WO2017219930A1 - 一种覆盖等级切换方法、基站及终端 - Google Patents

一种覆盖等级切换方法、基站及终端 Download PDF

Info

Publication number
WO2017219930A1
WO2017219930A1 PCT/CN2017/088783 CN2017088783W WO2017219930A1 WO 2017219930 A1 WO2017219930 A1 WO 2017219930A1 CN 2017088783 W CN2017088783 W CN 2017088783W WO 2017219930 A1 WO2017219930 A1 WO 2017219930A1
Authority
WO
WIPO (PCT)
Prior art keywords
coverage level
terminal
base station
modulation
mcs
Prior art date
Application number
PCT/CN2017/088783
Other languages
English (en)
French (fr)
Inventor
周涵
铁晓磊
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017219930A1 publication Critical patent/WO2017219930A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to the field of communication technologies, and in particular, to coverage level switching.
  • MTC Machine Type Communication
  • IoT Internet of Things
  • MTC will be an important application in the future of communications, covering intelligent meter reading, medical detection and monitoring, logistics detection, industrial inspection and monitoring, automotive networking, smart communities and wearable devices.
  • the Internet of Things industry built around MTC communication is considered to be the fourth wave of the information industry following the computer, Internet and mobile communication networks, and is the future development direction of the network.
  • MTC Mobile Telecommunication
  • 3GPP 3rd Generation Partner Ship Project
  • the scheduling strategy of the base station will be completely different for terminals in different communication environments.
  • the CIoT system introduces the concept of coverage level.
  • the channel transmission conditions are similar, and the base station can adopt similar scheduling parameters for such terminals.
  • the channel transmission conditions are different.
  • the base station will adopt different scheduling parameters.
  • the coverage level of the terminal is selected by the terminal and reported to the base station. If the base station needs to change the coverage level of the terminal, additional signaling is needed to indicate the handover level of the terminal, and the control signaling overhead is increased. Moreover, in the existing CIoT system, the number of modulation coding modes actually available to the terminal is smaller than the number of modulation coding modes in the modulation and coding mode table, which causes waste of control information overhead.
  • the present application provides a coverage level handover method, a base station, and a terminal.
  • the present application implements a base station control terminal handover coverage level without introducing new control signaling.
  • an embodiment of the present application provides a method for switching an coverage level.
  • the method includes: receiving, by the base station, coverage level information reported by the terminal, where the coverage level information indicates a first coverage level currently corresponding to the terminal; and determining, by the base station, whether the terminal needs to be the first coverage level according to the first coverage level.
  • the base station queries a preset modulation and coding mode MCS table, determines a target coverage level of the handover, and a first modulation coding mode index MCS index corresponding to the target coverage level; wherein the MCS table includes at least one MCS index for indicating that the terminal is switched to the second coverage level; the base station sends the first MCS index to the terminal .
  • an embodiment of the present application provides a base station.
  • the base station includes: a receiver, configured to receive coverage level information reported by the terminal, where the coverage level information indicates a first coverage level currently corresponding to the terminal, and a processor, configured to determine, according to the first coverage level, whether the The terminal is switched from the first coverage level to another coverage level.
  • the preset modulation and coding mode MCS table is queried to determine the target coverage level of the handover.
  • a first modulation and coding mode index MCS index corresponding to the target coverage level wherein the MCS table includes at least one MCS index for indicating that the terminal is switched to the second coverage level; and a transmitter for using the An MCS index is sent to the terminal.
  • the base station when the new control signaling is not introduced, instructs the terminal to switch the coverage level by using at least one modulation coding mode index in the modulation and coding mode MCS table, so that the base station controls the terminal to switch the coverage level.
  • the base station determines, according to the first coverage level, whether the terminal needs to be switched from the first coverage level to another coverage level, including: the base station according to scheduling the terminal to receive downlink data or the base station receiving uplink data, Determining whether the first coverage level reported by the terminal is available. If the downlink data or the uplink data is abnormal, determining that the first coverage level is unavailable, and switching to another coverage level; if the downlink data or uplink data is received normally, It is determined that the first coverage level is available and there is no need to switch to other coverage levels.
  • the base station determines, according to the first coverage level, whether the terminal needs to be switched from the first coverage level to another coverage level, including: the base station according to the load condition of the base station at the first coverage level, Determining whether the terminal needs to be switched to another coverage level; if the load condition of the base station at the first coverage level is greater than a preset threshold, determining that the terminal needs to switch to another coverage level; if the base station is at the first coverage level If the load condition below is less than or equal to the preset threshold, it is determined that the terminal does not need to switch to another coverage level.
  • the determining the target coverage level of the handover comprises: selecting a second coverage level that is different from the first coverage level as the target coverage level of the handover.
  • an embodiment of the present application provides a method for switching an coverage level.
  • the method includes: the terminal reporting the coverage level information to the base station, where the coverage level information indicates the first coverage level currently corresponding to the terminal; the terminal receives the modulation and coding mode index MCS index from the base station, and queries according to the received MCS index.
  • the preset modulation and coding mode MCS table obtains the target coverage level of the handover, or obtains a modulation and coding mode for transmitting uplink data or receiving downlink data; wherein the MCS table includes at least one for indicating that the terminal is switched to the second coverage level.
  • the modulation coding mode indexes the MCS index.
  • an embodiment of the present application provides a terminal.
  • the terminal includes: a transmitter, configured to report coverage level information to the base station, where the coverage level information indicates a first coverage level currently corresponding to the terminal; and a receiver, configured to receive a modulation coding mode index MCS index from the base station;
  • the device is configured to query a preset modulation and coding mode MCS table according to the received MCS index, obtain a target coverage level of the handover, or obtain uplink data to be transmitted or received.
  • a modulation coding mode for receiving downlink data where the MCS table includes at least one modulation coding mode index MCS index for indicating that the terminal is switched to the second coverage level.
  • the MCS table further includes at least one MCS index for indicating a modulation coding mode.
  • the method includes: receiving, by the terminal, a parameter of a target coverage level broadcast by the base station, where the parameter includes an aggregation of the physical downlink control channel PDCCH. Level or number of repeated receptions.
  • the terminal after receiving the parameter of the target coverage level broadcast by the base station, the terminal includes: receiving, by the terminal, control information of the physical downlink control channel PDCCH according to an aggregation level of the PDCCH of the target coverage level or a repeated reception number.
  • the terminal obtains corresponding modulation parameters by querying the MCS table according to the modulation coding mode index and the current coverage level of the terminal, and receives downlink data or sends uplink data according to the modulation parameter.
  • the modulation parameters of the downlink data include a digital modulation mode, a code rate, and a repetition number
  • the modulation parameters of the uplink data include a digital modulation mode, a code rate, a binding factor, a repetition factor, and a physical data rate.
  • the base station transmits downlink or uplink scheduling information through the physical downlink control channel PDCCH.
  • the at least one modulation parameter that is not commonly used by the current coverage level and its corresponding modulation coding mode index are used to indicate the handover coverage level. Therefore, the embodiment of the present application uses the modulation and coding mode index that is not commonly used in the current coverage level in the CIoT system to instruct the terminal to switch the coverage level, thereby saving system overhead.
  • the MCS index is used to indicate that the terminal switches the coverage level by using one or more modulation and coding modes, thereby saving system overhead and realizing the purpose of the base station controlling the terminal to switch the coverage level, so that the system Load balancing to make the most of your resources.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a method for switching coverage levels in a CIoT system according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a base station according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a terminal according to an embodiment of the present application.
  • the terminal determines its own coverage level by means of downlink measurement before random access, for example, the terminal according to the synchronization channel quality of the cell and the physical downlink control channel quality. Determine the coverage level.
  • Random access refers to the process before the terminal attempts to access the network by sending a random access preamble to establish a basic signaling connection with the network.
  • the terminal reports the coverage level selected by the terminal to the base station in the random access request.
  • the base station schedules or switches the terminal coverage level according to the current coverage level of the terminal and the CIoT network load condition or data reception status (including the case where the base station receives the uplink data and the terminal receives the downlink data).
  • the scheduling of the base station to the terminal includes downlink scheduling and uplink scheduling.
  • the downlink scheduling means that the base station scheduling terminal receives the downlink data sent by the base station, and the downlink data passes the PDSCH (Physical Downlink Share Channel). send.
  • the uplink scheduling means that the base station scheduling terminal transmits uplink data, and the uplink data is transmitted through a PUSCH (Physical Uplink Share Channel).
  • the base station generally sends scheduling information through a PDCCH (Physical Downlink Control Channel), including downlink scheduling information (see Table 1 below) and uplink scheduling information (see Table 2 below).
  • PDCCH Physical Downlink Control Channel
  • the PDCCH is used to carry control information for scheduling PUSCH data and PDSCH data, including data transmission format, resource allocation, uplink and downlink scheduling grant, power control, and retransmission information.
  • the downlink scheduling information sent by the base station through the PDCCH is:
  • the parameter PDSCH MCS value that is, the MCS index (modulation coding mode index) is used to indicate the modulation parameters of the received downlink data and the handover coverage level.
  • the modulation parameters include the modulation mode, the code rate, and the number of repetitions. For details, see Table 3 below. Table 3-1, Table 3-2, and Table 3-3 are collectively referred to herein as Table 3), Table 6, and Table 7.
  • the downlink scheduling information is not limited to the Message ID, the MS ID (User Equipment Identifier), the PDSCH sub-carrier (PDSCH subcarrier number), and the PDSCH start position (PDSCH) in Table 1.
  • the start position), PDSCH MCS (PDSCH modulation and coding scheme), and the downlink scheduling information shown in Table 1 is only an example.
  • the modulation parameter used by the PDSCH MCS to indicate that the downlink data is received is not limited to the modulation mode, the code rate, and the number of repetitions, that is, it is not limited to the following Table 3 (including Table 3-1, Table 3-2, Table 3-3), and the table. 6. Modulation parameters shown in Table 7.
  • the uplink scheduling information sent by the base station through the PDCCH is:
  • the parameter PUSCH MCS that is, the MCS index (modulation coding mode index) is used to indicate the modulation parameters for transmitting the uplink data and the handover coverage level, and the modulation parameters include modulation mode, code rate, binding factor, repetition factor, physical data rate, and the like.
  • the modulation parameters include modulation mode, code rate, binding factor, repetition factor, physical data rate, and the like.
  • Table 4 including Table 4-1, Table 4-2, Table 4-3, collectively referred to as Table 4
  • Table 5 including Table 5-1, Table 5-2, Table 5- 3, referred to herein as Table 5
  • Table 8 Table 9.
  • the uplink scheduling information is not limited to the Message ID, the MS access identity, the PUSCH sub-carrier, and the PUSCH start position (PUSCH) in Table 2.
  • the start position), the PDSCH MCS (PUSCH modulation and coding scheme), and the PUSCH CBS (PUSCH coding block size), and the uplink scheduling information shown in Table 2 is only an example.
  • the modulation parameter used by the PUSCH MCS to indicate that the uplink data is sent is not limited to the code rate, the binding factor, the repetition factor, and the physical data rate, and is not limited to the following Table 4 (including Table 4-1, Table 4-2, and Table 4). -3), Table 5 (including Table 5-1, Table 5-2, Table 5-3), Table 8, and Table 9 for the modulation parameters.
  • FIG. 1 only schematically shows the coverage levels of multiple terminals under one MTC base station.
  • a CIOT system there are a large number of different types of terminals under one MTC base station, such as handheld.
  • a base station is an MTC base station deployed in a radio access network for providing a wireless communication function for a terminal, for example, a Node B (evolved NodeB) in an LTE network.
  • a Node B evolved NodeB
  • eNB evolved NodeB
  • Node B Node B in the third generation 3G network.
  • the CIoT system in the embodiment of the present application is also not limited to three coverage levels. In fact, the CIoT system can be divided into any multiple levels. For example, the CIoT system can be divided into four coverage levels.
  • the embodiment of the present application uses the at least one modulation and coding mode to index the MCS index in the CIoT system, and instructs the terminal to switch to another coverage level, so that the embodiment of the present application completely reuses the existing scheduling information without increasing the scheduling information overhead.
  • the purpose of the base station instructing the terminal to switch the coverage level is as follows, which will be described in detail below.
  • FIG. 2 is a schematic diagram of a method for switching coverage levels in a CIoT system according to an embodiment of the present application.
  • the terminal determines the first coverage level by means of downlink measurement, that is, determines the current coverage level of the terminal. For example, the terminal determines its current coverage level according to the synchronization channel quality of the cell, the physical downlink control channel quality, and the like.
  • the terminal reports the coverage level information of the terminal to the base station, and the coverage level information indicates the first coverage level currently corresponding to the terminal. That is, the terminal reports its current coverage level to the base station, for example, the terminal reports to the base station that its current coverage level is the limit coverage level.
  • the base station receives the first coverage level currently corresponding to the terminal reported by the terminal, and determines, according to the first coverage level, whether the terminal needs to be switched from the first coverage level to another coverage level. That is, the base station determines whether it is necessary to switch the coverage level of the terminal according to the current coverage level of the terminal it receives.
  • the base station determines whether the terminal needs to be switched to another coverage level according to the load condition of the base station under the first coverage level (the current coverage level of the terminal). If the load condition of the base station at the first coverage level is greater than a preset threshold, it is determined that the terminal needs to switch to another coverage level. If the load condition of the base station at the first coverage level is less than or equal to a preset threshold, it is determined that the terminal does not need to switch to another coverage level.
  • the specific value may be implemented by setting a threshold, for example, The threshold is 90% of the air interface resources. If the terminals in the first coverage level are scheduled, but the scheduling of all the terminals in the first coverage level cannot be achieved, the base station switches the terminal to another coverage level.
  • the base station switches the terminal to a target coverage level, and the target coverage level is better than the load of the first coverage level (ie, the current coverage level of the terminal), that is, the terminal is switched to a smaller coverage level. Or the base station switches the terminal to a better coverage level of channel conditions relative to the first coverage level channel condition.
  • the base station determines whether the first coverage level reported by the terminal is available according to a situation in which the terminal receives the downlink data or the base station receives the uplink data, and if the downlink data or the uplink data is abnormally received, determining the first A coverage level is not available and you need to switch to another coverage level. If the downlink data or the uplink data is received normally, it is determined that the first coverage level is available, and there is no need to switch to another coverage level.
  • the downlink data or the uplink data receiving abnormality includes the following two situations: in one case, the base station sends downlink data to the terminal, the terminal feeds back to the base station that the downlink data is not received, or the terminal feeds back to the base station. If the receiving downlink data is in error, the downlink data is abnormally received. In another case, the base station schedules the terminal to send uplink data, and the base station does not receive the uplink data sent by the terminal within a preset time. The uplink data reception is abnormal.
  • the base station queries the preset modulation and coding mode MCS table to determine the handover when determining that the terminal needs to be switched from the first coverage level (ie, the current coverage level of the terminal) to another coverage level.
  • the first coverage level ie, the current coverage level of the terminal
  • the MCS table includes at least one MCS index for indicating that the terminal is switched to the second coverage level.
  • the base station determines the first corresponding to the modulation coding mode that matches the first coverage level by querying the MCS table. And a second MCS index, where the second MCS index is used to indicate a modulation and coding mode in which the scheduling terminal receives downlink data or sends uplink data. That is to say, the MCS table includes at least one MCS index for indicating the modulation and coding mode in addition to at least one MCS index for indicating the handover coverage level.
  • the first type of MCS index is used to indicate handover to other coverage levels
  • the second type of MCS index is used to indicate modulation coding mode; wherein the first type of MCS index is The MCS index is not commonly used in the current coverage level. That is to say, the embodiment of the present application uses the MCS index that is not commonly used in the current coverage level to instruct the terminal to switch to other coverage levels.
  • the base station and the terminal respectively pre-configure the parameter PDSCH MCS (modulation coding mode of the physical downlink shared channel) and the parameter PUSCH MCS (physical uplink sharing) in the uplink scheduling information before the communication between the base station and the terminal. Modulation coding mode of the channel).
  • the configured parameters PDSCH MCS and PUSCH MCS are respectively stored in the form of a table, that is, the MCS table, see Tables 3 to 9 below.
  • the base station determines, according to the first coverage level, the code block size of the terminal to send uplink data or receive downlink data, and determines the uplink or downlink data from the at least one MCS index for indicating a modulation and coding mode.
  • the code block size matches the second MCS index. That is, the current coverage level of the terminal is the first coverage level, and the base station schedules the terminal in the first coverage level to send uplink data or receive downlink data, and the base station schedules uplink data or downlink data sent by the terminal.
  • the code block size is determined from the at least one MCS index indicating the modulation and coding mode to determine the second MCS index that matches the code block size of the uplink or downlink data.
  • the MCS table will be detailed below, see Tables 3 to 9 below.
  • the MCS table includes a PDSCH MCS table and a PUSCH MCS table.
  • the PDSCH MCS table (Table 3 below) includes a modulation parameter item indicating reception of downlink data and an MCS index item corresponding to the downlink data modulation parameter, and includes an indication to switch to other coverage.
  • the modulation parameters of the downlink data include a digital modulation mode, a code rate, and a repetition number.
  • the PUSCH MCS table (Table 4 and Table 5 below) includes a modulation parameter item indicating transmission of uplink data and an MCS index item corresponding to the uplink data modulation parameter, and includes an indication to switch to other The level item (item) and the corresponding MCS index are used; and the MCS index corresponding to the less commonly used modulation parameter is used to indicate switching to other coverage levels.
  • the modulation parameters of the uplink data include a digital modulation mode, a code rate, a binding factor, a repetition factor, a physical data rate, and the like.
  • the PDSCH MCS table is described in detail below.
  • the PDSCH MCS table includes the PDSCH MCS table under the limit coverage level, that is, the following Table 3-1, the PDSCH MCS table under the normal coverage level, that is, the following Table 3-2, and the extended coverage level.
  • the PDSCH MCS table below is the following table 3-3.
  • the PDSCH MCS table under the limit coverage level is:
  • the modulation mode Modulation is used to indicate the digital modulation mode in which the terminal receives the downlink data.
  • the code rate Coding rate is used to indicate the coding rate of the downlink data, and the repetition number Repetition is used to indicate that the terminal receives the repeated transmission times of the single transmission block. .
  • the second type of MCS index is MCS index 0 to 7, which is used to indicate the modulation parameters of the terminal receiving the downlink data, including the modulation mode, the code rate, and the repetition number;
  • the MCS index is MCS index 8-10, which is used to indicate that the terminal switches from the current coverage level, that is, the limit coverage level, to other coverage levels, such as a normal coverage level or an extended coverage level.
  • the PDSCH MCS table of the limit coverage level in the embodiment of the present application that is, the modulation and coding mode index MCS index of the above table 3-1 is not limited to 0 to 10, and the MCS index and each MCS index shown in Table 3-1 are not limited.
  • the indicated content is only an example.
  • the MCS index is 8 to 10
  • the specific MCS index value is used to switch to which coverage level is not limited; If the MCS index is 8 to 10 for switching the coverage level, it means that the CIoT system includes more than 3 coverage levels, for example, including 4 coverage levels.
  • the terminal when the terminal is in the limit coverage level, if the PDSCH MCS value of the downlink scheduling information sent by the base station is 0 to 7, that is, when the MCS index is 0 to 7, the terminal is used to receive the downlink data. Modulation parameters, including digital modulation mode, code rate and repetition times. See Table 3-1 for specific values. If the base station sends a downlink schedule When the PDSCH MCS value of the information is 8 to 10, that is, when the MCS index is 8 to 10, it instructs the terminal to switch from the current coverage level, that is, the limit coverage level, to other coverage levels, such as a normal coverage level or an extended coverage level.
  • the modulation and coding mode index MCS index is 0 to 7
  • the modulation scheme, the code rate, and the number of repetitions are the same as in the above Table 3-1.
  • the modulation coding mode index MCS index is 8PSK
  • the code rate is 2/3
  • the repetition number is 1.
  • the modulation coding mode index MCS index is 9
  • the modulation mode is 16QAM
  • the code rate is 1/2.
  • the number of repetitions is 1.
  • the modulation coding mode index MCS index is 10
  • the modulation mode is 16QAM
  • the code rate is 2/3
  • the repetition number is 1.
  • the existing PDSCH MCS table is applicable to all coverage levels in the CIoT system, including the limit coverage level, the extended coverage level and the normal coverage level.
  • the modulation coding mode index MCS index is 8 to 10
  • the modulation mode of the downlink data transmission is 8PSK or 16QAM.
  • the base station hardly uses the high-order modulation method such as 8PSK or 16QAM to transmit resources to the terminal due to the poor channel quality.
  • the base station forcibly transmits the high-order modulation method such as 8PSK or 16QAM to the terminal,
  • the resource will cause the transmitted data block to be seriously mismatched with the wireless channel condition, and the receiving decoding error rate is extremely high, thereby wasting the wireless air interface resource and the power consumption of the terminal. Therefore, for the terminal under the limit coverage, the base station hardly uses the three entries MCS index 8 to 10 during scheduling. Therefore, the prior art causes a waste of control information overhead.
  • the three coding entries of the MCS index 8 to 10 are indexed in the modulation and coding mode that is not commonly used in the limit coverage level, and the terminal is instructed to switch the coverage level, thereby saving system overhead.
  • the base station can also switch the terminal coverage level according to the network load condition, so that the entire CIoT system is load balanced; and the terminal can switch the coverage level when the data is abnormal under the limit coverage level. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the PDSCH MCS table under normal coverage levels is:
  • the modulation mode Modulation is used to indicate the digital modulation mode in which the terminal receives the downlink data.
  • the code rate Coding rate is used to indicate the coding rate of the downlink data, and the repetition number Repetition is used to indicate that the terminal receives the repeated transmission times of the single transmission block. .
  • the first type of MCS index is MCS index 0 to 2, which is used to indicate that the terminal switches from the current coverage level, that is, the normal coverage level, to other coverage levels, such as the limit coverage level or
  • the coverage type of the second type is MCS index 3 to 10, which is used to indicate the modulation parameters of the downlink data received by the terminal, including the modulation mode, the code rate, and the number of repetitions.
  • the PDSCH MCS table of the normal coverage level in the embodiment of the present application that is, the modulation and coding mode index MCS index of the above Table 3-2 is not limited to 0 to 10, and the MCS index and each MCS index shown in Table 3-2 are not limited.
  • the indicated content is only an example.
  • the MCS index is 0 to 2
  • the specific MCS index value is used to switch to which coverage level is not limited; If the MCS index is 0 to 2 for switching the coverage level, it means that the CIoT system includes more than 3 coverage levels, for example, including 4 coverage levels.
  • the terminal is in the normal coverage level
  • the PDSCH of the downlink scheduling information sent by the base station is When the MCS value is 3 to 10, that is, when the MCS index is 3 to 10, it indicates the modulation parameters used by the terminal to receive downlink data, including the modulation mode, the code rate, and the number of repetitions.
  • the PDSCH MCS value of the downlink scheduling information sent by the base station is 0 to 2, that is, when the MCS index is 0 to 2, it indicates that the terminal switches from the current coverage level, that is, the normal coverage level to other coverage levels, such as the limit coverage level or the extended coverage level. .
  • the modulation and coding mode index MCS index is 3 to 10
  • the modulation scheme, the code rate, and the number of repetitions are the same as those in Table 3-2 above.
  • the modulation coding mode index MCS index is 0, it indicates that the digital modulation mode is BPSK (binary phase shift keying), the code rate is 1/3, and the repetition number is 8; when the modulation coding mode index MCS index is 1, it indicates digital modulation.
  • the mode is BPSK, the code rate is 1/3, and the repetition number is 4; when the modulation coding mode index MCS index is 2, the digital modulation mode is BPSK, the code rate is 1/3, and the repetition number is 2.
  • the existing PDSCH MCS table is applicable to all coverage levels in the CIoT system, including the limit coverage level, the extended coverage level and the normal coverage level.
  • each coverage level does not use all of the modulation parameters in the MCS table.
  • the channel quality is good, and the base station does not need to repeatedly transmit the same transport block to communicate with the terminal, so the three entries MCS index 0 to 2 are hardly used.
  • the embodiment of the present application uses the existing PDSCH MCS table to index the three entries MCS index 0 to 2 in the modulation and coding mode that is not commonly used in the normal coverage level, and instructs the terminal to switch the coverage level, thereby saving system overhead.
  • the base station can switch the coverage level of the terminal according to the network load condition, so that the entire CIoT system is load balanced; and the purpose of switching the coverage level when the terminal receives the data abnormality under the normal coverage level can be realized. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the PDSCH MCS table under the extended coverage level is:
  • the modulation mode Modulation is used to indicate the digital modulation mode in which the terminal receives the downlink data.
  • the code rate Coding rate is used to indicate the coding rate of the downlink data, and the repetition number Repetition is used to indicate that the terminal receives the repeated transmission times of the single transmission block. .
  • the second type of MCS index is the MCS index 1 to 8, which is used to indicate the modulation parameters of the downlink data received by the terminal, including the modulation mode, the code rate, and the repetition number;
  • the class MCS index is 0, 9, and 10, and is used to indicate that the terminal switches from the current coverage level, that is, the extended coverage level, to other coverage levels, such as a limit coverage level or a normal coverage level.
  • the PDSCH MCS table of the extended coverage level in the embodiment of the present application that is, the modulation and coding mode index MCS index of the above Table 3-3 is not limited to 0 to 10, and the MCS index and each MCS index shown in Table 3-3 are not limited.
  • the indicated content is only an example.
  • the MCS index is 0, 9, or 10
  • the specific MCS index value is used to switch to which coverage level is not made. If the MCS index is 0, 9, or 10 for switching the coverage level, it means that the CIoT system includes more than 3 coverage levels, for example, including 4 coverage levels.
  • the terminal when the terminal is in the extended coverage level, if the PDSCH MCS value of the downlink scheduling information sent by the base station is 1 to 8, that is, when the MCS index is 1 to 8, the terminal is used to receive the downlink data. Modulation parameters, Including modulation mode, code rate and repetition times, the specific values are shown in Table 3-3 above. If the PDSCH MCS value of the downlink scheduling information sent by the base station is 0, 9, or 10, that is, when the MCS index is 0, 9, or 10, it instructs the terminal to switch from the current coverage level, that is, the extended coverage level, to other coverage levels, such as the limit coverage level. Or normal coverage level.
  • the existing PDSCH MCS table applies to all coverage levels in the CIoT system, including extreme coverage levels, extended coverage levels, and normal coverage levels.
  • the channel quality to the base station is better than the limit coverage level, but worse than the normal coverage level. Therefore, the terminal under the extended coverage level does not often use the MCS index 0 to 1 to continuously transmit the low-rate transmission method for 4 to 8 times, and the high-order modulation method such as 16QAM is not often used. Therefore, the prior art causes a waste of control information overhead.
  • the embodiment of the present application uses the existing PDSCH MCS code table to index the MCS index 0, 9, and 10 which are not commonly used in the extended coverage level, and instructs the terminal to switch the coverage level, thereby saving system overhead.
  • the base station can switch the coverage level of the terminal according to the network load condition, so that the entire CIoT system is load balanced; and the terminal can switch the coverage level when receiving data abnormality under the extended coverage level. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the PUSCH MCS table is described below by taking GMSK (Gaussian Filtered Minimum Shift Keying) and PSK (Phase Shift Keying) modulation as examples.
  • GMSK Gausian Filtered Minimum Shift Keying
  • PSK Phase Shift Keying
  • GMSK modulation method is mostly used in GSM (Global System for Mobile communication).
  • PSK (Phase Shift Keying) modulation is mostly used in WCDMA (Wideband Code Division Multiple Access) or LTE (Long Term Evolution) systems.
  • Table 4 below shows the PUSCH MCS table using the GMSK modulation scheme, including the PUSCH MCS table under the limit coverage level using the GMSK modulation scheme, that is, the following Table 4-1, the PUSCH MCS table under the normal coverage level using the GMSK modulation scheme, that is, Table 4-2 below, and the PUSCH MCS table under the extended coverage level using GMSK modulation, ie Table 4-3 below.
  • Table 5 below shows the PUSCH MCS table in the PSK modulation mode, including the PUSCH MCS table under the limit coverage level using the PSK modulation method, that is, the following Table 5-1, the PUSCH MCS table under the normal coverage level using the PSK modulation method, that is, Table 5-2 below, and the PUSCH MCS table under the extended coverage level using PSK modulation, ie Table 5-3 below.
  • the PUSCH MCS table at the limit coverage level using the GMSK modulation scheme is:
  • the modulation mode Modulation indicates the modulation mode in which the terminal transmits the uplink data
  • the code rate Coding rate indicates the coding rate of the uplink data
  • the binding factor Bonding factor indicates the number of carriers to be bound when the terminal transmits the uplink data
  • the repetition factor Repetition The factor indicates that the terminal receives the number of repeated transmissions of a single transport block
  • the physical data rate PHY data rate indicates the number of bits of data transmitted per unit time, and the value can be obtained according to a modulation mode, a code rate, a binding factor, and a repetition factor.
  • the second type of MCS index is the MCS index 0 to 7, which is used to indicate the modulation parameters of the uplink data sent by the terminal, including the modulation mode, the code rate, Binding factor, repetition factor, and physical data rate;
  • the first type of MCS index is MCS index 8-9, which is used to indicate that the terminal switches from the current coverage level, that is, the limit coverage level, to other coverage levels, such as a normal coverage level or an extended coverage level.
  • the modulation and coding mode index MCS index of the PUSCH MCS table (ie, Table 4-1 above) in the limit coverage level of the GMSK modulation mode is not limited to 0 to 9, as shown in Table 4-1.
  • the contents indicated by the MCS index and each MCS index are only an example.
  • the PUSCH MCS value that is not commonly used in the limit coverage level indicates that the terminal switches the coverage level, which saves system overhead.
  • the base station can also switch the terminal coverage level according to the network load condition, so that the entire CIoT system is load-balanced; and the terminal can switch the coverage level when the data is abnormal under the limit coverage level. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the PUSCH MCS table under normal coverage levels using GMSK modulation is:
  • the modulation mode Modulation indicates the modulation mode in which the terminal transmits the uplink data
  • the code rate Coding rate indicates the coding rate of the uplink data
  • the binding factor Bonding factor indicates the number of carriers to be bound when the terminal transmits the uplink data
  • the repetition factor Repetition The factor indicates that the terminal receives the number of repeated transmissions of a single transport block
  • the physical data rate PHY data rate indicates the number of bits of data transmitted per unit time, and the value can be obtained according to a modulation mode, a code rate, a binding factor, and a repetition factor.
  • the second type of MCS index is the MCS index 2 to 9, which is used to indicate the modulation parameters of the uplink data sent by the terminal, including the modulation mode, the code rate, Binding factor, repetition factor, physical data rate;
  • the first type of MCS index is MCS index0 ⁇ 1, which is used to indicate that the terminal switches from the current coverage level, that is, the normal coverage level, to other coverage levels, such as the limit coverage level or the extended coverage level.
  • the modulation and coding mode index MCS index of the PUSCH MCS table (ie, Table 4-2 above) in the normal coverage level of the GMSK modulation mode in the embodiment of the present application is not limited to 0-9, and Table 4-2 shows The MCS index and the contents indicated by each MCS index are only an example.
  • the PUSCH MCS value that is not commonly used in the common coverage level indicates that the terminal switches the coverage level, thereby saving system overhead.
  • the purpose of the terminal to switch the coverage level of the terminal according to the network load condition is achieved, so that the entire CIoT system is load-balanced, and the purpose of switching the coverage level when the terminal receives data abnormality under the normal coverage level can be achieved. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the PUSCH MCS table under the extended coverage level using GMSK modulation is:
  • the modulation mode Modulation indicates the modulation mode in which the terminal transmits the uplink data
  • the code rate Coding rate indicates the coding rate of the uplink data.
  • the binding factor Bonding factor indicates the number of carriers to be bound when the terminal transmits the uplink data
  • the repetition factor Repetition The factor indicates that the terminal receives the number of repeated transmissions of a single transport block
  • the physical data rate PHY data rate indicates the number of bits of data transmitted per unit time, and the value can be obtained according to a modulation mode, a code rate, a binding factor, and a repetition factor.
  • the second type of MCS index is the MCS index 1-8, which is used to indicate the modulation parameters of the uplink data sent by the terminal, including the modulation mode, the code rate, The binding factor, the repetition factor, and the physical data rate;
  • the first type of MCS index is MCS index 0, 9, which is used to indicate that the terminal switches from the current coverage level, that is, the extended coverage level, to other coverage levels, such as a limit coverage level or a normal coverage level.
  • the PUSCH MCS table in the extended coverage level of the GMSK modulation mode in the embodiment of the present application that is, the modulation coding mode index MCS index in the above Table 4-3 is not limited to 0 to 9, as shown in Table 4-3.
  • the contents indicated by the MCS index and each MCS index are only an example.
  • the PUSCH MCS value that is not commonly used in the coverage level is extended, that is, the MCS index 0 and 9 entries are instructed to indicate that the terminal switches the coverage level, thereby saving system overhead.
  • the base station can switch the coverage level of the terminal according to the network load condition, so that the entire CIoT system is load balanced; and the terminal can switch the coverage level when the data is abnormal under the extended coverage level. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the PUSCH MCS table at the limit coverage level using PSK modulation is:
  • the modulation mode Modulation indicates the modulation mode in which the terminal transmits the uplink data
  • the code rate Coding rate indicates the coding rate of the uplink data
  • the binding factor Bonding factor indicates the number of carriers to be bound when the terminal transmits the uplink data
  • the repetition factor Repetition The factor indicates that the terminal receives the number of repeated transmissions of a single transport block
  • the physical data rate PHY data rate indicates the number of bits of data transmitted per unit time, and the value can be obtained according to a modulation mode, a code rate, a binding factor, and a repetition factor.
  • the second type of MCS index is the MCS index 0 to 9, which is used to indicate the modulation parameters of the uplink data sent by the terminal, including the modulation mode, the code rate, Binding factor, repetition factor, and physical data rate;
  • the first type of MCS index is MCS index 10-11, which is used to indicate that the terminal switches from the current coverage level, that is, the limit coverage level, to other coverage levels, such as a normal coverage level or an extended coverage level.
  • the modulation and coding mode index MCS index of the PUSCH MCS table (ie, Table 5-1) in the limit coverage level of the PSK modulation mode is not limited to 0 to 11, as shown in Table 5-1.
  • the contents indicated by the MCS index and each MCS index are only an example.
  • the PUSCH MCS value that is not commonly used in the limit coverage level indicates that the terminal switches the coverage level, thereby saving system overhead.
  • the base station can switch the terminal coverage level according to the network load condition, so that the entire CIoT system load Equilibrium; and can achieve the purpose of switching the coverage level when the terminal receives data abnormality under the limit coverage level. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the PUSCH MCS table at the normal coverage level using PSK modulation is:
  • the modulation mode Modulation indicates the modulation mode in which the terminal transmits the uplink data
  • the code rate Coding rate indicates the coding rate of the uplink data
  • the binding factor Bonding factor indicates the number of carriers to be bound when the terminal transmits the uplink data
  • the repetition factor Repetition The factor indicates that the terminal receives the number of repeated transmissions of a single transport block
  • the physical data rate PHY data rate indicates the number of bits of data transmitted per unit time, and the value can be obtained according to a modulation mode, a code rate, a binding factor, and a repetition factor.
  • the second type of MCS index is the MCS index 2 to 11, which is used to indicate the modulation parameters of the uplink data sent by the terminal, including the modulation mode, the code rate, Binding factor, repetition factor, physical data rate;
  • the first type of MCS index is MCS index0 ⁇ 1, which is used to indicate the terminal from The current coverage level, that is, the normal coverage level, is switched to other coverage levels such as a limit coverage level or an extended coverage level.
  • the modulation coding mode index MCS index of the PUSCH MCS table (that is, the above Table 5-2) in the normal coverage level of the PSK modulation mode is not limited to 0 to 11, as shown in Table 5-2.
  • the contents indicated by the MCS index and each MCS index are only an example.
  • the PUSHC MCS value that is not commonly used in the common coverage level indicates that the terminal switches the coverage level, thereby saving system overhead.
  • the base station can switch the coverage level of the terminal according to the network load condition, so that the entire CIoT system is load balanced; and the terminal can switch the coverage level when the data is abnormal under the normal coverage level. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the PUSCH MCS table under the extended coverage level using PSK modulation is:
  • the modulation mode Modulation indicates the modulation mode in which the terminal transmits the uplink data
  • the code rate Coding rate indicates the coding rate of the uplink data.
  • the binding factor Bonding factor indicates the number of carriers to be bound when the terminal transmits the uplink data
  • the repetition factor Repetition The factor indicates that the terminal receives the repeated transmission times of a single transport block
  • the physical data rate PHY data rate indicates the number of bits of data transmitted per unit time, and the value may be tied according to a modulation method, a code rate, and a tie. The factor and the repetition factor are obtained.
  • the second type of MCS index is the MCS index 1 to 10, which is used to indicate the modulation parameters of the uplink data sent by the terminal, including the modulation mode, the code rate, The binding factor, the repetition factor, and the physical data rate;
  • the first type of MCS index is MCS index 0, 11 for indicating that the terminal switches from the current coverage level, that is, the extended coverage level, to other coverage levels, such as a limit coverage level or a normal coverage level.
  • the modulation and coding mode index MCS index of the PUSCH MCS table (ie, Table 5-3 above) in the extended coverage level of the PSK modulation mode is not limited to 0 to 11, and is shown in Table 5-3.
  • the contents indicated by the MCS index and each MCS index are only an example.
  • the MCS index 0 and 11 entries of the modulation coding mode that are not commonly used in the extended coverage level are indexed, and the terminal is instructed to switch the coverage level, thereby saving system overhead.
  • the base station can switch the coverage level of the terminal according to the network load condition, so that the entire CIoT system is load balanced; and the terminal can switch the coverage level when the data is abnormal under the extended coverage level. Therefore, the embodiment of the present application implements switching of the coverage level of the terminal without introducing new control signaling.
  • the modulation parameters in the above Tables 3, 4, and 5 and the modulation and coding mode index MCS index for indicating the handover coverage level are only an example.
  • the embodiment of the present application does not limit the scheduling parameters of the PDSCH MCS to include only the digital modulation mode, the code rate, the number of repetitions, and the scheduling parameters of the PUSCH MCS only include the digital modulation mode, the code rate, the binding factor, and the repetition.
  • Factor physical data rate; and the embodiment of the present application does not limit which MCS index indicates which coverage level to switch to, but only limits the MCS index indication that is not commonly used in the current coverage level to switch to other coverage levels. on.
  • the MCS table two types of modulation and coding mode indexes MCS index are included, and the first type of MCS index is used to indicate switching to other coverage levels and also indicates modulation parameters of the current scheduling.
  • the second type of MCS index is used to indicate the modulation coding mode. That is to say, in the PDSCH MCS table, the modulation parameters including the digital modulation mode, the code rate, and the repetition number are also included in the indication of the terminal device handover coverage level entry, as shown in Table 6 below.
  • the modulation parameters including the digital modulation mode, the code rate, the repetition factor, the binding factor, and the physical data rate are also included in the indication of the terminal handover coverage level entry.
  • the MCS index 8 to 10 in the PDSCH MCS table indicates the switching coverage level and indicates the modulation parameters of the current scheduling as an example, as described in Table 6 below.
  • the first type of MCS index is MCS index 8-10, except for indicating the handover coverage level and also used to indicate the modulation parameters of the current scheduling.
  • the second type of MCS index is MCS index 0-7, which is used to indicate the modulation and coding mode.
  • the normal coverage level and the extended coverage level are included, and the MCS index, which is not commonly used in the PDSCH MCS table, indicates that the handover parameter is switched while indicating the modulation parameters of the current scheduling, and the MCS index indication that is not commonly used in the PUSCH MCS table.
  • the coverage level is switched, the modulation parameters of the current scheduling are indicated, and the modulation parameters of the current scheduling are indicated by the MCS index, which is not commonly used in the PDSCH MCS table, and the modulation parameters are the same, and the principle is the same. .
  • the handover coverage level is bound to the modulation parameters of the current scheduling and indicated by an MCS index (see Table 6 above).
  • a scheduling opportunity is provided to enable the terminal to receive the PDSCH data or transmit the PUSCH data according to the modulation parameters of the current scheduling while switching the coverage level.
  • the terminal has configured the PDSCH MCS table and the PUSCH MCS table before leaving the factory, see Table 3, Table 4, Table 5, and Table 6 above, and store them.
  • the terminal pre-configures the MCS index corresponding to the modulation parameters commonly used in the current coverage level in the PDSCH MCS table and the PUSCH MCS table before the factory, for example, the PDSCH MCS is supported under the limit coverage level.
  • the MCS index is 0-7.
  • the base station notifies each terminal to switch the MCS index of the coverage level under various coverage levels (such as the limit coverage level, the normal coverage level, and the extended coverage level) through the system broadcast manner.
  • the terminal configures the MCS index into the PDSCH MCS table and the PUSCH MCS table to form the above Table 3, Table 4, Table 5 or Table 6.
  • the base station sends the first modulation and coding mode index MCS index to the terminal, and the first modulation and coding mode index MCS index belongs to the first type of MCS index, which is used to indicate that the handover is to the target coverage level; or the first A modulation coding mode index MCS index belongs to the second type of MCS index, which is used to indicate a modulation coding mode in which the scheduling terminal transmits uplink data or receives downlink data.
  • the base station sends a modulation and coding mode index MCS index to the terminal, where the MCS index is an MCS index corresponding to the target coverage level of the handover, or an MCS index corresponding to a modulation coding mode in which the scheduling terminal transmits uplink data or receives downlink data. .
  • the terminal receives the MCS index, and queries the preset MCS table according to the MCS index to obtain a target coverage level of the handover, or obtains a modulation and coding mode in which the scheduling terminal sends uplink data or receives downlink data.
  • the MCS table includes at least one modulation coding mode index MCS index for indicating that the terminal is switched to the target coverage level, and at least one modulation coding mode index MCS index for indicating that the scheduling terminal transmits uplink data or receives downlink data.
  • the terminal switches its current coverage level to the target coverage level according to the obtained target coverage level, or the terminal receives downlink data or transmits uplink data according to the obtained modulation and coding manner.
  • the terminal After receiving the downlink or uplink scheduling information sent by the base station, the terminal acquires the modulation and coding mode index MCS index, and queries the PDSCH MCS table stored in the terminal according to the current coverage level of the terminal (see Table 3, Table 6) or PUSCH MCS table (see Table 4, Table 5), switching the coverage level or receiving downlink data or transmitting uplink data according to the modulation parameters corresponding to the MCS index.
  • the MCS index is indexed by using at least one modulation and coding mode, for example, an MCS index corresponding to a modulation parameter that is not commonly used in the current coverage level, for indicating handover to another coverage level, and used to indicate receiving the physical downlink control channel.
  • the aggregation level includes a time-frequency resource distribution of the PDCCH under the handover level.
  • the method for the terminal device to switch the coverage level includes: after receiving the MCS index for indicating the handover to the other coverage level, and indicating the aggregation level or the repeated reception times of the physical downlink control channel PDCCH. And obtaining, by the MCS index, the aggregation level of the PDCCH or the number of repeated receptions according to the MCS index, and receiving the PDCCH control information of the target coverage level according to the aggregation level or the repeated reception times of the PDCCH, and if the control information of the target coverage level PDCCH is successfully received, Then the coverage level is successfully switched.
  • the MCS index is indexed using at least one modulation coding mode for indicating switching to other coverage levels.
  • the method for the terminal device to switch the coverage level includes: after the terminal acquires the indication to switch to the corresponding coverage level, the terminal receives a parameter of the target coverage level broadcast by the base station, where the parameter includes an aggregation level of the physical downlink control channel PDCCH or Repeat the number of receptions. If the terminal has stored the parameter of the post-switching coverage level, and the parameter is still within the validity period, the terminal does not need to receive the parameter of the post-switching coverage level broadcast by the base station. The terminal receives the PDCCH control information of the target coverage level according to the parameter, that is, the aggregation level of the PDCCH or the number of repeated receptions. If the control information of the target coverage level PDCCH is successfully received, the coverage level handover succeeds.
  • the parameter includes an aggregation level of the physical downlink control channel PDCCH or Repeat the number of receptions.
  • the embodiment of the present application uses the modulation coding mode corresponding to the at least one modulation parameter to index the MCS index, for example, using the MCS index that is not commonly used in the current coverage level, to instruct the terminal to switch to other coverage levels.
  • the coverage level switching is implemented without increasing the signaling overhead.
  • the foregoing implementation manner is a case where the base station and the terminal include multiple PDSCH MCS tables and PUSCH MCS tables, that is, one PDSCH MCS table and one PUSCH MCS table are included in each coverage level, and each In the PDSCH MCS table or in each PUSCH MCS table, the content indicated by the MCS index is different.
  • the MCS indexes 8 to 10 in the PDSCH MCS table are used to indicate the handover coverage level
  • the MCS indexes 0 to 2 in the PDSCH MCS table are used to indicate the handover coverage level.
  • the embodiment of the present application further provides another coverage level switching method, where the base station and the terminal include a PDSHC MCS table and a PUSCH MCS table, and in the PDSHC MCS table and the PUSCH MCS table, the MCS index and The corresponding modulation parameters are divided into their usual coverage levels. And the modulation coding mode index that is not commonly used for the current coverage level is used to indicate that the terminal switches the coverage level, and switches to the coverage level commonly used by the modulation and coding mode index, which is described in detail below.
  • the PDSCH MCS table is:
  • the corresponding MCS index in the limit coverage level is 0 to 7
  • the corresponding MCS index in the normal coverage level is 3 to 10
  • the corresponding MCS index in the extended coverage level is 1 to 8. It should be noted that the specific numerical values in Table 7 are only an example.
  • the MCS indexes 0 to 7 are used to indicate the modulation parameters of the downlink data received by the terminal, including the modulation mode, the code rate, and the number of repetitions. Since the MCS indexes 9 to 10 only correspond to the normal coverage level, under the limit coverage level, the MCS indexes 9 to 10 are used to indicate the handover to the normal coverage level, and also indicate the modulation parameters of the current scheduling.
  • the modulation parameter of the current scheduling is still the modulation parameter corresponding to the MCS index 9, that is, the modulation mode 16QAM, the code rate 1/2, and the repetition number. 1.
  • the modulation parameters of the current scheduling are still the modulation parameters corresponding to the MCS index 10, that is, the modulation mode 16QAM, the code rate 2/3, and the repetition number. 1.
  • the MCS index 8 corresponding to the extended coverage level also corresponds to the normal coverage level.
  • the MCS index 8 is used to indicate the handover coverage level, and the specific handover to the extended coverage level or the normal coverage level has multiple implementation manners.
  • an implementation manner is: the base station notifies each terminal by broadcasting, and under the limit coverage level, the MCS index 8 is used to indicate switching to an extended coverage level or a normal coverage level.
  • another implementation manner is: since the current coverage level is a limit coverage level, and the limit coverage level and the extended coverage level are different, that is, the limit coverage level is adjacent to the extended coverage level, and the extended coverage level is used as the target coverage of the handover. grade. Therefore, when the current coverage level is the limit coverage level, the MCS index 8 is used to indicate switching to the extended coverage level.
  • the coverage level which is different from the current coverage level is selected as the coverage level after the handover.
  • the small difference is the PDCCH aggregation level or the number of repeated receptions corresponding to the first coverage level (ie, the current coverage level) corresponding to the PDCCH aggregation level or the number of repeated receptions corresponding to the second coverage level (ie, the target coverage level of the handover). The difference is small.
  • the MCS indexes 1 to 8 are used to indicate the modulation parameters of the downlink data received by the terminal, including the modulation mode, the code rate, and the number of repetitions. Since MCS index0 only corresponds to the limit coverage level, MCS index 0 is used to indicate the handover to the limit coverage level under the extended coverage level, and also indicates the modulation parameters of the current scheduling, including the modulation mode is BPSK, and the code rate is 1/3. The number of repetitions is 8.
  • the MCS indexes 9 to 10 are used to indicate the handover to the normal coverage level, and also indicate the modulation parameters of the current scheduling. That is, for MCS index 9, the modulation parameters include a modulation mode of 16QAM, a code rate of 1/2, and a repetition number of 1; for MCS index 10, the modulation parameters include a modulation mode of 16QAM, a code rate of 1/2, and a repetition number of 1.
  • the MCS indexes 3 to 10 are used to indicate the modulation parameters of the terminal receiving the downlink data, including the modulation mode, the code rate, and the repetition number. Since MCS index 0 only corresponds to the limit coverage level, MCS index 0 is used to indicate the switch to the limit coverage level under the normal coverage level. Since the MCS index 1 to 2 corresponding to the extended coverage level also corresponds to the limit coverage level, the MCS index 1 to 2 is used to indicate the handover coverage level under the normal coverage level, and the specific handover to the extended coverage level or the limit coverage level has multiple implementations. the way.
  • an implementation manner is: the base station notifies each terminal by using a broadcast mode, and under normal coverage levels, the MCS indexes 1 to 2 are used to indicate switching to an extended coverage level or a limit coverage level.
  • another implementation manner is: since the current coverage level is a normal coverage level, and the normal coverage level and the extended coverage level are different, that is, since the normal coverage level is adjacent to the extended coverage level, the extended coverage level is used as The target coverage level of the switch. Therefore, when the current coverage level is the normal coverage level, MCS indexes 1 to 2 are used to indicate switching to the extended coverage level. That is, the modulation coding mode index that is not commonly used for the current coverage level, and other multiple For the index of the modulation coding mode commonly used for the coverage level, the coverage level that is different from the current coverage level is selected as the coverage level after the handover.
  • the small difference is the PDCCH aggregation level or the number of repeated receptions corresponding to the first coverage level (ie, the current coverage level) corresponding to the PDCCH aggregation level or the number of repeated receptions corresponding to the second coverage level (ie, the target coverage level of the handover). The difference is small.
  • the PUSCH MCS table using GMSK (Gaussian Minimum Shift Keying) modulation is:
  • the corresponding MCS index in the limit coverage level is 0 to 7
  • the corresponding MCS index in the normal coverage level is 2 to 9
  • the corresponding MCS index in the extended coverage level is 1 to 8.
  • the PUSCH MCS table adopting the GSMK modulation mode that is, the table 8 is mostly used in the GSM system, and the specific numerical values in Table 8 are only an example.
  • the MCS indexes 0 to 7 are used to indicate the modulation parameters of the terminal receiving the downlink data, including the modulation mode, the code rate, and the binding.
  • Factor repetition factor, physical data rate. Since the MCS index 9 only corresponds to the normal coverage level, under the limit coverage level, the MCS index 9 is used to indicate the handover to the normal coverage level, and also indicates the modulation parameters of the current scheduling.
  • the MCS index 8 corresponding to the extended coverage level also corresponds to the normal coverage level.
  • the MCS index 8 is used to indicate the handover coverage level, and the specific handover to the extended coverage level or the normal coverage level has multiple implementation manners.
  • an implementation manner is: the base station notifies each terminal by broadcasting, and under the limit coverage level, the MCS index 8 is used to indicate switching to an extended coverage level or a normal coverage level.
  • another implementation manner is: since the current coverage level is a limit coverage level, and the limit coverage level and the extended coverage level are different, that is, the limit coverage level is adjacent to the extended coverage level, and the extended coverage level is used as the target coverage of the handover. grade. Therefore, when the current coverage level is the limit coverage level, the MCS index 8 is used to indicate switching to the extended coverage level.
  • the coverage level which is different from the current coverage level is selected as the coverage level after the handover.
  • the small difference is the PDCCH aggregation level or the number of repeated receptions corresponding to the first coverage level (ie, the current coverage level) corresponding to the PDCCH aggregation level or the number of repeated receptions corresponding to the second coverage level (ie, the target coverage level of the handover).
  • the difference is small. It can be seen from Table 8 that for the PUSCH MCS table adopting the GSMK modulation mode, when the current coverage level is the extended coverage level, the MCS indexes 1 to 8 are used to instruct the terminal to receive the modulation parameters of the downlink data, including the modulation. System, code rate, binding factor, repetition factor, physical data rate.
  • the MCS index 0 Since the MCS index 0 only corresponds to the limit coverage level, under the extended coverage level, the MCS index 0 is used to indicate the handover to the limit coverage level, and also indicates the modulation parameters of the current scheduling. Since the MCS index 9 only corresponds to the normal coverage level, under the limit coverage level, the MCS index 9 is used to indicate the handover to the normal coverage level, and also indicates the modulation parameters of the current scheduling.
  • the MCS indexes 2 to 9 are used to indicate the modulation parameters of the terminal receiving the downlink data, including the modulation mode, the code rate, and the binding factor. , repetition factor, physical data rate. Since MCS index 0 only corresponds to the limit coverage level, MCS index 0 is used to indicate the switch to the limit coverage level under the normal coverage level. Since the MCS index 1 corresponding to the extended coverage level also corresponds to the limit coverage level, the MCS index 1 is used to indicate the handover coverage level under the normal coverage level, and the specific handover to the extended coverage level or the limit coverage level may be implemented in multiple ways.
  • an implementation manner is: the base station notifies each terminal by broadcasting, and under normal coverage level, the MCS index 1 is used to indicate switching to an extended coverage level or a limit coverage level.
  • another implementation manner is: since the current coverage level is a normal coverage level, and the normal coverage level and the extended coverage level are different, that is, since the normal coverage level is adjacent to the extended coverage level, the extended coverage level is used as The target coverage level of the switch. Therefore, when the current coverage level is the normal coverage level, MCS index 1 is used to indicate switching to the extended coverage level.
  • the coverage level which is different from the current coverage level is selected as the coverage level after the handover.
  • the small difference is the PDCCH aggregation level or the number of repeated receptions corresponding to the first coverage level (ie, the current coverage level) corresponding to the PDCCH aggregation level or the number of repeated receptions corresponding to the second coverage level (ie, the target coverage level of the handover). The difference is small.
  • the PUSCH MCS table using PSK (Phase Shift Keying) modulation is:
  • the corresponding MCS index in the limit coverage level is 0 to 7
  • the corresponding MCS index in the normal coverage level is 4 to 11
  • the corresponding MCS index in the extended coverage level is 1 to 8.
  • the PUSCH MCS table using PSK modulation mode that is, Table 9 is mostly used in WCDMA or LTE systems, and the specific numerical values in Table 9 are only an example.
  • the MCS indexes 0 to 7 are used to indicate the modulation parameters of the terminal receiving the downlink data, including the modulation mode, the code rate, Binding factor, repetition factor, physical data rate. Since the MCS indexes 9 to 11 only correspond to the normal coverage level, under the limit coverage level, the MCS indexes 9 to 11 are used to indicate the handover to the normal coverage level, and also indicate the modulation parameters of the current scheduling.
  • the MCS index 8 corresponding to the extended coverage level also corresponds to the normal coverage level.
  • the MCS index 8 is used to indicate the handover coverage level, and the specific handover to the extended coverage level or the normal coverage level has multiple implementation manners.
  • an implementation manner is: the base station notifies each terminal by broadcasting, and under the limit coverage level, the MCS index 8 is used to indicate switching to an extended coverage level or a normal coverage level.
  • another implementation manner is: since the current coverage level is a limit coverage level, and the limit coverage level and the extended coverage level are different, that is, the limit coverage level is adjacent to the extended coverage level, and the extended coverage level is used as the target coverage of the handover. grade. Therefore, when the current coverage level is the limit coverage level, the MCS index 8 is used to indicate switching to the extended coverage level. That is to say, for the modulation coding mode index which is not commonly used in the current coverage level, and the other multiple coverage levels support the modulation coding mode index, the coverage level which is different from the current coverage level is selected as the coverage level after the handover.
  • the small difference is the PDCCH aggregation level or the number of repeated receptions corresponding to the first coverage level (ie, the current coverage level) corresponding to the PDCCH aggregation level or the number of repeated receptions corresponding to the second coverage level (ie, the target coverage level of the handover). The difference is small.
  • the MCS indexes 1 to 8 are used to indicate the modulation parameters of the terminal receiving the downlink data, including the modulation mode, the code rate, and the binding.
  • Factor repetition factor, physical data rate. Since the MCS index 0 only corresponds to the limit coverage level, under the extended coverage level, the MCS index 0 is used to indicate the handover to the limit coverage level, and also indicates the modulation parameters of the current scheduling. Since the MCS indexes 9 to 11 only correspond to the normal coverage level, under the limit coverage level, the MCS indexes 9 to 11 are used to indicate the handover to the normal coverage level, and also indicate the modulation parameters of the current scheduling.
  • the MCS indexes 4 to 11 are used to indicate the modulation parameters of the terminal receiving the downlink data, including the modulation mode, the code rate, and the binding factor. , repetition factor, physical data rate. Since MCS index 0 only corresponds to the limit coverage level, MCS index 0 is used to indicate the switch to the limit coverage level under the normal coverage level. Since the MCS index 1 to 3 corresponding to the extended coverage level also corresponds to the limit coverage level, the MCS index 1 to 3 is used to indicate the handover coverage level under the normal coverage level, and the specific handover to the extended coverage level or the limit coverage level has multiple implementations. the way.
  • an implementation manner is: the base station notifies each terminal by using a broadcast mode, and under normal coverage levels, MCS indexes 1 to 3 are used to indicate switching to an extended coverage level or a limit coverage level.
  • another implementation manner is: since the current coverage level is a normal coverage level, and the normal coverage level and the extended coverage level are different, that is, since the normal coverage level is adjacent to the extended coverage level, the extended coverage level is used as The target coverage level of the switch. Therefore, when the current coverage level is the normal coverage level, MCS indexes 1 to 3 are used to indicate switching to the extended coverage level.
  • the coverage level which is different from the current coverage level is selected as the coverage level after the handover.
  • the small difference is the PDCCH aggregation level or the number of repeated receptions corresponding to the first coverage level (ie, the current coverage level) corresponding to the PDCCH aggregation level or the number of repeated receptions corresponding to the second coverage level (ie, the target coverage level of the handover). The difference is small.
  • the embodiment of the present application implements the switching of the coverage level by using at least one modulation parameter in the CIoT system and its corresponding MCS index, for example, the MCS index that is not commonly used in the current coverage level to indicate that the terminal switches the coverage level without introducing new control signaling.
  • the base station controls the purpose of the terminal to switch the coverage level.
  • the embodiment of the present application can also make the system load Equalization, and switching the coverage level for a terminal that receives or transmits data anomalies, for example, switching a terminal that receives or transmits data abnormality to a coverage level better than its current coverage level channel condition, thereby enabling the terminal to normally transmit and receive data.
  • FIG. 3 is a schematic diagram of a base station according to an embodiment of the present application.
  • the base station 300 includes a receiver 310, a processor 320, and a transmitter 330.
  • the receiver 310 is configured to receive coverage level information reported by the terminal, where the coverage level information indicates a first coverage level currently associated with the terminal. That is, the receiver 310 receives the current coverage level of the terminal.
  • the processor 320 is configured to determine, according to the first coverage level, whether the terminal needs to be switched from the first coverage level to another coverage level, and determine that the terminal needs to be switched from the first coverage level to another coverage level. Querying a preset modulation and coding mode MCS table, determining a target coverage level of the handover, and a first modulation and coding mode index MCS index corresponding to the target coverage level; wherein the MCS table includes at least one for indicating the The terminal switches to the MCS index of the second coverage level.
  • the processor 320 is further configured to determine, according to the situation that the terminal receives the downlink data or the base station receives the uplink data, whether the first coverage level reported by the terminal is available, and if the downlink data or the uplink data is abnormally received. Then, it is determined that the first coverage level is unavailable, and needs to be switched to another coverage level; if the downlink data or uplink data is received normally, it is determined that the first coverage level is available, and there is no need to switch to another coverage level.
  • the processor 320 is further configured to determine, according to a load condition of the base station at the first coverage level (the current coverage level of the terminal), whether the terminal needs to be switched to another coverage level, if the base station If the load condition of the first coverage level is greater than the preset threshold, determining that the terminal needs to switch to another coverage level, if the load condition of the base station at the first coverage level is less than or equal to a preset threshold, determining that the terminal does not Need to switch to other coverage levels.
  • a load condition of the base station at the first coverage level the current coverage level of the terminal
  • the processor 320 is further configured to use all or most of the air interface resources allocated by the base station (for example, allocating air interface resources to the base station by the CCoT serving gateway node C-SGN) (the specific value may be set by using a threshold)
  • the method is implemented, for example, setting a threshold of 90% air interface resources, scheduling each terminal under the first coverage level, but failing to implement scheduling for all terminals in the first coverage level, and then switching the terminal to other coverage Level.
  • the processor 320 switches the terminal to a smaller coverage level relative to the first coverage level (ie, the current coverage level); or the processor 320 switches the terminal to a channel condition relative to the first coverage level channel Better coverage on the condition.
  • the processor 320 determines whether the first coverage level reported by the terminal is available according to the situation that the terminal receives the downlink data or the base station receives the uplink data, and if the downlink data or the uplink data is abnormal, The first coverage level is unavailable, and needs to be switched to other coverage levels. If the downlink data or uplink data is received normally, it is determined that the first coverage level is available, and there is no need to switch to other coverage levels.
  • the downlink data or the uplink data receiving abnormality includes the following two situations: in one case, the base station sends data to the terminal, the terminal feeds back to the base station that the data is not received, or the terminal feeds back the received data to the base station.
  • the error indicates that the downlink data is abnormally received.
  • the base station schedules the terminal to send data. If the base station does not receive the data sent by the terminal within a preset time, the uplink data reception is abnormal.
  • the MCS table two types of modulation coding mode indexes MCS index are included, the first type of MCS index is used to indicate handover to other coverage levels, and the second type of MCS index is used to indicate modulation coding mode; wherein the first type of MCS index is The MCS index that is not commonly used under the current coverage level, that is, the embodiment of the present application does not use the current coverage level.
  • the commonly used MCS index instructs the terminal to switch to other coverage levels.
  • the specific MCS table is described in Tables 3 to 5 above and related content.
  • the MCS table includes at least one MCS index (ie, the first type of MCS index) for indicating the handover coverage level, and at least one MCS index for indicating the modulation and coding mode (ie, the second type). MCS index).
  • the processor 320 determines that the terminal does not need to be switched from the first coverage level (ie, the current coverage level of the terminal) to another coverage level, the processor 320 queries the MCS table to determine that the first coverage level matches.
  • the second MCS index corresponding to the modulation coding mode.
  • the processor 320 determines, according to the first coverage level, the code block size of the terminal to send uplink data or receive downlink data, and determines the uplink or downlink from the at least one MCS index for indicating a modulation and coding mode.
  • the code block size of the data matches the second MCS index.
  • the current coverage level of the terminal is the first coverage level
  • the base station schedules the terminal in the first coverage level to send uplink data or receive downlink data
  • the base station schedules uplink data or downlink data sent by the terminal.
  • the code block size is determined from the at least one MCS index indicating the modulation and coding mode to determine the second MCS index that matches the code block size of the uplink or downlink data.
  • MCS table two types of modulation and coding mode indexes MCS index are included, and the first type of MCS index is used to indicate switching to other coverage levels and also indicates modulation parameters of the current scheduling, and the second type of MCS Index is used to indicate the modulation and coding method.
  • first type of MCS index is used to indicate switching to other coverage levels and also indicates modulation parameters of the current scheduling
  • second type of MCS Index is used to indicate the modulation and coding method.
  • the processor 320 is further configured to select a second coverage level that is different from the first coverage level as the target coverage level of the handover.
  • phase difference is small, that is, the PDCCH aggregation level or the number of repeated receptions corresponding to the second coverage level is smaller than the PDCCH aggregation level or the number of repeated receptions corresponding to the first coverage level.
  • the transmitter 330 is configured to send the first MCS index to the terminal.
  • Figure 3 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present application are within the scope of the present application.
  • the terminal includes a processor 410, a transmitter 420, and a receiver 430. Further, the terminal further includes an ADC converter 440 and a modem 450.
  • the processor 410 is configured to determine a first coverage level by using a downlink measurement manner, that is, determine a current coverage level of the terminal. For example, the processor 410 determines the first coverage level, that is, the current coverage level of the terminal, according to the synchronization channel quality of the cell, the physical downlink control channel quality, and the like.
  • the transmitter 420 is configured to report coverage level information to the base station, where the coverage level information indicates a first coverage level currently associated with the terminal. That is, the transmitter 420 is configured to transmit its current coverage level to the base station.
  • the receiver 430 is configured to receive a modulation and coding mode index MCS index from the base station.
  • the processor 410 is further configured to query a preset modulation and coding mode MCS table according to the received MCS index, obtain a target coverage level of the handover, or obtain a modulation and coding manner for transmitting uplink data or receiving downlink data.
  • the MCS table includes at least one modulation coding mode index MCS index for indicating that the terminal is switched to the second coverage level.
  • the processor 440 switches the terminal to another coverage level by querying the MCS table according to the MCS index and the first coverage level, that is, the current coverage level of the terminal, or obtains a comparison with the MCS index.
  • the modulation parameters should be.
  • the modulation parameters of the downlink scheduling include a modulation mode, a code rate, and a repetition number;
  • the modulation parameters of the uplink scheduling include a modulation mode, a code rate, a binding factor, a repetition factor, and a physical data rate.
  • the MCS table includes a PDSCH MCS, PUSCH MCS table.
  • the MCS table two types of modulation coding mode indexes MCS index are included, the first type of MCS index is used to indicate handover to other coverage levels, and the second type of MCS index is used to indicate modulation coding mode; wherein the first type of MCS index is The MCS index is not commonly used in the current coverage level. That is to say, the embodiment of the present application uses the MCS index that is not commonly used in the current coverage level to instruct the terminal to switch to other coverage levels.
  • the MCS table includes at least one MCS index (ie, the first type of MCS index) for indicating the handover coverage level, and at least one MCS index for indicating the modulation and coding mode (ie, the second type). MCS index).
  • MCS index For specific MCS tables, see Table 3, Table 4, Table 5, and related content descriptions.
  • MCS table two types of modulation and coding mode indexes MCS index are included, and the first type of MCS index is used to indicate switching to other coverage levels and also indicates modulation parameters of the current scheduling, and the second type of MCS Index is used to indicate the modulation and coding method.
  • first type of MCS index is used to indicate switching to other coverage levels and also indicates modulation parameters of the current scheduling
  • second type of MCS Index is used to indicate the modulation and coding method.
  • the receiver 430 is further configured to receive a parameter of a target coverage level broadcast by the base station, where the parameter includes an aggregation level of the physical downlink control channel PDCCH or a repeated reception number.
  • the receiver 430 is further configured to receive, according to the aggregation level of the PDCCH of the target coverage level or the number of repeated receptions, control information of the physical downlink control channel PDCCH.
  • the base station may further include a memory for storing corresponding instructions of the communication algorithm, wherein, in order to save chip area, the receiver 430 and the transmitter 420 may also be integrated to form a transceiver, and the processor 410 may It is a baseband processor, or a system-on-a-chip (SOC) integrated with a baseband processor, a graphics processor, an application processor, etc., and all terminals that can implement the present application are within the scope of the present application.
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种覆盖等级切换方法、基站及终端。该包括:基站接收终端上报的覆盖等级信息,该覆盖等级信息指示了该终端当前对应的第一覆盖等级;该基站根据该第一覆盖等级,确定是否需要将该终端由该第一覆盖等级切换到其它覆盖等级;在确定需要将终端由该第一覆盖等级切换到其它覆盖等级的情况下,该基站查询预设的调制编码方式MCS表,确定切换的目标覆盖等级,以及与该目标覆盖等级对应的第一调制编码方式索引MCS index;其中,该MCS表包括至少一个用于指示将该终端切换到第二覆盖等级的MCS index;该基站将该第一MCS index发送给该终端。本申请的切换覆盖等级方法节约了系统开销。

Description

一种覆盖等级切换方法、基站及终端
本申请要求于2016年06月24日提交国家知识产权局、申请号为201610471186.8、发明名称为“一种覆盖等级切换方法、基站及终端”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及覆盖等级切换。
背景技术
MTC(Machine Type Communication,机器类型通信)又称为M2M(Machine To Machine,机器间通信),或者IoT(Internet of Things,物联网)。MTC将是未来通信领域的一项重要应用,主要涵盖智能抄表、医疗检测监控、物流检测、工业检测监控、汽车联网、智能社区以及可穿戴设备等多个领域。围绕MTC通信构造的物联网产业被认为是信息产业继计算机、互联网和移动通信网之后的第四次浪潮,是未来网络的发展方向。
一类重要的MTC通信系统是基于现有蜂窝网络基础架构的通信系统,这一类MTC通信系统通常被称为Cellular MTC(蜂窝机器类型通信)或者Cellular IoT(简称CIoT,蜂窝物联网)。3GPP(3rd generation partner ship project,第三代合作伙伴计划)标准组织一直关注Cellular MTC的发展,并积极开展相关技术的标准化。目前Cellular MTC业务对网络和MTC终端的需求主要包括:大覆盖范围需求、极高的连接数量、低成本需求、低功耗需求。
由于CIoT系统需要支持很大的覆盖范围,对处于不同通信环境下的终端,基站的调度策略将完全不同。为了保证通信的可靠性,节省基站的发送功率,需要对不同信道条件的终端进行区分,以方便基站进行调度。为此CIoT系统引入了覆盖等级的概念,对处于同一覆盖等级的终端,信道传输条件相似,基站可以对这类终端采用相似的调度参数;而对处于不同覆盖等级的终端,由于信道传输条件不同,基站将采用不同的调度参数。
在现有CIot系统中,终端的覆盖等级由终端自主选择并上报给基站。基站若需要变更终端的覆盖等级,需要使用额外信令来指示终端切换覆盖等级,增加了控制信令开销。并且在现有CIoT系统中,终端实际可用的调制编码方式组合数量小于调制编码方式表中调制编码方式组合数量,造成了控制信息开销的浪费。
发明内容
本申请提供了一种覆盖等级切换方法、基站及终端,本申请在不引入新的控制信令情况下实现了基站控制终端切换覆盖等级。
第一方面,本申请实施例提供了一种切换覆盖等级的方法。该方法包括:基站接收终端上报的覆盖等级信息,该覆盖等级信息指示了该终端当前对应的第一覆盖等级;该基站根据该第一覆盖等级,确定是否需要将该终端由该第一覆盖等级切换到其它覆盖等级;在确定需要将该终端由该第一覆盖等级切换到其它覆盖等级的情况下,则该基站查询预设的调制编码方式MCS表,确定切换的目标覆盖等级,以及与该目标覆盖等级对应的第一调制编码方式索引MCS index;其中,该MCS表包括至少一个用于指示将该终端切换到第二覆盖等级的MCS index;该基站将该第一MCS index发送给该终端。
在第二方面,本申请实施例提供了一种基站。该基站包括:接收器,用于接收终端上报的覆盖等级信息,该覆盖等级信息指示了该终端当前对应的第一覆盖等级;处理器,用于根据该第一覆盖等级,确定是否需要将该终端由该第一覆盖等级切换到其它覆盖等级,在确定需要将该终端由该第一覆盖等级切换到其它覆盖等级的情况下,查询预设的调制编码方式MCS表,确定切换的目标覆盖等级,以及与该目标覆盖等级对应的第一调制编码方式索引MCS index;其中,该MCS表包括至少一个用于指示将该终端切换到第二覆盖等级的MCS index;发射器,用于将该第一MCS index发送给该终端。
本申请实施例在不引入新的控制信令的情况下,基站通过使用调制编码方式MCS表中的至少一个调制编码方式索引指示终端切换覆盖等级上,实现了基站控制终端切换覆盖等级的目的。
在一个示例中,该基站根据该第一覆盖等级,确定是否需要将该终端由第一覆盖等级切换到其它覆盖等级,包括:该基站根据调度该终端接收下行数据或者基站接收上行数据的情况,确定该终端上报的第一覆盖等级是否可用,若该下行数据或上行数据接收异常,则确定该第一覆盖等级不可用,需要切换到其它覆盖等级;若该下行数据或上行数据接收正常,则确定该第一覆盖等级可用,不需要切换到其它覆盖等级。
在一个示例中,该基站根据该第一覆盖等级,确定是否需要将该终端由该第一覆盖等级切换到其它覆盖等级,包括:该基站根据该基站在该第一覆盖等级下的负载情况,确定是否需要将该终端切换到其它覆盖等级;若该基站在该第一覆盖等级下的负载情况大于预设阈值,则确定该终端需要切换到其它覆盖等级;若该基站在该第一覆盖等级下的负载情况小于等于预设阈值,则确定该终端不需要切换到其它覆盖等级。
在一个示例中,该确定切换的目标覆盖等级,包括:选定与该第一覆盖等级相差小的第二覆盖等级作为该切换的目标覆盖等级。
在第三方面,本申请实施例提供了一种切换覆盖等级的方法。该方法包括:终端向基站上报覆盖等级信息,该覆盖等级信息指示了该终端当前对应的第一覆盖等级;该终端接收来自该基站的调制编码方式索引MCS index,根据接收的该MCS index,查询预设的调制编码方式MCS表,得到切换的目标覆盖等级,或者得到发送上行数据或接收下行数据的调制编码方式;其中,该MCS表包括至少一个用于指示将该终端切换至第二覆盖等级的调制编码方式索引MCS index。
在第四方面,本申请实施例提供了一种终端。该终端包括:发射器,用于向基站上报覆盖等级信息,该覆盖等级信息指示了该终端当前对应的第一覆盖等级;接收器,用于接收来自该基站的调制编码方式索引MCS index;处理器,用于根据接收的该MCS index,查询预设的调制编码方式MCS表,得到切换的目标覆盖等级,或者得到发送上行数据或接 收下行数据的调制编码方式;其中,该MCS表包括至少一个用于指示将该终端切换至第二覆盖等级的调制编码方式索引MCS index。
在一个示例中,该MCS表还包括至少一个用于指示调制编码方式的MCS index。
在一个示例中,在该终端查询预设的调制编码方式MCS表,得到切换的目标覆盖等级之后,包括:该终端接收基站广播的目标覆盖等级的参数,该参数包括物理下行控制信道PDCCH的聚合等级或重复接收次数。
在一个示例中,该终端在接收到基站广播的目标覆盖等级的参数之后,包括:该终端根据该目标覆盖等级的PDCCH的聚合等级或重复接收次数接收该物理下行控制信道PDCCH的控制信息。
在一个示例中,终端根据调制编码方式索引以及该终端的当前覆盖等级,通过查询该MCS表,得到相应调制参数,并根据该调制参数接收下行数据或者发送上行数据。
在一个示例中,该下行数据的调制参数包括数字调制方式、码率、重复次数,该上行数据的调制参数包括数字调制方式、码率、绑定因子、重复因子、物理数据速率。
在一个示例中,基站通过物理下行控制信道PDCCH发送下行或上行调度信息。
在一个示例中,使用当前覆盖等级不常用的至少一个调制参数及其相应调制编码方式索引指示切换覆盖等级。因此,本申请实施例通过使用CIoT系统中当前覆盖等级下不常用的调制编码方式索引指示终端切换覆盖等级,节省了系统开销。
本申请在不引入新的控制信令的情况下,通过使用一个或多个调制编码方式索引MCS index指示终端切换覆盖等级,节省了系统开销,实现了基站控制终端切换覆盖等级的目的,使系统负载均衡,从而使资源得以充分利用。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请一个实施例的CIoT系统中覆盖等级切换方法示意图;
图3为本申请一个实施例的基站示意图;
图4为本申请一个实施例的终端示意图。
具体实施方式
下面通过附图和实施例,对本申请的技术方案做进一步的详细描述。
如图1所示,在CIoT系统中,终端在随机接入(Random Access)前,通过下行测量的方式确定自己的覆盖等级,例如,终端根据小区的同步信道质量和物理下行控制信道质量等来确定覆盖等级。随机接入是指从终端通过发送随机接入前导码尝试接入网络到与网络建立起基本的信令连接之前的过程。终端在随机接入请求中,将自己选定的覆盖等级上报给基站。
基站根据终端的当前覆盖等级以及CIoT网络负载情况或者数据接收情况(包括基站接收上行数据和终端接收下行数据的情况),对终端进行调度或者切换终端覆盖等级。基站对终端的调度包括下行调度和上行调度。下行调度是指基站调度终端接收基站发送的下行数据,下行数据将通过PDSCH(Physical Downlink Share Channel,物理下行共享信道) 发送。上行调度是指基站调度终端发送上行数据,上行数据将通过PUSCH(Physical Uplink Share Channel,物理上行共享信道)发送。基站一般通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)发送调度信息,包括下行调度信息(参见下表1)以及上行调度信息(参见下表2)。PDCCH用于承载调度PUSCH数据及PDSCH数据的控制信息,包含数据传输格式、资源分配、上下行调度许可、功率控制以及重传信息等。
在一个示例中,基站通过PDCCH发送的下行调度信息为:
Figure PCTCN2017088783-appb-000001
表1
表1中,参数PDSCH MCS值即MCS index(调制编码方式索引)用于指示接收下行数据的调制参数以及切换覆盖等级,调制参数包括调制方式、码率、重复次数,具体可参见下表3(包括表3-1、表3-2、表3-3,在此统称为表3)、表6、表7。
在本申请实施例中,下行调度信息不限于表1中的Message ID(消息标识符)、MS ID(用户设备标识符)、PDSCH sub-carrier(PDSCH子载波数)、PDSCH start position(PDSCH起始位置)、PDSCH MCS(PDSCH调制编码方式),表1中示出的下行调度信息仅是一个例子。并且PDSCH MCS用于指示接收下行数据的调制参数不限于调制方式、码率、重复次数,即并未限定于下表3(包括表3-1、表3-2、表3-3)、表6、表7中所示的调制参数。
在一个示例中,基站通过PDCCH发送的上行调度信息为:
Figure PCTCN2017088783-appb-000002
表2
表2中,参数PUSCH MCS即MCS index(调制编码方式索引)用于指示发送上行数据的调制参数以及切换覆盖等级,调制参数包括调制方式、码率、绑定因子、重复因子、物理数据速率等,具体可参见下表4(包括表4-1、表4-2、表4-3,在此统称为表4)、下表5(包括表5-1、表5-2、表5-3,在此称为表5)、表8、表9。
在本申请实施例中,上行调度信息不限于表2中的Message ID(消息标识符)、MS access identity(用户设备标识符)、PUSCH sub-carrier(PDSCH子载波数)、PUSCH start position(PUSCH起始位置)、PDSCH MCS(PUSCH调制编码方式)、PUSCH CBS(PUSCH编码块大小),表2中示出的上行调度信息仅是一个例子。并且PUSCH MCS用于指示发送上行数据的调制参数不限于码率、绑定因子、重复因子、物理数据速率,即并未限定于下表4(包括表4-1、表4-2、表4-3)、表5(包括表5-1、表5-2、表5-3)、表8、表9中所示的调制参数。
需要说明的是,图1仅示意性地示出了一个MTC基站下的多个终端的覆盖等级,实际上,在CIOT系统中,一个MTC基站下存在大量的多种不同类型的终端,例如手持设备、车载设备、可穿戴设备、智能水/电表、监控设备等。
此外,本申请实施例所涉及的基站(base station,简称BS)是一种部署在无线接入网中用于为终端提供无线通信功能的MTC基站,例如在LTE网络中的节点B(evolved NodeB简称:eNB或者eNodeB),在第三代3G网络中的节点B(Node B)等。
并且本申请实施例的CIoT系统也并未被限定划分为3个覆盖等级,实际上,CIoT系统可以划分成任意多个等级,如CIoT系统可划分为4个覆盖等级。
本申请实施例使用CIoT系统中至少一个调制编码方式索引MCS index,指示终端切换到其它覆盖等级上,使得本申请实施例在不增加调度信息开销的情况下,完全复用现有调度信息,并达到基站指示终端切换覆盖等级的目的,下面将详述。
图2是本申请一个实施例的CIoT系统中覆盖等级切换方法示意图。
在201部分,终端通过下行测量的方式确定第一覆盖等级,即确定该终端的当前覆盖等级。例如,该终端根据小区的同步信道质量和物理下行控制信道质量等来确定其当前覆盖等级。
在202部分,终端向基站上报该终端的覆盖等级信息,且该覆盖等级信息指示了该终端当前对应的第一覆盖等级。也就是说,该终端向基站上报其当前覆盖等级,例如该终端向基站上报其当前覆盖等级为极限覆盖等级。
在203部分,基站接收终端上报的该终端当前对应的第一覆盖等级,根据该第一覆盖等级,确定是否需要将该终端由该第一覆盖等级切换到其它覆盖等级。也就是说,该基站根据其接收到的该终端的当前覆盖等级,确定是否需要切换该终端的覆盖等级。
在一个示例中,该基站根据该基站在该第一覆盖等级下(该终端的当前覆盖等级)的负载情况,确定是否需要将该终端切换到其它覆盖等级上。若该基站在该第一覆盖等级下的负载情况大于预设阈值,则确定该终端需要切换到其它覆盖等级。若该基站在该第一覆盖等级下的负载情况小于等于预设阈值,则确定该终端不需要切换到其它覆盖等级。
进一步地,当基站使用为其分配的空口资源(例如,由CIoT服务网关节点C-SGN为该基站分配空口资源)的全部或大部分(具体数值可以通过设定阈值的方式实现,例如,设定阈值为90%空口资源),调度该第一覆盖等级下的各终端,却不能实现对该第一覆盖等级下所有终端的调度,则该基站将该终端切换至其它覆盖等级上。
进一步地,该基站将该终端切换至目标覆盖等级,该目标覆盖等级相对于第一覆盖等级(即终端的当前覆盖等级)的负载情况更好,即将终端切换至负载更小的覆盖等级上。或者该基站将该终端切换至信道条件相对于第一覆盖等级信道条件更好的覆盖等级上。
在另一个示例中,该基站根据调度该终端接收下行数据或者基站接收上行数据的情况,确定该终端上报的该第一覆盖等级是否可用,若该下行数据或上行数据接收异常,则确定该第一覆盖等级不可用,需要切换到其它覆盖等级。若该下行数据或上行数据接收正常,则确定该第一覆盖等级可用,不需要切换到其它覆盖等级。
进一步地,该下行数据或上行数据接收异常包括以下两种情况:一种情况是,该基站向终端发送下行数据,该终端向该基站反馈未收到该下行数据,或者该终端向该基站反馈接收下行数据发生错误,则说明该下行数据接收异常;另一种情况是,该基站调度该终端发送上行数据,在预设时间内,该基站未收到该终端发送的上行数据,则说明该上行数据接收异常。
在204部分,基站在确定需要将该终端由该第一覆盖等级(即该终端的当前覆盖等级)切换到其它覆盖等级的情况下,该基站查询预设的调制编码方式MCS表,确定切换的目标覆盖等级,以及与该目标覆盖等级对应的第一调制编码方式索引MCS index;其中,该MCS表包括至少一个用于指示将该终端切换到第二覆盖等级的MCS index。
进一步地,该基站在确定不需要将该终端由第一覆盖等级切换到其它覆盖等级的情况下,该基站通过查询该MCS表,确定与该第一覆盖等级匹配的调制编码方式所对应的第 二MCS index;其中,该第二MCS index用于指示调度终端接收下行数据或发送上行数据的调制编码方式。也就是说,该MCS表除了至少包括一个用于指示切换覆盖等级的MCS index之外,还至少包括一个用于指示调制编码方式的MCS index。
在该MCS表中,包括两类调制编码方式索引MCS index,第一类MCS index用于指示切换至其它覆盖等级,第二类MCS index用于指示调制编码方式;其中,第一类MCS index是当前覆盖等级下不常用的MCS index,也就是说,本申请实施例使用当前覆盖等级下不常用的MCS index指示终端切换至其它覆盖等级上。
具体地,在CIoT系统中,基站与终端在通信之前,会分别预先配置下行调度信息中的参数PDSCH MCS(物理下行共享信道的调制编码方式)以及上行调度信息中的参数PUSCH MCS(物理上行共享信道的调制编码方式)。且所配置的参数PDSCH MCS、PUSCH MCS分别以表格的形式存储即MCS表,参见下表3至表9。
进一步地,该基站根据在该第一覆盖等级下,调度该终端发送上行数据或接收下行数据的码块大小,从该至少一个用于指示调制编码方式的MCS index中确定与该上行或下行数据的码块大小相匹配的该第二MCS index。也就是说,该终端的当前覆盖等级为第一覆盖等级,该基站调度该第一覆盖等级下的该终端发送上行数据或接收下行数据,该基站根据调度该终端发送的上行数据或接收下行数据的码块大小,从该至少一个用于指示调制编码方式的MCS index中确定与该上行或下行数据的码块大小相匹配的该第二MCS index。
下面将详述MCS表,具体参见下表3至表9。
该MCS表包括PDSCH MCS表和PUSCH MCS表。该PDSCH MCS表(如下表3)包括指示接收下行数据的调制参数项(item)以及与下行数据调制参数相对应的MCS index(调制编码方式索引)项(item),并包括指示切换至其它覆盖等级项以及相应MCS index;且在该PDSCH MCS表中,使用的是不常用的调制参数相对应的MCS index,用于指示切换至其它覆盖等级上。如下表3所示,该下行数据的调制参数包括数字调制方式、码率、重复次数。
该的PUSCH MCS表(如下表4、表5)包括指示发送上行数据的调制参数项以及与上行数据调制参数相对应的MCS index(调制编码方式索引)项(item),并包括指示切换至其它覆盖等级项(item)以及相应MCS index;且使用的是不常用的调制参数相对应的MCS index,用于指示切换至其它覆盖等级上。如表4、表5所示,该上行数据的调制参数包括数字调制方式、码率、绑定因子、重复因子、物理数据速率等。
下面先详述该PDSCH MCS表,该PDSCH MCS表包括极限覆盖等级下的PDSCH MCS表,即下表3-1,普通覆盖等级下的PDSCH MCS表,即下表3-2,以及扩展覆盖等级下的PDSCH MCS表,即下表3-3。
在一个示例中,极限覆盖等级下的PDSCH MCS表为:
Figure PCTCN2017088783-appb-000003
表3-1
在表3-1中,调制方式Modulation用于指示终端接收下行数据的数字调制方式,码率Coding rate用于指示下行数据的编码速率,重复次数Repetition用于指示终端接收单个传输块的重复发送次数。
在表3-1中,对于极限覆盖等级下的PDSCH MCS,第二类MCS index为MCS index0~7,用于指示终端接收下行数据的调制参数,包括调制方式、码率、重复次数;第一类MCS index为MCS index8~10,用于指示终端从当前覆盖等级即极限覆盖等级切换至其它覆盖等级如普通覆盖等级或扩展覆盖等级。
需要说明的是,本申请实施例的极限覆盖等级的PDSCH MCS表,即上表3-1的调制编码方式索引MCS index不限于0~10,表3-1示出的MCS index以及各MCS index所指示内容仅是一个例子。
此外,在表3-1中,对于极限覆盖等级下的PDSCH MCS,MCS index为8~10时用于指示切换至其它覆盖等级,具体MCS index值用于切换至哪个覆盖等级并未做限定;而如果MCS index为8~10均用于切换覆盖等级,则表示CIoT系统包括3个以上覆盖等级,例如包括4个覆盖等级。
由表3-1可知,在终端处于极限覆盖等级下时,如果基站发送的下行调度信息的PDSCH MCS值为0~7,即MCS index为0~7时,其指示终端接收下行数据时采用的调制参数,包括数字调制方式、码率及重复次数,具体数值参见上表3-1。如果基站发送的下行调度 信息的PDSCH MCS值为8~10时,即MCS index为8~10时,其指示终端从当前覆盖等级即极限覆盖等级切换至其它覆盖等级如普通覆盖等级或扩展覆盖等级。
在现有的PDSCH MCS表中,在调制编码方式索引MCS index为0~7情况下,调制方式、码率及重复次数与上表3-1相同。而调制编码方式索引MCS index为8时,调制方式为8PSK,码率为2/3,重复次数为1;调制编码方式索引MCS index为9时,调制方式为16QAM,码率为1/2,重复次数为1;调制编码方式索引MCS index为10时,调制方式为16QAM,码率为2/3,重复次数为1。并且现有的PDSCH MCS表适用于CIoT系统中的所有覆盖等级,包括极限覆盖等级、扩展覆盖等级和普通覆盖等级。然而调制编码方式索引MCS index为8~10时,下行数据传输的调制方式为8PSK或16QAM。对处于极限覆盖下的终端来说,由于信道质量很差,基站几乎不使用8PSK或16QAM这样的高阶调制方式向终端发送资源,如果基站强行使用8PSK或16QAM这样的高阶调制方式向终端发送资源,会造成传输的数据块与无线信道条件严重不匹配,接收译码错误率极高,从而浪费无线空口资源和终端的功耗。因此对于极限覆盖下的终端,基站在调度时几乎不使用MCS index 8~10这3个表项。因此现有技术造成了控制信息开销的浪费。
本申请实施例使用现有PDSCH MCS表中,极限覆盖等级下不常用的调制编码方式索引MCS index 8~10这3个表项,指示终端切换覆盖等级,节省了系统开销。同时也能够实现基站根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载均衡;并且可以实现终端在极限覆盖等级下,接收数据异常时切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。
在一个示例中,普通覆盖等级下的PDSCH MCS表为:
Figure PCTCN2017088783-appb-000004
表3-2
在表3-2中,调制方式Modulation用于指示终端接收下行数据的数字调制方式,码率Coding rate用于指示下行数据的编码速率,重复次数Repetition用于指示终端接收单个传输块的重复发送次数。
在表3-2中,对于普通覆盖等级下的PDSCH MCS,第一类MCS index为MCS index0~2,用于指示终端从当前覆盖等级即普通覆盖等级切换至其他它覆盖等级如极限覆盖等级或扩展覆盖等级;第二类MCS index为MCS index3~10,用于指示终端接收下行数据的调制参数,包括调制方式、码率、重复次数。
需要说明的是,本申请实施例的普通覆盖等级的PDSCH MCS表,即上表3-2的调制编码方式索引MCS index不限于0~10,表3-2示出的MCS index以及各MCS index所指示内容仅是一个例子。
此外,在表3-2中,对于普通覆盖等级下的PDSCH MCS,MCS index为0~2时,用于切换至其它覆盖等级,具体MCS index值用于切换至哪个覆盖等级并未做限定;而如果MCS index为0~2均用于切换覆盖等级时,则表示CIoT系统包括3个以上覆盖等级,例如包括4个覆盖等级。
由表3-2可知,在终端处于普通覆盖等级下时,如果基站发送的下行调度信息的PDSCH  MCS值为3~10时,即MCS index为3~10时,其指示终端接收下行数据时采用的调制参数,包括调制方式、码率及重复次数,具体数值参见上表3-2。如果基站发送的下行调度信息的PDSCH MCS值为0~2时,即MCS index为0~2时,其指示终端从当前覆盖等级即普通覆盖等级切换至其它覆盖等级如极限覆盖等级或扩展覆盖等级。
在现有的PDSCH MCS表中,在调制编码方式索引MCS index为3~10时,调制方式、码率及重复次数与上表3-2相同。而调制编码方式索引MCS index为0时,表示数字调制方式为BPSK(二进制相移键控),码率为1/3,重复次数为8;调制编码方式索引MCS index为1时,表示数字调制方式为BPSK,码率为1/3,重复次数为4;调制编码方式索引MCS index为2时,表示数字调制方式为BPSK,码率为1/3,重复次数为2。并且现有的PDSCH MCS表适用于CIoT系统中的所有覆盖等级,包括极限覆盖等级、扩展覆盖等级和普通覆盖等级。然而各覆盖等级却并不会全部使用MCS表中的所有调制参数。对处于普通覆盖等级的终端来说,其信道质量较好,基站不需要使用重复发送同一传输块就可以和终端通信,因此几乎不使用MCS index 0~2这3个表项。
本申请实施例使用现有PDSCH MCS表中,在普通覆盖等级下不常用的调制编码方式索引MCS index 0~2这3个表项,指示终端切换覆盖等级,节省了系统开销。同时也能够实现基站根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载均衡;并且可以实现终端在普通覆盖等级下接收数据异常时,切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。
在一个示例中,扩展覆盖等级下的PDSCH MCS表为:
Figure PCTCN2017088783-appb-000005
表3-3
在表3-3中,调制方式Modulation用于指示终端接收下行数据的数字调制方式,码率Coding rate用于指示下行数据的编码速率,重复次数Repetition用于指示终端接收单个传输块的重复发送次数。
在表3-3中,对于扩展覆盖等级下的PDSCH MCS,第二类MCS index为MCS index1~8,用于指示终端接收下行数据的调制参数,包括调制方式、码率、重复次数;第一类MCS index为0、9、10,用于指示终端从当前覆盖等级即扩展覆盖等级切换至其它覆盖等级如极限覆盖等级或普通覆盖等级。
需要说明的是,本申请实施例的扩展覆盖等级的PDSCH MCS表,即上表3-3的调制编码方式索引MCS index不限于0~10,表3-3示出的MCS index以及各MCS index所指示内容仅是一个例子。
此外,在表3-3中,对于扩展覆盖等级下的PDSCH MCS,MCS index为0、9、10时,用于切换至其它覆盖等级,具体MCS index值用于切换至哪个覆盖等级并未做限定;而如果MCS index为0、9、10均用于切换覆盖等级时,则表示CIoT系统包括3个以上覆盖等级,例如包括4个覆盖等级。
由表3-3可知,在终端处于扩展覆盖等级下时,如果基站发送的下行调度信息的PDSCH MCS值为1~8时,即MCS index为1~8时,其指示终端接收下行数据所采用的调制参数, 包括调制方式、码率及重复次数,具体数值参见上表3-3。如果基站发送的下行调度信息的PDSCH MCS值为0、9、10时,即MCS index为0、9、10时,其指示终端从当前覆盖等级即扩展覆盖等级切换至其它覆盖等级如极限覆盖等级或普通覆盖等级。
现有的PDSCH MCS表适用于CIoT系统中的所有覆盖等级,包括极限覆盖等级、扩展覆盖等级和普通覆盖等级。然而对处于扩展覆盖下的终端来说,其到基站的信道质量好于极限覆盖等级,但又差于普通覆盖等级。因此在扩展覆盖等级下的终端即不常使用MCS index 0~1这样连续重复传输4~8次的低码率传输方式,也不常使用16QAM这样的高阶调制方法。因此现有技术造成了控制信息开销的浪费。
本申请实施例使用现有PDSCH MCS码表中,扩展覆盖等级下不常用的调制编码方式索引MCS index 0、9、10,指示终端切换覆盖等级,节省了系统开销。同时也能够实现基站可根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载均衡;并且可以实现终端在扩展覆盖等级下接收数据异常时切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。
下面以采用GMSK(Gaussian Filtered Minimum Shift Keying,高斯最小频移键控)及PSK(相移键控)调制方式为例,阐述PUSCH MCS表。
需要说明的是,GMSK调制方式多用于GSM(Global System for Mobile communication,全球移动通信系统)中。PSK(相移键控)调制方式多用于WCDMA(Wideband Code Division Multiple Access,宽带码分多址)或LTE(Long Term Evolution,长期演进)系统中。
下表4为采用GMSK调制方式的PUSCH MCS表,包括采用GMSK调制方式的极限覆盖等级下的PUSCH MCS表,即下表4-1,采用GMSK调制方式的普通覆盖等级下的PUSCH MCS表,即下表4-2,以及采用GMSK调制方式的扩展覆盖等级下的PUSCH MCS表,即下表4-3。
下表5为采用PSK调制方式的PUSCH MCS表,包括采用PSK调制方式的极限覆盖等级下的PUSCH MCS表,即下表5-1,采用PSK调制方式的普通覆盖等级下的PUSCH MCS表,即下表5-2,以及采用PSK调制方式的扩展覆盖等级下的PUSCH MCS表,即下表5-3。
在一个示例中,采用GMSK调制方式的极限覆盖等级下的PUSCH MCS表为:
Figure PCTCN2017088783-appb-000006
表4-1
在表4-1中,调制方式Modulation指示终端发送上行数据的调制方式,码率Coding rate指示上行数据的编码速率,绑定因子Bonding factor指示终端发送上行数据时绑定载波的数量,重复因子Repetition factor指示终端接收单个传输块的重复发送次数,物理数据速率PHY data rate指示单位时间传送数据位数,其值可根据调制方式、码率、绑定因子、重复因子得到。
在表4-1中,对于采用GMSK调制方式的极限覆盖等级下的PUSCH MCS,第二类MCS index为MCS index0~7,用于指示终端发送上行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率;第一类MCS index为MCS index8~9,用于指示终端从当前覆盖等级即极限覆盖等级切换至其它覆盖等级如普通覆盖等级或扩展覆盖等级。
需要说明的是,本申请实施例采用GMSK调制方式的极限覆盖等级下的PUSCH MCS表(即上表4-1)的调制编码方式索引MCS index不限于0~9,表4-1示出的MCS index以及各MCS index所指示内容仅是一个例子。
本申请实施例使用现有的GMSK调制方式的PUSCH MCS表中,极限覆盖等级下不常用的PUSCH MCS值,即MCS index 8~9表项,指示终端切换覆盖等级,节省了系统开销。同时也能够实现基站根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载均衡;并且可以实现终端在极限覆盖等级下接收数据异常时切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。
在一个示例中,采用GMSK调制方式的普通覆盖等级下的PUSCH MCS表为:
Figure PCTCN2017088783-appb-000007
表4-2
在表4-2中,调制方式Modulation指示终端发送上行数据的调制方式,码率Coding rate指示上行数据的编码速率,绑定因子Bonding factor指示终端发送上行数据时绑定载波的数量,重复因子Repetition factor指示终端接收单个传输块的重复发送次数,物理数据速率PHY data rate指示单位时间传送数据位数,其值可根据调制方式、码率、绑定因子、重复因子得到。
在表4-2中,对于采用GMSK调制方式的普通覆盖等级下的PUSCH MCS,第二类MCS index为MCS index2~9,用于指示终端发送上行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率;第一类MCS index为MCS index0~1,用于指示终端从当前覆盖等级即普通覆盖等级切换至其它覆盖等级如极限覆盖等级或扩展覆盖等级。
需要说明的是,本申请实施例的采用GMSK调制方式的普通覆盖等级下的PUSCH MCS表(即上表4-2)的调制编码方式索引MCS index不限于0~9,表4-2示出的MCS index以及各MCS index所指示内容仅是一个例子。
本申请实施例使用现有的GMSK调制方式的PUSCH MCS表中,普通覆盖等级不常用的PUSCH MCS值,即MCS index 0~1表项,指示终端切换覆盖等级,节省了系统开销。同时能够实现基站根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载均衡;并且可以实现终端在普通覆盖等级下接收数据异常时切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。
在一个示例中,采用GMSK调制方式的扩展覆盖等级下的PUSCH MCS表为:
Figure PCTCN2017088783-appb-000008
表4-3
在表4-3中,调制方式Modulation指示终端发送上行数据的调制方式,码率Coding rate指示上行数据的编码速率,绑定因子Bonding factor指示终端发送上行数据时绑定载波的数量,重复因子Repetition factor指示终端接收单个传输块的重复发送次数,物理数据速率PHY data rate指示单位时间传送数据位数,其值可根据调制方式、码率、绑定因子、重复因子得到。
在表4-3中,对于采用GMSK调制方式的扩展覆盖等级下的PUSCH MCS,第二类MCS index为MCS index1~8,用于指示终端发送上行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率;第一类MCS index为MCS index0、9,用于指示终端从当前覆盖等级即扩展覆盖等级切换至其它覆盖等级如极限覆盖等级或普通覆盖等级。
需要说明的是,本申请实施例的采用GMSK调制方式的扩展覆盖等级下的PUSCH MCS表,即上表4-3的调制编码方式索引MCS index不限于0~9,表4-3示出的MCS index以及各MCS index所指示内容仅是一个例子。
本申请实施例使用现有的GMSK调制方式的PUSCH MCS表中,扩展覆盖等级不常用的PUSCH MCS值,即MCS index 0、9表项,指示终端切换覆盖等级,节省了系统开销。同时能够实现基站可根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载均衡;并且可以实现终端在扩展覆盖等级下接收数据异常时切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。
在一个示例中,采用PSK调制方式的极限覆盖等级下的PUSCH MCS表为:
Figure PCTCN2017088783-appb-000009
表5-1
在表5-1中,调制方式Modulation指示终端发送上行数据的调制方式,码率Coding rate指示上行数据的编码速率,绑定因子Bonding factor指示终端发送上行数据时绑定载波的数量,重复因子Repetition factor指示终端接收单个传输块的重复发送次数,物理数据速率PHY data rate指示单位时间传送数据位数,其值可根据调制方式、码率、绑定因子、重复因子得到。
在表5-1中,对于采用PSK调制方式的极限覆盖等级下的PUSCH MCS,第二类MCS index为MCS index0~9,用于指示终端发送上行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率;第一类MCS index为MCS index10~11,用于指示终端从当前覆盖等级即极限覆盖等级切换至其它覆盖等级如普通覆盖等级或扩展覆盖等级。
需要说明的是,本申请实施例采用PSK调制方式的极限覆盖等级下的PUSCH MCS表(即上表5-1)的调制编码方式索引MCS index不限于0~11,表5-1示出的MCS index以及各MCS index所指示内容仅是一个例子。
本申请实施例使用现有的PSK调制方式PUSCH MCS表中,极限覆盖等级下不常用的PUSCH MCS值,即MCS index 10、11表项,指示终端切换覆盖等级,节省了系统开销。同时也能够实现基站可根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载 均衡;并且可以实现终端在极限覆盖等级下接收数据异常时切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。
在一个示例中,采用PSK调制方式的普通覆盖等级下的PUSCH MCS表为:
Figure PCTCN2017088783-appb-000010
表5-2
在表5-2中,调制方式Modulation指示终端发送上行数据的调制方式,码率Coding rate指示上行数据的编码速率,绑定因子Bonding factor指示终端发送上行数据时绑定载波的数量,重复因子Repetition factor指示终端接收单个传输块的重复发送次数,物理数据速率PHY data rate指示单位时间传送数据位数,其值可根据调制方式、码率、绑定因子、重复因子得到。
在表5-2中,对于采用PSK调制方式的普通覆盖等级下的PUSCH MCS,第二类MCS index为MCS index2~11,用于指示终端发送上行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率;第一类MCS index为MCS index0~1,用于指示终端从 当前覆盖等级即普通覆盖等级切换至其它覆盖等级如极限覆盖等级或扩展覆盖等级。
需要说明的是,本申请实施例采用PSK调制方式的普通覆盖等级下的PUSCH MCS表(即上表5-2)的调制编码方式索引MCS index不限于0~11,表5-2示出的MCS index以及各MCS index所指示内容仅是一个例子。
本申请实施例使用现有的PSK调制方式的PUSCH MCS表中,普通覆盖等级不常用的PUSHC MCS值,即MCS index 0、1表项,指示终端切换覆盖等级,节省了系统开销。同时能够实现基站可根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载均衡;并且可以实现终端在普通覆盖等级下接收数据异常时切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。
在一个示例中,采用PSK调制方式的扩展覆盖等级下的PUSCH MCS表为:
Figure PCTCN2017088783-appb-000011
表5-3
在表5-3中,调制方式Modulation指示终端发送上行数据的调制方式,码率Coding rate指示上行数据的编码速率,绑定因子Bonding factor指示终端发送上行数据时绑定载波的数量,重复因子Repetition factor指示终端接收单个传输块的重复发送次数,物理数据速率PHY data rate指示单位时间传送数据位数,其值可根据调制方式、码率、绑 定因子、重复因子得到。
在表5-3中,对于采用PSK调制方式的扩展覆盖等级下的PUSCH MCS,第二类MCS index为MCS index1~10,用于指示终端发送上行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率;第一类MCS index为MCS index0、11,用于指示终端从当前覆盖等级即扩展覆盖等级切换至其它覆盖等级如极限覆盖等级或普通覆盖等级。
需要说明的是,本申请实施例采用PSK调制方式的扩展覆盖等级下的PUSCH MCS表(即上表5-3)的调制编码方式索引MCS index不限于0~11,表5-3示出的MCS index以及各MCS index所指示内容仅是一个例子。
本申请实施例使用现有的PSK调制方式的PUSCH MCS表中,扩展覆盖等级不常用的调制编码方式索引MCS index 0、11表项,指示终端切换覆盖等级,节省了系统开销。同时能够实现基站可根据网络负载情况切换终端覆盖等级的目的,使整个CIoT系统负载均衡;并且可以实现终端在扩展覆盖等级下接收数据异常时切换覆盖等级的目的。因此,本申请实施例在不引入新的控制信令情况下,实现对终端覆盖等级的切换。需要说明的是,上表3、4、5中的调制参数以及用于指示切换覆盖等级的调制编码方式索引MCS index仅是一个示例。也就是说,本申请实施例并未限定PDSCH MCS的调度参数仅包括数字调制方式、码率、重复次数,也未限定PUSCH MCS的调度参数仅包括数字调制方式、码率、绑定因子、重复因子、物理数据速率;并且本申请实施例也并未限定由哪个MCS index指示切换至哪个覆盖等级,而是仅限定由当前覆盖等级下不常用的调制编码方式索引MCS index指示切换至其它覆盖等级上。
在本申请的另一个实施例中,在该MCS表中,包括两类调制编码方式索引MCS index,第一类MCS index除用于指示切换至其它覆盖等级同时还指示本次调度的调制参数,第二类MCS index用于指示调制编码方式。也就是说,在PDSCH MCS表中,在指示终端设备切换覆盖等级表项中还包括本次调度的调制参数包括数字调制方式、码率、重复次数,参见下表6。在该PUSCH MCS表中,在指示终端切换覆盖等级表项中还包括本次调度的调制参数包括数字调制方式、码率、重复因子、绑定因子、物理数据速率。
下面以在极限覆盖等级下,由PDSCH MCS表中的MCS index 8~10指示切换覆盖等级并指示本次调度的调制参数为例,进行阐述,参见下表6。
Figure PCTCN2017088783-appb-000012
表6
在表6中,第一类MCS index为MCS index8~10,除用于指示切换覆盖等级同时还用于指示本次调度的调制参数。第二类MCS index为MCS index0~7,用于指示调制编码方式。
需要说明的是,表6中,在MCS index为8~10时,指示本次调度的调制参数具体数值仅是一个例子。
在其它覆盖等级下包括普通覆盖等级和扩展覆盖等级,通过PDSCH MCS表中不常用的MCS index指示切换覆盖等级的同时指示本次调度的调制参数,以及通过PUSCH MCS表中不常用的MCS index指示切换覆盖等级的同时指示本次调度的调制参数,与极限覆盖等级下通过PDSCH MCS表中不常用的MCS index指示切换覆盖等级的同时指示本次调度的调制参数,原理相同,在此不再赘述。
综上,由于MCS index只有基站进行上行调度或下行调度时才会发送,因此,将切换覆盖等级与本次调度的调制参数绑定在一起并通过一个MCS index指示(参见上表6),节省了一次调度机会,使终端切换覆盖等级的同时根据本次调度的调制参数接收PDSCH数据或发送PUSCH数据。
在一个示例中,终端在出厂前已经配置好该PDSCH MCS表和PUSCH MCS表,参见上表3、表4、表5、表6,并将其存储起来。
在另一个示例中,终端在出厂前预先配置好该PDSCH MCS表和PUSCH MCS表中当前覆盖等级下所常用的调制参数相对应的MCS index,例如配置好PDSCH MCS在极限覆盖等级下所支持的MCS index为0~7。在该终端接入到CIoT系统之前,基站通过系统广播方式通知各终端在各覆盖等级(如极限覆盖等级、普通覆盖等级、扩展覆盖等级)下用于切换覆盖等级的MCS index。该终端在接收到在各覆盖等级下用于切换覆盖等级的MCS index后,将其配置至该PDSCH MCS表及PUSCH MCS表中,从而形成上表3、表4、表5或表6。
在205部分,基站将该第一调制编码方式索引MCS index发送给终端,且该第一调制编码方式索引MCS index属于第一类MCS index,其用于指示切换至目标覆盖等级上;或者该第一调制编码方式索引MCS index属于第二类MCS index,其用于指示调度终端发送上行数据或者接收下行数据的调制编码方式。
也就是说,基站向终端发送调制编码方式索引MCS index,该MCS index是与切换的目标覆盖等级对应的MCS index,或者是与调度终端发送上行数据或接收下行数据的调制编码方式对应的MCS index。
在206部分,终端接收MCS index,并根据该MCS index查询预设的调制编码方式MCS表,得到切换的目标覆盖等级,或者得到调度终端发送上行数据或接收下行数据的调制编码方式;其中,该MCS表包括至少一个用于指示将该终端切换至目标覆盖等级的调制编码方式索引MCS index,以及包括至少一个用于指示调度终端发送上行数据或接收下行数据的调制编码方式索引MCS index。
在207部分,终端根据得到的目标覆盖等级,将其当前覆盖等级切换至目标覆盖等级上,或者终端根据得到的调制编码方式接收下行数据或发送上行数据。
具体地,终端接收到基站发送的下行或上行调度信息后,获取其中的调制编码方式索引MCS index,根据该终端的当前覆盖等级并通过查询存储在该终端中的PDSCH MCS表(参见表3、表6)或PUSCH MCS表(参见表4、表5),切换覆盖等级或者根据MCS index对应的调制参数接收下行数据或发送上行数据。
在一个示例中,使用至少一个调制编码方式索引MCS index,例如,当前覆盖等级下不常用的调制参数相对应的MCS index,用于指示切换至其它覆盖等级上,并用于指示接收物理下行控制信道PDCCH的聚合等级或重复接收次数。其中,该聚合等级包含该切换后覆盖等级下PDCCH的时间频率资源分布情况。
此种情况下,该终端设备切换覆盖等级的方法包括:该终端在接收到用于指示切换至其它覆盖等级上,并用于指示接收物理下行控制信道PDCCH的聚合等级或重复接收次数的MCS index之后,该终端根据该MCS index得到PDCCH的聚合等级或重复接收次数,并根据该PDCCH的聚合等级或重复接收次数接收目标覆盖等级的PDCCH控制信息,如果成功接收到该目标覆盖等级PDCCH的控制信息,则覆盖等级切换成功。
在另一个示例中,使用至少一个调制编码方式索引MCS index,用于指示切换至其它覆盖等级上。
此种情况下,该终端设备切换覆盖等级的方法包括:该终端获取指示切换至相应覆盖等级后,该终端接收基站广播的目标覆盖等级的参数,该参数包括物理下行控制信道PDCCH的聚合等级或重复接收次数。如果该终端已经存储有该切换后覆盖等级的参数,并且该参数仍然处于有效期内,则该终端不需要接收基站广播的切换后覆盖等级的参数。该终端根据该参数即PDCCH的聚合等级或重复接收次数,接收目标覆盖等级的PDCCH控制信息,如果成功接收该目标覆盖等级PDCCH的控制信息,则覆盖等级切换成功。
因此,本申请实施例使用至少一个调制参数相对应的调制编码方式索引MCS index,例如,使用当前覆盖等级下不常用的MCS index,指示终端切换至其它覆盖等级上。在不增加信令开销情况下,实现了覆盖等级的切换。
上述实现方式(即图2及相应内容)是基站及终端包含有多个PDSCH MCS表及PUSCH MCS表的情况,即在每个覆盖等级下包含一个PDSCH MCS表和一个PUSCH MCS表,且在每个PDSCH MCS表或每个PUSCH MCS表中,MCS index所指示的内容不同。例如,在极限覆盖等级下,PDSCH MCS表中的MCS index 8~10用于指示切换覆盖等级,而在普通覆盖等级下,PDSCH MCS表中的MCS index 0~2用于指示切换覆盖等级。
本申请实施例还提供了另一种覆盖等级切换方法,该方法是:基站与终端包含有一个PDSHC MCS表及一个PUSCH MCS表,且在该PDSHC MCS表及PUSCH MCS表中,将MCS index及其相应调制参数划分到其常用的覆盖等级上。并且对于当前覆盖等级不常用的调制编码方式索引,则用于指示终端切换覆盖等级,并且切换至该调制编码方式索引常用的覆盖等级上,下面详述。
在一个示例中,PDSCH MCS表为:
Figure PCTCN2017088783-appb-000013
表7
在表7中,极限覆盖等级下对应的MCS index为0~7,普通覆盖等级下对应的MCS index为3~10,扩展覆盖等级下对应的MCS index为1~8。需要说明的是,表7中具体数值仅是一个例子。
由表7可知,对于PDSCH MCS表,在当前覆盖等级为极限覆盖等级时,MCS index 0~7用于指示终端接收下行数据的调制参数,包括调制方式、码率和重复次数。由于MCS index 9~10仅对应普通覆盖等级,因此在极限覆盖等级下,MCS index 9~10用于指示切换至普通覆盖等级,同时也指示本次调度的调制参数。即对于MCS index9,在极限覆盖等级下其用于指示切换至普通覆盖等级,同时本次调度的调制参数仍为MCS index 9对应的调制参数,即调制方式16QAM、码率1/2、重复次数1。同样,对于MCS index10,在极限覆盖等级下其用于指示切换至普通覆盖等级,同时本次调度的调制参数仍为MCS index10对应的调制参数,即调制方式16QAM、码率2/3、重复次数1。而MCS index 8即对应扩展覆盖等级也对应普通覆盖等级,因此在极限覆盖等级下,MCS index 8用于指示切换覆盖等级,具体切换至扩展覆盖等级或普通覆盖等级有多种实现方式。例如,一种实现方式是:基站通过广播方式,通知各终端,在极限覆盖等级下,MCS index 8用于指示切换至扩展覆盖等级或普通覆盖等级。又如,另一种实现方式是:由于当前覆盖等级是极限覆盖等级,而极限覆盖等级与扩展覆盖等级相差小,即极限覆盖等级与扩展覆盖等级相邻,将扩展覆盖等级作为切换的目标覆盖等级。因此,在当前覆盖等级为极限覆盖等级时,MCS index 8用于指示切换至扩展覆盖等级。也就是说,对于当前覆盖等级不常用的调制编码方式索引,而其它多个覆盖等级常用的调制编码方式索引,则选定与当前覆盖等级相差小的覆盖等级作为切换后的覆盖等级。
进一步地,上述相差小是指,第二覆盖等级(即切换的目标覆盖等级)对应的PDCCH聚合等级或重复接收次数与第一覆盖等级(即当前覆盖等级)对应的PDCCH聚合等级或重复接收次数相差小。
由表7可知,对于PDSCH MCS表,在当前覆盖等级为扩展覆盖等级时,MCS index 1~8用于指示终端接收下行数据的调制参数,包括调制方式、码率和重复次数。由于MCS index0仅对应极限覆盖等级,因此在扩展覆盖等级下,MCS index 0用于指示切换至极限覆盖等级,同时也指示本次调度的调制参数,包括调制方式为BPSK,码率为1/3,重复次数为8。由于MCS index 9~10仅对应普通覆盖等级,因此在极限覆盖等级下,MCS index 9~10用于指示切换至普通覆盖等级,同时也指示本次调度的调制参数。即对于MCS index9,调制参数包括调制方式为16QAM,码率1/2,重复次数1;对于MCS index10,调制参数包括调制方式为16QAM,码率1/2,重复次数1。
由表7可知,对于PDSCH MCS表,在当前覆盖等级为普通覆盖等级时,MCS index3~10用于指示终端接收下行数据的调制参数,包括调制方式、码率和重复次数。由于MCS index 0仅对应极限覆盖等级,因此在普通覆盖等级下,MCS index 0用于指示切换至极限覆盖等级。由于MCS index 1~2即对应扩展覆盖等级也对应极限覆盖等级,因此在普通覆盖等级下,MCS index 1~2用于指示切换覆盖等级,具体切换至扩展覆盖等级或极限覆盖等级有多种实现方式。例如,一种实现方式是:基站通过广播方式,通知各终端,在普通覆盖等级下,MCS index 1~2用于指示切换至扩展覆盖等级或极限覆盖等级。又如,另一种实现方式是:由于当前覆盖等级是普通覆盖等级,而普通覆盖等级与扩展覆盖等级相差小,也就是说,由于普通覆盖等级与扩展覆盖等级相邻,将扩展覆盖等级作为切换的目标覆盖等级。因此,在当前覆盖等级为普通覆盖等级时,MCS index 1~2用于指示切换至扩展覆盖等级。也就是说,对于当前覆盖等级不常用的调制编码方式索引,而其它多个 覆盖等级常用的调制编码方式索引,则选定与当前覆盖等级相差小的覆盖等级作为切换后的覆盖等级。
进一步地,上述相差小是指,第二覆盖等级(即切换的目标覆盖等级)对应的PDCCH聚合等级或重复接收次数与第一覆盖等级(即当前覆盖等级)对应的PDCCH聚合等级或重复接收次数相差小。
在一个示例中,采用GMSK(高斯最小频移键控)调制方式的PUSCH MCS表为:
Figure PCTCN2017088783-appb-000014
表8
在表8中,极限覆盖等级下对应的MCS index为0~7,普通覆盖等级下对应的MCS index为2~9,扩展覆盖等级下对应的MCS index为1~8。采用GSMK调制方式的PUSCH MCS表即表8多用于GSM系统中,且表8中具体数值仅是一个例子。
由表8可知,对于采用GSMK调制方式的PUSCH MCS表,在当前覆盖等级为极限覆盖等级时,MCS index 0~7用于指示终端接收下行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率。由于MCS index 9仅对应普通覆盖等级,因此在极限覆盖等级下,MCS index 9用于指示切换至普通覆盖等级,同时也指示本次调度的调制参数。MCS index 8即对应扩展覆盖等级也对应普通覆盖等级,因此在极限覆盖等级下,MCS index 8用于指示切换覆盖等级,具体切换至扩展覆盖等级或普通覆盖等级有多种实现方式。例如,一种实现方式是:基站通过广播方式,通知各终端,在极限覆盖等级下,MCS index 8用于指示切换至扩展覆盖等级或普通覆盖等级。又如,另一种实现方式是:由于当前覆盖等级是极限覆盖等级,而极限覆盖等级与扩展覆盖等级相差小,即极限覆盖等级与扩展覆盖等级相邻,将扩展覆盖等级作为切换的目标覆盖等级。因此,在当前覆盖等级为极限覆盖等级时,MCS index 8用于指示切换至扩展覆盖等级。也就是说,对于当前覆盖等级不常用的调制编码方式索引,而其它多个覆盖等级常用的调制编码方式索引,则选定与当前覆盖等级相差小的覆盖等级作为切换后的覆盖等级。
进一步地,上述相差小是指,第二覆盖等级(即切换的目标覆盖等级)对应的PDCCH聚合等级或重复接收次数与第一覆盖等级(即当前覆盖等级)对应的PDCCH聚合等级或重复接收次数相差小。由表8可知,对于采用GSMK调制方式的PUSCH MCS表,在当前覆盖等级为扩展覆盖等级时,MCS index 1~8用于指示终端接收下行数据的调制参数,包括调 制方式、码率、绑定因子、重复因子、物理数据速率。由于MCS index 0仅对应极限覆盖等级,因此在扩展覆盖等级下,MCS index 0用于指示切换至极限覆盖等级,同时也指示本次调度的调制参数。由于MCS index 9仅对应普通覆盖等级,因此在极限覆盖等级下,MCS index 9用于指示切换至普通覆盖等级,同时也指示本次调度的调制参数。
由表8可知,对于采用GSMK调制方式的PUSCH MCS表,在当前覆盖等级为普通覆盖等级时,MCS index2~9用于指示终端接收下行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率。由于MCS index 0仅对应极限覆盖等级,因此在普通覆盖等级下,MCS index 0用于指示切换至极限覆盖等级。由于MCS index 1即对应扩展覆盖等级也对应极限覆盖等级,因此在普通覆盖等级下,MCS index 1用于指示切换覆盖等级,具体切换至扩展覆盖等级或极限覆盖等级有多种实现方式。例如,一种实现方式是:基站通过广播方式,通知各终端,在普通覆盖等级下,MCS index 1用于指示切换至扩展覆盖等级或极限覆盖等级。又如,另一种实现方式是:由于当前覆盖等级是普通覆盖等级,而普通覆盖等级与扩展覆盖等级相差小,也就是说,由于普通覆盖等级与扩展覆盖等级相邻,将扩展覆盖等级作为切换的目标覆盖等级。因此,在当前覆盖等级为普通覆盖等级时,MCS index 1用于指示切换至扩展覆盖等级。也就是说,对于当前覆盖等级不常用的调制编码方式索引,而其它多个覆盖等级常用的调制编码方式索引,则选定与当前覆盖等级相差小的覆盖等级作为切换后的覆盖等级。
进一步地,上述相差小是指,第二覆盖等级(即切换的目标覆盖等级)对应的PDCCH聚合等级或重复接收次数与第一覆盖等级(即当前覆盖等级)对应的PDCCH聚合等级或重复接收次数相差小。
在一个示例中,采用PSK(相移键控)调制方式的PUSCH MCS表为:
Figure PCTCN2017088783-appb-000015
表9
在表9中,极限覆盖等级下对应的MCS index为0~7,普通覆盖等级下对应的MCS index为4~11,扩展覆盖等级下对应的MCS index为1~8。采用PSK调制方式的PUSCH MCS表即表9多用于WCDMA或LTE系统中,且表9中具体数值仅是一个例子。
由表9可知,对于采用PSK调制方式的PUSCH MCS表,在当前覆盖等级为极限覆盖等级时,MCS index 0~7用于指示终端接收下行数据的调制参数,包括调制方式、码率、 绑定因子、重复因子、物理数据速率。由于MCS index 9~11仅对应普通覆盖等级,因此在极限覆盖等级下,MCS index 9~11用于指示切换至普通覆盖等级,同时也指示本次调度的调制参数。MCS index 8即对应扩展覆盖等级也对应普通覆盖等级,因此在极限覆盖等级下,MCS index 8用于指示切换覆盖等级,具体切换至扩展覆盖等级或普通覆盖等级有多种实现方式。例如,一种实现方式是:基站通过广播方式,通知各终端,在极限覆盖等级下,MCS index 8用于指示切换至扩展覆盖等级或普通覆盖等级。又如,另一种实现方式是:由于当前覆盖等级是极限覆盖等级,而极限覆盖等级与扩展覆盖等级相差小,即极限覆盖等级与扩展覆盖等级相邻,将扩展覆盖等级作为切换的目标覆盖等级。因此,在当前覆盖等级为极限覆盖等级时,MCS index 8用于指示切换至扩展覆盖等级。也就是说,对于当前覆盖等级不常用的调制编码方式索引,而其它多个覆盖等级支持调制编码方式索引,则选定与当前覆盖等级相差小的覆盖等级作为切换后的覆盖等级。
进一步地,上述相差小是指,第二覆盖等级(即切换的目标覆盖等级)对应的PDCCH聚合等级或重复接收次数与第一覆盖等级(即当前覆盖等级)对应的PDCCH聚合等级或重复接收次数相差小。
由表9可知,对于采用PSK调制方式的PUSCH MCS表,在当前覆盖等级为扩展覆盖等级时,MCS index 1~8用于指示终端接收下行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率。由于MCS index 0仅对应极限覆盖等级,因此在扩展覆盖等级下,MCS index 0用于指示切换至极限覆盖等级,同时也指示本次调度的调制参数。由于MCS index 9~11仅对应普通覆盖等级,因此在极限覆盖等级下,MCS index 9~11用于指示切换至普通覆盖等级,同时也指示本次调度的调制参数。
由表9可知,对于采用PSK调制方式的PUSCH MCS表,在当前覆盖等级为普通覆盖等级时,MCS index4~11用于指示终端接收下行数据的调制参数,包括调制方式、码率、绑定因子、重复因子、物理数据速率。由于MCS index 0仅对应极限覆盖等级,因此在普通覆盖等级下,MCS index 0用于指示切换至极限覆盖等级。由于MCS index 1~3即对应扩展覆盖等级也对应极限覆盖等级,因此在普通覆盖等级下,MCS index 1~3用于指示切换覆盖等级,具体切换至扩展覆盖等级或极限覆盖等级有多种实现方式。例如,一种实现方式是:基站通过广播方式,通知各终端,在普通覆盖等级下,MCS index 1~3用于指示切换至扩展覆盖等级或极限覆盖等级。又如,另一种实现方式是:由于当前覆盖等级是普通覆盖等级,而普通覆盖等级与扩展覆盖等级相差小,也就是说,由于普通覆盖等级与扩展覆盖等级相邻,将扩展覆盖等级作为切换的目标覆盖等级。因此,在当前覆盖等级为普通覆盖等级时,MCS index 1~3用于指示切换至扩展覆盖等级。也就是说,对于当前覆盖等级不常用的调制编码方式索引,而其它多个覆盖等级常用的调制编码方式索引,则选定与当前覆盖等级相差小的覆盖等级作为切换后的覆盖等级。
进一步地,上述相差小是指,第二覆盖等级(即切换的目标覆盖等级)对应的PDCCH聚合等级或重复接收次数与第一覆盖等级(即当前覆盖等级)对应的PDCCH聚合等级或重复接收次数相差小。
本申请实施例在不引入新的控制信令的情况下,通过使用CIoT系统中至少一个调制参数及其相应MCS index,例如,当前覆盖等级下不常用的MCS index指示终端切换覆盖等级,实现了基站控制终端切换覆盖等级的目的。此外,本申请实施例还能够使系统负载 均衡,以及为接收或发送数据异常的终端切换覆盖等级,例如将该接收或发送数据异常的终端切换至比其当前覆盖等级信道条件更好的覆盖等级上,从而使该终端能够正常收发数据。
图3是本申请一个实施例的基站示意图。该基站300包括接收器310、处理器320、发射器330。
接收器310,用于接收终端上报的覆盖等级信息,该覆盖等级信息指示了该终端当前对应的第一覆盖等级。也就是说,接收器310接收终端的当前覆盖等级。
处理器320,用于根据该第一覆盖等级,确定是否需要将该终端由该第一覆盖等级切换到其它覆盖等级,在确定需要将该终端由该第一覆盖等级切换到其它覆盖等级的情况下,查询预设的调制编码方式MCS表,确定切换的目标覆盖等级,以及与该目标覆盖等级对应的第一调制编码方式索引MCS index;其中,该MCS表包括至少一个用于指示将所述终端切换到第二覆盖等级的MCS index。
在一个示例中,处理器320,还用于根据调度该终端接收下行数据或者该基站接收上行数据的情况,确定该终端上报的该第一覆盖等级是否可用,若该下行数据或上行数据接收异常,则确定该第一覆盖等级不可用,需要切换到其它覆盖等级;若该下行数据或上行数据接收正常,则确定该第一覆盖等级可用,不需要切换到其它覆盖等级。
在一个示例中,处理器320,还用于根据该基站在该第一覆盖等级下(该终端的当前覆盖等级)的负载情况,确定是否需要将该终端切换到其它覆盖等级上,若该基站在该第一覆盖等级下的负载情况大于预设阈值,则确定该终端需要切换到其它覆盖等级,若该基站在该第一覆盖等级下的负载情况小于等于预设阈值,则确定该终端不需要切换到其它覆盖等级。
进一步地,处理器320,还用于在基站使用为其分配的空口资源(例如,由CIoT服务网关节点C-SGN为该基站分配空口资源)的全部或大部分(具体数值可以通过设定阈值的方式实现,例如,设定阈值为90%空口资源),调度该第一覆盖等级下的各终端,却不能实现对该第一覆盖等级下所有终端的调度,则将该终端切换至其它覆盖等级上。
更进一步地,处理器320将该终端切换到相对于第一覆盖等级(即当前覆盖等级)负载更小的覆盖等级上;或者处理器320将该终端切换到信道条件相对于第一覆盖等级信道条件更好的覆盖等级上。
在另一个示例中,处理器320根据调度该终端接收下行数据或者基站接收上行数据的情况,确定该终端上报的该第一覆盖等级是否可用,若该下行数据或上行数据接收异常,则确定该第一覆盖等级不可用,需要切换到其它覆盖等级,若该下行数据或上行数据接收正常,则确定该第一覆盖等级可用,不需要切换到其它覆盖等级。
进一步地,该下行数据或上行数据接收异常包括以下两种情况:一种情况是,该基站向终端发送数据,该终端向该基站反馈未收到该数据,或者该终端向该基站反馈接收数据错误,则说明下行数据接收异常;另一种情况是,该基站调度该终端发送数据,在预设时间内,该基站未收到该终端发送的数据,则说明上行数据接收异常。
在该MCS表中,包括两类调制编码方式索引MCS index,第一类MCS index用于指示切换至其它覆盖等级,第二类MCS index用于指示调制编码方式;其中,第一类MCS index是当前覆盖等级下不常用的MCS index,也就是说,本申请实施例使用当前覆盖等级下不 常用的MCS index指示终端切换至其它覆盖等级上。具体MCS表参见上表3至表5以及相关内容阐述。
在一个示例中,该MCS表除了至少包括一个用于指示切换覆盖等级的MCS index(即第一类MCS index)之外,还至少包括一个用于指示调制编码方式的MCS index(即第二类MCS index)。处理器320在确定不需要将该终端由第一覆盖等级(即该终端的当前覆盖等级)切换到其它覆盖等级的情况下,处理器320查询该MCS表,确定与该第一覆盖等级匹配的调制编码方式所对应的第二MCS index。
进一步地,处理器320根据在该第一覆盖等级下,调度该终端发送上行数据或接收下行数据的码块大小,从该至少一个用于指示调制编码方式的MCS index中确定与该上行或下行数据的码块大小相匹配的该第二MCS index。
也就是说,该终端的当前覆盖等级为第一覆盖等级,该基站调度该第一覆盖等级下的该终端发送上行数据或接收下行数据,该基站根据调度该终端发送的上行数据或接收下行数据的码块大小,从该至少一个用于指示调制编码方式的MCS index中确定与该上行或下行数据的码块大小相匹配的该第二MCS index。
在另一个示例中,在该MCS表中,包括两类调制编码方式索引MCS index,第一类MCS index除用于指示切换至其它覆盖等级同时还指示本次调度的调制参数,第二类MCS index用于指示调制编码方式。具体可参见表6及相关内容阐述。
在一个示例中,处理器320,还用于选定与该第一覆盖等级相差小的第二覆盖等级作为该切换的目标覆盖等级。
进一步地,上述相差小是指,该第二覆盖等级对应的PDCCH聚合等级或重复接收次数与该第一覆盖等级对应的PDCCH聚合等级或重复接收次数相差小。
发射器330,用于将上述第一MCS index发送给终端。
可以理解的是,图3仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本申请的基站都在本申请的保护范围之内。
图4是本申请一个实施例的终端示意图。该终端包括处理器410、发射器420、接收器430。进一步地,该终端还包括ADC转换器440、调制解调器450。
处理器410,用于通过下行测量的方式确定第一覆盖等级,即确定该终端的当前覆盖等级。例如,处理器410根据小区的同步信道质量和物理下行控制信道质量等来确定第一覆盖等级,即终端的当前覆盖等级。
发射器420,用于向基站上报覆盖等级信息,该覆盖等级信息指示了该终端当前对应的第一覆盖等级。也就是说,发射器420用于向基站发送其当前覆盖等级。
接收器430,用于接收来自基站的调制编码方式索引MCS index。
处理器410,还用于根据接收的该MCS index,查询预设的调制编码方式MCS表,得到切换的目标覆盖等级,或者得到发送上行数据或接收下行数据的调制编码方式。其中,该MCS表包括至少一个用于指示将该终端切换至第二覆盖等级的调制编码方式索引MCS index。
也就是说,处理器440根据该MCS index以及该第一覆盖等级即该终端的当前覆盖等级,通过查询MCS表,将该终端切换至其它覆盖等级上,或者得到与该MCS index相对 应的调制参数。例如,下行调度的调制参数包括调制方式、码率、重复次数;上行调度的调制参数包括调制方式、码率、绑定因子、重复因子、物理数据速率。
在一个示例中,该MCS表包括PDSCH MCS、PUSCH MCS表。在该MCS表中,包括两类调制编码方式索引MCS index,第一类MCS index用于指示切换至其它覆盖等级,第二类MCS index用于指示调制编码方式;其中,第一类MCS index是当前覆盖等级下不常用的MCS index,也就是说,本申请实施例使用当前覆盖等级下不常用的MCS index指示终端切换至其它覆盖等级上。
在一个示例中,该MCS表除了至少包括一个用于指示切换覆盖等级的MCS index(即第一类MCS index)之外,还至少包括一个用于指示调制编码方式的MCS index(即第二类MCS index)。具体MCS表可参见表3、表4、表5及相关内容描述。
在另一个示例中,在该MCS表中,包括两类调制编码方式索引MCS index,第一类MCS index除用于指示切换至其它覆盖等级同时还指示本次调度的调制参数,第二类MCS index用于指示调制编码方式。具体可参见表6及相关内容阐述。
在一个示例中,接收器430,还用于接收基站广播的目标覆盖等级的参数,该参数包括物理下行控制信道PDCCH的聚合等级或重复接收次数。
在一个示例中,接收器430,还用于根据所述目标覆盖等级的PDCCH的聚合等级或重复接收次数接收该物理下行控制信道PDCCH的控制信息。
可以理解的是,图4仅仅示出了终端的结构的简化设计。在实际应用中,基站还可以包括用于存储通信算法相应的指令的存储器,其中,为了节省芯片面积,接收器430和发射器420还可以集成在一起,形成收发信机,处理器410则可以是基带处理器,或者是集成了基带处理器,图形处理器,应用处理器等在内的片上系统(SOC),而所有可以实现本申请的终端都在本申请的保护范围之内。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种切换覆盖等级的方法,其特征在于,包括:
    基站接收终端上报的覆盖等级信息,所述覆盖等级信息指示了所述终端当前对应的第一覆盖等级;
    所述基站根据所述第一覆盖等级,确定是否需要将所述终端由所述第一覆盖等级切换到其它覆盖等级;
    在确定需要将所述终端由所述第一覆盖等级切换到其它覆盖等级的情况下,则所述基站查询预设的调制编码方式MCS表,确定切换的目标覆盖等级,以及与所述目标覆盖等级对应的第一调制编码方式索引MCS index;其中,所述MCS表包括至少一个用于指示将所述终端切换到第二覆盖等级的MCS index;
    所述基站将所述第一MCS index发送给所述终端。
  2. 根据权利要求1所述的方法,其特征在于,所述MCS表还包括至少一个用于指示调制编码方式的MCS index;
    在确定不需要将所述终端由所述第一覆盖等级切换到其它覆盖等级的情况下,则所述基站查询所述MCS表,确定与所述第一覆盖等级匹配的调制编码方式所对应的第二MCS index;
    所述基站将所述第二MCS index发送给所述终端。
  3. 根据权利要求2所述的方法,其特征在于,所述基站查询所述MCS表,确定与所述第一覆盖等级匹配的调制编码方式所对应的第二MCS index,包括:
    所述基站根据在所述第一覆盖等级下,调度所述终端发送上行数据或接收下行数据的码块大小,从所述至少一个用于指示调制编码方式的MCS index中确定与所述上行或下行数据的码块大小相匹配的所述第二MCS index。
  4. 根据权利要求1所述的方法,其特征在于,所述基站根据所述第一覆盖等级,确定是否需要将所述终端由所述第一覆盖等级切换到其它覆盖等级,包括:所述基站根据调度所述终端接收下行数据或者基站接收上行数据的情况,确定所述终端上报的所述第一覆盖等级是否可用,若所述下行数据或上行数据接收异常,则确定所述第一覆盖等级不可用,需要切换到其它覆盖等级;
    若所述下行数据或上行数据接收正常,则确定所述第一覆盖等级可用,不需要切换到其它覆盖等级。
  5. 根据权利要求1所述的方法,其特征在于,所述基站根据所述第一覆盖等级,确定是否需要将所述终端由所述第一覆盖等级切换到其它覆盖等级,包括:
    所述基站根据所述基站在所述第一覆盖等级下的负载情况,确定是否需要将所述终端切换到其它覆盖等级;
    若所述基站在所述第一覆盖等级下的负载情况大于预设阈值,则确定所述终端需要切换到其它覆盖等级;
    若所述基站在所述第一覆盖等级下的负载情况小于等于预设阈值,则确定所述终端不需要切换到其它覆盖等级。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述确定切换的目标覆盖 等级,包括:
    选定与所述第一覆盖等级相差小的第二覆盖等级作为所述切换的目标覆盖等级。
  7. 根据权利要求6所述的方法,其特征在于,所述相差小是指,所述第二覆盖等级对应的PDCCH聚合等级或重复接收次数与所述第一覆盖等级对应的PDCCH聚合等级或重复接收次数相差小。
  8. 一种基站,其特征在于,包括:接收器,用于接收终端上报的覆盖等级信息,所述覆盖等级信息指示了所述终端当前对应的第一覆盖等级;
    处理器,用于根据所述第一覆盖等级,确定是否需要将所述终端由所述第一覆盖等级切换到其它覆盖等级,在确定需要将所述终端由所述第一覆盖等级切换到其它覆盖等级的情况下,查询预设的调制编码方式MCS表,确定切换的目标覆盖等级,以及与所述目标覆盖等级对应的第一调制编码方式索引MCS index;其中,所述MCS表包括至少一个用于指示将所述终端切换到第二覆盖等级的MCS index;
    发射器,用于将所述第一MCS index发送给所述终端。
  9. 根据权利要求8所述的基站,其特征在于,所述处理器还用于根据调度所述终端接收下行数据或者基站接收上行数据的情况,确定所述终端上报的所述第一覆盖等级是否可用,若所述下行数据或上行数据接收异常,则确定所述第一覆盖等级不可用,需要切换到其它覆盖等级;若所述下行数据或上行数据接收正常,则确定所述第一覆盖等级可用,不需要切换到其它覆盖等级。
  10. 根据权利要求8所述的基站,其特征在于,所述处理器还用于根据所述基站在所述第一覆盖等级下的负载情况,确定是否需要将所述终端切换到其它覆盖等级;若所述基站在所述第一覆盖等级下的负载情况大于预设阈值,则确定所述终端需要切换到其它覆盖等级;若所述基站在所述第一覆盖等级下的负载情况小于等于预设阈值,则确定所述终端不需要切换到其它覆盖等级。
  11. 根据权利要求8至10任意一项所述的基站,其特征在于,所述处理器还用于选定与所述第一覆盖等级相差小的第二覆盖等级作为所述切换的目标覆盖等级。
  12. 一种切换覆盖等级的方法,其特征在于,包括:
    终端向基站上报覆盖等级信息,所述覆盖等级信息指示了所述终端当前对应的第一覆盖等级;
    所述终端接收来自所述基站的调制编码方式索引MCS index,根据接收的所述MCS index,查询预设的调制编码方式MCS表,得到切换的目标覆盖等级,或者得到发送上行数据或接收下行数据的调制编码方式;
    其中,所述MCS表包括至少一个用于指示将所述终端切换至第二覆盖等级的调制编码方式索引MCS index。
  13. 根据权利要求12所述的方法,其特征在于,所述MCS表还包括至少一个用于指示调制编码方式的MCS index。
  14. 根据权利要求12或13所述的方法,其特征在于,在所述终端查询预设的调制编码方式MCS表,得到切换的目标覆盖等级之后,包括:
    所述终端接收基站广播的目标覆盖等级的参数,所述参数包括物理下行控制信道PDCCH的聚合等级或重复接收次数。
  15. 根据权利要求14所述的方法,其特征在于,所述终端在接收到基站广播的目标覆盖等级的参数之后,包括:
    所述终端根据所述目标覆盖等级的PDCCH的聚合等级或重复接收次数接收所述物理下行控制信道PDCCH的控制信息。
  16. 一种终端,其特征在于,包括:
    发射器,用于向基站上报覆盖等级信息,所述覆盖等级信息指示了所述终端当前对应的第一覆盖等级;
    接收器,用于接收来自所述基站的调制编码方式索引MCS index;
    处理器,用于根据接收的所述MCS index,查询预设的调制编码方式MCS表,得到切换的目标覆盖等级,或者得到发送上行数据或接收下行数据的调制编码方式;
    其中,所述MCS表包括至少一个用于指示将所述终端切换至第二覆盖等级的调制编码方式索引MCS index。
  17. 根据权利要求16所述的终端,其特征在于,所述接收器还用于接收基站广播的目标覆盖等级的参数,所述参数包括物理下行控制信道PDCCH的聚合等级或重复接收次数。
  18. 根据权利要求17所述的终端,其特征在于,所述接收器还用于根据所述目标覆盖等级的PDCCH的聚合等级或重复接收次数接收所述物理下行控制信道PDCCH的控制信息。
PCT/CN2017/088783 2016-06-24 2017-06-16 一种覆盖等级切换方法、基站及终端 WO2017219930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610471186.8A CN107548106A (zh) 2016-06-24 2016-06-24 一种覆盖等级切换方法、基站及终端
CN201610471186.8 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017219930A1 true WO2017219930A1 (zh) 2017-12-28

Family

ID=60783797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088783 WO2017219930A1 (zh) 2016-06-24 2017-06-16 一种覆盖等级切换方法、基站及终端

Country Status (2)

Country Link
CN (1) CN107548106A (zh)
WO (1) WO2017219930A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214467A3 (en) * 2019-04-17 2020-11-12 Qualcomm Incorporated Dynamic configuration of stream parameters based on modulation scheme
CN115361691A (zh) * 2022-10-19 2022-11-18 芯翼信息科技(南京)有限公司 一种信道参数调节方法、电子设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087253B (zh) * 2018-01-26 2022-07-22 中国移动通信有限公司研究院 覆盖增强等级的判断方法及终端
CN110312218A (zh) * 2018-03-27 2019-10-08 普天信息技术有限公司 一种用户驻留子带的重配置方法和装置
CN110896345B (zh) * 2018-09-13 2021-07-09 华为技术有限公司 发送和接收侧行链路控制信息的方法以及装置
CN109548104B (zh) * 2018-12-21 2021-05-28 维沃移动通信有限公司 一种无线网络的优化方法及移动终端
CN112020150B (zh) * 2019-05-31 2022-04-22 上海华为技术有限公司 一种上行调度方法及装置、网络设备和可读存储介质
CN112583520A (zh) * 2019-09-27 2021-03-30 普天信息技术有限公司 一种根据覆盖等级自适应选择调制编码方案的方法和设备
CN115348594B (zh) * 2022-10-19 2023-01-20 芯翼信息科技(南京)有限公司 信道参数调节方法、终端、基站、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024783A (zh) * 2014-10-08 2015-11-04 魅族科技(中国)有限公司 一种无线局域网络通信方法、相关装置及系统
WO2016027236A1 (en) * 2014-08-18 2016-02-25 Telefonaktiebolaget L M Ericsson (Publ) Improved channel capacity on collision based channels
US20160149818A1 (en) * 2014-11-25 2016-05-26 Nokia Corporation Method and apparatus for optimizing transmissions in wireless networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027236A1 (en) * 2014-08-18 2016-02-25 Telefonaktiebolaget L M Ericsson (Publ) Improved channel capacity on collision based channels
CN105024783A (zh) * 2014-10-08 2015-11-04 魅族科技(中国)有限公司 一种无线局域网络通信方法、相关装置及系统
US20160149818A1 (en) * 2014-11-25 2016-05-26 Nokia Corporation Method and apparatus for optimizing transmissions in wireless networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Cellular System Support for Ultra Low Complexity and Low Throughput Internet of Things (Release 13", 3GPP TR 45.820 V2. 1.0, 31 August 2015 (2015-08-31), XP050995869 *
SHIN, JUNGWAN ET AL.: "Control Channel Load Balancing in Narrow Band Cellular IoT Systems Supporting Coverage Class", 2016 7 TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION, 27 January 2016 (2016-01-27), pages 343 - 348, XP033077495 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214467A3 (en) * 2019-04-17 2020-11-12 Qualcomm Incorporated Dynamic configuration of stream parameters based on modulation scheme
TWI827835B (zh) * 2019-04-17 2024-01-01 美商高通公司 用於基於調變方案之串流參數的動態組態的方法及無線通信裝置
CN115361691A (zh) * 2022-10-19 2022-11-18 芯翼信息科技(南京)有限公司 一种信道参数调节方法、电子设备及存储介质
CN115361691B (zh) * 2022-10-19 2023-01-31 芯翼信息科技(南京)有限公司 一种信道参数调节方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN107548106A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
WO2017219930A1 (zh) 一种覆盖等级切换方法、基站及终端
CN109644367B (zh) 在lte-v2v中根据信道资源利用率针对优先化业务的拥塞控制
CN110858958B (zh) V2x的通信方法和装置
US10757622B2 (en) Switching from a priority-based reselection mechanism to a rank-based reselection mechanism
JP6816104B2 (ja) 拡張キャリアアグリゲーションについてのフォーマット選択のための設定可能なしきい値
US10469218B2 (en) Inter-cell interference mitigation for traffic according to priority
US11277756B2 (en) Transmission of aggregated slots via multiple beamformed channels
JP2022531360A (ja) データ伝送方法及び装置
AU2018211040A1 (en) Parallel processing of uplink and downlink transmissions
EP3047586A1 (en) Network node, user equipment and methods for obtaining a modulation and coding scheme
CN105474590A (zh) 基础设施设备、无线通信网络及方法
US10700827B2 (en) Downlink power allocation when narrowband system is deployed within a wideband system
US11522656B2 (en) Apparatus and method for determining resources for phase tracking reference signal (PT-RS) pilot signals using frequency domain patterns
US20140146762A1 (en) Method and apparatus for direct device to device communication in a wireless communication system
CN113924796A (zh) 用于促进用于快速上行链路波束切换的路径损耗参考和空间关系的自动关联的方法和装置
US11678239B2 (en) Communication method, base station, and terminal
CN115968567A (zh) 用于集成接入和回程网络中调度优先级和分组丢弃的延迟界限
CN114731667A (zh) 终端装置、基站设备和通信方法
CN114402685A (zh) 关于用于带宽部分或分量载波组的tci状态或空间关系的ue能力信令
TW202145750A (zh) 基於時域資源分配的harq-ack回饋產生
TW202127943A (zh) 用於配置用於補充上行鏈路載波的上行鏈路取消指示的方法
US11818772B2 (en) Static configuration for processing a message in a two-step random access procedure in an open radio access network
US10320519B1 (en) Selective discontinuation of carrier aggregation service to facilitate service of other device
US11621822B2 (en) Mitigation of crowded UL SPS feedback transmissions
US20230246792A1 (en) Methods and apparatuses for frequency hopping of sounding reference signals in partial bandwidths

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814668

Country of ref document: EP

Kind code of ref document: A1