WO2017217765A1 - Ship having plurality of storage tanks for carrying fluid - Google Patents

Ship having plurality of storage tanks for carrying fluid Download PDF

Info

Publication number
WO2017217765A1
WO2017217765A1 PCT/KR2017/006209 KR2017006209W WO2017217765A1 WO 2017217765 A1 WO2017217765 A1 WO 2017217765A1 KR 2017006209 W KR2017006209 W KR 2017006209W WO 2017217765 A1 WO2017217765 A1 WO 2017217765A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
length
ship
capacity
waterline
Prior art date
Application number
PCT/KR2017/006209
Other languages
French (fr)
Korean (ko)
Inventor
이동대
이정훈
이병록
류홍렬
한범우
손익휘
천중혁
임지윤
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to JP2018565776A priority Critical patent/JP6899850B2/en
Priority to CN201780037221.8A priority patent/CN109415108A/en
Priority to KR1020177034361A priority patent/KR20180006620A/en
Publication of WO2017217765A1 publication Critical patent/WO2017217765A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/56Bulkheads; Bulkhead reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/02Arrangement of bulkheads, e.g. defining cargo spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/62Double bottoms; Tank tops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a ship.
  • liquefied gas such as liquefied natural gas (Liquefied Natural Gas; LNG) and liquefied petroleum gas (Liquefied Petroleum Gas) has been widely used in place of gasoline or diesel.
  • LNG is liquefied by cooling the methane obtained by purifying the natural gas collected from the gas field. It is a colorless and transparent liquid.
  • LPG is a liquid fuel made by compressing a gas mainly composed of propane (C 3 H 8 ) and butane (C 4 H 10 ), which come with oil from an oil field, at room temperature.
  • LPG like LNG, is colorless and odorless and is widely used as fuel for household, business, industrial, and automotive applications.
  • the liquefied gas is stored in a liquefied gas storage tank installed on the ground or in a liquefied gas storage tank provided in a vehicle that navigates the ocean.
  • LNG is reduced to 1/600 by liquefaction, and LPG
  • propane is reduced to 1/260 and butane to 1/230, which is advantageous in that storage efficiency is high.
  • LNG is obtained by cooling natural gas to cryogenic temperatures (approximately -163 ° C), and its volume is reduced to approximately 1/600 of that of natural gas in gaseous form. Suitable.
  • LNGC or LPGC for unloading LNG or LPG to land demand by operating the sea with LNG or LPG, or offshore structures that float at a certain point in the sea for purposes other than the transportation of LNG.
  • Floating Storage Regasification Unit to store and vaporize
  • LNG-FPSO Floating Liquid Natural Gas Plant
  • FPSO Floating
  • LPG floating state at sea
  • Production Storage Offloading includes a storage tank for storing LNG or LPG (also called a cargo hold).
  • These storage tanks can be classified into independent type and membrane type according to whether the load of the cargo directly acts on the insulation.
  • the membrane type storage tank is NO 96 type and Mark III.
  • Type, and standalone storage tanks are divided into MOSS type and SPB type.
  • ships up to 60K class to 220K class are installed with four storage tanks, which will be described with reference to FIGS. 1 to 3 and 14.
  • Figure 1 is a side view for explaining a vessel according to the first embodiment
  • Figure 2 is a cross-sectional view taken along the line A-A 'to explain the foremost storage tank of Figure 1
  • Figure 3 is the foremost of Figure 1 Sectional view taken along line B-B 'to explain storage tanks other than storage tanks.
  • the frontmost storage tank 110 installed on the bow portion 101 side is sloshed. Due to the large number of influences are produced in a relatively small size, for example, the length of the foremost storage tank 110 is limited to 13% of the length between the length (Length Between Perpendiculars; LBP), the front storage tank ( 120, the length of each of the intermediate storage tank 130 and rear storage tank 140 is limited to 17% of the length of the waterline.
  • LBP Length Between Perpendiculars
  • the frontmost storage tank 110 due to the nature of the streamlined ship is also narrow in width of the tank can be loaded about half of the capacity of each of the remaining three storage tanks (120, 130, 140). It is made to be.
  • the foremost storage tank 110 installed on the bow portion 101 side has a capacity of 25,000m 3 , and is sequentially from the foremost storage tank 110 to the stern portion 102 side.
  • the remaining three storage tanks (120, 130, 140) are installed to have a capacity of 50,000 m 3 .
  • FIG. 14 is a side view for explaining a ship having four storage tanks according to the second embodiment.
  • the ship 400 has four storage tanks 410, 420, 430, and 440 installed therein, and the bow portion 401 is selected from the four storage tanks 410, 420, 430, and 440. Since the front storage tank 410 installed on the side is affected by sloshing much, the remaining three storage tanks 420 are manufactured in a relatively small size and arranged from the front storage tank 410 to the stern portion 402 side. , 430 and 440 are manufactured to a relatively large size. For example, the length of one front storage tank 410 is 13% of the length between perpendiculars (LBP) which is a horizontal distance between the fore perpendicular (FP) and the after perpendicular (AP).
  • LBP perpendiculars
  • FP fore perpendicular
  • AP after perpendicular
  • each of the two intermediate storage tanks 420 and 430 and the one rear storage tank 440 is limited to 17% of the interline length LBP.
  • the front storage tank 410 is manufactured to load about half of the remaining three storage tanks (420, 430, 440) by narrowing the width of the storage tank in the nature of the streamlined ship.
  • the engine room 450 is provided on the stern portion 402 side, and the fuel tank 460 for supplying fuel to the engine provided in the engine room 450 has a bow portion 3401 side. Is installed on.
  • Engine room 450 is generally provided on the stern portion 402 side to facilitate power transmission and control to the propulsion device, the fuel tank 460 is stern portion 402 side to be located close to the engine room 450 It is preferable to install in the four storage tanks (410, 420, 430, 440) due to the position of the front storage tank 410 is long due to the overall length occupied by a long sloshing effect is installed on the bow portion 401 side It is common to do
  • BOR Bit Off Rate
  • the existing vessel 100 is the size of the foremost storage tank 110 installed on the bow portion 101 side to minimize the effect of sloshing of the remaining three storage tanks (120, 130, 140) of the capacity Although it is manufactured to be able to load about half, there is a limit in minimizing the effect of sloshing because the width of the tank is narrow due to the characteristics of the streamlined ship, which causes damage to the tank structure due to sloshing and gas leakage. And there is a problem that the amount of BOG generation increases.
  • the existing vessel 400 installs four storage tanks 410, 420, 430, and 440, it is difficult to secure a space between the engine room 450 and the rear storage tank 440, thereby making it relatively easy to secure space.
  • the fuel tank 460 can only be installed on the bow portion 401 side, there is a problem in that the air supply and material cost are excessively required as a fuel supply system must be constructed from the bow portion 401 side to the stern portion 402 side.
  • the present invention has been created to solve the problems of the prior art as described above, the object of the present invention, compared to the existing vessels, the foremost storage tank 7,000m 3 to 10,000m without change in the ship size and the total capacity of liquefied gas while size reduction such that the capacity of the three remaining three storage tanks in by limiting setting the capacity to store the remaining liquefied gas, for providing a vessel to further reduce, as well as reducing the volume compared to surface area of the sloshing phenomenon can be reduced BOR will be.
  • the cross-sectional shape of the foremost storage tank installed on the bow side can be produced in an octagonal shape that is optimized for the sloshing phenomenon, to prevent damage to the tank structure by the sloshing, preventing gas leakage and BOR further It is to provide a vessel that can be reduced.
  • an object of the present invention by manufacturing the forefront storage tank to have a capacity of 7,000m 3 to 10,000m 3 of one-way fuel consumption, when used for liquefied gas storage with other storage tanks when liquefied gas transportation, After gas transportation, it is intended to provide a vessel that can be used to cool down the propulsion fuel or tank required for one-way operation.
  • an object of the present invention is to reduce the BOR by reducing the total surface area of the storage tank by reducing the number of storage tanks without changing the vessel size and the total liquefied gas loading capacity compared to the existing vessel equipped with four storage tanks, It is to provide a ship that can be made.
  • an object of the present invention is to provide a ship that can reduce the manufacturing cost of the storage tank by reducing the number of storage tanks, compared to the existing vessel provided with four storage tanks.
  • an object of the present invention by reducing the number of storage tanks compared to the existing vessels provided with four storage tanks, by increasing the height and reducing the total length so that there is no change in the total storage capacity of the liquefied gas of the storage tank, To provide a ship that can increase the space utilization of the bow or stern.
  • an object of the present invention is to arrange the front storage tank installed on the bow side closer to the center of the movement of the vessel compared to the case where the existing four storage tanks are installed, thereby reducing the sloshing phenomenon of the front storage tank. It is to provide shipping.
  • an object of the present invention is to provide a vessel that can simplify the fuel supply system by installing a fuel tank by securing a free space between the engine room and the rear storage tank installed on the stern side.
  • an object of the present invention is to provide a double stool or inclined plate having a configuration suitable for stress distribution so as to be lower than the maximum allowable stress specified in the double bottom at the joint portion of the transverse bulkhead and the double bottom where the stress distribution is highest. It is to provide a vessel that can reduce the thickness of the ship to reduce the overall height of the vessel.
  • a vessel including a foremost storage tank, a front storage tank, an intermediate storage tank, and a rear storage tank, wherein the foremost storage tank has a capacity corresponding to one-way fuel consumption among the total liquefied gas loading capacity.
  • the front storage tank, the intermediate storage tank and the rear storage tank is characterized in that it is manufactured to have a remaining capacity of the total storage capacity of the liquefied gas except the capacity of the foremost storage tank.
  • the foremost storage tank may be manufactured to have a capacity of 7,000m 3 to 10,000m 3 of the total liquefied gas loading capacity.
  • the foremost storage tank may have an octagonal shape whose cross-sectional shape is optimized for a sloshing phenomenon.
  • the foremost storage tank may be used for liquefied gas storage when transporting liquefied gas, and may also be used for propulsion fuel supply or cool down of a tank required for one-way operation after liquefied gas transport.
  • each of the front storage tank, the intermediate storage tank and the rear storage tank may be manufactured in an octagonal shape in which the cross-sectional shape is optimized for a sloshing phenomenon.
  • the front storage tank may be manufactured to have a capacity larger than that of the foremost storage tank and smaller than that of the intermediate storage tank or the rear storage tank.
  • the vessel may be any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas Plant (FLNG), Floating Production Storage Offloading (FPSO).
  • FSRU Floating Storage Regasification Unit
  • FLNG Floating Liquid Natural Gas Plant
  • FPSO Floating Production Storage Offloading
  • a ship includes three storage tanks including a front storage tank, an intermediate storage tank, and a rear storage tank, which are sequentially installed at a predetermined distance from the bowline; An engine room provided at the stern side; And a fuel tank for storing fuel supplied to an engine of the engine room, wherein the fuel tank is disposed in a forward space of the three storage tanks forward to secure a space between the rear storage tank and the engine room. It is characterized by being installed.
  • the three storage tanks the total length is 43% to 60% of the length between the waterline, can be arranged to move forward at least 4% of the length between the waterline.
  • the vessel may be any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas Plant (FLNG), Floating Production Storage Offloading (FPSO).
  • FSRU Floating Storage Regasification Unit
  • FLNG Floating Liquid Natural Gas Plant
  • FPSO Floating Production Storage Offloading
  • the length is 10% to 20% of the length between the waterline, the front storage tank is installed at a predetermined distance away from the foreline; A rear storage tank having a length of 15% to 25% of the length of the waterline and installed at a predetermined distance from the stern waterline; And the length is 15% to 25% of the length between the repair, characterized in that three storage tanks are provided, including an intermediate storage tank installed between the front storage tank and the rear storage tank.
  • the front storage tank may be installed with a front end positioned at a position 10% to 25% of the length between the repairs in the bow repair.
  • each of the three storage tanks the height may be 11% to 15% of the length between the waterline.
  • the front storage tank has a volume ratio of 16% to 33.3%
  • each of the intermediate storage tank and the rear storage tank has a volume ratio of 30% with respect to the total load capacity of the three storage tanks. To 45%.
  • the length and volume ratio of the front storage tank is limited to 13% of the length between the waterline and 18% of the total load capacity
  • the length and volume ratio of each of the intermediate storage tank and the rear storage tank are the lengths of the length between the waterline. 20% and 41% of the total loading capacity
  • the height of each of the three storage tanks can be limited to 12.5% of the length between the waterline.
  • the length and volume ratio of the front storage tank is limited to 17% of the length between the waterline and 26% of the total load capacity
  • the length and volume ratio of each of the intermediate storage tank and the rear storage tank are the lengths of the length between the waterline.
  • the height of each of the three storage tanks may be limited to 13.25% of the length between the waterline and limited to 17% and 37% of the total loading capacity.
  • the length and volume ratio of the front storage tank is limited to 15% of the length between the waterline and 23% of the total load capacity
  • the length and volume ratio of each of the intermediate storage tank and the rear storage tank are the lengths of the length between the waterline.
  • the height of each of the three storage tanks can be limited to 13.85% of the length between the waterline and limited to 17% and 38.5% of the total loading capacity.
  • the vessel may be any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas Plant (FLNG), Floating Production Storage Offloading (FPSO).
  • FSRU Floating Storage Regasification Unit
  • FLNG Floating Liquid Natural Gas Plant
  • FPSO Floating Production Storage Offloading
  • the front storage tank which is installed at a predetermined distance away from the foreline;
  • a rear storage tank installed at a predetermined distance from the stern water line;
  • three storage tanks including an intermediate storage tank installed between the front storage tank and the rear storage tank, wherein the three storage tanks have four storage tanks while maintaining the total liquefied gas loading capacity. It is characterized in that the BOR is reduced by reducing the total surface area by providing only the storage tank.
  • each of the three storage tanks may have the same length, height, and volume ratio.
  • each of the intermediate storage tank and the rear storage tank has the same length, height, and volume ratio
  • the front storage tank has a shorter length and a smaller volume ratio than the intermediate storage tank and the rear storage tank, respectively. Can be.
  • each of the three storage tanks, length, height, volume ratio may be different.
  • the front storage tank may have a shape that narrows toward the bow.
  • the front storage tank may be installed with a front end positioned at a position 10% to 25% of the length between the repairs in the bow repair.
  • the vessel may be any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas Plant (FLNG), Floating Production Storage Offloading (FPSO).
  • FSRU Floating Storage Regasification Unit
  • FLNG Floating Liquid Natural Gas Plant
  • FPSO Floating Production Storage Offloading
  • the vessel according to the present invention compared to the existing vessels, the remaining liquefied gas in the remaining three storage tanks while miniaturizing the front storage tank to a capacity of 7,000m 3 to 10,000m 3 without changing the vessel size and the total gas capacity of liquefied gas
  • the sloshing phenomenon can be further reduced and the BOR can be reduced by reducing the surface area to volume.
  • the ship according to the present invention can be produced in an octagonal shape in which the cross-sectional shape of the foremost storage tank installed on the bow side is optimized for the sloshing phenomenon, thereby preventing damage to the tank structure due to sloshing, preventing gas leakage and BOR. It can further reduce.
  • the ship according to the present invention by manufacturing the foremost storage tank to have a capacity of 7,000m 3 to 10,000m 3 of one-way fuel consumption, when used for liquefied gas storage with other storage tanks when liquefied gas transportation, After liquefied gas transportation, it can be used not only for supplying the propulsion fuel required for one-way operation but also for cooling down the tank.
  • the vessel according to the present invention can reduce the total surface area of the storage tank by reducing the number of storage tanks without a significant change in the vessel size and the total liquefied gas loading capacity as compared to the existing vessel having four storage tanks. Can reduce the BOR and reduce the manufacturing cost of the storage tank.
  • the vessel according to the present invention can reduce the BOR compared to the existing vessel equipped with four storage tanks, so that no additional configuration (reliquefaction apparatus, GCU, other lines, etc.) for the BOG treatment is required or minimized This can reduce labor and construction costs.
  • the ship according to the present invention by reducing the number of storage tanks compared to the existing vessels provided with four storage tanks, by increasing the height and reducing the overall length so that the total liquefied gas loading capacity of the storage tank is not changed
  • the space utilization of the bow or stern may be increased.
  • the ship according to the present invention by placing the front storage tank installed on the bow side closer to the center of the movement of the vessel compared to the case where the existing four storage tanks, it is possible to reduce the sloshing phenomenon of the front storage tank. .
  • the vessel according to the present invention by installing a fuel tank by securing a free space between the engine room and the rear storage tank installed on the stern side, it is possible to simplify the fuel supply system, the air supply according to the fuel supply system construction And material cost can be reduced.
  • the ship according to the present invention by installing a lower stool or inclined plate having a configuration suitable for stress distribution to be lower than the maximum allowable stress prescribed in the double bottom at the joint portion of the transverse bulkhead and the double bottom where the stress distribution is the highest, As the thickness of the double bottom can be reduced, the overall height of the vessel can be reduced, and the stability of the six-way movement of the vessel can be further secured by increasing the height of the storage tank so that the total amount of liquefied gas is not changed compared to the existing vessel. Can be.
  • FIG. 1 is a side view for explaining a vessel according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA ′ to describe the foremost storage tank of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line B-B 'to explain storage tanks other than the foremost storage tank of FIG.
  • FIG 4 is a side view for explaining a vessel according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line CC ′ in order to explain the foremost storage tank of FIG. 4.
  • FIG. 6 is a cross-sectional view taken along line D-D ′ to explain storage tanks other than the foremost storage tank of FIG. 4.
  • FIG. 7 is a side view for explaining a ship having three storage tanks according to a second embodiment of the present invention.
  • FIG. 8 is a side view for explaining a ship having three storage tanks according to a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line AA ′ in order to describe the shape of the front storage tank of FIG. 7.
  • FIG. 10 is a cross-sectional view taken along line BB ′ in order to describe the shape of the front storage tank of FIG. 8.
  • FIG. 11 is an enlarged view of a portion 'C' to explain a coupling structure of the transverse bulkhead and the double bottom of FIG. 7 or 8.
  • FIG. 12 is an enlarged view for explaining an external shape of a corner portion of a storage tank located at a coupling portion of a transverse bulkhead and a double bottom in FIG. 11.
  • FIG. 13 is an enlarged view of a portion 'C' to explain another coupling structure of the transverse bulkhead and the double bottom of FIG. 7 or 8.
  • FIG. 14 is a side view for explaining a ship having four storage tanks according to the second embodiment.
  • Figure 4 is a side view for explaining the vessel according to the first embodiment of the present invention
  • Figure 5 is a cross-sectional view taken along the line C-C 'to explain the foremost storage tank of Figure 4
  • Figure 6 This is a cross-sectional view taken along the line D-D 'to explain storage tanks other than the foremost storage tank.
  • a vessel described below is a vessel including a storage tank for storing liquefied gas (also referred to as a cargo hold), and a commercial vessel for transporting cargo from a source to a destination, such as LNGC or LPGC.
  • a storage tank for storing liquefied gas
  • LNGC or LPGC liquefied gas
  • Offshore structures that float at specific points in a specific area, for example, floating storage regasification units (FSRUs) to store and vaporize liquefied gases, and floating liquid natural gas plants (FLNGs) to produce, store and unload liquefied gases.
  • FPSO floating storage regasification units
  • FLNGs floating liquid natural gas plants
  • liquefied gas may be used as a meaning encompassing generally stored in a liquid state, such as LNG or LPG, ethylene, ammonia, and the like.
  • the ship 200 according to the first embodiment of the present invention, the front storage tank 210, the front storage tank 220, the intermediate storage tank 230, the rear storage tank And 240.
  • Storage tanks 210, 220, 230, 240 installed in the vessel 200 may be of the NO 96 type, Mark III type as a membrane type, and may be an SPB type as a stand-alone type.
  • the vessel 200 may be a vessel having no change in the vessel size and the total liquefied gas loading capacity compared to the existing vessel (not shown) from 60K class to 220K class where four storage tanks are installed.
  • the line width can be increased to ensure stability, and the drainage is maintained at the same level by reducing the square scale factor (Cb).
  • the vessel 200 is described as having a total amount of liquefied gas loading of 60K to 220K class, the present invention is not limited to this, the total amount of liquefied gas loading or less than 60K to 220K class ship Of course, it may include 200.
  • the frontmost storage tank 210 is installed on the bow 201 side, and manufactured to have a capacity corresponding to the one-way fuel consumption of the vessel 200 among the total liquefied gas loading capacity, for example, 7,000 m 3 to 10,000 m. It can be manufactured in miniaturization to have a capacity of 3 .
  • the foremost storage tank 210 may be manufactured in an octagonal shape in which the cross-sectional shape is optimized for a sloshing phenomenon, preferably in a regular octagonal shape. This is because the foremost storage tank 210 is manufactured in a compact size with a capacity of 7,000m 3 to 10,000m 3 , unlike the cross-sectional shape of the existing foremost storage tank 110 shown in FIG. Can be free from characteristics.
  • limiting the capacity of the foremost storage tank 210 to 7,000 m 3 to 10,000 m 3 is to take into account the one-way fuel consumption of the vessel 200 in the general route, thereby liquefying the foremost storage tank 210
  • it can be used for storing liquefied gas together with other storage tanks (220, 230, 240), and as a fuel supply for propulsion fuel required for one-way operation after liquefied gas transportation, as well as for cooling down the tank. Can also be used as.
  • the front storage tank 220, the intermediate storage tank 230 and the rear storage tank 240 may be sequentially installed from the foremost storage tank 210 to the stern portion 202, and may be stored at the forefront in the total liquefied gas loading capacity. Except for the capacity of the tank 210 may be produced in a capacity to store the remaining liquefied gas.
  • Each of the front storage tank 220, the intermediate storage tank 230, and the rear storage tank 240 may be manufactured in an octagonal shape in which a cross-sectional shape is optimized for a sloshing phenomenon.
  • each of the front storage tank 220, the intermediate storage tank 230 and the rear storage tank 240 may be manufactured to have the same capacity, but the front storage tank 220 is the intermediate storage tank 230 or the rear Since it is installed closer to the bow portion 201 side than the storage tank 240, it may be desirable to have a small capacity to reduce the sloshing phenomenon.
  • the front storage tank 220 is of course manufactured to have a larger capacity than the foremost storage tank 210.
  • the foremost storage tank 210 has a capacity of 7,000m 3
  • the front storage tank 220 has a capacity of 54,000m 3
  • the intermediate storage tank 230 has a capacity of 57,000m 3
  • Has a rear storage tank 240 can be manufactured to have a capacity of 57,000m 3 .
  • the vessel 200 needs to store 70% or more of the liquefied gas in all storage tanks 210, 220, 230, and 240 (the sloshing phenomenon is increased within the range of 10% to 70%) during liquefied gas transportation.
  • the flight will take place.
  • the frontmost storage tank 210 Liquefied gas only to provide fuel for one-way operation or cool down the tank.
  • the liquefied gas of the foremost storage tank 210 is reduced as it is used as a propulsion fuel, so that sloshing may occur excessively, but as described above, since it is manufactured in a compact and optimized shape for sloshing, The load caused is not so large as to damage the tank structure.
  • FIG. 7 is a side view illustrating a vessel having three storage tanks according to the first embodiment of the present invention
  • FIG. 8 illustrates a vessel having three storage tanks according to the second embodiment of the present invention
  • 9 is a cross-sectional view taken along line A-A 'to illustrate the shape of the front storage tank of FIG. 7
  • FIG. 10 is a cross-sectional view taken along the line B-B' to explain the shape of the front storage tank of FIG. 8.
  • FIG. 11 is a cross-sectional view taken along a line
  • FIG. 11 is an enlarged view of part 'C' to explain the coupling structure of the transverse bulkhead and the double bottom of FIG. 1 or 8, and
  • FIG. It is an enlarged view for explaining the external shape of the corner part of the storage tank located in the part
  • FIG. 13 is an enlarged view of the 'C' part to explain another coupling structure of the transverse bulkhead and double bottom of FIG. 7 or 8. .
  • the vessel described below is a vessel including a storage tank for storing liquefied gas (also referred to as 'cargo'), a commercial vessel for transporting cargo from the origin to the destination, for example, in addition to LNGC, LPGC Offshore structures that float at specific points in a specific area, for example, floating storage regasification units (FSRUs) to store and vaporize liquefied gases, and floating liquid natural gas plants (FLNGs) to produce, store and unload liquefied gases.
  • FPSO floating storage regasification units
  • FLNGs floating liquid natural gas plants
  • liquefied gas may be used as a meaning encompassing generally stored in a liquid state, such as LNG or LPG, ethylene, ammonia, and the like.
  • the ship 300 As shown in Fig. 12 to 7 to 12, the ship 300 according to the first or second embodiment of the present invention, 60K class to 220K class, the storage tank unit 310, the engine room 320
  • the fuel tank 330, the transverse bulkhead 340, the lower stool 350, the double bottom 360, and the steel structure 370 may be configured.
  • 'vertical section', 'cross-section', 'vertical', 'lateral', 'long' refers to the longitudinal direction of the vessel 300
  • 'lateral' refers to the width direction of the vessel 300. .
  • the vessel 300 is described as having a total liquefied gas loading capacity of 60K class to 220K class, the present invention is not limited to this, but the total liquefied gas loading capacity of the 60K class or less than 220K class range or more ship Of course, it may include 300.
  • Ship 300 of the present embodiment four storage tanks (410, 420, 430, 440) is installed three storage tanks (310a, 310b, 310c) of the same or similar to the existing vessel 400 is installed While reducing the total surface area of the tank by reducing the number of tanks by one, the total storage capacity of the liquefied gas can be the same or similar to the existing vessel 400, the BOR can be reduced, the front storage tank 310a Is positioned to be spaced rearward from the foreline FP as possible to further reduce the sloshing phenomenon.
  • the ship 300 of the present embodiment can increase the line width to ensure stability, such as six-way movement of the vessel compared to the existing vessel 400, the drainage can be maintained at the same level by reducing the square scale factor (Cb).
  • the present invention has been optimized by providing four storage tanks 410, 420, 430, and 440.
  • three storage tanks 310a, 310b, and 310c are provided. It provides a more advanced ship 300.
  • the BOR can be reduced compared to the three storage tanks 310a, 310b, and 310c of the present embodiment, but the size of each storage tank becomes too large, thereby causing sloshing problems. It is not possible to solve the problem of sloshing by installing a sloshing reducing device to some extent, but considering the cost aspect, it is difficult to commercialize due to its low competitiveness.
  • Storage tank 310 may be composed of three consisting of the front storage tank (310a), the intermediate storage tank (310b), the rear storage tank (310c).
  • Each of the three storage tanks 310a, 310b, and 310c may be a Mark III type or a Mark V type as well as a NO 96 type when the membrane type, and an SPB type when the standalone type is used.
  • Mark III type which will be described below as an example, each of the three storage tanks 310a, 310b, and 310c may include a primary barrier 311, a primary insulation wall 312, a secondary barrier 313, and a secondary It may be made of a heat insulating system consisting of a heat insulating wall (314).
  • the primary barrier 311 is installed to be in direct contact with the liquefied gas, and may be made of a stainless steel corrugation barrier or a corrugated corrugated barrier.
  • the primary heat insulation wall 312 may be installed between the primary barrier 311 and the secondary barrier 313, and may be provided by shock from the outside or liquefied gas sloshing from the inside while blocking heat intrusion from the outside.
  • the primary insulation panel 312a formed of polyurethane foam, and the primary plywood 312b installed between the primary barrier 311 and the primary insulation panel 312a Can be.
  • the secondary barrier 313 may be installed between the primary insulation wall 312 and the secondary insulation wall 314, and may be made of a triplex composite material in which glass fiber is attached to aluminum gold foil.
  • the secondary insulation wall 314 may be installed between the secondary barrier 313 and the hull, and may withstand the impact from the outside or the liquefied gas sloshing from the inside while blocking heat intrusion from the outside.
  • the secondary insulation panel 314b formed of polyurethane foam and the secondary plywood 314a installed between the secondary insulation panel 314b and the hull may be included.
  • Configuration of each of the three storage tanks (310a, 310b, 310c) may correspond to the basic configuration of Mark III type, not limited to this configuration in the present embodiment, and includes other configurations that are generally applied Of course you can.
  • Each of the three storage tanks 310a, 310b, 310c constituted of the primary barrier 311, the primary insulation wall 312, the secondary barrier 313, and the secondary insulation wall 314 is a design rule.
  • the total thickness T of each of the storage tanks 310a, 310b, and 310c is about 400 mm
  • the thickness T1 of the secondary insulation wall 314 is the total thickness ( Account for 60% to 80% of T).
  • the outer shape of the corner portion of each of the storage tanks 310a, 310b, 310c located in the coupling portion of the transverse bulkhead 340 and the double bottom 360, that is, for stress dispersion The outer shape of each of the corner lines 315 of the storage tanks 310a, 310b, and 310c meeting with the lower stool 350, which will be described later, is installed in an oblique form.
  • the diagonal corner line 315 facilitates the installation of the lower stool 350 to be described later, while stress concentration phenomenon caused by various loads generated at the corner portion where the transverse bulkhead 340 and the double bottom 360 meet. To prevent it.
  • the corner line 315 may be manufactured by removing a part of the secondary heat insulating wall 314. At this time, the more the secondary heat insulating wall 314 is removed, the thinner the heat insulating thickness is, thus, the storage tanks 310a, 310b, and 310c.
  • the heat dissipation capacity of the lower stool 350 may be reduced as the size of the lower stool 350 is reduced, and the stress dissipation capacity may be lowered. It may be manufactured in the form of an oblique line having an inclination angle and an oblique line size.
  • the volume ratio of the front storage tank 310a is preferably smaller than the volume ratio of each of the intermediate and rear storage tanks 310b and 310c, which will be described later, so as to be affected by sloshing as much as possible.
  • the numerical values of the length, height, and volume ratio limiting the front storage tank 310a may be correlated with the length, height, and volume ratio of each of the intermediate storage tank 310b to be described later and the rear storage tank 310c to be described later.
  • the front storage tank 310a may be installed spaced apart from the foreline FP by a predetermined distance, where the shear is positioned at a position 10% to 25% rearward of the length LBP between the foreline FP. Be sure to
  • limiting the installation position of the front storage tank 310a to the position of 10% to 25% of the length between the waterline length LBP is in consideration of the driven fluctuations such as pitching and trimming in the vessel 300.
  • the front end of the front storage tank 410 is positioned around 8% of the length LBP.
  • the critical significance of the 10% lower limit is to increase the total center of gravity of the tank back to 10% from the existing 8%, and the stern trim that the stern portion 302 side of the hull sinks occurs.
  • the propeller is well submerged in the sea, which reduces the chance of cavitation in the propeller as well as reduces propeller protection and resistance.
  • the front storage tank (310a) of the front storage tank (310a) by placing the front end of the front storage tank (310a) in the position 10% to 25% of the rear line length (LBP) in the waterline (FP).
  • LBP rear line length
  • FP waterline
  • the intermediate storage tank 310b may be installed on the hull between the front storage tank 310a and the rear storage tank 310c to be described later, and the length is limited to 15% to 25% of the length LBP. It may be limited to 17% to 20%, the height may be limited to 11% to 15% of the length between the water line (LBP), preferably 12.5% to 13.85%, three storage tanks 310a 310b, 310c)
  • the volume ratio to the total loading capacity of the combined doses may be limited to 30% to 45%, preferably 37% to 41%.
  • the rear storage tank 310c may be installed adjacent to the engine room 320 to be described later and spaced apart from the stern waterline AP by a predetermined distance, and the length is limited to 15% to 25% of the length LBP. Preferably, it may be limited to 17% to 20%, the height may be limited to 11% to 15% of the length between the waterline (LBP), preferably 12.5% to 13.85%, three storage tanks (310a, 310b, 310c) The volume ratio to the total loading capacity of the combined doses may be limited to 30% to 45%, preferably 37% to 41%.
  • each of the three storage tanks 310a, 310b, and 310c may have the same length, height, and volume ratio.
  • three storage tanks 310a, 310b, 310c are provided by appropriately combining the values of the length, height, and volume ratio applied to each of the front, middle, and rear storage tanks 310a, 310b, and 310c.
  • the ship 300 may be built, and for the sake of understanding, the following three cases will be described as an example. However, the present embodiment is not limited thereto.
  • the vessel 300 of the first case limits the length and volume ratio of the front storage tank 310a to 13% of the length between the waterline LBP and 18% of the total load capacity, and the intermediate and rear storage tanks 310b and 310c. Limit the length and volume ratio of each to 20% of the interline length (LBP) and 41% of the total load capacity, and set the height of each of the front, middle and rear storage tanks 310a, 310b, 310c to the interline length (LBP). Can be dried to 12.5% of the limit.
  • LBP interline length
  • LBP interline length
  • the vessel 300 in the second case limits the length and volume ratio of the front storage tank 310a to 17% of the length of the waterline LBP and 26% of the total load capacity, and the intermediate and rear storage tanks 310b and 310c.
  • Each length and volume ratio is limited to 17% of the interline length (LBP) and 37% of the total load capacity, and the height of each of the front, middle and rear storage tanks 310a, 310b, 310c is defined as the interline length (LBP). It can be dried to a limit of 13.25%.
  • the ship 300 limits the length and volume ratio of the front storage tank 310a to 15% of the length between the waterline LBP and 23% of the total load capacity, and the intermediate and rear storage tanks 310b and 310c. Limit the length and volume ratio of each to 17% of the interline length (LBP) and 38.5% of total load capacity, and set the height of each of the front, middle and rear storage tanks 310a, 310b, 310c to the interline length (LBP). It can be dried to a limit of 13.85%.
  • the three storage tanks 310a, 310b, and 310c according to the present embodiment are manufactured such that the total liquefied gas loading capacity is the same as or similar to that of the existing four storage tanks 410, 420, 430, and 440.
  • Three storages according to the present embodiment in contrast to the total length occupied by the storage tanks 410, 420, 430, and 440 is 64% (13% + 17% + 17% + 17%) of the length between the water lines (LBP).
  • the total length occupied by the tanks 310a, 310b, and 310c is manufactured to be reduced.
  • the total length occupied by the three storage tanks 310a, 310b, 310c in the vessel 300 of the first case is 53% (13% + 20% + 20%) of the length between the water lines (LBP).
  • the total length occupied by the three storage tanks 310a, 310b, and 310c in the vessel 300 is 51% (17% + 17% + 17%) of the length between the waterline (LBP).
  • the total length occupied by the three storage tanks 310a, 310b and 310c in the ship 300 is 49% (15% + 17% + 17%) of the length LBP.
  • the total length occupied by the three storage tanks 310a, 310b, and 310c of the present embodiment is reduced by about 11% to 15% of the length LBP between the existing vessels and the vessel 300 of the present embodiment. This means that the space utilization of the bow portion 301 or the stern portion 302 may be increased in preparation for the vessel 400.
  • three storage tanks (310a, 310b, 310c) can be arranged from the engine room 320 to be described later, such as the existing vessel 400, in this case the bow portion 301 side
  • a free space (S) corresponding to 11% to 15% of the length LBP.
  • Such free space (S) can be usefully used for the layout design of various equipment installed in the vessel (300).
  • the front storage tank (310a), as far as possible from the waterline (FP), that is, as close to the center of motion of the ship can be less affected or free from the characteristics of the streamlined ship.
  • a shape suitable for ensuring the stability of the tank from various loads including the load caused by the slewing phenomenon of the liquefied gas, that is, the inner shape and the outer portion at the corner portion
  • the shapes form polygons (eg, octagons) that form obtuse angles rather than right angles.
  • the front storage tank 310a of the three storage tanks (310a, 310b, 310c) can be arranged like the front storage tank 410 of the existing vessel 400, in this case On the stern 302 side, a clearance S corresponding to 11% to 15% of the length LBP between the rear storage tank 310c and the engine room 320 to be described later may be secured.
  • This free space (S) can be utilized as a space to install the fuel tank 330 to be described later, unlike the existing vessel 400.
  • the front storage tank (310a) is disposed close to the foreline (FP) can be affected by the characteristics of the streamlined ship much to form a shape that narrows toward the bow.
  • the cross-sectional shape of each of the intermediate storage tank 310b and the rear storage tank 310c other than the front storage tank 310a is designed to ensure the stability of the tank from various loads, including the load caused by the sloshing phenomenon of the liquefied gas.
  • the inner and outer shapes form obtuse polygons (eg, octagons) rather than right angles.
  • the total length occupied by the three storage tanks 310a, 310b, 310c of the ship 300 according to the present embodiment is four storage tanks 410, 420, 430, 440 of the existing vessel 400.
  • the total liquefied gas loading capacity may not be the same or similar as the total length occupied by) increases.
  • the height of the hull as the center of gravity of the hull rises (rolling) stability of the ship is lowered, of course, should be determined within a range that does not lose the stability of the ship's roll.
  • the vessel 300 of the first case described above limits the height of each of the front, middle and rear storage tanks 310a, 310b, and 310c to 12.5% of the length of the waterline LBP
  • the vessel 300 limits the height of each of the front, middle and rear storage tanks 310a, 310b, 310c to 13.25% of the length of the waterline LBP
  • the vessel 300 of the third case is the front, middle and The height of each of the rear storage tanks 310a, 310b, and 310c is limited to 13.85% of the length LBP.
  • each of the front, middle and rear storage tanks (310a, 310b, 310c) is higher than the conventional one in consideration of the transverse stability, will be described later by the installation of the lower stool 350 to be described later
  • the engine room 320 may be provided with various equipment such as an engine, a switchboard, and the like to transmit and control power to the propulsion device, and may be provided at the stern portion 302.
  • the fuel tank 330 may store fuel supplied to an engine or the like installed in the engine room 320. Such a fuel tank 330 may be provided on the bow portion 301 side, as shown in FIG. In addition, as shown in FIG. 8, when the fuel tank 330 is provided with a clearance S between the engine compartment 320 and the rear storage tank 310c of the stern portion 302 side, the clearance is provided. It can be installed in (S). As such, since the fuel tank 330 is disposed close to the engine room 320, the fuel supply system may be simplified. In addition, as the fuel tank 330 is disposed near the engine room 320, a new free space S1 is formed on the side of the bow portion 301, and the new free space S1 is various equipment installed in the ship 300. This can be useful for the layout design of
  • the existing four storage tanks (410, 420, 430, 440) is installed so that the fuel tank 330 can be installed in the free space (S) provided between the engine room 320 and the rear storage tank (310c)
  • the total length occupied by the three storage tanks 310a, 310b, and 310c according to the present embodiment is 43% to 60% of the length between repairs, In other words, it is desirable to design at 64% shorter than the existing 64%.
  • the total length occupied by the three storage tanks 310a, 310b, and 310c is 43% to 60% of the length of the waterline, so that at least 4% of the length of the waterline (LBP) is moved forward.
  • a clearance S corresponding to at least 4% of the length LBP between the engine compartment 320 and the rear storage tank 310c may be provided.
  • the transverse bulkhead 340 is disposed between each of the three storage tanks 310a, 310b, 310c so as to partition the installation space of each of the three storage tanks 310a, 310b, 310c while supporting the lateral strength of the ship 300.
  • one side and the other side is connected to the port side hull 303 and the starboard side hull 304, the lower surface to the inner bottom plate 361 of the double bottom 360 to be described later by the lower stool 350 to be described later
  • It may be connected to be installed in the transverse direction of the hull, and may form an outer wall (front and rear side walls) of each of the three storage tanks (310a, 310b, 310c).
  • the transverse bulkhead 340 may be supported by the lower stool 350 to be described later, and the load is transmitted to the double bottom 360 to be described later through the lower stool 350.
  • the lower stool 350 may be installed to support the transverse bulkhead 340 so that the transverse bulkhead 340 is coupled to the inner bottom plate 361 of the double bottom 360 to be described later, and the three storage tanks 310a and 310b. , 310c) may be located between each corner line 315.
  • the lower stool 350 supports the transverse bulkhead 340 and transmits the load of the transverse bulkhead 340 to the double bottom 360 which will be described later, wherein the load of the transverse bulkhead 340 is lower than the lower stool 350. It will be delivered to both sides of intensively.
  • the lower stool 350 is stressed so as to be lower than the maximum allowable stress defined in the double bottom 360 at the joint portion of the transverse bulkhead 340 having the highest stress distribution and the double bottom 360 to be described later. It can be configured to be suitable for dispersion.
  • the lower stool 350 so as to reduce the spacing (D1) of the double bottom 360 to be described later, according to this embodiment reduced one from the existing four storage tanks (410, 420, 430, 440) The possibility of installing the three storage tanks (310a, 310b, 310c) can be further improved.
  • the lower stool 350 is installed on the inner bottom plate 361 in an oblique diagonally opposite shape to correspond to the diagonal line 315 in three storage tanks 310a, 310b, and 310c, respectively. It may be composed of a pair of side plates 351 and a top plate 352 installed on the pair of side plates 351 to support the transverse bulkhead 340.
  • the lower stool 350 may have a trapezoidal longitudinal cross-sectional shape, and may have a trapezoidal shape such that the stress distribution is uniform on both sides of the pair of side plates 351.
  • the stress to the double bottom 360 due to the load of the transverse bulkhead 340 is vertical. It can be distributed widely in the diagonal direction without being concentrated in the direction.
  • the inclined plate 380 may be installed to obtain the same effect as the lower stool 350, which will be described with reference to FIG. 13.
  • FIG. 13 is an enlarged view of a portion 'C' to explain another coupling structure of the transverse bulkhead and the double bottom of FIG. 7 or 8.
  • the inclined plate 380 may be installed to support a portion of the transverse bulkhead 340 and to be connected to the inner bottom plate 361 of the double bottom 360 to be described later, and the three storage tanks 310a. It is positioned between the corner lines 315 of the 310b, 310c can be manufactured to correspond to the shape of the corner line 315.
  • the inclined plate 380 may be installed to be lower than the maximum allowable stress defined in the inner bottom plate 361 at the vertical connection portion of the transverse bulkhead 340 having the highest stress distribution and the inner bottom plate 361 to be described later. .
  • the inclined plate 380 is not formed horizontally with respect to the transverse bulkhead 340 or perpendicular to the inner bottom plate 361 to be described later, but in an oblique form, that is, the transverse bulkhead 340 to be described later.
  • the inner bottom plate 361 may be inclined at a vertical connection portion, whereby the stress on the inner bottom plate 361 due to the load of the transverse bulkhead 340 may be widely distributed in the diagonal direction without being concentrated in the vertical direction. .
  • the inclined plate 380 may further include a first reinforcing member 381 and a second reinforcing member 382 in order to reinforce rigidity at a point of contact with the horizontal partition wall 340 or the inner bottom plate 361.
  • the first reinforcing member 381 is a member for reinforcing a portion where the inclined plate 380 and the transverse bulkhead 340 abut, and is inward of the transverse bulkhead 340 at a point where the inclined plate 380 abuts the transverse bulkhead 340. It may be installed to extend horizontally.
  • the second reinforcing member 382 is a member for reinforcing a portion where the inclined plate 380 and the inner bottom plate 361 abut, and is inward of the inner bottom plate 361 at a point where the inclined plate 380 abuts on the inner bottom plate 361. It can be installed extending vertically.
  • the double bottom 360 may serve as an outer wall (bottom) of each of the three storage tanks 310a, 310b, and 310c, and may be a hull forming the bottom of the vessel 300, and the three storage tanks 310a, 310b, and 310c may be used. ), The inner bottom plate 361 supporting the transverse bulkhead 340, and the bottom bottom plate 362 forming the outside of the hull. Inside the double bottom 360, the steel structure 370 supporting the longitudinal strength or the lateral strength of the vessel 300 together with the double bottom 360 may be installed.
  • This double bottom 360 is designed to withstand a defined maximum allowable stress, for example 185 Mpa. As the stress distribution applied to the double bottom 360 is highest in the portion that is coupled with the transverse bulkhead 340 and low in other portions, the double bottom 360 is the portion that is coupled with the transverse bulkhead 340. Designed to withstand the maximum allowable stress at
  • the lower stool 350 or as described above may be lowered to the maximum allowable stress defined in the double bottom 360 at the joint portion of the transverse bulkhead 340 and the double bottom 360 having the highest stress distribution.
  • the inclined plate 380 By configuring the inclined plate 380 to be suitable for stress distribution, it is possible to reduce the distance D between the inner bottom plate 361 and the bottom bottom plate 362 in response to the lowering stress.
  • the existing vessel in the vessel 300 of the present embodiment provided with the lower stool 350 or the inclined plate 380 and the existing vessel 400 without the lower stool 350 or the inclined plate 380, the existing vessel If the double bottom spacing of (400) is 3200mm, the spacing (D) between the inner bottom plate 361 and the bottom bottom plate 362 of the present embodiment can be produced from 2000mm to 2800mm reduced from the existing 3200mm to 400mm to 1200mm range. .
  • the distance D1 of the double bottom 360 can be reduced, the height of the hull of the ship 300 can be reduced, and the height of the three storage tanks 310a, 310b, and 310c can be increased.
  • the clearance height can be secured, making it possible to secure the stability of the ship.
  • the steel structure 370 may be installed between the inner bottom plate 361 and the bottom bottom plate 362 of the double bottom 360, and a plurality of girder plates 371 supporting the longitudinal strength of the ship 300. It may be composed of a plurality of floors 372 for supporting the lateral strength of the vessel (300).
  • the girder plate 371 may be provided with a plurality of reinforcing members 373 for reinforcing the girder plate 371, and although not shown in the drawings, a plurality of reinforcing members for reinforcing the floor 372 in the floor 372. Can be installed.
  • the present embodiment compared to the existing vessel 100, the size of the foremost storage tank 210 is reduced to the capacity of 7,000m 3 to 10,000m 3 without changing the vessel size and the total capacity of the liquefied gas while the remaining three
  • the sloshing phenomenon can be further reduced, and the BOR can be reduced by reducing the surface area to volume.
  • the present embodiment can be produced in an octagonal shape in which the cross-sectional shape of the foremost storage tank 210 installed on the bow portion 201 side is optimized for the sloshing phenomenon, thereby preventing damage to the tank structure due to sloshing and gas leakage. Prevention and BOR can be further reduced.
  • the present embodiment by manufacturing the foremost storage tank 210 to have a capacity of 7,000m 3 to 10,000m 3 of one-way fuel consumption, along with other storage tanks 220, 230, 240 when liquefied gas transportation It can be used for the storage of liquefied gas, and to supply the fuel for propulsion needed for one-way operation after liquefied gas transportation, as well as to cool down the tank.
  • the present embodiment compared to the existing vessel 400 is provided with four storage tanks (410, 420, 430, 440) storage tanks 310a, 310b without a large change in the vessel size and the total gas loading capacity
  • the number of, 310c By reducing the number of, 310c, the total surface area of the storage tanks 310a, 310b, 310c can be reduced, so that the BOR can be reduced, and the manufacturing cost of the storage tanks 310a, 310b, 310c can be reduced.
  • the present embodiment can reduce the BOR as compared to the existing vessel 400 is provided with four storage tanks (410, 420, 430, 440), further configuration for BOG treatment (reliquefaction apparatus, GCU, other lines, etc.) can be eliminated or minimized, resulting in reduced labor and deployment costs.
  • BOG treatment refliquefaction apparatus, GCU, other lines, etc.
  • the number of storage tanks 310a, 310b, 310c compared to the existing vessel 400 is provided with four storage tanks (410, 420, 430, 440), storage tank 310a
  • the space utilization of the bow portion 301 or the stern portion 302 can be increased.
  • the front storage tank 310a installed on the bow portion 301 side is arranged closer to the movement center of the ship compared to the case where the existing four storage tanks (410, 420, 430, 440) is installed As a result, the sloshing phenomenon of the front storage tank 310a can be reduced.
  • the present embodiment by supplying a fuel tank 330 by securing a free space (S) between the engine room 320 and the rear storage tank 310c installed on the stern portion 302 side, the fuel supply system This can simplify the cost and reduce the man-hour and material costs associated with building the fuel supply system.
  • S free space
  • the present embodiment has a configuration suitable for stress distribution so as to be lower than the maximum allowable stress prescribed in the double bottom 360 at the joint portion of the transverse bulkhead 340 and the double bottom 360, the stress distribution is the highest.
  • the lower stool 350 or the inclined plate 380 it is possible to reduce the thickness of the double bottom 360 to reduce the overall height of the vessel, so that the total liquefied gas loading capacity compared to the existing vessel 400 is not changed.
  • By increasing the height of the storage tank (310a, 310b, 310c) it is possible to further ensure the stability of the six-way movement of the ship.

Abstract

The present invention relates to a ship comprising a foremost storage tank, a front storage tank, an intermediate storage tank, and a rear storage tank, wherein the foremost storage tank is manufactured to have a capacity, which corresponds to fuel consumption for one way, of the entire load capacity of liquefied gas, and the front storage tank, the intermediate storage tank, and the rear storage tank are manufactured to have the remaining capacity of the entire load capacity of the liquefied gas, excluding the capacity of the foremost storage tank.

Description

선박Ship
본 발명은 선박에 관한 것이다.The present invention relates to a ship.
최근 기술 개발에 따라 가솔린이나 디젤을 대체하여 액화천연가스(Liquefied Natural Gas; LNG), 액화석유가스(Liquefied Petroleum Gas; LPG) 등과 같은 액화가스를 널리 사용하고 있다.Recently, liquefied gas such as liquefied natural gas (Liquefied Natural Gas; LNG) and liquefied petroleum gas (Liquefied Petroleum Gas) has been widely used in place of gasoline or diesel.
LNG는 가스전에서 채취한 천연가스를 정제하여 얻은 메탄을 냉각해 액화시킨 것이며, 무색ㆍ투명한 액체로 공해물질이 거의 없고 열량이 높아 대단히 우수한 연료이다. 반면 LPG는 유전에서 석유와 함께 나오는 프로판(C3H8)과 부탄(C4H10)을 주성분으로 한 가스를 상온에서 압축하여 액체로 만든 연료이다. LPG는 LNG와 마찬가지로 무색무취이고 가정용, 업무용, 공업용, 자동차용 등의 연료로 널리 사용되고 있다.LNG is liquefied by cooling the methane obtained by purifying the natural gas collected from the gas field. It is a colorless and transparent liquid. LPG, on the other hand, is a liquid fuel made by compressing a gas mainly composed of propane (C 3 H 8 ) and butane (C 4 H 10 ), which come with oil from an oil field, at room temperature. LPG, like LNG, is colorless and odorless and is widely used as fuel for household, business, industrial, and automotive applications.
이와 같은 액화가스는 지상에 설치되어 있는 액화가스 저장탱크에 저장되거나 또는 대양을 항해하는 운송수단에 구비되는 액화가스 저장탱크에 저장되는데, LNG는 액화에 의해 1/600의 부피로 줄어들고, LPG는 액화에 의해 프로판은 1/260, 부탄은 1/230의 부피로 줄어들어 저장 효율이 높다는 장점이 있다.The liquefied gas is stored in a liquefied gas storage tank installed on the ground or in a liquefied gas storage tank provided in a vehicle that navigates the ocean. LNG is reduced to 1/600 by liquefaction, and LPG By liquefaction, propane is reduced to 1/260 and butane to 1/230, which is advantageous in that storage efficiency is high.
예를 들어, LNG는 천연가스를 극저온(대략 -163℃)으로 냉각하여 얻어지는 것으로, 가스 상태의 천연가스일 때보다 그 부피가 대략 1/600로 줄어들므로 저장은 물론 해상을 통한 원거리 운반에 매우 적합하다.For example, LNG is obtained by cooling natural gas to cryogenic temperatures (approximately -163 ° C), and its volume is reduced to approximately 1/600 of that of natural gas in gaseous form. Suitable.
LNG 또는 LPG를 싣고 바다를 운항하여 육상 수요처에 LNG 또는 LPG를 하역하기 위한 LNGC 또는 LPGC나, LNG의 운송 외의 목적으로 해상의 일정 지점에 부유하여 특정한 작업을 수행하는 해양구조물 예를 들어, LNG를 저장, 기화하는 FSRU(Floating Storage Regasification Unit), LNG를 생산, 저장, 하역하는 FLNG(Floating Liquid Natural Gas plant, LNG-FPSO), 해상에 부유한 상태로 LPG를 정제, 저장, 하역하는 FPSO(Floating Production Storage Offloading) 등은, LNG 또는 LPG를 저장하는 저장탱크(일명, '화물창'이라고 함)를 포함한다.LNGC or LPGC for unloading LNG or LPG to land demand by operating the sea with LNG or LPG, or offshore structures that float at a certain point in the sea for purposes other than the transportation of LNG. Floating Storage Regasification Unit (FSRU) to store and vaporize, Floating Liquid Natural Gas Plant (LNG-FPSO) to produce, store and unload LNG, and FPSO (Floating) to purify, store and unload LPG in a floating state at sea Production Storage Offloading) includes a storage tank for storing LNG or LPG (also called a cargo hold).
이러한 저장탱크는, 단열재에 화물의 하중이 직접적으로 작용하는지 여부에 따라 독립형(Independent Type)과 멤브레인형(Membrane Type)으로 분류할 수 있으며, 통상적으로, 멤브레인형 저장탱크는 NO 96 타입과 Mark Ⅲ 타입으로 나눠지고, 독립형 저장탱크는 MOSS 타입과 SPB 타입으로 나눠진다.These storage tanks can be classified into independent type and membrane type according to whether the load of the cargo directly acts on the insulation. Typically, the membrane type storage tank is NO 96 type and Mark III. Type, and standalone storage tanks are divided into MOSS type and SPB type.
일반적으로, 60K급 내지 220K급까지의 선박은 저장탱크가 4개 설치되는데, 도 1 내지 도 3 및 도 14를 참고하여 설명하기로 한다.In general, ships up to 60K class to 220K class are installed with four storage tanks, which will be described with reference to FIGS. 1 to 3 and 14.
도 1은 종래 제1 실시예에 따른 선박을 설명하기 위한 측면도이고, 도 2는 도 1의 최전방 저장탱크를 설명하기 위해 A-A'선을 따라 절단한 단면도이고, 도 3은 도 1의 최전방 저장탱크 이외의 저장탱크들을 설명하기 위해 B-B'선을 따라 절단한 단면도이다.1 is a side view for explaining a vessel according to the first embodiment, Figure 2 is a cross-sectional view taken along the line A-A 'to explain the foremost storage tank of Figure 1, Figure 3 is the foremost of Figure 1 Sectional view taken along line B-B 'to explain storage tanks other than storage tanks.
도 1 내지 도 3에 도시된 바와 같이, 기존의 선박(100)은, 4개의 저장탱크(110, 120, 130, 140) 중에서 선수부(101) 측에 설치되는 최전방 저장탱크(110)가 슬로싱의 영향을 많이 받으므로 인하여 상대적으로 작은 크기로 제작하고 있는데, 예를 들어, 최전방 저장탱크(110)의 길이는 수선간 길이(Length Between Perpendiculars; LBP)의 13%로 제한하고, 전방 저장탱크(120), 중간 저장탱크(130) 및 후방 저장탱크(140) 각각의 길이는 수선간 길이의 17%로 제한하고 있다.As shown in FIGS. 1 to 3, in the existing vessel 100, among the four storage tanks 110, 120, 130, and 140, the frontmost storage tank 110 installed on the bow portion 101 side is sloshed. Due to the large number of influences are produced in a relatively small size, for example, the length of the foremost storage tank 110 is limited to 13% of the length between the length (Length Between Perpendiculars; LBP), the front storage tank ( 120, the length of each of the intermediate storage tank 130 and rear storage tank 140 is limited to 17% of the length of the waterline.
최전방 저장탱크(110)는, 도 2에 도시된 바와 같이, 유선형인 선박의 특성상 탱크의 폭 또한 협소 하여 나머지 3개 각각의 저장탱크(120, 130, 140) 용량의 약 절반 정도를 적재할 수 있도록 제작된다.The frontmost storage tank 110, as shown in Figure 2, due to the nature of the streamlined ship is also narrow in width of the tank can be loaded about half of the capacity of each of the remaining three storage tanks (120, 130, 140). It is made to be.
예를 들어, 175K급 선박(100)의 경우, 선수부(101) 측에 설치되는 최전방 저장탱크(110)는 25,000m3의 용량을 가지며, 최전방 저장탱크(110)로부터 선미부(102) 측으로 순차적으로 설치되는 나머지 3개 각각의 저장탱크(120, 130, 140)는 50,000m3의 용량을 가지도록 제작된다.For example, in the case of the 175K class ship 100, the foremost storage tank 110 installed on the bow portion 101 side has a capacity of 25,000m 3 , and is sequentially from the foremost storage tank 110 to the stern portion 102 side. The remaining three storage tanks (120, 130, 140) are installed to have a capacity of 50,000 m 3 .
이러한 선박은 BOR(Boil Off Rate)의 규모에 따라 운송 기간내에 운항 손실의 차이가 발생하게 된다.These ships have a difference in operating losses within the transportation period depending on the size of the BOR (Boil Off Rate).
도 14는 종래 제2 실시예에 따른 4개의 저장탱크를 구비하는 선박을 설명하기 위한 측면도이다.14 is a side view for explaining a ship having four storage tanks according to the second embodiment.
도 14에 도시된 바와 같이, 선박(400)은 4개의 저장탱크(410, 420, 430, 440)가 4개 설치되며, 4개의 저장탱크(410, 420, 430, 440) 중에서 선수부(401) 측에 설치되는 전방 저장탱크(410)가 슬로싱의 영향을 많이 받으므로 인하여 상대적으로 작은 크기로 제작되고, 전방 저장탱크(410)로부터 선미부(402) 측으로 배열되는 나머지 3개의 저장탱크(420, 430, 440)가 상대적으로 큰 크기로 제작된다. 예를 들어, 1개의 전방 저장탱크(410)의 길이는 선수 수선(Fore Perpendicular; FP)과 선미 수선(After Perpendicular; AP) 간의 수평거리인 수선간 길이(Length Between Perpendiculars; LBP)의 13%로 제한하고, 2개의 중간 저장탱크(420, 430) 및 1개의 후방 저장탱크(440) 각각의 길이는 수선간 길이(LBP)의 17%로 제한하고 있다. 또한, 전방 저장탱크(410)는 유선형인 선박의 특성상 저장탱크의 폭 또한 협소 하여 나머지 3개 각각의 저장탱크(420, 430, 440) 용량의 약 절반 정도를 적재할 수 있도록 제작된다.As shown in FIG. 14, the ship 400 has four storage tanks 410, 420, 430, and 440 installed therein, and the bow portion 401 is selected from the four storage tanks 410, 420, 430, and 440. Since the front storage tank 410 installed on the side is affected by sloshing much, the remaining three storage tanks 420 are manufactured in a relatively small size and arranged from the front storage tank 410 to the stern portion 402 side. , 430 and 440 are manufactured to a relatively large size. For example, the length of one front storage tank 410 is 13% of the length between perpendiculars (LBP) which is a horizontal distance between the fore perpendicular (FP) and the after perpendicular (AP). In addition, the length of each of the two intermediate storage tanks 420 and 430 and the one rear storage tank 440 is limited to 17% of the interline length LBP. In addition, the front storage tank 410 is manufactured to load about half of the remaining three storage tanks (420, 430, 440) by narrowing the width of the storage tank in the nature of the streamlined ship.
또한, 선박(400)은, 엔진룸(450)이 선미부(402) 측에 마련되고, 엔진룸(450)에 구비되는 엔진에 연료를 공급하기 위한 연료탱크(460)가 선수부(3401) 측에 설치된다. 엔진룸(450)은 추진장치에 동력 전달 및 제어하기 용이하도록 선미부(402) 측에 마련되는 것이 일반적이고, 연료탱크(460)는 엔진룸(450)에 가깝게 위치되도록 선미부(402) 측에 설치하는 것이 바람직하나, 4개의 저장탱크(410, 420, 430, 440)가 차지하는 전체 길이가 길고 슬로싱 영향을 많이 받는 전방 저장탱크(410)의 위치 선정으로 인하여 선수부(401) 측에 설치하는 것이 일반적이다.In the ship 400, the engine room 450 is provided on the stern portion 402 side, and the fuel tank 460 for supplying fuel to the engine provided in the engine room 450 has a bow portion 3401 side. Is installed on. Engine room 450 is generally provided on the stern portion 402 side to facilitate power transmission and control to the propulsion device, the fuel tank 460 is stern portion 402 side to be located close to the engine room 450 It is preferable to install in the four storage tanks (410, 420, 430, 440) due to the position of the front storage tank 410 is long due to the overall length occupied by a long sloshing effect is installed on the bow portion 401 side It is common to do
그런데, 기존의 선박(100, 400)은 4개의 저장탱크를 설치하기 때문에 저장탱크의 표면적에 비례하는 BOR(Boil Off Rate)을 저감시키는데 한계가 있다. 예를 들어, ME-GI 엔진과 재액화장치를 적용하여 BOG를 소비시키거나, Ti Group의 새로운 저장탱크 단열 시스템을 적용하여 BOR을 기존대비 0.08% 저감시키는 등 BOR을 저감시키시기 위한 다양한 연구가 진행되고 있지만, BOR 저감 정도가 미약한 실정이다.However, since the existing vessels 100 and 400 install four storage tanks, there is a limit in reducing a BOR (Boil Off Rate) proportional to the surface area of the storage tank. For example, various studies have been conducted to reduce the BOR by consuming BOG by applying ME-GI engine and reliquefaction equipment, or by reducing the BOR by 0.08% by applying Ti Group's new storage tank insulation system. Although progressing, the degree of BOR reduction is weak.
또한, 기존의 선박(100)은 슬로싱의 영향을 최소화 하기 위해 선수부(101) 측에 설치되는 최전방 저장탱크(110)의 크기를 나머지 3개 각각의 저장탱크(120, 130, 140) 용량의 약 절반 정도를 적재할 수 있도록 제작하고 있지만, 유선형인 선박의 특성상 탱크의 폭이 협소할 수 밖에 없어 슬로싱의 영향을 최소화하는데 한계가 있고, 이로써 슬로싱에 의한 탱크 구조의 파손과 가스 누출 문제점과 BOG 발생량이 증가하는 문제가 있다.In addition, the existing vessel 100 is the size of the foremost storage tank 110 installed on the bow portion 101 side to minimize the effect of sloshing of the remaining three storage tanks (120, 130, 140) of the capacity Although it is manufactured to be able to load about half, there is a limit in minimizing the effect of sloshing because the width of the tank is narrow due to the characteristics of the streamlined ship, which causes damage to the tank structure due to sloshing and gas leakage. And there is a problem that the amount of BOG generation increases.
또한, 기존의 선박(400)은 4개의 저장탱크(410, 420, 430, 440)를 설치하기 때문에 엔진룸(450)과 후방 저장탱크(440) 사이에 공간 확보가 어려워 비교적 공간 확보가 용이한 선수부(401) 측에 연료탱크(460)를 설치할 수 밖에 없어, 선수부(401) 측으로부터 선미부(402) 측까지 연료공급시스템을 구축해야 함에 따른 공수 및 자재비용이 과다 소요되는 문제가 있다.In addition, since the existing vessel 400 installs four storage tanks 410, 420, 430, and 440, it is difficult to secure a space between the engine room 450 and the rear storage tank 440, thereby making it relatively easy to secure space. Since the fuel tank 460 can only be installed on the bow portion 401 side, there is a problem in that the air supply and material cost are excessively required as a fuel supply system must be constructed from the bow portion 401 side to the stern portion 402 side.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은, 기존의 선박에 대비하여 선박 사이즈 및 액화가스 전체적재용량에는 변화 없이 최전방 저장탱크를 7,000m3 내지 10,000m3의 용량이 되도록 소형화 시키면서 나머지 3개의 저장탱크에 나머지 액화가스를 저장하도록 용량을 한정 설정함으로써, 슬로싱 현상을 더욱 줄임은 물론 체적대비 표면적을 줄여 BOR을 저감시킬 수 있도록 하는 선박을 제공하기 위한 것이다.The present invention has been created to solve the problems of the prior art as described above, the object of the present invention, compared to the existing vessels, the foremost storage tank 7,000m 3 to 10,000m without change in the ship size and the total capacity of liquefied gas while size reduction such that the capacity of the three remaining three storage tanks in by limiting setting the capacity to store the remaining liquefied gas, for providing a vessel to further reduce, as well as reducing the volume compared to surface area of the sloshing phenomenon can be reduced BOR will be.
또한, 본 발명의 목적은, 선수부 측에 설치되는 최전방 저장탱크의 단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상으로 제작할 수 있어, 슬로싱에 의한 탱크 구조의 파손 방지, 가스 누출 방지 및 BOR을 더욱 저감시킬 수 있도록 하는 선박을 제공하기 위한 것이다.In addition, an object of the present invention, the cross-sectional shape of the foremost storage tank installed on the bow side can be produced in an octagonal shape that is optimized for the sloshing phenomenon, to prevent damage to the tank structure by the sloshing, preventing gas leakage and BOR further It is to provide a vessel that can be reduced.
또한, 본 발명의 목적은, 최전방 저장탱크를 편도 연료 소비량인 7,000m3 내지 10,000m3의 용량을 가지도록 제작함으로써, 액화가스 운송 시에는 다른 저장탱크와 함께 액화가스 저장 용도로 활용하고, 액화가스 운송 후에는 편도 운항에 필요한 추진용 연료 또는 탱크의 쿨-다운 용도로 활용할 수 있도록 하는 선박을 제공하기 위한 것이다.In addition, an object of the present invention, by manufacturing the forefront storage tank to have a capacity of 7,000m 3 to 10,000m 3 of one-way fuel consumption, when used for liquefied gas storage with other storage tanks when liquefied gas transportation, After gas transportation, it is intended to provide a vessel that can be used to cool down the propulsion fuel or tank required for one-way operation.
또한, 본 발명의 목적은, 4개의 저장탱크가 구비되는 기존의 선박에 대비하여 선박 사이즈 및 액화가스 전체적재용량에는 변화 없이 저장탱크의 개수를 줄여 저장탱크의 전체표면적을 감소시킴으로써, BOR을 저감시킬 수 있도록 하는 선박을 제공하기 위한 것이다.In addition, an object of the present invention is to reduce the BOR by reducing the total surface area of the storage tank by reducing the number of storage tanks without changing the vessel size and the total liquefied gas loading capacity compared to the existing vessel equipped with four storage tanks, It is to provide a ship that can be made.
또한, 본 발명의 목적은, 4개의 저장탱크가 구비되는 기존의 선박에 대비하여 저장탱크의 개수를 줄임으로써, 저장탱크의 제작비용을 줄일 수 있도록 하는 선박을 제공하기 위한 것이다.In addition, an object of the present invention is to provide a ship that can reduce the manufacturing cost of the storage tank by reducing the number of storage tanks, compared to the existing vessel provided with four storage tanks.
또한, 본 발명의 목적은, 4개의 저장탱크가 구비되는 기존의 선박에 대비하여 저장탱크의 개수를 줄이되, 저장탱크의 액화가스 전체적재용량에는 변화가 없도록 높이를 증가시키고 전체 길이를 감소시킴으로써, 선수부 또는 선미부의 공간 활용도를 증대시킬 수 있도록 하는 선박을 제공하기 위한 것이다.In addition, an object of the present invention, by reducing the number of storage tanks compared to the existing vessels provided with four storage tanks, by increasing the height and reducing the total length so that there is no change in the total storage capacity of the liquefied gas of the storage tank, To provide a ship that can increase the space utilization of the bow or stern.
또한, 본 발명의 목적은, 선수부 측에 설치되는 전방 저장탱크를 기존 4개의 저장탱크가 설치되는 경우와 비교하여 선박의 운동 중심부 쪽으로 가깝게 배치함으로써, 전방 저장탱크의 슬로싱 현상을 줄일 수 있도록 하는 선박을 제공하기 위한 것이다.In addition, an object of the present invention is to arrange the front storage tank installed on the bow side closer to the center of the movement of the vessel compared to the case where the existing four storage tanks are installed, thereby reducing the sloshing phenomenon of the front storage tank. It is to provide shipping.
또한, 본 발명의 목적은, 선미부 측에 설치되는 엔진룸과 후방 저장탱크 사이에 여유공간을 확보하여 연료탱크를 설치함으로써, 연료공급시스템을 단순화할 수 있도록 하는 선박을 제공하기 위한 것이다.In addition, an object of the present invention is to provide a vessel that can simplify the fuel supply system by installing a fuel tank by securing a free space between the engine room and the rear storage tank installed on the stern side.
또한, 본 발명의 목적은, 응력 분포가 가장 높게 나타나는 횡격벽과 이중저의 결합부분에서 이중저에 규정되는 최대 허용 응력보다 낮출 수 있도록 응력 분산에 적합한 구성을 갖는 하부 스툴 또는 경사판을 설치함으로써, 이중저의 두께 감소가 가능하여 선박 전체 높이를 줄일 수 있도록 하는 선박을 제공하기 위한 것이다.In addition, an object of the present invention is to provide a double stool or inclined plate having a configuration suitable for stress distribution so as to be lower than the maximum allowable stress specified in the double bottom at the joint portion of the transverse bulkhead and the double bottom where the stress distribution is highest. It is to provide a vessel that can reduce the thickness of the ship to reduce the overall height of the vessel.
본 발명의 일 측면에 따른 선박은, 최전방 저장탱크, 전방 저장탱크, 중간 저장탱크, 후방 저장탱크를 구비하는 선박에 있어서, 상기 최전방 저장탱크는 액화가스 전체적재용량 중에서 편도 연료 소비량에 대응되는 용량을 가지도록 제작되고, 상기 전방 저장탱크, 상기 중간 저장탱크 및 상기 후방 저장탱크는 상기 액화가스 전체적재용량 중에서 상기 최전방 저장탱크의 용량을 제외한 나머지 용량을 가지도록 제작되는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a vessel including a foremost storage tank, a front storage tank, an intermediate storage tank, and a rear storage tank, wherein the foremost storage tank has a capacity corresponding to one-way fuel consumption among the total liquefied gas loading capacity. The front storage tank, the intermediate storage tank and the rear storage tank is characterized in that it is manufactured to have a remaining capacity of the total storage capacity of the liquefied gas except the capacity of the foremost storage tank.
구체적으로, 상기 최전방 저장탱크는, 상기 액화가스 전체적재용량 중에서 7,000m3 내지 10,000m3의 용량을 가지도록 제작될 수 있다.Specifically, the foremost storage tank may be manufactured to have a capacity of 7,000m 3 to 10,000m 3 of the total liquefied gas loading capacity.
구체적으로, 상기 최전방 저장탱크는, 단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상일 수 있다.Specifically, the foremost storage tank may have an octagonal shape whose cross-sectional shape is optimized for a sloshing phenomenon.
구체적으로, 상기 최전방 저장탱크는, 액화가스 운송 시에는 액화가스 저장 용도로 활용되고, 액화가스 운송 후에는 편도 운항에 필요한 추진용 연료 공급 용도 또는 탱크의 쿨-다운 용도로도 활용될 수 있다.Specifically, the foremost storage tank may be used for liquefied gas storage when transporting liquefied gas, and may also be used for propulsion fuel supply or cool down of a tank required for one-way operation after liquefied gas transport.
구체적으로, 상기 전방 저장탱크, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각은, 단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상으로 제작될 수 있다.Specifically, each of the front storage tank, the intermediate storage tank and the rear storage tank may be manufactured in an octagonal shape in which the cross-sectional shape is optimized for a sloshing phenomenon.
구체적으로, 상기 전방 저장탱크는, 상기 최전방 저장탱크보다는 크고, 상기 중간 저장탱크 또는 상기 후방 저장탱크보다는 작은 용량을 가지도록 제작될 수 있다.Specifically, the front storage tank may be manufactured to have a capacity larger than that of the foremost storage tank and smaller than that of the intermediate storage tank or the rear storage tank.
구체적으로, 상기 선박은, LNGC, LPGC, FSRU(Floating Storage Regasification Unit), FLNG(Floating Liquid Natural Gas plant, LNG-FPSO), FPSO(Floating Production Storage Offloading) 중 어느 하나일 수 있다.Specifically, the vessel may be any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas Plant (FLNG), Floating Production Storage Offloading (FPSO).
본 발명의 다른 측면에 따른 선박은, 선수 수선으로부터 일정 거리 이격되어 순차적으로 설치되는 전방 저장탱크, 중간 저장탱크, 후방 저장탱크를 포함하는 3개의 저장탱크; 선미부 측에 마련되는 엔진룸; 및 상기 엔진룸의 엔진에 공급하는 연료를 저장하는 연료탱크를 포함하고, 상기 연료탱크는, 상기 3개의 저장탱크를 전방으로 전진 배치시켜 상기 후방 저장탱크와 상기 엔진룸 사이에 확보되는 여유공간에 설치되는 것을 특징으로 한다.According to another aspect of the present invention, a ship includes three storage tanks including a front storage tank, an intermediate storage tank, and a rear storage tank, which are sequentially installed at a predetermined distance from the bowline; An engine room provided at the stern side; And a fuel tank for storing fuel supplied to an engine of the engine room, wherein the fuel tank is disposed in a forward space of the three storage tanks forward to secure a space between the rear storage tank and the engine room. It is characterized by being installed.
구체적으로, 상기 3개의 저장탱크는, 전체 길이가 수선간 길이의 43% 내지 60%이고, 적어도 상기 수선간 길이의 4% 이상 전방으로 전진 배치시킬 수 있다.Specifically, the three storage tanks, the total length is 43% to 60% of the length between the waterline, can be arranged to move forward at least 4% of the length between the waterline.
구체적으로, 상기 선박은, LNGC, LPGC, FSRU(Floating Storage Regasification Unit), FLNG(Floating Liquid Natural Gas plant, LNG-FPSO), FPSO(Floating Production Storage Offloading) 중 어느 하나일 수 있다.Specifically, the vessel may be any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas Plant (FLNG), Floating Production Storage Offloading (FPSO).
본 발명의 또 다른 측면에 따른 선박은, 길이가 수선간 길이의 10% 내지 20%이며, 선수 수선으로부터 일정 거리 이격되어 설치되는 전방 저장탱크; 길이가 상기 수선간 길이의 15% 내지 25%이며, 선미 수선으로부터 일정 거리 이격되어 설치되는 후방 저장탱크; 및 길이가 상기 수선간 길이의 15% 내지 25%이며, 상기 전방 저장탱크와 상기 후방 저장탱크 사이에 설치되는 중간 저장탱크를 포함하여 3개의 저장탱크가 구비되는 것을 특징으로 한다.Ship according to another aspect of the present invention, the length is 10% to 20% of the length between the waterline, the front storage tank is installed at a predetermined distance away from the foreline; A rear storage tank having a length of 15% to 25% of the length of the waterline and installed at a predetermined distance from the stern waterline; And the length is 15% to 25% of the length between the repair, characterized in that three storage tanks are provided, including an intermediate storage tank installed between the front storage tank and the rear storage tank.
구체적으로, 상기 전방 저장탱크는, 상기 선수 수선에서 상기 수선간 길이의 10% 내지 25% 후방 위치에 전단이 위치되어 설치될 수 있다.In detail, the front storage tank may be installed with a front end positioned at a position 10% to 25% of the length between the repairs in the bow repair.
구체적으로, 상기 3개의 저장탱크 각각은, 높이가 상기 수선간 길이의 11% 내지 15%일 수 있다.Specifically, each of the three storage tanks, the height may be 11% to 15% of the length between the waterline.
구체적으로, 상기 3개의 저장탱크 각각의 용량을 합한 전체적재용량에 대하여, 상기 전방 저장탱크는, 용적비가 16% 내지 33.3%이고, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각은, 용적비가 30% 내지 45%일 수 있다.In detail, the front storage tank has a volume ratio of 16% to 33.3%, and each of the intermediate storage tank and the rear storage tank has a volume ratio of 30% with respect to the total load capacity of the three storage tanks. To 45%.
구체적으로, 상기 전방 저장탱크의 길이 및 용적비를 상기 수선간 길이의 13% 및 전체적재용량의 18%로 제한하고, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각의 길이 및 용적비를 상기 수선간 길이의 20% 및 전체적재용량의 41%로 제한하고, 상기 3개의 저장탱크 각각의 높이를 상기 수선간 길이의 12.5%로 제한할 수 있다.Specifically, the length and volume ratio of the front storage tank is limited to 13% of the length between the waterline and 18% of the total load capacity, and the length and volume ratio of each of the intermediate storage tank and the rear storage tank are the lengths of the length between the waterline. 20% and 41% of the total loading capacity, and the height of each of the three storage tanks can be limited to 12.5% of the length between the waterline.
구체적으로, 상기 전방 저장탱크의 길이 및 용적비를 상기 수선간 길이의 17% 및 전체적재용량의 26%로 제한하고, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각의 길이 및 용적비를 상기 수선간 길이의 17% 및 전체적재용량의 37%로 제한하고, 상기 3개의 저장탱크 각각의 높이를 상기 수선간 길이의 13.25%로 제한할 수 있다.Specifically, the length and volume ratio of the front storage tank is limited to 17% of the length between the waterline and 26% of the total load capacity, and the length and volume ratio of each of the intermediate storage tank and the rear storage tank are the lengths of the length between the waterline. The height of each of the three storage tanks may be limited to 13.25% of the length between the waterline and limited to 17% and 37% of the total loading capacity.
구체적으로, 상기 전방 저장탱크의 길이 및 용적비를 상기 수선간 길이의 15% 및 전체적재용량의 23%로 제한하고, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각의 길이 및 용적비를 상기 수선간 길이의 17% 및 전체적재용량의 38.5%로 제한하고, 상기 3개의 저장탱크 각각의 높이를 상기 수선간 길이의 13.85%로 제한할 수 있다.Specifically, the length and volume ratio of the front storage tank is limited to 15% of the length between the waterline and 23% of the total load capacity, and the length and volume ratio of each of the intermediate storage tank and the rear storage tank are the lengths of the length between the waterline. The height of each of the three storage tanks can be limited to 13.85% of the length between the waterline and limited to 17% and 38.5% of the total loading capacity.
구체적으로, 상기 선박은, LNGC, LPGC, FSRU(Floating Storage Regasification Unit), FLNG(Floating Liquid Natural Gas plant, LNG-FPSO), FPSO(Floating Production Storage Offloading) 중 어느 하나일 수 있다.Specifically, the vessel may be any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas Plant (FLNG), Floating Production Storage Offloading (FPSO).
본 발명의 일 측면에 따른 선박은, 선수 수선으로부터 일정 거리 이격되어 설치되는 전방 저장탱크; 선미 수선으로부터 일정 거리 이격되어 설치되는 후방 저장탱크; 및 상기 전방 저장탱크와 상기 후방 저장탱크 사이에 설치되는 중간 저장탱크를 포함하여 3개의 저장탱크가 구비되며, 4개의 저장탱크를 구비하는 종래의 선박 대비 액화가스 전체적재용량을 유지하면서 상기 3개의 저장탱크만 구비하여 전체표면적의 감소로 BOR이 저감되는 것을 특징으로 한다.Ship according to an aspect of the present invention, the front storage tank which is installed at a predetermined distance away from the foreline; A rear storage tank installed at a predetermined distance from the stern water line; And three storage tanks including an intermediate storage tank installed between the front storage tank and the rear storage tank, wherein the three storage tanks have four storage tanks while maintaining the total liquefied gas loading capacity. It is characterized in that the BOR is reduced by reducing the total surface area by providing only the storage tank.
구체적으로, 상기 3개의 저장탱크 각각은, 길이, 높이, 용적비가 동일할 수 있다.In detail, each of the three storage tanks may have the same length, height, and volume ratio.
구체적으로, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각은, 길이, 높이, 용적비가 동일하고, 상기 전방 저장탱크는, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각에 대비하여, 길이가 짧고 용적비가 작을 수 있다.In detail, each of the intermediate storage tank and the rear storage tank has the same length, height, and volume ratio, and the front storage tank has a shorter length and a smaller volume ratio than the intermediate storage tank and the rear storage tank, respectively. Can be.
구체적으로, 상기 3개의 저장탱크 각각은, 길이, 높이, 용적비가 다를 수 있다.Specifically, each of the three storage tanks, length, height, volume ratio may be different.
구체적으로, 상기 전방 저장탱크는, 선수로 갈수록 폭이 좁아지는 형상을 가질 수 있다.Specifically, the front storage tank may have a shape that narrows toward the bow.
구체적으로, 상기 전방 저장탱크는, 상기 선수 수선에서 상기 수선간 길이의 10% 내지 25% 후방 위치에 전단이 위치되어 설치될 수 있다.In detail, the front storage tank may be installed with a front end positioned at a position 10% to 25% of the length between the repairs in the bow repair.
구체적으로, 상기 선박은, LNGC, LPGC, FSRU(Floating Storage Regasification Unit), FLNG(Floating Liquid Natural Gas plant, LNG-FPSO), FPSO(Floating Production Storage Offloading) 중 어느 하나일 수 있다.Specifically, the vessel may be any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas Plant (FLNG), Floating Production Storage Offloading (FPSO).
본 발명에 따른 선박은, 기존의 선박에 대비하여 선박 사이즈 및 액화가스 전체적재용량에는 변화 없이 최전방 저장탱크를 7,000m3 내지 10,000m3의 용량이 되도록 소형화 시키면서 나머지 3개의 저장탱크에 나머지 액화가스를 저장하도록 용량을 한정 설정함으로써, 슬로싱 현상을 더욱 줄임은 물론 체적대비 표면적을 줄여 BOR을 저감시킬 수 있다.The vessel according to the present invention, compared to the existing vessels, the remaining liquefied gas in the remaining three storage tanks while miniaturizing the front storage tank to a capacity of 7,000m 3 to 10,000m 3 without changing the vessel size and the total gas capacity of liquefied gas By limiting the capacity to store the volume, the sloshing phenomenon can be further reduced and the BOR can be reduced by reducing the surface area to volume.
또한, 본 발명에 따른 선박은, 선수부 측에 설치되는 최전방 저장탱크의 단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상으로 제작할 수 있어, 슬로싱에 의한 탱크 구조의 파손 방지, 가스 누출 방지 및 BOR을 더욱 저감시킬 수 있다.In addition, the ship according to the present invention can be produced in an octagonal shape in which the cross-sectional shape of the foremost storage tank installed on the bow side is optimized for the sloshing phenomenon, thereby preventing damage to the tank structure due to sloshing, preventing gas leakage and BOR. It can further reduce.
또한, 본 발명에 따른 선박은, 최전방 저장탱크를 편도 연료 소비량인 7,000m3 내지 10,000m3의 용량을 가지도록 제작함으로써, 액화가스 운송 시에는 다른 저장탱크와 함께 액화가스 저장 용도로 활용하고, 액화가스 운송 후에는 편도 운항에 필요한 추진용 연료 공급 용도로 활용함은 물론 탱크의 쿨-다운 용도로도 활용할 수 있다.In addition, the ship according to the present invention, by manufacturing the foremost storage tank to have a capacity of 7,000m 3 to 10,000m 3 of one-way fuel consumption, when used for liquefied gas storage with other storage tanks when liquefied gas transportation, After liquefied gas transportation, it can be used not only for supplying the propulsion fuel required for one-way operation but also for cooling down the tank.
또한, 본 발명에 따른 선박은, 4개의 저장탱크가 구비되는 기존의 선박에 대비하여 선박 사이즈 및 액화가스 전체적재용량에는 큰 변화 없이 저장탱크의 개수를 줄임으로써, 저장탱크의 전체표면적을 감소시킬 수 있어, BOR을 저감시킬 수 있고, 저장탱크의 제작비용을 줄일 수 있다.In addition, the vessel according to the present invention can reduce the total surface area of the storage tank by reducing the number of storage tanks without a significant change in the vessel size and the total liquefied gas loading capacity as compared to the existing vessel having four storage tanks. Can reduce the BOR and reduce the manufacturing cost of the storage tank.
또한, 본 발명에 따른 선박은, 4개의 저장탱크가 구비되는 기존의 선박에 대비하여 BOR을 저감시킬 수 있어, BOG처리를 위한 추가 구성(재액화장치, GCU, 기타 라인 등)이 필요 없거나 최소화할 수 있어 공수 절감 및 구축 비용을 절감할 수 있다.In addition, the vessel according to the present invention can reduce the BOR compared to the existing vessel equipped with four storage tanks, so that no additional configuration (reliquefaction apparatus, GCU, other lines, etc.) for the BOG treatment is required or minimized This can reduce labor and construction costs.
또한, 본 발명에 따른 선박은, 4개의 저장탱크가 구비되는 기존의 선박에 대비하여 저장탱크의 개수를 줄이되, 저장탱크의 액화가스 전체적재용량에는 변화가 없도록 높이를 증가시키고 전체 길이를 감소시킴으로써, 선수부 또는 선미부의 공간 활용도를 증대시킬 수 있다.In addition, the ship according to the present invention, by reducing the number of storage tanks compared to the existing vessels provided with four storage tanks, by increasing the height and reducing the overall length so that the total liquefied gas loading capacity of the storage tank is not changed In addition, the space utilization of the bow or stern may be increased.
또한, 본 발명에 따른 선박은, 선수부 측에 설치되는 전방 저장탱크를 기존 4개의 저장탱크가 설치되는 경우와 비교하여 선박의 운동 중심부 쪽으로 가깝게 배치함으로써, 전방 저장탱크의 슬로싱 현상을 줄일 수 있다.In addition, the ship according to the present invention, by placing the front storage tank installed on the bow side closer to the center of the movement of the vessel compared to the case where the existing four storage tanks, it is possible to reduce the sloshing phenomenon of the front storage tank. .
또한, 본 발명에 따른 선박은, 선미부 측에 설치되는 엔진룸과 후방 저장탱크 사이에 여유공간을 확보하여 연료탱크를 설치함으로써, 연료공급시스템을 단순화할 수 있어, 연료공급시스템 구축에 따른 공수 및 자재비용을 절감할 수 있다.In addition, the vessel according to the present invention, by installing a fuel tank by securing a free space between the engine room and the rear storage tank installed on the stern side, it is possible to simplify the fuel supply system, the air supply according to the fuel supply system construction And material cost can be reduced.
또한, 본 발명에 따른 선박은, 응력 분포가 가장 높게 나타나는 횡격벽과 이중저의 결합부분에서 이중저에 규정되는 최대 허용 응력보다 낮출 수 있도록 응력 분산에 적합한 구성을 갖는 하부 스툴 또는 경사판을 설치함으로써, 이중저의 두께 감소가 가능하여 선박 전체 높이를 줄일 수 있어, 기존의 선박에 대비 액화가스 전체적재용량에는 변화가 없도록 저장탱크의 높이를 증가시킴에 따른 선박의 6자 운동에 대한 안정성을 더욱 확보할 수 있다.In addition, the ship according to the present invention, by installing a lower stool or inclined plate having a configuration suitable for stress distribution to be lower than the maximum allowable stress prescribed in the double bottom at the joint portion of the transverse bulkhead and the double bottom where the stress distribution is the highest, As the thickness of the double bottom can be reduced, the overall height of the vessel can be reduced, and the stability of the six-way movement of the vessel can be further secured by increasing the height of the storage tank so that the total amount of liquefied gas is not changed compared to the existing vessel. Can be.
도 1은 종래 제1 실시예에 따른 선박을 설명하기 위한 측면도이다.1 is a side view for explaining a vessel according to the first embodiment.
도 2는 도 1의 최전방 저장탱크를 설명하기 위해 A-A'선을 따라 절단한 단면도이다.FIG. 2 is a cross-sectional view taken along line AA ′ to describe the foremost storage tank of FIG. 1.
도 3은 도 1의 최전방 저장탱크 이외의 저장탱크들을 설명하기 위해 B-B'선을 따라 절단한 단면도이다.3 is a cross-sectional view taken along line B-B 'to explain storage tanks other than the foremost storage tank of FIG.
도 4는 본 발명의 제1 실시예에 따른 선박을 설명하기 위한 측면도이다.4 is a side view for explaining a vessel according to the first embodiment of the present invention.
도 5는 도 4의 최전방 저장탱크를 설명하기 위해 C-C'선을 따라 절단한 단면도이다.5 is a cross-sectional view taken along the line CC ′ in order to explain the foremost storage tank of FIG. 4.
도 6은 도 4의 최전방 저장탱크 이외의 저장탱크들을 설명하기 위해 D-D'선을 따라 절단한 단면도이다.FIG. 6 is a cross-sectional view taken along line D-D ′ to explain storage tanks other than the foremost storage tank of FIG. 4.
도 7은 본 발명의 제2 실시예에 따른 3개의 저장탱크를 구비하는 선박을 설명하기 위한 측면도이다.7 is a side view for explaining a ship having three storage tanks according to a second embodiment of the present invention.
도 8은 본 발명의 제3 실시예에 따른 3개의 저장탱크를 구비하는 선박을 설명하기 위한 측면도이다.8 is a side view for explaining a ship having three storage tanks according to a third embodiment of the present invention.
도 9는 도 7의 전방 저장탱크의 형상을 설명하기 위해 A-A'선을 따라 절단한 단면도이다.FIG. 9 is a cross-sectional view taken along line AA ′ in order to describe the shape of the front storage tank of FIG. 7.
도 10은 도 8의 전방 저장탱크의 형상을 설명하기 위해 B-B'선을 따라 절단한 단면도이다.FIG. 10 is a cross-sectional view taken along line BB ′ in order to describe the shape of the front storage tank of FIG. 8.
도 11은 도 7 또는 도 8의 횡격벽과 이중저의 결합구조를 설명하기 위해 'C' 부분을 확대한 도면이다.FIG. 11 is an enlarged view of a portion 'C' to explain a coupling structure of the transverse bulkhead and the double bottom of FIG. 7 or 8.
도 12는 도 11에서 횡격벽과 이중저의 결합 부분에 위치되는 저장탱크의 코너 부분의 외부형상을 설명하기 위한 확대도이다.FIG. 12 is an enlarged view for explaining an external shape of a corner portion of a storage tank located at a coupling portion of a transverse bulkhead and a double bottom in FIG. 11.
도 13은 도 7 또는 도 8의 횡격벽과 이중저의 다른 결합구조를 설명하기 위해 'C' 부분을 확대한 도면이다.FIG. 13 is an enlarged view of a portion 'C' to explain another coupling structure of the transverse bulkhead and the double bottom of FIG. 7 or 8.
도 14는 종래 제2 실시예에 따른 4개의 저장탱크를 구비하는 선박을 설명하기 위한 측면도이다.14 is a side view for explaining a ship having four storage tanks according to the second embodiment.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, in describing the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 4는 본 발명의 제1 실시예에 따른 선박을 설명하기 위한 측면도이고, 도 5는 도 4의 최전방 저장탱크를 설명하기 위해 C-C'선을 따라 절단한 단면도이고, 도 6은 도 4의 최전방 저장탱크 이외의 저장탱크들을 설명하기 위해 D-D'선을 따라 절단한 단면도이다.Figure 4 is a side view for explaining the vessel according to the first embodiment of the present invention, Figure 5 is a cross-sectional view taken along the line C-C 'to explain the foremost storage tank of Figure 4, Figure 6 This is a cross-sectional view taken along the line D-D 'to explain storage tanks other than the foremost storage tank.
참고로, 이하에서 설명하는 선박은, 액화가스를 저장하는 저장탱크(일명, '화물창'이라고 함)를 포함하는 선박으로서, 화물을 출발지에서 목적지까지 수송하는 상선 예를 들어, LNGC 또는 LPGC 외에도 해상의 일정 지점에 부유하여 특정한 작업을 수행하는 해양구조물 예를 들어, 액화가스를 저장, 기화하는 FSRU(Floating Storage Regasification Unit), 액화가스를 생산, 저장, 하역하는 FLNG(Floating Liquid Natural Gas plant, LNG-FPSO), 해상에 부유한 상태로 액화가스를 정제, 저장, 하역하는 FPSO(Floating Production Storage Offloading) 등을 포괄하는 개념임을 알려둔다.For reference, a vessel described below is a vessel including a storage tank for storing liquefied gas (also referred to as a cargo hold), and a commercial vessel for transporting cargo from a source to a destination, such as LNGC or LPGC. Offshore structures that float at specific points in a specific area, for example, floating storage regasification units (FSRUs) to store and vaporize liquefied gases, and floating liquid natural gas plants (FLNGs) to produce, store and unload liquefied gases. (FPSO), Floating Production Storage Offloading (FPSO), which purifies, stores, and unloads liquefied gas while floating at sea.
또한, 액화가스는 LNG 또는 LPG, 에틸렌, 암모니아 등과 같이 일반적으로 액체 상태로 보관되는 것을 포괄하는 의미로 사용될 수 있다.In addition, liquefied gas may be used as a meaning encompassing generally stored in a liquid state, such as LNG or LPG, ethylene, ammonia, and the like.
도 4 내지 도 6에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 선박(200)은, 최전방 저장탱크(210), 전방 저장탱크(220), 중간 저장탱크(230), 후방 저장탱크(240)를 포함하여 구성될 수 있다. 선박(200)에 설치되는 저장탱크(210, 220, 230, 240)는 멤브레인형으로서 NO 96 타입, Mark Ⅲ 타입일 수 있고, 독립형으로서 SPB 타입일 수 있다.4 to 6, the ship 200 according to the first embodiment of the present invention, the front storage tank 210, the front storage tank 220, the intermediate storage tank 230, the rear storage tank And 240. Storage tanks 210, 220, 230, 240 installed in the vessel 200 may be of the NO 96 type, Mark III type as a membrane type, and may be an SPB type as a stand-alone type.
본 실시예에서 선박(200)은, 4개의 저장탱크가 설치되는 60K급으로부터 220K급까지의 기존 선박(도시하지 않음)에 대비하여 선박 사이즈 및 액화가스 전체적재용량에는 변화가 없는 선박일 수 있으나, 바람직하게는 안정성 확보를 위해서 선폭을 키울 수 있으며, 배수량은 방형비척계수(Cb)를 줄여서 같은 수준을 유지 한다. 본 실시예에서는, 선박(200)이 60K급 내지 220K급의 액화가스 전체적재용량을 갖는 것으로 설명하지만, 본 발명은 이에 한정되지 않고 액화가스 전체적재용량이 60K급 내지 220K급 범위 이하 또는 이상의 선박(200)을 포함할 수 있음은 물론이다.In this embodiment, the vessel 200 may be a vessel having no change in the vessel size and the total liquefied gas loading capacity compared to the existing vessel (not shown) from 60K class to 220K class where four storage tanks are installed. Preferably, the line width can be increased to ensure stability, and the drainage is maintained at the same level by reducing the square scale factor (Cb). In this embodiment, the vessel 200 is described as having a total amount of liquefied gas loading of 60K to 220K class, the present invention is not limited to this, the total amount of liquefied gas loading or less than 60K to 220K class ship Of course, it may include 200.
최전방 저장탱크(210)는, 선수부(201) 측에 설치되며, 액화가스 전체적재용량 중에서 선박(200)의 편도 연료 소비량에 대응되는 용량을 가지도록 제작, 예를 들어, 7,000m3 내지 10,000m3의 용량을 가지도록 소형화로 제작될 수 있다.The frontmost storage tank 210 is installed on the bow 201 side, and manufactured to have a capacity corresponding to the one-way fuel consumption of the vessel 200 among the total liquefied gas loading capacity, for example, 7,000 m 3 to 10,000 m. It can be manufactured in miniaturization to have a capacity of 3 .
이러한 최전방 저장탱크(210)는, 도 5에 도시된 바와 같이, 단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상, 바람직하게는 정팔각형 형상으로 제작할 수 있다. 이는 최전방 저장탱크(210)가 7,000m3 내지 10,000m3의 용량으로 소형화로 제작되기 때문에, 도 2에 도시된 기존의 최전방 저장탱크(110)의 단면 형상과는 달리 그 형상이 유선형인 선박의 특성으로부터 자유로울 수 있다.As shown in FIG. 5, the foremost storage tank 210 may be manufactured in an octagonal shape in which the cross-sectional shape is optimized for a sloshing phenomenon, preferably in a regular octagonal shape. This is because the foremost storage tank 210 is manufactured in a compact size with a capacity of 7,000m 3 to 10,000m 3 , unlike the cross-sectional shape of the existing foremost storage tank 110 shown in FIG. Can be free from characteristics.
본 실시예에서, 최전방 저장탱크(210)의 용량을 7,000m3 내지 10,000m3로 한정한 것은, 일반적인 항로에서 선박(200)의 편도 연료 소비량을 고려한 것이며, 이로써 최전방 저장탱크(210)는 액화가스 운송 시에는 다른 저장탱크(220, 230, 240)와 함께 액화가스 저장 용도로 활용할 수 있고, 액화가스 운송 후에는 편도 운항에 필요한 추진용 연료 공급 용도로 활용함은 물론 탱크의 쿨-다운 용도로도 활용할 수 있다. 최전방 저장탱크(210)가 추진용 연료 공급 용도로 활용할 경우 연료 소모에 따라 내부의 액화가스가 줄어들어 슬로싱 현상이 과다하게 발생될 수 있으나, 소형이고 슬로싱 현상에 최적화된 형상으로 제작되기 때문에 슬로싱에 의한 하중은 탱크 구조를 파손할 정도로 크지 않다.In this embodiment, limiting the capacity of the foremost storage tank 210 to 7,000 m 3 to 10,000 m 3 is to take into account the one-way fuel consumption of the vessel 200 in the general route, thereby liquefying the foremost storage tank 210 When transporting gas, it can be used for storing liquefied gas together with other storage tanks (220, 230, 240), and as a fuel supply for propulsion fuel required for one-way operation after liquefied gas transportation, as well as for cooling down the tank. Can also be used as. When the foremost storage tank 210 is used for propulsion fuel supply, sloshing may occur excessively due to the reduction of liquefied gas inside according to fuel consumption, but the sloshing phenomenon is small because it is manufactured in a shape optimized for sloshing. The load by the sheath is not large enough to damage the tank structure.
전방 저장탱크(220), 중간 저장탱크(230) 및 후방 저장탱크(240)는, 최전방 저장탱크(210)로부터 선미부(202) 측으로 순차적으로 설치될 수 있으며, 액화가스 전체적재용량에서 최전방 저장탱크(210)의 용량을 제외한 나머지 액화가스를 저장할 수 있는 용량으로 제작될 수 있다.The front storage tank 220, the intermediate storage tank 230 and the rear storage tank 240 may be sequentially installed from the foremost storage tank 210 to the stern portion 202, and may be stored at the forefront in the total liquefied gas loading capacity. Except for the capacity of the tank 210 may be produced in a capacity to store the remaining liquefied gas.
전방 저장탱크(220), 중간 저장탱크(230) 및 후방 저장탱크(240) 각각은, 단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상으로 제작될 수 있다.Each of the front storage tank 220, the intermediate storage tank 230, and the rear storage tank 240 may be manufactured in an octagonal shape in which a cross-sectional shape is optimized for a sloshing phenomenon.
또한, 전방 저장탱크(220), 중간 저장탱크(230) 및 후방 저장탱크(240) 각각은, 동일한 용량을 가지도록 제작될 수 있으나, 전방 저장탱크(220)가 중간 저장탱크(230) 또는 후방 저장탱크(240)와 비교하여 선수부(201) 측에 더 가깝게 설치되기 때문에 슬로싱 현상을 줄이기 위해 작은 용량을 가지도록 제작하는 것이 바람직할 수 있다. 전방 저장탱크(220)는 최전방 저장탱크(210)보다 큰 용량을 가지도록 제작됨은 물론이다.In addition, each of the front storage tank 220, the intermediate storage tank 230 and the rear storage tank 240 may be manufactured to have the same capacity, but the front storage tank 220 is the intermediate storage tank 230 or the rear Since it is installed closer to the bow portion 201 side than the storage tank 240, it may be desirable to have a small capacity to reduce the sloshing phenomenon. The front storage tank 220 is of course manufactured to have a larger capacity than the foremost storage tank 210.
본 실시예의 이해를 돕기 위하여, 175K급 선박(200)의 경우를 일례로 설명하면 다음과 같다.In order to help the understanding of the present embodiment, a case of the 175K class ship 200 will be described as an example.
175K급 선박(200)은, 최전방 저장탱크(210)가 7,000m3의 용량을 가지고, 전방 저장탱크(220)가 54,000m3의 용량을 가지며, 중간 저장탱크(230)가 57,000m3의 용량을 가지며, 후방 저장탱크(240)가 57,000m3의 용량을 가지도록 제작될 수 있다.In the 175K class ship 200, the foremost storage tank 210 has a capacity of 7,000m 3 , the front storage tank 220 has a capacity of 54,000m 3 , and the intermediate storage tank 230 has a capacity of 57,000m 3 . Has a rear storage tank 240 can be manufactured to have a capacity of 57,000m 3 .
선박(200)은 액화가스 운송 시에 모든 저장탱크(210, 220, 230, 240)에 70% 이상(10% 내지 70% 범위 내에서 슬로싱 현상이 증가됨)의 액화가스를 저장한 상태에서 수요처로의 운항을 하게 된다. 일반적으로 수요처에서 액화가스를 언로딩(unloading)할 때, 추진용 연료 공급 용도 또는 탱크의 쿨-다운 용도로 사용하기 위해 저장탱크에 10% 이하로 남기게 되는데, 본 실시예에서는 최전방 저장탱크(210)에만 액화가스를 채워 편도 운항에 필요한 연료 공급 또는 탱크의 쿨-다운 용도로 사용할 수 있게 한다.The vessel 200 needs to store 70% or more of the liquefied gas in all storage tanks 210, 220, 230, and 240 (the sloshing phenomenon is increased within the range of 10% to 70%) during liquefied gas transportation. The flight will take place. In general, when unloading the liquefied gas at the demand, it is left in the storage tank to less than 10% for use as a propulsion fuel supply or a cool-down of the tank, in this embodiment, the frontmost storage tank 210 Liquefied gas only to provide fuel for one-way operation or cool down the tank.
최전방 저장탱크(210)의 액화가스는 추진용 연료로 사용되면서 줄어들게 되어 슬로싱 현상이 과다하게 발생될 수 있으나, 전술한 바와 같이, 소형이고 슬로싱 현상에 최적화된 형상으로 제작되기 때문에 슬로싱에 의한 하중은 탱크 구조를 파손할 정도로 크지 않게 된다.The liquefied gas of the foremost storage tank 210 is reduced as it is used as a propulsion fuel, so that sloshing may occur excessively, but as described above, since it is manufactured in a compact and optimized shape for sloshing, The load caused is not so large as to damage the tank structure.
도 7은 본 발명의 제1 실시예에 따른 3개의 저장탱크를 구비하는 선박을 설명하기 위한 측면도이고, 도 8은 본 발명의 제2 실시예에 따른 3개의 저장탱크를 구비하는 선박을 설명하기 위한 측면도이고, 도 9는 도 7의 전방 저장탱크의 형상을 설명하기 위해 A-A'선을 따라 절단한 단면도이고, 도 10은 도 8의 전방 저장탱크의 형상을 설명하기 위해 B-B'선을 따라 절단한 단면도이고, 도 11은 도 1 또는 도 8의 횡격벽과 이중저의 결합구조를 설명하기 위해 'C' 부분을 확대한 도면이고, 도 12는 도 11에서 횡격벽과 이중저의 결합 부분에 위치되는 저장탱크의 코너 부분의 외부형상을 설명하기 위한 확대도이고, 도 13은 도 7 또는 도 8의 횡격벽과 이중저의 다른 결합구조를 설명하기 위해 'C' 부분을 확대한 도면이다.FIG. 7 is a side view illustrating a vessel having three storage tanks according to the first embodiment of the present invention, and FIG. 8 illustrates a vessel having three storage tanks according to the second embodiment of the present invention. 9 is a cross-sectional view taken along line A-A 'to illustrate the shape of the front storage tank of FIG. 7, and FIG. 10 is a cross-sectional view taken along the line B-B' to explain the shape of the front storage tank of FIG. 8. FIG. 11 is a cross-sectional view taken along a line, and FIG. 11 is an enlarged view of part 'C' to explain the coupling structure of the transverse bulkhead and the double bottom of FIG. 1 or 8, and FIG. It is an enlarged view for explaining the external shape of the corner part of the storage tank located in the part, and FIG. 13 is an enlarged view of the 'C' part to explain another coupling structure of the transverse bulkhead and double bottom of FIG. 7 or 8. .
참고로, 이하에서 설명하는 선박은, 액화가스를 저장하는 저장탱크(일명, '화물창'이라고 함)를 포함하는 선박으로서, 화물을 출발지에서 목적지까지 수송하는 상선 예를 들어, LNGC, LPGC 외에도 해상의 일정 지점에 부유하여 특정한 작업을 수행하는 해양구조물 예를 들어, 액화가스를 저장, 기화하는 FSRU(Floating Storage Regasification Unit), 액화가스를 생산, 저장, 하역하는 FLNG(Floating Liquid Natural Gas plant, LNG-FPSO), 해상에 부유한 상태로 액화가스를 정제, 저장, 하역하는 FPSO(Floating Production Storage Offloading) 등을 포괄하는 개념임을 알려둔다.For reference, the vessel described below is a vessel including a storage tank for storing liquefied gas (also referred to as 'cargo'), a commercial vessel for transporting cargo from the origin to the destination, for example, in addition to LNGC, LPGC Offshore structures that float at specific points in a specific area, for example, floating storage regasification units (FSRUs) to store and vaporize liquefied gases, and floating liquid natural gas plants (FLNGs) to produce, store and unload liquefied gases. (FPSO), Floating Production Storage Offloading (FPSO), which purifies, stores, and unloads liquefied gas while floating at sea.
또한, 액화가스는 LNG 또는 LPG, 에틸렌, 암모니아 등과 같이 일반적으로 액체 상태로 보관되는 것을 포괄하는 의미로 사용될 수 있다.In addition, liquefied gas may be used as a meaning encompassing generally stored in a liquid state, such as LNG or LPG, ethylene, ammonia, and the like.
도 12에도 7 내지 도 12에 도시된 바와 같이, 본 발명의 제1 또는 제2 실시예에 따른 선박(300)은, 60K급 내지 220K급으로서, 저장탱크부(310), 엔진룸(320), 연료탱크(330), 횡격벽(340), 하부 스툴(350), 이중저(360), 철구조물(370)을 포함하여 구성될 수 있다. 이하, '종단면', '횡단면', '종방향', 횡방향'이란 용어에서 '종'은 선박(300)의 길이 방향을 의미하며, '횡'은 선박(300)의 폭 방향을 의미한다.As shown in Fig. 12 to 7 to 12, the ship 300 according to the first or second embodiment of the present invention, 60K class to 220K class, the storage tank unit 310, the engine room 320 The fuel tank 330, the transverse bulkhead 340, the lower stool 350, the double bottom 360, and the steel structure 370 may be configured. Hereinafter, in the terms 'vertical section', 'cross-section', 'vertical', 'lateral', 'long' refers to the longitudinal direction of the vessel 300, and 'lateral' refers to the width direction of the vessel 300. .
본 실시예에서는, 선박(300)이 60K급 내지 220K급의 액화가스 전체적재용량을 갖는 것으로 설명하지만, 본 발명은 이에 한정되지 않고 액화가스 전체적재용량이 60K급 내지 220K급 범위 이하 또는 이상의 선박(300)을 포함할 수 있음은 물론이다.In this embodiment, the vessel 300 is described as having a total liquefied gas loading capacity of 60K class to 220K class, the present invention is not limited to this, but the total liquefied gas loading capacity of the 60K class or less than 220K class range or more ship Of course, it may include 300.
본 실시예의 선박(300)은, 4개의 저장탱크(410, 420, 430, 440)가 설치되는 기존 선박(400)과 동일 또는 유사 선종으로 3개의 저장탱크(310a, 310b, 310c)가 설치되되, 기존 선박(400) 대비 액화가스 전체적재용량이 동일 또는 유사할 수 있도록 하면서, 탱크의 수를 1개 줄임에 의해 탱크의 전체표면적을 감소로 BOR을 저감시킬 수 있고, 전방 저장탱크(310a)를 가능한 선수 수선(FP)으로부터 후방으로 이격되게 위치시켜 슬로싱 현상을 또한 줄일 수 있도록 구성된다. 또한, 본 실시예의 선박(300)은, 기존 선박(400) 대비 선박의 6자 운동 등 안정성 확보를 위해서 선폭을 키울 수 있으며, 배수량은 방형비척계수(Cb)를 줄여서 같은 수준을 유지할 수 있다. Ship 300 of the present embodiment, four storage tanks (410, 420, 430, 440) is installed three storage tanks (310a, 310b, 310c) of the same or similar to the existing vessel 400 is installed While reducing the total surface area of the tank by reducing the number of tanks by one, the total storage capacity of the liquefied gas can be the same or similar to the existing vessel 400, the BOR can be reduced, the front storage tank 310a Is positioned to be spaced rearward from the foreline FP as possible to further reduce the sloshing phenomenon. In addition, the ship 300 of the present embodiment can increase the line width to ensure stability, such as six-way movement of the vessel compared to the existing vessel 400, the drainage can be maintained at the same level by reducing the square scale factor (Cb).
한편, 선박에서, 액화가스 전체적재용량이 동일하고, 저장탱크의 개수 및 크기가 다를 경우, 저장탱크의 개수가 적을수록 탱크의 전체표면적의 감소로 BOR을 저감시킬 수 있으나, 상대적으로 저장탱크의 크기가 클 수 밖에 없어 슬로싱 현상이 증가되는 문제가 있다. 이에 따라 기존에는 4개의 저장탱크(410, 420, 430, 440)를 구비하여 최적화 하였으나, 이하에 설명될 본 실시예에서는 3개의 저장탱크(310a, 310b, 310c)를 구비하여 기존 선박(400)보다 개선된 선박(300)을 제공한다. 또한, 2개의 저장탱크를 구비한 선박의 경우, 본 실시예의 3개의 저장탱크(310a, 310b, 310c)에 대비하여 BOR을 저감시킬 수 있으나, 저장탱크 각각의 크기가 너무 커지게 되어 슬로싱 문제를 해결할 수 없고, 슬로싱 저감장치 설치하여 슬로싱 문제를 어느 정도 해결할 수 있으나 비용적인 측면을 고려할 때 경쟁력이 떨어져 상용화가 곤란하다.On the other hand, in ships, when the total amount of liquefied gas is the same and the number and size of the storage tanks are different, the smaller the number of storage tanks, the lower the BOR by reducing the total surface area of the tank, but relatively Due to the large size, the sloshing phenomenon is increased. Accordingly, the present invention has been optimized by providing four storage tanks 410, 420, 430, and 440. However, in the present embodiment to be described below, three storage tanks 310a, 310b, and 310c are provided. It provides a more advanced ship 300. In addition, in the case of a ship having two storage tanks, the BOR can be reduced compared to the three storage tanks 310a, 310b, and 310c of the present embodiment, but the size of each storage tank becomes too large, thereby causing sloshing problems. It is not possible to solve the problem of sloshing by installing a sloshing reducing device to some extent, but considering the cost aspect, it is difficult to commercialize due to its low competitiveness.
저장탱크부(310)는, 전방 저장탱크(310a), 중간 저장탱크(310b), 후방 저장탱크(310c)로 이루어지는 3개로 구성될 수 있다. Storage tank 310 may be composed of three consisting of the front storage tank (310a), the intermediate storage tank (310b), the rear storage tank (310c).
3개의 저장탱크(310a, 310b, 310c) 각각은, 멤브레인형일 경우 Mark Ⅲ 타입, Mark V 타입은 물론 NO 96 타입일 수 있고, 독립형일 경우 SPB 타입일 수 있다. 이하에서 일례로 설명될 Mark Ⅲ 타입의 경우, 3개의 저장탱크(310a, 310b, 310c) 각각은, 1차 방벽(311), 1차 단열벽(312), 2차 방벽(313), 2차 단열벽(314)으로 구성되는 단열시스템으로 이루어질 수 있다.Each of the three storage tanks 310a, 310b, and 310c may be a Mark III type or a Mark V type as well as a NO 96 type when the membrane type, and an SPB type when the standalone type is used. In the case of Mark III type, which will be described below as an example, each of the three storage tanks 310a, 310b, and 310c may include a primary barrier 311, a primary insulation wall 312, a secondary barrier 313, and a secondary It may be made of a heat insulating system consisting of a heat insulating wall (314).
1차 방벽(311)은, 액화가스와 직접 접촉되도록 설치되며, 스테인리스 강재로 멤브레인(membrane) 주름방벽(corrugation barrier) 또는 파형 주름 방벽으로 이루어질 수 있다.The primary barrier 311 is installed to be in direct contact with the liquefied gas, and may be made of a stainless steel corrugation barrier or a corrugated corrugated barrier.
1차 단열벽(312)은, 1차 방벽(311)과 2차 방벽(313) 사이에 설치될 수 있으며, 외부로부터의 열 침입을 차단하면서 외부로부터의 충격 또는 내부에서의 액화가스 슬로싱으로 인한 충격을 견딜 수 있도록, 폴리우레탄 폼으로 형성되는 1차 단열패널(312a)과, 1차 방벽(311)과 1차 단열패널(312a) 사이에 설치되는 1차 플라이우드(312b)로 구성될 수 있다.The primary heat insulation wall 312 may be installed between the primary barrier 311 and the secondary barrier 313, and may be provided by shock from the outside or liquefied gas sloshing from the inside while blocking heat intrusion from the outside. In order to withstand the impact due to, the primary insulation panel 312a formed of polyurethane foam, and the primary plywood 312b installed between the primary barrier 311 and the primary insulation panel 312a Can be.
2차 방벽(313)은, 1차 단열벽(312)과 2차 단열벽(314) 사이에 설치될 수 있으며, 알루미늄 금박에 유리섬유를 붙인 트리플렉스(triplex) 복합재료로 이루어질 수 있다.The secondary barrier 313 may be installed between the primary insulation wall 312 and the secondary insulation wall 314, and may be made of a triplex composite material in which glass fiber is attached to aluminum gold foil.
2차 단열벽(314)은, 2차 방벽(313)과 선체 사이에 설치될 수 있으며, 외부로부터의 열 침입을 차단하면서 외부로부터의 충격 또는 내부에서의 액화가스 슬로싱으로 인한 충격을 견딜 수 있도록, 폴리우레탄 폼으로 형성되는 2차 단열패널(314b)과, 2차 단열패널(314b)과 선체 사이에 설치되는 2차 플라이우드(314a)로 구성될 수 있다.The secondary insulation wall 314 may be installed between the secondary barrier 313 and the hull, and may withstand the impact from the outside or the liquefied gas sloshing from the inside while blocking heat intrusion from the outside. The secondary insulation panel 314b formed of polyurethane foam and the secondary plywood 314a installed between the secondary insulation panel 314b and the hull may be included.
상기한 3개의 저장탱크(310a, 310b, 310c) 각각에 대한 구성은 Mark Ⅲ 타입의 기본적인 구성에 해당될 수 있으며, 본 실시예에서는 이러한 구성에 한정되지 않고, 일반적으로 적용되고 있는 다른 구성을 포함할 수 있음은 물론이다.Configuration of each of the three storage tanks (310a, 310b, 310c) may correspond to the basic configuration of Mark III type, not limited to this configuration in the present embodiment, and includes other configurations that are generally applied Of course you can.
상기한 1차 방벽(311), 1차 단열벽(312), 2차 방벽(313), 2차 단열벽(314)으로 구성되는 3개의 저장탱크(310a, 310b, 310c) 각각은, 설계 룰에 따라 다소 차이가 있지만 일반적으로 저장탱크(310a, 310b, 310c) 각각의 전체 두께(T)가 400mm 전후이며, 이들 구성 요소들 중에서 2차 단열벽(314)의 두께(T1)가 전체 두께(T)의 60% 내지 80%를 차지한다. 본 실시예에서는 도 12에 도시한 바와 같이, 횡격벽(340)과 이중저(360)의 결합 부분에 위치되는 저장탱크(310a, 310b, 310c) 각각의 코너 부분의 외부형상 즉, 응력 분산용으로 설치되는 후술할 하부 스툴(350)과 만나는 저장탱크(310a, 310b, 310c) 각각의 코너 라인(315)의 외부형상을 사선 형태로 제작한다.Each of the three storage tanks 310a, 310b, 310c constituted of the primary barrier 311, the primary insulation wall 312, the secondary barrier 313, and the secondary insulation wall 314 is a design rule. In general, the total thickness T of each of the storage tanks 310a, 310b, and 310c is about 400 mm, and the thickness T1 of the secondary insulation wall 314 is the total thickness ( Account for 60% to 80% of T). In this embodiment, as shown in Figure 12, the outer shape of the corner portion of each of the storage tanks 310a, 310b, 310c located in the coupling portion of the transverse bulkhead 340 and the double bottom 360, that is, for stress dispersion The outer shape of each of the corner lines 315 of the storage tanks 310a, 310b, and 310c meeting with the lower stool 350, which will be described later, is installed in an oblique form.
사선 형태의 코너 라인(315)은, 후술할 하부 스툴(350)의 설치를 용이하게 하면서, 횡격벽(340)과 이중저(360)가 만나는 코너 부분에 발생하는 다양한 하중에 의한 응력 집중 현상을 방지할 수 있게 한다. 이러한 코너 라인(315)은, 2차 단열벽(314)의 일부를 제거하여 제작될 수 있는데, 이때 2차 단열벽(314)을 많이 제거할수록 단열 두께가 얇아져 저장탱크(310a, 310b, 310c)의 보온 능력이 저하될 수 있고, 적게 제거할수록 후술할 하부 스툴(350)의 크기가 작아져 응력 분산 능력이 저하 될 수 있어, 보온 능력과 응력 분산 능력 상호 관계에 대한 구조 해석 결과를 통해 적절한 사선 기울기 각도 및 사선 크기를 갖는 사선 형태로 제작할 수 있다.The diagonal corner line 315 facilitates the installation of the lower stool 350 to be described later, while stress concentration phenomenon caused by various loads generated at the corner portion where the transverse bulkhead 340 and the double bottom 360 meet. To prevent it. The corner line 315 may be manufactured by removing a part of the secondary heat insulating wall 314. At this time, the more the secondary heat insulating wall 314 is removed, the thinner the heat insulating thickness is, thus, the storage tanks 310a, 310b, and 310c. The heat dissipation capacity of the lower stool 350 may be reduced as the size of the lower stool 350 is reduced, and the stress dissipation capacity may be lowered. It may be manufactured in the form of an oblique line having an inclination angle and an oblique line size.
이하에서, 저장탱크부(310)의 전방 저장탱크(310a), 중간 저장탱크(310b), 후방 저장탱크(310c) 각각의 길이, 높이, 용적비에 대하여 구체적으로 설명하기로 한다.Hereinafter, the length, height, and volume ratio of each of the front storage tank 310a, the intermediate storage tank 310b, and the rear storage tank 310c of the storage tank 310 will be described in detail.
전방 저장탱크(310a)는, 선수부(301) 측의 선체에 설치될 수 있으며, 길이가 선수 수선(Fore Perpendicular; FP)과 선미 수선(After Perpendicular; AP) 간의 수평거리인 수선간 길이(LBP)의 10% 내지 20%로 제한, 바람직하게는 13% 내지 17%로 제한될 수 있으며, 높이가 수선간 길이(LBP)의 11% 내지 15%로 제한, 바람직하게는 12.5% 내지 13.5%로 제한될 수 있으며, 3개의 저장탱크(310a, 310b, 310c)각각의 용량을 합한 전체적재용량에 대한 용적비(Volume Ratio)가 16% 내지 33.3%로 제한, 바람직하게는 18% 내지 26%으로 제한될 수 있다. 전방 저장탱크(310a)의 용적비는 슬로싱의 영향을 최대한 적게 받도록 후술할 중간 및 후방 저장탱크(310b, 310c) 각각의 용적비보다 작게 하는 것이 바람직하지만, 동일하게 할 수 있음은 물론이다. 여기서, 전방 저장탱크(310a)를 제한하는 길이, 높이, 용적비의 수치는 후술할 중간 저장탱크(310b) 및 후술할 후방 저장탱크(310c) 각각의 길이, 높이, 용적비와 상관 관계가 있음을 미리 밝힌다.The front storage tank 310a may be installed in the hull on the side of the bow portion 301, and the length between the repairs (LB) is a horizontal distance between the fore perpendicular (FP) and the after perpendicular (AP). Limited to 10% to 20%, preferably 13% to 17%, and height limited to 11% to 15% of the interline length (LBP), preferably 12.5% to 13.5% The volume ratio of the total storage capacity of each of the three storage tanks 310a, 310b, and 310c combined may be limited to 16% to 33.3%, preferably 18% to 26%. Can be. The volume ratio of the front storage tank 310a is preferably smaller than the volume ratio of each of the intermediate and rear storage tanks 310b and 310c, which will be described later, so as to be affected by sloshing as much as possible. Here, the numerical values of the length, height, and volume ratio limiting the front storage tank 310a may be correlated with the length, height, and volume ratio of each of the intermediate storage tank 310b to be described later and the rear storage tank 310c to be described later. Say.
또한, 전방 저장탱크(310a)는, 선수 수선(FP)으로부터 예정된 거리로 이격되어 설치될 수 있는데, 선수 수선(FP)에서 수선간 길이(LBP)의 10% 내지 25% 후방 위치에 전단이 위치되도록 한다.In addition, the front storage tank 310a may be installed spaced apart from the foreline FP by a predetermined distance, where the shear is positioned at a position 10% to 25% rearward of the length LBP between the foreline FP. Be sure to
이와 같이, 전방 저장탱크(310a)의 설치 위치를 수선간 길이(LBP)의 10% 내지 25% 후방 위치로 제한하는 것은, 선박(300)에서, 피칭, 트림과 같은 종동요를 고려한 것이다.In this way, limiting the installation position of the front storage tank 310a to the position of 10% to 25% of the length between the waterline length LBP is in consideration of the driven fluctuations such as pitching and trimming in the vessel 300.
구체적으로, 기존의 선박(400)은 전방 저장탱크(410)의 전단이 수선간 길이(LBP)의 8% 전후에 위치된다. 본 실시예에서 10% 하한선의 임계적 의의는, 기존 8% 정도에서 10%로 증가시키면 탱크의 전체 무게중심이 뒤로 옮겨가게 되고, 선체의 선미부(302) 측이 가라앉는 선미트림이 발생되어 프로펠러가 바다 속에 잘 잠기게 되고, 이로 인하여 프로펠러에서의 캐비테이션(공동현상) 발생 확률이 줄임은 물론 프로펠러 보호 및 저항을 감소시킬 수 있도록 고려한 것이다.Specifically, in the existing vessel 400, the front end of the front storage tank 410 is positioned around 8% of the length LBP. In the present embodiment, the critical significance of the 10% lower limit is to increase the total center of gravity of the tank back to 10% from the existing 8%, and the stern trim that the stern portion 302 side of the hull sinks occurs. The propeller is well submerged in the sea, which reduces the chance of cavitation in the propeller as well as reduces propeller protection and resistance.
또한, 본 실시예에서 25% 상한선의 임계적 의의는, 25%를 넘기면 선체의 선수부(301) 측이 들어올려지게 되고, 구상선수가 잘 잠기지 않으면서 구상선수에 의한 조파저항 감소 효과가 줄어들 수 있기 때문이다.In addition, in the present embodiment, the critical significance of the upper limit of 25%, if more than 25%, the bow portion 301 side of the hull is lifted, the effect of reducing the harmonic resistance by the bulbous athlete can be reduced while the bulbous athlete is not locked well. Because there is.
본 발명의 실시예에서는, 선수 수선(FP)에서 수선간 길이(LBP)의 10% 내지 25% 후방 위치에 전방 저장탱크(310a)의 전단이 위치되도록 함으로써, 전방 저장탱크(310a)가 기존의 선박(400)의 전방 저장탱크(410) 대비하여 슬로싱 영향이 크게 발생하는 지점인 선체의 피칭운동으로 인해 전방 저장탱크(310a)에 저장된 액화가스의 가속도가 높은 지점 즉, 공명현상(Resonance)이 일어나는 지점을 회피할 수 있다.In the embodiment of the present invention, the front storage tank (310a) of the front storage tank (310a) by placing the front end of the front storage tank (310a) in the position 10% to 25% of the rear line length (LBP) in the waterline (FP). Compared to the front storage tank 410 of the vessel 400, due to the pitching movement of the hull, which is a point where the effect of sloshing is greatly generated, the acceleration point of the liquefied gas stored in the front storage tank 310a, that is, the resonance (Resonance) You can avoid this point.
중간 저장탱크(310b)는, 전방 저장탱크(310a)와 후술할 후방 저장탱크(310c) 사이의 선체에 설치될 수 있으며, 길이가 수선간 길이(LBP)의 15% 내지 25%로 제한, 바람직하게는 17% 내지 20%로 제한될 수 있으며, 높이가 수선간 길이(LBP)의 11% 내지 15%로 제한, 바람직하게는 12.5% 내지 13.85%로 제한될 수 있으며, 3개의 저장탱크(310a, 310b, 310c)각각의 용량을 합한 전체적재용량에 대한 용적비(Volume Ratio)가 30% 내지 45%로 제한, 바람직하게는 37% 내지 41%으로 제한될 수 있다.The intermediate storage tank 310b may be installed on the hull between the front storage tank 310a and the rear storage tank 310c to be described later, and the length is limited to 15% to 25% of the length LBP. It may be limited to 17% to 20%, the height may be limited to 11% to 15% of the length between the water line (LBP), preferably 12.5% to 13.85%, three storage tanks 310a 310b, 310c) The volume ratio to the total loading capacity of the combined doses may be limited to 30% to 45%, preferably 37% to 41%.
후방 저장탱크(310c)는, 후술할 엔진룸(320)에 인접되며 선미 수선(AP)으로부터 예정된 거리로 이격되어 설치될 수 있으며, 길이가 수선간 길이(LBP)의 15% 내지 25%로 제한, 바람직하게는 17% 내지 20%로 제한될 수 있으며, 높이가 수선간 길이(LBP)의 11% 내지 15%로 제한, 바람직하게는 12.5% 내지 13.85%로 제한될 수 있으며, 3개의 저장탱크(310a, 310b, 310c)각각의 용량을 합한 전체적재용량에 대한 용적비(Volume Ratio)가 30% 내지 45%로 제한, 바람직하게는 37% 내지 41%으로 제한될 수 있다.The rear storage tank 310c may be installed adjacent to the engine room 320 to be described later and spaced apart from the stern waterline AP by a predetermined distance, and the length is limited to 15% to 25% of the length LBP. Preferably, it may be limited to 17% to 20%, the height may be limited to 11% to 15% of the length between the waterline (LBP), preferably 12.5% to 13.85%, three storage tanks (310a, 310b, 310c) The volume ratio to the total loading capacity of the combined doses may be limited to 30% to 45%, preferably 37% to 41%.
상기한 3개의 저장탱크(310a, 310b, 310c)각각은, 길이, 높이, 용적비가 동일하거나 다를 수 있음은 물론이다.Of course, each of the three storage tanks 310a, 310b, and 310c may have the same length, height, and volume ratio.
본 실시예에서는 상기한 전방, 중간 및 후방 저장탱크(310a, 310b, 310c) 각각에 적용되는 길이, 높이, 용적비의 수치를 적절하게 조합하여 3개의 저장탱크(310a, 310b, 310c)가 구비되는 선박(300)을 건조할 수 있는데, 이해를 돕기 위해 이하에서 3가지 경우를 예로써 설명한다. 다만, 본 실시예는 이에 한정되는 않음은 물론이다.In this embodiment, three storage tanks 310a, 310b, 310c are provided by appropriately combining the values of the length, height, and volume ratio applied to each of the front, middle, and rear storage tanks 310a, 310b, and 310c. The ship 300 may be built, and for the sake of understanding, the following three cases will be described as an example. However, the present embodiment is not limited thereto.
첫번째 경우의 선박(300)은, 전방 저장탱크(310a)의 길이 및 용적비를 수선간 길이(LBP)의 13% 및 전체적재용량의 18%로 제한하고, 중간 및 후방 저장탱크(310b, 310c) 각각의 길이 및 용적비를 수선간 길이(LBP)의 20% 및 전체적재용량의 41%로 제한하고, 전방, 중간 및 후방 저장탱크(310a, 310b, 310c) 각각의 높이를 수선간 길이(LBP)의 12.5%로 제한하여 건조할 수 있다.The vessel 300 of the first case limits the length and volume ratio of the front storage tank 310a to 13% of the length between the waterline LBP and 18% of the total load capacity, and the intermediate and rear storage tanks 310b and 310c. Limit the length and volume ratio of each to 20% of the interline length (LBP) and 41% of the total load capacity, and set the height of each of the front, middle and rear storage tanks 310a, 310b, 310c to the interline length (LBP). Can be dried to 12.5% of the limit.
두번째 경우의 선박(300)은, 전방 저장탱크(310a)의 길이 및 용적비를 수선간 길이(LBP)의 17% 및 전체적재용량의 26%로 제한하고, 중간 및 후방 저장탱크(310b, 310c) 각각의 길이 및 용적비를 수선간 길이(LBP)의 17% 및 전체적재용량의 37%로 제한하고, 전방, 중간 및 후방 저장탱크(310a, 310b, 310c) 각각의 높이를 수선간 길이(LBP)의 13.25%로 제한하여 건조할 수 있다.The vessel 300 in the second case limits the length and volume ratio of the front storage tank 310a to 17% of the length of the waterline LBP and 26% of the total load capacity, and the intermediate and rear storage tanks 310b and 310c. Each length and volume ratio is limited to 17% of the interline length (LBP) and 37% of the total load capacity, and the height of each of the front, middle and rear storage tanks 310a, 310b, 310c is defined as the interline length (LBP). It can be dried to a limit of 13.25%.
세번째 경우의 선박(300)은, 전방 저장탱크(310a)의 길이 및 용적비를 수선간 길이(LBP)의 15% 및 전체적재용량의 23%로 제한하고, 중간 및 후방 저장탱크(310b, 310c) 각각의 길이 및 용적비를 수선간 길이(LBP)의 17% 및 전체적재용량의 38.5%로 제한하고, 전방, 중간 및 후방 저장탱크(310a, 310b, 310c) 각각의 높이를 수선간 길이(LBP)의 13.85%로 제한하여 건조할 수 있다.In the third case, the ship 300 limits the length and volume ratio of the front storage tank 310a to 15% of the length between the waterline LBP and 23% of the total load capacity, and the intermediate and rear storage tanks 310b and 310c. Limit the length and volume ratio of each to 17% of the interline length (LBP) and 38.5% of total load capacity, and set the height of each of the front, middle and rear storage tanks 310a, 310b, 310c to the interline length (LBP). It can be dried to a limit of 13.85%.
본 실시예에 따른 3개의 저장탱크(310a, 310b, 310c)는, 액화가스 전체적재용량이 기존 4개의 저장탱크(410, 420, 430, 440)와 동일 또는 유사하게 되도록 제작되는데, 기존 4개의 저장탱크(410, 420, 430, 440)가 차지하는 전체 길이가 수선간 길이(LBP)의 64%(13% + 17% + 17% + 17%)인 것에 대비하여 본 실시예에 따른 3개의 저장탱크(310a, 310b, 310c)가 차지하는 전체 길이는 줄어들도록 제작한다.The three storage tanks 310a, 310b, and 310c according to the present embodiment are manufactured such that the total liquefied gas loading capacity is the same as or similar to that of the existing four storage tanks 410, 420, 430, and 440. Three storages according to the present embodiment in contrast to the total length occupied by the storage tanks 410, 420, 430, and 440 is 64% (13% + 17% + 17% + 17%) of the length between the water lines (LBP). The total length occupied by the tanks 310a, 310b, and 310c is manufactured to be reduced.
예를 들어, 상기한 첫번째 경우의 선박(300)에서 3개의 저장탱크(310a, 310b, 310c)가 차지하는 전체 길이는 수선간 길이(LBP)의 53%(13% + 20% + 20%)이고, 상기한 두번째 경우의 선박(300)에서 3개의 저장탱크(310a, 310b, 310c)가 차지하는 전체 길이는 수선간 길이(LBP)의 51%(17% + 17% + 17%)이고, 상기한 세번째 경우의 선박(300)에서 3개의 저장탱크(310a, 310b, 310c)가 차지하는 전체 길이는 수선간 길이(LBP)의 49%(15% + 17% + 17%)이다.For example, the total length occupied by the three storage tanks 310a, 310b, 310c in the vessel 300 of the first case is 53% (13% + 20% + 20%) of the length between the water lines (LBP). In the second case, the total length occupied by the three storage tanks 310a, 310b, and 310c in the vessel 300 is 51% (17% + 17% + 17%) of the length between the waterline (LBP). In the third case, the total length occupied by the three storage tanks 310a, 310b and 310c in the ship 300 is 49% (15% + 17% + 17%) of the length LBP.
즉, 본 실시예의 3개의 저장탱크(310a, 310b, 310c)가 차지하는 전체 길이는 기존보다 수선간 길이(LBP)의 11% 내지 15%정도 감소되고, 이는 본 실시예의 선박(300)이 기존의 선박(400)에 대비하여 선수부(301) 또는 선미부(302)의 공간 활용도를 증대시킬 수 있음을 의미한다.That is, the total length occupied by the three storage tanks 310a, 310b, and 310c of the present embodiment is reduced by about 11% to 15% of the length LBP between the existing vessels and the vessel 300 of the present embodiment. This means that the space utilization of the bow portion 301 or the stern portion 302 may be increased in preparation for the vessel 400.
구체적으로, 도 7에 도시된 바와 같이, 3개의 저장탱크(310a, 310b, 310c)를 기존 선박(400)과 같이 후술할 엔진룸(320)으로부터 배치할 수 있으며, 이 경우 선수부(301) 측에서 전방 저장탱크(310a)와 후술할 연료탱크(330) 사이에 수선간 길이(LBP)의 11% 내지 15%에 해당되는 여유공간(S)을 확보할 수 있다. 이러한 여유공간(S)은 선박(300)에 설치되는 각종 장비의 배치 설계에 유용하게 활용될 수 있다.Specifically, as shown in Figure 7, three storage tanks (310a, 310b, 310c) can be arranged from the engine room 320 to be described later, such as the existing vessel 400, in this case the bow portion 301 side In the space between the front storage tank 310a and the fuel tank 330 to be described later it is possible to secure a free space (S) corresponding to 11% to 15% of the length LBP. Such free space (S) can be usefully used for the layout design of various equipment installed in the vessel (300).
이때, 도 9에 도시된 바와 같이, 전방 저장탱크(310a)는, 선수 수선(FP)으로부터 가능한 멀리 즉, 선박의 운동 중심부 쪽으로 가깝게 배치되어 유선형인 선박의 특성으로부터 영향을 적게 받거나 자유로울 수 있어, 중간 저장탱크(310b) 및 후방 저장탱크(310c) 각각의 횡단면 형상처럼, 액화가스의 슬로싱 현상에 의한 하중을 비롯하여 다양한 하중으로부터 탱크의 안정성을 확보하는데 적합한 형상, 즉 코너 부분에서 내부 형상 및 외부 형상이 직각이 아닌 둔각을 이루는 다각형(예를 들어, 팔각형)을 이룬다.At this time, as shown in Figure 9, the front storage tank (310a), as far as possible from the waterline (FP), that is, as close to the center of motion of the ship can be less affected or free from the characteristics of the streamlined ship, Like the cross-sectional shape of each of the intermediate storage tank 310b and the rear storage tank 310c, a shape suitable for ensuring the stability of the tank from various loads, including the load caused by the slewing phenomenon of the liquefied gas, that is, the inner shape and the outer portion at the corner portion The shapes form polygons (eg, octagons) that form obtuse angles rather than right angles.
또한, 도 8에 도시된 바와 같이, 3개의 저장탱크(310a, 310b, 310c) 중에서 전방 저장탱크(310a)를 기존 선박(400)의 전방 저장탱크(410)와 같이 배치할 수 있으며, 이 경우 선미부(302) 측에서 후방 저장탱크(310c)와 후술할 엔진룸(320) 사이에 수선간 길이(LBP)의 11% 내지 15%에 해당되는 여유공간(S)이 확보될 수 있다. 이러한 여유공간(S)은 기존 선박(400)과 달리 후술할 연료탱크(330)를 설치할 수 있는 공간으로 활용할 수 있다.In addition, as shown in Figure 8, the front storage tank 310a of the three storage tanks (310a, 310b, 310c) can be arranged like the front storage tank 410 of the existing vessel 400, in this case On the stern 302 side, a clearance S corresponding to 11% to 15% of the length LBP between the rear storage tank 310c and the engine room 320 to be described later may be secured. This free space (S) can be utilized as a space to install the fuel tank 330 to be described later, unlike the existing vessel 400.
이때, 도 10에 도시된 바와 같이, 전방 저장탱크(310a)는 선수 수선(FP)으로부터 가깝게 배치되어 유선형인 선박의 특성으로부터 영향을 많이 받을 수 있어 선수로 갈수록 폭이 좁아지는 형상을 이루게 된다. 전방 저장탱크(310a) 이외의 중간 저장탱크(310b) 및 후방 저장탱크(310c) 각각의 횡단면 형상은, 액화가스의 슬로싱 현상에 의한 하중을 비롯하여 다양한 하중으로부터 탱크의 안정성을 확보하기 위하여, 도 9에 도시된 횡단면 형상처럼 코너 부분에서 내부 형상 및 외부 형상이 직각이 아닌 둔각을 이루는 다각형(예를 들어, 팔각형)을 이룬다.At this time, as shown in Figure 10, the front storage tank (310a) is disposed close to the foreline (FP) can be affected by the characteristics of the streamlined ship much to form a shape that narrows toward the bow. The cross-sectional shape of each of the intermediate storage tank 310b and the rear storage tank 310c other than the front storage tank 310a is designed to ensure the stability of the tank from various loads, including the load caused by the sloshing phenomenon of the liquefied gas. Like the cross-sectional shape shown in Fig. 9, at the corners, the inner and outer shapes form obtuse polygons (eg, octagons) rather than right angles.
그런데 상기한 바와 같이 본 실시예에 따른 선박(300)의 3개의 저장탱크(310a, 310b, 310c)가 차지하는 전체 길이가 기존의 선박(400)의 4개의 저장탱크(410, 420, 430, 440)가 차지하는 전체 길이보다 줄어듦에 따라 액화가스 전체적재용량을 동일 또는 유사하게 할 수 없는 문제를 본 실시예에서는 탱크 높이를 높여 해결할 수 있도록 한다. 이때, 높이는 높아질수록 선체 무게중심이 올라가 선박의 횡동요(롤링) 안정성이 떨어지게 되므로, 선박의 횡동요 안정성을 잃지 않는 범위 내로 정해져야 함은 물론이다.However, as described above, the total length occupied by the three storage tanks 310a, 310b, 310c of the ship 300 according to the present embodiment is four storage tanks 410, 420, 430, 440 of the existing vessel 400. In this embodiment, it is possible to solve the problem that the total liquefied gas loading capacity may not be the same or similar as the total length occupied by) increases. At this time, the height of the hull as the center of gravity of the hull rises (rolling) stability of the ship is lowered, of course, should be determined within a range that does not lose the stability of the ship's roll.
예를 들어, 상기한 첫번째 경우의 선박(300)은 전방, 중간 및 후방 저장탱크(310a, 310b, 310c) 각각의 높이를 수선간 길이(LBP)의 12.5%로 제한하고, 상기한 두번째 경우의 선박(300)은 전방, 중간 및 후방 저장탱크(310a, 310b, 310c) 각각의 높이를 수선간 길이(LBP)의 13.25%로 제한하고, 상기한 세번째 경우의 선박(300)은 전방, 중간 및 후방 저장탱크(310a, 310b, 310c) 각각의 높이를 수선간 길이(LBP)의 13.85%로 제한한다.For example, the vessel 300 of the first case described above limits the height of each of the front, middle and rear storage tanks 310a, 310b, and 310c to 12.5% of the length of the waterline LBP, The vessel 300 limits the height of each of the front, middle and rear storage tanks 310a, 310b, 310c to 13.25% of the length of the waterline LBP, and the vessel 300 of the third case is the front, middle and The height of each of the rear storage tanks 310a, 310b, and 310c is limited to 13.85% of the length LBP.
본 실시예에서는 상기한 바와 같이, 전방, 중간 및 후방 저장탱크(310a, 310b, 310c) 각각의 높이를 횡동요 안정성을 고려하여 기존보다 높이는데, 후술할 하부 스툴(350)의 설치로 후술할 이중저(360)의 높이를 줄일 수 있도록 하여, 횡동요 안정성을 더욱 향상시킬 수 있도록 한다.In the present embodiment, as described above, the height of each of the front, middle and rear storage tanks (310a, 310b, 310c) is higher than the conventional one in consideration of the transverse stability, will be described later by the installation of the lower stool 350 to be described later By reducing the height of the double bottom 360, it is possible to further improve the lateral shake stability.
엔진룸(320)은, 추진장치에 동력 전달 및 제어하는 엔진, 스위치보드 등 각종 장비 등이 설치될 수 있으며, 선미부(302) 측에 마련될 수 있다.The engine room 320 may be provided with various equipment such as an engine, a switchboard, and the like to transmit and control power to the propulsion device, and may be provided at the stern portion 302.
연료탱크(330)는, 엔진룸(320)에 설치되는 엔진 등에 공급하는 연료를 저장할 수 있다. 이러한 연료탱크(330)는, 도 7에 도시된 바와 같이, 선수부(301) 측에 마련될 수 있다. 또한, 연료탱크(330)는, 도 8에 도시된 바와 같이, 선미부(302) 측의 엔진룸(320)과 후방 저장탱크(310c) 사이에 여유공간(S)이 마련되면, 이 여유공간(S)에 설치될 수 있다. 이와 같이 연료탱크(330)가 엔진룸(320)에 가깝게 배치되므로 연료공급시스템을 단순화할 수 있다. 또한, 연료탱크(330)가 엔진룸(320)의 근처에 배치되면서 선수부(301) 측에는 새로운 여유 공간(S1)이 생기게 되는데, 이러한 새로운 여유공간(S1)은 선박(300)에 설치되는 각종 장비의 배치 설계에 유용하게 활용될 수 있다.The fuel tank 330 may store fuel supplied to an engine or the like installed in the engine room 320. Such a fuel tank 330 may be provided on the bow portion 301 side, as shown in FIG. In addition, as shown in FIG. 8, when the fuel tank 330 is provided with a clearance S between the engine compartment 320 and the rear storage tank 310c of the stern portion 302 side, the clearance is provided. It can be installed in (S). As such, since the fuel tank 330 is disposed close to the engine room 320, the fuel supply system may be simplified. In addition, as the fuel tank 330 is disposed near the engine room 320, a new free space S1 is formed on the side of the bow portion 301, and the new free space S1 is various equipment installed in the ship 300. This can be useful for the layout design of
상기에서, 엔진룸(320)과 후방 저장탱크(310c) 사이에 마련되는 여유공간(S)에 연료탱크(330)를 설치할 수 있도록, 기존 4개의 저장탱크(410, 420, 430, 440)가 차지하는 전체 길이가 수선간 길이(LBP)의 64%일 경우, 본 실시예에 따른 3개의 저장탱크(310a, 310b, 310c)가 차지하는 전체 길이가 수선간 길이(LBP)의 43% 내지 60%, 즉 기존의 64%에서 적어도 4%보다 짧도록 설계하는 것이 바람직하다. 이와 같이 3개의 저장탱크(310a, 310b, 310c)가 차지하는 전체 길이를 수선간 길이(LBP)의 43% 내지 60%로 함으로써, 기존 대비 적어도 수선간 길이(LBP)의 4% 이상 전방으로 전진 배치시킬 수 있어, 엔진룸(320)과 후방 저장탱크(310c) 사이에 적어도 수선간 길이(LBP)의 4% 이상에 해당되는 여유공간(S)을 마련할 수 있다.In the above, the existing four storage tanks (410, 420, 430, 440) is installed so that the fuel tank 330 can be installed in the free space (S) provided between the engine room 320 and the rear storage tank (310c) If the total length occupies 64% of the length between the repair lines, the total length occupied by the three storage tanks 310a, 310b, and 310c according to the present embodiment is 43% to 60% of the length between repairs, In other words, it is desirable to design at 64% shorter than the existing 64%. In this way, the total length occupied by the three storage tanks 310a, 310b, and 310c is 43% to 60% of the length of the waterline, so that at least 4% of the length of the waterline (LBP) is moved forward. In this case, a clearance S corresponding to at least 4% of the length LBP between the engine compartment 320 and the rear storage tank 310c may be provided.
횡격벽(340)은, 선박(300)의 횡강도를 지지하면서 3개의 저장탱크(310a, 310b, 310c) 각각의 설치 공간을 구획하도록, 3개의 저장탱크(310a, 310b, 310c) 각각의 사이에서, 일측면과 타측면이 좌현측 선체(303)와 우현측 선체(304)에 연결되고, 하면이 후술할 하부 스툴(350)에 의해 후술할 이중저(360)의 내저판(361)에 연결되어 선체의 횡방향으로 설치될 수 있으며, 3개의 저장탱크(310a, 310b, 310c) 각각의 외벽(전후 측벽)을 이룰 수 있다. 이러한 횡격벽(340)은, 후술할 하부 스툴(350)에 의해 지지될 수 있으며, 그 하중이 하부 스툴(350)을 통해 후술할 이중저(360)에 전달된다.The transverse bulkhead 340 is disposed between each of the three storage tanks 310a, 310b, 310c so as to partition the installation space of each of the three storage tanks 310a, 310b, 310c while supporting the lateral strength of the ship 300. In one side and the other side is connected to the port side hull 303 and the starboard side hull 304, the lower surface to the inner bottom plate 361 of the double bottom 360 to be described later by the lower stool 350 to be described later It may be connected to be installed in the transverse direction of the hull, and may form an outer wall (front and rear side walls) of each of the three storage tanks (310a, 310b, 310c). The transverse bulkhead 340 may be supported by the lower stool 350 to be described later, and the load is transmitted to the double bottom 360 to be described later through the lower stool 350.
하부 스툴(350)은, 횡격벽(340)을 지지하면서 횡격벽(340)이 후술할 이중저(360)의 내저판(361)과 결합되도록 설치될 수 있으며, 3개의 저장탱크(310a, 310b, 310c) 각각의 코너 라인(315) 사이에 위치될 수 있다.The lower stool 350 may be installed to support the transverse bulkhead 340 so that the transverse bulkhead 340 is coupled to the inner bottom plate 361 of the double bottom 360 to be described later, and the three storage tanks 310a and 310b. , 310c) may be located between each corner line 315.
하부 스툴(350)은, 횡격벽(340)을 지지하고 있어 횡격벽(340)의 하중을 후술할 이중저(360)에 전달하게 되는데, 이때 횡격벽(340)의 하중은 하부 스툴(350)의 양측에 집중적으로 전달하게 된다.The lower stool 350 supports the transverse bulkhead 340 and transmits the load of the transverse bulkhead 340 to the double bottom 360 which will be described later, wherein the load of the transverse bulkhead 340 is lower than the lower stool 350. It will be delivered to both sides of intensively.
본 실시예에서는, 응력 분포가 가장 높게 나타나는 횡격벽(340)과 후술할 이중저(360)의 결합부분에서 이중저(360)에 규정되는 최대 허용 응력보다 낮출 수 있도록 하부 스툴(350)을 응력 분산에 적합하도록 구성할 수 있다. 이러한 하부 스툴(350)은, 후술할 이중저(360)의 간격(D1)을 줄일 수 있도록 하여, 기존의 4개의 저장탱크(410, 420, 430, 440)로부터 1개가 줄어든 본 실시예에 따른 3개의 저장탱크(310a, 310b, 310c)의 설치 가능성을 더욱 높여줄 수 있다.In this embodiment, the lower stool 350 is stressed so as to be lower than the maximum allowable stress defined in the double bottom 360 at the joint portion of the transverse bulkhead 340 having the highest stress distribution and the double bottom 360 to be described later. It can be configured to be suitable for dispersion. The lower stool 350, so as to reduce the spacing (D1) of the double bottom 360 to be described later, according to this embodiment reduced one from the existing four storage tanks (410, 420, 430, 440) The possibility of installing the three storage tanks (310a, 310b, 310c) can be further improved.
구체적으로, 하부 스툴(350)은, 3개의 저장탱크(310a, 310b, 310c) 각각에서 사선 형태의 코너 라인(315)에 대응되도록 사선으로 비스듬하게 마주보는 형상으로 내저판(361) 상에 설치되는 한 쌍의 사이드 플레이트(351)와, 한 쌍의 사이드 플레이트(351) 상면에 설치되어 횡격벽(340)을 지지하는 탑 플레이트(352)로 구성될 수 있다. 이러한 하부 스툴(350)은, 종단면 형상이 사다리꼴 형상을 이루며, 한 쌍의 사이드 플레이트(351)가 각각 위치되는 양측에서 응력 분포가 균등하게 되도록 등각사다리꼴 형상이 되도록 하는 것이 바람직할 수 있다.Specifically, the lower stool 350 is installed on the inner bottom plate 361 in an oblique diagonally opposite shape to correspond to the diagonal line 315 in three storage tanks 310a, 310b, and 310c, respectively. It may be composed of a pair of side plates 351 and a top plate 352 installed on the pair of side plates 351 to support the transverse bulkhead 340. The lower stool 350 may have a trapezoidal longitudinal cross-sectional shape, and may have a trapezoidal shape such that the stress distribution is uniform on both sides of the pair of side plates 351.
상기한 한 쌍의 사이드 플레이트(351)가 후술할 이중저(360)에 대해 수직으로 형성되는 것이 아니라 사선 형태로 형성되므로, 횡격벽(340)의 하중에 의한 이중저(360)로의 응력이 수직 방향으로 집중되지 않고 사선 방향으로 넓게 분산될 수 있다.Since the pair of side plates 351 are not formed vertically with respect to the double bottom 360 to be described later, but are formed in an oblique shape, the stress to the double bottom 360 due to the load of the transverse bulkhead 340 is vertical. It can be distributed widely in the diagonal direction without being concentrated in the direction.
한편, 상기한 하부 스툴(350)과 동일한 효과를 얻을 수 있도록 경사판(380)을 설치할 수 있는데, 이를 도 13을 참고하여 설명한다.Meanwhile, the inclined plate 380 may be installed to obtain the same effect as the lower stool 350, which will be described with reference to FIG. 13.
도 13은 도 7 또는 도 8의 횡격벽과 이중저의 다른 결합구조를 설명하기 위해 'C' 부분을 확대한 도면이다.FIG. 13 is an enlarged view of a portion 'C' to explain another coupling structure of the transverse bulkhead and the double bottom of FIG. 7 or 8.
도 13에 도시된 바와 같이, 경사판(380)은, 횡격벽(340) 일부를 지지하면서 후술할 이중저(360)의 내저판(361)과 연결되도록 설치될 수 있으며, 3개의 저장탱크(310a, 310b, 310c)의 코너 라인(315) 사이에 위치되어 코너 라인(315)의 형태에 대응되도록 제작될 수 있다.As shown in FIG. 13, the inclined plate 380 may be installed to support a portion of the transverse bulkhead 340 and to be connected to the inner bottom plate 361 of the double bottom 360 to be described later, and the three storage tanks 310a. It is positioned between the corner lines 315 of the 310b, 310c can be manufactured to correspond to the shape of the corner line 315.
이러한 경사판(380)은, 응력 분포가 가장 높게 나타나는 횡격벽(340)과 후술할 내저판(361)의 수직 연결부분에서 내저판(361)에 규정되는 최대 허용 응력보다 낮출 수 있도록 설치될 수 있다.The inclined plate 380 may be installed to be lower than the maximum allowable stress defined in the inner bottom plate 361 at the vertical connection portion of the transverse bulkhead 340 having the highest stress distribution and the inner bottom plate 361 to be described later. .
구체적으로, 상기한 경사판(380)은 횡격벽(340)에 대해 수평으로 형성되거나 후술할 내저판(361)에 대해 수직으로 형성되는 것이 아니라 사선 형태로, 즉, 횡격벽(340)과 후술할 내저판(361)의 수직 연결부분에 경사지게 마련될 수 있으며, 이로써, 횡격벽(340)의 하중에 의한 내저판(361)으로의 응력이 수직 방향으로 집중되지 않고 사선 방향으로 넓게 분산될 수 있다.Specifically, the inclined plate 380 is not formed horizontally with respect to the transverse bulkhead 340 or perpendicular to the inner bottom plate 361 to be described later, but in an oblique form, that is, the transverse bulkhead 340 to be described later. The inner bottom plate 361 may be inclined at a vertical connection portion, whereby the stress on the inner bottom plate 361 due to the load of the transverse bulkhead 340 may be widely distributed in the diagonal direction without being concentrated in the vertical direction. .
한편, 경사판(380)은, 횡격벽(340) 또는 내저판(361)에 맞닿는 지점에서 강성을 보강하기 위하여, 제1 보강부재(381), 제2 보강부재(382)를 더 설치할 수 있다.The inclined plate 380 may further include a first reinforcing member 381 and a second reinforcing member 382 in order to reinforce rigidity at a point of contact with the horizontal partition wall 340 or the inner bottom plate 361.
제1 보강부재(381)는, 경사판(380)과 횡격벽(340)이 맞닿는 부분을 보강하는 부재로서, 경사판(380)이 횡격벽(340)에 맞닿는 지점에서 횡격벽(340)의 내측으로 수평 연장되어 설치될 수 있다.The first reinforcing member 381 is a member for reinforcing a portion where the inclined plate 380 and the transverse bulkhead 340 abut, and is inward of the transverse bulkhead 340 at a point where the inclined plate 380 abuts the transverse bulkhead 340. It may be installed to extend horizontally.
제2 보강부재(382)는, 경사판(380)과 내저판(361)이 맞닿는 부분을 보강하는 부재로서, 경사판(380)이 내저판(361)에 맞닿는 지점에서 내저판(361)의 내측으로 수직 연장되어 설치될 수 있다.The second reinforcing member 382 is a member for reinforcing a portion where the inclined plate 380 and the inner bottom plate 361 abut, and is inward of the inner bottom plate 361 at a point where the inclined plate 380 abuts on the inner bottom plate 361. It can be installed extending vertically.
이중저(360)는, 3개의 저장탱크(310a, 310b, 310c) 각각의 외벽(바닥) 역할을 하면서 선박(300)의 바닥을 이루는 선체일 수 있으며, 3개의 저장탱크(310a, 310b, 310c), 횡격벽(340)을 지지하는 내저판(361)과, 선체의 외부를 이루는 선저외판(362)으로 이루어질 수 있다. 이중저(360)의 내부에는 이중저(360)와 함께 선박(300)의 종강도 또는 횡강도를 지지하는 철구조물(370)이 설치될 수 있다.The double bottom 360 may serve as an outer wall (bottom) of each of the three storage tanks 310a, 310b, and 310c, and may be a hull forming the bottom of the vessel 300, and the three storage tanks 310a, 310b, and 310c may be used. ), The inner bottom plate 361 supporting the transverse bulkhead 340, and the bottom bottom plate 362 forming the outside of the hull. Inside the double bottom 360, the steel structure 370 supporting the longitudinal strength or the lateral strength of the vessel 300 together with the double bottom 360 may be installed.
이러한 이중저(360)는, 규정된 최대 허용 응력(maximum allowable stress), 예를 들어 185Mpa의 응력을 견딜 수 있도록 설계된다. 이중저(360)에 가해지는 응력 분포는 횡격벽(340)과 결합되는 부분에서 가장 높게 나타나고, 그 이외의 부분에서는 낮게 나타남에 따라, 이중저(360)는 횡격벽(340)과 결합되는 부분에서 최대 허용 응력을 견딜 수 있도록 설계된다.This double bottom 360 is designed to withstand a defined maximum allowable stress, for example 185 Mpa. As the stress distribution applied to the double bottom 360 is highest in the portion that is coupled with the transverse bulkhead 340 and low in other portions, the double bottom 360 is the portion that is coupled with the transverse bulkhead 340. Designed to withstand the maximum allowable stress at
본 실시예에서는 응력 분포가 가장 높게 나타나는 횡격벽(340)과 이중저(360)의 결합부분에서 이중저(360)에 규정되는 최대 허용 응력보다 낮출 수 있도록 상기한 바와 같이 하부 스툴(350) 또는 경사판(380)을 응력 분산에 적합하도록 구성함으로써, 낮아지는 응력에 대응하여 내저판(361)과 선저외판(362) 사이의 간격(D)을 줄일 수 있게 한다. 예를 들어, 하부 스툴(350) 또는 경사판(380)이 구비되는 본 실시예의 선박(300)과 하부 스툴(350) 또는 경사판(380)이 구비되지 않는 기존의 선박(400)에서, 기존의 선박(400)의 이중저 간격이 3200mm일 경우, 본 실시예의 내저판(361)과 선저외판(362) 사이의 간격(D)을 기존의 3200mm로부터 400mm 내지 1200mm범위까지 줄인 2000mm 내지 2800mm로 제작할 수 있다. 이와 같이 이중저(360)의 간격(D1)을 줄일 수 있음으로 인하여, 선박(300)의 선체 높이를 줄일 수 있고, 또한 3개의 저장탱크(310a, 310b, 310c)의 높이를 증가시킬 수 있는 여유 높이를 확보할 수 있어, 선박의 안정성을 더욱 확보할 수 있게 한다.In the present embodiment, the lower stool 350 or as described above may be lowered to the maximum allowable stress defined in the double bottom 360 at the joint portion of the transverse bulkhead 340 and the double bottom 360 having the highest stress distribution. By configuring the inclined plate 380 to be suitable for stress distribution, it is possible to reduce the distance D between the inner bottom plate 361 and the bottom bottom plate 362 in response to the lowering stress. For example, in the vessel 300 of the present embodiment provided with the lower stool 350 or the inclined plate 380 and the existing vessel 400 without the lower stool 350 or the inclined plate 380, the existing vessel If the double bottom spacing of (400) is 3200mm, the spacing (D) between the inner bottom plate 361 and the bottom bottom plate 362 of the present embodiment can be produced from 2000mm to 2800mm reduced from the existing 3200mm to 400mm to 1200mm range. . As such, since the distance D1 of the double bottom 360 can be reduced, the height of the hull of the ship 300 can be reduced, and the height of the three storage tanks 310a, 310b, and 310c can be increased. The clearance height can be secured, making it possible to secure the stability of the ship.
철구조물(370)은, 이중저(360)의 내저판(361)과 선저외판(362) 사이에 설치될 수 있으며, 선박(300)의 종강도를 지지하는 복수 개의 거더판(371)과, 선박(300)의 횡강도를 지지하는 복수 개의 늑판(372)으로 구성될 수 있다. 거더판(371)에는 거더판(371)을 보강하는 복수 개의 보강부재(373)가 설치될 수 있으며, 또한 도면에 도시되지 않았지만, 늑판(372)에도 늑판(372)을 보강하는 복수 개의 보강부재가 설치될 수 있다.The steel structure 370 may be installed between the inner bottom plate 361 and the bottom bottom plate 362 of the double bottom 360, and a plurality of girder plates 371 supporting the longitudinal strength of the ship 300. It may be composed of a plurality of floors 372 for supporting the lateral strength of the vessel (300). The girder plate 371 may be provided with a plurality of reinforcing members 373 for reinforcing the girder plate 371, and although not shown in the drawings, a plurality of reinforcing members for reinforcing the floor 372 in the floor 372. Can be installed.
이와 같이 본 실시예는, 기존의 선박(100)에 대비하여 선박 사이즈 및 액화가스 전체적재용량에는 변화 없이 최전방 저장탱크(210)를 7,000m3 내지 10,000m3의 용량이 되도록 소형화 시키면서 나머지 3개의 저장탱크(220, 230, 240)에 나머지 액화가스를 저장하도록 용량을 한정 설정함으로써, 슬로싱 현상을 더욱 줄임은 물론 체적대비 표면적을 줄여 BOR을 저감시킬 수 있다.Thus, the present embodiment, compared to the existing vessel 100, the size of the foremost storage tank 210 is reduced to the capacity of 7,000m 3 to 10,000m 3 without changing the vessel size and the total capacity of the liquefied gas while the remaining three By limiting the capacity to store the remaining liquefied gas in the storage tanks 220, 230, 240, the sloshing phenomenon can be further reduced, and the BOR can be reduced by reducing the surface area to volume.
또한, 본 실시예는, 선수부(201) 측에 설치되는 최전방 저장탱크(210)의 단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상으로 제작할 수 있어, 슬로싱에 의한 탱크 구조의 파손 방지, 가스 누출 방지 및 BOR을 더욱 저감시킬 수 있다.In addition, the present embodiment can be produced in an octagonal shape in which the cross-sectional shape of the foremost storage tank 210 installed on the bow portion 201 side is optimized for the sloshing phenomenon, thereby preventing damage to the tank structure due to sloshing and gas leakage. Prevention and BOR can be further reduced.
또한, 본 실시예는, 최전방 저장탱크(210)를 편도 연료 소비량인 7,000m3 내지 10,000m3의 용량을 가지도록 제작함으로써, 액화가스 운송 시에는 다른 저장탱크(220, 230, 240)와 함께 액화가스 저장 용도로 활용하고, 액화가스 운송 후에는 편도 운항에 필요한 추진용 연료 공급 용도로 활용함은 물론 탱크의 쿨-다운 용도로도 활용할 수 있다.In addition, the present embodiment, by manufacturing the foremost storage tank 210 to have a capacity of 7,000m 3 to 10,000m 3 of one-way fuel consumption, along with other storage tanks 220, 230, 240 when liquefied gas transportation It can be used for the storage of liquefied gas, and to supply the fuel for propulsion needed for one-way operation after liquefied gas transportation, as well as to cool down the tank.
또한, 본 실시예는, 4개의 저장탱크(410, 420, 430, 440)가 구비되는 기존의 선박(400)에 대비하여 선박 사이즈 및 액화가스 전체적재용량에는 큰 변화 없이 저장탱크(310a, 310b, 310c)의 개수를 줄임으로써, 저장탱크(310a, 310b, 310c)의 전체표면적을 감소시킬 수 있어, BOR을 저감시킬 수 있고, 저장탱크(310a, 310b, 310c)의 제작비용을 줄일 수 있다.In addition, the present embodiment, compared to the existing vessel 400 is provided with four storage tanks (410, 420, 430, 440) storage tanks 310a, 310b without a large change in the vessel size and the total gas loading capacity By reducing the number of, 310c, the total surface area of the storage tanks 310a, 310b, 310c can be reduced, so that the BOR can be reduced, and the manufacturing cost of the storage tanks 310a, 310b, 310c can be reduced. .
또한, 본 실시예는, 4개의 저장탱크(410, 420, 430, 440)가 구비되는 기존의 선박(400)에 대비하여 BOR을 저감시킬 수 있어, BOG처리를 위한 추가 구성(재액화장치, GCU, 기타 라인 등)이 필요 없거나 최소화할 수 있어 공수 절감 및 구축 비용을 절감할 수 있다.In addition, the present embodiment can reduce the BOR as compared to the existing vessel 400 is provided with four storage tanks (410, 420, 430, 440), further configuration for BOG treatment (reliquefaction apparatus, GCU, other lines, etc.) can be eliminated or minimized, resulting in reduced labor and deployment costs.
또한, 본 실시예는, 4개의 저장탱크(410, 420, 430, 440)가 구비되는 기존의 선박(400)에 대비하여 저장탱크(310a, 310b, 310c)의 개수를 줄이되, 저장탱크(310a, 310b, 310c)의 액화가스 전체적재용량에는 변화가 없도록 높이를 증가시키고 전체 길이를 감소시킴으로써, 선수부(301) 또는 선미부(302)의 공간 활용도를 증대시킬 수 있다.In addition, the present embodiment, the number of storage tanks 310a, 310b, 310c compared to the existing vessel 400 is provided with four storage tanks (410, 420, 430, 440), storage tank 310a By increasing the height and decreasing the total length so that the total amount of the liquefied gas, 310b, 310c does not change, the space utilization of the bow portion 301 or the stern portion 302 can be increased.
또한, 본 실시예는, 선수부(301) 측에 설치되는 전방 저장탱크(310a)를 기존 4개의 저장탱크(410, 420, 430, 440)가 설치되는 경우와 비교하여 선박의 운동 중심부 쪽으로 가깝게 배치함으로써, 전방 저장탱크(310a)의 슬로싱 현상을 줄일 수 있다.In addition, the present embodiment, the front storage tank 310a installed on the bow portion 301 side is arranged closer to the movement center of the ship compared to the case where the existing four storage tanks (410, 420, 430, 440) is installed As a result, the sloshing phenomenon of the front storage tank 310a can be reduced.
또한, 본 실시예는, 선미부(302) 측에 설치되는 엔진룸(320)과 후방 저장탱크(310c) 사이에 여유공간(S)을 확보하여 연료탱크(330)를 설치함으로써, 연료공급시스템을 단순화할 수 있어, 연료공급시스템 구축에 따른 공수 및 자재비용을 절감할 수 있다.In addition, the present embodiment, by supplying a fuel tank 330 by securing a free space (S) between the engine room 320 and the rear storage tank 310c installed on the stern portion 302 side, the fuel supply system This can simplify the cost and reduce the man-hour and material costs associated with building the fuel supply system.
또한, 본 실시예는, 응력 분포가 가장 높게 나타나는 횡격벽(340)과 이중저(360)의 결합부분에서 이중저(360)에 규정되는 최대 허용 응력보다 낮출 수 있도록 응력 분산에 적합한 구성을 갖는 하부 스툴(350) 또는 경사판(380)을 설치함으로써, 이중저(360)의 두께 감소가 가능하여 선박 전체 높이를 줄일 수 있어, 기존의 선박(400)에 대비 액화가스 전체적재용량에는 변화가 없도록 저장탱크(310a, 310b, 310c)의 높이를 증가시킴에 따른 선박의 6자 운동에 대한 안정성을 더욱 확보할 수 있다.In addition, the present embodiment has a configuration suitable for stress distribution so as to be lower than the maximum allowable stress prescribed in the double bottom 360 at the joint portion of the transverse bulkhead 340 and the double bottom 360, the stress distribution is the highest. By installing the lower stool 350 or the inclined plate 380, it is possible to reduce the thickness of the double bottom 360 to reduce the overall height of the vessel, so that the total liquefied gas loading capacity compared to the existing vessel 400 is not changed. By increasing the height of the storage tank (310a, 310b, 310c) it is possible to further ensure the stability of the six-way movement of the ship.
이상에서는 본 발명의 실시예들을 중심으로 본 발명을 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 기술내용을 벗어나지 않는 범위에서 실시예에 예시되지 않은 여러 가지의 조합 또는 변형과 응용이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 실시예들로부터 용이하게 도출가능한 변형과 응용에 관계된 기술내용들은 본 발명에 포함되는 것으로 해석되어야 할 것이다.The present invention has been described above with reference to the embodiments of the present invention. However, the present invention is only an example, and is not intended to limit the present invention. Those skilled in the art will not depart from the essential technical details of the present embodiment. It will be appreciated that various combinations or modifications and applications which are not exemplified in the embodiments are possible in scope. Therefore, technical matters related to modifications and applications easily derivable from the embodiments of the present invention should be interpreted as being included in the present invention.

Claims (21)

  1. 최전방 저장탱크, 전방 저장탱크, 중간 저장탱크, 후방 저장탱크를 구비하는 선박에 있어서,In a ship having a foremost storage tank, a front storage tank, an intermediate storage tank, a rear storage tank,
    상기 최전방 저장탱크는 액화가스 전체적재용량 중에서 편도 연료 소비량에 대응되는 용량을 가지도록 제작되고,The foremost storage tank is manufactured to have a capacity corresponding to the one-way fuel consumption among the total liquefied gas loading capacity,
    상기 전방 저장탱크, 상기 중간 저장탱크 및 상기 후방 저장탱크는 상기 액화가스 전체적재용량 중에서 상기 최전방 저장탱크의 용량을 제외한 나머지 용량을 가지도록 제작되는 것을 특징으로 하는 선박.The front storage tank, the intermediate storage tank and the rear storage tank is a ship characterized in that it has a remaining capacity of the total storage capacity of the liquefied gas except for the capacity of the foremost storage tank.
  2. 제1항에 있어서, 상기 최전방 저장탱크는,According to claim 1, wherein the foremost storage tank,
    상기 액화가스 전체적재용량 중에서 7,000m3 내지 10,000m3의 용량을 가지도록 제작되는 것을 특징으로 하는 선박.Ship characterized in that it is manufactured to have a capacity of 7,000m 3 to 10,000m 3 of the total liquefied gas loading capacity.
  3. 제1항에 있어서, 상기 최전방 저장탱크는,According to claim 1, wherein the foremost storage tank,
    단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상인 것을 특징으로 하는 선박.A ship characterized in that the cross-sectional shape is an octagonal shape that is optimized for sloshing phenomenon.
  4. 제1항에 있어서, 상기 최전방 저장탱크는,According to claim 1, wherein the foremost storage tank,
    액화가스 운송 시에는 액화가스 저장 용도로 활용되고,When transporting liquefied gas, it is used for liquefied gas storage.
    액화가스 운송 후에는 편도 운항에 필요한 추진용 연료 공급 용도 또는 탱크의 쿨-다운 용도로도 활용되는 것을 특징으로 선박.After liquefied gas transportation, it is also used as a propulsion fuel supply required for one-way operation or as a cool-down of a tank.
  5. 제 1 항에 있어서, 상기 전방 저장탱크, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각은,The method of claim 1, wherein the front storage tank, the intermediate storage tank and the rear storage tank, respectively,
    단면 형상이 슬로싱 현상에 최적화되는 팔각형 형상으로 제작되는 것을 특징으로 하는 선박.Vessel characterized in that the cross-sectional shape is manufactured in an octagonal shape that is optimized for the sloshing phenomenon.
  6. 제 1 항에 있어서, 상기 전방 저장탱크는,The method of claim 1, wherein the front storage tank,
    상기 최전방 저장탱크보다는 크고, 상기 중간 저장탱크 또는 상기 후방 저장탱크보다는 작은 용량을 가지도록 제작되는 것을 특징으로 하는 선박.A ship, characterized in that it is made larger than the foremost storage tank and has a smaller capacity than the intermediate storage tank or the rear storage tank.
  7. 선수 수선으로부터 일정 거리 이격되어 순차적으로 설치되는 전방 저장탱크, 중간 저장탱크, 후방 저장탱크를 포함하는 3개의 저장탱크;Three storage tanks including a front storage tank, an intermediate storage tank, and a rear storage tank sequentially installed at a predetermined distance from the foreline repair;
    선미부 측에 마련되는 엔진룸; 및An engine room provided at the stern side; And
    상기 엔진룸의 엔진에 공급하는 연료를 저장하는 연료탱크를 포함하고,A fuel tank storing fuel supplied to an engine of the engine room,
    상기 연료탱크는,The fuel tank,
    상기 3개의 저장탱크를 전방으로 전진 배치시켜 상기 후방 저장탱크와 상기 엔진룸 사이에 확보되는 여유공간에 설치되는 것을 특징으로 하는 선박.The ship is characterized in that the three storage tanks are disposed to move forward to be installed in a free space secured between the rear storage tank and the engine room.
  8. 제7항에 있어서, 상기 3개의 저장탱크는,The method of claim 7, wherein the three storage tanks,
    전체 길이가 수선간 길이의 43% 내지 60%이고,Total length is 43% to 60% of the length between repairs,
    적어도 상기 수선간 길이의 4% 이상 전방으로 전진 배치시키는 것을 특징으로 하는 선박.Ship forward moving at least 4% of the length between said waterways.
  9. 길이가 수선간 길이의 10% 내지 20%이며, 선수 수선으로부터 일정 거리 이격되어 설치되는 전방 저장탱크;A front storage tank having a length of 10% to 20% of the length between repairs and a predetermined distance away from the bow repair;
    길이가 상기 수선간 길이의 15% 내지 25%이며, 선미 수선으로부터 일정 거리 이격되어 설치되는 후방 저장탱크; 및A rear storage tank having a length of 15% to 25% of the length of the waterline and installed at a predetermined distance from the stern waterline; And
    길이가 상기 수선간 길이의 15% 내지 25%이며, 상기 전방 저장탱크와 상기 후방 저장탱크 사이에 설치되는 중간 저장탱크를 포함하여 3개의 저장탱크가 구비되는 것을 특징으로 하는 선박.15% to 25% of the length between the waterline, the ship characterized in that three storage tanks are provided, including an intermediate storage tank installed between the front storage tank and the rear storage tank.
  10. 제9항에 있어서, 상기 전방 저장탱크는,The method of claim 9, wherein the front storage tank,
    상기 선수 수선에서 상기 수선간 길이의 10% 내지 25% 후방 위치에 전단이 위치되어 설치되는 것을 특징으로 하는 선박.The ship, characterized in that the front end is installed in a position 10% to 25% rear of the length between the repair line.
  11. 제9항에 있어서, 상기 3개의 저장탱크 각각은,The method of claim 9, wherein each of the three storage tanks,
    높이가 상기 수선간 길이의 11% 내지 15%인 것을 특징으로 하는 선박.A ship, characterized in that the height is 11% to 15% of the length between the waterline.
  12. 제9항에 있어서,The method of claim 9,
    상기 3개의 저장탱크 각각의 용량을 합한 전체적재용량에 대하여,Regarding the total loading capacity of the combined capacity of each of the three storage tanks,
    상기 전방 저장탱크는, 용적비가 16% 내지 33.3%이고,The front storage tank has a volume ratio of 16% to 33.3%,
    상기 중간 저장탱크 및 상기 후방 저장탱크 각각은, 용적비가 30% 내지 45%인 것을 특징으로 하는 선박.The intermediate storage tank and the rear storage tank each, characterized in that the volume ratio of 30% to 45%.
  13. 제9항에 있어서,The method of claim 9,
    상기 전방 저장탱크의 길이 및 용적비를 상기 수선간 길이의 13% 및 전체적재용량의 18%로 제한하고, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각의 길이 및 용적비를 상기 수선간 길이의 20% 및 전체적재용량의 41%로 제한하고, 상기 3개의 저장탱크 각각의 높이를 상기 수선간 길이의 12.5%로 제한하는 것을 특징으로 하는 선박. The length and volume ratio of the front storage tank are limited to 13% of the length between the waterline and 18% of the total load capacity, and the length and volume ratio of each of the intermediate storage tank and the rear storage tank are 20% of the length between the waterline, and And a height of each of the three storage tanks is limited to 12.5% of the length of the waterline.
  14. 제9항에 있어서,The method of claim 9,
    상기 전방 저장탱크의 길이 및 용적비를 상기 수선간 길이의 17% 및 전체적재용량의 26%로 제한하고, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각의 길이 및 용적비를 상기 수선간 길이의 17% 및 전체적재용량의 37%로 제한하고, 상기 3개의 저장탱크 각각의 높이를 상기 수선간 길이의 13.25%로 제한하는 것을 특징으로 하는 선박.The length and volume ratio of the front storage tank are limited to 17% of the length between the waterline and 26% of the total load capacity, and the length and volume ratio of each of the intermediate storage tank and the rear storage tank are respectively 17% of the length between the waterline and And a height of each of the three storage tanks is limited to 13.25% of the length of the waterline and limited to 37% of the total load capacity.
  15. 제9항에 있어서,The method of claim 9,
    상기 전방 저장탱크의 길이 및 용적비를 상기 수선간 길이의 15% 및 전체적재용량의 23%로 제한하고, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각의 길이 및 용적비를 상기 수선간 길이의 17% 및 전체적재용량의 38.5%로 제한하고, 상기 3개의 저장탱크 각각의 높이를 상기 수선간 길이의 13.85%로 제한하는 것을 특징으로 하는 선박.The length and volume ratio of the front storage tank are limited to 15% of the length between the waterline and 23% of the total load capacity, and the length and volume ratio of each of the intermediate storage tank and the rear storage tank are 17% of the length between the waterline, and And 38.5% of the total load capacity and limiting the height of each of the three storage tanks to 13.85% of the length of the waterline.
  16. 선수 수선으로부터 일정 거리 이격되어 설치되는 전방 저장탱크;A front storage tank installed at a predetermined distance away from the foreline repair;
    선미 수선으로부터 일정 거리 이격되어 설치되는 후방 저장탱크; 및A rear storage tank installed at a predetermined distance from the stern water line; And
    상기 전방 저장탱크와 상기 후방 저장탱크 사이에 설치되는 중간 저장탱크를 포함하여 3개의 저장탱크가 구비되며,Three storage tanks are provided, including an intermediate storage tank installed between the front storage tank and the rear storage tank.
    4개의 저장탱크를 구비하는 종래의 선박 대비 액화가스 전체적재용량을 유지하면서 상기 3개의 저장탱크만 구비하여 전체표면적의 감소로 BOR이 저감되는 것을 특징으로 하는 선박.The vessel characterized in that the BOR is reduced by reducing the total surface area by providing only the three storage tanks while maintaining the total liquefied gas loading capacity compared to the conventional vessel having four storage tanks.
  17. 제16항에 있어서, 상기 3개의 저장탱크 각각은,The method of claim 16, wherein each of the three storage tanks,
    길이, 높이, 용적비가 동일한 것을 특징으로 하는 선박.A ship characterized by the same length, height and volume ratio.
  18. 제16항에 있어서, 상기 중간 저장탱크 및 상기 후방 저장탱크 각각은,The method of claim 16, wherein each of the intermediate storage tank and the rear storage tank,
    길이, 높이, 용적비가 동일하고,The same length, height, volume ratio,
    상기 전방 저장탱크는,The front storage tank,
    상기 중간 저장탱크 및 상기 후방 저장탱크 각각에 대비하여, 길이가 짧고 용적비가 작은 것을 것을 특징으로 하는 선박.In contrast to the intermediate storage tank and the rear storage tank, the ship characterized in that the length is short and the volume ratio is small.
  19. 제16항에 있어서, 상기 3개의 저장탱크 각각은,The method of claim 16, wherein each of the three storage tanks,
    길이, 높이, 용적비가 다른 것을 특징으로 하는 선박.A ship characterized by different lengths, heights, and volume ratios.
  20. 제16항에 있어서, 상기 전방 저장탱크는,The method of claim 16, wherein the front storage tank,
    상기 선수 수선에서 수선간 길이의 10% 내지 25% 후방 위치에 전단이 위치되어 설치되는 것을 특징으로 하는 선박.The ship, characterized in that the shear is installed installed in the position 10% to 25% of the rear line in the waterline.
  21. 제 1 항, 제 7항, 제 9 항, 제 16 항 중 어느 한 항에 있어서, 상기 선박은,17. The vessel of any one of claims 1, 7, 9, 16, wherein
    LNGC, LPGC, FSRU(Floating Storage Regasification Unit), FLNG(Floating Liquid Natural Gas plant, LNG-FPSO), FPSO(Floating Production Storage Offloading) 중 어느 하나인 것을 특징으로 하는 선박.Ships characterized in that any one of LNGC, LPGC, Floating Storage Regasification Unit (FSRU), Floating Liquid Natural Gas plant (FLNG), Floating Production Storage Offloading (FPSO).
PCT/KR2017/006209 2016-06-15 2017-06-14 Ship having plurality of storage tanks for carrying fluid WO2017217765A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018565776A JP6899850B2 (en) 2016-06-15 2017-06-14 Vessels with multiple fluid transport storage tanks
CN201780037221.8A CN109415108A (en) 2016-06-15 2017-06-14 Ship with multiple fluid conveying storage tanks
KR1020177034361A KR20180006620A (en) 2016-06-15 2017-06-14 Ship

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160074745 2016-06-15
KR10-2016-0074745 2016-06-15
KR10-2016-0078095 2016-06-22
KR20160078095 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017217765A1 true WO2017217765A1 (en) 2017-12-21

Family

ID=60664147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006209 WO2017217765A1 (en) 2016-06-15 2017-06-14 Ship having plurality of storage tanks for carrying fluid

Country Status (4)

Country Link
JP (1) JP6899850B2 (en)
KR (1) KR20180006620A (en)
CN (1) CN109415108A (en)
WO (1) WO2017217765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472126B2 (en) 2018-11-15 2024-04-22 ギャズトランスポルト エ テクニギャズ Ship maintenance management method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477637B1 (en) * 2021-10-18 2022-12-13 삼성중공업 주식회사 Vessel
FR3130739A1 (en) * 2021-12-22 2023-06-23 Gaztransport Et Technigaz Ship comprising a castle and a tank for the storage of liquefied gas behind the castle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218354A1 (en) * 2008-02-26 2009-09-03 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas storage tank for floating marine structure
KR20100065758A (en) * 2008-12-08 2010-06-17 삼성중공업 주식회사 Fuel supply system of lng transfer ship and lng transfer ship having the same
KR20100127470A (en) * 2009-05-26 2010-12-06 대우조선해양 주식회사 Floating structure having storage tanks arranged in plural rows
KR20110026688A (en) * 2009-09-08 2011-03-16 대우조선해양 주식회사 Loading and unloading apparatus for storage tanks, and floating structure having the apparatus
KR20150027781A (en) * 2015-02-17 2015-03-12 현대중공업 주식회사 Dual fuel system having supplying fuel in lpg carrier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977647B1 (en) * 2002-03-28 2010-08-24 에스티엑스 핀란드 오와이 Method for reducing the weight and optimizing the longitudinal strength of a water-craft and water-craft thereof
JP4316638B2 (en) * 2007-07-10 2009-08-19 信吉 森元 Liquefied natural gas carrier and sea transportation method of liquefied natural gas
KR20090025462A (en) * 2007-09-06 2009-03-11 현대중공업 주식회사 Lng carrier equipped with extended spherical tanks
KR101210916B1 (en) * 2009-10-16 2012-12-11 대우조선해양 주식회사 Floating structure with a fuel gas tank
JP5578921B2 (en) * 2010-04-23 2014-08-27 三菱重工業株式会社 Floating-type liquefied natural gas production and storage and loading facility and liquefied natural gas production and storage and loading method
CN103879516B (en) * 2014-03-03 2017-07-28 浙江海洋学院 Free-standing liquefied gas carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218354A1 (en) * 2008-02-26 2009-09-03 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas storage tank for floating marine structure
KR20100065758A (en) * 2008-12-08 2010-06-17 삼성중공업 주식회사 Fuel supply system of lng transfer ship and lng transfer ship having the same
KR20100127470A (en) * 2009-05-26 2010-12-06 대우조선해양 주식회사 Floating structure having storage tanks arranged in plural rows
KR20110026688A (en) * 2009-09-08 2011-03-16 대우조선해양 주식회사 Loading and unloading apparatus for storage tanks, and floating structure having the apparatus
KR20150027781A (en) * 2015-02-17 2015-03-12 현대중공업 주식회사 Dual fuel system having supplying fuel in lpg carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472126B2 (en) 2018-11-15 2024-04-22 ギャズトランスポルト エ テクニギャズ Ship maintenance management method

Also Published As

Publication number Publication date
JP6899850B2 (en) 2021-07-07
CN109415108A (en) 2019-03-01
KR20180006620A (en) 2018-01-18
JP2019523731A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2010021503A2 (en) Liquefied gas storage tank and marine structure comprising the same
WO2018124732A1 (en) Gas fuel-propelled container carrier
JP6067804B1 (en) Floating structure with liquefied gas storage facility and design method thereof
AU2014251665B2 (en) LNG ship or LPG ship
KR102150458B1 (en) Insulation System For Membrane Type in LNG Storage Tank
WO2018124733A1 (en) Gas fuel-propelled container carrier
KR20110138869A (en) Multi-direction stopper and storage tank support structure having the same
WO2016006382A1 (en) Carrier ship
WO2017217765A1 (en) Ship having plurality of storage tanks for carrying fluid
KR20130087404A (en) Support of tanks in vessels
KR20100135354A (en) Topside load support structure of floating ocean construct
KR101167916B1 (en) Hybrid type independent lng cargo tank
KR101977212B1 (en) Ship
KR101987986B1 (en) Ship
KR102249073B1 (en) Liquefied gas storage tank and vessel comprising the same
KR20190024342A (en) Container Carrier and Fuel Gas Supply System for the Container Carrier
KR20120031045A (en) Topside load support structure of floating ocean construct
KR102050940B1 (en) Apparatus for scaffold
KR100961866B1 (en) Storage tank and floating structure having the storage tank
KR101818524B1 (en) Membrane type insulation box system of natural gas cargo and securing apparatus thereof
KR20210070757A (en) Pump Tower of Liquefied Gas Storage Tank including Filling Pipe having Double Pipe Structure
KR20180030978A (en) LNG Carrier
KR20120031043A (en) Topside load support structure of floating ocean construct
WO2022005235A1 (en) Liquefied gas storage tank and ship including same
KR102375114B1 (en) Liquefied gas storage tank and vessel comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177034361

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17813588

Country of ref document: EP

Kind code of ref document: A1