WO2017219296A1 - 无人机仿真系统、无人机仿真方法及无人机 - Google Patents

无人机仿真系统、无人机仿真方法及无人机 Download PDF

Info

Publication number
WO2017219296A1
WO2017219296A1 PCT/CN2016/086796 CN2016086796W WO2017219296A1 WO 2017219296 A1 WO2017219296 A1 WO 2017219296A1 CN 2016086796 W CN2016086796 W CN 2016086796W WO 2017219296 A1 WO2017219296 A1 WO 2017219296A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
drone
uav
state information
simulation
Prior art date
Application number
PCT/CN2016/086796
Other languages
English (en)
French (fr)
Inventor
陈超彬
王文韬
陈熙
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/086796 priority Critical patent/WO2017219296A1/zh
Priority to CN201680004727.4A priority patent/CN107438799B/zh
Publication of WO2017219296A1 publication Critical patent/WO2017219296A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the invention relates to a UAV simulation technology, in particular to a UAV simulation system and method and a UAV using the UAV simulation method.
  • UAV simulation systems which can be used by the operator to use the remote control to send out control signals.
  • the simulation system then calculates a series of actions of the next drone based on the control signals and the simulated drone flight environment. The operator can better understand and practice manipulating the drone, and can better understand the characteristics of the drone and reduce unnecessary losses.
  • the existing UAV simulation does not have a simulation for the battery, and it is impossible to simulate the UAV based on its own energy.
  • the UAV simulation without battery simulation cannot take into account the battery factor, but in fact the battery It is an important part of the flight of the drone. Other environmental conditions such as ambient temperature and altitude may directly affect the performance of the battery and affect the power performance of the drone.
  • the capacity of the battery itself also limits the life time of the drone.
  • Different flight missions consume different amounts of electricity (the currents that have been hovering and have been doing various violent flight movements vary greatly), and the simulation results and actual results in the UAV flight simulation system without battery simulation The flight results are far apart, causing the drone flight simulation to lose its meaning.
  • a simulation system for simulating operation of a drone comprising: a battery model for simulating calculation based on state information of a drone at a previous moment and battery state information at a previous moment The battery state information at a moment; and a state model for calculating state information of the next time of the drone according to the state information of the last time of the drone and the battery state information of the next time.
  • a drone includes a flight control system including a simulation system as described above.
  • An unmanned aerial vehicle simulation method for simulating operation of a drone comprising: obtaining state information of a drone at a last moment and battery state information at a previous moment; The state information of the drone and the battery state information at the previous time are used to calculate the battery state information at the next moment; the state information of the drone at the next moment is calculated according to the battery state information at the next time; and the battery state information according to the next time and The UAV status information at the next moment adjusts the UAV running task.
  • a UAV simulation method includes: displaying an image of a simulated drone; acquiring a control instruction of a user, and controlling the simulated drone to perform a simulation flight according to the control instruction; and in the simulation drone During the flight, the current power of the simulated drone is displayed in real time.
  • a UAV simulation device includes: a display device for displaying an image of a simulated drone; an input device communicatively coupled to the display device, the input device being configured to allow a user to input a control command to control the simulation The drone performs a simulation flight; wherein, during the simulation drone simulation flight, the display device displays the current power of the simulated drone in real time.
  • the simulation system simulates the operation of the drone as part of the simulation system to make the simulation more realistic.
  • FIG. 1 is a schematic structural view of a drone according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a flight simulation system of a drone according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a module of a state model according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a module of a battery model according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a battery simulation method according to an embodiment of the present invention.
  • Figure 6 is an exemplary battery discharge curve for a battery model of the present invention.
  • Figure 7 is another exemplary battery discharge curve for the battery model of the present invention.
  • FIG. 8 is a flowchart of a battery emulation method applied to a simulation device according to an embodiment of the present invention.
  • a component when referred to as being “fixed” to another component, it can be directly on the other component or the component can be present.
  • a component When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • a component When a component is considered to be “set to” another component, it can be placed directly on another component or possibly with a centered component.
  • the terms “vertical,” “horizontal,” “left,” “right,” and the like, as used herein, are for illustrative purposes only.
  • an embodiment of the present invention provides a drone 1 , which may be an Unmanned Aerial Vehicle (UAV), an unmanned spacecraft, an unmanned vehicle, or an unmanned vehicle. Wait.
  • UAV Unmanned Aerial Vehicle
  • the UAV may be a rotorcraft, a fixed wing aircraft, or an aircraft in which a fixed wing and a rotor are mixed.
  • the rotor may be a single rotor, a double rotor, a triple rotor, a quadrotor, a six-rotor and an eight-rotor.
  • the aircraft 1 is a rotorcraft unmanned aerial vehicle.
  • the drone 1 includes a flight control system 10, a drive device 20, a power unit 30, a sensor 40, a data recording unit 50, and a transceiver 60.
  • the flight control system 10 is configured to generate control commands to control the flight of the drone 1 including, but not limited to, controlling the flight speed, altitude, attitude, etc. of the drone 1 .
  • the flight control system 10 can receive control commands from a drone controller (not shown) or generate control commands based on past flight data recorded by the data logging unit 50. For example, all flight commands are transmitted wirelessly from a remote controller to the transceiver 60 and transmitted through the transceiver 60 to the flight control system 10.
  • the UAV 1 can also be equipped with an automatic navigation system, which can adopt an Inertial Measurement Unit (IMU) or a GPS module to make the UAV follow Flight on an established route.
  • the flight control system 10 generates control commands based on navigation information through pre-set track planning and automatic navigation systems.
  • the flight control system 10 includes a flight control module 110 for controlling flight of the drone in accordance with a control command.
  • the driving device 20 can be any driving device capable of generating a driving force according to a control command, such as a motor, including a DC motor (brushed motor or brushless motor), and an AC motor.
  • the power unit 30 can be used to cause the drone 1 to take off, land, hover, and move in the air with respect to three translational degrees of freedom and three degrees of rotational freedom in accordance with the driving force generated by the driving device 20.
  • the power unit 30 can include one or more rotors.
  • the rotor may include one or more rotor blades coupled to a rotating shaft.
  • the rotor blade or shaft can be driven to rotate by the drive unit 20 to generate a pushing force for moving the drone 1 .
  • the power unit 30 of the drone 1 is described as including one or more rotors, it will be understood that when the drone is another type of platform, the power unit may For other corresponding institutions.
  • the number and type of the sensors 40 may be plural, including but not limited to, an inertial measurement unit, an air pressure sensor, a temperature sensor, an acceleration sensor, a position sensor, and the like.
  • the sensor 40 is communicatively coupled to the flight control system 10 by wire or wirelessly, and the flight control system 10 can obtain various flight data of the drone 1 from the sensor 40, including but not limited to, Height, acceleration (pitch, roll, and yaw), posture, geographic location, speed, outside air temperature, and/or air pressure.
  • the sensor 40 further includes a visual sensor, such as a camera or the like, from which the flight control system 10 can acquire an environmental image or the like during flight.
  • the acquired various flight data can be recorded to the data recording unit 50.
  • the data recording unit 50 may also include a memory for storing the flight data.
  • the transceiver 60 is configured to wirelessly communicate with an external device, such as a mobile terminal or a ground station or remote control device, to send and receive flight commands or flight data.
  • the transceiver 60 can be a wireless radio frequency transceiver.
  • the radio frequency transceiver may be an application specific integrated circuit for performing transceiving microwave signals, and may operate in a microwave range of 5.728 GHz to 5.85 GHz.
  • the wireless radio transceiver can receive and transmit radio signals through an antenna.
  • the transceiver may also employ other wireless transceiver technologies such as cellular technology, satellite and broadcast.
  • the cellular technology may include mobile communication technologies such as second generation (2G), third generation (3G), fourth generation (4G) or fifth generation (5G).
  • the flight control system 10 further includes a flight simulation system 100 for simulating the operation of the drone 1 so that the operator can better understand the characteristics of the drone 1 to better practice and manipulate The drone 1 is.
  • the simulation device 2 is configured to set simulation parameters and/or receive flight state information to display the flight state information on the simulation device 2.
  • the simulation device 2 can be a desktop computer, a laptop, a tablet, a smart phone, or the like.
  • the simulation device 2 can be communicably connected to the drone 1 by a wireless communication method such as a mobile communication technology.
  • the simulation device 2 can include, but is not limited to, a display device 22.
  • the display device 22 can be used to display an image of the simulated drone and flight status information.
  • the display device 22 can be communicatively coupled to an input device 24 for receiving commands from the input device 24.
  • the instructions may include simulation parameters, flight control instructions, and the like.
  • the input device 24 can be a touch screen of the handheld device or an operating member of the remote control. In other embodiments, the input device 24 can also be part of the simulation device 2, for example, a keyboard or touch screen disposed on the simulation device 2.
  • the flight simulation system 100 may include, but is not limited to, a state model 101 and a battery model 102.
  • the state model 101 is configured to calculate the power parameters of the entire aircraft according to the type of the aircraft and the power parameters of each power device, and can simulate the state information of the output drone operating in a specific environment.
  • the battery model 102 is used to simulate the relationship between the battery state and the state information of the drone, and can simulate and calculate the battery state at the current time according to the state information of the last moment of the drone and the battery state information of the previous moment. information.
  • the battery model 102 can calculate data such as current, voltage, temperature, capacity, internal resistance change, and occurrence of a fault of the current battery according to the current flight state.
  • the flight simulation system 100 can also increase or decrease the parameter model of the simulation system according to different needs. When more precision is needed, more parameter models need to be added, when the accuracy is not high. It is time to reduce some of the parametric models.
  • the state model 101 may include, but is not limited to, a dynamic model 1010 , a kinematic model 1012 , a dynamic model 1014 , a sensor model 1016 , and a noise model 1018 .
  • the dynamic model 1010 is defined as a model for obtaining the propeller lift according to the motor rotation speed and various coefficients of the propeller;
  • the dynamic model 1014 is to calculate the power of the entire aircraft according to the type of the aircraft and the dynamic parameters of each propeller.
  • the kinematic model 1012 is to calculate a parameter such as a posture position of the aircraft according to an external force received by the aircraft;
  • the sensor model 1016 is configured to obtain data of the sensor according to parameters such as an attitude position of the aircraft and add the noise model 1018.
  • the output noise data is used to output noise data based on the sensor data calculated by the sensor model 1016.
  • the dynamic model 1010 and the dynamics model 1014 can be combined into one model, the dynamic model 1010 being for a single power device (eg, a single propeller), the dynamics model 1014 is For the entire aircraft, for example, 6-axis, 8-axis aircraft, etc.
  • one embodiment of the battery model 102 provided by the present invention includes a voltage model 1020, a current model 1021, a temperature model 1022, a capacity model 1023, an internal resistance model 1024, a fault model 1025, and a life model 1026.
  • the voltage model 1020 is configured to calculate the voltage of each cell and the total voltage of the battery based on the current flight state.
  • the current model 1021 is used to calculate the current of each cell of the battery and the total current of the battery according to the current flight state, and the model can realistically simulate the current change of each cell during the flight of the aircraft.
  • the temperature model 1022 is configured to calculate the current temperature of the battery according to information such as the current ambient temperature and the battery current, and the model can realistically simulate the temperature change during battery use.
  • the capacity model 1023 is used to simulate a change in battery power and a change in the amount of each cell.
  • the internal resistance model 1024 is used to calculate the internal resistance of the battery according to information such as the current ambient temperature and the battery temperature, and can truly simulate the change of the internal resistance during the use of the battery.
  • the fault model 1025 is used to simulate different fault conditions of the battery according to the set failure rate of different fault types, and can conveniently test the running logic of the aircraft in the event of a battery fault, which can facilitate the developer to quickly test the running logic of the aircraft, and can also help Users quickly understand how to deal with this rare and special case.
  • the life model 1026 is used to calculate the life of the battery according to the number of times of charge and discharge of the battery and other parameters, and the life of the battery may affect other parameter models, which can also realistically simulate changes in battery performance as battery life decreases.
  • the state model 101 and the battery model 102 can also increase or decrease the parameter model of the state model 101 and the battery model 102 according to different needs, and need to add more when higher precision is required.
  • the parametric model can reduce some of the parametric models when the accuracy requirements are not high.
  • FIG. 5 is a flowchart of a flight simulation method according to an embodiment of the present invention. The order of the steps in the flowchart may be changed according to different requirements, and some steps may be omitted or combined.
  • Step 402 setting flight simulation parameters.
  • the flight simulation parameters can be preset default values.
  • the initial values of the flight simulation parameters may also be received from the simulation device 2.
  • the flight simulation parameters include, but are not limited to, parameters of the battery model 102, such as battery voltage, battery rated capacity, battery internal resistance, standby current, initial temperature, initial power, number of charge and discharge cycles, and the like.
  • the flight simulation parameters may also include flight environmental parameters and flight path planning and the like.
  • the environmental parameters of the flight include setting atmospheric pressure, temperature, wind speed, wind direction, longitude, latitude, and the like.
  • Step 404 Obtain the UAV status information and the battery status information of the previous moment.
  • the UAV state information is derived from other simulation models of the flight simulation system, including but not limited to, a dynamic model 1010, a kinematic model 1012, a dynamics model 103, a battery model 102, a sensor model 1016, and a noise model 1018.
  • An embodiment of the present invention may be that the kinematics model 1012 calculates the required moving force (ie, lift) of the aircraft based on the track planning and/or environmental settings set in step 402; the dynamic model 1010 and The kinetic model 103 calculates the motor speed and various coefficients of the propeller based on the required moving force of the aircraft calculated by the kinematic model 1012.
  • the sensor model calculates the state information of the aircraft according to the set track planning and/or environment setting, the motor model 1010, and the various coefficients of the propeller calculated by the dynamic model 103, including but not Limited to angle, angular velocity, speed, altitude, attitude, heading, longitude, latitude, etc.
  • Step 406 Calculate battery state information of the next time according to the set initial flight parameters and the acquired state information of the last time.
  • one embodiment of calculating the battery state information of the next time according to the initial flight parameters and the acquired UAV state information of the last moment may be that the voltage model 1020 is calculated according to the acquired flight state information and environment settings.
  • the discharge curve of the battery is different. Referring to Figures 6 and 7, the discharge curve of the battery varies depending on the ambient temperature. In the normal temperature environment, the discharge curve of the battery is gradually decreased with the decrease of the electric quantity, and in the environment of minus 10 degrees, the discharge curve of the battery is first raised and then decreased.
  • the discharge curve shown in FIG. 6 is a voltage capacity curve when a fully charged lithium battery is discharged in a normal temperature environment.
  • the voltage When the battery is fully charged, the voltage is only about 4.35. As the discharge time increases, the voltage of the battery also follows. As the battery drops, the capacity of the battery will also drop.
  • the discharge curve (#1, #2, #3, #4, #5 curve) shown in FIG. 7 is a voltage capacity when a fully charged lithium battery is discharged with a different discharge current in an environment of minus 10 degrees. Curve, when the battery is fully charged, the voltage is only about 3V. As the discharge time increases, the temperature of the battery rises and the voltage of the battery rises. The above test data explains why the voltage is very low, but the percentage of capacity is high. The phenomenon.
  • the voltage variation in different environments can be simulated, which is convenient for developers to test the flight control algorithm in this environment (because the low voltage will affect the flight of the aircraft, for example, the lift will be affected, but The power is still a lot at this time, so there is no need to perform these actions.
  • the user can understand this situation more intuitively, so as to better control the flight of the aircraft.
  • the capacity model 1023 calculates a change in capacity of the battery during flight based on the acquired UAV status information, battery status information, and/or the set environmental parameters at the previous time. For details, as shown in FIG. 6 and FIG. 7, the battery capacity gradually decreases as the simulation time changes. Battery capacity can be dissipated at different ambient temperatures. Generally, in colder environments, battery capacity is consumed more quickly. The speed, acceleration, wind speed, etc. of the flight will affect the consumption of the battery capacity. For example, when the instantaneous acceleration of the flight is large, the rotational speed of the motor will increase accordingly, and the battery capacity consumed will also increase accordingly.
  • the current model 1021 calculates a current change of the battery during the operation of the drone according to the ratio of the capacity change calculated by the capacity model 1023 to the time.
  • the temperature model 1022 calculates a temperature change of the battery during operation of the drone based on the set ambient temperature and the calculated battery current change information.
  • the ambient temperature will increase the battery temperature, and the charge/discharge voltage or current will cause the battery temperature to rise.
  • the internal resistance model 1024 calculates the internal resistance change information of the battery during the operation of the drone according to the ambient temperature and the battery temperature change information during the operation of the drone.
  • the ambient temperature and the battery temperature may cause changes in the internal resistance of the battery, and the internal resistance of the battery may cause the battery temperature to rise, which may affect the battery life.
  • the fault model 1025 is configured to calculate the possibility of different faults of the battery according to the calculated current change, temperature change and internal resistance change during the operation of the drone, the set environmental parameters and/or the flight mission or the track plan. Sex. For example, when the current exceeds the threshold, the battery circuit may be disconnected.
  • the life model 1026 is used to calculate a change in battery life based on the number of charge and discharge cycles of the battery and other parameters (eg, environmental settings, flight status information, etc.) on battery life. For example, ambient temperature has a large impact on lithium battery life. The environment below the freezing point may cause the lithium battery to burn out at the moment when the electronic product is turned on, and the overheated environment will reduce the capacity of the battery. For example, the motor current in the flight state will affect the discharge current of the battery, and excessive discharge voltage or discharge current will reduce the battery life.
  • other parameters eg, environmental settings, flight status information, etc.
  • the sensor model 1016 is configured to derive data of the sensor according to parameters such as an attitude position of the aircraft and to add noise data output by the noise model 1018; the noise model 1018 is configured to output sensor data calculated according to the sensor model 1016. Noise data.
  • Step 408 Calculate flight state information of the next moment according to the battery state information of the next moment calculated in step 406.
  • the flight state at the next moment is calculated by the UAV simulation kernel. The calculation is based on the battery voltage, battery capacity and battery current.
  • the calculated flight status includes but is not limited to the motor of the drone. The current, because the current will affect the voltage and capacity at the next moment.
  • the UAV's simulation core first calculates the lift required for hovering, and obtains no according to the lift.
  • the speed required by the man-machine propeller according to the speed and the motor model and the current voltage, can be used to know how much current the motor needs to maintain the required speed, that is, the current of the aircraft at the next moment (say 6A), and then the next one can be calculated.
  • the capacity of the battery at the moment (1000mah – 6000ma * 0.02/3600H)
  • the voltage model of the battery can be used to derive the relationship between capacity and voltage.
  • the voltage across the actual battery can be obtained (for example, 11.9V), and then continue to cycle calculations.
  • Step 410 The flight control module adjusts the flight task according to the battery state information of the next moment and the flight state information of the next moment. Assume that the current control cycle starts at T0, T1 at the end, and T is the analog duration. The calculated battery state information is the data between the T0 and T1 periods. When the current control cycle ends, that is, T1. The battery status information of the point can be used to calculate flight status information for the next control cycle.
  • Adjusting the flight task according to the battery state information of the next moment and the flight state information of the next moment may be automatic, or may be based on user operations. For example, the following scenarios:
  • the drone performs the waypoint task, and the whole process is unmanned. There are several automatic charging base stations between the waypoints. During the process of performing the waypoint mission, the drone finds that the current power can only reach the nearest charging base station. When the battery is replaced, the battery replacement command will be automatically executed. After the battery is replaced, the return to the waypoint execution command will continue.
  • the user is performing an aerial operation.
  • the drone will find that the current remaining power can only return to the recorded return point, and a prompt box will pop up to remind the user that the current power can only be returned to the air, requesting to return to the navigation operation.
  • the user does not need to return.
  • the return point can also choose not to perform the return flight.
  • FIG. 8 is a flowchart of a simulation method 800 applied to the simulation device 2 .
  • Step 802 the simulation device 2 acquires a state model parameter of the simulated drone or/and a battery model parameter of the simulated drone.
  • the battery model parameters may include, but are not limited to, cell voltage, battery design capacity, internal resistance, standby current, initial temperature, initial power, and number of charge and discharge cycles.
  • the state model parameters may include, but are not limited to, a power parameter of the motor, a power parameter of the propeller.
  • the state model parameters or/and the battery model parameters of the simulated drone may be input through a touch display of the handheld device or a remote control of the remote device communicatively coupled to the simulation device 2.
  • the simulation device 2 may also acquire environmental parameters, which may include, but are not limited to, atmospheric pressure, temperature, wind speed, wind direction, longitude, latitude, and the like.
  • the simulation device 2 may also acquire state information of the simulated UAV at a previous moment, and the state information of the simulated UAV includes, but is not limited to, an angle, an angular velocity, a speed, a height, a posture, Heading, longitude, latitude, etc.
  • the simulation device 2 may also obtain battery state information at a previous moment, and the battery state information of the last moment may include, but is not limited to, battery current, voltage, temperature, internal resistance, and capacity.
  • the simulation device 2 may also acquire a flight mission or a flight path plan, according to which the simulated drone may automatically perform a simulated flight.
  • the environmental parameter or/and the state information of the simulated UAV at the previous time, the battery state information of the last moment, the flight mission or the track plan can be touched by the touch display of the handheld device communicably connected to the simulation device 2 Or the operator's input of the remote control.
  • the state information of the simulated UAV at the last moment and the battery state information of the previous moment may also be derived from the flight control system of the simulated drone.
  • Step 804 the simulation device 2 displays an image of the simulated drone through the display device disposed thereon.
  • the simulated drone can be a real drone or a drone simulation model.
  • Step 806 the simulation device 2 receives a user instruction to control the simulated drone simulation flight.
  • the flight mission or the track plan may also be preset, and the simulation drone performs the simulation flight according to the preset flight mission or track plan.
  • the simulated drone may also automatically perform a simulated flight according to a flight mission or a track plan, during which the simulation device 2 may intervene according to user input to simulate the simulation. Flight of the aircraft.
  • Step 808 the simulation device 2 displays the battery state information of the simulated drone in real time.
  • the status information of the real-time display drone may be sourced from the simulated drone.
  • the simulation device 2 determines whether the battery power is insufficient. For example, the emulation device 2 can determine that the battery is low when the current battery power is only sufficient to maintain the return or lower than the required power for returning.
  • step 812 the simulation device 2 sends a prompt message indicating that the power is insufficient, and the prompt information may be outputted by sound or visually, such as a warning sound or a flashing light output by a speaker, a voice broadcast, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)

Abstract

一种仿真系统、无人机、无人机仿真方法和无人机仿真装置,该仿真系统包括:电池模型(102),用于根据无人机的上一时刻的状态信息与上一时刻的电池状态信息,模拟计算下一时刻的电池状态信息;及状态模型(101),用于根据无人机的上一时刻的状态信息与下一时刻的电池状态信息,模拟计算下一时刻的状态信息。该仿真系统将电池参数作为仿真系统的一部分对无人机的运行进行仿真,使仿真更贴合实际。

Description

无人机仿真系统、无人机仿真方法及无人机 技术领域
本发明涉及一种无人机仿真技术,尤其涉及一种无人机仿真系统与方法及采用该无人机仿真方法的无人机。
背景技术
现在有很多无人机仿真系统,可以在操纵者使用遥控器发出控制信号,然后仿真系统会根据控制信号和模拟出来的无人机飞行环境计算出接下来无人机的一系列动作,可以方便操纵者更好的了解和练习操纵无人机,也可以更好的了解无人机的特性,减少各种不必要的损失。
然而现有的无人机仿真没有针对电池的仿真,无法对无人机进行基于自身能源的飞行任务的仿真,没有电池仿真的无人机仿真无法将电池的因素考虑在内,但实际上电池是无人机飞行中的一个重要环节,环境温度、海拔等其他外界环境可能直接影响电池的性能进而影响无人机的动力性能,电池本身的容量也会限制无人机的续航时间,无人机不同的飞行任务对电量的消耗也不一样(一直悬停和一直在做各种暴力飞行动作的电流相差很大),在没有电池仿真的无人机飞行仿真系统中会造成仿真结果和实际飞行结果相差很远,导致无人机飞行仿真丧失意义。
发明内容
有鉴于此,有必要提供一种无人机仿真系统、无人机仿真方法及采用该无人机仿真方法的无人机。
一种仿真系统,用于对无人机的运行进行模拟,所述仿真系统包括:电池模型,用于根据无人机的上一时刻的状态信息与上一时刻的电池状态信息,模拟计算下一时刻的电池状态信息;及状态模型,用于根据无人机的上一时刻的状态信息以及下一时刻的电池状态信息,计算所述无人机下一时刻的状态信息。
一种无人机,包括飞行控制系统,所述飞行控制系统包括如上所述的仿真系统。
一种无人机仿真方法,用于对无人机的运行进行模拟,所述仿真方法包括:获取上一时刻的无人机的状态信息和上一时刻的电池状态信息;根据上一时刻的无人机的状态信息及上一时刻的电池状态信息计算下一时刻的电池状态信息;根据下一时刻电池状态信息计算下一时刻的无人机状态信息;及根据下一时刻电池状态信息及下一时刻无人机状态信息调整无人机运行任务。
一种无人机仿真方法包括:显示仿真无人机的图像;获取用户的控制指令,并根据所述控制指令控制所述仿真无人机进行模拟仿真飞行;以及在所述仿真无人机的飞行过程中,实时显示所述仿真无人机的当前电量。
一种无人机仿真装置包括:显示装置,用于显示仿真无人机的图像;输入装置,与所述显示装置通讯连接,所述输入装置用于供用户输入控制命令,以控制所述仿真无人机进行模拟仿真飞行;其中,在所述仿真无人机模拟仿真飞行过程中,所述显示装置实时显示所述仿真无人机的当前电量。
所述仿真系统将电池参数作为仿真系统的一部分对无人机的运行进行仿真,使仿真更贴合实际。
附图说明
图1是本发明实施方式提供的一种无人机的结构示意图。
图2是本发明实施方式提供的一种无人机的飞行仿真系统的模块示意图。
图3是本发明实施方式提供的一种状态模型的模块结构示意图。
图4是本发明实施方式提供的一种电池模型的模块结构示意图。
图5为本发明实施方式提供的一种电池仿真方法的流程图。
图6为本发明电池模型的一种例示的电池放电曲线。
图7为本发明电池模型的另一种例示的电池放电曲线。
图8为本发明实施方式提供的应用在仿真装置上的一种电池仿真方法的流程图。
主要元件符号说明
无人机 1
飞行控制系统 10
飞行仿真系统 100
动力模型 101
运动学模型 102
动力学模型 103
电池模型 104
电压模型 1040
电流模型 1041
温度模型 1042
容量模型 1043
内阻模型 1044
故障模型 1045
寿命模型 1046
传感器模型 105
噪声模型 106
飞行控制模块 110
驱动装置 20
动力装置 30
传感器 40
数据记录单元 50
收发器 60
仿真装置 2
显示装置 22
输入装置 24
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1所示,本发明实施方式提供一种无人机1,所述无人机1可为无人飞行器(Unmanned Aerial Vehicle, UAV)、无人航天器、无人船、无人车等。所述无人飞行器可为旋翼飞行器、固定翼飞行器或固定翼与旋翼混合的飞行器。其中所述旋翼可为单旋翼、双旋翼、三旋翼、四旋翼、六旋翼及八旋翼等。在如下实施例中,所述飞行器1为旋翼无人飞行器。
所述无人机1包括飞行控制系统10、驱动装置20、动力装置30、传感器40、数据记录单元50、收发器60。
所述飞行控制系统10用于产生控制指令以控制所述无人机1的飞行,包括但不限于,控制无人机1的飞行速度、高度、姿态等。所述飞行控制系统10可从一无人机控制器(图未示)接收控制指令,或基于所述数据记录单元50记录的以往的飞行数据来产生控制指令。例如:所有的飞行指令都是通过无线方式从远程操控者发送至所述收发器60,再通过所述收发器60传输至所述飞行控制系统10。在另一实施方式中,所述无人机1上还可以装配有自动导航系统,所述自动导航系统可采用惯性测量单元(Inertial Measurement Unit,IMU)或GPS模块以使得所述无人机按照既定的航线飞行。所述飞行控制系统10根据通过预先设置好的航迹规划及自动导航系统的导航信息产生控制指令。所述飞行控制系统10包括飞行控制模块110,所述飞行控制模块110用于根据控制指令控制所述无人机的飞行。
所述驱动装置20可为任何可根据控制指令产生驱动力的驱动装置,例如:电机,包括直流电机(有刷电机或无刷电机)、交流电机。动力装置30可用于根据所述驱动装置20产生的驱动力使所述无人机1起飞、着陆、悬停,及在空中关于三个平移自由度以及三个旋转自由度运动。在本实施例中,所述动力装置30可包括一个或多个旋翼。所述旋翼可包括连接至一转轴的一个或多个旋翼叶片。所述旋翼叶片或转轴可被所述驱动装置20驱动而旋转,从而产生移动所述无人机1的推升力。虽然在本实施例中,所述无人机1的动力装置30被描述为包括1个或多个旋翼,但是可以理解的是,在无人机为其他类型的平台时,所述动力装置可为其他相对应的机构。
所述传感器40的数量和类型可为多个,包括但不限于,惯性测量单元、气压传感器、温度传感器、加速度传感器、位置传感器等。所述传感器40通过有线或无线的方式与所述飞行控制系统10通信连接,所述飞行控制系统10能从所述传感器40获得所述无人机1的各种飞行数据,包括但不限于,高度,加速度(俯仰、滚动,及偏航),姿势,地理位置,速度,外部空气温度,及/或气压等。在一些实施方式中,所述传感器40还包括可视传感器,例如相机等,所述飞行控制系统10可以从所述可视传感器获取飞行过程中的环境图像等。所获取的各种飞行数据可被记录至所述数据记录单元50。所述数据记录单元50还可包括用于存储所述飞行数据的存储器。
所述收发器60用于与外部设备,例如移动终端或地面站或远程遥控装置无线通信连接,以收发飞行指令或飞行数据。所述收发器60可以为无线射频收发器。在所述实施例中,所述无线射频收发器可为用于执行收发微波信号的专用集成电路,其运行频率可在5.728GHz – 5.85GHz的微波范围。所述无线射频收发器可通过天线接收和传输无线电信号。在其他实施方式中,所述收发器还可以采用蜂窝技术,卫星及广播等其他无线收发技术。其中所述蜂窝技术可包括第二代(2G)、第三代(3G)、第四代(4G)或第五代(5G)等移动通信技术。
所述飞行控制系统10还包括飞行仿真系统100,用于对所述无人机1的运行进行模拟,以便操纵者更好的了解所述无人机1的特性,从而更好地练习及操纵所述无人机1。所述仿真装置2用于设置仿真参数及/或接收飞行状态信息以显示所述飞行状态信息于所述仿真装置2上。例示地,所述仿真装置2可以为桌面计算机、膝上型电脑、平板电脑、智能手机等。所述仿真装置2可以通过移动通信技术等无线通信方式与所述无人机1通信连接。所述仿真装置2可包括,但不限于,显示装置22。所述显示装置22可用于显示仿真无人机的图像及飞行状态信息。所述显示装置22可与一输入装置24通信连接,用于接收所述输入装置24发出的指令。所述指令可包括仿真参数、飞行控制指令等。所述输入装置24可为手持装置的触摸屏或遥控器的操作件。在其他实施方式中,所述输入装置24也可为所述仿真装置2的一部分,例如,所述仿真装置2上设置的键盘或触摸屏。
请参阅图2所示,本发明所提供的飞行仿真系统100可包括,但不限于,状态模型101及电池模型102。所述状态模型101用于根据飞机的类型以及每个动力装置的动力参数,计算整个飞机的动力参数,能够模拟输出无人机在特定环境下运行的状态信息。所述电池模型102用于模拟电池状态与无人机的状态信息之间的关系,能根据无人机的上一时刻的状态信息与上一时刻的电池状态信息,模拟计算当前时刻的电池状态信息。所述电池模型102可根据当前飞行状态计算出当前电池的电流、电压、温度、容量、内阻的变化及故障的发生等数据。
可以理解的是,所述飞行仿真系统100还可以根据不同需要对该仿真系统的参数模型进行增减,需要更高精度的时候就需要加入更多其他的参数模型,当对精度要求不高的时候可以减少部分参数模型。
请参阅图3所示,所述状态模型101可包括,但不限于,动力模型1010、运动学模型1012、动力学模型1014、传感器模型1016及噪声模型1018。其中,所述动力模型1010定义为根据电机转速和螺旋桨的各种系数得出螺旋桨升力的一个模型;所述动力学模型1014为根据飞机的类型以及每个桨的动力参数,计算整个飞机的动力参数;所述运动学模型1012为根据飞机受到的外力计算飞机接下来的姿态位置等参数;所述传感器模型1016用于根据飞机的姿态位置等参数得出传感器的数据并且加入所述噪声模型1018输出的噪声数据;所述噪声模型1018用于根据所述传感器模型1016计算出的传感器数据输出噪声数据。在一些实施例中,所述动力模型1010与所述动力学模型1014可以合并为一个模型,所述动力模型1010是针对单个动力装置(例如单个螺旋桨)来说的,所述动力学模型1014是针对于整个飞机来说的,例如,6轴、8轴飞机等。
请参阅图4所示,本发明提供的电池模型102的一个实施例包括电压模型1020、电流模型1021、温度模型1022、容量模型1023、内阻模型1024、故障模型1025及寿命模型1026。
所述电压模型1020用于根据当前飞行状态计算出每个电芯的电压和电池的总电压。
所述电流模型1021用于根据当前飞行状态计算出电池每个电芯的电流和电池的总电流,该模型可以真实的模拟飞行器飞行过程中每个电芯的电流变化。
所述温度模型1022用于根据当前环境温度和电池电流等信息计算出电池当前的温度,该模型可以真实的模拟电池使用过程中的温度变化。
所述容量模型1023用于真实的模拟电池电量的变化以及各个电芯电量的变化。
所述内阻模型1024用于根据当前环境温度和电池温度等信息计算出电池的内阻,可以真实的模拟电池使用过程中内阻的变化。
所述故障模型1025用于根据设定的不同故障类型的故障率模拟电池出现不同故障的情况,可以方便测试飞行器在电池故障时候的运行逻辑,可以方便开发人员快速测试飞行器运行逻辑,也可以帮助用户快速了解在这种少见的特殊情况下如何处理。
所述寿命模型1026用于根据电池的充放电次数和其他参数计算出电池的寿命,电池的寿命会影响其他的参数模型,这个也可以真实的模拟随着电池寿命的减少电池性能的变化。
可以理解的是,所述状态模型101和所述电池模型102还可以根据不同需要对该状态模型101及该电池模型102的参数模型进行增减,需要更高精度的时候就需要加入更多其他的参数模型,当对精度要求不高的时候可以减少部分参数模型。
图5为本发明实施方式提供的一种飞行仿真方法的流程图。根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。
步骤402,设置飞行仿真参数。在一些实施例中,所述飞行仿真参数可以是预设的缺省值。在另一些实施例中,所述飞行仿真参数的初始值也可以接收自所述仿真装置2。所述飞行仿真参数包括,但不限于,电池模型102的参数,例如:电芯电压、电池额定容量、电池内阻、待机电流、初始温度、初始电量、充放电次数等电池参数。在其他实施方式中,所述飞行仿真参数还可以包括飞行的环境参数及或飞行的航迹规划等。所述飞行的环境参数包括设置大气气压、温度、风速、风向、经度、纬度等。
步骤404,获取上一时刻的无人机状态信息及电池状态信息。所述无人机状态信息来源于所述飞行仿真系统的其他仿真模型,包括但不限于,动力模型1010、运动学模型1012、动力学模型103、电池模型102、传感器模型1016及噪声模型1018。本发明的一个实施例可以是,基于步骤402中所设置的航迹规划及/或环境设置,所述运动学模型1012计算出飞机所需的移动力(即升力);所述动力模型1010及所述动力学模型103根据所述运动学模型1012所计算得出的飞机所需的移动力计算出电机转速和螺旋桨的各种系数。所述传感器模型根据所设置的航迹规划及/或环境设置、所述动力模型1010及所述动力学模型103计算出的电机转速及螺旋桨的各种系数计算飞行器的状态信息,包括,但不限于,角度、角速度、速度、高度、姿态、航向、经度、纬度等。
步骤406,根据所设置的飞行初始参数及所获取的上一时刻无人机状态信息计算下一时刻电池状态信息。
具体地,根据飞行初始参数及所获取的上一时刻无人机状态信息计算下一时刻电池状态信息的其中一个实施例可以是,所述电压模型1020根据所获取的飞行状态信息及环境设置计算出飞行过程中电池的电压变化。例如,在不同的环境下,电池的放电曲线是有差异的。请参阅图6及图7所示,为电池的放电曲线因环境温度的不同而变化。在常温环境下,电池的放电曲线是随着电量的减少电压逐步下降,而在零下10度的环境中,电池的放电曲线是先升后降的。例如图6中所示的放电曲线为满电的锂电池在常温的环境中放电时的电压容量曲线,电池充满电的时候电压只有4.35左右,随着放电时间增加,电池的电压也会随之下降,电池的容量也会随之下降。例如图7中所示的放电曲线(#1, #2, #3, #4, #5曲线)为满电的锂电池在零下10度的环境中以不同的放电电流进行放电时的电压容量曲线,电池充满电的时候电压只有3V左右,随着放电时间增加,电池的温度上升,电池的电压也会随之上升,上面的这份测试数据解释了为什么电压很低,但是容量百分比很高的现象。通过所述电压模型1020的仿真计算,可以模拟出不同环境下的电压变化,方便开发人员测试在这种环境下的飞行控制算法(因为低电压会影响飞机的飞行,例如升力会受到影响,但是电量此时还是很多的,所以不需要执行返航这些动作),另一方面可以让用户更加直观的了解到这种情况,从而更好地控制飞行器的飞行。
所述容量模型1023根据所获取的上一时刻的无人机状态信息、电池状态信息及/或所设置的环境参数计算出飞行过程中电池的容量变化。具体可参图6及图7所示,电池容量随着仿真时间的推移而逐渐下降。在不同的环境温度下,电池容量的消耗速度会不同,通常来说,在越冷的环境下,电池容量的消耗会更快。飞行的速度、加速度、风速等都会对电池容量的消耗造成影响,例如,飞行瞬时加速度大时,所述电机的转速会相应提高,从而所消耗的电池容量也会相应加大。
所述电流模型1021根据所述容量模型1023计算出的容量变化与时间的比值计算出无人机运行过程中电池的电流变化。
所述温度模型1022根据所设置的环境温度和计算出的电池电流变化信息计算出无人机运行过程中电池的温度变化。环境温度身高会使得电池温度随之升高,充放电电压或电流流过大也会使得电池温度升高。
所述内阻模型1024根据无人机运行过程中环境温度和电池温度变化信息计算出无人机运行过程中电池的内阻变化信息。比如,环境温度和电池温度会引起电池内阻变化,电池内阻变大会使得电池温度升高,影响电池使用寿命。
所述故障模型1025用于根据所计算出的无人机运行过程中的电流变化、温度变化及内阻变化、所设置的环境参数及/或飞行任务或航迹规划计算电池出现不同故障的可能性。比如当电流超过阈值时可能电池的电路会断开连接。
所述寿命模型1026用于根据电池的充放电次数及其他参数(例如环境设置、飞行状态信息等)对电池寿命的影响计算电池寿命的变化。例如,环境温度对锂电池寿命有较大的影响。冰点以下环境有可能使锂电池在电子产品打开的瞬间烧毁,而过热的环境则会缩减电池的容量。再比如,飞行状态时的电机电流会影响电池的放电电流,过大的放电电压或放电电流都会降低电池使用寿命。
所述传感器模型1016用于根据飞机的姿态位置等参数得出传感器的数据并且加入所述噪声模型1018输出的噪声数据;所述噪声模型1018用于根据所述传感器模型1016计算出的传感器数据输出噪声数据。
步骤408,根据步骤406中计算得出的下一时刻的电池状态信息计算下一时刻的飞行状态信息。根据电池状态信息计算下一个时刻的飞行状态是无人机仿真内核计算的,计算的依据主要是电池电压,电池容量和电池的电流,计算出来的飞行状态包括但不限于,无人机的电机的电流,因为电流会影响下一时刻的电压和容量。
举个例子就是,如果当前时刻电池电压12V, 电池容量还有1000mah,飞机的电流为5A,当前飞机保持悬停状态,那么无人机的仿真内核先计算悬停需要的升力,根据升力得到无人机螺旋桨需要的转速,根据转速和电机模型还有当前电压可以得知电机需要多大的电流才能维持需要的转速,也就是下一个时刻飞机的电流(比方说6A),然后就可以算出下一个时刻电池的容量(1000mah – 6000ma * 0.02/3600H),电池的电压模型可以得出容量和电压的关系,考虑到电池内阻模型和电流模型可以得出实际电池两端的电压(比方说变成了11.9V),然后再这样不停的循环计算。
步骤410,所述飞行控制模块根据所述下一时刻的电池状态信息和下一时刻的飞行状态信息调整飞行任务。假定当前控制周期开始时点为T0,结束时为T1,模拟时长为T,则上所述计算出的电池状态信息为T0与T1时段之间的数据,当当前控制周期结束时,即T1时点的电池状态信息即可用来计算下一个控制周期的飞行状态信息。
根据所述下一时刻的电池状态信息和下一时刻的飞行状态信息调整飞行任务可以是自动的,也可以是基于用户操作的。例如下面几个情景:
无人机执行航点任务,整个过程都是无人控制的,航点间有几个自动充电基站,无人机执行航点任务的过程中发现当前电量只能到够到达最近的充电基站进行更换电池的时候就会自动执行更换电池命令,更换电池完成之后继续返回航点执行命令。
用户正在进行航拍操作,此时无人机发现当前剩余电量只能够返回记录的返航点的时候就会弹出提示框提醒用户,当前电量只能返航,请求进行返航操作,当然用户如果觉得不需要返回返航点也可以选择不执行返航。
请参阅图8所示,为应用于所述仿真装置2的仿真方法800的流程图。
步骤802,所述仿真装置2获取仿真无人机的状态模型参数或/及仿真无人机的电池模型参数。其中所述电池模型参数可包括,但不限于,电芯电压,电池设计容量,内阻,待机电流,初始温度,初始电量,充放电次数。所述状态模型参数可包括,但不限于,电机的动力参数,螺旋桨的动力参数。所述状态模型参数或/及所述仿真无人机的电池模型参数可通过与所述仿真装置2通信连接的手持装置的触摸显示屏或遥控器的操作件输入。
在一些实施例中,所述仿真装置2还可获取环境参数,所述环境参数可包括,但不限于,大气气压、温度、风速、风向、经度、纬度等。
在一些实施例中,所述仿真装置2还可获取上一时刻仿真无人机的状态信息,所述仿真无人机的状态信息包括,但不限于,角度、角速度、速度、高度、姿态、航向、经度、纬度等。
在一些实施例中,所述仿真装置2还可获取上一时刻的电池状态信息,所述上一时刻的电池状态信息可包括,但不限于,电池电流、电压、温度、内阻、容量。
在一些实施例中,所述仿真装置2还可获取飞行任务或航迹规划,根据所述飞行任务或航迹规划,所述仿真无人机可自动进行模拟仿真飞行。
上所述环境参数或/及上一时刻仿真无人机的状态信息、上一时刻的电池状态信息、飞行任务或航迹规划可通过与所述仿真装置2通信连接的手持装置的触摸显示屏或遥控器的操作件输入。
在一些实施方式中,上所述上一时刻仿真无人机的状态信息、上一时刻的电池状态信息也可来源自所述仿真无人机的飞行控制系统。
步骤804,所述仿真装置2通过其上设置的显示装置显示仿真无人机的图像。所述仿真无人机可为真实无人机或无人机仿真模型。
步骤806,所述仿真装置2接收用户指令,控制仿真无人机模拟飞行。在其他实施例中,也可以是预先设置飞行任务或航迹规划,所述仿真无人机根据该预先设置的飞行任务或航迹规划进行模拟仿真飞行。在一些实施例中,还可以是仿真无人机根据飞行任务或航迹规划自动进行模拟仿真飞行,在所述模拟仿真飞行过程中,所述仿真装置2可以根据用户输入干预所述仿真无人机的飞行。
步骤808,所述仿真装置2实时显示仿真无人机的电池状态信息。所述实时显示的无人机的状态信息可来源自所述仿真无人机。
步骤810,所述仿真装置2判断是否电池电量不足。例如,当电池当前电量仅够维持返航或低于返航所需电量时,所述仿真装置2可判断电池电量不足。
步骤812,所述仿真装置2发出电量不足的提示信息,所述提示信息可通过声音或视觉方式输出,例如扬声器输出的警示音或闪灯、语音播报等。
另外,对于本领域的普通技术人员来说,可以根据本发明的技术构思做出其它各种相应的改变与变形,而所有这些改变与变形都应属于本发明权利要求的保护范围。

Claims (55)

  1. 一种仿真系统,用于对无人机的运行进行模拟,其特征在于:所述仿真系统包括:
    电池模型,用于根据无人机的上一时刻的状态信息与上一时刻的电池状态信息,模拟计算下一时刻的电池状态信息;及
    状态模型,用于根据无人机的上一时刻的状态信息以及下一时刻的电池状态信息,计算所述无人机下一时刻的状态信息。
  2. 如权利要求1所述的仿真系统,其特征在于:所述电池状态信息包括电池电流、电压、温度、内阻、容量中的一种或几种。
  3. 如权利要求1所述的仿真系统,其特征在于:所述电池模型包括容量模型,所述容量模型根据上一时刻无人机状态信息及环境参数模拟计算出下一时刻无人机运行过程中电池的容量变化。
  4. 如权利要求3所述的仿真系统,其特征在于:所述电池模型包括电流模型,所述电流模型根据所述容量模型计算出的容量变化与时间的比值模拟计算无人机运行过程中电池的电流变化。
  5. 如权利要求4所述的仿真系统,其特征在于:所述电池模型包括温度模型,所述温度模型根据环境参数中的环境温度和计算出的电池电流变化信息计算出电池的温度变化。
  6. 如权利要求5所述的仿真系统,其特征在于:所述电池模型包括内阻模型,所述内阻模型根据无人机运行过程中环境温度和电池温度变化信息计算出电池的内阻变化信息。
  7. 如权利要求6所述的仿真系统,其特征在于:所述电池模型包括故障模型,所述故障模型用于根据所计算出的无人机运行过程中的电流变化、温度变化及内阻变化、环境参数及/或飞行任务或航迹规划计算无人机运行过程中电池出现不同故障的可能性。
  8. 如权利要求3所述的仿真系统,其特征在于:所述环境参数包括大气气压、温度、风速、风向、经度、纬度中的一种或几种。
  9. 如权利要求1所述的仿真系统,其特征在于:所述无人机状态信息和上一时刻的电池状态信息来源于与所述无人机通信连接的仿真装置。
  10. 如权利要求1所述的仿真系统,其特征在于:所述无人机的上一时刻的状态信息和上一时刻的电池状态信息来源于所述无人机上设置的传感器或所述无人机上用于记录运行状态信息的数据记录装置。
  11. 如权利要求1所述的仿真系统,其特征在于:所述仿真系统包括运动学模型,所述运动学模型根据无人机受到的外力计算无人机接下来的姿态位置信息。
  12. 如权利要求1所述的仿真系统,其特征在于:所述仿真系统包括传感器模型,所述传感器模型用于根据飞机的姿态位置信息计算出传感器数据。
  13. 如权利要求11所述的仿真系统,其特征在于:所述仿真系统包括噪声模型,所述噪声模型用于根据所述传感器模型计算出的传感器数据计算出噪声数据。
  14. 如权利要求1所述的仿真系统,其特征在于:所述仿真系统包括动力模型,所述动力模型根据电机转速和螺旋桨的各种系数计算出螺旋桨升力。
  15. 如权利要求1所述的仿真系统,其特征在于:所述仿真系统包括动力学模型,所述动力学模型根据飞机的类型以及每个桨的动力参数,计算整个飞机的动力参数。
  16. 如权利要求1所述的仿真系统,其特征在于:所述无人机的状态信息包括角度、角速度、速度、高度、姿态、航向、经度、纬度中的一种或几种。
  17. 一种无人机,包括飞行控制系统,其特征在于:所述飞行控制系统包括如权利要求1至16任一项所述的仿真系统。
  18. 如权利要求17所述的无人机,其特征在于:所述无人机包括动力装置,所述动力装置包括旋翼。
  19. 一种无人机仿真方法,用于对无人机的运行进行模拟,其特征在于:所述仿真方法包括:
    获取上一时刻的无人机的状态信息和上一时刻的电池状态信息;
    根据上一时刻的无人机的状态信息及上一时刻的电池状态信息计算下一时刻的电池状态信息;
    根据下一时刻电池状态信息计算下一时刻的无人机状态信息;及
    根据下一时刻电池状态信息及下一时刻无人机状态信息调整无人机运行任务。
  20. 如权利要求19所述的无人机仿真方法,其特征在于:还包括设置环境参数,所述环境参数包括大气气压、温度、风速、风向、经度、纬度中的一种或几种。
  21. 如权利要求19所述的无人机仿真方法,其特征在于:还包括设置无人机飞行任务或航迹规划,所述无人机根据该飞行任务或航迹规划自动飞行。
  22. 如权利要求19所述的无人机仿真方法,其特征在于:所述无人机状态信息和上一时刻的电池状态信息来源于与所述无人机通信连接的仿真装置。
  23. 如权利要求19所述的无人机仿真方法,其特征在于:所述无人机状态信息和上一时刻的电池状态信息来源于所述无人机上设置的传感器或所述无人机上用于记录运行状态信息的数据记录装置。
  24. 如权利要求19所述的无人机仿真方法,其特征在于:所述电池状态信息包括电池电流、电压、温度、内阻、容量中的一种或几种。
  25. 如权利要求19所述的无人机仿真方法,其特征在于:所述无人机的状态信息包括角度、角速度、速度、高度、姿态、航向、经度、纬度中的一种或几种。
  26. 如权利要求19所述的无人机仿真方法,其特征在于:所述“根据上一时刻的无人机的状态信息及上一时刻的电池状态信息计算下一时刻的电池状态信息”包括根据上一时刻的无人机状态信息及环境参数模拟计算出下一时刻无人机运行过程中电池的容量变化。
  27. 如权利要求26所述的无人机仿真方法,其特征在于:所述“根据上一时刻的无人机的状态信息及上一时刻的电池状态信息计算下一时刻的电池状态信息”包括根据所述容量模型计算出的容量变化与时间的比值模拟计算无人机运行过程中电池的电流变化。
  28. 如权利要求27所述的无人机仿真方法,其特征在于:所述“根据上一时刻的无人机的状态信息及上一时刻的电池状态信息计算下一时刻的电池状态信息”包括根据环境参数中的环境温度和计算出的电池电流变化信息计算出无人机运行过程中电池的温度变化。
  29. 如权利要求28所述的无人机仿真方法,其特征在于:所述“根据上一时刻的无人机的状态信息及上一时刻的电池状态信息计算下一时刻的电池状态信息”包括根据无人机运行过程中的环境温度和电池温度变化信息计算出电池的内阻变化信息。
  30. 如权利要求29所述的无人机仿真方法,其特征在于:所述“根据上一时刻的无人机的状态信息及上一时刻的电池状态信息计算下一时刻的电池状态信息”包括根据所计算出的无人机运行过程中的电流变化、温度变化及内阻变化、环境参数及/或飞行任务或航迹规划计算无人机运行过程中电池出现不同故障的可能性。
  31. 如权利要求19所述的无人机仿真方法,其特征在于:其中“根据下一时刻电池状态信息及下一时刻无人机状态信息调整无人机运行任务”为基于用户指令。
  32. 如权利要求19所述的无人机仿真方法,其特征在于:其中“根据下一时刻电池状态信息及下一时刻无人机状态信息调整无人机运行任务”为无人机根据飞行任务或航迹规划及下一时刻电池状态信息、下一时刻无人机状态信息自动进行。
  33. 一种无人机仿真方法,其特征在于,包括:
    显示仿真无人机的图像;
    获取用户的控制指令,并根据所述控制指令控制所述仿真无人机进行模拟仿真飞行;以及
    在所述仿真无人机的飞行过程中,实时显示所述仿真无人机的当前电量。
  34. 如权利要求33所述的无人机仿真方法,其特征在于:所述无人机仿真方法还包括:在显示仿真无人机的图像之前,获取所述仿真无人机的状态模型参数或/及所述仿真无人机的电池模型参数。
  35. 如权利要求34所述的无人机仿真方法,其特征在于:所述电池模型参数包括如下至少一种:电芯电压,电池设计容量,内阻,待机电流,初始温度,初始电量,充放电次数。
  36. 如权利要求34所述的无人机仿真方法,其特征在于:所述状态模型参数包括如下至少一种:电机的动力参数,螺旋桨的动力参数。
  37. 如权利要求34所述的无人机仿真方法,其特征在于:所述状态模型参数或/所述仿真无人机的电池模型参数通过手持装置的触摸显示屏或遥控器的操作件输入。
  38. 如权利要求34所述的无人机仿真方法,其特征在于:所述状态模型参数通过真实无人机的飞行控制系统中获取。
  39. 如权利要求34所述的无人机仿真方法,其特征在于:所述无人机仿真方法还包括:获取模拟飞行的环境参数,所述仿真无人机的飞行状态会受到所述模拟飞行的环境影响。
  40. 如权利要求39所述的无人机仿真方法,其特征在于:所述环境参数包括如下至少一种:风向,风力大小。
  41. 如权利要求33所述的无人机仿真方法,其特征在于:所述无人机仿真方法还包括:在显示仿真无人机的图像之前,获取所述仿真无人机上一时刻的状态信息或/及所述仿真无人机的电池上一时刻的状态信息。
  42. 如权利要求41所述的无人机仿真方法,其特征在于:所述仿真无人机的电池上一时刻的状态信息包括电池电流、电压、温度、内阻、容量中的一种或几种;所述仿真无人机的上一时刻的状态信息包括角度、角速度、速度、高度、姿态、航向、经度、纬度中的一种或几种。
  43. 如权利要求33所述的无人机仿真方法,其特征在于:所述无人机仿真方法还包括:在所述当前电量低于预设电量时,发出电量不足提示信息。
  44. 一种无人机仿真装置,其特征在于,所述无人机仿真装置包括:
    显示装置,用于显示仿真无人机的图像;
    输入装置,与所述显示装置通讯连接,所述输入装置用于供用户输入控制命令,以控制所述仿真无人机进行模拟仿真飞行;
    其中,在所述仿真无人机模拟仿真飞行过程中,所述显示装置实时显示所述仿真无人机的当前电量。
  45. 如权利要求44所述的无人机仿真装置,其特征在于:所述仿真无人机为真实无人机。
  46. 如权利要求44所述的无人机仿真装置,其特征在于:所述输入装置为遥控器或手持装置的触摸显示屏。
  47. 如权利要求44所述的无人机仿真装置,其特征在于:所述控制命令为仿真无人机的状态模型参数或/及所述仿真无人机的电池模型参数。
  48. 如权利要求47所述的无人机仿真装置,其特征在于:所述电池模型参数包括如下至少一种:电芯电压,电池设计容量,内阻,待机电流,初始温度,初始电量,充放电次数。
  49. 如权利要求47所述的无人机仿真装置,其特征在于:所述状态模型参数包括如下至少一种:电机的动力参数,螺旋桨的动力参数。
  50. 如权利要求44所述的无人机仿真装置,其特征在于:所述控制命令包括环境参数设置,所述环境参数影响所述仿真无人机的模拟仿真飞行。
  51. 如权利要求50所述的无人机仿真装置,其特征在于:所述环境参数包括大气气压、温度、风速、风向、经度、纬度中的一种或几种。
  52. 如权利要求44所述的无人机仿真装置,其特征在于:所述控制命令包括飞行任务或航迹规划,所述仿真无人机根据所述飞行任务或航迹规划自动进行模拟仿真飞行。
  53. 如权利要求44所述的无人机仿真装置,其特征在于:所述控制命令包括上一时刻仿真无人机的状态信息及/或上一时刻电池的状态信息。
  54. 如权利要求53所述的无人机仿真装置,其特征在于:所述电池状态信息包括电池电流、电压、温度、内阻、容量中的一种或几种。
  55. 如权利要求53所述的无人机仿真装置,其特征在于:所述仿真无人机的状态信息包括角度、角速度、速度、高度、姿态、航向、经度、纬度中的一种或几种。
PCT/CN2016/086796 2016-06-22 2016-06-22 无人机仿真系统、无人机仿真方法及无人机 WO2017219296A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/086796 WO2017219296A1 (zh) 2016-06-22 2016-06-22 无人机仿真系统、无人机仿真方法及无人机
CN201680004727.4A CN107438799B (zh) 2016-06-22 2016-06-22 无人机仿真系统、无人机仿真方法及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086796 WO2017219296A1 (zh) 2016-06-22 2016-06-22 无人机仿真系统、无人机仿真方法及无人机

Publications (1)

Publication Number Publication Date
WO2017219296A1 true WO2017219296A1 (zh) 2017-12-28

Family

ID=60458680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086796 WO2017219296A1 (zh) 2016-06-22 2016-06-22 无人机仿真系统、无人机仿真方法及无人机

Country Status (2)

Country Link
CN (1) CN107438799B (zh)
WO (1) WO2017219296A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456655A (zh) * 2019-06-29 2019-11-15 西南电子技术研究所(中国电子科技集团公司第十研究所) 微波着陆仿真模拟系统
CN110456663A (zh) * 2019-08-19 2019-11-15 哈尔滨工业大学 基于多源信息融合的飞行器导航控制技术仿真装置及方法
CN111142538A (zh) * 2020-01-08 2020-05-12 北京工商大学 一种水环境监测的无人船运行策略实时决策方法
CN111680365A (zh) * 2020-06-16 2020-09-18 郑州大学 一种联合CATIA与Amesim的飞机燃油箱油面变化特性仿真方法
CN111959819A (zh) * 2020-06-05 2020-11-20 江苏科技大学 一种多旋翼无人机算法验证与调参系统及其使用方法
CN112394649A (zh) * 2020-11-17 2021-02-23 中国人民解放军63892部队 一种基于分时复用的群无人机内通信行为控制平台
CN112572829A (zh) * 2020-12-03 2021-03-30 中国工程物理研究院总体工程研究所 无人机飞行模拟方法及系统
CN113022884A (zh) * 2019-12-25 2021-06-25 海鹰航空通用装备有限责任公司 无人机载荷试验仿真方法及系统
CN113110107A (zh) * 2021-04-29 2021-07-13 北京三快在线科技有限公司 无人机飞行控制仿真系统、设备及存储介质
CN113360276A (zh) * 2021-04-15 2021-09-07 北京航空航天大学 一种基于健康状态的无人机系统任务规划方法及装置
CN113433836A (zh) * 2021-06-01 2021-09-24 中国航空工业集团公司沈阳飞机设计研究所 一种无人机半物理集成验证平台
CN113449238A (zh) * 2020-03-24 2021-09-28 丰翼科技(深圳)有限公司 无人机安全运行方法、装置、电子设备及存储介质
CN113917854A (zh) * 2021-10-18 2022-01-11 北京航空航天大学 一种面向大中型无人机的飞行控制系统半物理仿真平台
CN114063474A (zh) * 2021-12-03 2022-02-18 北京航空航天大学 一种无人机集群的半物理仿真系统
CN115291536A (zh) * 2022-07-06 2022-11-04 西北工业大学 基于视觉的无人机跟踪地面目标半物理仿真平台验证方法
CN118503642A (zh) * 2024-07-17 2024-08-16 广东东联信创信息技术有限公司 数字化数据治理方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508915A (zh) * 2018-04-02 2018-09-07 沈阳航空航天大学 一种多旋翼飞行器自动控制系统及其控制方法
CN109240129A (zh) * 2018-11-28 2019-01-18 湖北安心智能科技有限公司 一种面向操作的无人机模拟仿真显控系统
CN109696915B (zh) * 2019-01-07 2022-02-08 上海托华机器人有限公司 一种测试方法和系统
CN112506046B (zh) * 2020-10-09 2022-04-29 北京航空航天大学 一种针对翼尖铰接组合式飞行平台的增稳控制方法
CN112230568A (zh) * 2020-11-06 2021-01-15 北京航空航天大学 一种无人机仿真系统、仿真方法及无人机
CN112379290B (zh) * 2020-12-10 2024-09-13 中国南方电网有限责任公司超高压输电公司柳州局 一种无人机动力电池续航能力检测方法与装置
CN112230671B (zh) * 2020-12-13 2021-03-16 深圳联和智慧科技有限公司 一种基于智慧灯杆的无人机返航监控方法及控制中心
CN113009935B (zh) * 2021-05-24 2021-09-10 北京三快在线科技有限公司 无人机仿真测试系统及方法,无人机飞行控制器
CN113467271A (zh) * 2021-05-25 2021-10-01 中国航空工业集团公司沈阳飞机设计研究所 一种飞机电环控系统热仿真方法
US11393355B1 (en) 2021-07-13 2022-07-19 Beta Air, Llc System for flight simulation of an electric aircraft
CN113487915B (zh) * 2021-09-06 2021-11-16 江苏启航航空科技有限公司 一种基于无人机飞行服务监管系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121587A1 (en) * 2006-11-30 2010-05-13 The Boeing Company Health Management of Rechargeable Batteries
CN102354123A (zh) * 2011-07-18 2012-02-15 北京航空航天大学 一种跨平台可扩展的卫星动态仿真测试系统
CN103336913A (zh) * 2013-07-25 2013-10-02 哈尔滨工业大学 一种适合于空间锂离子电池状态监测和截止电压预测的方法
CN103632018A (zh) * 2013-12-24 2014-03-12 山东大学 一种基于Simscape平台的电池建模方法
CN103915659A (zh) * 2013-01-08 2014-07-09 通用汽车环球科技运作有限责任公司 用以获得和使用电池系统中的温度信息的系统及方法
CN105676672A (zh) * 2016-01-06 2016-06-15 西北工业大学 扑翼飞行器复合飞行策略仿真建模方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566441A (zh) * 2011-12-29 2012-07-11 成都飞机工业(集团)有限责任公司 用于无人机的可视仿真试验系统
US9646114B2 (en) * 2013-07-10 2017-05-09 The Boeing Company Electrical power system stability
CN103488179A (zh) * 2013-09-18 2014-01-01 航天科工深圳(集团)有限公司 无人机飞行模拟系统及模拟方法
MX2013013663A (es) * 2013-11-12 2015-05-11 Tarida Innovations S A De C V Dispositivo mecanico para emulacion de vuelo de vehiculos aereos no tripulados.
CN103869255B (zh) * 2014-03-18 2016-06-15 南京航空航天大学 微小型电动无人机续航时间估算方法
CN105608952B (zh) * 2016-03-24 2018-01-02 上海交通大学 基于无人机的飞行模拟训练系统及其飞行模拟方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121587A1 (en) * 2006-11-30 2010-05-13 The Boeing Company Health Management of Rechargeable Batteries
CN102354123A (zh) * 2011-07-18 2012-02-15 北京航空航天大学 一种跨平台可扩展的卫星动态仿真测试系统
CN103915659A (zh) * 2013-01-08 2014-07-09 通用汽车环球科技运作有限责任公司 用以获得和使用电池系统中的温度信息的系统及方法
CN103336913A (zh) * 2013-07-25 2013-10-02 哈尔滨工业大学 一种适合于空间锂离子电池状态监测和截止电压预测的方法
CN103632018A (zh) * 2013-12-24 2014-03-12 山东大学 一种基于Simscape平台的电池建模方法
CN105676672A (zh) * 2016-01-06 2016-06-15 西北工业大学 扑翼飞行器复合飞行策略仿真建模方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456655A (zh) * 2019-06-29 2019-11-15 西南电子技术研究所(中国电子科技集团公司第十研究所) 微波着陆仿真模拟系统
CN110456663A (zh) * 2019-08-19 2019-11-15 哈尔滨工业大学 基于多源信息融合的飞行器导航控制技术仿真装置及方法
CN113022884A (zh) * 2019-12-25 2021-06-25 海鹰航空通用装备有限责任公司 无人机载荷试验仿真方法及系统
CN111142538B (zh) * 2020-01-08 2023-03-24 北京工商大学 一种水环境监测的无人船运行策略实时决策方法
CN111142538A (zh) * 2020-01-08 2020-05-12 北京工商大学 一种水环境监测的无人船运行策略实时决策方法
CN113449238B (zh) * 2020-03-24 2023-04-25 丰翼科技(深圳)有限公司 无人机安全运行方法、装置、电子设备及存储介质
CN113449238A (zh) * 2020-03-24 2021-09-28 丰翼科技(深圳)有限公司 无人机安全运行方法、装置、电子设备及存储介质
CN111959819A (zh) * 2020-06-05 2020-11-20 江苏科技大学 一种多旋翼无人机算法验证与调参系统及其使用方法
CN111959819B (zh) * 2020-06-05 2022-08-16 江苏科技大学 一种多旋翼无人机算法验证与调参系统及其使用方法
CN111680365A (zh) * 2020-06-16 2020-09-18 郑州大学 一种联合CATIA与Amesim的飞机燃油箱油面变化特性仿真方法
CN111680365B (zh) * 2020-06-16 2023-03-17 郑州大学 一种联合CATIA与Amesim的飞机燃油箱油面变化特性仿真方法
CN112394649A (zh) * 2020-11-17 2021-02-23 中国人民解放军63892部队 一种基于分时复用的群无人机内通信行为控制平台
CN112394649B (zh) * 2020-11-17 2022-08-30 中国人民解放军63892部队 一种基于分时复用的群无人机内通信行为控制平台
CN112572829A (zh) * 2020-12-03 2021-03-30 中国工程物理研究院总体工程研究所 无人机飞行模拟方法及系统
CN113360276B (zh) * 2021-04-15 2022-09-27 北京航空航天大学 一种基于健康状态的无人机系统任务规划方法及装置
CN113360276A (zh) * 2021-04-15 2021-09-07 北京航空航天大学 一种基于健康状态的无人机系统任务规划方法及装置
CN113110107A (zh) * 2021-04-29 2021-07-13 北京三快在线科技有限公司 无人机飞行控制仿真系统、设备及存储介质
CN113433836A (zh) * 2021-06-01 2021-09-24 中国航空工业集团公司沈阳飞机设计研究所 一种无人机半物理集成验证平台
CN113433836B (zh) * 2021-06-01 2023-11-28 中国航空工业集团公司沈阳飞机设计研究所 一种无人机半物理集成验证平台
CN113917854A (zh) * 2021-10-18 2022-01-11 北京航空航天大学 一种面向大中型无人机的飞行控制系统半物理仿真平台
CN113917854B (zh) * 2021-10-18 2024-04-12 北京航空航天大学 一种面向大中型无人机的飞行控制系统半物理仿真平台
CN114063474A (zh) * 2021-12-03 2022-02-18 北京航空航天大学 一种无人机集群的半物理仿真系统
CN114063474B (zh) * 2021-12-03 2023-06-06 北京航空航天大学 一种基于无人机集群的半物理仿真系统的仿真方法
CN115291536A (zh) * 2022-07-06 2022-11-04 西北工业大学 基于视觉的无人机跟踪地面目标半物理仿真平台验证方法
CN115291536B (zh) * 2022-07-06 2024-04-19 西北工业大学 基于视觉的无人机跟踪地面目标半物理仿真平台验证方法
CN118503642A (zh) * 2024-07-17 2024-08-16 广东东联信创信息技术有限公司 数字化数据治理方法及系统

Also Published As

Publication number Publication date
CN107438799A (zh) 2017-12-05
CN107438799B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2017219296A1 (zh) 无人机仿真系统、无人机仿真方法及无人机
JP7157116B2 (ja) バッテリー及びバッテリー付き無人機
US11721995B2 (en) Battery management system
US20200277080A1 (en) Systems and methods for in-flight operational assessment
CN204250368U (zh) 一种智能航拍的迷你四旋翼飞行器
CN110244753B (zh) 风速测算方法及无人机
US20210070457A1 (en) Methods and systems for altering power during flight
WO2020156079A1 (zh) 一种飞行器电池监控方法、装置、电池及飞行器
CN111694376B (zh) 飞行模拟方法、装置、电子设备及无人机
CN110427047A (zh) 风速测算方法、风速估算器及无人机
CN207752682U (zh) 一种新能源电动汽车动力电池教学实验系统
CN202068445U (zh) 一种移动监控系统
CN205121332U (zh) 基于上位机调控与显示的四旋翼飞行器
WO2017185363A1 (zh) 无人飞行器的控制方法、装置及系统
KR20130096443A (ko) 태양 에너지 기반의 무인 항공기의 가상 비행 평가 시스템
CN109592045A (zh) 一种无人机应急开伞方法、装置、电子设备和介质
CN112034890B (zh) 无人机人机协同控制系统
CN105549609A (zh) 微型六轴飞行器及其构成的机群控制系统和控制方法
CN212980569U (zh) 一种用于直升机旋翼飞行力学建模的试验系统
Gamulescu et al. THE SELF-PILOTING FUNCTION OF A MULTICOPTER.
CN116625379B (zh) 无人机及其返航电量调整方法、装置、飞行控制器
Dantsker et al. SDAC-UAS: A sensor data acquisition unmanned aerial system for flight state monitoring and aerodynamic data collection
Wu et al. Design of quadrotor unmanned aerial vehicle
CN106886226A (zh) 一种无人机系统
Eikeland Development of a miniaturized drone for indoor climate monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905838

Country of ref document: EP

Kind code of ref document: A1