WO2017219695A1 - 触控基板及其制作方法、触控屏 - Google Patents

触控基板及其制作方法、触控屏 Download PDF

Info

Publication number
WO2017219695A1
WO2017219695A1 PCT/CN2017/074698 CN2017074698W WO2017219695A1 WO 2017219695 A1 WO2017219695 A1 WO 2017219695A1 CN 2017074698 W CN2017074698 W CN 2017074698W WO 2017219695 A1 WO2017219695 A1 WO 2017219695A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
area
dummy electrode
electrode
pattern
Prior art date
Application number
PCT/CN2017/074698
Other languages
English (en)
French (fr)
Inventor
王庆浦
胡明
郭总杰
张雷
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/559,928 priority Critical patent/US10437398B2/en
Publication of WO2017219695A1 publication Critical patent/WO2017219695A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present disclosure relates to the field of touch technologies, and in particular to a touch substrate, a method for fabricating the same, and a touch screen.
  • Electrostatic discharge may cause poor performance of the internal components of the touch screen or permanent breakdown due to breakdown, such as an open or short circuit inside the touch screen.
  • the existing touch substrate includes a touch area for performing touch detection and a black matrix pattern surrounding the touch area.
  • a touch electrode and a dummy electrode located between the adjacent touch electrodes are formed on the touch substrate, and the dummy electrode functions as mutual capacitance adjustment and index matching.
  • Black matrix graphics are typically made from carbon spheres.
  • the black matrix pattern has good insulation performance, but after a plurality of high-temperature processes, the resistivity of the black matrix pattern is lowered, and the insulation performance is degraded.
  • the technical problem at least partially solved by the present disclosure is to provide a touch substrate and a manufacturing method thereof.
  • the touch screen can improve the anti-ESD capability of the touch screen.
  • a touch substrate includes a touch area and a black matrix pattern surrounding the touch area, wherein the touch substrate is provided with a plurality of touch electrodes, and a gap between adjacent touch electrodes A dummy electrode pattern is formed, and the dummy electrode pattern located between the touch electrodes on the black matrix pattern is composed of a plurality of mutually insulated dummy electrode blocks.
  • the virtual electrode pattern between the touch electrodes on the black matrix pattern is composed of a plurality of virtual electrode blocks of equal area.
  • the area of the dummy electrode block is less than 0.06 mm 2 .
  • the area of the dummy electrode block is 0.03-0.05 mm 2 .
  • the area of the dummy electrode block is 0.04 mm 2 .
  • the dummy electrode pattern located between the touch electrodes on the black matrix pattern includes at least one set of dummy electrode blocks, and each set of the dummy electrode blocks includes a first dummy electrode block and a second dummy electrode block.
  • the area of the first virtual electrode block is larger than the area of the second virtual electrode block, and the distance between the first virtual electrode block and the touch electrode is greater than the second virtual electrode block and the touch electrode. the distance between.
  • the second dummy electrode block is located between the touch electrode and the first dummy electrode block.
  • the area of the second dummy electrode block is less than 0.06 mm 2 .
  • the area of the second dummy electrode block is 0.03-0.05 mm 2 .
  • the area of the second dummy electrode block is 0.04 mm 2 .
  • the touch substrate is a mutual capacitive touch substrate, and an area of the virtual electrode block adjacent to the touch sensing electrode is smaller than an area of the virtual electrode block not adjacent to the touch sensing electrode.
  • the virtual electrode pattern of the non-touch area is composed of a plurality of mutually insulated dummy electrode blocks, and the virtual electrode pattern of the touch area remains unchanged.
  • the embodiment of the present disclosure further provides a touch screen including the touch substrate as described above.
  • the embodiment of the present disclosure further provides a method for fabricating a touch substrate, the touch substrate includes a touch area and a black matrix pattern surrounding the touch area, and the touch substrate is provided with a plurality of touch electrodes a dummy electrode pattern is formed at a space between adjacent touch electrodes, and the manufacturing method includes: A dummy electrode pattern is formed between the touch electrodes on the black matrix pattern, and the dummy electrode pattern is composed of a plurality of mutually insulated dummy electrode blocks.
  • forming the dummy electrode pattern comprises: forming a virtual electrode pattern composed of a plurality of virtual electrode blocks having the same area between the touch electrodes overlapped on the black matrix pattern.
  • the forming the virtual electrode pattern comprises: forming a virtual electrode pattern including at least one set of virtual electrode blocks between the touch electrodes overlapped on the black matrix pattern, the set of virtual electrode blocks including the first a virtual electrode block and a second virtual electrode block, wherein an area of the first virtual electrode block is larger than an area of the second virtual electrode block, and a distance between the first virtual electrode block and the touch electrode is greater than a distance between the second dummy electrode block and the touch electrode.
  • the touch electrode and the dummy electrode block are simultaneously formed by one patterning process.
  • FIG. 1 is a schematic diagram of a touch panel electrode and a dummy electrode of a conventional touch substrate
  • FIG. 2 is a schematic diagram showing a relationship between a virtual electrode block area and a black matrix breakdown voltage
  • FIG. 3 is a schematic diagram of a virtual electrode block on a touch substrate according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a virtual electrode block on a touch substrate according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a touch panel electrode and a dummy electrode of a conventional touch substrate.
  • the area of the dummy electrode 101 is relatively large (about 1 mm 2 or more ), so that the black matrix pattern between the touch electrode 102 and the adjacent dummy electrode is easily broken down.
  • the capacitance of the edge region of the touch substrate becomes large, resulting in poor touch function.
  • embodiments of the present disclosure provide a touch substrate, a method for fabricating the same, and a touch screen, which can improve the ESD resistance of the touch screen.
  • the embodiment provides a touch substrate, including a touch area and a black matrix surrounding the touch area.
  • a plurality of touch electrodes are disposed on the touch substrate, and a dummy electrode pattern is formed at a gap between adjacent touch electrodes, and the touch electrode is overlapped between the touch electrodes on the black matrix pattern.
  • the dummy electrode pattern is composed of a plurality of mutually insulated dummy electrode blocks.
  • ESD is easily generated between the touch electrodes overlapped on the black matrix pattern and the adjacent dummy electrode patterns, and after extensive experimental verification, it is found that after the area of the dummy electrode block is lowered, between the touch electrode and the dummy electrode block The breakdown voltage of the black matrix pattern is greatly improved.
  • the virtual electrode pattern of the region is designed to be composed of a plurality of mutually insulated dummy electrode blocks, thereby reducing the area of a single dummy electrode block, which is equivalent to allocating static electricity on the touch electrodes to multiple virtual
  • the electrode block greatly reduces the risk of breakdown of the black matrix pattern, improves the anti-ESD capability of the edge region of the touch electrode, thereby improving the ESD resistance of the overall product, thereby improving the production yield of the touch substrate.
  • the touch substrate of this embodiment may be a mutual capacitive touch substrate or a self-capacitive touch substrate.
  • the touch electrode includes a touch sensing electrode and a touch driving electrode, and a dummy electrode pattern is formed at a gap between the adjacent touch sensing electrode and the touch driving electrode.
  • the virtual electrode pattern between the touch sensing electrode and the touch driving electrode on the black matrix pattern is composed of a plurality of mutually insulated virtual electrode blocks; when the touch substrate is a self-capacitive touch substrate, the touch electrode A self-capacitive touch electrode is formed with a dummy electrode pattern at a gap between adjacent self-capacitive touch electrodes, and the virtual electrode pattern between the self-capacitive touch electrodes overlapped on the black matrix pattern is A plurality of mutually insulated dummy electrode blocks are formed.
  • the touch substrate is a mutual-capacitive touch substrate
  • the impact of the black matrix pattern on the touch sensing signal is large, so that the area of the dummy electrode block adjacent to the touch sensing electrode can be relatively small.
  • the virtual electrode pattern between the touch electrodes overlapped on the black matrix pattern can be changed, and the virtual electrode pattern of the touch area located at the center of the touch substrate can be the same as the prior art.
  • the area design is relatively large. Since the black matrix pattern is not present in the touch area at the center of the touch substrate, ESD is not easy to occur, so the virtual electrode pattern of the touch area may not be changed to avoid affecting the performance of the touch substrate.
  • each virtual electrode pattern between the touch electrodes overlapped on the black matrix pattern may be composed of a plurality of virtual electrode blocks of equal area, so that static electricity on the touch electrodes can be evenly distributed to Multiple virtual electrode blocks.
  • FIG. 2 is a schematic diagram showing the relationship between the area of the dummy electrode block and the black matrix breakdown voltage.
  • the area of the dummy electrode block is designed to be less than 0.06 mm 2 in this embodiment.
  • the area of the dummy electrode block is 0.03-0.05 mm 2 .
  • the area of the dummy electrode block can be designed to be 0.04 mm 2 .
  • the virtual electrode pattern between the touch electrodes overlapped on the black matrix pattern includes at least one set of virtual electrode blocks, and the set of virtual electrode blocks includes a first dummy electrode block and a second a virtual electrode block, the area of the first virtual electrode block is larger than the area of the second virtual electrode block, and the distance between the first virtual electrode block and the touch electrode is greater than the distance between the second virtual electrode block and the touch electrode. That is, the virtual electrode block away from the touch electrode is a virtual electrode block having a large area. That is, the area of the dummy electrode block adjacent to the touch sensing electrode is smaller than the area of the dummy electrode block not adjacent to the touch sensing electrode. This is particularly advantageous when the touch substrate is a mutual capacitive touch substrate.
  • the second dummy electrode block is located between the touch electrode and the first dummy electrode block.
  • FIG. 2 is a schematic diagram showing the relationship between the area of the dummy electrode block and the black matrix breakdown voltage.
  • the area of the dummy electrode block is designed to be less than 0.06 mm 2 .
  • the area of the first dummy electrode block can also be designed to be relatively small, such as less than 0.09 mm 2 .
  • the area of the second dummy electrode block is 0.03-0.05 mm 2 .
  • the area of the second dummy electrode block can be designed to be 0.04 mm 2 by integrating the requirements of the fabrication process and the requirements for the black matrix breakdown voltage.
  • the embodiment further provides a touch screen comprising the touch substrate as described above.
  • the touch screen can To be applied in human-computer interaction devices.
  • the touch panel includes a touch area and a black matrix pattern surrounding the touch area, and the touch substrate is provided with a plurality of touch electrodes.
  • a dummy electrode pattern is formed at a gap between adjacent touch electrodes, and the manufacturing method includes: forming a dummy electrode pattern between the touch electrodes overlapped on the black matrix pattern, wherein the virtual electrode pattern is Composed of mutually insulated virtual electrode blocks.
  • each virtual electrode pattern of the region is designed to be composed of a plurality of mutually insulated dummy electrode blocks, thereby reducing the area of a single dummy electrode block, which is equivalent to allocating static electricity on the touch electrodes to more
  • a virtual electrode block greatly reduces the risk of breakdown of the black matrix pattern, improves the ESD resistance of the edge region of the touch electrode, thereby improving the ESD resistance of the overall product, thereby improving the production of the touch substrate. rate.
  • forming the dummy electrode pattern includes: forming a dummy electrode pattern composed of a plurality of virtual electrode blocks having the same area between the touch electrodes overlapped on the black matrix pattern, such that the touch electrode The upper static electricity can be equally distributed to a plurality of dummy electrode blocks.
  • forming the dummy electrode pattern comprises: forming a dummy electrode pattern including at least one set of dummy electrode blocks between the touch electrodes overlapped on the black matrix pattern, the set of dummy electrodes
  • the block includes a first virtual electrode block and a second virtual electrode block, the area of the first virtual electrode block being larger than an area of the second virtual electrode block, between the first virtual electrode block and the touch electrode
  • the distance is greater than the distance between the second virtual electrode block and the touch electrode, that is, the virtual electrode block away from the touch electrode is a virtual electrode block having a larger area.
  • the manufacturing method of the touch substrate generally includes the following processes:
  • the first photolithography process forming a black matrix pattern on the substrate, the black matrix pattern covering the edge region of the touch substrate;
  • a fourth photolithography process forming a pattern of touch electrodes on the substrate, in the touch substrate In the edge region, the touch electrodes are overlapped on the black matrix pattern;
  • the touch electrode is formed in the fourth photolithography process, and the dummy electrode pattern is formed, that is, the touch electrode and the dummy electrode block are simultaneously formed by one patterning process.
  • the technical solution of the embodiment can be implemented without increasing the patterning process, and the difficulty in the manufacturing process of the touch substrate is not increased.
  • the touch substrate includes a touch area and a black matrix pattern surrounding the touch area.
  • the touch substrate is provided with a plurality of touch electrodes 302 on the touch substrate.
  • the touch electrodes 302 are overlapped on the black matrix pattern, and a dummy electrode pattern is formed at the gap between the adjacent touch electrodes 302.
  • the dummy electrode pattern between the touch electrodes 302 overlapped on the black matrix pattern is composed of a plurality of mutually insulated dummy electrode blocks 303.
  • the virtual electrode pattern is composed of nine dummy electrode blocks 303, and the areas of the nine dummy electrode blocks 303 are equal.
  • the number of virtual electrode blocks 303 is not limited to 9, and may be other natural numbers greater than 2.
  • 2 is a schematic diagram showing the relationship between the area of the dummy electrode block and the breakdown voltage of the black matrix. As can be seen from FIG. 2, when the area of the dummy electrode block is less than 0.06 mm 2 , the breakdown voltage of the black matrix pattern is greatly improved. Therefore, in this embodiment, the area of the dummy electrode block is designed to be less than 0.06 mm 2 , and specifically may be 0.04 mm 2 .
  • the anti-ESD capability of the edge region of the electrode improves the ESD resistance of the overall product, thereby improving the production yield of the touch substrate.
  • the virtual electrode block and the touch electrode of this embodiment can be simultaneously formed by one patterning process. In this way, the technical solution of the embodiment can be implemented without increasing the patterning process, and the difficulty in the manufacturing process of the touch substrate is not increased.
  • the touch substrate includes a touch area and a black matrix pattern surrounding the touch area, and the touch substrate is provided with a plurality of touch electrodes 402.
  • the touch electrodes 402 are overlapped on the black matrix pattern, and a dummy electrode pattern is formed at a gap between the adjacent touch electrodes 2.
  • the touch electrode is overlapped on the black matrix pattern.
  • the virtual electrode pattern between the 402 is composed of a plurality of mutually insulated dummy electrode blocks 403.
  • the virtual electrode pattern is composed of three smaller virtual electrode blocks 403 and one larger virtual electrode block. 403 composition. The areas of the three smaller virtual electrode blocks 403 are equal, wherein the smaller area of the virtual electrode block 403 is located between the larger virtual electrode block and the touch electrode 402.
  • the area of the dummy electrode block having a smaller area is designed to be less than 0.06 mm 2 in this embodiment. Specifically, it can be 0.04mm 2 .
  • the static electricity when the static electricity is released, the static electricity must be skipped to the virtual electrode block with a small area to be released to the virtual electrode block with a large area, thereby greatly reducing the risk of the black matrix pattern being injured and improving the edge of the touch electrode.
  • the area's anti-ESD capability improves the ESD resistance of the overall product, which in turn increases the production yield of the touch substrate.
  • the area of the virtual electrode block having a larger area can also be designed to be smaller, such as less than 0.09 mm 2 .
  • the virtual electrode block and the touch electrode of this embodiment can be simultaneously formed by one patterning process. In this way, the technical solution of the embodiment can be implemented without increasing the patterning process, and the difficulty in the manufacturing process of the touch substrate is not increased.

Abstract

一种触控基板及其制作方法、触控屏,属于触控技术领域。其中,触控基板,包括触控区域和包围该触控区域的黑矩阵图形,该触控基板上设置有多个触控电极(302),相邻触控电极(302)之间的每一空隙处形成有一虚拟电极图形,搭接在该黑矩阵图形上的位于触控电极(302)之间的虚拟电极图形由多个相互绝缘的虚拟电极块(303)组成。

Description

触控基板及其制作方法、触控屏
本申请要求了2016年6月21日提交的、申请号为201610454680.3、发明名称为“触控基板及其制作方法、触控屏”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及触控技术领域,特别是指一种触控基板及其制作方法、触控屏。
背景技术
近年来,随着移动电子设备操控性的提升和电子技术的发展,触控屏技术在手机、平板、笔记本电脑等电子设备中有了广泛的应用。触摸技术的发展出现了电阻、电容、电磁等不同的技术方向,电容式触控屏凭借其低廉的成本和优异的用户体验已成为主流产品。
随着电容式触控屏的快速成长,人们对触控产品的ESD(Electro-Static Discharge,静电释放)性能也要求越来越高。静电释放可能造成触控屏内部器件性能变差或者击穿导致永久性失效,比如触控屏内部的开路或者短路。
现有的触控基板包括进行触控检测的触控区域和包围触控区域的黑矩阵图形。在触控基板上形成有触控电极和位于相邻触控电极之间间隙的虚拟电极,虚拟电极起到互电容调节与折射率匹配的作用。黑矩阵图形一般采用碳球制成。通常黑矩阵图形的绝缘性能较好,但是经过多道高温制程之后,黑矩阵图形的电阻率降低,绝缘性能下降。这样当设备或人体的静电荷接触到黑矩阵图形上的电极块时,在不同电极块之间瞬间形成极大放电电流,导致黑矩阵图形的击穿,造成电极块之间开路或短路,导致对应区域的触控性能变差或者永久性失效。经过大量数据验证,发现不同电极块之间的击穿一般发生在触控电极与相邻的虚拟电极之间。
发明内容
本公开至少部分地要解决的技术问题是提供一种触控基板及其制作方法、 触控屏,能够提高触控屏的抗ESD能力。
为了至少部分地解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种触控基板,包括触控区域和包围所述触控区域的黑矩阵图形,所述触控基板上设置有多个触控电极,相邻触控电极之间的空隙处形成有虚拟电极图形,搭接在所述黑矩阵图形上的位于触控电极之间的虚拟电极图形由多个相互绝缘的虚拟电极块组成。
进一步地,搭接在所述黑矩阵图形上的触控电极之间的虚拟电极图形由多个面积相等的虚拟电极块组成。
进一步地,所述虚拟电极块的面积小于0.06mm2
进一步地,所述虚拟电极块的面积为0.03-0.05mm2
进一步地,所述虚拟电极块的面积为0.04mm2
进一步地,搭接在所述黑矩阵图形上的位于触控电极之间的虚拟电极图形包括至少一组虚拟电极块,每组虚拟电极块包括第一虚拟电极块和第二虚拟电极块,所述第一虚拟电极块的面积大于所述第二虚拟电极块的面积,所述第一虚拟电极块与所述触控电极之间的距离大于所述第二虚拟电极块与所述触控电极之间的距离。
进一步地,所述第二虚拟电极块位于所述触控电极与所述第一虚拟电极块之间。
进一步地,所述第二虚拟电极块的面积小于0.06mm2
进一步地,所述第二虚拟电极块的面积为0.03-0.05mm2
进一步地,所述第二虚拟电极块的面积为0.04mm2
进一步地,所述触控基板为互容式触摸基板,与触控感应电极相邻的虚拟电极块的面积小于不与触控感应电极相邻的虚拟电极块的面积。
进一步地,非触控区域的所述虚拟电极图形由多个相互绝缘的虚拟电极块组成,而触控区域的虚拟电极图案保持不变。
本公开实施例还提供了一种触控屏,包括如上所述的触控基板。
本公开实施例还提供了一种触控基板的制作方法,所述触控基板包括触控区域和包围所述触控区域的黑矩阵图形,所述触控基板上设置有多个触控电极,相邻触控电极之间的空隙处形成有虚拟电极图形,所述制作方法包括:在 搭接在所述黑矩阵图形上的触控电极之间形成虚拟电极图形,所述虚拟电极图形由多个相互绝缘的虚拟电极块组成。
进一步地,形成所述虚拟电极图形包括:在搭接在所述黑矩阵图形上的触控电极之间形成由多个面积相等的虚拟电极块组成的虚拟电极图形。
进一步地,形成所述虚拟电极图形包括:在搭接在所述黑矩阵图形上的触控电极之间形成包括至少一组虚拟电极块的虚拟电极图形,所述组的虚拟电极块包括第一虚拟电极块和第二虚拟电极块,所述第一虚拟电极块的面积大于所述第二虚拟电极块的面积,所述第一虚拟电极块与所述触控电极之间的距离大于所述第二虚拟电极块与所述触控电极之间的距离。
进一步地,所述触控电极与所述虚拟电极块为通过一次构图工艺同时形成。
附图说明
图1为现有触控基板触控电极和虚拟电极的示意图;
图2为虚拟电极块面积与黑矩阵击穿电压之间的关系示意图;
图3为本公开一实施例触控基板上虚拟电极块的示意图;
图4为本公开另一实施例触控基板上虚拟电极块的示意图。
附图标记
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
图1为现有触控基板触控电极和虚拟电极的示意图。如图1所示,虚拟电极101的面积比较大(约大于1mm2),导致位于触控电极102和相邻的虚拟电极之间的黑矩阵图形容易被击穿。在黑矩阵图形被释放的静电击穿时,会导致触控基板边缘区域的电容变大,导致触控功能不良。为了至少部分地避免上述问题,本公开的实施例提供一种触控基板及其制作方法、触控屏,能够提高触控屏的抗ESD能力。
本实施例提供一种触控基板,包括触控区域和包围所述触控区域的黑矩阵 图形,所述触控基板上设置有多个触控电极,相邻触控电极之间的空隙处形成有虚拟电极图形,搭接在所述黑矩阵图形上的触控电极之间的所述虚拟电极图形由多个相互绝缘的虚拟电极块组成。
由于搭接在黑矩阵图形上的触控电极与相邻的虚拟电极图形之间容易发生ESD,并且经过大量实验验证,发现在虚拟电极块的面积下降之后,触控电极与虚拟电极块之间黑矩阵图形的击穿电压大大提高。因此,本实施例将该区域的虚拟电极图形设计为由多个相互绝缘的虚拟电极块组成,这样就降低了单个虚拟电极块的面积,相当于将触控电极上的静电分配给多个虚拟电极块,从而极大的降低了黑矩阵图形被击穿的风险,提高了触控电极边缘区域的抗ESD能力,从而提高整体产品的抗ESD能力,进而提高了触控基板的生产良率。
本实施例的触控基板可以是互容式触摸基板也可以是自容式触控基板。当触控基板为互容式触摸基板时,触控电极包括触控感应电极和触控驱动电极,相邻触控感应电极和触控驱动电极之间的空隙处形成有虚拟电极图形,搭接在黑矩阵图形上的触控感应电极和触控驱动电极之间的所述虚拟电极图形由多个相互绝缘的虚拟电极块组成;当触控基板为自容式触控基板时,触控电极为自容式触控电极,相邻自容式触控电极之间的空隙处形成有虚拟电极图形,搭接在黑矩阵图形上的自容式触控电极之间的所述虚拟电极图形由多个相互绝缘的虚拟电极块组成。
在触控基板为互容式触摸基板时,由于黑矩阵图形被击穿对触控感应信号的影响较大,因此可以将与触控感应电极相邻的虚拟电极块的面积设计的比较小。
另外,本实施例中,可以仅对搭接在黑矩阵图形上的触控电极之间的虚拟电极图形进行改变,位于触控基板中心的触控区域的虚拟电极图形可以与现有技术一样,面积设计的比较大。因为位于触控基板中心的触控区域不存在黑矩阵图形,不易发生ESD,因此可以不对触控区域的虚拟电极图形进行改变,避免影响到触控基板的性能。
具体实施例中,搭接在黑矩阵图形上的触控电极之间的每一虚拟电极图形可以由多个面积相等的虚拟电极块组成,这样触控电极上静电可以平均分配给 多个虚拟电极块。
图2为虚拟电极块面积与黑矩阵击穿电压之间的关系示意图。由图2可以看出,在虚拟电极块的面积小于0.06mm2时,黑矩阵图形的击穿电压大大提高,因此,本实施例将虚拟电极块的面积设计为小于0.06mm2
优选地,虚拟电极块的面积为0.03-0.05mm2
如果虚拟电极块的面积设计的过小,必将提高对制作工艺的要求,如果虚拟电极块的面积较大,则黑矩阵击穿电压可能达不到要求,因此,综合对制作工艺的要求和对黑矩阵击穿电压的要求,可以将所述虚拟电极块的面积设计为0.04mm2
另一具体实施例中,搭接在黑矩阵图形上的触控电极之间的所述虚拟电极图形包括至少一组虚拟电极块,所述组的虚拟电极块包括第一虚拟电极块和第二虚拟电极块,第一虚拟电极块的面积大于第二虚拟电极块的面积,第一虚拟电极块与触控电极之间的距离大于第二虚拟电极块与所述触控电极之间的距离,即远离触控电极的虚拟电极块为面积较大的虚拟电极块。也就是说,与触控感应电极相邻的虚拟电极块的面积小于不与触控感应电极相邻的虚拟电极块的面积。这在所述触控基板为互容式触摸基板时尤为有利。
进一步地,第二虚拟电极块位于触控电极与第一虚拟电极块之间。这样在静电释放时,静电须跳过较小的虚拟电极块之后才能释放到较大的虚拟电极块,从而极大的降低了黑矩阵图形被击伤的风险。
图2为虚拟电极块面积与黑矩阵击穿电压之间的关系示意图。由图2可以看出,在虚拟电极块的面积小于0.06mm2时,黑矩阵图形的击穿电压大大提高。因此,本实施例将第二虚拟电极块的面积设计为小于0.06mm2,当然,第一虚拟电极块的面积也可以设计的比较小,比如小于0.09mm2
优选地,第二虚拟电极块的面积为0.03-0.05mm2
如果第二虚拟电极块的面积设计的过小,必将提高对制作工艺的要求;如果第二虚拟电极块的面积较大,则黑矩阵击穿电压可能达不到要求。因此,综合对制作工艺的要求和对黑矩阵击穿电压的要求,可以将第二虚拟电极块的面积设计为0.04mm2
本实施例还提供了一种触控屏,包括如上所述的触控基板。所述触控屏可 以应用在人机交互设备中。
本实施例还提供了一种触控基板的制作方法,所述触控基板包括触控区域和包围所述触控区域的黑矩阵图形,所述触控基板上设置有多个触控电极,相邻触控电极之间的空隙处形成有虚拟电极图形,所述制作方法包括:在搭接在所述黑矩阵图形上的触控电极之间形成虚拟电极图形,所述虚拟电极图形由多个相互绝缘的虚拟电极块组成。
由于搭接在黑矩阵图形上的触控电极与相邻的虚拟电极图形之间容易发生ESD,并且经过大量实验验证,发现在虚拟电极块的面积下降之后,触控电极与虚拟电极块之间黑矩阵图形的击穿电压大大提高。因此,本实施例将该区域的每一虚拟电极图形设计为由多个相互绝缘的虚拟电极块组成,这样就降低了单个虚拟电极块的面积,相当于将触控电极上的静电分配给多个虚拟电极块,从而极大的降低了黑矩阵图形被击穿的风险,提高了触控电极边缘区域的抗ESD能力,从而提高整体产品的抗ESD能力,进而提高了触控基板的生产良率。
在具体实施例中,形成所述虚拟电极图形包括:在搭接在所述黑矩阵图形上的触控电极之间形成由多个面积相等的虚拟电极块组成的虚拟电极图形,这样触控电极上静电可以平均分配给多个虚拟电极块。
另一具体实施例中,形成所述虚拟电极图形包括:在搭接在所述黑矩阵图形上的触控电极之间形成包括至少一组虚拟电极块的虚拟电极图形,所述组的虚拟电极块包括第一虚拟电极块和第二虚拟电极块,所述第一虚拟电极块的面积大于所述第二虚拟电极块的面积,所述第一虚拟电极块与所述触控电极之间的距离大于所述第二虚拟电极块与所述触控电极之间的距离,即远离触控电极的虚拟电极块为面积较大的虚拟电极块。
触控基板的制作方法通常包括以下工艺:
1、第一次光刻工艺,在衬底基板上形成黑矩阵图形,黑矩阵图形覆盖触控基板的边缘区域;
2、第二次光刻工艺,在衬底基板上形成用于连接触控电极的架桥;
3、第三次光刻工艺,在衬底基板上形成覆盖架桥的树脂绝缘层;
4、第四次光刻工艺,在衬底基板上形成触控电极的图形,在触控基板的 边缘区域,触控电极搭接在黑矩阵图形上;
5、第五次光刻工艺,在衬底基板上的黑矩阵图形上形成外围金属走线;
6、第六次光刻工艺,在衬底基板上形成至少覆盖外围金属走线的树脂保护层。
本实施例中,在第四次光刻工艺形成触控电极的同时,还形成虚拟电极图形,即触控电极与虚拟电极块为通过一次构图工艺同时形成。这样能够在不增加构图工艺的情况下实现本实施例的技术方案,不增加触控基板的制作工艺的难度。
图3为本实施例触控基板上虚拟电极块的示意图,触控基板包括触控区域和包围触控区域的黑矩阵图形,触控基板上设置有多个触控电极302,在触控基板的边缘区域,触控电极302搭接在黑矩阵图形上,相邻触控电极302之间的空隙处形成有一虚拟电极图形。如图3所示,搭接在黑矩阵图形上的触控电极302之间的所述虚拟电极图形由多个相互绝缘的虚拟电极块303组成。
本实施例中,虚拟电极图形由9个虚拟电极块303组成,9个虚拟电极块303的面积均相等。当然,虚拟电极块303的数目并不局限为9,还可以为其他大于2的自然数。图2为虚拟电极块面积与黑矩阵击穿电压之间的关系示意图,由图2可以看出,在虚拟电极块的面积小于0.06mm2时,黑矩阵图形的击穿电压大大提高。因此,本实施例将虚拟电极块的面积设计为小于0.06mm2,具体可以为0.04mm2。这样就降低了单个虚拟电极块的面积,相当于将触控电极上的静电平均分配给多个小的虚拟电极块,从而极大的降低了黑矩阵图形被击穿的风险,提高了触控电极边缘区域的抗ESD能力,从而提高整体产品的抗ESD能力,进而提高了触控基板的生产良率。
本实施例的虚拟电极块与触控电极可以通过一次构图工艺同时形成。这样能够在不增加构图工艺的情况下实现本实施例的技术方案,不增加触控基板的制作工艺的难度。
图4为本实施例触控基板上虚拟电极块的示意图。触控基板包括触控区域和包围触控区域的黑矩阵图形,触控基板上设置有多个触控电极402。在触控基板的边缘区域,触控电极402搭接在黑矩阵图形上,相邻触控电极2之间的空隙处形成有虚拟电极图形。如图4所示,搭接在黑矩阵图形上的触控电极 402之间的所述虚拟电极图形由多个相互绝缘的虚拟电极块403组成.本实施例中,虚拟电极图形由3个面积较小的虚拟电极块403和1个面积较大的虚拟电极块403组成。3个面积较小的虚拟电极块403的面积均相等,其中,面积较小的虚拟电极块403位于面积较大的虚拟电极块和触控电极402之间。
由图2可以看出,在虚拟电极块的面积小于0.06mm2时,黑矩阵图形的击穿电压大大提高,因此,本实施例将面积较小的虚拟电极块的面积设计为小于0.06mm2,具体可以为0.04mm2。这样在静电释放时,静电须跳过面积较小的虚拟电极块之后才能释放到面积较大的虚拟电极块,从而极大的降低了黑矩阵图形被击伤的风险,提高了触控电极边缘区域的抗ESD能力,从而提高整体产品的抗ESD能力,进而提高了触控基板的生产良率。
当然,本实施例中,还可以将面积较大的虚拟电极块的面积也设计的比较小,比如小于0.09mm2
本实施例的虚拟电极块与触控电极可以通过一次构图工艺同时形成。这样能够在不增加构图工艺的情况下实现本实施例的技术方案,不增加触控基板的制作工艺的难度。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (17)

  1. 一种触控基板,包括触控区域和包围所述触控区域的黑矩阵图形,所述触控基板上设置有多个触控电极,相邻触控电极之间的空隙处形成有虚拟电极图形,其中搭接在所述黑矩阵图形上的位于触控电极之间的虚拟电极图形由多个相互绝缘的虚拟电极块组成。
  2. 根据权利要求1所述的触控基板,其中搭接在所述黑矩阵图形上的位于触控电极之间的虚拟电极图形由多个面积相等的虚拟电极块组成。
  3. 根据权利要求2所述的触控基板,其中所述虚拟电极块的面积小于0.06mm2
  4. 根据权利要求3所述的触控基板,其中所述虚拟电极块的面积为0.03-0.05mm2
  5. 根据权利要求4所述的触控基板,其中所述虚拟电极块的面积为0.04mm2
  6. 根据权利要求1所述的触控基板,其中搭接在所述黑矩阵图形上的位于触控电极之间的虚拟电极图形包括至少一组虚拟电极块,每组虚拟电极块包括第一虚拟电极块和第二虚拟电极块,所述第一虚拟电极块的面积大于所述第二虚拟电极块的面积,所述第一虚拟电极块与所述触控电极之间的距离大于所述第二虚拟电极块与所述触控电极之间的距离。
  7. 根据权利要求6所述的触控基板,其中所述第二虚拟电极块位于所述触控电极与所述第一虚拟电极块之间。
  8. 根据权利要求6所述的触控基板,其中所述第二虚拟电极块的面积小于0.06mm2
  9. 根据权利要求8所述的触控基板,其中所述第二虚拟电极块的面积为0.03-0.05mm2
  10. 根据权利要求9所述的触控基板,其中所述第二虚拟电极块的面积为0.04mm2
  11. 根据权利要求1所述的触控基板,其中所述触控基板为互容式触摸基板,与触控感应电极相邻的虚拟电极块的面积小于不与触控感应电极相邻的虚拟电极块的面积。
  12. 根据权利要求1所述的触控基板,其中非触控区域的所述虚拟电极图形由多个相互绝缘的虚拟电极块组成。
  13. 一种触控屏,其中包括如权利要求1-12中任一项所述的触控基板。
  14. 一种触控基板的制作方法,所述触控基板包括触控区域和包围所述触控区域的黑矩阵图形,所述触控基板上设置有多个触控电极,相邻触控电极之间的空隙处形成有虚拟电极图形,其中所述制作方法包括:
    在搭接在所述黑矩阵图形上的触控电极之间形成虚拟电极图形,所述虚拟电极图形由多个相互绝缘的虚拟电极块组成。
  15. 根据权利要求14所述的触控基板的制作方法,其中形成所述虚拟电极图形包括:
    在搭接在所述黑矩阵图形上的触控电极之间形成由多个面积相等的虚拟电极块组成的虚拟电极图形。
  16. 根据权利要求14所述的触控基板的制作方法,其中形成所述虚拟电极图形包括:
    在搭接在所述黑矩阵图形上的触控电极之间形成包括至少一组虚拟电极块的虚拟电极图形,所述组的虚拟电极块包括第一虚拟电极块和第二虚拟电极块,所述第一虚拟电极块的面积大于所述第二虚拟电极块的面积,所述第一虚拟电极块与所述触控电极之间的距离大于所述第二虚拟电极块与所述触控电极之间的距离。
  17. 根据权利要求14-16中任一项所述的触控基板的制作方法,其中所述触控电极与所述虚拟电极块为通过一次构图工艺同时形成。
PCT/CN2017/074698 2016-06-21 2017-02-24 触控基板及其制作方法、触控屏 WO2017219695A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/559,928 US10437398B2 (en) 2016-06-21 2017-02-24 Touch substrate and method for manufacturing the same and touch screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610454680.3 2016-06-21
CN201610454680.3A CN106201134B (zh) 2016-06-21 2016-06-21 触控基板及其制作方法、触控屏

Publications (1)

Publication Number Publication Date
WO2017219695A1 true WO2017219695A1 (zh) 2017-12-28

Family

ID=57461299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074698 WO2017219695A1 (zh) 2016-06-21 2017-02-24 触控基板及其制作方法、触控屏

Country Status (3)

Country Link
US (1) US10437398B2 (zh)
CN (1) CN106201134B (zh)
WO (1) WO2017219695A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106201134B (zh) 2016-06-21 2019-05-07 京东方科技集团股份有限公司 触控基板及其制作方法、触控屏
TWI632503B (zh) * 2017-12-15 2018-08-11 友達光電股份有限公司 觸控面板
CN108170327B (zh) * 2018-03-14 2021-11-26 京东方科技集团股份有限公司 一种触控屏及其制备方法、显示装置
CN110456943B (zh) * 2019-08-13 2023-11-03 京东方科技集团股份有限公司 触控基板及其制作方法、触控显示面板和触控显示装置
CN111562858B (zh) * 2020-04-28 2024-04-09 京东方科技集团股份有限公司 触控显示模组、显示装置及触控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913871A (zh) * 2012-12-28 2014-07-09 业鑫科技顾问股份有限公司 触控显示装置
CN104111755A (zh) * 2014-07-24 2014-10-22 上海天马微电子有限公司 一种触控结构、触控面板及触控装置
CN204117116U (zh) * 2014-10-09 2015-01-21 群创光电股份有限公司 触控装置
CN205028254U (zh) * 2015-09-07 2016-02-10 宸盛光电有限公司 触控面板
CN106201134A (zh) * 2016-06-21 2016-12-07 京东方科技集团股份有限公司 触控基板及其制作方法、触控屏

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201447116U (zh) 2009-07-06 2010-05-05 江阴康爱特包装有限公司 新型吹塑成型的中型散装容器阀门安装结构
WO2013145958A1 (ja) * 2012-03-26 2013-10-03 シャープ株式会社 タッチパネル基板、表示パネル、および表示装置
KR101971147B1 (ko) * 2012-04-09 2019-04-23 삼성디스플레이 주식회사 터치 센서를 포함하는 표시 장치
CN103744568A (zh) * 2014-01-13 2014-04-23 深圳莱宝高科技股份有限公司 一种触控面板及其制作方法
CN204288167U (zh) * 2014-11-24 2015-04-22 上海天马微电子有限公司 一种触控显示装置和电子设备
CN104331205B (zh) 2014-11-25 2018-10-30 上海天马微电子有限公司 触控显示装置和电子设备
CN106055147B (zh) 2016-05-25 2019-10-01 京东方科技集团股份有限公司 触控面板及其制造方法、触控装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913871A (zh) * 2012-12-28 2014-07-09 业鑫科技顾问股份有限公司 触控显示装置
CN104111755A (zh) * 2014-07-24 2014-10-22 上海天马微电子有限公司 一种触控结构、触控面板及触控装置
CN204117116U (zh) * 2014-10-09 2015-01-21 群创光电股份有限公司 触控装置
CN205028254U (zh) * 2015-09-07 2016-02-10 宸盛光电有限公司 触控面板
CN106201134A (zh) * 2016-06-21 2016-12-07 京东方科技集团股份有限公司 触控基板及其制作方法、触控屏

Also Published As

Publication number Publication date
CN106201134A (zh) 2016-12-07
US20190012011A1 (en) 2019-01-10
CN106201134B (zh) 2019-05-07
US10437398B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2017219695A1 (zh) 触控基板及其制作方法、触控屏
CN106775066B (zh) 触摸屏及其制作方法、触控显示装置
CN103049121B (zh) 触控装置及其制造方法
US9715294B2 (en) In-cell touch panel and manufacturing method thereof, and display device
CN106201145B (zh) 一种触摸屏、其制作方法及显示装置
WO2018010370A1 (en) Touch substrate, touch display apparatus having the same, and fabricating method
US9740315B2 (en) Touch panel and method of manufacturing the same
US20130271408A1 (en) Touch screen and manufacturing method thereof
US10025433B2 (en) Touch display device and method for manufacturing the same
CN107025027A (zh) 触控基板及其制作方法、显示面板和显示装置
KR20120106526A (ko) 터치 장치와 그 제조 방법
JP2011186717A (ja) 静電容量型タッチパネルとその製造方法
TWM446367U (zh) 觸控裝置
US20170277308A1 (en) Capacitive touch screen and method of manufacturing the same and touch control device
US10359890B2 (en) Touch screen, touch panel, and display apparatus
US10795512B2 (en) Touch substrate having conductive lines and ground conductive pattern between adjacent conductive lines, method for manufacturing the same, and touch panel
TW201624213A (zh) 觸控顯示裝置及觸控顯示裝置之雜訊屏蔽方法
TW201510811A (zh) 觸控面板及其製作方法
TW201419390A (zh) 觸控感應電極結構及其製造方法
US10768764B2 (en) Touch structure and manufacturing method thereof, and touch device
WO2020140466A1 (zh) 触控基板及其制作方法、显示装置
US20150153876A1 (en) Touch display device
TWI711955B (zh) 觸控面板
WO2016169191A1 (zh) 触摸屏及触摸显示装置
TWI506516B (zh) 觸控面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814434

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 020719)

122 Ep: pct application non-entry in european phase

Ref document number: 17814434

Country of ref document: EP

Kind code of ref document: A1