WO2017220002A1 - 一种并行的光纤转角耦合组件 - Google Patents

一种并行的光纤转角耦合组件 Download PDF

Info

Publication number
WO2017220002A1
WO2017220002A1 PCT/CN2017/089552 CN2017089552W WO2017220002A1 WO 2017220002 A1 WO2017220002 A1 WO 2017220002A1 CN 2017089552 W CN2017089552 W CN 2017089552W WO 2017220002 A1 WO2017220002 A1 WO 2017220002A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical
optical fiber
parallel
array
Prior art date
Application number
PCT/CN2017/089552
Other languages
English (en)
French (fr)
Inventor
杨开发
Original Assignee
扇港元器件(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扇港元器件(香港)有限公司 filed Critical 扇港元器件(香港)有限公司
Priority to US16/310,826 priority Critical patent/US11415755B2/en
Priority to EP17814740.1A priority patent/EP3477351A4/en
Publication of WO2017220002A1 publication Critical patent/WO2017220002A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3818Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type
    • G02B6/3822Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type with beveled fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3826Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres characterised by form or shape
    • G02B6/3829Bent or angled connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • G02B6/4243Mounting of the optical light guide into a groove
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the utility model relates to an optical component used in the technical field of optical fibers, in particular to a fiber optic angle coupling component applied in a parallel optical fiber transmission module.
  • the data center is composed of a large number of servers. A large amount of data exchange is required between servers. Data interconnection technology is essential for the efficient operation of large data centers. The electronic interconnect technology cannot meet the transmission bandwidth and distance requirements, so the parallel optical interconnect technology is widely used in the data center.
  • the supercomputer system is composed of a large number of parallel computing modules. A large amount of data exchange is required between the cabinets in which the computing modules are loaded. The parallel optical fiber transmission modules become the preferred interconnection technology in supercomputer systems.
  • the transmitting end of the parallel optical fiber transmission module is generally composed of a laser array and a parallel fiber coupling component.
  • the laser array is usually mounted on the circuit board, and the laser light emitting direction is perpendicular to the circuit board. If a conventional optical fiber array is used for optical signal coupling. Output, the fiber is perpendicular to the circuit board, forming a T-shaped structure, which is not conducive to the flat design of the module, and can not meet the requirements of high-density interconnection.
  • the end face of the optical fiber is usually polished into a slope of a 45 degree inclination angle, and the beam emitted by the laser is deflected by 90 degrees after being reflected by the inclined surface, and coupled into the optical fiber.
  • the direction of the fiber is parallel to the board, and the flat design of the module can be realized to perform high-density fiber interconnection.
  • a large number of guided modes can be transmitted in the optical fiber, and the propagation speed of the optical wave of each guided mode is different in the optical fiber, thereby generating inter-mode dispersion, and the optical pulse carrying the data information is broadened due to dispersion, resulting in communication error.
  • the degree of broadening of the optical pulse increases with the length of the transmission fiber, and the bit error rate deteriorates accordingly, so the inter-mode dispersion limits the transmission distance of the optical signal in the optical fiber.
  • the power specific gravity of each guided mode is determined by the excitation condition, that is, the distribution of the incident light field.
  • the light field is normally incident from the center of the fiber, slightly obliquely incident from the center of the fiber, and slightly centrifugally incident.
  • the number of guided modes and the power specific gravity of each guided mode are different, resulting in different modes of inter-mode dispersion.
  • fiber optic applications there is a mode-limited injection method in which the beam emitted by the laser is incident on the end face of the fiber at a certain centrifugal distance, and the resulting inter-mode dispersion will be much smaller than the positive incidence from the center of the fiber, thereby increasing the optical signal.
  • the transmission distance in the fiber The same effect can be obtained if the beam is incident on the center of the fiber at a certain inclination angle, and the dispersion between modes is reduced and the transmission distance is increased.
  • the existing parallel fiber angle coupling module usually polishes the end face of the fiber into a slope of 45 degree inclination angle.
  • the optical signal emitted by the laser is reflected by the slope and then incident in the center of the fiber in the horizontal direction to excite multimode transmission due to dispersion between modes.
  • the transmission distance is limited.
  • the optical fiber inclined surface is not plated with any reflection film, and since the incident angle of the light beam on the inclined surface is larger than the total reflection critical angle, the high reflectance can be realized according to the total reflection principle.
  • the component is applied to a parallel optical fiber transmission module.
  • the amount of bonding glue is large, and the fiber bevel may be covered by glue, because the refractive index of the glue is close to the fiber. The total reflection condition on the fiber slant is destroyed, and the reflectance is greatly reduced.
  • the utility model has the beneficial effects that the end face of the optical fiber is polished into a slope of 42.5 or 47.5 degree inclination angle to reduce the dispersion between the modes and increase the transmission distance of the optical signal in the subsequent optical fiber; the metal reflective surface of the optical fiber is coated on the optical fiber High reflectivity is also ensured when the bevel is covered by glue.
  • the purpose of the utility model is to provide a parallel optical fiber angle coupling component, which is applied to the angular coupling of an optical signal between a laser array and an optical fiber, can reduce the inter-mode dispersion in the optical fiber, and increase the transmission of the optical signal in the subsequent optical fiber.
  • the distance is applicable to the package structure in which the fiber bevel is covered by glue.
  • the parallel fiber corner coupling assembly includes a positioning substrate, a cover sheet and a plurality of optical fibers, and the cover sheets are used to press the optical fibers into the array of microgrooves on the substrate and fixed by glue.
  • the fiber exposes the substrate and the cover sheet to a length and polishes the end face of the fiber to a slope of 42.5 or 47.5 degrees of inclination.
  • metal high-reflection film is coated on the inclined surface of the fiber according to the needs of the application.
  • a large number of guided modes can be transmitted in the optical fiber, and the light wave of each guided mode propagates differently in the optical fiber, thereby generating inter-mode dispersion.
  • the light pulse carrying the digital signal is distributed to different guided modes to carry the transmission. Due to the influence of the dispersion between the modes, the light energy components carried by the different guided modes cannot reach the receiving end at the same time, and the time difference is generated. Therefore, the light pulse is broadened, and the degree of broadening increases with the transmission distance.
  • Optical fiber communication carries a series of optical pulse sequences to carry digital information. The higher the communication rate, the smaller the time interval between adjacent optical pulses. When the optical pulse is too broad due to dispersion, adjacent optical pulses will overlap. The signal receiving end will not be correctly discriminated, resulting in communication errors. Therefore, based on a certain bit error rate requirement, the inter-mode dispersion restricts the transmission distance of the optical signal in the optical fiber.
  • a large number of guided modes can be transmitted in the optical fiber, and which guided modes can be excited, and the specific gravity of the optical power excited by each guided mode depends on the distribution of the incident light field.
  • the laser beam is incident on the end face of the fiber at a certain centrifugal distance.
  • the combination of the guided modes excited by the two and the optical power of each guided mode are completely different, thus producing different Inter-mode dispersion value.
  • optical fiber there is a method of limiting mode injection, that is, the beam emitted by the laser is incident on the end face of the fiber at a certain centrifugal distance, and the inter-mode dispersion generated will be much smaller than the positive incidence from the center of the fiber, thereby increasing the optical signal.
  • the transmission distance in the fiber The same effect can be obtained if the beam is incident on the center of the fiber at a certain inclination angle, and the dispersion between modes is reduced and the transmission distance is increased.
  • the fiber end face is polished to a slope of 45 degrees, and the 90-degree angle coupling of the optical signal between the laser array and the fiber can be realized.
  • the laser beam After being reflected by the 45-degree oblique surface, the laser beam is incident on the center of the optical fiber in the horizontal direction, and a set of guiding modes is excited, and the dispersion between the modes is large, which limits the transmission distance.
  • the utility model proposes to polish the end face of the optical fiber into a slope of 42.5 or 47.5 degree inclination angle, so that after the laser beam is reflected by the inclined surface, it is incident on the center of the optical fiber at an inclination angle of 5 degrees, which is equivalent to a limited mode injection, and a set of guided modes excited, Compared with a set of guided modes excited by the center of the laser beam incident on the fiber, the dispersion between the modes is smaller, which can improve the transmission distance of the parallel optical fiber transmission module.
  • the parallel fiber corner coupling assembly is applied to the parallel fiber transmission module and is coupled with the laser array.
  • the optical fiber inclined surface is not plated with any reflection film, and since the incident angle of the light beam on the inclined surface is larger than the total reflection critical angle, the high reflectance can be realized according to the principle of total reflection of the light wave.
  • the amount of bonding glue is large, and the fiber bevel may be covered by glue. Since the refractive index of the glue is close to the fiber, the total reflection condition on the fiber slope is Destruction, the reflectivity will drop dramatically.
  • the utility model has the beneficial effects that the end face of the optical fiber is polished to 42.5 or 47.5 degrees.
  • the polishing surface of the dip angle reduces the dispersion between the modes and increases the transmission distance of the optical signal in the subsequent optical fiber; the metal reflective film on the polishing surface can ensure high reflectivity even when the polishing surface of the optical fiber is covered with glue.
  • Figure 1 is a parallel fiber angle coupling assembly structure
  • Figure 2 is the angle of the fiber optic slope and the coating condition
  • Figure 3 is the reflection of the light beam on the inclined surface of the fiber
  • Fig. 5 is a schematic view showing the effect of limiting mode injection by changing the inclination angle of the fiber.
  • the structure of the parallel optical fiber corner coupling assembly is as shown in FIG. 1 , and includes a positioning substrate 1 , a cover sheet 2 and a plurality of optical fibers 3 .
  • the cover sheet 2 is used to press the optical fiber 3 into the positioning groove in the positioning substrate 1 . And fixed with glue.
  • the end face of the optical fiber 3 is polished to a slope of a certain inclination angle, as shown in FIG.
  • the prior art solution is that the oblique angle of the optical fiber is 45 degrees, as shown in FIG. 2( a ); the technical solution proposed by the present invention is that the inclined angle of the optical fiber 3 is 42.5 or 47.5 degrees, as shown in FIG.
  • the optical fiber inclined surface is not plated with any reflective film, and the high reflection of the light beam is realized according to the principle of total reflection, as shown in FIG. 2( a ); in the technical solution proposed by the present invention, the optical fiber inclined surface metallized reflective film 4 , as shown in Figure 2 (b) and Figure 2 (c).
  • the reflection of the beam on the inclined surface of the fiber is shown in Figure 3.
  • the incident angle of the beam on the slope is greater than the critical angle of total reflection. According to the principle of total reflection, high reflectivity can be achieved without plating a reflective film, as shown in Figure 3(a).
  • Figure 3(b) when the fiber bevel is covered by glue, the refractive index of the glue is close to the fiber, the total reflection condition on the slope is destroyed, the reflectivity is greatly reduced, and most of the light energy is refracted, as shown in Figure 3(b).
  • the utility model proposes to plate the metal reflective film 4 on the inclined surface of the optical fiber, so that even if the inclined surface of the optical fiber is covered by the glue, high reflectivity can be ensured, as shown in Fig. 3(c).
  • the parallel optical fiber corner coupling component proposed by the utility model is applied to the parallel optical fiber transmission module.
  • the optical reflective film mainly has two types of dielectric reflective film and metal reflective film.
  • the dielectric reflective film is a multi-beam interference structure composed of a multilayer dielectric film. If a multi-layer dielectric reflective film is coated on the inclined surface of the optical fiber, when the inclined film layer is covered by glue It is equivalent to destroying the interference structure of the multilayer dielectric film, and the reflectance will decrease.
  • the metal reflective film is a single-layer structure, and the reflectance depends on the inherent characteristics of the metal, and even if it is covered with glue, it does not affect the reflectance of the metal film.
  • a large number of guided modes can be transmitted in the optical fiber, and which guided modes can be excited, and the specific gravity of the optical power excited by each guided mode depends on the distribution of the incident light field.
  • a set of guided modes is excited (a set of guided modes includes the number of all the guided modes, and the power specific gravity of each guided mode), corresponding to The amount of dispersion between modes D 1 ; when the beam is incident on the end face of the fiber at a certain centrifugal distance ⁇ , as shown in Fig. 4(b), the other set of guided modes is excited, corresponding to the inter-mode dispersion D 2 .
  • the intermodal dispersion D 2 can be made smaller than D 1 .
  • This method of selectively exciting the guided mode in the fiber by changing the position of the incident beam, thereby improving the dispersion between modes, is called mode-limited injection. If the beam is incident on the center of the fiber at a certain angle of inclination, as shown in Fig. 4(c), the appropriate selection of the inclination angle ⁇ can also achieve the effect of limiting the injection, reduce the dispersion between the modes, and increase the transmission distance of the optical signal.
  • the parallel fiber-optic angle coupling component has a fiber inclination angle of 45 degrees, and after the beam is reflected by the slope, the fiber is incident in the horizontal direction, as shown in FIG. 5(a).
  • the utility model proposes to polish the oblique surface of the optical fiber to 42.5 or 47.5 degrees, as shown in Fig. 5(b) and Fig. 5(c) respectively, after the beam is reflected by the inclined surface, the angle with the optical fiber axis is ⁇ 5 degrees, which is equivalent to
  • the oblique incident condition in Fig. 4(c) produces a mode-limited injection effect.
  • a set of guided modes excited in the fiber, the inter-mode dispersion is optimized, and the optical signal can transmit a longer distance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种并行的光纤转角耦合组件,用于光信号在光纤阵列与激光器阵列之间的并行耦合,它包括一个光纤定位基片(1)、一个盖片(2)和数根光纤(3),光纤(3)端面被抛光成42.5或者47.5度倾角的斜面,在光纤(3)斜面上镀金属反射膜(4),产生的有益效果是:将光纤(3)端面抛光成42.5或者47.5度倾角的斜面,以减小模间色散,增加光信号在后续光纤(3)中的传输距离;光纤(3)斜面上镀金属反射膜(4),在光纤(3)斜面被胶水覆盖的情况下亦能保证高反射率。

Description

一种并行的光纤转角耦合组件 技术领域
本实用新型涉及一种光纤技术领域中使用的光学元件,具体地说涉及一种应用于并行光纤传输模块中的光纤转角耦合组件。
背景技术
随着大数据时代的来临,大型数据中心得到迅速发展,数据中心由大量的服务器构成,在服务器之间需要进行大量的数据交换,数据互连技术对大型数据中心的高效运行至关重要,传统的电子互连技术不能满足传输带宽和距离的要求,因此并行光纤互连技术在数据中心得到广泛应用。超级计算机系统是由大量的并行运算模块构成的,在装载运算模块的机柜之间需要大量的数据交换,并行光纤传输模块成为超级计算机系统中首选的互连技术。
并行光纤传输模块的发射端一般由激光器阵列和并行光纤耦合组件两部分构成,激光器阵列通常贴装在电路板上,激光器的发光方向垂直于电路板,如果采用常规的光纤阵列进行光信号的耦合输出,则光纤垂直于电路板,构成T字型结构,不利于模块的扁平化设计,无法满足高密度互连要求。为了实现并行光纤传输模块的扁平化结构设计,通常将光纤端面抛光成45度倾角的斜面,激光器发出的光束,经斜面反射之后转折90度,耦合进入光纤。在这种模块结构中,光纤方向与电路板平行,可以实现模块的扁平化设计,进行高密度的光纤互连。
光纤中可传输大量的导模,每个导模的光波在光纤中的传播速度不同,从而产生模间色散,携带数据信息的光脉冲因色散而展宽,产生通信误码。光脉冲的展宽程度随传输光纤的长度而增加,误码率随之劣化,因此模间色散限制了光信号在光纤中的传输距离。光纤中存在大量的导模,哪些导模能够被激励传输,每个导模被激励起来的功率比重,则取决于激励条件即入射光场的分布。比如光场从光纤中心正入射、从光纤中心稍微斜入射、稍微离心正入射这三种情况,激励起来的导模数量及每个导模的功率比重都会不同,从而产生的模间色散大小不同,对光脉冲的展宽程度也会存在差异。在光纤应用中,有一个限模注入方法,就是让激光器发射的光束,以一定离心距离正入射光纤端面,所产生的模间色散将会比从光纤中心正入射小很多,从而增加光信号在光纤中的传输距离。如果让光束以一定倾角入射在光纤中心,可以取得同样的效果,模间色散减小而传输距离增加。
现有的并行光纤转角耦合模块,通常将光纤端面抛光成45度倾角的斜面,激光器发射的光信号,经斜面反射后沿水平方向入射在光纤中心,激励起多模传输,因模间色散而限制了传输距离。
现有的并行光纤转角耦合组件,光纤斜面上未镀任何反射膜,由于光束在斜面上的入射角度大于全反射临界角,依据全反射原理即可实现高反射率。然而,该组件应用于并行光纤传输模块中,在模块的封装过程中,为了提高光纤耦合封装结构的机械强度,粘接胶水用量较大,光纤斜面可能被胶水覆盖,由于胶水折射率与光纤接近,光纤斜面上的全反射条件被破坏,反射率大幅下降。
本实用新型产生的有益效果是:将光纤端面抛光成42.5或者47.5度倾角的斜面,以减小模间色散,增加光信号在后续光纤中的传输距离;光纤斜面上镀金属反射膜,在光纤斜面被胶水覆盖的情况下亦能保证高反射率。
发明内容
本实用新型的目的在于提供一种并行的光纤转角耦合组件,应用于光信号在激光器阵列与光纤之间的转角耦合,可以减小光纤中的模间色散,增加光信号在后续光纤中的传输距离,并适用于光纤斜面被胶水覆盖的封装结构。
该并行光纤转角耦合组件包括一个定位基片、一个盖片和数根光纤,用盖片将光纤压入基片上的微槽阵列中并以胶水固定。光纤露出基片和盖片一定长度,并将光纤端面抛光成42.5或者47.5度倾角的斜面。
进一步的:根据应用场合的需要,在光纤斜面上镀金属高反膜。
光纤中可传输大量的导模,每个导模的光波在光纤中的传播速度不同,从而产生模间色散。携带了数字信号的光脉冲,其能量被分配至不同导模携带传输,因模间色散的影响,同一个光脉冲之中,被不同导模携带的光能量成份不能同时到达接收端,产生时差,因此光脉冲被展宽,并且展宽程度随着传输距离而增加。光纤通信是以一连串的光脉冲序列来携带数字信息,通信速率越高,则相邻光脉冲之间的时间间隔越小,当光脉冲因色散展宽过多,相邻光脉冲将发生重叠,在信号接收端将不能正确判别,造成通信误码。因此,基于一定的误码率要求,模间色散制约了光信号在光纤中的传输距离。
光纤中可传输大量的导模,而哪些导模能够被激励,以及各导模被激励起来的光功率比重,则取决于入射光场的分布。比如让激光束以一定的离心距离正入射在光纤端面,相比于从光纤中心正入射,二者激励起来的导模组合及每个导模的光功率比重是完全不同的,因而产生不同的模间色散值。在光纤的应用中,有一种限模注入方法,就是让激光器发射的光束,以一定离心距离正入射光纤端面,所产生的模间色散将会比从光纤中心正入射小很多,从而增加光信号在光纤中的传输距离。如果让光束以一定倾角入射在光纤中心,可以取得同样的效果,模间色散减小而传输距离增加。
现有的并行光纤转角耦合组件,光纤端面被抛光成45度倾角的斜面,可以实现光信号在激光器阵列与光纤之间的90度转角耦合。激光束经45度斜面反射后,沿水平方向入射在光纤的中心,所激励起一组导模,模间色散较大,限制了传输距离。本实用新型提出,将光纤端面抛光成42.5或者47.5度倾角的斜面,这样激光束经斜面反射之后,以5度倾角入射在光纤中心,相当于限模注入,所激励起的一组导模,较激光束正入射光纤中心所激励起的一组导模,模间色散更小,可以提高并行光纤传输模块的传输距离。
并行光纤转角耦合组件应用于并行光纤传输模块中,与激光器阵列耦合封装在一起。现有的并行光纤转角耦合模块,光纤斜面上未镀任何反射膜,由于光束在斜面上的入射角度大于全反射临界角,依据光波的全反射原理即可实现高反射率。然而,在模块的耦合封装过程中,为了提高光纤耦合封装结构的机械强度,粘接胶水用量较大,光纤斜面可能被胶水覆盖,由于胶水折射率与光纤接近,光纤斜面上的全反射条件被破坏,反射率将大幅下降。
与现有技术相比,本实用新型的有益效果是:将光纤端面抛光成42.5或者47.5度 倾角的抛光面,以减小模间色散,增加光信号在后续光纤中的传输距离;抛光面上镀金属反射膜,在光纤抛光面被胶水覆盖的情况下亦能保证高反射率。
附图说明
图1为并行光纤转角耦合组件结构;
图2为光纤斜面角度及镀膜情况;
图3为光束在光纤斜面上的反射情况;
图4为光纤的限模注入方法;
图5为通过改变光纤斜面倾角产生的限模注入效果示意图。
图中:1-定位基片、2-盖片、3-光纤、4-金属反射膜。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
该并行光纤转角耦合组件的结构如图1所示,包括一个定位基片1、一个盖片2和数根光纤3,用盖片2将光纤3压入定位基片1中的定位槽中,并以胶水固定。为了实现光信号从激光器至光纤的转角耦合,光纤3端面被抛光成一定倾角的斜面,如图2所示。现有的技术方案是,光纤斜面倾角为45度,如图2(a)所示;本实用新型提出的技术方案是,光纤3斜面倾角为42.5或者47.5度,如图2(b)和图2(c)所示。现有的技术方案中,光纤斜面未镀任何反射膜,依据全反射原理实现光束的高反射,如图2(a)所示;本实用新型提出的技术方案中,光纤斜面镀金属反射膜4,如图2(b)和图2(c)所示。
光束在光纤斜面上的反射情况如图3所示,光束在斜面上的入射角大于全反射临界角,依据全反射原理,无需镀反射膜,即可实现高反射率,如图3(a)所示;当光纤斜面被胶水覆盖时,由于胶水的折射率与光纤接近,斜面上的全反射条件被破坏,反射率大幅下降,大部分光能量折射逸出,如图3(b)所示;本实用新型提出,在光纤斜面镀金属反射膜4,这样即使光纤斜面被胶水覆盖,还能保证高反射率,如图3(c)所示。
本实用新型提出的并行光纤转角耦合组件,应用于并行光纤传输模块中,在模块的耦合封装过程中,为了提高光纤耦合封装结构的机械强度,粘接胶水用量较大,光纤斜面被胶水覆盖,因此镀反射膜以保证光纤斜面的高反射率是很有必要的。光学反射膜主要有介质反射膜和金属反射膜两类,介质反射膜是由多层介质膜构成的多光束干涉结构,如果在光纤斜面镀多层介质反射膜,当斜面膜层被胶水覆盖时,相当于破坏了多层介质膜的干涉结构,反射率将会下降。金属反射膜则是单层结构,反射率取决于金属的固有特性,即使被胶水覆盖,也不会影响金属膜的反射率。
光纤中可传输大量的导模,而哪些导模能够被激励,以及各个导模被激励起来的光功率比重,则取决于入射光场的分布。当光束从光纤中心正入射,如图4.(a)所示,激励起一组导模(一组导模包括其中所有导模的编号,以及每个导模所占的功率比重),对应模间色散量D1;当光束以一定的离心距离Δ正入射光纤端面,如图4(b)所示,激励起另一组导模,对应模间色散D2。适当选择离心距离Δ,可以让模间色散D2小于D1。这种通过改变入射光束位置来选择性的激励光纤中的导模,从而改善模间色散的方法,称为限模注入。如果让光束以一定的倾角入射在光纤中心,如图4(c)所示,适当选择倾角θ的大小,同样可以起到限 模注入效果,减小模间色散,增加光信号的传输距离。
现有的并行光纤转角耦合组件技术方案,光纤斜面倾角为45度,光束经斜面反射之后,沿水平方向入射光纤,如图5(a)所示。本实用新型提出,将光纤斜面抛光为42.5或者47.5度,分别如图5(b)和图5(c)所示,光束经斜面反射之后,与光纤轴线夹角为±5度,等效于图4(c)中的倾斜入射情况,产生限模注入效果,在光纤中激励的一组导模,模间色散得到优化,光信号可以传输更长的距离。
以上内容是结合具体的实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干简单推演或者替换,都应当视为属于本实用新型的保护范围。

Claims (8)

  1. 一种并行的光纤转角耦合组件,用于光信号在光纤阵列与激光器阵列之间的并行耦合,它包括一个光纤定位基片、一个盖片和数根光纤,其特征在于,盖片将光纤压入基片上的微槽阵列中并以胶水固定,光纤露出基片和盖片一定长度。
  2. 根据权利要求1所述的一种并行的光纤转角耦合组件,其特征在于,每根所述光纤的端面被抛光成大约42.5度倾角的斜面。
  3. 根据权利要求1所述的一种并行的光纤转角耦合组件,其特征在于,每根所述光纤的端面被抛光成大约47.5度倾角的斜面。
  4. 根据权利要求1所述的一种并行的光纤转角耦合组件,其特征在于,每根所述光纤的斜面上均镀设金属反射膜。
  5. 一种应用于光信号在光纤阵列与激光器阵列之间的并行耦合的方法,它包括提供一个光纤转角耦合组件;所述它包括提供一个光纤转角耦合组件包括一个光纤定位基片、一个盖片和数根光纤,其特征在于,盖片将光纤压入基片上的微槽阵列中并以胶水固定,光纤露出基片和盖片一定长度。
  6. 根据权利要求5所述的应用于光信号在光纤阵列与激光器阵列之间的并行耦合的方法进一步包括将每根所述光纤的端面抛光成大约42.5度倾角的斜面。
  7. 根据权利要求5所述的应用于光信号在光纤阵列与激光器阵列之间的并行耦合的方法进一步包括将每根所述光纤的端面抛光成大约47.5度倾角的斜面。
  8. 根据权利要求5所述的应用于光信号在光纤阵列与激光器阵列之间的并行耦合的方法进一步包括将每根所述光纤的斜面上均镀设金属反射膜。
PCT/CN2017/089552 2016-06-24 2017-06-22 一种并行的光纤转角耦合组件 WO2017220002A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/310,826 US11415755B2 (en) 2016-06-24 2017-06-22 Parallel optical fiber angled coupling component
EP17814740.1A EP3477351A4 (en) 2016-06-24 2017-06-22 PARALLEL OPTICAL FIBER CORNER COUPLING ASSEMBLY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620634614.X 2016-06-24
CN201620634614.XU CN205899082U (zh) 2016-06-24 2016-06-24 一种并行的光纤转角耦合组件

Publications (1)

Publication Number Publication Date
WO2017220002A1 true WO2017220002A1 (zh) 2017-12-28

Family

ID=57769709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089552 WO2017220002A1 (zh) 2016-06-24 2017-06-22 一种并行的光纤转角耦合组件

Country Status (4)

Country Link
US (1) US11415755B2 (zh)
EP (1) EP3477351A4 (zh)
CN (1) CN205899082U (zh)
WO (1) WO2017220002A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127309A1 (en) * 2014-02-20 2015-08-27 Biolase, Inc. Pre-initiated optical fibers for medical applications
CN205899082U (zh) * 2016-06-24 2017-01-18 上海坤腾光电科技有限公司 一种并行的光纤转角耦合组件
CN107843959A (zh) * 2017-11-20 2018-03-27 武汉驿路通科技股份有限公司 一种多通道光纤阵列及其制作方法
CN110609353B (zh) * 2019-09-10 2020-10-02 武汉博昇光电股份有限公司 一种转角透镜光纤阵列及其制作方法
CN110854210A (zh) * 2019-11-18 2020-02-28 中航光电科技股份有限公司 一种基于box封装的超高频射频光电探测器
CN111239913A (zh) * 2020-03-17 2020-06-05 中山市美速光电技术有限公司 一种45°热扩束光纤阵列及其操作方法
US20230324634A1 (en) * 2022-04-11 2023-10-12 Nien-Yi Industrial Corporation Miniature optoelectronic signal conversion and transmission device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039445A1 (en) * 2000-01-25 2003-02-27 Jurgen Blank Optical coupling system
CN1514261A (zh) * 2003-05-23 2004-07-21 华中科技大学 并行光纤阵列耦合组件
CN102520495A (zh) * 2011-11-23 2012-06-27 深圳市易飞扬通信技术有限公司 用于与阵列vcsel或pd芯片直接耦合的光纤阵列及其制造方法
CN103383482A (zh) * 2013-07-19 2013-11-06 武汉博昇光电技术有限公司 用于与vscel或pin阵列耦合的光纤阵列及其制造方法
CN103809250A (zh) * 2012-11-05 2014-05-21 联崴光电股份有限公司 光学引擎总成及使用该光学引擎总成的收发器
CN105629374A (zh) * 2016-01-20 2016-06-01 东莞市胜创光电科技有限公司 一种新型光纤
CN205404901U (zh) * 2016-03-07 2016-07-27 深圳市鹏大光电技术有限公司 一种用于与vscel或pin阵列耦合的光纤阵列
CN205899082U (zh) * 2016-06-24 2017-01-18 上海坤腾光电科技有限公司 一种并行的光纤转角耦合组件

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225213A (en) 1977-12-23 1980-09-30 Texas Instruments Incorporated Connector apparatus
US5742720A (en) 1995-08-30 1998-04-21 Matsushita Electric Industrial Co., Ltd. Optical coupling module and method for producing the same
DE19932907C2 (de) 1999-07-12 2002-06-13 Infineon Technologies Ag Anordnung zum Ankoppeln von optoelektronischen Elementen
AU2002255791A1 (en) * 2001-03-16 2002-10-03 Peregrine Semiconductor Corporation Coupled optical and optoelectronic devices, and method of making the same
US6650799B2 (en) * 2001-09-18 2003-11-18 Hampton University Apparatus for and methods of sensing evanescent events in a fluid field
JPWO2003083542A1 (ja) * 2002-03-29 2005-08-04 日本碍子株式会社 光デバイス及びその製造方法
US6874950B2 (en) * 2002-12-17 2005-04-05 International Business Machines Corporation Devices and methods for side-coupling optical fibers to optoelectronic components
CN1759337A (zh) * 2003-03-07 2006-04-12 松下电器产业株式会社 光模块及光发送接收装置
US7162124B1 (en) * 2003-03-14 2007-01-09 Luxtera, Inc. Fiber to chip coupler
US20050129367A1 (en) * 2003-12-12 2005-06-16 The Boeing Company, A Delaware Corporation Method and apparatus for angled fiber optical attenuation
KR100583646B1 (ko) 2003-12-24 2006-05-26 한국전자통신연구원 병렬 광접속 모듈용 광접속 장치 및 이를 이용한 병렬광접속 모듈
US7366380B1 (en) * 2005-04-18 2008-04-29 Luxtera, Inc. PLC for connecting optical fibers to optical or optoelectronic devices
CN101587205A (zh) 2008-05-21 2009-11-25 中国科学院半导体研究所 二维双层光纤阵列及其制作方法
KR100966177B1 (ko) * 2008-07-22 2010-06-25 한국전자통신연구원 광 경로 변환을 위한 광 도파로 장치 및 광 통신 모듈 장치
US20120099820A1 (en) * 2009-03-20 2012-04-26 Rolston David R Two dimensional optical connector
US8031993B2 (en) * 2009-07-28 2011-10-04 Tyco Electronics Corporation Optical fiber interconnect device
JP5238651B2 (ja) 2009-09-11 2013-07-17 株式会社フジクラ 光路変更部材、光接続方法
JP2013506866A (ja) * 2009-09-30 2013-02-28 コーニング インコーポレイテッド マルチモード帯域幅を向上させる光ファイバ端部構造体並びに関連システム及び方法
US8064745B2 (en) * 2009-11-24 2011-11-22 Corning Incorporated Planar waveguide and optical fiber coupling
CN102483497B (zh) * 2010-01-06 2014-06-04 惠普发展公司,有限责任合伙企业 光学互连件
US8639073B2 (en) * 2011-07-19 2014-01-28 Teraxion Inc. Fiber coupling technique on a waveguide
US9395502B2 (en) * 2012-08-28 2016-07-19 Optilab, Llc Apparatus and method for coupling optical signals between optical fibers and photo devices
US20140107630A1 (en) * 2012-09-27 2014-04-17 Trimedyne, Inc. Side firing optical fiber device for consistent, rapid vaporization of tissue and extended longevity
US9341786B1 (en) * 2015-07-28 2016-05-17 Lumentum Operations Llc Optomechanical assembly for a photonic chip
CN105372770A (zh) 2015-12-14 2016-03-02 华中科技大学 一种光纤耦合模块
JP2017142325A (ja) * 2016-02-09 2017-08-17 住友電気工業株式会社 光学デバイス、光処理デバイス、及び光学デバイスを作製する方法
US10025033B2 (en) * 2016-03-01 2018-07-17 Advanced Semiconductor Engineering, Inc. Optical fiber structure, optical communication apparatus and manufacturing process for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039445A1 (en) * 2000-01-25 2003-02-27 Jurgen Blank Optical coupling system
CN1514261A (zh) * 2003-05-23 2004-07-21 华中科技大学 并行光纤阵列耦合组件
CN102520495A (zh) * 2011-11-23 2012-06-27 深圳市易飞扬通信技术有限公司 用于与阵列vcsel或pd芯片直接耦合的光纤阵列及其制造方法
CN103809250A (zh) * 2012-11-05 2014-05-21 联崴光电股份有限公司 光学引擎总成及使用该光学引擎总成的收发器
CN103383482A (zh) * 2013-07-19 2013-11-06 武汉博昇光电技术有限公司 用于与vscel或pin阵列耦合的光纤阵列及其制造方法
CN105629374A (zh) * 2016-01-20 2016-06-01 东莞市胜创光电科技有限公司 一种新型光纤
CN205404901U (zh) * 2016-03-07 2016-07-27 深圳市鹏大光电技术有限公司 一种用于与vscel或pin阵列耦合的光纤阵列
CN205899082U (zh) * 2016-06-24 2017-01-18 上海坤腾光电科技有限公司 一种并行的光纤转角耦合组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477351A4 *

Also Published As

Publication number Publication date
US20190196114A1 (en) 2019-06-27
EP3477351A1 (en) 2019-05-01
US11415755B2 (en) 2022-08-16
CN205899082U (zh) 2017-01-18
EP3477351A4 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2017220002A1 (zh) 一种并行的光纤转角耦合组件
US7477809B1 (en) Photonic guiding device
JP5159897B2 (ja) 回路基板に実装される光導波路のための光タップ
US7162124B1 (en) Fiber to chip coupler
US7499615B2 (en) System and methods for routing optical signals
US8639067B2 (en) Fabrication method of optical wiring board and optical printed circuit board
KR100818622B1 (ko) 광 인쇄회로기판 및 그 제작방법
US7796851B2 (en) Manufacturing method of optical waveguide, optical waveguide and optical reception/transmission apparatus
US20060023990A1 (en) Interconnect device
US9184840B2 (en) Optical module
CN109212690A (zh) 单纤双向光组件及光模块
KR100860676B1 (ko) 광 도파로
JP2000009968A (ja) 受光モジュール
WO2017220001A1 (zh) 一种并行光纤收发模块
WO2020098651A1 (zh) 光波导
JP2000098153A (ja) 光デバイス実装構造
KR20100112731A (ko) 광 모듈, 광 인쇄회로기판 및 그 제조방법
JP4609311B2 (ja) 光送受信器
JP2007178950A (ja) 光配線基板および光配線モジュール
JP2007187870A (ja) 光素子の基板埋め込み構造を有する光モジュール
US20100000664A1 (en) Method for manufacturing optical surface mounting waveguide substrate
JP2012503784A (ja) 偏光維持大コア中空導波路
KR20110107808A (ko) 광학 모듈 및 컴퓨팅 시스템
JP2020086169A (ja) 光導波路および光回路基板
CN220323578U (zh) 偏振分束器及光学陀螺仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017814740

Country of ref document: EP

Effective date: 20190124