WO2017219885A1 - 电子地图处理方法、设备和系统 - Google Patents

电子地图处理方法、设备和系统 Download PDF

Info

Publication number
WO2017219885A1
WO2017219885A1 PCT/CN2017/087880 CN2017087880W WO2017219885A1 WO 2017219885 A1 WO2017219885 A1 WO 2017219885A1 CN 2017087880 W CN2017087880 W CN 2017087880W WO 2017219885 A1 WO2017219885 A1 WO 2017219885A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
electronic map
vehicle
moving speed
determining
Prior art date
Application number
PCT/CN2017/087880
Other languages
English (en)
French (fr)
Inventor
范皓宇
赵辰
罗彭沪京
刘毅林
刘欣
张杨
陈�光
Original Assignee
斑马网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 斑马网络技术有限公司 filed Critical 斑马网络技术有限公司
Publication of WO2017219885A1 publication Critical patent/WO2017219885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers

Definitions

  • the present invention relates to electronic map technology, and in particular, to an electronic map processing method, device and system.
  • This navigation function can support the travel of car users through electronic maps.
  • the zoom point In the cruise state (that is, the navigation end point is not set), since the zoom point is randomly generated, the scale of the electronic map cannot be automatically adjusted at this time. Therefore, the current electronic map still has shortcomings in the automatic adjustment of the scale, and the user's use experience is poor.
  • the present invention provides an electronic map processing method, apparatus and system to provide at least an electronic map processing method for adjusting a scale of an electronic map according to a moving speed of a vehicle.
  • the present invention provides an electronic map processing method, the method comprising:
  • the scale of the electronic map is adjusted to the first scale.
  • the present invention provides an in-vehicle device, including:
  • a first determining module determining a first scale corresponding to the moving speed
  • an adjustment module configured to adjust a scale of the electronic map to the first scale.
  • the present invention provides an in-vehicle device, including:
  • An input device a processor, and a display component, wherein the display component is configured to display an electronic map
  • processor is coupled to the input device and the display component, respectively;
  • the input device is configured to acquire a moving speed of the vehicle
  • the processor is configured to determine a first scale corresponding to the moving speed
  • the processor is further configured to adjust a scale of the electronic map to the first scale.
  • the present invention provides a user interface system, including:
  • the display component is configured to display an electronic map
  • the processor component is configured to determine a first scale corresponding to a moving speed of the vehicle
  • the processor component is further configured to adjust a scale of the electronic map to the first scale, so that the display component displays the electronic map by the first scale.
  • the present invention provides an in-vehicle device navigation system, including:
  • An onboard input device an onboard processor, an onboard display component, the onboard display component for displaying an electronic map
  • the onboard processor is coupled to the onboard input device and the onboard display component, respectively;
  • the onboard input device is configured to acquire a moving speed of the vehicle
  • the onboard processor is configured to determine a first scale corresponding to the moving speed
  • the onboard processor is further configured to adjust a scale of the electronic map to the first scale, so that the onboard display component displays the electronic map at the first scale.
  • the present invention provides an in-vehicle Internet operating system, including:
  • An input control unit that controls the onboard input device to obtain a moving speed of the vehicle
  • the display control unit adjusts the scale of the electronic map to the first scale after the processing control unit determines the first scale corresponding to the moving speed.
  • the scale of the electronic map is determined according to the moving speed of the vehicle, so that the electronic map is displayed at a scale that is compatible with the current moving speed of the vehicle, thereby ensuring that the electronic map is cruising.
  • the scale can also be automatically adjusted according to the moving speed of the vehicle; And combining the processing of the electronic map with the driving behavior of the user can always ensure that the display scale of the electronic map matches the driving behavior of the user, which is beneficial to improving the safety of driving and the experience of using the electronic map.
  • FIG. 1 is a schematic flowchart of an electronic map processing method according to an embodiment of the present invention.
  • 2a is a schematic diagram showing a relationship between a speed and a scale according to the present invention
  • 2b is a schematic diagram of a user interface before a scale change according to the present invention.
  • Figure 2c is a schematic diagram of the user interface after changing the scale on the basis of Figure 2b;
  • FIG. 3 is a schematic flowchart of an electronic map processing method according to an embodiment of the present invention.
  • 4a is a schematic diagram showing a relationship between a distance and a scale according to the present invention.
  • 4b is a schematic diagram of a user interface before a scale change according to the present invention.
  • Figure 4c is a schematic diagram of the user interface after changing the scale on the basis of Figure 4b;
  • FIG. 5 is a schematic flowchart diagram of an electronic map processing method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a user interface system according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a navigation system of an in-vehicle device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an in-vehicle Internet operating system according to an embodiment of the present invention.
  • the invention provides a method for processing an electronic map, which can change the scale of the electronic map according to the moving speed of the vehicle.
  • the vehicle according to the present invention may be any vehicle or other vehicle having an electronic map function.
  • the vehicle for example, it may be an internal combustion engine vehicle, an electric vehicle, a pneumatic vehicle, an oil and gas hybrid vehicle, a hybrid electric vehicle, an electric bicycle, and various deformations; other vehicles having an electronic map function may be, for example, a small aircraft, a yacht, and various Deformation.
  • the mode of operation of the electronic map to which the present invention relates includes, but is not limited to, a cruise mode and a navigation mode.
  • the cruise mode can be understood as the user does not set the destination on the electronic map, the electronic map tracks the user's real-time location, and displays the real-time location of the user and the map near the real-time location, which is commonly referred to as non- Navigation mode.
  • the navigation mode can be understood as the user setting the departure place and the destination on the electronic map, the electronic map displaying the route information from the departure place to the destination, and tracking the real-time position of the user.
  • the scale of the electronic map can be understood as the ratio of the length of the unit line segment on the electronic map to the actual distance length.
  • the scale of the electronic map is larger, the actual area range that can be displayed per unit area on the electronic map is larger, and the elements such as the building name displayed on the electronic map are less.
  • the smaller the scale the smaller the field of view on the electronic map, and the more display elements on the electronic map.
  • the scale of the electronic map is smaller, the actual area range that can be displayed per unit area on the electronic map is smaller.
  • the more elements such as the building name and street name displayed on the unit area the more detailed.
  • the representative meaning may be that the 1 cm on the electronic map represents 200 meters of the actual distance length, which is of course only an example, and is not a unique limitation thereof.
  • the in-vehicle device involved in the present invention may be implemented by hardware or by executing corresponding software by hardware.
  • the in-vehicle device can be implemented as a vehicle in a vehicle, or can be implemented as a mobile terminal device such as a mobile phone or a tablet connected to the vehicle.
  • FIG. 1 is a schematic flowchart diagram of an electronic map processing method according to an embodiment of the present invention. As shown in Figure 1, the method includes:
  • Step 101 Acquire a moving speed of the vehicle.
  • the moving speed of the vehicle in this embodiment is the basis for converting the electronic map scale, and it may be any one of the instantaneous moving speed, the average instantaneous moving speed, and the average moving speed of the vehicle.
  • the instantaneous moving speed can be understood as the speed of the vehicle obtained by sampling the speed of the vehicle once.
  • the average instantaneous moving speed can be understood as the speed sampling of the vehicle twice or more in unit time, and the sampling is obtained.
  • the speed of the vehicle obtained by averaging the speed of two or more times ie, the instantaneous moving speed).
  • the unit time a person skilled in the art can specifically set according to specific needs, which is not specifically limited in this embodiment.
  • the unit time can be set to 1 second, by using the vehicle twice or more times in 1 second, and averaging the speed obtained twice or more times of the acquisition to obtain the vehicle's Average instantaneous moving speed.
  • the average moving speed can be understood as the speed obtained by averaging at least two average instantaneous moving speeds of the vehicle within a preset duration. For example, if the preset duration is 2 minutes, at least two average instantaneous moving speeds of the vehicle within 2 minutes before the current time are acquired, and the obtained average instantaneous moving speed is averaged to obtain an average moving speed of the vehicle. It should be noted that the preset duration involved herein may be any length longer than the above unit time.
  • the in-vehicle device When the in-vehicle device is implemented as a mobile terminal, the above-described moving speed can be obtained indirectly by the mobile terminal following the moving speed of the vehicle.
  • the in-vehicle device is a mobile phone.
  • the electronic map is displayed through the screen of the mobile phone.
  • the mobile phone obtains the speed of moving with the vehicle through the sensor installed thereon.
  • the electronic map is displayed through the display on the vehicle. At this point, the speed of movement of the vehicle can be obtained by bus acquisition on the vehicle.
  • Step 102 Determine a first scale corresponding to the moving speed.
  • the scale of the electronic map adapted to the moving speed can be determined according to the moving speed of the vehicle.
  • the relationship between the moving speed of the vehicle and the scale of the electronic map can be set to a proportional relationship, that is, the moving speed of the vehicle is larger, the scale of the corresponding electronic map is larger, and the moving speed is smaller, correspondingly The smaller the scale of the electronic map.
  • the correspondence between the moving speed and the scale can be obtained according to the mapping relationship between the moving speed and the scale, or the mapping relationship between the moving speed range and the scale.
  • the mapping relationship may be specifically a correspondence list between the moving speed and the scale value, or may be specifically a correspondence list between the moving speed range and the scale value.
  • the scale value corresponding to the moving speed can be obtained according to the current moving speed of the vehicle.
  • the mapping relationship may also be specifically a mapping algorithm between the moving speed and the scale, or a correspondence between the moving speed range and the scale mapping algorithm.
  • the moving speed of the vehicle can be used as an input variable
  • the scale of the electronic map can be used as an output variable
  • the corresponding scale mapping algorithm can be used to calculate the scale corresponding to the moving speed of the vehicle.
  • the moving speed of the vehicle can be used as an input variable
  • the scale of the electronic map can be obtained through a unified scale mapping algorithm. It is also possible to divide the moving speed of the vehicle into several speed ranges and for each speed range.
  • a corresponding scale mapping algorithm is set up. When converting the scale of the electronic map, firstly, the speed range to which the moving speed of the vehicle belongs is determined, and when determining the speed range to which the moving speed of the vehicle belongs, according to the speed range Corresponding scale mapping algorithm calculates the scale of the electronic map.
  • the moving speed can be divided into three threshold ranges: [0, akm/h), [akm/h, bkm/h), [b km/h, infinity).
  • the scale mapping algorithm corresponding to the threshold range [0, akm/h) is:
  • the scale mapping algorithm corresponding to the threshold range [akm/h, bkm/h) is:
  • the unit can be set arbitrarily, for example, 1:300 here can be expressed as 1 cm on the electronic map representing the actual distance of 300 meters.
  • v is the moving speed of the vehicle
  • a, b, h, f, k, l, j, s, g are constants, wherein a, b, g can be set by the person skilled in the art according to the needs, h, f, k, l, j, s can be obtained by sampling and fitting, which is similar to the prior art and will not be described here.
  • the scale of the electronic map is calculated using the formula (1); when the moving speed of the traffic belongs to the threshold range [akm/h, bkm/ h), calculate the scale of the electronic map using formula (2); when the moving speed of the traffic belongs to the threshold range [b km/h, infinity), formula (3) is used to calculate the scale of the electronic map.
  • this is just an example, and it is not the only limit.
  • Step 103 Adjust a scale of the electronic map to the first scale.
  • the scale of the electronic map is adjusted to 200.
  • FIG. 2a is a schematic diagram showing a relationship between speed and scale according to the present invention.
  • the horizontal axis of the figure is the moving speed value of the vehicle, and the unit is kilometer/hour
  • the vertical axis is the scale value of the electronic map, and the unit is meter.
  • a threshold may be set for the moving speed of the vehicle.
  • the value of the scale is adjusted to a fixed scale value, that is, the curve portion of the speed greater than 110 km/h in FIG. 2a.
  • the vehicle is in a high-speed motion state, and the displacement of the vehicle changes rapidly in a unit time.
  • displaying the electronic map at a large scale can reduce the displacement of the vehicle on the electronic map, and is convenient.
  • the moving speed of the vehicle is less than the threshold, the speed of the vehicle is larger, and the corresponding electronic map is displayed at a larger scale.
  • the smaller the speed of the vehicle the smaller the corresponding electronic map is displayed.
  • the adjustment of the scale and the driving behavior are more suitable.
  • the moving speed of the vehicle can be divided into several speed ranges, combined with the actual driving needs, in order of the speed range from small to large. Increase the scale of the scale, here the moving speed in Figure 2a is in the range of (10km / h, 80km / h), and the moving speed in the range of (80km, 110km / h).
  • FIG. 2b is a schematic diagram of a user interface before the scale change according to the present invention
  • FIG. 2c is a schematic diagram of the user interface after changing the scale on the basis of FIG. 2b.
  • the moving speed of the vehicle in the state of Fig. 2b is greater than the moving speed in the state of Fig. 2c.
  • the greater the moving speed of the vehicle, the larger the scale of the electronic map, and the greater the moving speed of the vehicle on the user interface the unit area on the electronic map.
  • the processing method of the electronic map provided by this embodiment may be applied to both the cruise mode and the navigation mode of the electronic map, or may be applied only to the cruise mode of the electronic map. Especially in the cruise mode, the effect of the electronic map processing method provided by this embodiment is particularly prominent.
  • the scale of the electronic map is determined according to the moving speed of the vehicle, so that the electronic map is displayed at a scale that is compatible with the current moving speed of the vehicle, thereby ensuring that the electronic map is in the In the cruise mode, the scale can also be automatically adjusted according to the moving speed of the vehicle; and the combination of the processing of the electronic map and the driving behavior of the user can always ensure that the display scale of the electronic map matches the driving behavior of the user, which is beneficial to Improve driving safety and the use of electronic maps.
  • the in-vehicle device may first recognize the working mode of the electronic map before acquiring the moving speed of the vehicle, and then adopt the corresponding processing method for the electronic map after identifying the working mode of the electronic map.
  • the scale is taken. The specific method is as follows:
  • FIG. 3 is a schematic flowchart of an electronic map processing method according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • Step 201 Determine whether the working mode of the electronic map is a cruise mode. If not, execute step 202.
  • the working mode of the electronic map may be determined according to setting data of the electronic map.
  • the working mode of the electronic map is the navigation mode.
  • the start position information and the destination position information are not included in the setting data, the working mode of the electronic map is the navigation mode.
  • the method for obtaining the above working mode is only one implementation method in this embodiment, and is not limited to the uniqueness thereof. Any method capable of realizing the working mode of identifying the electronic map is within the protection scope of the present invention.
  • Step 202 Determine a second scale corresponding to the distance according to a distance between a current location of the vehicle and a front enlargement point, and adjust a scale of the electronic map to the second scale.
  • the scale of the electronic map is determined by the distance between the current location of the vehicle and the forward zoom point.
  • the zoom-in point involved here is a position point preset on the electronic map.
  • the zoom-in point may be embodied as a position of each intersection on the navigation route.
  • the adjustment operation of the scale of the electronic map can be started, and the size of the area can be specifically set according to specific needs, which is not specifically determined in this embodiment. Limited.
  • the area can be set to 200 meters, that is, when the vehicle enters a range of 200 meters from the front enlargement point, the scale of the electronic map is adjusted.
  • the relationship between the distance between the vehicle and the front enlargement point and the scale of the electronic map can be set to a proportional relationship, that is, the greater the distance between the vehicle and the front enlargement point, the scale of the corresponding electronic map.
  • the larger the distance the smaller the scale of the corresponding electronic map.
  • the correspondence between the distance between the vehicle and the front enlargement point and the scale may be obtained according to the mapping relationship between the distance and the scale, or the mapping relationship between the distance range and the scale.
  • the mapping relationship may be specifically a correspondence between a distance between the vehicle and the front magnifying point and a preset scale value, or may be specifically a correspondence between the distance range and the preset scale value. List.
  • the scale value corresponding to the distance can be obtained according to the distance between the vehicle and the zoom point in front.
  • the mapping relationship may also be specifically a mapping algorithm between a distance and a scale between the vehicle and the front enlargement point, or a correspondence between the distance range and the scale mapping algorithm.
  • the distance between the vehicle and the front enlargement point can be used as an input variable, and the scale of the electronic map can be used as an output variable, and the corresponding scale mapping algorithm can be used to calculate the scale corresponding to the distance.
  • the distance between the vehicle and the forward magnification point can be used as an input variable, and the scale of the electronic map can be obtained through a unified scale mapping algorithm. It is also possible to divide the distance between the vehicle and the front enlargement point into several distance ranges, and set a corresponding scale mapping algorithm for each distance range.
  • the scale of the electronic map When converting the scale of the electronic map, first determine the vehicle and The distance range to which the distance between the front enlargement points belongs is determined, and after determining the distance range to which the distance between the vehicle and the front enlargement point belongs, the scale of the electronic map is calculated according to the scale mapping algorithm corresponding to the distance range. It is also possible to preset a correspondence list of the distance and the scale. When the scale conversion is performed, the scale corresponding to the distance can be obtained by looking up the table.
  • the above is merely an example and is not intended to be limiting.
  • the distance between the vehicle and the front enlargement point can be divided into two distance ranges: [0, m meters), [m meters, positive infinity).
  • the scale conversion algorithm corresponding to the range [0, m meters) is:
  • the unit can be set arbitrarily, for example, 1:300 here can be expressed as 1 cm on the electronic map representing the actual distance of 300 meters.
  • x is the distance between the current location of the vehicle and the zoom point in front, and m, i, p, q, n are constants, wherein m, n can be set by the person skilled in the art according to the needs, i, p , q can be obtained by sampling and fitting, which is similar to the prior art and will not be described here.
  • the scale of the electronic map is calculated using the formula (4); when the distance between the vehicle and the front enlargement point belongs to When the distance range is [m meters, positive infinity), the scale of the electronic map is calculated using equation (5).
  • this is just an example, and it is not a unique limitation.
  • FIG. 4a is a schematic diagram showing a relationship between a distance and a scale according to the present invention.
  • the horizontal axis is the distance between the vehicle and the front enlarged point, and the unit is meter, and the vertical axis is the scale value of the electronic map.
  • the unit is meter. .
  • the electronic map is required to provide higher recognition on the electronic map.
  • the above embodiment shows that the electronic map has a small scale, a small field of view, and a high degree of route recognition. According to the distance between the vehicle and the zoom point in front, gradually changing the scale of the map can enhance the smoothness of the scale change, which is beneficial to improve the user experience.
  • FIG. 4b is a schematic diagram of a user interface before the scale change according to the present invention
  • FIG. 4c is a schematic diagram of the user interface after changing the scale on the basis of FIG. 4b.
  • the distance between the vehicle and the front enlargement point is greater than the distance between the vehicle and the front enlargement point in the state of Fig. 4c.
  • the greater the distance between the vehicle and the front enlargement point is the larger the scale of the electronic map
  • the embodiment on the user interface is the actual display of the unit area on the electronic map.
  • the scale of the electronic map is determined according to the distance between the vehicle and the forward zoom point, so that the electronic map is in the navigation working mode, and can also be based on the distance between the vehicle and the front zoom point.
  • the distance is adjusted to achieve precise adjustment of the scale of the electronic map, so that the adjustment of the scale is more suitable for the user's driving behavior, which can significantly enhance the user's experience and improve the safety of driving.
  • FIG. 5 is a schematic flowchart of an electronic map processing method according to an embodiment of the present invention. As shown in FIG. 5, based on the embodiment shown in FIG. 3, the method includes:
  • Step 301 Determine whether the user is operating on the electronic map, and if yes, end the operation; otherwise, perform a hidden process on the touch control button on the electronic map, and execute step 302.
  • the user's operation behavior can be acquired through a touch sensor connected to the touch screen. For example, when the touch sensor detects the touch signal, it is determined that the user is operating on the electronic map, and if the touch signal is not detected, it is determined that the user does not operate the electronic map.
  • the above-mentioned judging method is only one implementation method in this embodiment, and is not limited to the uniqueness thereof. Any method capable of realizing the judgment of the user's operation behavior is within the protection scope of the present invention.
  • Step 302 Determine whether the working mode of the electronic map is a cruise mode. If not, perform steps 303-305; if yes, perform step 306.
  • Step 303 Acquire a moving speed of the vehicle.
  • Step 304 Determine a first scale corresponding to the moving speed.
  • Step 305 Adjust a scale of the electronic map to the first scale.
  • Step 306 Determine a second scale corresponding to the distance according to a distance between a current location of the vehicle and a front enlargement point, and adjust a scale of the electronic map to the second scale.
  • Steps 302 and 306 are described in detail in the foregoing embodiments, and details are not described herein again.
  • the user before the conversion of the scale of the electronic map, the user first judges the operation state of the electronic map by the user, and when determining that the user does not operate the electronic map, further according to the above
  • the method of the embodiment adjusts the scale of the electronic map.
  • FIG. 6 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention. As shown in FIG. 6, the in-vehicle device includes:
  • the obtaining module 11 is configured to acquire a moving speed of the vehicle
  • the first determining module 12 determines a first scale corresponding to the moving speed
  • the adjustment module 13 is configured to adjust the scale of the electronic map to the first scale.
  • the first determining module 12 is specifically configured to:
  • the in-vehicle device provided in this embodiment may be specifically a mobile terminal or a vehicle device.
  • the acquiring module 11 includes: a first acquiring sub-module, configured to acquire a speed of the mobile terminal moving with the vehicle.
  • the acquisition module 11 includes a second acquisition sub-module for acquiring the moving speed of the vehicle through the bus of the vehicle.
  • the moving speed of the vehicle acquired by the acquiring module 11 may be any one of the following moving speeds: an instantaneous moving speed, an average instantaneous moving speed, and an average moving speed.
  • the obtaining module 11 includes:
  • a third obtaining submodule configured to acquire an instantaneous moving speed of the vehicle
  • a fourth acquiring submodule configured to acquire at least two instantaneous moving speeds of the vehicle within a first preset duration, and average the at least two instantaneous moving speeds to obtain an average instantaneous moving speed
  • a fifth acquisition sub-module configured to acquire at least two average instantaneous moving speeds of the vehicle in a second preset duration, and average the at least two average instantaneous moving speeds to obtain an average moving speed, where The average instantaneous moving speed is obtained by averaging at least two instantaneous moving speeds of the vehicle within the first preset time period by the in-vehicle device.
  • the in-vehicle device provided in this embodiment can be used to perform the method embodiment shown in FIG. 1 , and the implementation principle and the technical effect are similar.
  • FIG. 7 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention. As shown in FIG. 7, on the basis of the structure shown in FIG. 6, the in-vehicle device may further include:
  • the third determining module 14 is configured to determine whether the working mode of the electronic map is a cruise mode.
  • a fourth determining module 15 configured to determine, according to a distance between a current location of the vehicle and a front enlargement point, when the third determining module 14 determines that the working mode of the electronic map is a navigation mode a corresponding second scale of distance;
  • the adjustment module 13 is further configured to adjust a scale of the electronic map to the second scale.
  • the fourth determining module 15 is specifically configured to:
  • the in-vehicle device provided in this embodiment can be used to perform the method embodiment shown in FIG. 3, and the implementation principle and technical effects are similar.
  • FIG. 8 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention. As shown in FIG. 8, on the basis of the structure shown in FIG. 7, the in-vehicle device may further include:
  • a second determining module 16 configured to determine whether the user is operating on the electronic map
  • the processing module 17 is configured to perform a hiding process on the touch control button on the electronic map when the user does not operate the electronic map, and trigger the acquiring module 11 to acquire a moving speed of the vehicle.
  • the in-vehicle device provided in this embodiment can be used to perform the method embodiment shown in FIG. 5, and the implementation principle and technical effects are similar.
  • FIG. 9 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention. As shown in FIG. 9, the in-vehicle device includes:
  • the processor 22 is coupled to the input device 21 and the display component 23, respectively;
  • the input device 21 is configured to acquire a moving speed of the vehicle
  • the processor 22 is configured to determine a first scale corresponding to the moving speed
  • the processor 22 is further configured to adjust a scale of the electronic map to the first scale.
  • the input device 21 is specifically configured to:
  • the in-vehicle device averages at least two instantaneous moving speeds of the vehicle within a first predetermined duration.
  • the input device 21 is specifically configured to:
  • the input device 21 is specifically configured to:
  • the moving speed of the vehicle is obtained by the bus of the vehicle.
  • the processor 22 is the processor 22,
  • the processor 22 is further configured to:
  • the touch control button on the electronic map is hidden, and the input device is triggered to acquire the moving speed of the vehicle.
  • the processor 22 is further configured to:
  • the input device is triggered to acquire the moving speed of the vehicle.
  • the processor 22 is specifically configured to:
  • the in-vehicle device provided in this embodiment can be used to perform the foregoing method embodiments, and the implementation principle and technical effects are similar.
  • FIG. 10 is a schematic structural diagram of a user interface system according to an embodiment of the present invention. As shown in FIG. 10, the user interface system may include:
  • the display component 32 is configured to display an electronic map
  • the processor component 31 is configured to determine a first scale corresponding to a moving speed of the vehicle
  • the processor component 31 is further configured to adjust a scale of the electronic map to the first scale, so that the display component displays the electronic map by the first scale.
  • FIG. 11 is a schematic structural diagram of a navigation system of an in-vehicle device according to an embodiment of the present invention. As shown in FIG. 11, the system may include:
  • the onboard processor 42 is coupled to the onboard input device 41 and the onboard display component 43 respectively;
  • the onboard input device 41 is configured to acquire a moving speed of the vehicle
  • the onboard processor 42 is configured to determine a first scale corresponding to the moving speed
  • the onboard processor 42 is further configured to adjust a scale of the electronic map to the first scale, so that the onboard display component displays the electronic map at the first scale.
  • the onboard input 41 device is specifically configured to:
  • the onboard input device 41 is specifically configured to:
  • the moving speed of the vehicle is obtained by the bus of the vehicle.
  • the onboard input device 41 is specifically configured to:
  • the in-vehicle device averages at least two instantaneous moving speeds of the vehicle within a first predetermined duration.
  • the onboard processor 42 is further configured to:
  • the touch control button on the electronic map is hidden, and the onboard input device is triggered to acquire the moving speed of the vehicle.
  • the onboard processor 42 is further configured to:
  • the onboard input device is triggered to acquire the moving speed of the vehicle.
  • the onboard processor 42 is specifically configured to:
  • the first scale of the electronic map is determined using the scale conversion algorithm.
  • the onboard processor 42 is specifically configured to:
  • the onboard input device 41 can include at least one of a software programmable interface, a transceiver, a device oriented device interface, a user oriented user interface.
  • the user-oriented user interface includes one or more of the following: a voice input device, a touch-aware device.
  • FIG. 12 is a schematic structural diagram of an in-vehicle Internet operating system according to an embodiment of the present invention. As shown in FIG. 12, the system includes:
  • the input control unit 51 controls the onboard input device to acquire the moving speed of the vehicle
  • the processing control unit 52 determines a first scale corresponding to the moving speed
  • the display control unit 53 adjusts the scale of the electronic map to the first scale after the processing control unit 52 determines the first scale corresponding to the moving speed.
  • the processing control unit 52 is further configured to:
  • the touch control button on the electronic map is hidden, and the onboard input device is controlled to acquire the moving speed of the vehicle.
  • processing control unit 52 can also be used to:
  • the onboard input device is controlled to obtain the speed of movement of the vehicle.
  • a relationship between a moving speed of the vehicle and a scale of the electronic map is proportional.
  • processing control unit 52 is specifically configured to:
  • the in-vehicle device provided in this embodiment can be used to implement the foregoing method embodiments, and the implementation principle and technical effects thereof It should be noted that this embodiment will not be repeated here.
  • the airborne in the "airborne input device” and the “airborne processor” may be an "vehicle input device” and an “vehicle processor” carried on the vehicle, and may also be It is an “onboard input device” and an “onboard processor” carried on the aircraft, and may also be an “onboard input device” and an “onboard processor” carried on the mobile terminal.
  • the “onboard processor” may also be a device that is carried on other types of vehicles. The meaning of "onboard” is not limited in the embodiment of the present application. Taking the in-vehicle device as an example, the on-board input device may be an in-vehicle input device, and the on-board processor may be an on-board processor.
  • the above-described onboard input device may include a variety of input devices depending on the type of onboard device installed, for example, may include an onboard user interface for the user, an onboard device interface for the device, an onboard programmable interface for the software. At least one of the transceivers.
  • the device-oriented airborne device interface may be a wired interface for data transmission between the device and the device (for example, a connection interface with a driving recorder on a center console of the vehicle), or may be used for A hardware insertion interface (such as a USB interface, a serial port, etc.) for data transmission between the device and the device;
  • the user-oriented vehicle user interface may be, for example, a voice input device for receiving voice input (for example, placed on a steering wheel) Or operating a microphone on the rudder, a central sound collection device, etc.), and a touch sensing device (such as a touch screen with a touch sensing function, a touchpad, etc.) that the user receives the user's touch input; optionally, the above software can be used in the vehicle.
  • the programming interface may be, for example, an entry in the vehicle control system that can be edited or modified by the user, such as an input pin interface or an input interface of a large or small chip involved in the vehicle; alternatively, the transceiver may have a vehicle Radio frequency transceiver chip, baseband processing chip, and transceiver antenna for communication functions.
  • the on-board input device is used to acquire the moving speed of the vehicle.
  • the onboard input device may be a device transmission interface that communicates with various service sources inside the vehicle or the mobile phone, or may be a transceiver with communication functions.
  • the onboard input device is also operative to receive various commands triggered by the user.
  • the onboard input device may also be a voice input device that receives voice input and a touch sensing device (eg, a touch screen with touch sensing function, a touchpad, etc.) for receiving user touch input.
  • the onboard processor can use various application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (depending on the type of onboard device installed). PLD), field programmable gate array (FPGA), central processing unit (CPU), controller, microcontroller, microprocessor or other electronic component implementation and used to perform the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • FPGA field programmable gate array
  • CPU central processing unit
  • controller microcontroller, microprocessor or other electronic component implementation and used to perform the above methods.
  • the onboard processor is coupled to the onboard input device and the onboard display assembly via an in-vehicle line or wireless connection.
  • the onboard processor may perform the method in the embodiment corresponding to the foregoing FIG. 1 to FIG. 3, for example, the onboard processor may determine a first scale of the electronic map according to the moving speed, and control the onboard display component to adopt
  • the present application also provides a processor readable storage medium having program instructions stored therein for causing a processor to perform the methods described in FIGS. 1 through 3 of the above embodiments.
  • the readable storage medium described above can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • first, second, third, etc. may be used to describe XXX in embodiments of the invention, these XXX should not be limited to these terms. These terms are only used to distinguish XXX from each other.
  • first XXX may also be referred to as a second XXX without departing from the scope of the embodiments of the present invention.
  • second XXX may also be referred to as a first XXX.
  • the words “if” and “if” as used herein may be interpreted to mean “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种电子地图处理方法、设备和系统,所述方法包括:获取交通工具的移动速度(101);确定所述移动速度对应的第一比例尺(102);将电子地图的比例尺调整为所述第一比例尺(103)。所述方法、设备和系统提供了一种根据交通工具的移动速度调整电子地图的比例尺的电子地图处理方式。

Description

电子地图处理方法、设备和系统
本申请要求2016年06月23日递交的申请号为201610464820.5、发明名称为“电子地图处理方法、设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子地图技术,尤其涉及一种电子地图处理方法、设备和系统。
背景技术
随着汽车业的发展以及汽车智能化的推进,汽车驾驶体验已经成为汽车厂商和汽车用户的关注焦点。为了提高驾驶体验,目前市场上大多汽车均设置有导航功能。该导航功能可以通过电子地图的方式为汽车用户的出行提供支持。
现实情况中,在不同情况下汽车用户对电子地图的显示比例尺具有不同的要求,例如在转弯、分叉、高速入口等非封闭或非直行的路段时,经常需要汽车用户进行驾驶方向的判断,此时则需要以较小的比例尺来对电子地图进行显示,而在封闭或直行的路段,电子地图以较大的比例尺进行显示即可。针对这一问题,目前主要的解决方案是:预先在电子地图上设置比例尺放大点,根据汽车与比例尺放大点之间的距离来改变比例尺,然而,这种方法的弊端在于其只能在导航状态中起作用,即其只能在设定了导航终点时起作用。而在巡航状态时(即未设定导航终点),由于放大点是随机出现的,此时电子地图的比例尺则无法自动调整。因此,当前电子地图在比例尺的自动调节方面仍存在不足,用户的使用体验较差。
发明内容
本发明提供一种电子地图处理方法、设备和系统,以至少提供一种根据交通工具的移动速度调整电子地图的比例尺的电子地图处理方式。
第一方面,本发明提供一种电子地图处理方法,该方法,包括:
获取交通工具的移动速度;
确定所述移动速度对应的第一比例尺;
将电子地图的比例尺调整为所述第一比例尺。
第二方面,本发明提供一种车载设备,包括:
获取模块,用于获取交通工具的移动速度;
第一确定模块,确定所述移动速度对应的第一比例尺;
调整模块,用于将电子地图的比例尺调整为所述第一比例尺。
第三方面,本发明提供一种车载设备,包括:
输入设备、处理器、显示组件,所述显示组件用于对电子地图进行显示;
其中,所述处理器分别与所述输入设备和所述显示组件耦合;
所述输入设备,用于获取交通工具的移动速度;
所述处理器,用于确定所述移动速度对应的第一比例尺;
所述处理器,还用于将所述电子地图的比例尺调整为所述第一比例尺。
第四方面,本发明提供一种用户界面系统,包括:
处理器组件和显示组件;
所述显示组件,用于显示电子地图;
所述处理器组件,用于确定交通工具的移动速度对应的第一比例尺;
所述处理器组件,还用于将所述电子地图的比例尺调整为所述第一比例尺,以使所述显示组件以所述第一比例尺对所述电子地图进行显示。
第五方面,本发明提供一种车载设备导航系统,包括:
机载输入设备、机载处理器、机载显示组件,所述机载显示组件用于显示电子地图;
其中,所述机载处理器分别与所述机载输入设备和所述机载显示组件耦合;
所述机载输入设备,用于获取交通工具的移动速度;
所述机载处理器,用于确定所述移动速度对应的第一比例尺;
所述机载处理器,还用于将所述电子地图的比例尺调整为所述第一比例尺,以使所述机载显示组件以所述第一比例尺对所述电子地图进行显示。
第六方面,本发明提供一种车载互联网操作系统,包括:
输入控制单元,控制机载输入设备获取交通工具的移动速度;
处理控制单元,确定所述移动速度对应的第一比例尺;
显示控制单元,在所述处理控制单元确定所述移动速度对应的第一比例尺后,将所述电子地图的比例尺调整为所述第一比例尺。
在本发明中,通过获取交通工具的移动速度,根据交通工具的移动速度,确定电子地图的比例尺,使得电子地图以与交通工具当前的移动速度相适应的比例尺进行显示,保证了电子地图在巡航模式下,也可以自动根据交通工具的移动速度对比例尺进行调整; 并且将电子地图的处理与用户的驾驶行为相结合,能够始终保证电子地图的显示比例尺与用户的驾驶行为相匹配,有益于提高驾驶的安全性和电子地图的使用体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的电子地图处理方法的流程示意图;
图2a为本发明提供的一种速度与比例尺的变化关系曲线示意图;
图2b为本发明提供的一种比例尺变化前的用户界面示意图;
图2c为在图2b的基础上变化比例尺后的用户界面示意图;
图3为本发明一实施例提供的电子地图处理方法的流程示意图;
图4a为本发明提供的一种距离与比例尺的变化关系曲线示意图;
图4b为本发明提供的一种比例尺变化前的用户界面示意图;
图4c为在图4b的基础上变化比例尺后的用户界面示意图;
图5为本发明一实施例提供的电子地图处理方法的流程示意图;
图6为本发明一实施例提供的车载设备的结构示意图;
图7为本发明一实施例提供的车载设备的结构示意图;
图8为本发明一实施例提供的车载设备的结构示意图;
图9为本发明一实施例提供的车载设备的结构示意图;
图10为本发明一实施例提供的用户界面系统的结构示意图;
图11为本发明一实施例提供的车载设备导航系统的结构示意图;
图12为本发明一实施例提供的车载互联网操作系统的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本发明提供一种电子地图的处理方法,能够根据交通工具的移动速度改变电子地图的比例尺。本发明所涉及的交通工具,可以是任意车辆、还可以是其他具有电子地图功能的交通工具。对于车辆,例如可以是内燃机汽车、电动汽车、气路汽车、油气混合汽车、油电混合汽车、电动助力车以及各种变形;其他具有电子地图功能的交通工具例如可以是小型飞行器、游艇以及各种变形。
本发明涉及的电子地图的工作模式包括但并不仅限于巡航模式和导航模式。其中,巡航模式可以理解为用户并未在电子地图上设置目的地,电子地图对用户的实时位置进行跟踪,并对用户的实时位置,以及实时位置附近的地图进行显示,即通常所称的非导航模式。导航模式可以理解为用户在电子地图上设置有出发地和目的地,电子地图显示从出发地到目的地的路线信息,并对用户的实时位置进行跟踪。电子地图的比例尺可以理解为电子地图上单位线段长度与实际距离长度的比值,比例尺越大,电子地图上的视野范围越大,电子地图上的显示元素(例如建筑名称,街道名称等)越少,比如,当电子地图的比例尺越大时,电子地图上单位面积所能显示的实际的区域范围越大,电子地图上显示的例如建筑名称等元素就越少。相反,比例尺越小电子地图上的视野范围越小,电子地图上的显示元素就越多,比如,当电子地图的比例尺越小时,电子地图上单位面积所能显示的实际的区域范围越小,相应的,单位面积上显示的诸如建筑名称,街道名称等元素就越多越详细。例如,比例尺等于200时,其代表的含义可以为电子地图上的1厘米代表实际距离长度的200米,当然此处仅为举例说明,并非是对其的唯一性限定。
本发明所述涉及的车载设备可以通过硬件实现,也可以通过硬件执行相应的软件实现。实际应用中,该车载设备可以被实现为交通工具中的车机,也可以实现为与交通工具连接使用的手机、平板等移动终端设备。
下面采用详细的实施例,对本发明的电子地图处理过程进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明一实施例提供的电子地图处理方法的流程示意图。如图1所示,该方法包括:
步骤101、获取交通工具的移动速度。
本实施例中交通工具的移动速度是转换电子地图比例尺的依据,它可以是交通工具的瞬时移动速度、平均瞬时移动速度、平均移动速度中的任意一种。其中,瞬时移动速度可以理解为对交通工具进行一次速度采样获得的交通工具的速度。平均瞬时移动速度可以理解为在单位时间内对交通工具进行两次或两次以上的速度采样,并对采样获得的 两次或两次以上的速度(即瞬时移动速度)进行求平均运算获得的交通工具的速度。对于单位时间的设定,本领域技术人员可以根据具体需要具体设定,本实施例中不对其做具体限定。例如,单位时间可以设置为1秒,通过在1秒内对交通工具进行两次或两次以上的速度采用,并对采集获得的两次或两次以上的速度进行平均运算,获得交通工具的平均瞬时移动速度。平均移动速度可以理解为对交通工具在预设时长内的至少两个平均瞬时移动速度进行平均运算,获得的速度。例如,预设时长为2分钟,则获取在当前时刻之前2分钟内交通工具的至少两个平均瞬时移动速度,并对获得的平均瞬时移动速度进行平均运算,获得交通工具的平均移动速度。需要说明的是,这里所涉及的预设时长可以是大于上述单位时间的任意时长。
当车载设备被实现为移动终端时,上述移动速度可以间接通过移动终端跟随交通工具的移动速度来获得。例如,车载设备为手机,此时,电子地图通过手机屏幕进行显示,当对电子地图的比例尺进行调整时,手机通过其上安装的传感器,获取其随交通工具移动的速度。
当车载设备被实现为车机时,此时电子地图通过交通工具上的显示屏进行显示。此时,交通工具的移动速度可以通过交通工具上的总线采集获得。
步骤102、确定所述移动速度对应的第一比例尺。
根据交通工具的移动速度可以确定与移动速度相适应的电子地图的比例尺。结合实际驾驶情况,可以将交通工具的移动速度和电子地图的比例尺之间的关系设置为正比关系,即交通工具的移动速度越大,相应的电子地图的比例尺越大,移动速度越小,相应的电子地图的比例尺越小。实际情况中,移动速度与比例尺之间的对应关系,可以根据移动速度与比例尺之间的映射关系,或移动速度范围与比例尺之间的映射关系获得。其中,该映射关系可以被具体为移动速度和比例尺值之间的对应关系列表,也可以被具体为移动速度范围与比例尺值之间的对应关系列表。当对电子地图进行比例尺调整时,可以根据交通工具当前的移动速度,查表获得该移动速度对应的比例尺值。可选的,该映射关系还可以被具体为移动速度与比例尺之间的映射算法,或者移动速度范围与比例尺映射算法之间的对应关系。
简单来说,可以将交通工具的移动速度作为输入变量,将电子地图的比例尺作为输出变量,采用相应的比例尺映射算法,计算获得与交通工具的移动速度相适应的比例尺。比如,可以将交通工具的移动速度作为输入变量,通过统一的比例尺映射算法,获得电子地图的比例尺。也可以将交通工具的移动速度划分为几个速度范围,并为每个速度范 围设置一个对应的比例尺映射算法,当对电子地图的比例尺进行转换时,首先要确定交通工具的移动速度所属的速度范围,当确定交通工具的移动速度所属的速度范围后,再根据该速度范围对应的比例尺映射算法,计算获得电子地图的比例尺。还可以预先设置一个移动速度和比例尺的对应关系列表,当进行比例尺转换时,可以通过查表的方式获取与移动速度对应的比例尺。当然上述仅为举例说明,并不是对其进行的限定。比例尺映射算法
举例来说,可选的,可以将移动速度划分为三个阈值范围,分别为:[0,akm/h)、[akm/h,bkm/h)、[b km/h,无穷)。阈值范围[0,akm/h)对应的比例尺映射算法为:
scale=h*v+f          (1)
阈值范围[akm/h,bkm/h)对应的比例尺映射算法为:
scale=k*(v/10–3)3-l*(v/10–3)2+j*(v/10–3)+s
                                               (2)
[bkm/h,无穷)对应的比例尺映射算法为:
scale=g                (3)
其中,scale为比例尺的值,比如scale=300时,其代表的含义为电子地图上的单位长度与实际距离的比为1:300,这里电子地图上的单位长度的长度单位和实际距离的长度单位可以任意设置,例如这里1:300可表示为电子地图上的1厘米代表实际距离的300米。v为交通工具的移动速度,a,b,h,f,k,l,j,s,g为常数,其中,a,b,g可为本领域技术人员根据需要自行设定的,h,f,k,l,j,s可以通过采样以及拟合的方法获得,此与现有技术类似,在这里不再赘述。
即,当交通工具的移动速度所属的阈值范围为[0,akm/h)时,采用公式(1)计算电子地图的比例尺;当交通的移动速度所属的阈值范围为[akm/h,bkm/h)时,采用公式(2)计算电子地图的比例尺;当交通的移动速度所属的阈值范围为[b km/h,无穷)时,采用公式(3)计算电子地图的比例尺。当然这里只是举例说明,并不是对其进行唯一限定。
步骤103、将电子地图的比例尺调整为所述第一比例尺。
举例来说,假设经过上述步骤计算后获得的比例尺为200,则将电子地图的比例尺调整为200。
进一步的,为了更好的理解本实施例的方法和效果,下面结合具体的示意图对本实施例的方法进行阐述。
图2a为本发明提供的一种速度与比例尺的变化关系曲线示意图,图中横轴为交通工具的移动速度值,单位为千米/小时,纵轴为电子地图的比例尺值,单位为米。在实际应用中,可以为交通工具的移动速度设置一个阈值,当移动速度超过这个阈值时,则将比例尺的值调整为一个固定的比例尺值,即图2a中速度大于110km/h的曲线部分,这种情况下,交通工具处于高速运动状态,单位时间内交通工具的位移变化较快,此时,将电子地图以较大的比例尺进行显示,能够缩小交通工具在电子地图上的位移量,便于驾驶员观察,视觉体验较好。而当交通工具的移动速度小于这个阈值时,交通工具的速度越大,相应的电子地图以较大的比例尺进行显示,交通工具的速度越小,相应的电子地图以较小的比例尺进行显示,此处可见于图2a中速度小于110km/h的曲线部分。另外,为了进一步增强比例尺的调整效果,使得比例尺的调整和驾驶行为更贴合,可以将交通工具的移动速度分为若干个速度范围,结合实际驾驶需要,按照速度范围从小到大的顺序,依次增大比例尺的调整尺度,此处可见于图2a中的移动速度在(10km/h,80km/h)范围内,以及移动速度在(80km,110km/h)范围内的曲线部分。
进一步的,图2b为本发明提供的一种比例尺变化前的用户界面示意图,图2c为在图2b的基础上变化比例尺后的用户界面示意图。交通工具在图2b状态下的移动速度大于图2c状态下的移动速度。如图2b和图2c所示,在实际应用中,交通工具的移动速度越大,电子地图的比例尺越大,在用户界面上的体现即为交通工具的移动速度越大,电子地图上单位面积显示的实际区域范围越大,即电子地图上的视野范围越大,相应的电子地图显示的元素越少,地图的辨识度较低。而交通工具的移动速度越小时,电子地图上单位面积显示的实际区域范围越小,电子地图的视野范围越小,相应的电子地图上显示的元素越多,地图的辨识度较高。此在图2b和图2c上体现为,图2c的视野范围相较于图2b的视野范围小,且图2c相较于图2b的道路的辨识度高。需要说明的是,本实施例提供的电子地图的处理方法可以同时应用于电子地图的巡航模式和导航模式下,也可以仅应用于电子地图的巡航模式下。尤其在巡航模式下,本实施例提供的电子地图的处理方法的效果尤为突出。
在本实施例中,通过获取交通工具的移动速度,根据交通工具的移动速度,确定电子地图的比例尺,使得电子地图以与交通工具当前的移动速度相适应的比例尺进行显示,保证了电子地图在巡航模式下,也可以自动根据交通工具的移动速度对比例尺进行调整;并且将电子地图的处理与用户的驾驶行为相结合,能够始终保证电子地图的显示比例尺与用户的驾驶行为相匹配,有益于提高驾驶的安全性和电子地图的使用体验。
在上述实施例的基础上,车载设备在获取交通工具的移动速度之前,还可以先对电子地图的工作模式进行识别,在识别出电子地图的工作模式之后再采用相应的处理方法对电子地图的比例尺进行获取。具体方法如下:
图3为本发明一实施例提供的电子地图处理方法的流程示意图,如图3所示,该方法包括:
步骤201、确定电子地图的工作模式是否为巡航模式,若不是,则执行步骤202。
可选的,实际应用中,电子地图的工作模式可以根据电子地图的设置数据来进行判断。当设置数据中包括起始位置信息和目的位置信息时,电子地图的工作模式为导航模式。当设置数据中不包括起始位置信息和目的位置信息时,电子地图的工作模式为导航模式。当然,上述工作模式的获取方法仅为本实施例中的一种实现方法,而不是对其的唯一性限定,只要是能够实现识别电子地图的工作模式的方法均在本发明的保护范围内。
步骤202、根据所述交通工具当前所处位置与前方放大点之间的距离,确定所述距离对应的第二比例尺,并将所述电子地图的比例尺调整为所述第二比例尺。
本实施例中,当电子地图的工作模式为导航状态时,可选的,通过交通工具当前所处位置与前方放大点之间的距离,确定电子地图的比例尺。这里所涉及的放大点为在电子地图上预先设置的位置点,特别的,本实施例中,该放大点可以具体被体现为导航路线上的各路口位置。当交通工具驶入放大点周围区域中的某一区域范围时,即可开启对电子地图的比例尺的调整操作,该区域范围的大小可以根据具体需要具体设定,本实施例中不对其做具体的限定。例如,可以将该区域范围设置为200米,即当交通工具驶入距离前方放大点200米的范围时,则对电子地图的比例尺进行调整。
实际应用中,可以将交通工具与前方放大点之间的距离和电子地图的比例尺之间的关系设置为正比关系,即交通工具与前方放大点之间的距离越大,相应的电子地图的比例尺越大,距离越小,相应的电子地图的比例尺越小。实际情况中,交通工具与前方放大点之间的距离和比例尺之间的对应关系,可以根据距离与比例尺之间的映射关系,或距离范围与比例尺之间的映射关系获得。其中,该映射关系可以被具体为交通工具与前方放大点之间的距离和预设的比例尺值之间的对应关系列表,也可以被具体为距离范围与预设的比例尺值之间的对应关系列表。当对电子地图进行比例尺调整时,可以根据交通工具与前方放大点之间的距离,查表获得该距离对应的比例尺值。可选的,该映射关系还可以被具体为交通工具与前方放大点之间的距离和比例尺之间的映射算法,或者距离范围与比例尺映射算法之间的对应关系。
简单来说,可以将交通工具与前方放大点之间的距离作为输入变量,将电子地图的比例尺作为输出变量,采用相应的比例尺映射算法,计算获得与该距离相适应的比例尺。比如,可以将交通工具与前方放大点之间的距离作为输入变量,通过统一的比例尺映射算法,获得电子地图的比例尺。也可以将交通工具与前方放大点之间的距离划分为几个距离范围,并为每个距离范围设置一个对应的比例尺映射算法,当对电子地图的比例尺进行转换时,首先要确定交通工具与前方放大点之间的距离所属的距离范围,当确定交通工具与前方放大点之间的距离所属的距离范围后,再根据该距离范围对应的比例尺映射算法,计算获得电子地图的比例尺。还可以预先设置一个距离和比例尺的对应关系列表,当进行比例尺转换时,可以通过查表的方式获取与距离对应的比例尺。当然上述仅为举例说明,并不是对其进行的限定。
举例来说,可选的,可以将交通工具与前方放大点之间的距离划分两个距离范围,分别为:[0,m米)、[m米,正无穷)。距离范围[0,m米)对应的比例尺转换算法为:
scale=i×x/p+q       (4)
距离范围[m米,正无穷)对应的比例尺转换算法为:
scale=n            (5)
其中,scale为比例尺的值,比如scale=300时,其代表的含义为电子地图上的单位长度与实际距离的比为1:300,这里电子地图上的单位长度的长度单位和实际距离的长度单位可以任意设置,例如这里1:300可表示为电子地图上的1厘米代表实际距离的300米。x为交通工具当前所处位置与前方放大点之间的距离,m,i,p,q,n为常数,其中,m,n可为本领域技术人员根据需要自行设定的,i,p,q可以通过采样以及拟合的方法获得,此与现有技术类似,在这里不再赘述。
即,当交通工具与前方放大点之间的距离所属的距离范围为[0,m米)时,采用公式(4)计算电子地图的比例尺;当交通工具与前方放大点之间的距离所属的距离范围为[m米,正无穷)时,采用公式(5)计算电子地图的比例尺。当然这里只是举例说明,并不是对其进行唯一性的限定。
进一步的,为了更好的理解本实施例的方法和效果,下面结合具体的示意图对本实施例的方法进行阐述。
图4a为本发明提供的一种距离与比例尺的变化关系曲线示意图,图中横轴为交通工具与前方放大点之间的距离,单位为米,纵轴为电子地图的比例尺值,单位为米。在实际应用中,交通工具与前方放大点之间的距离和电子地图的比例尺之间呈正比关系,即 交通工具与前方放大点之间的距离越大,电子地图的比例尺越大。此在图4a中体现为距离与比例尺的变化关系曲线是一条呈线性上升趋势的曲线。比如,当前方放大点为路口时,通常情况下,当交通工具经过路口时,驾驶员通常需要查看路况,以选择自己形式路线,此时,需要电子地图提供较高的辨识度,在电子地图上的体现即为,电子地图的比例尺较小,视野范围较小,路线辨识度较高。而根据交通工具与前方放大点之间的距离,逐渐改变地图的比例尺,能够增强比例尺变化的平滑度,有益于提高用户的体验。
进一步的,图4b为本发明提供的一种比例尺变化前的用户界面示意图,图4c为在图4b的基础上变化比例尺后的用户界面示意图。在图4b的状态下交通工具与前方放大点之间的距离大于图4c状态下的交通工具与前方放大点之间的距离。如图4b和图4c所示,在实际应用中,交通工具与前方放大点之间的距离越大,电子地图的比例尺越大,在用户界面上的体现即为电子地图上单位面积显示的实际区域范围越大,即电子地图上的视野范围越大,相应的电子地图显示的元素也越少,地图的辨识度较低。而交通工具与前方放大点之间的距离越小时,电子地图上单位面积显示的实际区域范围越小,电子地图的视野范围越小,相应的电子地图上显示的元素越多,地图的辨识度较高。此在图4b和图4c上体现为,图4c的视野范围相较于图4b的视野范围小,且图4c相较于图4b的道路的辨识度高。本实施例中,当电子地图处于导航状态时,根据交通工具与前方放大点之间的距离确定电子地图的比例尺,使得电子地图处于导航工作模式下,也能根据交通工具与前方放大点之间的距离,实现对电子地图的比例尺的精确调整,使得比例尺的调整更加贴合用户的驾驶行为,能够明显增强用户的使用体验,提高驾驶的安全性。
图5为本发明一实施例提供的电子地图处理方法的流程示意图,如图5所示,在图3所示实施例的基础上,该方法包括:
步骤301、确定用户是否正在对电子地图进行操作,若是,则结束操作,否则,对所述电子地图上的触摸控制按键进行隐藏处理,并执行步骤302。
实际应用中,针对用户对电子地图的操作行为的判断,可选的,可通过与触摸屏连接的触摸传感器对用户的操作行为进行获取。例如当触摸传感器检测到触摸信号时,则确定用户正在对电子地图进行操作,若未检测到触摸信号,则确定用户未对电子地图进行操作。当然,上述判断方法仅为本实施例中的一种实现方法,而不是对其的唯一性限定,只要是能够实现对用户的操作行为的判断的方法均在本发明的保护范围内。
步骤302、确定电子地图的工作模式是否为巡航模式,若不是,则执行步骤303-步骤305;若是,则执行步骤306。
步骤303、获取交通工具的移动速度。
步骤304、确定所述移动速度对应的第一比例尺。
步骤305、将电子地图的比例尺调整为所述第一比例尺。
步骤306、根据所述交通工具当前所处位置与前方放大点之间的距离,确定所述距离对应的第二比例尺,并将所述电子地图的比例尺调整为所述第二比例尺。
步骤302与步骤306在上述实施例中以进行详细说明,本实施例此处不再赘述。
本实施例在上述实施例的基础上,在对电子地图的比例尺进行转换之前,先对用户对电子地图的操作状态进行判断,当确定用户并未对电子地图进行操作时,再进一步的根据上述实施例的方法对电子地图的比例尺进行调整。从而避免了电子地图的自我调整与用户操作之间的冲突,增强了用户体验。
图6为本发明一实施例提供的车载设备的结构示意图。如图6所示,该车载设备包括:
获取模块11,用于获取交通工具的移动速度;
第一确定模块12,确定所述移动速度对应的第一比例尺;
调整模块13,用于将电子地图的比例尺调整为所述第一比例尺。
其中,所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。所述第一确定模块12,具体用于:
根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺,或
确定所述移动速度所属的第一速度范围;
根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
根据所述映射关系,确定所述移动速度对应的第一比例尺。
特别的,实际应用中本实施例提供的车载设备可以被具体为移动终端或车机设备。当车载设备为移动终端时,相应的,所述获取模块11,包括:第一获取子模块,用于获取所述移动终端随所述交通工具运动的速度。当车载设备为车机设备时,相应的,所述获取模块11,包括:第二获取子模块,用于通过所述交通工具的总线获取所述交通工具的移动速度。
特别的,本实施例中,获取模块11获取的交通工具的移动速度,可以是如下移动速度中的任意一种:瞬时移动速度、平均瞬时移动速度、平均移动速度。
此时,获取模块11包括:
第三获取子模块,用于获取所述交通工具的瞬时移动速度;
或者,
第四获取子模块,用于获取所述交通工具在第一预设时长内的至少两个瞬时移动速度,并对所述至少两个瞬时移动速度进行平均,得到平均瞬时移动速度;
或者,
第五获取子模块,用于获取所述交通工具在第二预设时长内的至少两个平均瞬时移动速度,并对所述至少两个平均瞬时移动速度进行平均,得到平均移动速度,其中,所述平均瞬时移动速度为所述车载设备对所述交通工具在第一预设时长内的至少两个瞬时移动速度进行平均得到的。
本实施例提供的车载设备,可用于执行上述图1所示的方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
图7为本发明一实施例提供的车载设备的结构示意图。如图7所示,在图6所示结构的基础上,该车载设备还可以包括:
第三确定模块14,用于确定电子地图的工作模式是否为巡航模式。
第四确定模块15,用于在所述第三确定模块14确定所述电子地图的工作模式为导航模式时,根据所述交通工具当前所处位置与前方放大点之间的距离,确定所述距离对应的第二比例尺;
所述调整模块13,还用于将所述电子地图的比例尺调整为所述第二比例尺。
其中,所述距离与所述电子地图的比例尺之间呈正比关系。所述第四确定模块15,具体用于:
根据距离与比例尺之间的映射关系,确定所述交通工具与前方放大点之间的距离对应的第二比例尺,或
确定所述距离所属的第一距离范围;
根据距离范围与比例尺之间的映射关系,确定所述第一距离范围与比例尺之间的映射关系;
根据所述映射关系,确定所述距离对应的第二比例尺。
本实施例提供的车载设备,可用于执行上述图3所示的方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
图8为本发明一实施例提供的车载设备的结构示意图。如图8所示,在图7所示结构的基础上,该车载设备还可以包括:
第二确定模块16,用于确定用户是否正在对电子地图进行操作;
处理模块17,用于当所述用户没有对所述电子地图进行操作时,对所述电子地图上的触摸控制按键进行隐藏处理,并触发所述获取模块11获取所述交通工具的移动速度。
本实施例提供的车载设备,可用于执行上述图5所示的方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
图9为本发明一实施例提供的车载设备的结构示意图,如图9所示,该车载设备包括:
输入设备21、处理器22、显示组件23,所述显示组件23用于对电子地图进行显示;
其中,所述处理器22分别与所述输入设备21和所述显示组件23耦合;
所述输入设备21,用于获取交通工具的移动速度;
所述处理器22,用于确定所述移动速度对应的第一比例尺;
所述处理器22,还用于将所述电子地图的比例尺调整为所述第一比例尺。
其中,所述输入设备21,具体用于:
获取所述交通工具的瞬时移动速度;
或者,
获取所述交通工具在第一预设时长内的至少两个瞬时移动速度,并对所述至少两个瞬时移动速度进行平均,得到平均瞬时移动速度;
或者,
获取所述交通工具在第二预设时长内的至少两个平均瞬时移动速度,并对所述至少两个平均瞬时移动速度进行平均,得到平均移动速度,其中,所述平均瞬时移动速度为所述车载设备对所述交通工具在第一预设时长内的至少两个瞬时移动速度进行平均得到的。
当所述车载设备为移动终端,相应的,所述输入设备21,具体用于:
获取所述移动终端随所述交通工具运动的速度;
或者,
当所述车载设备为车机设备,相应的,所述输入设备21,具体用于:
通过所述交通工具的总线获取所述交通工具的移动速度。
所述处理器22,
所述处理器22,还用于:
确定用户是否正在对电子地图进行操作;
若否,则对所述电子地图上的触摸控制按键进行隐藏处理,并触发所述输入设备获取所述交通工具的移动速度。
所述处理器22,还用于:
确定电子地图的工作模式是否为巡航模式;
若是,则触发所述输入设备获取所述交通工具的移动速度。
特别的,本实施例中,所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。进一步的,所述处理器22,具体可用于:
根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺,或,
确定所述移动速度所属的第一速度范围;
根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
根据所述映射关系,确定所述移动速度对应的第一比例尺。
本实施例提供的车载设备,可用于执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
图10为本发明一实施例提供的用户界面系统的结构示意图,如图10所示,该用户界面系统可以包括:
处理器组件31和显示组件32;
所述显示组件32,用于显示电子地图;
所述处理器组件31,用于确定交通工具的移动速度对应的第一比例尺;
所述处理器组件31,还用于将所述电子地图的比例尺调整为所述第一比例尺,以使所述显示组件以所述第一比例尺对所述电子地图进行显示。
图11为本发明一实施例提供的车载设备导航系统的结构示意图,如图11所示,该系统可以包括:
机载输入设备41、机载处理器42、机载显示组件43,所述机载显示组件43用于显示电子地图;
其中,所述机载处理器42分别与所述机载输入设备41和所述机载显示组件43耦合;
所述机载输入设备41,用于获取交通工具的移动速度;
所述机载处理器42,用于确定所述移动速度对应的第一比例尺;
所述机载处理器42,还用于将所述电子地图的比例尺调整为所述第一比例尺,以使所述机载显示组件以所述第一比例尺对所述电子地图进行显示。
特别的,当所述系统安装在移动终端上时,相应的,所述机载输入41设备,具体用于:
获取所述移动终端随所述交通工具运动的速度;
或者,
当所述系统安装在车机设备上时,相应的,所述机载输入设备41,具体用于:
通过所述交通工具的总线获取所述交通工具的移动速度。
所述机载输入设备41,具体还用于:
获取所述交通工具的瞬时移动速度;
或者,
获取所述交通工具在第一预设时长内的至少两个瞬时移动速度,并对所述至少两个瞬时移动速度进行平均,得到平均瞬时移动速度;
或者,
获取所述交通工具在第二预设时长内的至少两个平均瞬时移动速度,并对所述至少两个平均瞬时移动速度进行平均,得到平均移动速度,其中,所述平均瞬时移动速度为所述车载设备对所述交通工具在第一预设时长内的至少两个瞬时移动速度进行平均得到的。
所述机载处理器42,还用于:
确定用户是否正在对电子地图进行操作;
若否,则对所述电子地图上的触摸控制按键进行隐藏处理,并触发所述机载输入设备获取所述交通工具的移动速度。
所述机载处理器42,还用于:
确定电子地图的工作模式是否为巡航模式;
若是,则触发所述机载输入设备获取所述交通工具的移动速度。
可选的,所述机载处理器42,具体可以用于:
确定所述移动速度所属的阈值范围;
确定所述阈值范围对应的比例尺转换算法;
采用所述比例尺转换算法,确定电子地图的第一比例尺。
特别的,本实施例中所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。
所述机载处理器42,具体可用于:
根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺,或,
确定所述移动速度所属的第一速度范围;
根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
根据所述映射关系,确定所述移动速度对应的第一比例尺。
所述机载输入设备41可以包括软件的可编程接口、收发信机、面向设备的设备接口、面向用户的用户接口中的至少一个。
所述面向用户的用户接口包括以下一个或多个:语音输入设备、触摸感知设备。
图12为本发明一实施例提供的车载互联网操作系统的结构示意图,如图12所示,该系统包括:
输入控制单元51,控制机载输入设备获取交通工具的移动速度;
处理控制单元52,确定所述移动速度对应的第一比例尺;
显示控制单元53,在所述处理控制单元52确定所述移动速度对应的第一比例尺后,将所述电子地图的比例尺调整为所述第一比例尺。
其中,所述处理控制单元52,还用于:
确定用户是否正在对电子地图进行操作;
若否,则对所述电子地图上的触摸控制按键进行隐藏处理,并控制机载输入设备获取所述交通工具的移动速度。
特别的,所述处理控制单元52,还可以用于:
确定电子地图的工作模式是否为巡航模式;
若是,则控制机载输入设备获取所述交通工具的移动速度。
可选的,本实施例中,所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。
实际应用中,所述处理控制单元52,具体可用于:
根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺,或,
确定所述移动速度所属的第一速度范围;
根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
根据所述映射关系,确定所述移动速度对应的第一比例尺。
本实施例提供的车载设备,可用于执行上述方法实施例,其实现原理和技术效果类 似,本实施例此处不再赘述。
需要说明的是,本申请实施例所涉及的“机载输入设备”“机载处理器”中的机载,可以是承载于车辆上的“车载输入设备”以及“车载处理器”,还可以是承载于飞行器上的“机载输入设备”以及“机载处理器”,还可以是承载于移动终端上的“机载输入设备”以及“机载处理器”。“机载处理器”,还可以是承载于其他类型交通工具上的设备,本申请实施例对“机载”的含义并不做限定。以车载设备是车机为例,该机载输入设备可以是车载输入设备、机载处理器可以是车载处理器。
取决于所安装的车载设备的类型的不同,上述机载输入设备可以包括多种输入设备,例如可以包括面向用户的机载用户接口、面向设备的机载设备接口、软件的机载可编程接口、收发信机中的至少一个。可选的,该面向设备的机载设备接口可以是用于设备与设备之间进行数据传输的有线接口(例如车辆的中控台上的与行车记录仪的连接接口)、还可以是用于设备与设备之间进行数据传输的硬件插入接口(例如USB接口、串口等);可选的,该面向用户的车载用户接口例如可以是用于接收语音输入的语音输入设备(例如,安置在方向盘或操作舵上的麦克风、中央声音采集设备、等等)、以及用户接收用户触摸输入的触摸感知设备(例如具有触摸感应功能的触摸屏、触控板等);可选的,上述软件的车载可编程接口例如可以是车辆控制系统中可供用户编辑或者修改的入口,例如车辆中涉及的大、小芯片的输入引脚接口或者输入接口等;可选的,上述收发信机可以是车辆中具有通信功能的射频收发芯片、基带处理芯片以及收发天线等。按照上述图1至图3对应的实施例中的方法,该机载输入设备用于获取交通工具的移动速度。该机载输入设备可以是与车辆或手机内部的各个业务来源进行通信的设备传输接口,还可以是具有通信功能的收发信机。该机载输入设备还用于接收用户触发的各种指令。该机载输入设备还可以是接收语音输入的语音输入设备以及用于接收用户触摸输入的触摸感知设备(例如具有触摸感应功能的触摸屏、触控板等)等。
取决于所安装的车载设备的类型的不同,上述机载处理器可以使用各种应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、中央处理器(CPU)、控制器、微控制器、微处理器或其他电子元件实现,并用于执行上述方法。上述机载处理器通过车内线路或无线连接耦合到上述机载输入设备和机载显示组件。上述机载处理器可以执行上述图1至3对应的实施例中的方法,例如机载处理器可以根据所述移动速度,确定电子地图的第一比例尺,控制所述机载显示组件采用所述第一比例尺,对所述电子地图进行显 示。
本申请还提供一种处理器可读存储介质,存储介质中存储有程序指令,程序指令用于使处理器执行上述实施例中图1至图3所述的方法。
上述可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,尽管在本发明实施例中可能采用术语第一、第二、第三等来描述XXX,但这些XXX不应限于这些术语。这些术语仅用来将XXX彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一XXX也可以被称为第二XXX,类似地,第二XXX也可以被称为第一XXX。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (38)

  1. 一种电子地图处理方法,其特征在于,包括:
    获取交通工具的移动速度;
    确定所述移动速度对应的第一比例尺;
    将电子地图的比例尺调整为所述第一比例尺。
  2. 根据权利要求1所述的方法,其特征在于,所述获取交通工具的移动速度之前,还包括:
    确定用户是否正在对电子地图进行操作;
    若否,则对所述电子地图上的触摸控制按键进行隐藏处理,并执行所述获取交通工具的移动速度的步骤。
  3. 根据权利要求1所述的方法,其特征在于,所述获取交通工具的移动速度之前,还包括:
    确定电子地图的工作模式是否为巡航模式;
    若是,则执行所述获取交通工具的移动速度的步骤。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述移动速度对应的第一比例尺,包括:
    根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺。
  6. 根据权利要求4所述的方法,其特征在于,所述确定所述移动速度对应的第一比例尺,包括:
    确定所述移动速度所属的第一速度范围;
    根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
    根据所述映射关系,确定所述移动速度对应的第一比例尺。
  7. 根据权利要求3所述的方法,其特征在于,还包括:
    若确定所述电子地图的工作模式为导航模式,则,
    根据所述交通工具当前所处位置与前方放大点之间的距离,确定所述距离对应的第二比例尺;
    将所述电子地图的比例尺调整为所述第二比例尺。
  8. 根据权利要求7所述的方法,其特征在于,所述距离与所述电子地图的比例尺之间呈正比关系。
  9. 根据权利要求7或8所述的方法,其特征在于,所述根据所述交通工具当前所处位置与前方放大点之间的距离,确定所述距离对应的第二比例尺,包括:
    根据距离与比例尺之间的映射关系,确定所述交通工具与前方放大点之间的距离对应的第二比例尺。
  10. 根据权利要求7或8所述的方法,其特征在于,所述根据所述交通工具当前所处位置与前方放大点之间的距离,确定所述距离对应的第二比例尺,包括:
    确定所述距离所属的第一距离范围;
    根据距离范围与比例尺之间的映射关系,确定所述第一距离范围与比例尺之间的映射关系;
    根据所述映射关系,确定所述距离对应的第二比例尺。
  11. 根据权利要求1-3中任一项所述的方法,其特征在于,所述电子地图的比例尺与所述电子地图上显示元素的数量成反比。
  12. 一种车载设备,其特征在于,包括:
    获取模块,用于获取交通工具的移动速度;
    第一确定模块,确定所述移动速度对应的第一比例尺;
    调整模块,用于将电子地图的比例尺调整为所述第一比例尺。
  13. 根据权利要求12所述的设备,其特征在于,所述设备还包括:
    第二确定模块,用于确定用户是否正在对电子地图进行操作;
    处理模块,用于当所述用户没有对所述电子地图进行操作时,对所述电子地图上的触摸控制按键进行隐藏处理,并触发所述获取模块获取所述交通工具的移动速度。
  14. 根据权利要求12所述的设备,其特征在于,所述设备还包括:
    第三确定模块,用于确定电子地图的工作模式是否为巡航模式;
    所述获取模块,具体用于在所述电子地图的工作模式为巡航模式时,获取所述交通工具的移动速度。
  15. 根据权利要求12-14中任一项所述的设备,其特征在于,所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。
  16. 根据权利要求15所述的设备,其特征在于,所述第一确定模块,具体用于:
    根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺。
  17. 根据权利要求15所述的设备,其特征在于,所述第一确定模块,具体用于:
    确定所述移动速度所属的第一速度范围;
    根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
    根据所述映射关系,确定所述移动速度对应的第一比例尺。
  18. 一种车载设备,其特征在于,包括:
    输入设备、处理器、显示组件,所述显示组件用于对电子地图进行显示;
    其中,所述处理器分别与所述输入设备和所述显示组件耦合;
    所述输入设备,用于获取交通工具的移动速度;
    所述处理器,用于确定所述移动速度对应的第一比例尺;
    所述处理器,还用于将所述电子地图的比例尺调整为所述第一比例尺。
  19. 根据权利要求18所述的设备,其特征在于,所述处理器,还用于:
    确定用户是否正在对电子地图进行操作;
    若否,则对所述电子地图上的触摸控制按键进行隐藏处理,并触发所述输入设备获取所述交通工具的移动速度。
  20. 根据权利要求18所述的设备,其特征在于,所述处理器,还用于:
    确定电子地图的工作模式是否为巡航模式;
    若是,则触发所述输入设备获取所述交通工具的移动速度。
  21. 根据权利要求18-20中任一项所述的设备,其特征在于,所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。
  22. 根据权利要求21所述的设备,其特征在于,所述处理器,具体用于:
    根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺。
  23. 根据权利要求21所述的设备,其特征在于,所述处理器,具体用于:
    确定所述移动速度所属的第一速度范围;
    根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
    根据所述映射关系,确定所述移动速度对应的第一比例尺。
  24. 一种用户界面系统,其特征在于,包括:
    处理器组件和显示组件;
    所述显示组件,用于显示电子地图;
    所述处理器组件,用于确定交通工具的移动速度对应的第一比例尺;
    所述处理器组件,还用于将所述电子地图的比例尺调整为所述第一比例尺,以使所述显示组件以所述第一比例尺对所述电子地图进行显示。
  25. 一种车载设备导航系统,其特征在于,包括:
    机载输入设备、机载处理器、机载显示组件,所述机载显示组件用于显示电子地图;
    其中,所述机载处理器分别与所述机载输入设备和所述机载显示组件耦合;
    所述机载输入设备,用于获取交通工具的移动速度;
    所述机载处理器,用于确定所述移动速度对应的第一比例尺;
    所述机载处理器,还用于将所述电子地图的比例尺调整为所述第一比例尺,以使所述机载显示组件以所述第一比例尺对所述电子地图进行显示。
  26. 根据权利要求25所述的系统,其特征在于,所述机载处理器,还用于:
    确定用户是否正在对电子地图进行操作;
    若否,则对所述电子地图上的触摸控制按键进行隐藏处理,并触发所述机载输入设备获取所述交通工具的移动速度。
  27. 根据权利要求25所述的系统,其特征在于,所述机载处理器,还用于:
    确定电子地图的工作模式是否为巡航模式;
    若是,则触发所述机载输入设备获取所述交通工具的移动速度。
  28. 根据权利要求25-27中任一项所述的系统,其特征在于,所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。
  29. 根据权利要求28所述的系统,其特征在于,所述机载处理器,具体用于:
    根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺。
  30. 根据权利要求28所述的系统,其特征在于,所述机载处理器,具体用于:
    确定所述移动速度所属的第一速度范围;
    根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
    根据所述映射关系,确定所述移动速度对应的第一比例尺。
  31. 根据权利要求25所述的系统,其特征在于,所述机载输入设备包括软件的可编程接口、收发信机、面向设备的设备接口、面向用户的用户接口中的至少一个。
  32. 根据权利要求31所述的系统,其特征在于,所述面向用户的用户接口包括以下一个或多个:
    语音输入设备;
    触摸感知设备。
  33. 一种车载互联网操作系统,其特征在于,包括:
    输入控制单元,控制机载输入设备获取交通工具的移动速度;
    处理控制单元,确定所述移动速度对应的第一比例尺;
    显示控制单元,在所述处理控制单元确定所述移动速度对应的第一比例尺后,将电子地图的比例尺调整为所述第一比例尺。
  34. 根据权利要求33所述的系统,其特征在于,所述处理控制单元,还用于:
    确定用户是否正在对电子地图进行操作;
    若否,则对所述电子地图上的触摸控制按键进行隐藏处理,并控制机载输入设备获取所述交通工具的移动速度。
  35. 根据权利要求33所述的系统,其特征在于,所述处理控制单元,还用于:
    确定电子地图的工作模式是否为巡航模式;
    若是,则控制机载输入设备获取所述交通工具的移动速度。
  36. 根据权利要求33-35中任一项所述的系统,其特征在于,所述交通工具的移动速度和所述电子地图的比例尺之间呈正比关系。
  37. 根据权利要求36所述的系统,其特征在于,所述处理控制单元,具体用于:
    根据速度与比例尺之间的映射关系,确定所述移动速度对应的第一比例尺。
  38. 根据权利要求36所述的系统,其特征在于,所述处理控制单元,具体用于:
    确定所述移动速度所属的第一速度范围;
    根据速度范围与比例尺之间的映射关系,确定所述第一速度范围与比例尺之间的映射关系;
    根据所述映射关系,确定所述移动速度对应的第一比例尺。
PCT/CN2017/087880 2016-06-23 2017-06-12 电子地图处理方法、设备和系统 WO2017219885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610464820.5 2016-06-23
CN201610464820.5A CN107543560A (zh) 2016-06-23 2016-06-23 电子地图处理方法、设备和系统

Publications (1)

Publication Number Publication Date
WO2017219885A1 true WO2017219885A1 (zh) 2017-12-28

Family

ID=60783764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087880 WO2017219885A1 (zh) 2016-06-23 2017-06-12 电子地图处理方法、设备和系统

Country Status (3)

Country Link
CN (1) CN107543560A (zh)
TW (1) TW201800926A (zh)
WO (1) WO2017219885A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896181A (zh) * 2021-01-14 2021-06-04 重庆长安汽车股份有限公司 电子围栏控制方法、系统、车辆及存储介质
CN113928369A (zh) * 2021-11-16 2022-01-14 交控科技股份有限公司 电子地图分割下载方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764890B (zh) * 2019-01-31 2020-07-03 北京蓦然认知科技有限公司 一种调整导航地图显示的方法及装置
CN110514219B (zh) * 2019-09-20 2022-03-18 广州小鹏汽车科技有限公司 一种导航地图显示方法、装置、车辆及机器可读介质
TWI738215B (zh) * 2020-02-14 2021-09-01 國立中央大學 地圖式適應性可變範圍交通狀況偵測方法與裝置及其電腦程式產品
EP4140858B1 (en) * 2020-07-03 2024-05-22 Volvo Truck Corporation A method for guiding a vehicle
CN115186026B (zh) * 2022-06-30 2024-09-24 北京字跳网络技术有限公司 地图显示方法及装置、存储介质、电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387521A (zh) * 2008-10-27 2009-03-18 凯立德欣技术(深圳)有限公司 自动更换比例尺的导航装置及其方法
US20120130510A1 (en) * 2010-11-23 2012-05-24 Aisin Aw Co., Ltd. Control device, control method of control device, and computer program
CN102519474A (zh) * 2011-12-12 2012-06-27 广东好帮手电子科技股份有限公司 一种智能导航的方法及系统
CN103185591A (zh) * 2011-12-30 2013-07-03 上海博泰悦臻电子设备制造有限公司 路径信息的提示方法、导航装置
CN105675008A (zh) * 2016-01-08 2016-06-15 北京乐驾科技有限公司 一种导航显示方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042300B (zh) * 2006-03-24 2014-06-25 株式会社电装 画面显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387521A (zh) * 2008-10-27 2009-03-18 凯立德欣技术(深圳)有限公司 自动更换比例尺的导航装置及其方法
US20120130510A1 (en) * 2010-11-23 2012-05-24 Aisin Aw Co., Ltd. Control device, control method of control device, and computer program
CN102519474A (zh) * 2011-12-12 2012-06-27 广东好帮手电子科技股份有限公司 一种智能导航的方法及系统
CN103185591A (zh) * 2011-12-30 2013-07-03 上海博泰悦臻电子设备制造有限公司 路径信息的提示方法、导航装置
CN105675008A (zh) * 2016-01-08 2016-06-15 北京乐驾科技有限公司 一种导航显示方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896181A (zh) * 2021-01-14 2021-06-04 重庆长安汽车股份有限公司 电子围栏控制方法、系统、车辆及存储介质
CN113928369A (zh) * 2021-11-16 2022-01-14 交控科技股份有限公司 电子地图分割下载方法及装置
CN113928369B (zh) * 2021-11-16 2024-04-26 交控科技股份有限公司 电子地图分割下载方法及装置

Also Published As

Publication number Publication date
CN107543560A (zh) 2018-01-05
TW201800926A (zh) 2018-01-01

Similar Documents

Publication Publication Date Title
WO2017219885A1 (zh) 电子地图处理方法、设备和系统
US10260898B2 (en) Apparatus and method of determining an optimized route for a highly automated vehicle
JP6245274B2 (ja) 表示制御装置、表示制御方法、及びプログラム
WO2017043032A1 (en) System and method for driving assistance along a path
US20170284823A1 (en) Apparatus and method transitioning between driving states during navigation for highly automated vechicle
CN101666653B (zh) Gps装置及导航方法
US20110153166A1 (en) Method of Intersection Estimation for a Vehicle Safety System
JP2017138694A (ja) 映像処理装置及び映像処理方法
KR102331025B1 (ko) 영상정보 획득장치, 차량, 및 그 제어방법
JP6191349B2 (ja) 車両エネルギーマネジメント装置
JP2015009677A (ja) ヘッドアップディスプレイ及びプログラム
CN104590112B (zh) 判断车辆转弯安全度的方法及系统
US9850839B2 (en) System and method for hill ascent speed assistance
JP2017004265A (ja) 表示装置
US11284262B2 (en) Apparatus for testing hacking of vehicle electronic device
US10625567B2 (en) System and method for correcting ambient air temperature measurement using a wireless network
WO2021164463A1 (zh) 检测方法、装置及存储介质
JP2010116086A (ja) 車載用表示装置、表示方法および表示プログラム
US20190101915A1 (en) Vehicle driving control apparatus and vehicle driving method
JP2020067774A (ja) 情報処理システム、プログラム、及び情報処理方法
KR102564016B1 (ko) 자율 주행 상태 알림 장치, 그를 포함한 시스템 및 그 방법
CN107680396A (zh) 一种驾驶行为的监控方法及其装置
CN111891122A (zh) 基于车辆位置的限速方法、装置及车辆
US20130110347A1 (en) Direction indicator control system for vehicle and method for controlling direction indicator lamp
JPWO2014080521A1 (ja) 表示装置、制御方法、プログラム、及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17814623

Country of ref document: EP

Kind code of ref document: A1