WO2017217290A1 - Drain pipe and manufacturing method for same - Google Patents

Drain pipe and manufacturing method for same Download PDF

Info

Publication number
WO2017217290A1
WO2017217290A1 PCT/JP2017/021071 JP2017021071W WO2017217290A1 WO 2017217290 A1 WO2017217290 A1 WO 2017217290A1 JP 2017021071 W JP2017021071 W JP 2017021071W WO 2017217290 A1 WO2017217290 A1 WO 2017217290A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
filter material
network structure
dimensional network
outer peripheral
Prior art date
Application number
PCT/JP2017/021071
Other languages
French (fr)
Japanese (ja)
Inventor
敏孝 清水
Original Assignee
メインマーク・アクアテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メインマーク・アクアテック株式会社 filed Critical メインマーク・アクアテック株式会社
Priority to CN201780037492.3A priority Critical patent/CN109415881A/en
Publication of WO2017217290A1 publication Critical patent/WO2017217290A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/10Improving by compacting by watering, draining, de-aerating or blasting, e.g. by installing sand or wick drains

Definitions

  • the present invention relates to a drain pipe used in a non-open-drain drain pipe burying method that can be used in a ground water level lowering method that prevents ground liquefaction by draining ground water in a shallow portion of the ground and lowering the ground water level, and a method for manufacturing the drain pipe.
  • the lifeline may be interrupted, structures may be sunk and collapsed.
  • the groundwater level is reduced by lowering the groundwater in the shallow part of the ground, the thickness of the non-liquefied layer is increased, and the restraint pressure on the liquefied layer deeper than the groundwater level is increased to increase the liquidity.
  • the groundwater level lowering method that suppresses the conversion is attracting attention.
  • a porous drain pipe is generally buried in the ground, and underground rainwater and spring water are collected in the drain pipe and discharged.
  • a drain pipe As a method of burying a drain pipe in the ground, there is a construction method in which a drain pipe is inserted into a sheath pipe buried by a propulsion method or the like, and then the sheath pipe is pulled out to leave the drain pipe.
  • this drain pipe there is one in which a three-dimensional network structure of a thermoplastic resin such as polypropylene is formed on a cylindrical wall.
  • the outer peripheral surface of the three-dimensional network structure is covered with a filter material, and the outer peripheral surface is further covered with a net.
  • the filter material is employed in order to prevent the water permeability from being impeded by sand clogging immediately into the drain pipe buried in the ground and clogging.
  • the mesh body is employed to prevent the filter material from being turned up and compressed by friction with the inner surface of the sheath tube when the drain tube is inserted into the sheath tube.
  • the filter material and the mesh body In order to cover the filter material and the mesh body, the filter material and the mesh body must be fixed to the three-dimensional network structure.
  • a filter material and a mesh body are wound around the outer peripheral surface of the three-dimensional network structure in order, and then a method of winding and fastening a vinyl tape or the like or a method of winding and tightening a band or string (a method using a fixing member). Done.
  • the method of fixing with an adhesive agent is also performed.
  • network material after fixing a filter material is also performed suitably.
  • the opening area is reduced by that amount, and the water permeability is lowered. Furthermore, not only the work related to the sheath tube, but also during transportation, it may be caught by the convex part or slack.
  • a connecting member is attached to both ends of the drain pipe.
  • the mesh body and the filter material are provided between the connecting members at both ends, but the mesh body and the filter material are particularly easily turned around and easily caught by the sheath tube or the like near the boundary with the connecting member.
  • the adhesive protrudes into the openings of the three-dimensional network structure, the net, and the filter material, resulting in clogging and reduced water permeability. Further, when the fixing method as described above is performed on site, the work load increases and the accuracy also decreases.
  • an object of the present invention is to provide a drain pipe that has high workability, ensures water permeability, and does not turn over a coated mesh body or filter material in view of the above-described problems of the prior art, and a method for manufacturing the same. .
  • the present invention includes a three-dimensional network structure, a three-dimensional network structure, a filter material that covers the outer peripheral surface of the three-dimensional network structure, and a network body that covers the outer peripheral surface of the filter material.
  • a water-permeable drain pipe wherein a first adhesive portion in which an outer peripheral surface of the filter material and an inner peripheral surface of the mesh body are bonded by thermal melting, an outer peripheral surface of the three-dimensional network structure, and the filter
  • a second adhesive portion bonded to the inner peripheral surface of the material by heat melting, and provided at both ends of the drain tube are annular grooves to which a connecting member is attached to the outer peripheral surface of the three-dimensional network structure
  • the filter material covers the outer peripheral surface of the three-dimensional network structure between the annular grooves, and the network member covers the outer peripheral surface of the filter material between the annular grooves.
  • the present invention includes a three-dimensional network structure that is inserted into a pre-embedded sheath tube and is pulled out to cover the outer peripheral surface of the three-dimensional network structure, and the filter A water-permeable drain pipe having a net covering the outer peripheral surface of the material, wherein the outer peripheral surface of the filter material and the inner peripheral surface of the net are bonded by heat melting And a second adhesive portion in which the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material are bonded together by heat melting.
  • the present invention provides a three-dimensional network structure, a filter material covering the outer peripheral surface of the three-dimensional network structure and having an opening size smaller than the three-dimensional network structure, and covering an outer peripheral surface of the filter material and having an opening size.
  • the bonding step between the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material is performed by heat melting, and the bonding step between the outer peripheral surface of the filter material and the inner peripheral surface of the net member is The inner peripheral surface of the mesh body is thermally melted, and the bonding step between the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material is performed on the outer peripheral surface of the three-dimensional network structure. It is performed by heat melting.
  • the present invention provides a water-permeable drain pipe comprising a three-dimensional network structure, a filter material that covers the outer peripheral surface of the three-dimensional network structure, and a net that covers the outer peripheral surface of the filter material.
  • the bonding step between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by heat melting, and the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material The bonding step is performed by heat melting, and the bonding step between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by thermally melting the inner peripheral surface of the mesh body and It is performed by flattening the cross section.
  • the drain tube when the drain tube is inserted into the sheath tube or the sheath tube is pulled out, it becomes a catching resistance and can prevent the workability from being lowered. It is possible to prevent the net body and the filter material from coming off. Since it is based on heat welding, the adhesive does not protrude and an opening area can be secured, so that the water permeability due to coating does not decrease. Even in the vicinity of the boundary with the connecting member, it is possible to prevent the mesh body and the filter material from coming off.
  • FIG. 1A is a perspective view of a drain tube.
  • FIG. 1B is a front view of the drain tube.
  • FIG. 2A is a perspective view of connecting drain tubes.
  • FIG. 2B is a cross-sectional view of connecting drain tubes.
  • FIG. 2C is a perspective view of the connecting member.
  • FIG. 3A is an overall view of the coating apparatus.
  • FIG. 3B is a cross-sectional view of a wire rod of a net material flattened by a coating apparatus.
  • FIG. 4 is a front view of the processing apparatus.
  • FIG. 5A is a side view of the processing apparatus.
  • FIG. 5B is a perspective view of the thermoforming roller.
  • FIG. 6A is an explanatory diagram of construction of drain pipe installation.
  • FIG. 6A is an explanatory diagram of construction of drain pipe installation.
  • FIG. 6B is a cross-sectional view of the connecting member.
  • FIG. 6C is a sectional view in which a tight pipe is attached to the drain pipe.
  • FIG. 7A is an explanatory diagram of construction of drain pipe installation.
  • FIG. 7B is a cross-sectional view of a tight pipe with a push rod inserted therein.
  • FIG. 7C is a diagram showing a state in which the sheath tube is pulled out from the drain tube.
  • FIG. 8A is a diagram for explaining the installation of the drain pipe.
  • FIG. 8B is a view showing a state in which the tip of the push rod and the tip of the tight pipe are connected.
  • FIG. 8C is a cross-sectional view of a tight pipe with a push rod inserted therein.
  • a drain tube 1 according to the present invention is shown in FIG.
  • the drain pipe 1 is formed by molding a three-dimensional network structure 2 made of polypropylene thermoplastic resin into a cylindrical wall having an outer diameter of 400 mm and an inner diameter of 220 mm, and has a length of 1 m.
  • a plurality of drain pipes 1 are connected to form an underground drainage work.
  • the three-dimensional network structure 2 is a structure in which strands (strands) having a diameter of about 2 mm made of the resin are entangled and the contacts of the strands are joined.
  • a tube having this structure has a high pressure resistance and can withstand a pressure of about 7 m in thickness.
  • the drain tube 1 is formed with two annular grooves 5 on the outer periphery of both ends, and a portion other than a connecting member (a connecting outer cylinder 8) described later between the annular grooves 5 at both ends.
  • the outer peripheral surface is covered with a water-permeable filter material 3, and the outer peripheral surface is further covered with a net body 4 made of hard resin.
  • the filter material 3 prevents sand and the like from entering the drain pipe 1 buried in the ground and clogging immediately and impairing water permeability.
  • the filter material 3 is a polypropylene non-woven fabric, and its thickness is about 1.0 mm in a coated state.
  • the net body 4 is a polypropylene thermoplastic resin, and its thickness is about 1 mm in a coated state.
  • the opening of the mesh body 4 is about 5 mm, and the opening ratio is larger than that of the filter material 3.
  • the filter material 3 has a smaller opening size (fine eyes) than the three-dimensional network structure 2 and the network body 4.
  • the filter material 3 covers and fixes the outer peripheral surface of the three-dimensional network structure 2, and the mesh body 4 covers and fixes the outer peripheral surface. This fixing is performed by heat welding of each contact surface.
  • the portion (first adhesive portion) where the outer peripheral surface of the filter material 3 and the inner peripheral surface of the net body 4 are bonded is obtained by melting the inner peripheral surface side of the net body 4 with heat. And is glued.
  • a filter material is made by melting the outer peripheral surface side of the three-dimensional network structure 2 with heat. 3 is bonded.
  • the ends of the drain pipe 1 that are not covered with the filter material 3 and the mesh body 4 are joined together using a connecting member, as shown in FIGS. 2A and 2B.
  • the connecting member includes a connecting outer cylinder 8 and a connecting inner cylinder 7.
  • the connecting outer cylinder 8 is made of hard synthetic resin which is difficult to deform, and four connecting member annular protrusions 8d having a square cross section are formed on the inner peripheral surface in this embodiment. As shown in FIG. It consists of a pair of halves 8a and 8b which are divided into two.
  • the halves 8a and 8b of the connecting outer cylinder 8 are put between the end portions of the drain pipes 1 that are butted together, and the connecting member annular protrusion 8d is inserted into the annular groove 5 formed in the three-dimensional network structure 2 of the drain pipe 1.
  • the band 9 is wound around the connecting member annular groove 8c on the outer surface side of the connecting member annular protrusion 8d, and the connecting outer cylinder 8 is attached.
  • the connecting outer cylinder 8 can be easily put on the outer peripheral surface of the butted portion of the drain pipe 1 from the outside in the radial direction, and the operation is simple. Further, since the drain tube 1 is connected by covering the outer peripheral surface of the butted portion with the connecting outer cylinder 8, the butted portion of the drain tube 1 is not easily displaced even if a shearing force is applied in the event of an earthquake or the like. Furthermore, since the connecting member annular protrusion 8d having a quadrangular cross section is fitted and attached to the annular groove 5 having a quadrangular cross section, the tensile strength is high. And the connection outer cylinder 8 made into the half halves 8a and 8b is easy to attach and mold. The connecting outer cylinder 8 is not split in half, but is attached so that the side surface is cut in one axial direction and the end of the drain tube 1 is sandwiched with the cut ends opened to both sides. You can also.
  • the connecting inner cylinder 7 may be used together with the connecting outer cylinder 8 as a connecting member, and is an auxiliary connecting member.
  • the connecting inner cylinder 7 is made of a hard synthetic resin that is thin and high in strength, and as shown in FIG. 1B, a plurality of locking claws 7a are formed at both ends thereof.
  • the locking claw 7 a is inclined and raised outward so that the tip is directed toward the axial center, and when the end of the connecting inner cylinder 7 is inserted into the inner peripheral surface of the three-dimensional network structure 2 of the drain tube 1.
  • the inner diameter of the connecting inner cylinder 7 is larger than the outer diameter of the tight pipe 6. The joint strength is further increased by the combined use of the connecting inner cylinder 7.
  • the tightening pipe 6 is inserted into the inner peripheral surface of the three-dimensional network structure 2 of the drain pipe 1 and inserted into the sheath pipe 200, and is pulled out later.
  • the outer diameter corresponds to the inner diameter of the three-dimensional network structure 2 and is set so as to ensure a gap when the connecting inner cylinder 7 is employed. It is desirable that the tight pipe 6 and the drain pipe 1 can be inserted into the sheath pipe 200 and are appropriately fixed so as not to hinder the withdrawal of the tight pipe 6.
  • a method of manufacturing the drain pipe 1 by coating the three-dimensional network structure 2 with the filter material 3 and the network body 4 by heat welding will be described with reference to FIG. 3A.
  • the filter material 3 and the mesh body 4 are thermally welded, cut to a required length, and the filter material 3 to which the mesh body 4 is bonded and the three-dimensional network structure 2 are thermally welded.
  • the manufacturing apparatus used in this process includes a first heating roller 10a, a second heating roller 10b, first pressure rollers 11a and 11b, a second pressure roller 11c, tension rollers 12a to 12c, guide rollers 13a to 13g, a cover 14a, 14b.
  • the rolled filter material 3 and net material 4 are set.
  • the filter material 3 pulled out from the roll is adjusted in tension by the tension roller 12c and sent to the first pressure rollers 11a and 11b.
  • tensile_strength is adjusted with the tension
  • the lower side in FIG. 3A is melted from the inner side surface of the drain tube 1.
  • the first heating roller 10a is heated to about 200 to 230 ° C. in the case of polypropylene (the melting point of the mesh material 4 is assumed to be about 180 to 200 ° C.).
  • the melted net 4 is sent to the first pressure rollers 11a and 11b.
  • the filter material 3 and the mesh material 4 are pressure-bonded by the first pressure rollers 11a and 11b.
  • the first pressure roller 11a, 11b can adjust the gap.
  • the melted mesh material 4 can be adhered to the filter material 3 while making the thickness of the molten mesh material 4 thinner than the original thickness. If it does in this way, as shown to FIG. 3B, since the cross section of the wire 4a which comprises the net
  • 3B shows the case where the cross section of the wire 4a is circular, and the lower figure shows the case where the cross section of the wire 4a is rectangular. In the figure, 4 b is an opening of the net 4.
  • the part to be bonded may be all or may be a part.
  • the slack will be less if you use it as a whole.
  • the width and heating area of the first heating roller 10a are adjusted.
  • it is heat-welded to the end part which becomes a boundary part with the connection outer cylinder 8 (connection member) it is possible to reduce the catch and turn by this part, but it is not necessarily necessary to heat-weld to this part. Absent.
  • the welded and integrated filter material 3 and net 4 are sent out by guide rollers 13a and 13b and cut.
  • the cutting is performed according to the length of the outer periphery of the three-dimensional network structure 2.
  • the cut filter material 3 and the net 4 are sent to the second pressure roller 11c by the guide rollers 13c and 13d.
  • the three-dimensional network structure 2 is rotatably supported, and the second heating roller 10b can be rotated in accordance with the rotation.
  • the outer peripheral surface of the three-dimensional network structure 2 is heated and melted by the second heating roller 10b.
  • the filter material 3 and the net 4 integrated on the melted outer peripheral surface are pressure-bonded by the second pressure roller 11c.
  • the second heating roller 10b is heated to about 200 to 230 ° C. in the case of polypropylene (the melting point of the three-dimensional network structure 2 is assumed to be about 180 to 200 ° C.).
  • the filter material 3 and the mesh body 4 that have been pressure-bonded are guided along the outer peripheral surface of the three-dimensional network structure 2 by guide rollers 13e, 13f, and 13g.
  • the filter material 3 and the mesh body 4 are pressure-bonded to the entire outer peripheral surface of the three-dimensional network structure 2, the rotation is stopped and the drain pipe which is the three-dimensional network structure 2 covered with the filter material 3 and the mesh body 4. Take 1 out.
  • the part to be bonded may be all or may be a part.
  • the slack can be reduced by making the whole.
  • the width and the heating area of the second heating roller 10b are adjusted.
  • the boundary portion covered by the connecting outer cylinder 8 (connecting member) is thermally welded, it is possible to reduce catching and turning by this portion, but it is not always necessary to thermally weld to this portion. At the time of crimping, care is taken so that the openings of the three-dimensional network structure 2 do not decrease more than necessary.
  • the materials of the three-dimensional network structure 2, the filter material 3, and the network 4 are unified with polypropylene. If it does in this way, since the raw material is the same when performing heat welding, adhesive strength can also be made high. However, the material may be different if the strength is not required.
  • the annular groove 5 formed in the three-dimensional network structure 2 of the drain tube 1 is formed by thermally melting the outer peripheral surface of the three-dimensional network structure 2 constituting the wall of the drain tube 1.
  • a processing apparatus 100 shown in FIGS. 4 and 5 is used.
  • the processing apparatus 100 includes a front support table 101 and a rear support table 102 that are erected in opposition to each other, a tube receiving table 103 that is installed between the front support table 101 and the rear support table 102, and a front support table.
  • a heating roller 104 is provided between 101 and the tube receiving base 103 so as to be swingable up and down above the vicinity of the front support base 101.
  • the rear support table 102 can be moved in the distance from the front support table 101, and a rotating disk 105 is provided on each of the opposing surfaces of the front support table 101 and the rear support table 102.
  • a plurality of support claws 106 protrude from opposing surfaces of the front and rear rotating plates 105, and the rotating plate 105 of the front support base 101 is driven to rotate by a motor 107.
  • a receiving part 108 having a semicircular cross section is provided at the upper end of the tube receiving base 103, and a plurality of support rollers 109 are installed at equal intervals in the circumferential direction on the upper surface of the receiving part 108.
  • the heating roller 104 has a hollow cylindrical shape, and two flanges 113 having a square cross section are formed on the outer periphery (FIG. 5B).
  • the heating roller 104 is attached to the tip of a swing arm 111 projecting from the support column 110 so as to swing up and down.
  • the heating roller 104 rises by winding up the chain 112 connected to the swing arm 111, and when the chain 112 is rewound, It comes to descend at.
  • a stopper 114 that restricts the lower limit position of the heating roller 104 is provided below the heating roller 104 (FIG. 5A). The position of the stopper 114 can be adjusted up and down.
  • a heater 115 is mounted inside the heating roller 104 so that the entire heating roller 104 can be heated to a temperature equal to or higher than the melting point of the thermoplastic resin that is the material of the three-dimensional network structure 2 (FIG. 5B). .
  • the rear support base 102 is moved backward and away from the front support base 101, and as shown in FIG. 4 and FIG. A three-dimensional network structure 2 (the drain pipe 1 not covered with the filter material 3 and the network body 4) is placed on 109.
  • the rear support base 102 is advanced to sandwich the three-dimensional network structure 2 between the front support base 101 and the rear support base 102, and the support claws 106 of the front support base 101 and the rear support base 102 are connected to the three-dimensional network structure. Bit into both end faces of 2.
  • the turntable 105 of the front support base 101 is rotated in this state, the turntable 105 of the three-dimensional network structure 2 and the rear support base 102 is rotated.
  • the heating roller 104 is lowered and the flange 113 of the heating roller 104 is pressed against the outer peripheral surface of the three-dimensional network structure 2.
  • the portion of the outer peripheral surface of the three-dimensional network structure 2 where the heating roller 104 hits is melted by the heat of the heating roller 104 (for example, about 200 to 230 ° C. in the case of polypropylene), and the heating roller 104 gradually descends. .
  • the three-dimensional network structure 2 since the three-dimensional network structure 2 is rotating, grooves are formed on the outer periphery of the three-dimensional network structure 2 along the circumferential direction.
  • the lower side of the heating roller 104 is restricted by the stopper 114 at a height at which the portion inside the flange 113 does not contact the three-dimensional network structure 2, and the same shape as the cross section of the flange 113 is formed at one end of the three-dimensional network structure 2.
  • Two annular grooves 5 are formed. The depth of the annular groove 5 can be adjusted by adjusting the height of the stopper 114. Further, the present invention can be applied when the tube diameter of the three-dimensional network structure 2 is changed. The speed at which the annular groove 5 is formed depends on the thickness and density of the string-like strands and the temperature.
  • the heating roller 104 After forming the annular groove 5 at one end of the three-dimensional network structure 2, the heating roller 104 is raised, the rear support base 102 is retracted to release the three-dimensional network structure 2, and the three-dimensional network structure The body 2 is set upside down in the processing apparatus 100, and two annular grooves 5 are formed in the other end of the three-dimensional network structure 2 in the same manner. If the heating roller 104 is disposed at a position corresponding to both ends of the three-dimensional network structure 2, it is not necessary to replace the three-dimensional network structure 2 in the front-rear direction. Thus, since the annular groove 5 is formed by heat melting, cutting waste does not come out and the strength of the portion where the annular groove 5 is formed does not decrease.
  • the annular groove 5 is formed before the filter material 3 and the mesh body 4 cover the three-dimensional network structure 2.
  • the present invention is not limited to this, and the three-dimensional network structure 2 may be covered with the filter material 3 and the net body 4 after the annular groove 5 is formed.
  • the drain pipe 1 is installed by being pulled out after being inserted into the sheath pipe 200 embedded in advance. As shown in FIG. 6, the drain pipe 1 is inserted into the sheath pipe 200 embedded by the propulsion unit 203 from the start vertical shaft 201 side between the start vertical shaft 201 and the arrival vertical shaft 202. 201a and 202a in the figure are wellhead equipments attached to the start well of the start shaft 201 and the reach well of the reach shaft 202, respectively.
  • the drain pipe 1 and the tight pipe 6 are prepared, and the tight pipe 6 is inserted and attached inside the drain pipe 1.
  • the tight pipe 6 has a male screw portion 6a protruding from one end of the drain pipe 1 so as to be screwed into the female screw portion 6b of the tight pipe 6 to be connected (FIG. 6C).
  • the drain pipe 1 including the tight pipe 6 is pushed into the sheath pipe 200 from the start shaft 201 while sequentially connecting the end portions of the drain pipe 1 and the end portions of the tight pipe 6.
  • the drain pipe 1 and the tightening pipe 6 are inserted between them.
  • the ends of the drain pipe 1 are connected to each other using the connecting members (the connecting outer cylinder 8 and the connecting inner cylinder 7) described above.
  • the outer peripheral surface has neither protrusions nor slack, so that the resistance to the sheath tube 200 is small.
  • the net body 4 and the filter material 3 are not turned over. Therefore, working efficiency is improved.
  • a biodegradable lubricant (grease made of plastic) may be provided around the outer periphery of the distal end side of the drain tube 1.
  • the grease strikes the inner surface of the sheath tube 200 when the drain tube 1 is pushed into the sheath tube 200 and is applied to the entire outer peripheral surface of the drain tube 1.
  • muddy water can be prevented from entering the drain pipe 1 during construction, and the sliding of the drain pipe 1 with respect to the sheath pipe 200 is further improved.
  • the start side tightening nut 206 is screwed into the end portion of the disposed tightening pipe 6 that protrudes from the start shaft, and is brought into contact with the wellhead equipment 201a.
  • a seal head 207 is attached to an end of the binding pipe 6 on the arrival shaft 202 side, is brought into contact with the surface of the drain pipe 1 on the arrival shaft 202 side, and is screwed into the fastening pipe 6 to reach an arrival side tightening nut 208. Secure with.
  • the drain pipe 1 is prevented from moving in the sheath pipe 200 to the start shaft 201 side and the arrival shaft 202 side.
  • the tail seal 205 is attached to the periphery of the end of the vertical shaft 201 (the last part) of the sheath pipe 200 using screws and a metal band.
  • the tail seal 205 is made of a soft synthetic resin having flexibility and stretchability, and has a tapered cylindrical shape that gradually decreases in diameter toward the rear end.
  • the inner diameter of the end portion of the tail seal 205 is smaller than the outer diameter of the drain tube 1 and is in contact with the outer peripheral surface of the drain tube 1.
  • the push rod 209 is pushed in and inserted from the starting shaft 201 into the tight pipe 6 in order, and the push rod 209 reaches the reaching shaft 202. As shown in FIG. 7B, the push rod 209 has a spacer 210 that moves in contact with the inner surface of the binding pipe 6. On the reach shaft 202 side, the tip of the sheath tube 200 and the tip of the push rod 209 are connected to the sheath tube push-out fitting 204.
  • the sheath tube 200 is pulled out to the reaching shaft 202.
  • the drain pipe 1 cannot be moved to the reaching shaft 202 side together with the tight pipe 6, the drain pipe 1 is not dragged to the reaching shaft 202 side with the movement of the sheath pipe 200.
  • the mesh body 4, the filter material 3, and the three-dimensional network structure 2 are thermally welded. Therefore, the outer peripheral surface has neither convex portions nor slack. There is little resistance to 200. In addition, the net body 4 and the filter material 3 are not turned over. Therefore, working efficiency is improved.
  • the tail seal 205 moves at the rear portion of the sheath tube 200 while contacting the peripheral surface of the drain tube 1 at the rear edge portion. That is, as the sheath tube 200 is pulled out, soil and sand together with the spring water are prevented from entering between the drain tube 1 and the sheath tube 200. Thereby, the friction at the time of extraction is increased by the earth and sand that has entered between the drain pipe 1 and the sheath pipe 200, and an excessive load is applied to the propulsion unit 203 that pushes the push rod 209, or the sheath pipe 200 is moved. It is possible to prevent things from becoming impossible.
  • the net body 4, the filter material 3, and the three-dimensional network structure 2 are thermally welded. The tail seal 205 is caught and resistance is reduced.
  • the sheath tube 200 and the push rod 209 pulled out into the reaching shaft 202 are disassembled and collected while the sheath tube push-out fitting 204 is replaced. Then, the last sheath tube 200 is recovered together with the tail seal 205. As a result, the drain pipe 1 provided with the tight pipe 6 is left.
  • the start side tightening nut 206, the reaching side tightening nut 208 and the seal head 207 are removed, and the restraint between the tightening pipe 6 and the drain pipe 1 is released.
  • the distal end of the push rod 209 and the distal end of the tightening pipe 6 are connected by the tightening pipe pull-out fitting 211 and pulled by the propulsion unit 203.
  • the push rod 209 is pulled out to the start shaft 201 side, and the binding pipe 6 and the push rod 209 are pulled out from the drain pipe 1 to the start shaft 201.
  • the fastening pipe 6 and the push rod 209 are disassembled and collected on the start shaft 201 side.
  • the process is repeated to leave only the drain pipe 1 between the starting shaft 201 and the reaching shaft 202. In this way, the drain pipe 1 is buried.
  • the present invention is not limited to the above embodiments.
  • the drain tube 1 is inserted into the buried sheath tube 200, and the sheath tube 200 is pulled out so that the drain tube 1 is buried in the ground.
  • the present invention can be applied even when the drain pipe 1 is directly embedded by excavation without providing the sheath pipe 200.
  • the drain tube 1 of the present invention is thermally welded to the net body 4, the filter material 3, and the three-dimensional network structure 2 even after being embedded, the water permeability is also lowered due to the protruding adhesive. It does not occur and can be applied by paying attention to the effect that a sufficient drainage function can be secured.
  • the mesh body 4 has a function of protecting the filter material 3 from the sheath tube 200.
  • the net body 4 may be formed of a biodegradable material. Then, like the previous grease, the drain pipe 1 is buried in the ground and then decomposed and disappeared by living organisms in the soil, so that the water collecting function of the drain pipe 1 is ensured, and the environment There is no worry of contamination.
  • It can be used for a drain pipe used in a non-open-drain drain pipe embedding method applied to a ground water level lowering method that prevents ground liquefaction by draining groundwater and lowering the groundwater level, and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

A water permeable drain pipe comprising a three-dimensional mesh structure, a filter material that covers the outer circumferential face of the three-dimensional mesh structure, and netting that covers the outer circumferential face of the filter material, wherein the drain pipe comprises a first bonded portion where the outer circumferential face of the filter material and the inner circumferential face of the netting are bonded by thermofusion, and a second bonded portion where the outer circumferential face of the three-dimensional mesh structure and the inner circumferential face of the filter material are bonded by thermofusion.

Description

ドレイン管およびその製造方法Drain tube and manufacturing method thereof
 この発明は、地盤の浅い部分の地下水を抜いて地下水位を低下させることにより、地盤の液状化を防ぐ地下水位低下工法に利用できる非開削ドレイン管埋設工法に用いるドレイン管およびその製造方法に関する。 The present invention relates to a drain pipe used in a non-open-drain drain pipe burying method that can be used in a ground water level lowering method that prevents ground liquefaction by draining ground water in a shallow portion of the ground and lowering the ground water level, and a method for manufacturing the drain pipe.
 大きな地震が起こると、砂地地盤等では液状化が発生し、この結果、ライフラインの断絶、構造物の沈下及び倒壊等の被害を受けることになりかねない。
 近年、この液状化を防ぐために、地盤の浅い部分の地下水を抜いて地下水位を低下させ、非液状化層の厚みを増大し、地下水位以深の液状化層への拘束圧を増強して液状化を抑制する地下水位低下工法が注目されている。
 地下水位を低下させるためには、多孔のドレイン管を地中に埋設し、地中の雨水や湧水をドレイン管内に集めて排出するのが一般的である。
When a large earthquake occurs, liquefaction occurs in the sandy ground, and as a result, the lifeline may be interrupted, structures may be sunk and collapsed.
In recent years, in order to prevent this liquefaction, the groundwater level is reduced by lowering the groundwater in the shallow part of the ground, the thickness of the non-liquefied layer is increased, and the restraint pressure on the liquefied layer deeper than the groundwater level is increased to increase the liquidity. The groundwater level lowering method that suppresses the conversion is attracting attention.
In order to lower the groundwater level, a porous drain pipe is generally buried in the ground, and underground rainwater and spring water are collected in the drain pipe and discharged.
 地中にドレイン管を埋設する方法としては、推進工法等で埋設された鞘管にドレイン管を挿入した後に、鞘管を引き抜いてドレイン管を残置する工法がある。このドレイン管としては、ポリプロピレンのような熱可塑性樹脂の3次元網状構造体を筒形の壁に成形したものがある。このようなドレイン管を用いることとで、相当程度の土被り厚さによる圧力に耐えることができる。 As a method of burying a drain pipe in the ground, there is a construction method in which a drain pipe is inserted into a sheath pipe buried by a propulsion method or the like, and then the sheath pipe is pulled out to leave the drain pipe. As this drain pipe, there is one in which a three-dimensional network structure of a thermoplastic resin such as polypropylene is formed on a cylindrical wall. By using such a drain pipe, it is possible to withstand a pressure due to a considerable covering thickness.
 このドレイン管は、3次元網状構造体の外周面がフィルタ材で被覆され、さらにその外周面が網体で被覆されている。フィルタ材は、地中に埋設したドレイン管内に砂等が侵入してすぐに目詰まりして透水性が阻害されてしまうのを防止するために採用されている。
網体は、ドレイン管を鞘管内へ挿入するときに、フィルタ材が鞘管内面との摩擦によりめくり上がって押し縮められるのを防止するために採用されている。
In this drain pipe, the outer peripheral surface of the three-dimensional network structure is covered with a filter material, and the outer peripheral surface is further covered with a net. The filter material is employed in order to prevent the water permeability from being impeded by sand clogging immediately into the drain pipe buried in the ground and clogging.
The mesh body is employed to prevent the filter material from being turned up and compressed by friction with the inner surface of the sheath tube when the drain tube is inserted into the sheath tube.
 このフィルタ材および網体による被覆は、3次元網状構造体にフィルタ材および網体を固定しなければならない。この固定には、3次元網状構造体の外周面にフィルタ材、網体を順に巻いた後に、ビニルテープ等を巻いて留める方法やバンドや紐等を巻いて締める方法(固定部材による方法)で行われる。また、接着剤によって固定する方法も行われる。
 なお、フィルタ材および網材の双方を巻いた後に固定するだけでなく、フィルタ材を固定した後に、網材を固定する方法も適宜行われる。
In order to cover the filter material and the mesh body, the filter material and the mesh body must be fixed to the three-dimensional network structure. For this fixing, a filter material and a mesh body are wound around the outer peripheral surface of the three-dimensional network structure in order, and then a method of winding and fastening a vinyl tape or the like or a method of winding and tightening a band or string (a method using a fixing member). Done. Moreover, the method of fixing with an adhesive agent is also performed.
In addition, after fixing both the filter material and the net | network material, the method of fixing a net | network material after fixing a filter material is also performed suitably.
特開2017-2641号公報JP 2017-2641 A
 ビニルテープやバンド等による固定方法では、表面にビニルテープやバンド等による凸部ができ、その部分で鞘管に引っかかり外れることがあり、ビニルテープでは粘着部が鞘管に貼りつきめくれることがある。これらの部分が、鞘管への挿入や鞘管の引き抜きの際に、引っかかり抵抗となり、作業性が低下する。引っかかることで固定が外れ、被覆した網体やフィルタ材がめくれる。また、凸部と凸部との間で網体やフィルタ材が弛み、引っかかることやめくれることがある。これらも鞘管への挿入や鞘管の引き抜きの際に、引っかかり抵抗となり、作業性が低下する。さらに、固定箇所を増やすと、その分だけ開口面積が減少して透水性が低下してしまう。さらにまた、鞘管に関わる作業だけでなく、運搬時等においても、凸部や弛みによって引っかかることやめくれることがある。 In the fixing method using vinyl tape or band, there is a convex part with vinyl tape or band on the surface, and it may be caught by the sheath tube, and the adhesive part may stick to the sheath tube with vinyl tape. . When these portions are inserted into the sheath tube or pulled out of the sheath tube, they become hooking resistance and workability is lowered. When it is caught, it is unfixed, and the covered mesh or filter material is turned over. In addition, the mesh body and the filter material may be loosened between the convex portions and the convex portions, and may be caught. These are also caught by resistance when inserted into the sheath tube or pulled out of the sheath tube, and workability is lowered. Further, when the number of fixing points is increased, the opening area is reduced by that amount, and the water permeability is lowered. Furthermore, not only the work related to the sheath tube, but also during transportation, it may be caught by the convex part or slack.
 このドレイン管の両端部には、連結部材が取り付けられる。網体とフィルタ材は、両端の連結部材の間にわたって設けられるが、連結部材との境界付近ではとくに網体やフィルタ材がめくれやすく鞘管等にも引っかかりやすくなる。 A connecting member is attached to both ends of the drain pipe. The mesh body and the filter material are provided between the connecting members at both ends, but the mesh body and the filter material are particularly easily turned around and easily caught by the sheath tube or the like near the boundary with the connecting member.
 接着剤によって外周全面を接着する固定方法では、接着剤が3次元網状構造体、網体、フィルタ材の開口部分にもはみ出してしまい、目詰まりが生じて透水性が低下してしまう。
 また、上記のような固定方法を現場で行う場合には、作業負担も増加し、その精度も低下する。
In the fixing method in which the entire outer periphery is bonded with an adhesive, the adhesive protrudes into the openings of the three-dimensional network structure, the net, and the filter material, resulting in clogging and reduced water permeability.
Further, when the fixing method as described above is performed on site, the work load increases and the accuracy also decreases.
 そこで、本発明の目的は、上記従来技術の問題点を鑑み、作業性が高く、透水性を確保するとともに被覆した網体やフィルタ材がめくれないドレイン管およびその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a drain pipe that has high workability, ensures water permeability, and does not turn over a coated mesh body or filter material in view of the above-described problems of the prior art, and a method for manufacturing the same. .
 本発明は、3次元網状構造体と、3次元網状構造体と、前記3次元網状構造体の外周面を被覆するフィルタ材と、前記フィルタ材の外周面を被覆する網体と、を備えた透水性のドレイン管であって、前記フィルタ材の外周面と前記網体の内周面とが熱溶融によって接着されている第1接着部と、前記3次元網状構造体の外周面と前記フィルタ材の内周面とが熱溶融によって接着されている第2接着部と、を備え、前記ドレイン管の両端には、前記3次元網状構造体の外周面に連結部材が取り付けられる環状溝が設けられており、前記フィルタ材は前記環状溝の間で前記3次元網状構造体の外周面を被覆し、前記網体は前記環状溝の間で前記フィルタ材の外周面を被覆していることを特徴とする。 The present invention includes a three-dimensional network structure, a three-dimensional network structure, a filter material that covers the outer peripheral surface of the three-dimensional network structure, and a network body that covers the outer peripheral surface of the filter material. A water-permeable drain pipe, wherein a first adhesive portion in which an outer peripheral surface of the filter material and an inner peripheral surface of the mesh body are bonded by thermal melting, an outer peripheral surface of the three-dimensional network structure, and the filter A second adhesive portion bonded to the inner peripheral surface of the material by heat melting, and provided at both ends of the drain tube are annular grooves to which a connecting member is attached to the outer peripheral surface of the three-dimensional network structure The filter material covers the outer peripheral surface of the three-dimensional network structure between the annular grooves, and the network member covers the outer peripheral surface of the filter material between the annular grooves. Features.
 本発明は、あらかじめ埋設された鞘管に挿入され、前記鞘管が引き抜かれることで設置され、3次元網状構造体と、前記3次元網状構造体の外周面を被覆するフィルタ材と、前記フィルタ材の外周面を被覆する網体と、を備えた透水性のドレイン管であって、前記フィルタ材の外周面と前記網体の内周面とが熱溶融によって接着されている第1接着部と、前記3次元網状構造体の外周面と前記フィルタ材の内周面とが熱溶融によって接着されている第2接着部と、を備えることを特徴とする。 The present invention includes a three-dimensional network structure that is inserted into a pre-embedded sheath tube and is pulled out to cover the outer peripheral surface of the three-dimensional network structure, and the filter A water-permeable drain pipe having a net covering the outer peripheral surface of the material, wherein the outer peripheral surface of the filter material and the inner peripheral surface of the net are bonded by heat melting And a second adhesive portion in which the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material are bonded together by heat melting.
 本発明は、3次元網状構造体と、前記3次元網状構造体の外周面を被覆し開口寸法が前記3次元網状構造体より小さいフィルタ材と、前記フィルタ材の外周面を被覆し開口寸法が前記フィルタ材より大きい網体と、を備えた透水性のドレイン管の製造方法であって、前記フィルタ材の外周面と前記網体の内周面との接着工程が熱溶融によって行われており、前記3次元網状構造体の外周面と前記フィルタ材の内周面との接着工程が熱溶融によって行われており、前記フィルタ材の外周面と前記網体の内周面との接着工程は、前記網体の内周面を熱溶融することによって行われ、前記3次元網状構造体の外周面と前記フィルタ材の内周面との接着工程は、前記3次元網状構造体の外周面を熱溶融することによって行われることを特徴とする。 The present invention provides a three-dimensional network structure, a filter material covering the outer peripheral surface of the three-dimensional network structure and having an opening size smaller than the three-dimensional network structure, and covering an outer peripheral surface of the filter material and having an opening size. A method of manufacturing a water-permeable drain pipe having a mesh body larger than the filter material, wherein an adhesion step between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by heat melting. The bonding step between the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material is performed by heat melting, and the bonding step between the outer peripheral surface of the filter material and the inner peripheral surface of the net member is The inner peripheral surface of the mesh body is thermally melted, and the bonding step between the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material is performed on the outer peripheral surface of the three-dimensional network structure. It is performed by heat melting.
 本発明は、3次元網状構造体と、前記3次元網状構造体の外周面を被覆するフィルタ材と、前記フィルタ材の外周面を被覆する網体と、を備えた透水性のドレイン管の製造方法であって、前記フィルタ材の外周面と前記網体の内周面との接着工程が熱溶融によって行われており、前記3次元網状構造体の外周面と前記フィルタ材の内周面との接着工程が熱溶融によって行われており、前記フィルタ材の外周面と前記網体の内周面との接着工程は、前記網体の内周面を熱溶融するとともに前記網体の線材の断面を扁平させることによって行われることを特徴とする。 The present invention provides a water-permeable drain pipe comprising a three-dimensional network structure, a filter material that covers the outer peripheral surface of the three-dimensional network structure, and a net that covers the outer peripheral surface of the filter material. In the method, the bonding step between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by heat melting, and the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material The bonding step is performed by heat melting, and the bonding step between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by thermally melting the inner peripheral surface of the mesh body and It is performed by flattening the cross section.
 本発明により、ドレイン管の鞘管への挿入や鞘管の引き抜きの際に、引っかかり抵抗となり、作業性が低下することを防止することができる。網体やフィルタ材が外れることを防止することができる。熱溶着によるため、接着剤がはみ出すようなことがなく開口面積を確保することができるので被覆による透水性が低下しない。連結部材との境界付近においても、網体やフィルタ材が外れることを防止することができる。 According to the present invention, when the drain tube is inserted into the sheath tube or the sheath tube is pulled out, it becomes a catching resistance and can prevent the workability from being lowered. It is possible to prevent the net body and the filter material from coming off. Since it is based on heat welding, the adhesive does not protrude and an opening area can be secured, so that the water permeability due to coating does not decrease. Even in the vicinity of the boundary with the connecting member, it is possible to prevent the mesh body and the filter material from coming off.
図1Aは、ドレイン管の斜視図である。FIG. 1A is a perspective view of a drain tube. 図1Bは、ドレイン管の正面図である。FIG. 1B is a front view of the drain tube. 図2Aは、ドレイン管を連結した斜視図である。FIG. 2A is a perspective view of connecting drain tubes. 図2Bは、ドレイン管を連結した断面図である。FIG. 2B is a cross-sectional view of connecting drain tubes. 図2Cは、連結部材の斜視図である。FIG. 2C is a perspective view of the connecting member. 図3Aは、被覆装置の全体図である。FIG. 3A is an overall view of the coating apparatus. 図3Bは、被覆装置で扁平させた網材の線材の断面図である。FIG. 3B is a cross-sectional view of a wire rod of a net material flattened by a coating apparatus. 図4は、加工装置の正面図である。FIG. 4 is a front view of the processing apparatus. 図5Aは、加工装置の側面図である。FIG. 5A is a side view of the processing apparatus. 図5Bは、加熱成形ローラの斜視図である。FIG. 5B is a perspective view of the thermoforming roller. 図6Aは、ドレイン管設置の施工説明図である。FIG. 6A is an explanatory diagram of construction of drain pipe installation. 図6Bは、連結部材の断面図である。FIG. 6B is a cross-sectional view of the connecting member. 図6Cは、ドレイン管に緊結パイプを取り付けた断面図である。FIG. 6C is a sectional view in which a tight pipe is attached to the drain pipe. 図7Aは、ドレイン管設置の施工説明図である。FIG. 7A is an explanatory diagram of construction of drain pipe installation. 図7Bは、プッシュロッドが挿入された緊結パイプの断面図である。FIG. 7B is a cross-sectional view of a tight pipe with a push rod inserted therein. 図7Cは、ドレイン管から鞘管を引き抜いている状態を示した図である。FIG. 7C is a diagram showing a state in which the sheath tube is pulled out from the drain tube. 図8Aは、ドレイン管設置の施工説明図である。FIG. 8A is a diagram for explaining the installation of the drain pipe. 図8Bは、プッシュロッドの先端と緊結パイプの先端とを連繋した状態を示した図である。FIG. 8B is a view showing a state in which the tip of the push rod and the tip of the tight pipe are connected. 図8Cは、プッシュロッドが挿入された緊結パイプの断面図である。FIG. 8C is a cross-sectional view of a tight pipe with a push rod inserted therein.
 以下、本発明の実施例を図面に基づいて詳細に説明する。具体的な数値はすべてこの実施例においてのものであり、実際には各種の条件に拠る。
 本発明に係るドレイン管1を図1に示す。
 ドレイン管1は、ポリプロピレンの熱可塑性樹脂の3次元網状構造体2を外径400mm、内径220mmの筒形の壁に成形してあり、長さ1mである。このドレイン管1が複数接続されて地下排水工が構成される。
 この3次元網状構造体2は、前記樹脂による直径約2mmのストランド(紐状体)を絡ませて、ストランドどうしの接点を接合したものである。この構造を有する管は耐圧強度が高く、土被り厚さ7m程度の圧力に耐えることができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. All the specific numerical values are those in this embodiment, and actually depend on various conditions.
A drain tube 1 according to the present invention is shown in FIG.
The drain pipe 1 is formed by molding a three-dimensional network structure 2 made of polypropylene thermoplastic resin into a cylindrical wall having an outer diameter of 400 mm and an inner diameter of 220 mm, and has a length of 1 m. A plurality of drain pipes 1 are connected to form an underground drainage work.
The three-dimensional network structure 2 is a structure in which strands (strands) having a diameter of about 2 mm made of the resin are entangled and the contacts of the strands are joined. A tube having this structure has a high pressure resistance and can withstand a pressure of about 7 m in thickness.
 ドレイン管1には、両端部の外周囲にそれぞれ2条の環状溝5が形成され、また、両端部の環状溝5間で後述する連結部材(連結外筒8)が設置される以外の部分の外周面が透水性のフィルタ材3で被覆され、さらに、その外周面が硬質樹脂製の網体4で被覆されている。
 フィルタ材3により、地中に埋設したドレイン管1内に砂等が侵入してすぐに目詰まりして透水性が阻害されてしまうのが防止される。網体4により、ドレイン管1を後述する鞘管200内へ挿入するときや鞘管200を引き抜くときに、フィルタ材3の先端部等が鞘管200内面との摩擦によりめくり上がって押し縮められるのが防止される。
 フィルタ材3は、ポリプロピレンの不織布であって、その厚さは被覆した状態で1.0mm程度である。網体4は、ポリプロピレンの熱可塑性樹脂であって、その厚さは被覆した状態で1mm程度である。また、網体4の開口は5mm程度で、フィルタ材3より開口率が大きい。フィルタ材3は、3次元網状構造体2および網体4よりも開口寸法が小さい(目が細かい)。
The drain tube 1 is formed with two annular grooves 5 on the outer periphery of both ends, and a portion other than a connecting member (a connecting outer cylinder 8) described later between the annular grooves 5 at both ends. The outer peripheral surface is covered with a water-permeable filter material 3, and the outer peripheral surface is further covered with a net body 4 made of hard resin.
The filter material 3 prevents sand and the like from entering the drain pipe 1 buried in the ground and clogging immediately and impairing water permeability. When the drain tube 1 is inserted into a sheath tube 200 (to be described later) or the sheath tube 200 is pulled out by the mesh body 4, the tip portion of the filter material 3 is turned up by the friction with the inner surface of the sheath tube 200 and is compressed. Is prevented.
The filter material 3 is a polypropylene non-woven fabric, and its thickness is about 1.0 mm in a coated state. The net body 4 is a polypropylene thermoplastic resin, and its thickness is about 1 mm in a coated state. Further, the opening of the mesh body 4 is about 5 mm, and the opening ratio is larger than that of the filter material 3. The filter material 3 has a smaller opening size (fine eyes) than the three-dimensional network structure 2 and the network body 4.
 フィルタ材3は、3次元網状構造体2の外周面を被覆して固定されており、網体4は、その外周面を被覆して固定されている。この固定は、それぞれの接面が熱溶着によって行われている。具体的には、フィルタ材3の外周面と網体4の内周面とが接着する部分(第1接着部)は、網体4の内周面側を熱で溶融させることでフィルタ材3と接着されている。フィルタ材3の内周面と3次元網状構造体2の外周面とが接着する部分(第2接着部)については、3次元網状構造体2の外周面側を熱で溶融させることでフィルタ材3と接着されている。このように、接着の際に溶融させる部分を開口寸法が小さい(目が細かい)フィルタ材3を避けているので、フィルタ材3が目詰まりせずにドレイン管1の透水性が確保できる。 The filter material 3 covers and fixes the outer peripheral surface of the three-dimensional network structure 2, and the mesh body 4 covers and fixes the outer peripheral surface. This fixing is performed by heat welding of each contact surface. Specifically, the portion (first adhesive portion) where the outer peripheral surface of the filter material 3 and the inner peripheral surface of the net body 4 are bonded is obtained by melting the inner peripheral surface side of the net body 4 with heat. And is glued. About the part (2nd adhesion part) which the inner peripheral surface of the filter material 3 and the outer peripheral surface of the three-dimensional network structure 2 adhere | attach, a filter material is made by melting the outer peripheral surface side of the three-dimensional network structure 2 with heat. 3 is bonded. Thus, since the filter material 3 having a small opening size (fine eyes) is avoided in the portion to be melted at the time of bonding, the water permeability of the drain pipe 1 can be ensured without the filter material 3 being clogged.
 接着剤を用いるのではなく、熱溶着による接着部であるので、接着剤に含まれる有害物質もなく、また、開口部に接着剤がはみ出してしまうこともなく、この点でも透水性が確保できる。
 フィルタ材3および網体4の内周面で熱溶着による接着部があるので、ビニルテープやバンド等による固定方法のように、ドレイン管1の外周に凸部が生じず、作業の支障が生じない。
Since it is an adhesive part by heat welding rather than using an adhesive, there is no harmful substance contained in the adhesive, and the adhesive does not protrude from the opening, and water permeability can be secured in this respect as well. .
Since there is an adhesive portion by heat welding on the inner peripheral surfaces of the filter material 3 and the net body 4, no convex portion is generated on the outer periphery of the drain tube 1 as in the fixing method using a vinyl tape, a band or the like. Absent.
 ドレイン管1のフィルタ材3および網体4で被覆されていない端部どうしは、図2A、図2Bに示すように、連結部材を用いて結合される。連結部材には、連結外筒8と連結内筒7とがある。
 連結外筒8は、変形し難い硬質合成樹脂を素材とし、内周面に断面四角形の連結部材環状突条8dを、この実施例において4条形成しており、図2Cに示すように、横断面を2分割した一対の半割8a、8bより成る。
 突き合わせたドレイン管1どうしの端部間に連結外筒8の半割8a、8bが被せられ、ドレイン管1の3次元網状構造体2に形成された環状溝5に連結部材環状突条8dを合わせ、さらに連結部材環状突条8dの外面側の連結部材環状溝8cにバンド9が巻き付けられて連結外筒8が取り付けられる。
The ends of the drain pipe 1 that are not covered with the filter material 3 and the mesh body 4 are joined together using a connecting member, as shown in FIGS. 2A and 2B. The connecting member includes a connecting outer cylinder 8 and a connecting inner cylinder 7.
The connecting outer cylinder 8 is made of hard synthetic resin which is difficult to deform, and four connecting member annular protrusions 8d having a square cross section are formed on the inner peripheral surface in this embodiment. As shown in FIG. It consists of a pair of halves 8a and 8b which are divided into two.
The halves 8a and 8b of the connecting outer cylinder 8 are put between the end portions of the drain pipes 1 that are butted together, and the connecting member annular protrusion 8d is inserted into the annular groove 5 formed in the three-dimensional network structure 2 of the drain pipe 1. In addition, the band 9 is wound around the connecting member annular groove 8c on the outer surface side of the connecting member annular protrusion 8d, and the connecting outer cylinder 8 is attached.
 連結外筒8は、径方向外側から簡単にドレイン管1の突き合わせ部分の外周面に被せることができ、作業が簡単である。また、突き合わせ部分の外周面に連結外筒8を被せてドレイン管1を連結してあるので、地震等の際にせん断力が加わってもドレイン管1の突き合わせ部分がずれ難い。さらに、断面四角形の環状溝5に断面四角形の連結部材環状突条8dを嵌合させて取り付けてあるため、引っ張り強度も高い。そして、半割8a,8bとした連結外筒8は、取付け易く、また、成形しやすい。
 連結外筒8は、半割とせず、側面を1か所で軸方向に切断した形状とし、切断した端部を両側へ開くようにしてドレイン管1の端部を挟み付けるようにして取付けることもできる。
The connecting outer cylinder 8 can be easily put on the outer peripheral surface of the butted portion of the drain pipe 1 from the outside in the radial direction, and the operation is simple. Further, since the drain tube 1 is connected by covering the outer peripheral surface of the butted portion with the connecting outer cylinder 8, the butted portion of the drain tube 1 is not easily displaced even if a shearing force is applied in the event of an earthquake or the like. Furthermore, since the connecting member annular protrusion 8d having a quadrangular cross section is fitted and attached to the annular groove 5 having a quadrangular cross section, the tensile strength is high. And the connection outer cylinder 8 made into the half halves 8a and 8b is easy to attach and mold.
The connecting outer cylinder 8 is not split in half, but is attached so that the side surface is cut in one axial direction and the end of the drain tube 1 is sandwiched with the cut ends opened to both sides. You can also.
 連結内筒7は、図2Bに示すように、連結部材としての連結外筒8に併用しても良いもので、補助的な連結部材である。連結内筒7は、薄く強度が高い硬質合成樹脂製であり、図1Bに示すように、その両端部に複数の係止爪7aが形成されている。係止爪7aは、先端が軸方向中央部に向くよう外側へ傾斜させて切起こしてあり、連結内筒7の端部をドレイン管1の3次元網状構造体2の内周面へ挿入すると、連結内筒7をドレイン管1から引き抜こうとしても、前記係止爪7aがドレイン管1の3次元網状構造体2の内周面に食い込んで抜くことはできず、抜け止めとなる。この連結内筒7の内径は、緊結パイプ6の外径より大きい。連結内筒7の併用で、接合強度がさらに高まる。 As shown in FIG. 2B, the connecting inner cylinder 7 may be used together with the connecting outer cylinder 8 as a connecting member, and is an auxiliary connecting member. The connecting inner cylinder 7 is made of a hard synthetic resin that is thin and high in strength, and as shown in FIG. 1B, a plurality of locking claws 7a are formed at both ends thereof. The locking claw 7 a is inclined and raised outward so that the tip is directed toward the axial center, and when the end of the connecting inner cylinder 7 is inserted into the inner peripheral surface of the three-dimensional network structure 2 of the drain tube 1. Even if the connecting inner cylinder 7 is pulled out from the drain tube 1, the locking claw 7 a cannot bite into the inner peripheral surface of the three-dimensional network structure 2 of the drain tube 1 and is prevented from being pulled out. The inner diameter of the connecting inner cylinder 7 is larger than the outer diameter of the tight pipe 6. The joint strength is further increased by the combined use of the connecting inner cylinder 7.
 緊結パイプ6は、図1に示すように、ドレイン管1の3次元網状構造体2の内周面に挿入されて、鞘管200に挿入されるものであり、後に引き抜かれるものである。その外径は、3次元網状構造体2の内径に対応するものであり、連結内筒7を採用する場合には隙間を確保するように設定する。緊結パイプ6とドレイン管1とは、鞘管200に挿入でき、緊結パイプ6を引き抜くのに支障にならないように適宜固定することが望ましい。 As shown in FIG. 1, the tightening pipe 6 is inserted into the inner peripheral surface of the three-dimensional network structure 2 of the drain pipe 1 and inserted into the sheath pipe 200, and is pulled out later. The outer diameter corresponds to the inner diameter of the three-dimensional network structure 2 and is set so as to ensure a gap when the connecting inner cylinder 7 is employed. It is desirable that the tight pipe 6 and the drain pipe 1 can be inserted into the sheath pipe 200 and are appropriately fixed so as not to hinder the withdrawal of the tight pipe 6.
 3次元網状構造体2にフィルタ材3および網体4を熱溶着により被覆して、ドレイン管1を製造する方法を図3Aにより説明する。
 全体のフローとしては、フィルタ材3と網体4とを熱溶着し、必要な長さに切断し、網体4が接着されたフィルタ材3と3次元網状構造体2とを熱溶着する。この工程に用いられる製造装置は、第1加熱ローラ10a、第2加熱ローラ10b、第1圧着ローラ11a、11b、第2圧着ローラ11c、テンションローラ12a~12c、ガイドローラ13a~13g、カバー14a、14bを備える。
A method of manufacturing the drain pipe 1 by coating the three-dimensional network structure 2 with the filter material 3 and the network body 4 by heat welding will be described with reference to FIG. 3A.
As a whole flow, the filter material 3 and the mesh body 4 are thermally welded, cut to a required length, and the filter material 3 to which the mesh body 4 is bonded and the three-dimensional network structure 2 are thermally welded. The manufacturing apparatus used in this process includes a first heating roller 10a, a second heating roller 10b, first pressure rollers 11a and 11b, a second pressure roller 11c, tension rollers 12a to 12c, guide rollers 13a to 13g, a cover 14a, 14b.
 ロールにされたフィルタ材3および網材4がセットされる。ロールから引き出されたフィルタ材3は、テンションローラ12cによりテンションが調整され第1圧着ローラ11a、11bに送られる。
 ロールから引き出された網材4は、テンションローラ12a、12bによりテンションが調整され、第1加熱ローラ10aで加熱され溶融される。図3Aにおける下側、ドレイン管1となる場合の内側面から溶融される。第1加熱ローラ10aは、ポリプロピレンの場合(この網材4の融点は180~200℃程度と想定)、200~230℃程度に加熱される。溶融された網材4は、第1圧着ローラ11a、11bに送られる。
The rolled filter material 3 and net material 4 are set. The filter material 3 pulled out from the roll is adjusted in tension by the tension roller 12c and sent to the first pressure rollers 11a and 11b.
The tension | tensile_strength is adjusted with the tension | tensile_strength rollers 12a and 12b, and the net | network material 4 pulled out from the roll is heated with the 1st heating roller 10a, and is fuse | melted. The lower side in FIG. 3A is melted from the inner side surface of the drain tube 1. The first heating roller 10a is heated to about 200 to 230 ° C. in the case of polypropylene (the melting point of the mesh material 4 is assumed to be about 180 to 200 ° C.). The melted net 4 is sent to the first pressure rollers 11a and 11b.
 第1圧着ローラ11a、11bにより、フィルタ材3と網材4とが圧着される。第1圧着ローラ11a、11bは、その隙間を調整することができる。単に圧着するだけでなく、溶融した網材4の厚さをもとの厚さより薄くしながら、フィルタ材3に接着させることもできる。このようにすると、図3Bに示すように、網材4を構成する線材4aの断面を扁平させることができるので、鞘管200との摩擦抵抗もさらに軽減させることができる。図3Bの上図は線材4aの断面が円形である場合であり、下図は線材4aの断面が矩形である場合を示す。図中4bは、網材4の開口である。扁平になると、開口4bの面積が減少するので、圧着により網材4を薄くする際には、それを考慮して設定する。
 接着させる箇所は、全体でも構わないが、一部であっても良い。全体にした方が弛みが少なくなる。一部を接着させる場合には、第1加熱ローラ10aの幅や加熱領域を調整して行う。また、連結外筒8(連結部材)との境界部となる端部まで熱溶着させると、この部分による引っかかりやめくれを少なくすることができるが、必ずこの部分まで熱溶着させる必要があるわけではない。
The filter material 3 and the mesh material 4 are pressure-bonded by the first pressure rollers 11a and 11b. The first pressure roller 11a, 11b can adjust the gap. In addition to simply crimping, the melted mesh material 4 can be adhered to the filter material 3 while making the thickness of the molten mesh material 4 thinner than the original thickness. If it does in this way, as shown to FIG. 3B, since the cross section of the wire 4a which comprises the net | network material 4 can be flattened, the frictional resistance with the sheath tube 200 can further be reduced. 3B shows the case where the cross section of the wire 4a is circular, and the lower figure shows the case where the cross section of the wire 4a is rectangular. In the figure, 4 b is an opening of the net 4. When flattened, the area of the opening 4b is reduced. Therefore, when the net member 4 is thinned by pressure bonding, it is set in consideration thereof.
The part to be bonded may be all or may be a part. The slack will be less if you use it as a whole. In the case of bonding a part, the width and heating area of the first heating roller 10a are adjusted. Moreover, if it is heat-welded to the end part which becomes a boundary part with the connection outer cylinder 8 (connection member), it is possible to reduce the catch and turn by this part, but it is not necessarily necessary to heat-weld to this part. Absent.
 溶着されて一体化したフィルタ材3と網体4とは、ガイドローラ13a、13bで送り出されて切断される。切断は、3次元網状構造体2の外周の長さに合わせて切断される。
 切断されたフィルタ材3と網体4とは、ガイドローラ13c、13dで第2圧着ローラ11cに送られる。
The welded and integrated filter material 3 and net 4 are sent out by guide rollers 13a and 13b and cut. The cutting is performed according to the length of the outer periphery of the three-dimensional network structure 2.
The cut filter material 3 and the net 4 are sent to the second pressure roller 11c by the guide rollers 13c and 13d.
 3次元網状構造体2が回転可能に支持されており、その回転に合わせて、第2加熱ローラ10bが回転できるようになっている。第2加熱ローラ10bで、3次元網状構造体2の外周面が加熱されて溶融される。溶融された外周面に一体化されたフィルタ材3と網体4とが、第2圧着ローラ11cによって圧着される。第2加熱ローラ10bは、ポリプロピレンの場合(この3次元網状構造体2の融点は180~200℃程度と想定)、200~230℃程度に加熱される。
 圧着されたフィルタ材3と網体4は、ガイドローラ13e、13f、13gにより3次元網状構造体2の外周面に沿うようにガイドされる。3次元網状構造体2の外周面全面にフィルタ材3と網体4が圧着されれば、回転を止めて、フィルタ材3と網体4で被覆された3次元網状構造体2であるドレイン管1を取り出す。
 接着させる箇所は、全体でも構わないが、一部であっても良い。全体にした方が弛みを少なくすることができる。一部を接着させる場合には、第2加熱ローラ10bの幅や加熱領域を調整して行う。また、連結外筒8(連結部材)が覆う境界部まで熱溶着させると、この部分による引っかかりやめくれを少なくすることができるが、必ずこの部分まで熱溶着させる必要があるわけではない。圧着に際しては、3次元網状構造体2の開口が必要以上に減少してしまわないように配慮する。
The three-dimensional network structure 2 is rotatably supported, and the second heating roller 10b can be rotated in accordance with the rotation. The outer peripheral surface of the three-dimensional network structure 2 is heated and melted by the second heating roller 10b. The filter material 3 and the net 4 integrated on the melted outer peripheral surface are pressure-bonded by the second pressure roller 11c. The second heating roller 10b is heated to about 200 to 230 ° C. in the case of polypropylene (the melting point of the three-dimensional network structure 2 is assumed to be about 180 to 200 ° C.).
The filter material 3 and the mesh body 4 that have been pressure-bonded are guided along the outer peripheral surface of the three-dimensional network structure 2 by guide rollers 13e, 13f, and 13g. If the filter material 3 and the mesh body 4 are pressure-bonded to the entire outer peripheral surface of the three-dimensional network structure 2, the rotation is stopped and the drain pipe which is the three-dimensional network structure 2 covered with the filter material 3 and the mesh body 4. Take 1 out.
The part to be bonded may be all or may be a part. The slack can be reduced by making the whole. In the case of bonding a part, the width and the heating area of the second heating roller 10b are adjusted. Further, when the boundary portion covered by the connecting outer cylinder 8 (connecting member) is thermally welded, it is possible to reduce catching and turning by this portion, but it is not always necessary to thermally weld to this portion. At the time of crimping, care is taken so that the openings of the three-dimensional network structure 2 do not decrease more than necessary.
 この実施形態では、3次元網状構造体2、フィルタ材3および網体4の素材をポリプロピレンで統一した。このようにすると、熱溶着を行った際に、素材が同じであるので、接着強度も高くすることができる。しかしながら、そこまで強度を求めないのであれば、素材を異ならせても良い。 In this embodiment, the materials of the three-dimensional network structure 2, the filter material 3, and the network 4 are unified with polypropylene. If it does in this way, since the raw material is the same when performing heat welding, adhesive strength can also be made high. However, the material may be different if the strength is not required.
 ドレイン管1の3次元網状構造体2に形成された環状溝5は、ドレイン管1の壁を構成する3次元網状構造体2の外周面を熱溶融させて形成される。
 環状溝5を形成するには、図4および図5に示す加工装置100を用いる。
 加工装置100は、対向して立設された前部支持台101及び後部支持台102と、前部支持台101と後部支持台102の間に設置された管受け台103と、前部支持台101と管受け台103の間において、前部支持台101近傍の上方に上下揺動可能に設けられた加熱ローラ104を備える。
The annular groove 5 formed in the three-dimensional network structure 2 of the drain tube 1 is formed by thermally melting the outer peripheral surface of the three-dimensional network structure 2 constituting the wall of the drain tube 1.
In order to form the annular groove 5, a processing apparatus 100 shown in FIGS. 4 and 5 is used.
The processing apparatus 100 includes a front support table 101 and a rear support table 102 that are erected in opposition to each other, a tube receiving table 103 that is installed between the front support table 101 and the rear support table 102, and a front support table. A heating roller 104 is provided between 101 and the tube receiving base 103 so as to be swingable up and down above the vicinity of the front support base 101.
 後部支持台102は前部支持台101に対して遠近に移動が可能であり、前部支持台101及び後部支持台102の対向面にはそれぞれ回転盤105を設けてある。前後の回転盤105の対向する面には複数の支持爪106を突出し、前部支持台101の回転盤105はモータ107で回転駆動されるようになっている。
 図5Aに示すように、管受け台103の上端には断面半円形の受け部108が設けられ、受け部108の上面には複数の支持ローラ109が周方向に等間隔で設置されている。
The rear support table 102 can be moved in the distance from the front support table 101, and a rotating disk 105 is provided on each of the opposing surfaces of the front support table 101 and the rear support table 102. A plurality of support claws 106 protrude from opposing surfaces of the front and rear rotating plates 105, and the rotating plate 105 of the front support base 101 is driven to rotate by a motor 107.
As shown in FIG. 5A, a receiving part 108 having a semicircular cross section is provided at the upper end of the tube receiving base 103, and a plurality of support rollers 109 are installed at equal intervals in the circumferential direction on the upper surface of the receiving part 108.
 加熱ローラ104は、中空の円筒形であり、外周囲には断面四角形のフランジ113が2条形成されている(図5B)。
 また、加熱ローラ104は、支柱110から上下揺動可能に張り出した揺動アーム111の先端に取り付けられ、揺動アーム111に連結したチェーン112を巻き上げることにより上昇し、チェーン112を巻き戻すと自重で下降するようになっている。加熱ローラ104の下方には、加熱ローラ104の下限位置を規制するストッパ114を設けてある(図5A)。ストッパ114は上下に位置を調節可能とされている。
 加熱ローラ104の内部にはヒータ115を搭載してあり、加熱ローラ104全体を3次元網状構造体2の素材である熱可塑性樹脂の融点以上の温度に加熱できるようになっている(図5B)。
The heating roller 104 has a hollow cylindrical shape, and two flanges 113 having a square cross section are formed on the outer periphery (FIG. 5B).
The heating roller 104 is attached to the tip of a swing arm 111 projecting from the support column 110 so as to swing up and down. The heating roller 104 rises by winding up the chain 112 connected to the swing arm 111, and when the chain 112 is rewound, It comes to descend at. A stopper 114 that restricts the lower limit position of the heating roller 104 is provided below the heating roller 104 (FIG. 5A). The position of the stopper 114 can be adjusted up and down.
A heater 115 is mounted inside the heating roller 104 so that the entire heating roller 104 can be heated to a temperature equal to or higher than the melting point of the thermoplastic resin that is the material of the three-dimensional network structure 2 (FIG. 5B). .
 加工装置100で環状溝5を形成するには、まず、後部支持台102を後退させて前部支持台101から遠ざけておき、図4および図5Aに示すように、管受け台103の支持ローラ109の上に3次元網状構造体2(フィルタ材3と網体4で被覆されていない状態のドレイン管1)を載せる。
 次いで、後部支持台102を前進させて前部支持台101と後部支持台102で3次元網状構造体2を挟み、前部支持台101及び後部支持台102の支持爪106を3次元網状構造体2の両端面に食い込ませる。
 この状態で前部支持台101の回転盤105を回転させると、3次元網状構造体2及び後部支持台102の回転盤105が回転する。
In order to form the annular groove 5 by the processing apparatus 100, first, the rear support base 102 is moved backward and away from the front support base 101, and as shown in FIG. 4 and FIG. A three-dimensional network structure 2 (the drain pipe 1 not covered with the filter material 3 and the network body 4) is placed on 109.
Next, the rear support base 102 is advanced to sandwich the three-dimensional network structure 2 between the front support base 101 and the rear support base 102, and the support claws 106 of the front support base 101 and the rear support base 102 are connected to the three-dimensional network structure. Bit into both end faces of 2.
When the turntable 105 of the front support base 101 is rotated in this state, the turntable 105 of the three-dimensional network structure 2 and the rear support base 102 is rotated.
 次に、加熱ローラ104を下降させて、加熱ローラ104のフランジ113を3次元網状構造体2の外周面に押し当てる。3次元網状構造体2の外周面において加熱ローラ104が当った部分は、加熱ローラ104の熱(例えば、ポリプロピレンの場合200~230℃程度)で溶融されて陥没し、加熱ローラ104は次第に下降する。
 この時、3次元網状構造体2は回転しているので、3次元網状構造体2の外周には周方向に沿って溝が形成される。加熱ローラ104の接触で溶融した樹脂ストランドが加熱ローラ104に付着するような場合は、薄い耐熱性フィルムやアルミホイル等を巻き付けてから押圧する。
 加熱ローラ104は、フランジ113よりも内側の部分が3次元網状構造体2に接触しない高さでストッパ114により下降が制限され、3次元網状構造体2の一端部にフランジ113の断面と同形状の環状溝5が2条形成される。ストッパ114の高さを調節することで環状溝5の深さを調節できる。また、3次元網状構造体2の管径が変わった場合にも適応できる。
 なお、環状溝5が形成される速度は、紐状ストランドの太さや密度、気温による。
Next, the heating roller 104 is lowered and the flange 113 of the heating roller 104 is pressed against the outer peripheral surface of the three-dimensional network structure 2. The portion of the outer peripheral surface of the three-dimensional network structure 2 where the heating roller 104 hits is melted by the heat of the heating roller 104 (for example, about 200 to 230 ° C. in the case of polypropylene), and the heating roller 104 gradually descends. .
At this time, since the three-dimensional network structure 2 is rotating, grooves are formed on the outer periphery of the three-dimensional network structure 2 along the circumferential direction. When the resin strand melted by the contact with the heating roller 104 adheres to the heating roller 104, a thin heat resistant film or aluminum foil is wound and then pressed.
The lower side of the heating roller 104 is restricted by the stopper 114 at a height at which the portion inside the flange 113 does not contact the three-dimensional network structure 2, and the same shape as the cross section of the flange 113 is formed at one end of the three-dimensional network structure 2. Two annular grooves 5 are formed. The depth of the annular groove 5 can be adjusted by adjusting the height of the stopper 114. Further, the present invention can be applied when the tube diameter of the three-dimensional network structure 2 is changed.
The speed at which the annular groove 5 is formed depends on the thickness and density of the string-like strands and the temperature.
 3次元網状構造体2の一端部に環状溝5を形成した後、加熱ローラ104を上昇させると共に、後部支持台102を後退させて3次元網状構造体2を解放し、さらに、3次元網状構造体2を前後逆にして加工装置100にセットし、同様にして3次元網状構造体2の他端部にも2条の環状溝5を形成する。加熱ローラ104を3次元網状構造体2の両端部に相当する箇所に配置しておけば、3次元網状構造体2を前後逆に置き直す必要はない。
 このように熱溶融によって環状溝5を形成するので、切削屑が出ず、また、環状溝5を形成した部分の強度が低下しない。むしろ、環状溝5の内面は樹脂ストランドが溶けて、溝面に露出するストランド端面同士をつなぎ合わされて強度が向上する。さらに、溝面が平坦となって連結外筒8の連結部材環状突条8dをしっかり嵌合することができる。
このため、ドレイン管1間の連結箇所は強固に連結される。
 本実施形態では、フィルタ材3と網体4とで3次元網状構造体2を被覆する前に、環状溝5を形成した。しかしながら、これに限定されず、環状溝5を形成した後に、フィルタ材3と網体4とで3次元網状構造体2を被覆するようにしても良い。
After forming the annular groove 5 at one end of the three-dimensional network structure 2, the heating roller 104 is raised, the rear support base 102 is retracted to release the three-dimensional network structure 2, and the three-dimensional network structure The body 2 is set upside down in the processing apparatus 100, and two annular grooves 5 are formed in the other end of the three-dimensional network structure 2 in the same manner. If the heating roller 104 is disposed at a position corresponding to both ends of the three-dimensional network structure 2, it is not necessary to replace the three-dimensional network structure 2 in the front-rear direction.
Thus, since the annular groove 5 is formed by heat melting, cutting waste does not come out and the strength of the portion where the annular groove 5 is formed does not decrease. Rather, resin strands melt on the inner surface of the annular groove 5 and the end surfaces of the strands exposed on the groove surface are joined together to improve the strength. Further, the groove surface is flat, and the connecting member annular protrusion 8d of the connecting outer cylinder 8 can be firmly fitted.
For this reason, the connection location between the drain pipes 1 is firmly connected.
In the present embodiment, the annular groove 5 is formed before the filter material 3 and the mesh body 4 cover the three-dimensional network structure 2. However, the present invention is not limited to this, and the three-dimensional network structure 2 may be covered with the filter material 3 and the net body 4 after the annular groove 5 is formed.
 次に、ドレイン管1の設置方法を図6~図8とともに説明する。ドレイン管1は、予め埋設された鞘管200に挿入された後、鞘管200が引き抜かれることで設置される。
 図6に示すように、発進立坑201から到達立坑202との間に、推進機203によって埋設された鞘管200にドレイン管1を発進立坑201側から挿入していく。図中201a、202aは、発進立坑201の発進坑口、到達立坑202の到達坑口にそれぞれ取り付けられた坑口機材である。
Next, a method for installing the drain pipe 1 will be described with reference to FIGS. The drain pipe 1 is installed by being pulled out after being inserted into the sheath pipe 200 embedded in advance.
As shown in FIG. 6, the drain pipe 1 is inserted into the sheath pipe 200 embedded by the propulsion unit 203 from the start vertical shaft 201 side between the start vertical shaft 201 and the arrival vertical shaft 202. 201a and 202a in the figure are wellhead equipments attached to the start well of the start shaft 201 and the reach well of the reach shaft 202, respectively.
 ドレイン管1と緊結パイプ6を準備し、ドレイン管1の内側に緊結パイプ6を挿入して取付ける。緊結パイプ6は、連結する緊結パイプ6の雌ネジ部6bに螺合させるために雄ネジ部6aをドレイン管1の一端から突出させておく(図6C)。
 緊結パイプ6を備えたドレイン管1を発進立坑201から鞘管200内に、ドレイン管1の端部どうし及び緊結パイプ6の端部どうしを順次接続しながら押し込み、発進立坑201と到達立坑202の間にドレイン管1と緊結パイプ6を挿入配置する。ドレイン管1の端部どうしの連結は、上述した連結部材(連結外筒8、連結内筒7)を用いて連結する。
 この際には、網体4、フィルタ材3、3次元網状構造体2とが熱溶着されているので、外周面には、凸部も弛みもないので、鞘管200との抵抗も少ない。また、引っかかることや、網体4、フィルタ材3がめくれることもない。よって、作業効率が向上する。
The drain pipe 1 and the tight pipe 6 are prepared, and the tight pipe 6 is inserted and attached inside the drain pipe 1. The tight pipe 6 has a male screw portion 6a protruding from one end of the drain pipe 1 so as to be screwed into the female screw portion 6b of the tight pipe 6 to be connected (FIG. 6C).
The drain pipe 1 including the tight pipe 6 is pushed into the sheath pipe 200 from the start shaft 201 while sequentially connecting the end portions of the drain pipe 1 and the end portions of the tight pipe 6. The drain pipe 1 and the tightening pipe 6 are inserted between them. The ends of the drain pipe 1 are connected to each other using the connecting members (the connecting outer cylinder 8 and the connecting inner cylinder 7) described above.
At this time, since the mesh body 4, the filter material 3, and the three-dimensional network structure 2 are heat-welded, the outer peripheral surface has neither protrusions nor slack, so that the resistance to the sheath tube 200 is small. In addition, the net body 4 and the filter material 3 are not turned over. Therefore, working efficiency is improved.
 ドレイン管1を鞘管200内に押し込む際に、ドレイン管1の先端側外周囲に、生物分解性滑材(プラスチックを素材とするグリス)を盛り付けておいても良い。このグリスは、ドレイン管1を鞘管200内に押し込む際に鞘管200の内面に当たって均され、ドレイン管1の外周面全面に塗布される。この結果、施工中にドレイン管1内へ泥水が侵入するのを防ぐことができ、また、鞘管200に対するドレイン管1の滑りをさらに良くする。
 このグリスはドレイン管1が地中に埋設された後、土中の生物により分解されて消失するので、グリスによってドレイン管1の集水機能が阻害される恐れはなく、また、環境が汚染される心配もない。
When the drain tube 1 is pushed into the sheath tube 200, a biodegradable lubricant (grease made of plastic) may be provided around the outer periphery of the distal end side of the drain tube 1. The grease strikes the inner surface of the sheath tube 200 when the drain tube 1 is pushed into the sheath tube 200 and is applied to the entire outer peripheral surface of the drain tube 1. As a result, muddy water can be prevented from entering the drain pipe 1 during construction, and the sliding of the drain pipe 1 with respect to the sheath pipe 200 is further improved.
Since this grease is decomposed and disappeared by living organisms in the soil after the drain pipe 1 is buried in the ground, there is no fear that the water collecting function of the drain pipe 1 will be hindered by the grease, and the environment will be polluted. There is no worry.
 以下、図7を参照する。配置した緊結パイプ6の端部であって発進坑口から突出した部分に発進側緊結ナット206を螺合し、坑口機材201aに当接させる。また、緊結パイプ6の到達立坑202側の端部にシールヘッド207を取り付けてドレイン管1の到達立坑202側の面に当接させ、これを緊結パイプ6に螺合させた到達側緊結ナット208で固定する。これにより、ドレイン管1が鞘管200内を発進立坑201側および到達立坑202側へ移動できないようにされる。 Hereinafter, refer to FIG. The start side tightening nut 206 is screwed into the end portion of the disposed tightening pipe 6 that protrudes from the start shaft, and is brought into contact with the wellhead equipment 201a. In addition, a seal head 207 is attached to an end of the binding pipe 6 on the arrival shaft 202 side, is brought into contact with the surface of the drain pipe 1 on the arrival shaft 202 side, and is screwed into the fastening pipe 6 to reach an arrival side tightening nut 208. Secure with. As a result, the drain pipe 1 is prevented from moving in the sheath pipe 200 to the start shaft 201 side and the arrival shaft 202 side.
 鞘管200の発進立坑201側端部(最後部)の周縁にテールシール205をネジと金属バンドを使って取り付ける。テールシール205は、可撓性と伸縮性を有する軟質合成樹脂を素材とし、後端に向かって次第に径小となるテーパー筒状である。テールシール205の末端部の内径はドレイン管1の外径よりも小さな直径とされ、ドレイン管1の外周面に接するようになっている。 The tail seal 205 is attached to the periphery of the end of the vertical shaft 201 (the last part) of the sheath pipe 200 using screws and a metal band. The tail seal 205 is made of a soft synthetic resin having flexibility and stretchability, and has a tapered cylindrical shape that gradually decreases in diameter toward the rear end. The inner diameter of the end portion of the tail seal 205 is smaller than the outer diameter of the drain tube 1 and is in contact with the outer peripheral surface of the drain tube 1.
 発進立坑201から緊結パイプ6内にプッシュロッド209を順次接続しながら押し込み挿入して、プッシュロッド209を到達立坑202に到達させる。図7Bに示すように、プッシュロッド209は緊結パイプ6の内面に当接して移動するスペーサ210を有する。
 到達立坑202側では、鞘管200の先端とプッシュロッド209の先端とを鞘管押出金具204に連結する。
The push rod 209 is pushed in and inserted from the starting shaft 201 into the tight pipe 6 in order, and the push rod 209 reaches the reaching shaft 202. As shown in FIG. 7B, the push rod 209 has a spacer 210 that moves in contact with the inner surface of the binding pipe 6.
On the reach shaft 202 side, the tip of the sheath tube 200 and the tip of the push rod 209 are connected to the sheath tube push-out fitting 204.
 プッシュロッド209を推進機203で押すと、鞘管200が到達立坑202に引き抜かれる。このとき、ドレイン管1は緊結パイプ6とともに到達立坑202側への移動ができないようにされているので、鞘管200の移動と共にドレイン管1が到達立坑202側へ引きずられてくることはない。
 この鞘管200の引き抜き作業の際にも、網体4、フィルタ材3、3次元網状構造体2とが熱溶着されているので、外周面には、凸部も弛みもないので、鞘管200との抵抗も少ない。また、引っかかることや、網体4、フィルタ材3がめくれることもない。よって、作業効率が向上する。
When the push rod 209 is pushed by the propulsion unit 203, the sheath tube 200 is pulled out to the reaching shaft 202. At this time, since the drain pipe 1 cannot be moved to the reaching shaft 202 side together with the tight pipe 6, the drain pipe 1 is not dragged to the reaching shaft 202 side with the movement of the sheath pipe 200.
Even when the sheath tube 200 is pulled out, the mesh body 4, the filter material 3, and the three-dimensional network structure 2 are thermally welded. Therefore, the outer peripheral surface has neither convex portions nor slack. There is little resistance to 200. In addition, the net body 4 and the filter material 3 are not turned over. Therefore, working efficiency is improved.
 また、図7Cに示すように、鞘管200の後部ではテールシール205がその後縁部でドレイン管1の周面に接しながら移動する。すなわち、鞘管200が引き抜かれるにつれて湧水と共に土砂がドレイン管1と鞘管200との間に入り込むのが防止される。これにより、ドレイン管1と鞘管200との間に入り込んだ土砂によって引抜きの際の摩擦が増大して、プッシュロッド209を押す推進機203に過大な負荷がかかったり、鞘管200を移動させること自体が不能になったりすることを防止できる。
 本発明のドレイン管1は、網体4、フィルタ材3、3次元網状構造体2とが熱溶着されているので、外周面には、凸部も弛みもなく、テールシール205とも関係においても、テールシール205に引っかかったり、抵抗も少なくなる。
Further, as shown in FIG. 7C, the tail seal 205 moves at the rear portion of the sheath tube 200 while contacting the peripheral surface of the drain tube 1 at the rear edge portion. That is, as the sheath tube 200 is pulled out, soil and sand together with the spring water are prevented from entering between the drain tube 1 and the sheath tube 200. Thereby, the friction at the time of extraction is increased by the earth and sand that has entered between the drain pipe 1 and the sheath pipe 200, and an excessive load is applied to the propulsion unit 203 that pushes the push rod 209, or the sheath pipe 200 is moved. It is possible to prevent things from becoming impossible.
In the drain pipe 1 of the present invention, the net body 4, the filter material 3, and the three-dimensional network structure 2 are thermally welded. The tail seal 205 is caught and resistance is reduced.
 到達立坑202内に引き抜かれてくる鞘管200とプッシュロッド209を、鞘管押出金具204を付け替えてながら、それぞれ分解して回収する。そして、最後の鞘管200をテールシール205とともに回収する。
 その結果、緊結パイプ6を備えたドレイン管1が残置される。
The sheath tube 200 and the push rod 209 pulled out into the reaching shaft 202 are disassembled and collected while the sheath tube push-out fitting 204 is replaced. Then, the last sheath tube 200 is recovered together with the tail seal 205.
As a result, the drain pipe 1 provided with the tight pipe 6 is left.
 以下、図8を参照する。発進側緊結ナット206、到達側緊結ナット208およびシールヘッド207を取り外し、緊結パイプ6とドレイン管1との拘束を解除する。
 プッシュロッド209の先端と緊結パイプ6の先端を緊結パイプ引出し金具211で連繋し、推進機203で引き作動させる。すると、プッシュロッド209は発進立坑201側へ引き出され、緊結パイプ6とプッシュロッド209はドレイン管1から発進立坑201に引き出される。そして、発進立坑201側で緊結パイプ6とプッシュロッド209を分解して回収する。
 その工程を繰り返して、発進立坑201と到達立坑202間にドレイン管1のみを残置する。このようにして、ドレイン管1が埋設される。
Hereinafter, reference will be made to FIG. The start side tightening nut 206, the reaching side tightening nut 208 and the seal head 207 are removed, and the restraint between the tightening pipe 6 and the drain pipe 1 is released.
The distal end of the push rod 209 and the distal end of the tightening pipe 6 are connected by the tightening pipe pull-out fitting 211 and pulled by the propulsion unit 203. Then, the push rod 209 is pulled out to the start shaft 201 side, and the binding pipe 6 and the push rod 209 are pulled out from the drain pipe 1 to the start shaft 201. Then, the fastening pipe 6 and the push rod 209 are disassembled and collected on the start shaft 201 side.
The process is repeated to leave only the drain pipe 1 between the starting shaft 201 and the reaching shaft 202. In this way, the drain pipe 1 is buried.
 本発明は上記実施例に限定されない。
 本実施形態では、ドレイン管1を埋設された鞘管200に挿入し、鞘管200を引き抜くことでドレイン管1を地中に埋設するものであった。しかしながら、鞘管200を設けないで、開削によって直接ドレイン管1を埋設する場合であっても本発明を適用できる。
 その際には、本発明のドレイン管1は、埋設後においても網体4、フィルタ材3、3次元網状構造体2とが熱溶着されているので、接着剤のはみ出しによる透水性の低下も生じず、十分な排水機能を確保することができるという効果に注目して適用することができる。
 また、網体4は、鞘管200からフィルタ材3を保護する機能であるが、開削で用いる際には、ドレイン管1の強度を確保するためや、運搬中の保護の効果に注目して適用することができる。
 例えば、網体4を生物分解性のもので形成してもよい。そのようにすると、さきのグリスと同様に、ドレイン管1が地中に埋設された後、土中の生物により分解されて消失するので、ドレイン管1の集水機能も確保され、また、環境が汚染される心配もない。
The present invention is not limited to the above embodiments.
In the present embodiment, the drain tube 1 is inserted into the buried sheath tube 200, and the sheath tube 200 is pulled out so that the drain tube 1 is buried in the ground. However, the present invention can be applied even when the drain pipe 1 is directly embedded by excavation without providing the sheath pipe 200.
In that case, since the drain tube 1 of the present invention is thermally welded to the net body 4, the filter material 3, and the three-dimensional network structure 2 even after being embedded, the water permeability is also lowered due to the protruding adhesive. It does not occur and can be applied by paying attention to the effect that a sufficient drainage function can be secured.
Further, the mesh body 4 has a function of protecting the filter material 3 from the sheath tube 200. However, when used in the excavation, pay attention to the effect of protection during transportation to ensure the strength of the drain tube 1. Can be applied.
For example, the net body 4 may be formed of a biodegradable material. Then, like the previous grease, the drain pipe 1 is buried in the ground and then decomposed and disappeared by living organisms in the soil, so that the water collecting function of the drain pipe 1 is ensured, and the environment There is no worry of contamination.
産業上の利用分野Industrial application fields
 地下水を抜いて地下水位を低下させることによって地盤の液状化を防ぐ地下水位低下工法に適用する非開削ドレイン管埋設工法に用いるドレイン管およびその製造方法に利用できる。 It can be used for a drain pipe used in a non-open-drain drain pipe embedding method applied to a ground water level lowering method that prevents ground liquefaction by draining groundwater and lowering the groundwater level, and a manufacturing method thereof.
 1       ドレイン管
 2       3次元網状構造体
 3       フィルタ材
 4       網体
 5       環状溝
 6       緊結パイプ
 6a      雄ネジ部
 6b      雌ネジ部
 7       連結内筒
 7a      係止爪
 8       連結外筒
 8c      連結外筒環状突条
 8d      連結外筒環状溝
 9       バンド
 10a     第1加熱ローラ
 10b     第2加熱ローラ
 11a、11b 第1圧着ローラ
 11c     第2圧着ローラ
 12      テンションローラ
 13      ガイドローラ
 14      カバー
 100     加工装置
 101     前部支持台
 102     後部支持台
 103     管受け台
 104     加熱ローラ
 105     回転盤
 106     支持爪
 107     モータ
 108     受け部
 109     支持ローラ
 110     支柱
 111     揺動アーム
 112     チェーン
 113     フランジ
 114     ストッパ
 115     ヒータ
 200     鞘管
 201     発進立坑
 202     到達立坑
 203     推進機
 204     鞘管押出金具
 205     テールシール
 206     発進側緊結ナット
 207     シールヘッド
 208     到達側緊結ナット
 209     プッシュロッド
 210     スペーサ
DESCRIPTION OF SYMBOLS 1 Drain pipe 2 3D network structure 3 Filter material 4 Net body 5 Annular groove 6 Tightening pipe 6a Male thread part 6b Female thread part 7 Connection inner cylinder 7a Locking claw 8 Connection outer cylinder 8c Connection outer cylinder annular protrusion 8d Connection Outer cylinder annular groove 9 Band 10a First heating roller 10b Second heating roller 11a, 11b First pressure roller 11c Second pressure roller 12 Tension roller 13 Guide roller 14 Cover 100 Processing device 101 Front support table 102 Rear support table 103 Tube Receiving base 104 Heating roller 105 Turntable 106 Supporting claw 107 Motor 108 Receiving portion 109 Supporting roller 110 Post 111 Swing arm 112 Chain 113 Flange 114 115 heater 200 sheath pipe 201 starting pit 202 arrival pit 203 propulsion unit 204 sheath pipe extrusion bracket 205 tail seal 206 starting side Tightened nut 207 seals the head 208 reaches the side Tightened nut 209 push rod 210 spacer

Claims (4)

  1.  3次元網状構造体と、前記3次元網状構造体の外周面を被覆するフィルタ材と、前記フィルタ材の外周面を被覆する網体と、を備えた透水性のドレイン管であって、
     前記フィルタ材の外周面と前記網体の内周面とが熱溶融によって接着されている第1接着部と、
     前記3次元網状構造体の外周面と前記フィルタ材の内周面とが熱溶融によって接着されている第2接着部と、を備え、
     前記ドレイン管の両端には、前記3次元網状構造体の外周面に連結部材が取り付けられる環状溝が設けられており、前記フィルタ材は前記環状溝の間で前記3次元網状構造体の外周面を被覆し、前記網体は前記環状溝の間で前記フィルタ材の外周面を被覆している
     ことを特徴とするドレイン管。
    A water-permeable drain pipe comprising a three-dimensional network structure, a filter material covering the outer peripheral surface of the three-dimensional network structure, and a net body covering the outer peripheral surface of the filter material,
    A first adhesive part in which the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body are bonded by heat melting;
    A second adhesive portion in which an outer peripheral surface of the three-dimensional network structure and an inner peripheral surface of the filter material are bonded by heat melting;
    At both ends of the drain pipe, an annular groove is provided to which a connecting member is attached to the outer circumferential surface of the three-dimensional network structure, and the filter material is disposed between the annular grooves and the outer circumferential surface of the three-dimensional network structure. The drain pipe is characterized by covering the outer peripheral surface of the filter material between the annular grooves.
  2.  あらかじめ埋設された鞘管に挿入され、前記鞘管が引き抜かれることで設置され、3次元網状構造体と、前記3次元網状構造体の外周面を被覆するフィルタ材と、前記フィルタ材の外周面を被覆する網体と、を備えた透水性のドレイン管であって、
     前記フィルタ材の外周面と前記網体の内周面とが熱溶融によって接着されている第1接着部と、
     前記3次元網状構造体の外周面と前記フィルタ材の内周面とが熱溶融によって接着されている第2接着部と、
     を備えることを特徴とするドレイン管。
    A three-dimensional network structure that is inserted into a pre-embedded sheath tube and pulled out of the sheath tube, covers the outer peripheral surface of the three-dimensional network structure, and the outer peripheral surface of the filter material A water-permeable drain pipe comprising
    A first adhesive part in which the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body are bonded by heat melting;
    A second adhesive portion in which the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material are bonded by heat melting;
    A drain tube comprising:
  3.  3次元網状構造体と、前記3次元網状構造体の外周面を被覆し開口寸法が前記3次元網状構造体より小さいフィルタ材と、前記フィルタ材の外周面を被覆し開口寸法が前記フィルタ材より大きい網体と、を備えた透水性のドレイン管の製造方法であって、
     前記フィルタ材の外周面と前記網体の内周面との接着工程が熱溶融によって行われており、
     前記3次元網状構造体の外周面と前記フィルタ材の内周面との接着工程が熱溶融によって行われており、
     前記フィルタ材の外周面と前記網体の内周面との接着工程は、前記網体の内周面を熱溶融することによって行われ、
     前記3次元網状構造体の外周面と前記フィルタ材の内周面との接着工程は、前記3次元網状構造体の外周面を熱溶融することによって行われる
     ことを特徴とするドレイン管の製造方法。
    A three-dimensional network structure, a filter material covering an outer peripheral surface of the three-dimensional network structure and having an opening size smaller than the three-dimensional network structure, and an outer peripheral surface of the filter material covering an outer diameter of the filter material. A method for producing a water permeable drain pipe comprising a large mesh body,
    The bonding process between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by heat melting,
    The bonding step between the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material is performed by heat melting,
    The bonding step between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by thermally melting the inner peripheral surface of the mesh body,
    The method for manufacturing a drain tube, wherein the bonding step between the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material is performed by thermally melting the outer peripheral surface of the three-dimensional network structure. .
  4.  3次元網状構造体と、前記3次元網状構造体の外周面を被覆するフィルタ材と、前記フィルタ材の外周面を被覆する網体と、を備えた透水性のドレイン管の製造方法であって、
     前記フィルタ材の外周面と前記網体の内周面との接着工程が熱溶融によって行われており、
     前記3次元網状構造体の外周面と前記フィルタ材の内周面との接着工程が熱溶融によって行われており、
     前記フィルタ材の外周面と前記網体の内周面との接着工程は、前記網体の内周面を熱溶融するとともに前記網体の線材の断面を扁平させることによって行われることを特徴とするドレイン管の製造方法。
    A method for producing a water-permeable drain pipe comprising: a three-dimensional network structure; a filter material that covers an outer peripheral surface of the three-dimensional network structure; and a network body that covers the outer peripheral surface of the filter material. ,
    The bonding process between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by heat melting,
    The bonding step between the outer peripheral surface of the three-dimensional network structure and the inner peripheral surface of the filter material is performed by heat melting,
    The bonding step between the outer peripheral surface of the filter material and the inner peripheral surface of the mesh body is performed by thermally melting the inner peripheral surface of the mesh body and flattening a cross section of the wire material of the mesh body. A method for manufacturing a drain pipe.
PCT/JP2017/021071 2016-06-15 2017-06-07 Drain pipe and manufacturing method for same WO2017217290A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780037492.3A CN109415881A (en) 2016-06-15 2017-06-07 Drainpipe and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016119215A JP6162290B1 (en) 2016-06-15 2016-06-15 Drain tube and manufacturing method thereof
JP2016-119215 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017217290A1 true WO2017217290A1 (en) 2017-12-21

Family

ID=59308989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021071 WO2017217290A1 (en) 2016-06-15 2017-06-07 Drain pipe and manufacturing method for same

Country Status (3)

Country Link
JP (1) JP6162290B1 (en)
CN (1) CN109415881A (en)
WO (1) WO2017217290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453661B2 (en) 2019-12-09 2024-03-21 中野産業株式会社 Filter and drainage method using it

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6749740B2 (en) * 2018-08-28 2020-09-02 株式会社ウイングス Drain pipe laying method
JP7202029B1 (en) 2021-08-05 2023-01-11 株式会社勝永 collection pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097208U (en) * 1974-05-27 1975-08-13
JPH02136418A (en) * 1988-11-17 1990-05-25 Sumitomo Metal Ind Ltd Anti-liquefaction perforated drain pipe and manufacture thereof
JPH02183006A (en) * 1989-01-09 1990-07-17 Sumitomo Metal Ind Ltd Manufacturing method, its ground drainage member and anti-liquefaction method therewith
JPH09189025A (en) * 1995-11-08 1997-07-22 Nippon Kaiyo Kutsusaku Kk Construction method against liquefaction and consolidation type drilling machine
JP3166148U (en) * 2010-10-01 2011-02-24 株式会社八千代エキソロン Net pipe material
EP2708656A1 (en) * 2012-09-13 2014-03-19 Van Oord Dredging and Marine Contractors B.V. Reel with wound drain band.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE444831B (en) * 1982-10-19 1986-05-12 Oscar Sven Arntyr KIT FOR THE CONSTRUCTION OF BENEFITS IN TARGET MARKET AND IN SUCH SUCH MARK LOCATED BASKET WITH Weak conical shape
CN102061692A (en) * 2009-11-12 2011-05-18 任再永 Transverse filtration drain pipe
CN102352624A (en) * 2011-09-26 2012-02-15 浙江中淳新材料股份有限公司 Pile splicing structure for precast piles
CN202809628U (en) * 2012-07-16 2013-03-20 长沙天卓塑胶有限公司 Permeable pipe
CN202834544U (en) * 2012-10-16 2013-03-27 山东天迈管业有限公司 Drain pipe joint and drain pipe connection structure
CN103556612A (en) * 2013-10-30 2014-02-05 柏发忠 Water seepage and drainage pipe and construction method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097208U (en) * 1974-05-27 1975-08-13
JPH02136418A (en) * 1988-11-17 1990-05-25 Sumitomo Metal Ind Ltd Anti-liquefaction perforated drain pipe and manufacture thereof
JPH02183006A (en) * 1989-01-09 1990-07-17 Sumitomo Metal Ind Ltd Manufacturing method, its ground drainage member and anti-liquefaction method therewith
JPH09189025A (en) * 1995-11-08 1997-07-22 Nippon Kaiyo Kutsusaku Kk Construction method against liquefaction and consolidation type drilling machine
JP3166148U (en) * 2010-10-01 2011-02-24 株式会社八千代エキソロン Net pipe material
EP2708656A1 (en) * 2012-09-13 2014-03-19 Van Oord Dredging and Marine Contractors B.V. Reel with wound drain band.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453661B2 (en) 2019-12-09 2024-03-21 中野産業株式会社 Filter and drainage method using it

Also Published As

Publication number Publication date
CN109415881A (en) 2019-03-01
JP2017223050A (en) 2017-12-21
JP6162290B1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
WO2017217290A1 (en) Drain pipe and manufacturing method for same
EP2715199B1 (en) Tubular liner for rehabilitating defective sewers
KR100538438B1 (en) Branch pipe lining and pipe lining method
JP2014213458A (en) Belt-shaped member containing reinforcing material, and production method thereof
JP6781026B2 (en) Air bleeding / water stopping device for tunnels and tunnel construction method
JP5752524B2 (en) Waterproof structure around the pile
JP6549911B2 (en) Non-cut drain pipe burial method
JP2020138382A (en) Pipeline renovation method and renovation pipe
JPH06319215A (en) Cable-duct bundling body comprising a plurality of resin pipes, and manufacture thereof
JP2020033714A (en) Drain pipe laying construction method
JP6216684B2 (en) Drainage sheet
JP5419137B2 (en) Reservoir and its formation method
JP2013018148A (en) Branch pipe lining material, method for manufacturing the same and branch pipe lining process
JP5496776B2 (en) Locking bolt for locking bolt and method for installing locking bolt
JP2701727B2 (en) Double steel pipe for propulsion method
KR200252768Y1 (en) A protected tube of a cables for underground
JP6422699B2 (en) Drain material
JP5931629B2 (en) Pipe rehabilitation method
JP5606945B2 (en) Pipe fitting and manufacturing method thereof
JP2010112510A (en) Pipe joint and method for manufacturing the same
JP6534208B2 (en) Tunnel tarpaulin
JP3168698U (en) Handhole cable support structure
JP4653589B2 (en) Piping connection structure and piping connection method
CN207044703U (en) A kind of pipeline wears the joint structure of waterproof membrane
JP3143867U (en) Drain pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813188

Country of ref document: EP

Kind code of ref document: A1