
JP2012249028A (ja) 伝送装置及びデータ伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814763

Country of ref document: EP

Kind code of ref document: A1