WO2017219954A1 - Émetteur-récepteur de communication - Google Patents
Émetteur-récepteur de communication Download PDFInfo
- Publication number
- WO2017219954A1 WO2017219954A1 PCT/CN2017/089119 CN2017089119W WO2017219954A1 WO 2017219954 A1 WO2017219954 A1 WO 2017219954A1 CN 2017089119 W CN2017089119 W CN 2017089119W WO 2017219954 A1 WO2017219954 A1 WO 2017219954A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amplifier
- local oscillator
- mixer
- signal
- module
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0067—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
- H04B1/0082—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands with a common local oscillator for more than one band
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/403—Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
- H04B1/408—Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency the transmitter oscillator frequency being identical to the receiver local oscillator frequency
Definitions
- the present invention relates to the field of satellite communication technologies, and more particularly to communication transceivers.
- VSAT Very Small Aperture Satellite Terminal Station
- small station small station
- PES personal earth station
- VSAT user data terminal can be directly connected to the computer to complete communication tasks such as data transfer, file exchange, image transmission, etc., thus getting rid of the problem of long-distance communication ground relay station.
- VSAT as a dedicated long-distance communication system is a good choice.
- the VSAT satellite communication system consists of a primary station, a communication satellite transponder and a small station.
- a typical Ka-band transceiver mainly includes a local oscillator unit, a receiving channel unit, and a transmitting channel unit. Since the transmitting and receiving frequencies are different, and the receiving module and the transmitting module are two separate modules, two oscillators must be used to generate the local oscillator signal.
- the Ka-band transceiver receive and transmit channels use two different local oscillator generators, which make hardware cost and debugging cost high, and the two local oscillator generators need to use two sets of feedback circuits, which increases PCB area and cost.
- a communication transceiver includes a receiving module, a transmitting module, a local oscillator module and an antenna module;
- the local oscillator module includes a local oscillator and a power splitter, and the local oscillator is used to generate a local vibration signal, and the power splitter
- the input end of the device is connected to the local oscillator, and the two output ends of the power splitter are respectively connected to the receiving module and the sending module;
- the antenna module receives a first radio frequency signal from a base station
- the receiving module receives the first radio frequency signal and a local oscillator signal transmitted by the power splitter, and downconverts the first radio frequency signal into an intermediate frequency signal output;
- the transmitting module receives the local oscillator signal transmitted by the power splitter and an intermediate frequency signal from the interaction device, and upconverts the intermediate frequency signal into a second radio frequency signal, and sends the signal to the base station through the antenna module.
- the local oscillator module further includes a first frequency multiplier and a second frequency multiplier; the first frequency multiplier is coupled to the first output end of the power splitter and the receiving module The second frequency multiplier is connected between the second output end of the power splitter and the transmitting module.
- the receiving module includes a first amplifier, a first mixer, a second amplifier, and a first filter; the first amplifier, the first mixer, the second amplifier, and the first filter Electrically connected in sequence;
- a first input end of the first mixer is connected to the first amplifier, and a second input end of the first mixer is connected to a first output end of the power splitter;
- An output of the first mixer is coupled to an input of the second amplifier.
- the first amplifier is a low noise amplifier; the second amplifier is an intermediate frequency amplifier.
- the first filter is a band pass filter having a bandwidth of 500 megahertz.
- the first mixer is a fundamental mixer or a second harmonic mixer.
- the transmitting module includes a second filter, a third amplifier, a second mixer, and a fourth amplifier; the second filter, the third amplifier, the second mixer, and the fourth The amplifiers are electrically connected in sequence;
- a first input of the second mixer is coupled to the third amplifier, and a second input of the second mixer is coupled to a second output of the splitter; the second mix The output of the frequency converter is coupled to the input of the fourth amplifier.
- the second filter is a band pass filter having a bandwidth of 500 megahertz.
- the second mixer is a fundamental mixer or a second harmonic mixer.
- the local oscillator module further includes a feedback circuit for compensating for a frequency drift generated by the local oscillator;
- An input end of the feedback circuit is coupled to an external control signal, and an output of the feedback circuit is coupled to an input of the power splitter.
- the above communication transceiver only uses one local oscillator, and divides the local oscillator signal into two paths through the power splitter, and outputs the signals to the receiving module and the transmitting module respectively.
- the antenna module receives the first radio frequency signal from the base station; the receiving module receives the first radio frequency signal from the base station and the local oscillator signal transmitted by the power splitter, and downconverts the first radio frequency signal into an intermediate frequency signal output; the transmitting module receives the work function
- the local oscillator signal transmitted by the splitter and the intermediate frequency signal from the indoor interaction device are up-converted into the second radio frequency signal, and transmitted to the base station through the antenna module to complete the reception and transmission of the radio frequency signal.
- the above communication transceiver replaces the need for two different local oscillators to generate the local oscillator signal, which reduces the hardware cost and saves equipment space.
- 1 is a structural frame diagram of a communication transceiver
- Figure 2 is a block diagram of the feedback circuit.
- the communication transceiver includes a local oscillator module 100, a receiving module 200, a transmitting module 300, and an antenna module (not shown).
- the local oscillator module 100 includes a local oscillator 110 and a power divider 120.
- the local oscillator 110 is configured to generate a local vibration signal.
- the input of the power divider 120 is connected to the local oscillator 110.
- the two outputs of the power splitter 120 are connected. It is connected to the receiving module 200 and the transmitting module 300.
- the antenna module receives the first radio frequency signal from the base station; the receiving module 200 receives the first radio frequency signal and the local oscillator signal transmitted by the power divider 120, and downconverts the first radio frequency signal into an intermediate frequency signal output.
- the transmitting module 300 receives the local oscillator signal transmitted by the power divider 120 and the intermediate frequency signal from the interaction device, and upconverts the intermediate frequency signal into a second RF signal, and transmits the signal to the base station through the antenna module.
- the interactive device may be a modem, a user terminal (for example, a computer, a notebook, a tablet) or the like.
- the first RF signal is a K-band RF signal having a frequency range of 19.7 to 20.2 GHz
- the second RF signal is a Ka-band RF signal having a frequency range of 29.5 to 30 GHz.
- the first radio frequency signal is a Ka-band radio frequency signal
- the second radio frequency signal is a K-band radio frequency signal
- the first radio frequency signal is different from the radio frequency band of the second radio frequency signal, so that the transceiver can be avoided.
- the received radio frequency signal is the occurrence of the radio frequency signal emitted by the transceiver to avoid signal interference.
- the local oscillator 110 is a voltage controlled oscillator, and the frequency of the local oscillator (LO) signal generated by the voltage controlled oscillator is 5.25 GHz.
- the frequency of the local oscillator signal of the voltage controlled oscillator can also be based on actual The demand is adjusted to meet the demand for the output of the second RF signal.
- Power splitter 120 full power splitter is a device that splits the energy of one input signal into two or more equal or unequal energy outputs.
- the power splitter 120 is a binary power splitter 120 and includes an input terminal and two output terminals (a first output terminal and a second output terminal).
- the power capacity and bandwidth of the power divider 120 can be set according to the output power of the local oscillator 110 and the local oscillator frequency.
- the local oscillator module 100 further includes a first frequency multiplier 130 and a second frequency multiplier 140.
- the first frequency multiplier 130 is connected between the first output end of the power splitter 120 and the receiving module 200; the second frequency multiplier 140 is connected between the second output end of the power splitter 120 and the transmitting module 300.
- the first frequency multiplier 130 and the second frequency multiplier 140 can both be a transistor frequency multiplier, a varactor diode multiplier, and a step recovery diode frequency multiplier, and can select an appropriate multiplier according to a multiple of the required multiplier. Device.
- the receiving module 200 includes a first amplifier 210, a first mixer 220, a second amplifier 230, and a first filter 240.
- the first amplifier 210, the first mixer 220, the second amplifier 230, and the first filter 240 are electrically connected in sequence.
- the first input end of the first mixer 220 is connected to the output end of the first amplifier 210, and the second input end of the first mixer 220 is connected to the first output end of the power splitter 120 via the first frequency multiplier 130. .
- the transmitting module 300 includes a second filter 310, a third amplifier 320, a second mixer 330, and a fourth amplifier 340.
- the second filter 310, the third amplifier 320, the second mixer 330, and the fourth amplifier 340 are electrically connected in sequence.
- the first input of the second mixer 330 is connected to the output of the third amplifier 320, and the second input of the second mixer 330 is connected to the second output of the splitter 120 via the second frequency multiplier 140.
- the output of the second mixer 330 is coupled to the input of the fourth amplifier 340.
- the first frequency multiplier 130 is 4 times the frequency; the second frequency multiplier 140 is 6 times.
- the first filter 240 and the second filter 310 are both band pass filters, and the bandwidth of the band pass filter is 500 MHz, and the pass band frequency range of the first filter 240 is 0.8 GHz to 1.3.
- GHz the second filter 310 has a passband frequency range of 1.5 GHz to 2.0 GHz; the frequency of the local oscillator (LO) signal generated by the voltage controlled oscillator is 5.25 GHz; the first mixer 220 and the second mixer 330 are both fundamental mixers.
- LO local oscillator
- the 5.25 GHz local oscillator signal generated by the voltage controlled oscillator is divided into two local oscillator signals after passing through a two-power splitter 120, and one of the paths is quadruple frequency of the first frequency multiplier 130 to become a local oscillator signal with a frequency of 21 GHz. And after the received intermediate frequency signal is mixed by the first mixer 220 and processed by the first amplifier 210 and the first filter 240, an intermediate frequency signal of 0.8 to 1.3 GHz is generated; and the other is passed by the second frequency multiplier 140.
- the local oscillator signal having a frequency of 31.5 GHz is mixed with the input intermediate frequency signal 1.5G ⁇ 2 GHz in the second mixer 330 to generate a second RF signal of 29.5 to 30 GHz, and the first RF signal is passed through the fourth amplifier 340. After processing, it is sent to the base station via the antenna module.
- the passband frequency range of the first filter 240 and the second filter 310, the first frequency multiplier The frequency multiplier of the 130 and the second frequency multiplier 140, the local oscillator signal frequency, the first radio frequency signal frequency, and the second radio frequency signal frequency satisfy the following formula:
- the passband frequency range of the first filter 240 and the second filter 310 is the first multiple.
- the multiplier multiple of the frequency converter 130 and the second frequency multiplier 140, the local oscillator signal frequency, the first radio frequency signal frequency, and the second radio frequency signal frequency satisfy the following formula:
- f LO represents the local oscillator signal frequency
- M represents the multiple of the first frequency multiplier 130
- N represents the multiple of the second frequency multiplier 140
- f RI represents the passband frequency range of the first filter 240
- f TI represents the passband frequency range of the second filter 310
- f RR represents the first radio frequency signal frequency
- f TR represents the second radio frequency signal frequency.
- the first amplifier 210 is a low noise amplifier; the low noise amplifier receives the first radio frequency signal from the base station through the antenna module, and performs amplification processing on the first radio frequency signal.
- the first amplifier 210 is a low noise amplifier transistor, and a high electron mobility transistor of a gallium arsenide process can be selected.
- the first RF signal and the local oscillator signal of the first amplifier 210 are mixed and down-converted in the first mixer 220 to obtain an intermediate frequency signal, and the intermediate frequency signal is subjected to an intermediate frequency amplification process through the second amplifier 230.
- the second amplifier 230 is an intermediate frequency amplifier that amplifies the gain of the intermediate frequency signal output by the first mixer 220.
- the intermediate frequency signal processed by the second amplifier 230 is sent to a band pass filter for filtering processing, and the intermediate frequency signal of 0.8 to 1.3 GHz is filtered and filtered to be filtered to the next level device, and the receiving process of the radio frequency signal is completed.
- the second filter 310 in the sending module 300 performs filtering processing on the received intermediate frequency signal, and filters the intermediate frequency signal of 1.5 ⁇ 2 GHz to be output to the third amplifier 320 through the filtering process, and the third amplifier 320 is an intermediate frequency amplifier, so that 1.5 The power of the intermediate frequency signal of the ⁇ 2 GHz is amplified, and the intermediate frequency signal processed by the third amplifier 320 is output to the second mixer 330, and the local oscillator signal is also sent to the second mixing by the power divider 120 and the second frequency multiplier 140. In the second mixer 330, the intermediate frequency signal is up-converted into a second radio frequency signal of 29.5 ⁇ 30 GHz.
- the second RF signal passes through the third amplifier 320, that is, the power amplifier pair 29.5 ⁇ 30GHz
- the power of the second RF signal is amplified, and the amplified 29.5 ⁇ 30 GHz second RF signal antenna module is sent to the base station to complete the transmission process of the RF signal.
- the communication transceiver uses only one local oscillator 110, and divides the local oscillation signal into two paths through the power divider 120, and outputs the signals to the receiving module 200 and the transmitting module 300 respectively to complete the reception and transmission of the radio frequency signal, thereby replacing the original
- the local oscillator module 100 further includes a feedback circuit 150 for compensating for the frequency drift generated by the local oscillator 110 due to temperature or voltage effects.
- the input of the feedback circuit 150 is coupled to an external control signal, and the output of the feedback circuit is coupled to the input of the splitter 120.
- the feedback circuit 150 includes a phase detector, a low pass filter and a frequency divider; the phase detector, the low pass filter, and the local oscillator 110 are electrically connected in sequence, and the frequency divider is connected between the phase detector and the local oscillator 110.
- the local oscillator signal output by the local oscillator 110 is divided by the frequency divider and input to the phase detector and compared with an external reference signal (generally a crystal oscillator).
- phase detector If there is a phase offset from the reference signal, the phase detector is A corresponding voltage change input is generated to the local oscillator 110 to adjust its output frequency.
- a local oscillator requires only one feedback circuit to compensate for the frequency drift of the local oscillator 110, which is low in cost, small in space occupation, and strong in anti-interference ability.
- the above communication transceiver is not limited to satellite communication, but can also be applied to any secondary conversion transceiver.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
- Transmitters (AREA)
Abstract
La présente invention concerne un émetteur-récepteur de communication. L'émetteur-récepteur de communication comprend un module de réception, un module d'émission, un module d'oscillateur local, et un module d'antenne. Le module d'oscillateur local comprend un oscillateur local et un diviseur de puissance. Un signal d'oscillateur local est généré à l'aide d'un seul oscillateur local, et le signal d'oscillateur local est délivré séparément au module de réception et au module d'émission au moyen du diviseur de puissance. Le module d'antenne reçoit un premier signal radiofréquence, d'une station de base. Le module de réception reçoit le premier signal radiofréquence de la station de base et le signal d'oscillateur local transmis à l'aide du diviseur de puissance, et convertit à la baisse le premier signal radiofréquence en un signal de fréquence intermédiaire en vue d'une sortie. Le module d'envoi reçoit le signal d'oscillateur local transmis à l'aide du diviseur de puissance et le signal de fréquence intermédiaire depuis un dispositif d'échange intérieur, et convertit à la hausse le signal de fréquence intermédiaire en un second signal radiofréquence. Le module d'antenne envoie le second signal radiofréquence à la station de base. De cette manière, la réception et l'envoi du signal radiofréquence sont exécutés. L'émetteur-récepteur de communication selon l'invention n'utilise plus deux oscillateurs locaux différents pour générer le signal d'oscillateur local, comme c'est le cas habituellement, de sorte que les coûts du matériel sont réduits et l'espace du dispositif économisé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610446078.5 | 2016-06-20 | ||
CN201610446078.5A CN105933029A (zh) | 2016-06-20 | 2016-06-20 | 通信收发机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017219954A1 true WO2017219954A1 (fr) | 2017-12-28 |
Family
ID=56831671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/089119 WO2017219954A1 (fr) | 2016-06-20 | 2017-06-20 | Émetteur-récepteur de communication |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105933029A (fr) |
WO (1) | WO2017219954A1 (fr) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108732542A (zh) * | 2018-08-01 | 2018-11-02 | 无锡华测电子系统有限公司 | 一种超宽带雷达收发前端 |
CN109257057A (zh) * | 2018-11-08 | 2019-01-22 | 扬州海科电子科技有限公司 | 一种超宽带超外差接收系统 |
CN109618367A (zh) * | 2019-01-22 | 2019-04-12 | 上海创远仪器技术股份有限公司 | 针对矢量网络分析仪实现宽带频率快速锁定和生成的装置及方法 |
CN111157961A (zh) * | 2020-01-18 | 2020-05-15 | 广东圣大电子有限公司 | 一种Ku波段多路雷达接收机 |
CN111355485A (zh) * | 2019-09-29 | 2020-06-30 | 西安空间无线电技术研究所 | 一种延时线相位漂移消除系统及方法 |
CN111355499A (zh) * | 2018-12-24 | 2020-06-30 | 深圳市华讯方舟卫星产业科技有限公司 | 射频链路 |
CN111950309A (zh) * | 2020-07-16 | 2020-11-17 | 昆明物理研究所 | 危险化学品身份信息的便携手持式自动读写防爆装置 |
CN111987995A (zh) * | 2019-05-24 | 2020-11-24 | 核工业西南物理研究院 | 一种基于混频调制反馈环的梳状信号源 |
CN112014803A (zh) * | 2020-08-18 | 2020-12-01 | 武汉大学 | 一种基于线性调频中断连续波的c波段收发组件系统 |
CN112305515A (zh) * | 2020-10-22 | 2021-02-02 | 南京矽典微系统有限公司 | 信号处理方法、信号处理系统及毫米波传感器芯片 |
CN114928370A (zh) * | 2022-04-22 | 2022-08-19 | 杭州中科微电子有限公司 | 一种应用于gnss高性能双频有源天线的射频结构 |
CN115061358A (zh) * | 2022-06-20 | 2022-09-16 | 北京国卫星通科技有限公司 | 抗欺骗抗干扰报警北斗授时装置 |
CN115065376A (zh) * | 2022-07-27 | 2022-09-16 | 成都雷通科技有限公司 | 一种八通道高功率变频tr组件 |
RU214168U1 (ru) * | 2022-07-27 | 2022-10-13 | Общество с ограниченной ответственностью "НОВЫЕ ТЕЛЕКОМ РЕШЕНИЯ" | Супергетеродинный приемопередатчик для радиорелейной линии связи |
CN115333567A (zh) * | 2022-10-14 | 2022-11-11 | 南京冉思电子科技有限公司 | 一种无人机目标模拟器变频及光纤模块 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105933029A (zh) * | 2016-06-20 | 2016-09-07 | 深圳市华讯星通讯有限公司 | 通信收发机 |
CN106226741B (zh) * | 2016-07-12 | 2018-03-02 | 华讯方舟科技有限公司 | 利用tr组件获得中频可控信号的方法和系统 |
CN108736904A (zh) * | 2017-04-17 | 2018-11-02 | 东莞百电子有限公司 | 一种新型vsat接收器及发射器 |
CN109150217B (zh) * | 2018-10-12 | 2024-01-23 | 南京屹信航天科技有限公司 | 一种小型化odu接收通道电路 |
CN116015340A (zh) * | 2022-12-27 | 2023-04-25 | 成都联帮微波通信工程有限公司 | 一种集频率合成器于一体的电台收发信道 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2759063Y (zh) * | 2004-12-30 | 2006-02-15 | 芯通科技(成都)有限公司 | 无线基站的远端模拟射频收发信机模块 |
KR20080083760A (ko) * | 2007-03-13 | 2008-09-19 | (주)씨앤드에스 마이크로 웨이브 | 직접변환 방식의 알에프 중계기용 채널 필터링 장치 |
CN204119223U (zh) * | 2014-05-27 | 2015-01-21 | 电子科技大学 | 多通道全双工调幅宽带射频收发机 |
CN105071882A (zh) * | 2015-08-28 | 2015-11-18 | 东南大学 | 一种多模式多天线信道模拟器射频前端的实现方法和实现结构 |
CN204886942U (zh) * | 2015-07-17 | 2015-12-16 | 安徽四创电子股份有限公司 | 一体化x波段收发模块 |
CN105933029A (zh) * | 2016-06-20 | 2016-09-07 | 深圳市华讯星通讯有限公司 | 通信收发机 |
CN205725741U (zh) * | 2016-06-20 | 2016-11-23 | 深圳市华讯星通讯有限公司 | 通信收发机 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003255965A1 (en) * | 2002-08-29 | 2004-03-19 | Koninklijke Philips Electronics N.V. | Transceiver apparatus for use in a multi-frequency communication system, base station of a multi-frequency communication system, method for use of the transceiver apparatus, method of transceiving a multi-frequency signal in a multi-frequency communication system |
JP2006093819A (ja) * | 2004-09-21 | 2006-04-06 | Mitsubishi Electric Corp | 高周波回路 |
CN202050038U (zh) * | 2011-03-14 | 2011-11-23 | 南京才华科技集团有限公司 | Ka波段毫米波TR组件 |
CN204031163U (zh) * | 2014-07-18 | 2014-12-17 | 南京誉葆科技有限公司 | 大功率毫米波收发组件 |
CN104467908B (zh) * | 2014-12-12 | 2016-08-17 | 中国电子科技集团公司第五十四研究所 | X频段地空传输宽带收发信机 |
-
2016
- 2016-06-20 CN CN201610446078.5A patent/CN105933029A/zh active Pending
-
2017
- 2017-06-20 WO PCT/CN2017/089119 patent/WO2017219954A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2759063Y (zh) * | 2004-12-30 | 2006-02-15 | 芯通科技(成都)有限公司 | 无线基站的远端模拟射频收发信机模块 |
KR20080083760A (ko) * | 2007-03-13 | 2008-09-19 | (주)씨앤드에스 마이크로 웨이브 | 직접변환 방식의 알에프 중계기용 채널 필터링 장치 |
CN204119223U (zh) * | 2014-05-27 | 2015-01-21 | 电子科技大学 | 多通道全双工调幅宽带射频收发机 |
CN204886942U (zh) * | 2015-07-17 | 2015-12-16 | 安徽四创电子股份有限公司 | 一体化x波段收发模块 |
CN105071882A (zh) * | 2015-08-28 | 2015-11-18 | 东南大学 | 一种多模式多天线信道模拟器射频前端的实现方法和实现结构 |
CN105933029A (zh) * | 2016-06-20 | 2016-09-07 | 深圳市华讯星通讯有限公司 | 通信收发机 |
CN205725741U (zh) * | 2016-06-20 | 2016-11-23 | 深圳市华讯星通讯有限公司 | 通信收发机 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108732542A (zh) * | 2018-08-01 | 2018-11-02 | 无锡华测电子系统有限公司 | 一种超宽带雷达收发前端 |
CN108732542B (zh) * | 2018-08-01 | 2023-12-26 | 无锡华测电子系统有限公司 | 一种超宽带雷达收发前端 |
CN109257057A (zh) * | 2018-11-08 | 2019-01-22 | 扬州海科电子科技有限公司 | 一种超宽带超外差接收系统 |
CN109257057B (zh) * | 2018-11-08 | 2023-09-29 | 扬州海科电子科技有限公司 | 一种超宽带超外差接收系统 |
CN111355499A (zh) * | 2018-12-24 | 2020-06-30 | 深圳市华讯方舟卫星产业科技有限公司 | 射频链路 |
CN111355499B (zh) * | 2018-12-24 | 2023-12-12 | 深圳市华讯方舟光电技术有限公司 | 射频链路 |
CN109618367A (zh) * | 2019-01-22 | 2019-04-12 | 上海创远仪器技术股份有限公司 | 针对矢量网络分析仪实现宽带频率快速锁定和生成的装置及方法 |
CN109618367B (zh) * | 2019-01-22 | 2023-09-29 | 上海创远仪器技术股份有限公司 | 矢量网络分析仪的宽带快速锁定和生成的装置及方法 |
CN111987995A (zh) * | 2019-05-24 | 2020-11-24 | 核工业西南物理研究院 | 一种基于混频调制反馈环的梳状信号源 |
CN111355485A (zh) * | 2019-09-29 | 2020-06-30 | 西安空间无线电技术研究所 | 一种延时线相位漂移消除系统及方法 |
CN111355485B (zh) * | 2019-09-29 | 2023-03-28 | 西安空间无线电技术研究所 | 一种延时线相位漂移消除系统及方法 |
CN111157961A (zh) * | 2020-01-18 | 2020-05-15 | 广东圣大电子有限公司 | 一种Ku波段多路雷达接收机 |
CN111950309A (zh) * | 2020-07-16 | 2020-11-17 | 昆明物理研究所 | 危险化学品身份信息的便携手持式自动读写防爆装置 |
CN112014803A (zh) * | 2020-08-18 | 2020-12-01 | 武汉大学 | 一种基于线性调频中断连续波的c波段收发组件系统 |
CN112014803B (zh) * | 2020-08-18 | 2023-02-03 | 武汉大学 | 一种基于线性调频中断连续波的c波段收发组件系统 |
CN112305515A (zh) * | 2020-10-22 | 2021-02-02 | 南京矽典微系统有限公司 | 信号处理方法、信号处理系统及毫米波传感器芯片 |
CN114928370A (zh) * | 2022-04-22 | 2022-08-19 | 杭州中科微电子有限公司 | 一种应用于gnss高性能双频有源天线的射频结构 |
CN115061358B (zh) * | 2022-06-20 | 2023-01-31 | 北京国卫星通科技有限公司 | 抗欺骗抗干扰报警北斗授时装置 |
CN115061358A (zh) * | 2022-06-20 | 2022-09-16 | 北京国卫星通科技有限公司 | 抗欺骗抗干扰报警北斗授时装置 |
RU214168U1 (ru) * | 2022-07-27 | 2022-10-13 | Общество с ограниченной ответственностью "НОВЫЕ ТЕЛЕКОМ РЕШЕНИЯ" | Супергетеродинный приемопередатчик для радиорелейной линии связи |
CN115065376A (zh) * | 2022-07-27 | 2022-09-16 | 成都雷通科技有限公司 | 一种八通道高功率变频tr组件 |
CN115333567B (zh) * | 2022-10-14 | 2023-02-28 | 南京冉思电子科技有限公司 | 一种无人机目标模拟器变频及光纤模块 |
CN115333567A (zh) * | 2022-10-14 | 2022-11-11 | 南京冉思电子科技有限公司 | 一种无人机目标模拟器变频及光纤模块 |
Also Published As
Publication number | Publication date |
---|---|
CN105933029A (zh) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017219954A1 (fr) | Émetteur-récepteur de communication | |
CN1985528B (zh) | 具有低成本高性能本振架构的变频中继器 | |
CA2388760C (fr) | Couverture radio-frequence a l'interieur de batiments | |
US6704549B1 (en) | Multi-mode, multi-band communication system | |
EP1225715B1 (fr) | Récepteur, émetteur et procédé | |
US7146136B2 (en) | E-band radio transceiver architecture and chip set | |
WO2022218030A1 (fr) | Dispositif distant et système distribué 5g | |
CN209218087U (zh) | 一种射频拓扑系统及通信装置 | |
CN108847866B (zh) | 射频前端邻道干扰抑制电路和wlan接入设备 | |
JP2917890B2 (ja) | 無線送受信機 | |
CN102752010B (zh) | 一种用于通信基站的收发模块 | |
WO2020118627A1 (fr) | Système topologique de radiofréquence et appareil de communication | |
WO2022227654A1 (fr) | Unité de combinaison d'extrémité proche, unité de combinaison d'extrémité éloignée et système de distribution d'intérieur | |
US6272329B1 (en) | Bidirectional frequency translator and full duplex transceiver system employing same | |
CN111431581A (zh) | 基于抗辐照微波集成电路的射频收发星载装置 | |
WO2020048277A1 (fr) | Circuit radiofréquence et dispositif de communication | |
CN205725741U (zh) | 通信收发机 | |
JP3996902B2 (ja) | マイクロ波帯無線受信装置およびマイクロ波帯無線通信システム | |
US8180313B2 (en) | Mixer and transceiver having the mixer | |
EP2733976A1 (fr) | Système, dispositif et procédé de transmission de signaux à entrées multiples et sorties multiples | |
CN118661381A (zh) | 用于无线通信的同相正交电流选择器放大器 | |
KR20060096449A (ko) | 전압 제어 발진기 비대칭 전력 분배에서 사용하기 위한방향성 결합기 | |
Zhang et al. | Proposal for 60 GHz wireless transceiver for the radio over fiber system | |
KR100705217B1 (ko) | 시분할 이중화 방식의 무선 송수신회로 및 그 회로를이용한 무선 기기 | |
US6970687B1 (en) | Mixer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17814692 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17814692 Country of ref document: EP Kind code of ref document: A1 |