JP4316638B2 - Liquefied natural gas carrier and sea transportation method of liquefied natural gas - Google Patents

Liquefied natural gas carrier and sea transportation method of liquefied natural gas Download PDF

Info

Publication number
JP4316638B2
JP4316638B2 JP2007180819A JP2007180819A JP4316638B2 JP 4316638 B2 JP4316638 B2 JP 4316638B2 JP 2007180819 A JP2007180819 A JP 2007180819A JP 2007180819 A JP2007180819 A JP 2007180819A JP 4316638 B2 JP4316638 B2 JP 4316638B2
Authority
JP
Japan
Prior art keywords
tank
membrane
natural gas
liquefied natural
lng
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007180819A
Other languages
Japanese (ja)
Other versions
JP2009018608A (en
Inventor
信吉 森元
Original Assignee
信吉 森元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信吉 森元 filed Critical 信吉 森元
Priority to JP2007180819A priority Critical patent/JP4316638B2/en
Priority to PCT/JP2008/061975 priority patent/WO2009008301A1/en
Priority to KR1020097025794A priority patent/KR20090130267A/en
Priority to EP08777778A priority patent/EP2163470A4/en
Priority to CN200880022297A priority patent/CN101687535A/en
Priority to US12/600,697 priority patent/US20100162939A1/en
Publication of JP2009018608A publication Critical patent/JP2009018608A/en
Application granted granted Critical
Publication of JP4316638B2 publication Critical patent/JP4316638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/52Anti-slosh devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B2025/087Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid comprising self-contained tanks installed in the ship structure as separate units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/016Preventing slosh
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

この発明は液化天然ガス(LNG)の海上輸送に関する。   This invention relates to marine transportation of liquefied natural gas (LNG).

LNGは、燃焼時に窒素酸化物や亜硫酸ガスの排出量が少ないため、クリーンエネルギーとして年々需要が増大している。LNGは天然ガスを-160℃ほどに冷却して液化したものであり、これを海上輸送するLNG運搬船のタンクは広範囲の温度変化に耐えられるよう低温材料を使用し、温度差による熱収縮・熱応力を考慮した構造を備えている。また、LNG運搬船は高速・大量輸送の使命を担うため、20ノット前後の航海速力を備えているのが普通であり、船体は大型化の傾向があり、タンク容量200,000m3を越えるものが現在計画されている。 Since LNG emits less nitrogen oxide and sulfurous acid gas during combustion, demand for LNG is increasing year by year as clean energy. LNG is a natural gas cooled to about -160 ° C and liquefied, and the tank of the LNG carrier that transports this gas at sea uses low-temperature materials to withstand a wide range of temperature changes. It has a structure that takes stress into consideration. Further, since the LNG carrier is responsible for mission speed and mass transportation, 20 is normal to and a voyage speed before and after the knots, the hull will tend to increase in size, which exceeds the tank capacity 200,000M 3 NOW Is planned.

従来のLNG運搬船では、それに搭載されるLNGタンクは大きく2つのタイプに分けられ、一つが球形独立タンク方式であり、もう一つがメンブレン方式である(例えば、米国特許5697312号、同7137345号)。   In a conventional LNG carrier, LNG tanks mounted on the LNG carrier are roughly divided into two types, one is a spherical independent tank system, and the other is a membrane system (for example, US Pat. Nos. 5,697,312 and 7,137,345).

球形独立タンク方式は、アルミ合金で作られた球形タンクを、その赤道部から下に延びるスカート状の支持構造を介して船倉内に据え付けるものである。このタンクでは、その中に積載した液荷の重量および、船の動揺によって液荷に作用する動的な力はすべてタンク自体で担い、スカートを介して船体に伝えるようになっている。タンクの防熱材は、もちろん、タンクの外面に設けられる。   In the spherical independent tank system, a spherical tank made of an aluminum alloy is installed in the hold through a skirt-like support structure extending downward from its equator. In this tank, the weight of the liquid loaded therein and the dynamic force acting on the liquid loaded by the ship's sway are all carried by the tank itself and transmitted to the hull via the skirt. The heat insulating material for the tank is, of course, provided on the outer surface of the tank.

船倉の形状はほぼ箱型であるので、そこに球形タンクを収めた場合、球形タンクの周りに無駄なスペースが生じるのは避け難い。このため、球形独立タンク方式は、船体の大きさの割りに、タンク容積が小さいという欠点がある。   Since the shape of the hold is almost box-shaped, if a spherical tank is housed there, it is inevitable that a useless space is created around the spherical tank. For this reason, the spherical independent tank system has a drawback that the tank volume is small for the size of the hull.

他方、メンブレン方式タンクは、船体の二重船殻構造の内側に防熱材を設け、その表面をメンブレンで液密に覆ったものである。この方式のタンクでは、LNGの液圧が防熱材を介して船体構造に伝えられる。メンブレンにはステンレス鋼や熱膨張係数の小さなニッケル合金(インバー)が用いられる。   On the other hand, the membrane tank is provided with a heat insulating material inside the double hull structure of the hull, and its surface is liquid-tightly covered with a membrane. In this type of tank, the liquid pressure of LNG is transmitted to the hull structure via a heat insulating material. The membrane is made of stainless steel or a nickel alloy (Invar) with a small thermal expansion coefficient.

このメンブレン方式のタンクは、船倉に沿った形状に作ることができるので、タンクスペースが大きく取れ、容積効率がよい。しかし、船体前部の痩せた部分では、タンクが変則的な形状になるので、建造工事に手間がかかるという欠点がある。また、メンブレンタンクの形状は方形が基本であり、それからあまり隔たった形状にすることが難しい。このため、最前部のタンクが収まる部分の船体形状はU字断面がせいぜいで、高速時の造波抵抗を小さくするために、V字型のような余り痩せた形状にすることができない。   Since this membrane-type tank can be made in a shape along the hold, the tank space can be increased and the volumetric efficiency is good. However, since the tank has an irregular shape in the thin part of the front part of the hull, there is a drawback that it takes time for construction work. In addition, the shape of the membrane tank is basically a square, and it is difficult to make the shape far away from it. For this reason, the shape of the hull of the portion where the foremost tank is accommodated has a U-shaped cross section at most, and in order to reduce the wave-making resistance at high speed, it cannot be made a very thin shape such as a V shape.

メンブレン方式のタンクは、積荷が半積状態のときに荒天に遭遇すると、スロッシング(sloshing)といって、船体動揺によりタンク内の液荷が激しく波立ち、その衝撃でメンブレンや防熱材が損傷を受けることがある。球形タンクでは、タンク壁が曲面なので衝撃を受け流すことができ、また、防熱材がタンクの外側にあるので、スロッシングはほとんど問題にならない。したがって、メンブレン方式のタンクについては、積荷のLNGが波立たないように、タンクをいつも満載あるいはそれに近い状態に保っておくことが要請される。   Membrane-type tanks are called sloshing when they encounter stormy weather when the load is half-loaded, and the liquid load in the tank swells violently due to the shaking of the hull, and the impact damages the membrane and the heat insulating material. Sometimes. In a spherical tank, the tank wall is curved, so that it can receive impacts, and since the heat shield is outside the tank, sloshing is hardly a problem. Therefore, with respect to the membrane tank, it is required to keep the tank at a full load or close to it so that the LNG of the cargo does not wave.

球形、メンブレンのいずれの形式においても、LNGタンク内では、防熱が施されていてもタンクへの入熱は避けられないので、積荷のLNGからボイルオフガス(BOG)が発生し、タンク内圧が徐々に上昇し、LNGの液温も上昇する。そこで、LNG船では、発生したボイルオフガスをコンプレッサで吸引し、ボイラ等の燃焼装置に送って燃焼させる。燃焼で生じたエネルギーは、船の推進等に利用される。一日あたりのボイルオフ率は、タンクの防熱性能によって変わってくるが、大体0.10〜0.25%の範囲である。このようにLNG船ではボイルオフが起こるので、タンク内に積載された液荷の量は日数が経つにしたがって少しずつ減少して来る。このため、メンブレン方式のタンクでは、積地を出航してから日数が経つにしたがって、スロッシングが起きやすくなる。   In both sphere and membrane types, heat input to the tank is inevitable even if heat protection is provided in the LNG tank, so boil-off gas (BOG) is generated from the load LNG, and the tank internal pressure gradually increases. The liquid temperature of LNG also rises. Therefore, in the LNG ship, the generated boil-off gas is sucked by a compressor and sent to a combustion device such as a boiler for combustion. The energy generated by the combustion is used for ship propulsion and the like. The boil-off rate per day varies depending on the thermal insulation performance of the tank, but is generally in the range of 0.10 to 0.25%. As described above, since boil-off occurs in the LNG ship, the amount of liquid loaded in the tank gradually decreases as the number of days passes. For this reason, in a membrane tank, sloshing tends to occur as the number of days elapses after leaving the loading area.

この発明は、タンクの容積効率が優れ、建造が容易なLNGタンカーを提供することを課題とする。また、メンブレン方式タンクのスロッシングを低減することを課題とする。   It is an object of the present invention to provide an LNG tanker that is excellent in tank volumetric efficiency and easy to construct. Another object is to reduce the sloshing of the membrane tank.

この発明は、LNGを積載するタンクが、最前部に配置される球形独立式タンクと、その後に続く複数のメンブレン方式タンクとで構成されるLNG運搬船を提供する。このものではLNGタンクの大部分がメンブレン方式のタンクで構成されるので、容積効率が優れ、船の大きさの割りに大きなタンク容積を得ることができる。   The present invention provides an LNG carrier in which a tank for loading LNG is composed of a spherical independent tank disposed in the forefront and a plurality of subsequent membrane tanks. In this case, most of the LNG tank is constituted by a membrane tank, so that the volumetric efficiency is excellent and a large tank volume can be obtained for the size of the ship.

最前部のタンクは船体前部のやせた部分に位置するので、これをメンブレン方式タンクとした場合、タンク形状が変則的な形状となり、防熱やメンブレンの施工工事が大変面倒になる。この発明では、最前部のタンクをメンブレンでなく球形独立式タンクとしたので、球形タンクを地上で組み立てて、船内に搭載するだけで済むので、建造工事が極めて容易になり、工期も短縮することができる。また、球形タンクの場合、船体断面形状がV字型のように痩せているところにも収まるので、船首部をファインにして高速に適した形状にすることが可能になる。   Since the foremost tank is located in the thin part of the front part of the hull, when this is used as a membrane tank, the tank shape becomes irregular, which makes the construction of heat insulation and membrane very troublesome. In this invention, the foremost tank is not a membrane but a spherical independent tank, so it is only necessary to assemble the spherical tank on the ground and mount it on the ship, making the construction work extremely easy and shortening the construction period. Can do. Further, in the case of a spherical tank, the hull cross-sectional shape can be accommodated in a thin shape like a V-shape, so that it is possible to make the bow portion fine and to have a shape suitable for high speed.

また、この発明は、LNGを積載するタンクを、メンブレン方式タンクと球形独立式タンクの2種類のタンクで構成し、輸送中、独立式タンク内のLNGをメンブレン式タンクに移送することを特徴とするLNGの海上輸送方法を提供する。この方法によれば、輸送中にボイルオフガスとして失われる液量を補って、メンブレン式タンクを満載状態に保持することができ、メンブレン式タンクをスロッシング問題から解放することができる。   Further, according to the present invention, the tank for loading LNG is composed of two types of tanks, a membrane tank and a spherical independent tank, and the LNG in the independent tank is transferred to the membrane tank during transportation. A method for sea transport of LNG is provided. According to this method, the amount of liquid lost as boil-off gas during transportation can be compensated, and the membrane tank can be held in a full state, and the membrane tank can be released from the sloshing problem.

図1および図2に示すように、このLNGタンカーは、前から、船首部10、タンク区画12、機関室14、船尾部16の順で連なっており、機関室の上に居住区18さらに操舵室20が設けられている。タンク区画12は横隔壁22によって複数の区画に仕切られており、最前部区画23には球形独立式タンク24が納められており、2番目から5番目の区画内にはそれぞれメンブレン式タンク26が形成されている。   As shown in FIGS. 1 and 2, this LNG tanker is connected in order of the bow portion 10, the tank compartment 12, the engine room 14, and the stern part 16 from the front. A chamber 20 is provided. The tank compartment 12 is divided into a plurality of compartments by a horizontal partition wall 22, a spherical independent tank 24 is accommodated in the foremost compartment 23, and a membrane tank 26 is provided in each of the second to fifth compartments. Is formed.

図3はメンブレン式タンクの横断面図であり、船体は船底および船側共に二重船殻構造になっており、それら内殻28の表面に防熱30を施し、防熱の表面をメンブレン32で液密に覆うことでメンブレン式タンク26が形成される。各メンブレン式タンク26は、タンク容量を増やすため、頭部が上甲板34を貫いて上に突出しており、そのタンク頭部はトランクデッキ36で覆われている。   FIG. 3 is a cross-sectional view of the membrane tank. The hull has a double hull structure on the bottom and the ship side. Heat insulation 30 is applied to the surface of the inner shell 28, and the heat insulation surface is liquid-tight with the membrane 32. The membrane tank 26 is formed by covering with. Each membrane tank 26 has a head protruding upward through the upper deck 34 to increase the tank capacity, and the tank head is covered with a trunk deck 36.

図4は球形独立式タンクを備えた最前部区画の横断面図である。球形タンク24は、その赤道部から下に延びるスカート40を付けた状態に地上で組み立てられ、船内に組み込まれる。該スカート40の下端は船体二重底で支持される。球形タンク24の上部は上甲板34の上にはみ出しており、この突出部分はドーム型のタンクカバー42で覆われる。   FIG. 4 is a cross-sectional view of the foremost compartment with a spherical independent tank. The spherical tank 24 is assembled on the ground with a skirt 40 extending downward from its equator, and incorporated into the ship. The lower end of the skirt 40 is supported by the hull double bottom. The upper part of the spherical tank 24 protrudes above the upper deck 34, and this protruding part is covered with a dome-shaped tank cover 42.

図4と比較するために、最前部タンク区画23に球形独立式タンクではなくメンブレン式タンクを設けた場合を示したのが図5である。最前部タンク区画は船体が痩せているので、その中に形成されるメンブレンタンク26は、鎖線44で示すように、前に行くほどタンク幅が狭くなる。このためタンクが変則的な形状になり、工事が複雑で手間がかかる。これに対し、球形タンク24は地上で組立てて、船体に組み込むことができるので、複雑な構造のメンブレンタンクを船内作業で作るのに比べて、工事が容易で、工期も短くて済む。   For comparison with FIG. 4, FIG. 5 shows a case where a membrane tank is provided in the foremost tank section 23 instead of a spherical independent tank. Since the hull of the foremost tank section is thin, the membrane tank 26 formed therein becomes narrower as it goes forward as indicated by the chain line 44. For this reason, the tank has an irregular shape, and the construction is complicated and time-consuming. On the other hand, since the spherical tank 24 can be assembled on the ground and incorporated into the hull, the construction is easier and the construction period is shorter than the case where a membrane tank having a complicated structure is made by inboard work.

また、図5で分かるように、メンブレン式タンクは構造上、ほぼ方形に近い形状であり、これを収める部分の船体断面はあまり痩せた(ファインな)形状にすることができない。これに対して図4では、タンクが球形であり、しかもタンクがやや高い位置にあるので、船体断面形状をV字にしてかなり痩せた船型内に収めることが可能である。このため、最前部タンクをメンブレン式タンクでなく球形独立タンクにした場合、船首部をファインな形状にして高速域における船の推進抵抗を小さくすることができる。   Further, as can be seen from FIG. 5, the membrane tank is structurally nearly square, and the cross section of the hull that accommodates the membrane tank cannot have a very thin (fine) shape. On the other hand, in FIG. 4, since the tank is spherical and the tank is at a slightly higher position, the hull cross-sectional shape can be made into a V shape and can be accommodated in a very thin ship shape. For this reason, when the foremost tank is not a membrane tank but a spherical independent tank, it is possible to reduce the propulsion resistance of the ship in a high speed range by making the bow part fine.

このLNGタンカーは、積地において、タンクの種類に拘わらず、全タンクにLNGを満載する。揚地に向かって航海中、各LNGタンクには外から熱が侵入するので、ボイルオフガスが連続的に発生し、タンク内に溜まる。このガスを放置しておくと、タンク内の温度および内圧が徐々に高くなって危険である。そこで、従来からLNGタンカーでは、図6に示すように、各タンク内に溜まったボイルオフガス(BOG)をコンプレッサ46でタンクの外に吸引してやり、各LNGタンク内の温度と圧力を適正に保つようにする。コンプレッサでタンクの外に吸引した天然ガスは、加温した後、ボイラ48で燃焼させる。ボイラで発生した蒸気は、タービンを駆動し、船の推進力や船内電力として利用される。   This LNG tanker is full of LNG in all tanks regardless of the type of tank in the loading area. During voyage toward the landing site, heat enters the LNG tanks from the outside, so boil-off gas is continuously generated and accumulated in the tanks. If this gas is left unattended, the temperature and internal pressure in the tank gradually increase, which is dangerous. Therefore, in the conventional LNG tanker, as shown in FIG. 6, the boil-off gas (BOG) accumulated in each tank is sucked out of the tank by the compressor 46 to keep the temperature and pressure in each LNG tank appropriately. To. The natural gas sucked out of the tank by the compressor is heated and then burned by the boiler 48. The steam generated in the boiler drives the turbine and is used as ship propulsion and ship power.

こうして、各タンクで発生したBOGはタンクの外に排出されるので、各タンクの液量はわずかであるが徐々に減っていく。航海が長期間にわたると、液量の減少が顕著になり、メンブレン式タンクでは荒天時にスロッシングが危惧されるようになる。この発明のLNGタンカーでは、球形独立式タンク24の液荷(LNG)をタンク付きのポンプ50で送り出し、これを管52を通じて他のタンクに移送し、メンブレン式タンク26の液量をほぼ満載状態またはそれに近い状態に回復させてやる。こうしてやれば、荒天に遭遇した場合でも、スロッシングが生じにくくなり、スロッシングによるメンブレン式タンクの損傷を未然に防ぐことができる。他方、移送によって球形独立式タンク24の液量は徐々に減少していくが、前述のように、球形独立式タンクではスロッシングの問題は生じない。   Thus, the BOG generated in each tank is discharged to the outside of the tank, so that the amount of liquid in each tank is gradually reduced. Over the long voyage, the decrease in liquid volume becomes significant, and sloshing is a concern during stormy weather in membrane tanks. In the LNG tanker of the present invention, the liquid load (LNG) in the spherical independent tank 24 is sent out by a pump 50 with a tank and transferred to another tank through a pipe 52, so that the liquid amount in the membrane tank 26 is almost full. Or let me recover to a state close to that. By doing so, even when stormy weather is encountered, sloshing is unlikely to occur, and damage to the membrane tank due to sloshing can be prevented. On the other hand, the amount of liquid in the spherical independent tank 24 is gradually reduced by the transfer, but as described above, the sloshing problem does not occur in the spherical independent tank.

この発明によるLNGタンカーの側面図である。It is a side view of the LNG tanker by this invention. 図1に示すLNGタンカーの平面図である。It is a top view of the LNG tanker shown in FIG. 図1の3−3線で切断したメンブレン式タンク部の断面図である。It is sectional drawing of the membrane-type tank part cut | disconnected by the 3-3 line of FIG. 図1の4−4線で切断した球形タンク部の断面図である。It is sectional drawing of the spherical tank part cut | disconnected by the 4-4 line | wire of FIG. 従来のメンブレン方式LNGタンカーにおける最前部タンクの横断面図である。It is a cross-sectional view of the foremost tank in the conventional membrane type LNG tanker. 図1に示すLNGタンカーにおいてタンク間の液荷移送を行うための配管図である。It is a piping diagram for performing the liquid load transfer between tanks in the LNG tanker shown in FIG.

符号の説明Explanation of symbols

22 最前部タンク区画
24 球形独立式タンク
26 メンブレン式タンク
22 Foremost tank compartment 24 Spherical independent tank 26 Membrane tank

Claims (2)

液化天然ガスを積載するタンクが、最前部に配置される球形独立式タンクと、その後に続く複数のメンブレン式タンクとで構成された液化天然ガス運搬船。   A liquefied natural gas carrier ship in which a tank for loading liquefied natural gas is composed of a spherical independent tank disposed in the forefront and a plurality of membrane tanks following the tank. 液化天然ガスを積載するタンクをメンブレン式タンクと球形独立式タンクの2種類のタンクで構成し、輸送中にボイルオフガスとして失われる該メンブレン式タンクの液量を補うように、該球形独立式タンク内の液化天然ガスを該メンブレン式タンクに移送することを特徴とする液化天然ガスの海上輸送方法。   The tank for loading liquefied natural gas is composed of two types of tanks, a membrane tank and a spherical independent tank. The spherical independent tank is made up to compensate for the liquid volume of the membrane tank lost as boil-off gas during transportation. A method of transporting liquefied natural gas by sea, characterized in that the liquefied natural gas is transferred to the membrane tank.
JP2007180819A 2007-07-10 2007-07-10 Liquefied natural gas carrier and sea transportation method of liquefied natural gas Expired - Fee Related JP4316638B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007180819A JP4316638B2 (en) 2007-07-10 2007-07-10 Liquefied natural gas carrier and sea transportation method of liquefied natural gas
PCT/JP2008/061975 WO2009008301A1 (en) 2007-07-10 2008-07-02 Liquefied natural gas carrier vessel, and marine transportation method for liquefied natural gas
KR1020097025794A KR20090130267A (en) 2007-07-10 2008-07-02 Liquefied natural gas carrier vessel, and marine transportation method for liquefied natural gas
EP08777778A EP2163470A4 (en) 2007-07-10 2008-07-02 Liquefied natural gas carrier vessel, and marine transportation method for liquefied natural gas
CN200880022297A CN101687535A (en) 2007-07-10 2008-07-02 Liquefied natural gas carrier vessel, and marine transportation method for liquefied natural gas
US12/600,697 US20100162939A1 (en) 2007-07-10 2008-07-02 Lng tanker and method for marine transportation of lng

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180819A JP4316638B2 (en) 2007-07-10 2007-07-10 Liquefied natural gas carrier and sea transportation method of liquefied natural gas

Publications (2)

Publication Number Publication Date
JP2009018608A JP2009018608A (en) 2009-01-29
JP4316638B2 true JP4316638B2 (en) 2009-08-19

Family

ID=40228479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180819A Expired - Fee Related JP4316638B2 (en) 2007-07-10 2007-07-10 Liquefied natural gas carrier and sea transportation method of liquefied natural gas

Country Status (6)

Country Link
US (1) US20100162939A1 (en)
EP (1) EP2163470A4 (en)
JP (1) JP4316638B2 (en)
KR (1) KR20090130267A (en)
CN (1) CN101687535A (en)
WO (1) WO2009008301A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991994B1 (en) * 2008-03-28 2010-11-04 삼성중공업 주식회사 Lng carrier having lng loading/unloading system
WO2010059307A1 (en) * 2008-11-21 2010-05-27 Exxonmobil Upstream Research Company Liquid impact pressure control methods and systems
JP5173890B2 (en) * 2009-03-02 2013-04-03 三井造船株式会社 Ship
KR101052533B1 (en) * 2009-04-24 2011-07-29 삼성중공업 주식회사 Cargo hold cooldown piping system and liquefied natural gas carrier
JP5646853B2 (en) * 2010-01-20 2014-12-24 ジャパンマリンユナイテッド株式会社 Ship
JP5578921B2 (en) * 2010-04-23 2014-08-27 三菱重工業株式会社 Floating-type liquefied natural gas production and storage and loading facility and liquefied natural gas production and storage and loading method
KR101106895B1 (en) 2010-08-30 2012-01-25 현대중공업 주식회사 Cargo tank for liquefied gas
WO2012144641A1 (en) 2011-04-22 2012-10-26 国立大学法人横浜国立大学 Sloshing preventing device and sloshing preventing method
US8915203B2 (en) * 2011-05-18 2014-12-23 Exxonmobil Upstream Research Company Transporting liquefied natural gas (LNG)
JP5715699B2 (en) * 2011-08-13 2015-05-13 信吉 森元 LNG ship
KR101302018B1 (en) * 2011-09-30 2013-08-30 삼성중공업 주식회사 Ship Having Liquid Cargo Tank
JP5916662B2 (en) 2013-06-20 2016-05-11 三菱重工業株式会社 Stand-alone tank having curvature changing portion and method for manufacturing the same
JP6381872B2 (en) * 2013-07-03 2018-08-29 信吉 森元 Long ocean floating facility
KR101531302B1 (en) * 2013-09-27 2015-06-24 삼성중공업 주식회사 Self-supporting fuel tank and vessel having the same
FR3012412B1 (en) * 2013-10-31 2022-07-22 Joseph Pierre Ursulet SETS OF NEW CUSTOMIZED BUILDINGS EQUIPPED WITH DOUBLE STRAIGHT HULL STRUCTURES, SECURE DOORS, SPHERICAL AND SEMI-SPHERICAL INTERNAL CABINS, CUSTOMIZED STABILIZERS
WO2015068383A1 (en) * 2013-11-07 2015-05-14 川崎重工業株式会社 Liquefied-fuel tank and aquatic structure provided with same
JP6183611B2 (en) * 2014-02-26 2017-08-23 三菱重工業株式会社 Carrier ship
JP2015217749A (en) * 2014-05-15 2015-12-07 川崎重工業株式会社 Ship body support structure of liquefied gas tank, and liquefied gas carrier
AU2014224153B8 (en) * 2014-07-09 2015-07-02 Woodside Energy Technologies Pty Ltd System and method for heading control of a floating lng vessel using a set of real-time monitored hull integrity data
KR101654233B1 (en) * 2014-08-20 2016-09-05 대우조선해양 주식회사 Cool-down System And Method For LNG Cargo Tank
KR102424475B1 (en) * 2014-10-08 2022-07-25 싱글 뷰이 무어링스 인크. Lng carrier vessel, and method for manufacturing such an lng carrier vessel
JP6304558B2 (en) * 2015-02-27 2018-04-04 三菱重工業株式会社 Carrier ship
CN111746725B (en) * 2015-12-30 2022-04-26 现代重工业株式会社 Liquefied gas carrier
KR102127821B1 (en) * 2016-01-25 2020-06-30 현대중공업 주식회사 Carrier
CN105620655B (en) * 2016-03-29 2017-11-17 上海船舶研究设计院 A kind of double bottom structure of LNG carrier
WO2017217765A1 (en) * 2016-06-15 2017-12-21 현대중공업 주식회사 Ship having plurality of storage tanks for carrying fluid
CN106529087B (en) * 2016-12-07 2019-05-14 中国海洋石油集团有限公司 The prediction technique of liquid sloshing degree in a kind of carrier fluid hull cabin
FR3088613B1 (en) * 2018-11-15 2021-01-01 Gaztransport Et Technigaz MAINTENANCE MANAGEMENT PROCESS FOR A SHIP

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332386A (en) * 1965-10-28 1967-07-25 Technigaz Tanker
US3498249A (en) * 1968-09-16 1970-03-03 Exxon Research Engineering Co Tanker vessel
US3926134A (en) * 1972-09-27 1975-12-16 Preload Technology Prestressed concrete tanks for liquid natural gas tankers
JPS5020487A (en) * 1973-06-27 1975-03-04
JPS5251689A (en) * 1975-10-22 1977-04-25 Hitachi Zosen Corp Low temperature liquified gas carrying vessel
US4095546A (en) * 1977-07-14 1978-06-20 Kane John R Shipboard LNG tanks
NO146351C (en) * 1978-11-24 1982-09-15 East West Marine STORAGE ON STORAGE.
JPS60176887A (en) * 1984-02-23 1985-09-10 Mitsubishi Heavy Ind Ltd Liqefied gas carrying vessel
JPS632695U (en) * 1986-06-24 1988-01-09
NO303213B1 (en) * 1987-09-16 1998-06-15 Mitsubishi Heavy Ind Ltd Ship with a dome on our deck
US5388541A (en) * 1992-09-15 1995-02-14 Dumas; Allen E. Tanker ship design for reducing cargo spillage
JP2771092B2 (en) * 1993-03-17 1998-07-02 日立造船株式会社 Transport tank
US5375547A (en) * 1993-04-09 1994-12-27 Ishikawajima-Harima Heavy Industries Co., Ltd. Self-standing liquefied gas storage tank and liquefied gas carrier ship therefor
FI101060B (en) 1995-05-12 1998-04-15 Kvaerner Masa Yards Oy gas tankers
US6089022A (en) * 1998-03-18 2000-07-18 Mobil Oil Corporation Regasification of liquefied natural gas (LNG) aboard a transport vessel
US7137345B2 (en) 2004-01-09 2006-11-21 Conocophillips Company High volume liquid containment system for ships

Also Published As

Publication number Publication date
US20100162939A1 (en) 2010-07-01
KR20090130267A (en) 2009-12-21
JP2009018608A (en) 2009-01-29
EP2163470A4 (en) 2013-01-23
EP2163470A1 (en) 2010-03-17
WO2009008301A1 (en) 2009-01-15
CN101687535A (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4316638B2 (en) Liquefied natural gas carrier and sea transportation method of liquefied natural gas
KR102138970B1 (en) Gas treatment system and gas carrier having the same
JP6496489B2 (en) LNG ship or LPG ship
JP6381872B2 (en) Long ocean floating facility
JP4949599B2 (en) Method and apparatus for compressed gas
US9415841B2 (en) LNG ship
US8079321B2 (en) Long tank FSRU/FLSV/LNGC
JP5785118B2 (en) Ship, offshore floating facility, and liquefied natural gas storage method
EP2228294A1 (en) Vessel for transport of liquefied natural gas
JP2015013494A5 (en)
EP1809940A1 (en) Liquefied natural gas floating storage regasification unit
WO2014168124A1 (en) Lng carrier
JP7074276B2 (en) Ship
KR20230062284A (en) Gas storage system and ship having the same
KR102123724B1 (en) Pump Tower Structure and Ship Having the Same
KR20120036019A (en) Vessel having drain apparatus for storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090401

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Ref document number: 4316638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150529

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150529

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150529

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154