WO2017217150A1 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
WO2017217150A1
WO2017217150A1 PCT/JP2017/017876 JP2017017876W WO2017217150A1 WO 2017217150 A1 WO2017217150 A1 WO 2017217150A1 JP 2017017876 W JP2017017876 W JP 2017017876W WO 2017217150 A1 WO2017217150 A1 WO 2017217150A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
support portion
wall surface
sensor chip
diaphragm
Prior art date
Application number
PCT/JP2017/017876
Other languages
French (fr)
Japanese (ja)
Inventor
由香利 白旗
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017024339A external-priority patent/JP2017223643A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017217150A1 publication Critical patent/WO2017217150A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present disclosure relates to a pressure sensor in which a piezoresistor is arranged on a diaphragm formed on a semiconductor substrate, and a detection signal corresponding to the pressure is output using a change in the resistance value of the piezoresistor according to the pressure. .
  • Patent Document 1 Conventionally, as this type of pressure sensor, for example, one described in Patent Document 1 has been proposed.
  • this pressure sensor an annular support portion is formed by simultaneously removing the outer edge portion and the diaphragm portion on the back surface side of the sensor substrate, and a circular diaphragm is formed inside the support portion.
  • the zero shift caused by the change in temperature and static pressure based on the reduction in area and symmetry of the bonded portion that is, Suppresses the effect of zero point offset on thermal stress and mounting stress.
  • the support portion formed on the sensor substrate has an annular shape, it is effective for suppressing the offset of the zero point with respect to the thermal stress and the mounting stress, but the sensitivity to the pressure application is lowered. That is, the magnitude of sensor output obtained with respect to pressure application is reduced.
  • a pressure sensor is a chip made of a semiconductor having a rectangular plate shape, and a first concave portion is formed on a back surface, and a thin portion on a front surface side corresponding to the first concave portion is used as a diaphragm.
  • the sensor chip is configured and includes a sensor chip having a piezoresistance on the surface and a bonding member bonded to the support part on the back surface of the sensor chip.
  • the second recess is formed on the back surface of the sensor chip
  • the upper surface shape of the outer wall surface of the support portion is a polygonal shape of a quadrangle or more, and the inner wall surface of the support portion that forms the diaphragm shape.
  • the upper surface shape is a polygonal shape that is equal to or greater than a quadrangle.
  • the shape of the upper surface of the inner wall surface of the support portion that is, the shape of the diaphragm constituted by the recesses is made polygonal.
  • the upper surface shape of the inner wall surface of the support portion is a polygonal shape, it is possible to increase the amount of distortion of the diaphragm with respect to the pressure application as compared to the circular shape, thereby improving the sensitivity of the pressure sensor. It becomes possible.
  • the second recesses are formed at the four corners of the back surface of the sensor chip, the upper surface shape of the outer wall surface of the support portion is circular, and the support that forms the shape of the diaphragm
  • the upper surface shape of the inner wall surface of the part is a polygonal shape of a quadrangle or more.
  • the pressure sensor according to one aspect of the present disclosure is obtained by making the upper surface shape of the inner wall surface of the support portion a polygonal shape that is equal to or greater than a quadrangle. The same effect can be obtained.
  • a pressure sensor includes an adhesive that is disposed between the sensor chip and the bonding member, and bonds the support portion and the bonding member.
  • the outer shape viewed from the surface side of the sensor chip is made to be a polygonal shape of a square or more or a circle.
  • the outer shape of the adhesive may be different from that of the sensor chip, and the substantial shape of the outer wall surface of the sensor chip may be defined by the shape of the adhesive. Even if it does in this way, the effect similar to the pressure sensor in one viewpoint of this indication can be acquired.
  • FIG. 3 is a cross-sectional view taken along the line IIIA-IIIA in FIG.
  • FIG. 3 is a cross-sectional view taken along line IIIB-IIIB in FIG.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 4.
  • FIG. 4 It is a figure which shows the layout of the pressure sensor concerning 3rd Embodiment. It is a side view of the pressure sensor shown in FIG. It is sectional drawing in the IX-IX line in FIG.
  • the pressure sensor according to the first embodiment will be described.
  • This pressure sensor is applied to, for example, measurement of pressure of a pressure medium such as corrosive liquid or gas.
  • the pressure sensor measures the exhaust gas pressure in the exhaust pipe of a diesel engine vehicle, and measures the differential pressure before and after a DPF (abbreviation of diesel particulate filter) as an exhaust purification filter provided in the exhaust pipe. Applicable to etc.
  • FIGS. 1, 2, 3A, and 3B 1 is a layout diagram corresponding to the cross-sectional view taken along the line II in FIG. Further, FIG. 2 is not a cross-sectional view, but is hatched for convenience of understanding.
  • the pressure sensor S1 of the present embodiment includes a semiconductor diaphragm sensor chip 10 and a wiring board 20 as a bonding member bonded to the sensor chip 10. .
  • the sensor chip 10 is a chip made of a semiconductor such as Si (silicon) having a rectangular plate shape having a front surface 11 and a back surface 12, and is constituted by a silicon substrate whose surface orientation is the ⁇ 110> plane, for example. ing.
  • the sensor chip 10 has a square upper surface shape when viewed from the normal direction of the surface 11.
  • a recess 13 is formed on the center side of the back surface 12 of the sensor chip 10.
  • the recess 13 is formed by chemical etching or the like. Since such a concave portion 13 is formed, a portion of the sensor chip 10 where the concave portion 13 is formed is a thin portion, and a diaphragm 14 is configured by the thin portion.
  • the periphery of the recess 13 in the sensor chip 10 is a support portion 15 that is thicker than the diaphragm 14. Furthermore, in the case of this embodiment, the recessed part 16 is also formed in the outer edge of the support part 15, and the external shape of the support part 15 becomes a predetermined shape.
  • the recess 13 has a rotationally symmetric polygonal shape with the center of the recess 13 as the center of rotation, here an octagon.
  • the recess 13 is a symmetrical octagon with a perpendicular bisector of each side of the octagon formed by the recess 13 as a symmetry line, and is preferably a regular octagon.
  • the piezoresistor 17 which comprises the strain gauge which consists of diffused resistance etc. is provided in the position made into the diaphragm 14 in the surface 11 of the sensor chip 10.
  • FIG. a plurality of piezoresistors 17 are provided, and in the present embodiment, four piezoresistors 17a to 17d are provided.
  • the piezoresistors 17a and 17b are arranged to face each other on both sides in one direction on the surface of the sensor chip 10 with the center position of the diaphragm 14 as the center.
  • one piezoresistor 17c and 17d is disposed opposite to each other on both sides in the other direction, which is a direction perpendicular to one direction.
  • a total of four piezoresistors 17a to 17d constitute a Wheatstone bridge circuit.
  • Two piezoresistors 17a and 17b arranged opposite to both sides in one direction are side gauges arranged on the outer peripheral side in the diaphragm 14.
  • two piezoresistors 17c and 17d disposed opposite to both sides in the other direction are center gauges disposed on the inner peripheral side of the diaphragm 14 with respect to the piezoresistors 17a and 17b.
  • the sensor chip 10 having the structure of the present embodiment when the diaphragm 14 is deformed as pressure is applied, compressive stress is applied to the piezoresistors 17a and 17b due to the distortion based on the deformation. Tensile stress is applied to the piezoresistors 17c and 17d. Then, when the midpoint voltage of the Wheatstone bridge circuit formed by the piezoresistors 17a to 17d is changed, the applied pressure can be converted into an electric signal and output.
  • the recess 16 has a configuration in which the four corners of the sensor chip 10 having a quadrangular shape are removed in a triangular shape so that the upper surface shape of the outer wall surface of the support portion 15 is similar to the recess 13. .
  • the octagon formed by the inner wall surface of the support portion 15, that is, the octagon that becomes the diaphragm 14 and the octagon formed by the outer wall surface of the support portion 15 are arranged concentrically, and each of the octagons It arrange
  • the recess 16 is constituted by removing the etching chip halfway through the thickness of the sensor chip 10.
  • the recess 16 is formed so that the outer shape of the support portion 15 in the sensor chip 10 is an octagon. Therefore, instead of the recess 16, the entire thickness of the sensor chip 10 is removed. It is also possible. However, for such a configuration, it is necessary to make the outer shape of the sensor chip 10 octagonal not by etching but by dicing or the like, and special dicing equipment such as plasma dicing is required.
  • the concave portion 16 when used, a simple dicing facility is not required because the etching is sufficient, and the concave portion 13 is formed using the etching equipment used when forming the concave portion 13 for forming the diaphragm 14. 16 can be formed.
  • dicing equipment generally used conventionally can be used for dicing.
  • the sensor chip 10 can be kept in a square shape on the surface 11 side of the recess 16. For this reason, it is possible to maintain chip rigidity during wire bonding or the like. Further, by keeping the sensor chip 10 in a square shape on the surface 11 side, the sensor chip 10 can be held without reducing the holding portion when die mounting is performed when the sensor chip 10 is bonded to the wiring board 20 as described later. Is possible.
  • the depths of the recess 13 and the recess 16 may be equal, but here, the depth of the recess 16 is made shallower than that of the recess 13 so that the outer edge of the sensor chip 10 is thicker than the diaphragm 14. It is trying to become. As a result, it is possible to ensure durability against chipping of the outer edge portion of the sensor chip 10 while making the diaphragm 14 have an appropriate thickness.
  • the protective film 18 is made of an insulating film having an electrical insulating property such as polyimide resin or silicon nitride film (SiN).
  • the sensor chip 10 thus configured functions as a sensor portion of the semiconductor diaphragm type pressure sensor S1. That is, when pressure is applied, the sensor chip 10 outputs an electrical signal corresponding to the applied pressure due to the piezoresistive effect of the piezoresistor 17. More specifically, when the diaphragm 14 receives pressure from the diaphragm 14 and the diaphragm 14 is distorted by the pressure, the resistance value of the piezoresistor 17 formed on the diaphragm 14 changes, and the piezoresistors 17a to 17d constitute the Wheatstone bridge circuit. The point voltage changes. As a result, the sensor chip 10 can output an electrical signal corresponding to the applied pressure, that is, the applied pressure can be converted into an electrical signal and output.
  • the sensor chip 10 has the support portion 15 bonded to the wiring substrate 20 on the back surface 12 side.
  • the support portion 15 on the back surface 12 of the sensor chip 10 is bonded to the wiring substrate 20 via an adhesive 30.
  • the sensor chip 10 is attached to a glass pedestal, and the sensor chip 10 is bonded to the wiring board 20 via the glass pedestal.
  • the sensor chip 10 is directly attached to the wiring board 20. It has a joined structure.
  • the adhesive 30 include those made of, for example, silicone rubber, epoxy resin, or the like. Thus, by constituting the adhesive 30 with a low elasticity, it is possible to reduce the stress applied to the sensor chip 10.
  • the adhesive 30 has an opening 30 a that is slightly larger than the diaphragm 14 and has an octagonal shape corresponding to the shape of the diaphragm 14, and the outer shape is also octagonal.
  • each side of the opening 30 a and each side of the octagon formed by the outer shape of the adhesive 30 are parallel to each side of the diaphragm 14.
  • the sensor chip 10 is connected to the wiring board 20 in an octagonal region where the adhesive 30 is disposed.
  • the wiring board 20 is made of, for example, a ceramic board made of ceramic such as alumina, or a resin board such as a printed board.
  • the sensor chip 10 and the wiring board 20 are electrically connected by a bonding wire or the like (not shown), and the output of the Wheatstone bridge circuit is transmitted to the wiring board 20.
  • the wiring board 20 is also provided with other circuit elements such as a chip capacitor constituting the signal processing circuit, and the output of the Wheatstone bridge circuit is appropriately subjected to signal processing and then externally provided. Can be output to.
  • a resin case 40 is provided on the surface of the wiring board 20 opposite to the sensor chip 10, that is, below the wiring board 20 in FIG. 2, and the resin case 40 and the wiring board 20 are connected via an adhesive 31. Are fixed by being joined together.
  • the adhesive 31 the same silicone rubber as that of the adhesive 30 can be used.
  • the resin case 40 is attached to, for example, a hose of an exhaust pipe and has a pressure introduction passage 41 for introducing a pressure to be measured.
  • the wiring board 20 is provided with a pressure introduction hole 21 for introducing pressure from the back surface 12 side of the sensor chip 10 to the diaphragm 14.
  • the pressure introduction hole 21 communicates with the pressure introduction passage 41 of the resin case 40, and the diaphragm 14 passes through the pressure introduction passage 41 and the pressure introduction hole 21 from the back surface 12 side of the sensor chip 10 as shown in FIG.
  • a pressure medium to be measured for pressure is introduced.
  • the sensor chip 10 is sealed with a sealing gel 50 from the back surface 12 side to the wiring substrate 20.
  • a sealing gel 50 for example, a gel material such as silicone gel, fluorine gel, or fluorosilicone gel can be used.
  • the height of the sealing gel 50 is increased by the thickness of the pedestal, and stress increase due to the sealing gel 50 occurs. An increase in the amount of gel was incurred.
  • the sensor chip 10 is directly joined to the wiring board 20 without the pedestal as in the present embodiment, the height of the sealing gel 50 can be reduced, and the stress caused by the sealing gel 50 can be reduced. Can be reduced, and the amount of gel can also be reduced.
  • the front surface 11 side of the sensor chip 10 is, for example, atmospheric pressure
  • the pressure medium to be measured for pressure is, for example, exhaust gas
  • the pressure applied to the back surface 12 side of the diaphragm 14 is exhaust gas. Pressure.
  • the pressure sensor S1 is a relative pressure type sensor. That is, the pressure sensor S1 has a relative relationship in which the diaphragm 14 is distorted by a differential pressure between the pressure applied to the diaphragm 14 from the front surface 11 side of the sensor chip 10 and the pressure applied to the diaphragm 14 from the back surface 12 side of the sensor chip 10. It becomes a pressure type sensor.
  • the pressure sensor S1 is configured.
  • the pressure sensor S1 configured as described above, when the pressure of the pressure medium is applied to the diaphragm 14 through the pressure introduction passage 41 and the pressure introduction hole 21, the diaphragm 14 is applied to the pressure applied to the front surface 11 side and the back surface 12 side. Distortion is based on the pressure difference from the pressure of the applied pressure medium. Due to this distortion, the resistance values of the piezo resistors 17a to 17d change. Therefore, when a DC constant voltage is applied to the input terminal of the Wheatstone bridge circuit formed by the piezoresistors 17a to 17d, the midpoint voltage of the Wheatstone bridge circuit changes due to the change in the resistance value of the piezoresistors 17a to 17d. Based on this, an electric signal corresponding to the pressure of the pressure medium can be obtained as an output.
  • the shape of the outer wall surface of the support portion 15 is an octagonal shape.
  • the shape of the upper surface of the inner wall surface of the support portion 15, that is, the shape of the diaphragm 14 constituted by the concave portion 13 is an octagonal shape.
  • the upper surface shape of the inner wall surface of the support portion 15 is an octagonal shape, it is possible to increase the amount of distortion of the diaphragm 14 with respect to the pressure application as compared with the circular shape, and the sensitivity of the pressure sensor S1. Can be improved. The reason for this will be described below.
  • the shape of the inner wall surface of the support 15 is one of the parameters that determine the amount of distortion of the diaphragm 14.
  • the amount of distortion of the diaphragm 14 is determined by the difficulty of deformation based on the shape of the inner wall surface of the support portion 15.
  • This difficulty of deformation is expressed as an amount indicating the difficulty of deformation of the beam member with respect to the cross-sectional secondary moment, that is, the bending moment.
  • it can be expressed as a section modulus that is a value obtained by dividing the sectional moment of inertia by the distance from the inner wall surface of the support portion 15 to the central axis of the diaphragm 14.
  • the amount of strain of the diaphragm 14 is calculated based on the sectional moment of inertia or the section modulus
  • the shape of the inner wall surface of the support portion 15 is a circular shape
  • the amount of strain of the diaphragm 14 is compared with a polygonal shape.
  • the sensitivity is 0.73 times higher when the shape is circular.
  • the chip size of the sensor chip 10 is increased, even if the inner wall surface of the support portion 15 is circular, it is possible to obtain the same sensitivity as when it is polygonal.
  • the inner wall surface of the support portion 15 is formed in a polygonal shape, in this case, an octagonal shape, so that an improvement in sensitivity can be realized even if there is a restriction on the chip size.
  • the side gauge is arranged on the outer edge side of the diaphragm 14 as much as possible, the sensitivity can be further improved. It becomes possible.
  • Such a pressure sensor S1 is formed by, for example, laminating and bonding the wiring board 20 and the sensor chip 10 on the resin case 40 in order via the adhesives 30 and 31, and connecting the sensor chip 10 and the wiring board 20 to the wire. Manufactured by electrical connection by bonding or the like. Of course, the order of lamination and joining of each member is arbitrary, and may be changed as appropriate.
  • FIG. 4 is a layout diagram corresponding to the IV-IV sectional view of FIG.
  • FIG. 5 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see.
  • each recess 16 is formed in a line shape.
  • the outer wall surface of the support portion 15 has an octagonal shape as in the first embodiment, but each recess 16 has a line shape along one side of the outer wall surface of the support portion 15. The thicker portion of the sensor chip 10 is left on the side farther from the center of the sensor chip 10 than the recess 16.
  • the adhesive 30 is in a state of being disposed not only at the opening 30a surrounding the diaphragm 14 and the outer shape of the octagonal portion but also at the portions corresponding to the four corners of the sensor chip 10.
  • the support portion 15 formed inside thereof can be formed in a polygonal shape. For this reason, also in the pressure sensor S1 of the structure of this embodiment, the same effect as 1st Embodiment can be acquired.
  • each recessed part 16 is comprised in the shape of one line here, it can also be comprised in the shape of a plurality of parallel lines.
  • FIGS. 7 is a layout diagram corresponding to the VII-VII cross-sectional view of FIG.
  • FIG. 8 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see.
  • the upper surface shape of the inner wall surface of the support portion 15 remains polygonal, while the upper surface shape of the outer wall surface of the support portion 15 is circular. Moreover, the part which comprises the outer wall surface of the support part 15 among each recessed part 16 is made into circular arc shape so that the upper surface shape of the outer wall surface of the support part 15 may become circular shape.
  • the opening 30a surrounding the diaphragm 14 is an octagon, and the outer shape is a circle.
  • the sensitivity of the pressure sensor S1 can be improved by making the shape of the upper surface of the inner wall surface of the support portion 15, that is, the shape of the diaphragm 14, a polygonal shape.
  • the pressure sensor S1 having such a structure is basically the same as that of the first embodiment, and it is only necessary to change the mask when the recess 16 is formed by etching.
  • FIGS. 10 is a layout diagram corresponding to the II cross-sectional view of FIG. Although FIG. 11 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see.
  • the upper surface shapes of the inner wall surface and the outer wall surface of the support portion 15 are both polygonal shapes, specifically, octagonal shapes.
  • the polygon which the upper surface shape of an outer wall surface comprises is shifted and formed in the circumferential direction with respect to the polygon which the upper surface shape of the inner wall surface of the support part 15 comprises.
  • the octagon shape formed by the outer wall surface is a predetermined angle with respect to the octagon shape formed by the inner wall surface of the support portion 15 as the rotation axis, for example, 45 °. The state is shifted.
  • each side of the opening 30 a surrounding the diaphragm 14 is parallel to each side of the diaphragm 14.
  • the octagon that forms the outer shape of the adhesive 30 is shifted from the sides of the diaphragm 14 by a predetermined angle with the center of the sensor chip 10 as the rotation axis.
  • the polygonal shape formed by the inner wall surface and the outer wall surface of the support portion 15 can be a layout in which the angle is shifted with the center of the sensor chip 10 as the rotation axis. Even with such a configuration, it is possible to suppress the influence of the offset of the zero point on the thermal stress and mounting stress, and it is possible to improve the sensitivity of the pressure sensor S1.
  • the pressure sensor S1 having such a structure is basically the same as that of the first embodiment, and it is only necessary to change the mask when the recess 16 is formed by etching.
  • FIGS. 12 is a layout diagram corresponding to the XII-XII cross-sectional view of FIG.
  • FIG. 13 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see.
  • the case where the outer wall surface of the support portion 15 is circular as in the third embodiment will be described as an example. However, in the case where the outer wall surface is a polygon as in the first and fourth embodiments. But a similar structure can be applied.
  • the upper surface shape of the inner wall surface of the support portion 15 remains polygonal, while the upper surface shape of the outer wall surface of the support portion 15 is circular.
  • the outer wall surface of the support portion 15 becomes a tapered inclined surface by forming the recess 16 by isotropic etching or the like.
  • the sensitivity of pressure sensor S1 can be improved by making the upper surface shape of the inner wall surface of the support part 15, ie, the shape of the diaphragm 14, into a polygonal shape.
  • the pressure sensor S1 having such a structure is also basically the same as that of the first embodiment, and the recess 16 is formed by isotropic etching, so that the outer wall surface of the support portion 15 is merely an inclined surface. Good.
  • FIGS. 15 is a layout diagram corresponding to the XV-XV sectional view of FIG.
  • FIG. 16 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see.
  • the sensor chip 10 has a recess 13 for forming the diaphragm 14, but the recess 16 that is a part of the surrounding support portion 15 is formed. Absent. However, the adhesive 30 has an octagonal opening 30a surrounding the diaphragm 14 and an outer shape of the octagon, as in the first embodiment.
  • the recess 16 is not formed for the sensor chip 10, but the adhesive 30 has the same shape as that of the first embodiment, and non-formation areas where the adhesive 30 is not formed at the four corners of the sensor chip 10 are configured. is doing. Thereby, the part adhere
  • the sensor chip 10 is not formed with the recesses 16 and the outer shape of the adhesive 30 is an octagon, so that the shape of the outer wall surface of the support portion 15 is substantially an octagon. It is the same as the case. For this reason, it is possible to disperse the thermal stress and the mounting stress as compared with the case where the outer shape of the sensor chip 10 remains a square shape and the outer shape of the adhesive 30 remains a square shape. Therefore, it is possible to suppress the influence of the zero point offset on the thermal stress and the mounting stress.
  • the outer shape of the adhesive 30 may be different from that of the sensor chip 10, and the substantial shape of the outer wall surface of the sensor chip 10 may be defined by the shape of the adhesive 30.
  • the outer shape of the adhesive 30 may be the same shape as the inner wall surface of the support portion 15, that is, a polygon more than a quadrangle, or the second to fourth embodiments.
  • the shape of the inner wall surface of the support portion 15 may be different.
  • the shape of the inner wall surface of the support portion 15 may be a polygon that is equal to or greater than a quadrangle
  • the outer shape of the adhesive 30 may be a circle or may be a polygon that is different from the shape of the inner wall surface of the support portion 15. .
  • an octagon has been described as an example of a polygon formed by the inner wall surface of the support portion 15, that is, a polygon formed by the diaphragm 14 or a polygon formed by the outer wall surface of the support portion 15.
  • this is merely an example, and other polygons such as a hexagon, a decagon, and a dodecagon may be used as long as the polygon is a quadrangle or more.
  • a Wheatstone bridge circuit including piezoresistors 17a to 17d is formed on the diaphragm 14, it is preferable that the side gauges and the center gauges of the piezoresistors 17a to 17d are arranged symmetrically in the diaphragm 14. Therefore, it is preferable to use a polygonal shape with even angles.
  • the pressure introduction hole 21 is provided in the wiring substrate 20 to realize the back pressure receiving pressure sensor S1.
  • the diaphragm 14 receives the measurement pressure from the front surface 11 of the sensor chip 10. It may be a surface pressure-receiving type. In that case, the wiring board 20 may not have the pressure introducing hole 21.
  • the joining member to which the back surface 12 side of the sensor chip 10 is joined is not limited to the wiring substrate 20 described above, and various members such as a lead frame and a resin member are applicable.
  • the adhesive 30 does not have to be composed of a material such as silicone rubber or epoxy resin.
  • the adhesive 30 may contain a granular member 30 b such as a bead for maintaining the thickness, that is, the height of the adhesive 30.
  • a granular member 30b such as a bead for maintaining the thickness, that is, the height of the adhesive 30.
  • a granular member 30b it is preferable to use a low elastic material such as a polymer such as a silicone rubber or an epoxy resin that constitutes the adhesive 30.
  • the pressure sensor is not limited to the one that detects the exhaust pressure described above, but is used for pressure detection of various applications such as atmospheric pressure, engine intake pressure, and various equipment and container pressure. be able to.

Abstract

The shape of an upper surface of an inner wall surface of a supporting portion (15), in other words the shape of a diaphragm (14) formed by a recessed portion (13), is made to be a polygonal shape having four or more sides, for example an octagonal shape. Making the shape of the upper surface of the inner wall surface of the supporting portion (15) a polygonal shape having four or more sides in this way allows the diaphragm (14) to distort by a greater amount with respect to the application of pressure than if a circular shape is employed, thereby making it possible to improve the sensitivity of a pressure sensor (S1).

Description

圧力センサPressure sensor 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年6月14日に出願された日本特許出願番号2016-118258号と、2017年2月13日に出願された日本特許出願番号2017-24339号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-118258 filed on June 14, 2016 and Japanese Patent Application No. 2017-24339 filed on February 13, 2017. The description is incorporated by reference.
 本開示は、半導体基板に形成されるダイヤフラムにピエゾ抵抗を配置し、圧力に応じてピエゾ抵抗の抵抗値が変化することを利用して圧力に応じた検出信号を出力する圧力センサに関するものである。 The present disclosure relates to a pressure sensor in which a piezoresistor is arranged on a diaphragm formed on a semiconductor substrate, and a detection signal corresponding to the pressure is output using a change in the resistance value of the piezoresistor according to the pressure. .
 従来、この種の圧力センサとしては、例えば特許文献1に記載のものが提案されている。この圧力センサでは、センサ基板の裏面側における外縁部とダイヤフラム部とを同時に除去することで円環状の支持部を形成し、支持部の内側に円形状のダイヤフラムを構成するとようにしている。このように、円環状の支持部とすることで、センサ基板を支持部材に接合したときに、接合部分の面積の縮小化や対称性に基づき、温度や静圧の変化に起因するゼロシフト、つまり熱応力や実装応力に対するゼロ点のオフセットの影響を抑制している。 Conventionally, as this type of pressure sensor, for example, one described in Patent Document 1 has been proposed. In this pressure sensor, an annular support portion is formed by simultaneously removing the outer edge portion and the diaphragm portion on the back surface side of the sensor substrate, and a circular diaphragm is formed inside the support portion. In this way, when the sensor substrate is bonded to the support member by using the annular support portion, the zero shift caused by the change in temperature and static pressure based on the reduction in area and symmetry of the bonded portion, that is, Suppresses the effect of zero point offset on thermal stress and mounting stress.
特開平6-258164号公報JP-A-6-258164
 しかしながら、センサ基板に形成する支持部を円環状とする場合、熱応力や実装応力に対するゼロ点のオフセットの抑制については有効であるが、圧力印加に対する感度が低下してしまう。すなわち、圧力印加に対して得られるセンサ出力の大きさが小さくなる。 However, when the support portion formed on the sensor substrate has an annular shape, it is effective for suppressing the offset of the zero point with respect to the thermal stress and the mounting stress, but the sensitivity to the pressure application is lowered. That is, the magnitude of sensor output obtained with respect to pressure application is reduced.
 本開示は上記点に鑑みて、熱応力や実装応力に対するゼロ点のオフセットの抑制を可能としつつ、より感度を高めることが可能な構造の圧力センサを提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a pressure sensor having a structure capable of further increasing sensitivity while suppressing the zero point offset with respect to thermal stress and mounting stress.
 本開示の1つの観点における圧力センサは、矩形板状をなす半導体よりなるチップであって、裏面に第1凹部が形成されていると共に該第1凹部に対応した表面側の薄肉部がダイヤフラムとして構成され、かつ、第1凹部の周囲が支持部とされているとともに、表面にピエゾ抵抗を有するセンサチップと、センサチップの裏面の支持部に接合される接合部材と、を備えている。このような構成において、センサチップの裏面に第2凹部が形成され、支持部の外壁面の上面形状が四角形以上の多角形状とされていると共に、ダイヤフラムの形状を構成する支持部の内壁面の上面形状が四角形以上の多角形状とされている。 A pressure sensor according to one aspect of the present disclosure is a chip made of a semiconductor having a rectangular plate shape, and a first concave portion is formed on a back surface, and a thin portion on a front surface side corresponding to the first concave portion is used as a diaphragm. The sensor chip is configured and includes a sensor chip having a piezoresistance on the surface and a bonding member bonded to the support part on the back surface of the sensor chip. In such a configuration, the second recess is formed on the back surface of the sensor chip, the upper surface shape of the outer wall surface of the support portion is a polygonal shape of a quadrangle or more, and the inner wall surface of the support portion that forms the diaphragm shape. The upper surface shape is a polygonal shape that is equal to or greater than a quadrangle.
 このように、支持部の内壁面の上面形状、つまり凹部により構成されるダイヤフラムの形状を多角形状にしている。このように、支持部の内壁面の上面形状を多角形状とする場合、円形状とする場合と比較して圧力印加に対するダイヤフラムの歪み量を大きくすることが可能となり、圧力センサの感度を向上させることが可能となる。 Thus, the shape of the upper surface of the inner wall surface of the support portion, that is, the shape of the diaphragm constituted by the recesses is made polygonal. As described above, when the upper surface shape of the inner wall surface of the support portion is a polygonal shape, it is possible to increase the amount of distortion of the diaphragm with respect to the pressure application as compared to the circular shape, thereby improving the sensitivity of the pressure sensor. It becomes possible.
 本開示のもう1つの観点における圧力センサでは、センサチップの裏面の四隅に第2凹部が形成され、支持部の外壁面の上面形状が円形状とされていると共に、ダイヤフラムの形状を構成する支持部の内壁面の上面形状が四角形以上の多角形状とされている。 In the pressure sensor according to another aspect of the present disclosure, the second recesses are formed at the four corners of the back surface of the sensor chip, the upper surface shape of the outer wall surface of the support portion is circular, and the support that forms the shape of the diaphragm The upper surface shape of the inner wall surface of the part is a polygonal shape of a quadrangle or more.
 このように、支持部の外壁面の上面形状が円形状とされる場合においても、支持部の内壁面の上面形状を四角形以上の多角形状とすることで、本開示の1つの観点における圧力センサと同様の効果を得ることができる。 Thus, even when the upper surface shape of the outer wall surface of the support portion is circular, the pressure sensor according to one aspect of the present disclosure is obtained by making the upper surface shape of the inner wall surface of the support portion a polygonal shape that is equal to or greater than a quadrangle. The same effect can be obtained.
 本開示の更にもう1つの観点における圧力センサは、センサチップと接合部材との間に配置され、支持部と接合部材とを接合する接着剤、を備え、接着剤について、センサチップの四隅において該接着剤が形成されていない非形成領域を設けることで、センサチップの表面側から見た外形形状が四角形以上の多角形状もしくは円形とされるようにしている。 A pressure sensor according to still another aspect of the present disclosure includes an adhesive that is disposed between the sensor chip and the bonding member, and bonds the support portion and the bonding member. By providing a non-formation region where no adhesive is formed, the outer shape viewed from the surface side of the sensor chip is made to be a polygonal shape of a square or more or a circle.
 このように、接着剤の外形形状をセンサチップと異なる形状とし、接着剤の形状によって、実質的なセンサチップの外壁面の形状を規定するようにしても良い。このようにしても、本開示の1つの観点における圧力センサと同様の効果を得ることができる。 Thus, the outer shape of the adhesive may be different from that of the sensor chip, and the substantial shape of the outer wall surface of the sensor chip may be defined by the shape of the adhesive. Even if it does in this way, the effect similar to the pressure sensor in one viewpoint of this indication can be acquired.
第1実施形態にかかる圧力センサのレイアウトを示す図である。It is a figure which shows the layout of the pressure sensor concerning 1st Embodiment. 図1に示す圧力センサの側面図である。It is a side view of the pressure sensor shown in FIG. 図1中のIIIA-IIIA線における断面図である。FIG. 3 is a cross-sectional view taken along the line IIIA-IIIA in FIG. 図1中のIIIB-IIIB線における断面図である。FIG. 3 is a cross-sectional view taken along line IIIB-IIIB in FIG. 第2実施形態にかかる圧力センサのレイアウトを示す図である。It is a figure which shows the layout of the pressure sensor concerning 2nd Embodiment. 図4に示す圧力センサの側面図である。It is a side view of the pressure sensor shown in FIG. 図4中のVI-VI線における断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 4. 第3実施形態にかかる圧力センサのレイアウトを示す図である。It is a figure which shows the layout of the pressure sensor concerning 3rd Embodiment. 図7に示す圧力センサの側面図である。It is a side view of the pressure sensor shown in FIG. 図7中のIX-IX線における断面図である。It is sectional drawing in the IX-IX line in FIG. 第4実施形態にかかる圧力センサのレイアウトを示す図である。It is a figure which shows the layout of the pressure sensor concerning 4th Embodiment. 図10中のXI-XI線における断面図である。It is sectional drawing in the XI-XI line in FIG. 第5実施形態にかかる圧力センサのレイアウトを示す図である。It is a figure which shows the layout of the pressure sensor concerning 5th Embodiment. 図13に示す圧力センサの側面図である。It is a side view of the pressure sensor shown in FIG. 図13中のXIV-XIV線における断面図である。It is sectional drawing in the XIV-XIV line | wire in FIG. 第6実施形態にかかる圧力センサのレイアウトを示す図である。It is a figure which shows the layout of the pressure sensor concerning 6th Embodiment. 図15に示す圧力センサの側面図である。It is a side view of the pressure sensor shown in FIG. 図15中のXVII-XVII線における断面図である。It is sectional drawing in the XVII-XVII line in FIG. 他の実施形態で説明する接着剤に粒状部材を含有させた場合の圧力センサの断面図である。It is sectional drawing of the pressure sensor at the time of making a granular member contain in the adhesive agent demonstrated by other embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 第1実施形態の圧力センサについて説明する。この圧力センサは、例えば、腐食性を有する液体やガスなどの圧力媒体の圧力の測定に適用いられる。具体的には、圧力センサは、ディーゼルエンジン車両の排気管内の排気ガス圧の測定、当該排気管内に設けられた排気清浄フィルタとしてのDPF(ディーゼルパティキュレートフィルタの略)の前後の差圧の測定などに適用される。
(First embodiment)
The pressure sensor according to the first embodiment will be described. This pressure sensor is applied to, for example, measurement of pressure of a pressure medium such as corrosive liquid or gas. Specifically, the pressure sensor measures the exhaust gas pressure in the exhaust pipe of a diesel engine vehicle, and measures the differential pressure before and after a DPF (abbreviation of diesel particulate filter) as an exhaust purification filter provided in the exhaust pipe. Applicable to etc.
 以下、図1、図2、図3Aおよび図3Bを参照して、本実施形態の圧力センサについて説明する。なお、図1は、図2のI-I矢視断面図に相当するレイアウト図である。また、図2は、断面図ではないが、図を見やすくするために、便宜上ハッチングを施してある。 Hereinafter, the pressure sensor of the present embodiment will be described with reference to FIGS. 1, 2, 3A, and 3B. 1 is a layout diagram corresponding to the cross-sectional view taken along the line II in FIG. Further, FIG. 2 is not a cross-sectional view, but is hatched for convenience of understanding.
 本実施形態の圧力センサS1は、図1~図3Aおよび図3Bに示すように、半導体ダイヤフラム式のセンサチップ10と、センサチップ10に接合された接合部材としての配線基板20とを備えている。 As shown in FIGS. 1 to 3A and 3B, the pressure sensor S1 of the present embodiment includes a semiconductor diaphragm sensor chip 10 and a wiring board 20 as a bonding member bonded to the sensor chip 10. .
 センサチップ10は、表面11および裏面12を有した矩形板状をなすSi(シリコン)等の半導体よりなるチップであり、例えば表面11の面方位が<110>面とされたシリコン基板によって構成されている。本実施形態の場合、センサチップ10は、表面11の法線方向から見たときの上面形状が正方形とされている。 The sensor chip 10 is a chip made of a semiconductor such as Si (silicon) having a rectangular plate shape having a front surface 11 and a back surface 12, and is constituted by a silicon substrate whose surface orientation is the <110> plane, for example. ing. In the case of this embodiment, the sensor chip 10 has a square upper surface shape when viewed from the normal direction of the surface 11.
 センサチップ10の裏面12の中央側には、凹部13が形成されている。例えば、凹部13は、化学的エッチング等により形成されている。このような凹部13が形成されているため、センサチップ10のうち凹部13が形成された部分が薄肉部とされ、この薄肉部によってダイヤフラム14が構成されている。 A recess 13 is formed on the center side of the back surface 12 of the sensor chip 10. For example, the recess 13 is formed by chemical etching or the like. Since such a concave portion 13 is formed, a portion of the sensor chip 10 where the concave portion 13 is formed is a thin portion, and a diaphragm 14 is configured by the thin portion.
 また、センサチップ10のうち凹部13の周囲が、ダイヤフラム14よりも厚い支持部15とされている。さらに、本実施形態の場合、支持部15の外縁にも凹部16が形成されており、支持部15の外形が所定形状となるようにしている。 Further, the periphery of the recess 13 in the sensor chip 10 is a support portion 15 that is thicker than the diaphragm 14. Furthermore, in the case of this embodiment, the recessed part 16 is also formed in the outer edge of the support part 15, and the external shape of the support part 15 becomes a predetermined shape.
 本実施形態の場合、凹部13は、上面形状が当該凹部13の中心を回転中心とした回転対称の多角形状、ここでは八角形とされている。具体的には、凹部13は、凹部13が構成する八角形の各辺の垂直二等分線を対称線とした対称図形の八角形とされており、好ましくは正八角形とされている。 In the case of the present embodiment, the recess 13 has a rotationally symmetric polygonal shape with the center of the recess 13 as the center of rotation, here an octagon. Specifically, the recess 13 is a symmetrical octagon with a perpendicular bisector of each side of the octagon formed by the recess 13 as a symmetry line, and is preferably a regular octagon.
 このように、凹部13が八角形で構成されているため、ダイヤフラム14も八角形状で構成されている。そして、センサチップ10の表面11におけるダイヤフラム14とされている位置には、拡散抵抗などからなる歪ゲージを構成するピエゾ抵抗17が設けられている。例えば、ピエゾ抵抗17は複数個設けられており、本実施形態においては4つのピエゾ抵抗17a~17dを備えた構成とされている。ダイヤフラム14の中心位置を中心として、センサチップ10の表面上における一方向の両側に1つずつピエゾ抵抗17a、17bが対向配置されている。また、一方向に対する垂直方向となる他方向の両側にも1つずつピエゾ抵抗17c、17dが対向配置されている。これら合計4つのピエゾ抵抗17a~17dによってホイートストンブリッジ回路が構成されている。そして、一方向の両側に対向配置された2つのピエゾ抵抗17a、17bがダイヤフラム14内における外周側に配置されたサイドゲージとされている。また、他方向の両側に対向配置された2つのピエゾ抵抗17c、17dがピエゾ抵抗17a、17bよりもダイヤフラム14の内周側に配置されたセンターゲージとされている。 Thus, since the recess 13 is formed in an octagon, the diaphragm 14 is also formed in an octagon. And the piezoresistor 17 which comprises the strain gauge which consists of diffused resistance etc. is provided in the position made into the diaphragm 14 in the surface 11 of the sensor chip 10. FIG. For example, a plurality of piezoresistors 17 are provided, and in the present embodiment, four piezoresistors 17a to 17d are provided. The piezoresistors 17a and 17b are arranged to face each other on both sides in one direction on the surface of the sensor chip 10 with the center position of the diaphragm 14 as the center. In addition, one piezoresistor 17c and 17d is disposed opposite to each other on both sides in the other direction, which is a direction perpendicular to one direction. A total of four piezoresistors 17a to 17d constitute a Wheatstone bridge circuit. Two piezoresistors 17a and 17b arranged opposite to both sides in one direction are side gauges arranged on the outer peripheral side in the diaphragm 14. In addition, two piezoresistors 17c and 17d disposed opposite to both sides in the other direction are center gauges disposed on the inner peripheral side of the diaphragm 14 with respect to the piezoresistors 17a and 17b.
 このような配置とされているため、本実施形態の構造のセンサチップ10においては、圧力印加に伴ってダイヤフラム14が変形すると、それに基づく歪みにより、ピエゾ抵抗17a、17bには圧縮応力が加わり、ピエゾ抵抗17c、17dには引張応力が加わる。そして、ピエゾ抵抗17a~17dが構成するホイートストンブリッジ回路の中点電圧が変化することで、印加された圧力を電気信号に変換して出力することが可能となっている。 Due to such an arrangement, in the sensor chip 10 having the structure of the present embodiment, when the diaphragm 14 is deformed as pressure is applied, compressive stress is applied to the piezoresistors 17a and 17b due to the distortion based on the deformation. Tensile stress is applied to the piezoresistors 17c and 17d. Then, when the midpoint voltage of the Wheatstone bridge circuit formed by the piezoresistors 17a to 17d is changed, the applied pressure can be converted into an electric signal and output.
 また、凹部16は、支持部15の外壁面の上面形状が凹部13と相似となる八角形となるように、四角形状とされたセンサチップ10の四隅を三角形状に除去した構成とされている。このため、支持部15の内壁面が構成する八角形、つまりダイヤフラム14となる八角形と支持部15の外壁面が構成する八角形とが同心状に配置され、かつ、それぞれの八角形の各辺を構成する壁面同士が互いに対向するように配置されている。 Further, the recess 16 has a configuration in which the four corners of the sensor chip 10 having a quadrangular shape are removed in a triangular shape so that the upper surface shape of the outer wall surface of the support portion 15 is similar to the recess 13. . For this reason, the octagon formed by the inner wall surface of the support portion 15, that is, the octagon that becomes the diaphragm 14 and the octagon formed by the outer wall surface of the support portion 15 are arranged concentrically, and each of the octagons It arrange | positions so that the wall surfaces which comprise a side may mutually oppose.
 凹部16については、センサチップ10の厚みの途中までエッチングによって除去することで構成している。この凹部16は、センサチップ10における支持部15の外形形状を八角形にするために形成したものであるため、凹部16に代えて、センサチップ10の厚み分すべてを除去するような構成とすることも考えられる。しかしながら、そのような構成とするには、エッチングではなく、ダイシングなどによってセンサチップ10の外形形状を八角形にする必要があり、プラズマダイシングなどの特殊なダイシング設備が必要になる。これに対して、凹部16とする場合には、単なるエッチングで済むため、特殊なダイシング設備が必要にならず、ダイヤフラム14を形成するための凹部13を形成する際に用いるエッチング設備を用いて凹部16を形成することができる。また、ダイシングについても、従来から一般的に使用されているダイシング設備を用いることができる。 The recess 16 is constituted by removing the etching chip halfway through the thickness of the sensor chip 10. The recess 16 is formed so that the outer shape of the support portion 15 in the sensor chip 10 is an octagon. Therefore, instead of the recess 16, the entire thickness of the sensor chip 10 is removed. It is also possible. However, for such a configuration, it is necessary to make the outer shape of the sensor chip 10 octagonal not by etching but by dicing or the like, and special dicing equipment such as plasma dicing is required. On the other hand, when the concave portion 16 is used, a simple dicing facility is not required because the etching is sufficient, and the concave portion 13 is formed using the etching equipment used when forming the concave portion 13 for forming the diaphragm 14. 16 can be formed. In addition, dicing equipment generally used conventionally can be used for dicing.
 さらに、凹部16とすることで、凹部16よりも表面11側において、センサチップ10を四角形状で保つようにできる。このため、ワイヤボンディング時などにおいてチップ剛性を維持することが可能となる。また、表面11側においてセンサチップ10を四角形状に保つことにより、センサチップ10を後述するように配線基板20に接合するときのダイマウント時に、保持部分を減らすことなくセンサチップ10を保持することが可能となる。 Furthermore, by forming the recess 16, the sensor chip 10 can be kept in a square shape on the surface 11 side of the recess 16. For this reason, it is possible to maintain chip rigidity during wire bonding or the like. Further, by keeping the sensor chip 10 in a square shape on the surface 11 side, the sensor chip 10 can be held without reducing the holding portion when die mounting is performed when the sensor chip 10 is bonded to the wiring board 20 as described later. Is possible.
 なお、凹部13と凹部16の深さについては等しくなっていても良いが、ここでは凹部13よりも凹部16の深さを浅くして、センサチップ10の外縁部の厚みがダイヤフラム14よりも厚くなるようにしている。これにより、ダイヤフラム14を適切な厚みにしつつ、センサチップ10の外縁部の欠けなどに対する耐久性の確保を実現することが可能となる。 The depths of the recess 13 and the recess 16 may be equal, but here, the depth of the recess 16 is made shallower than that of the recess 13 so that the outer edge of the sensor chip 10 is thicker than the diaphragm 14. It is trying to become. As a result, it is possible to ensure durability against chipping of the outer edge portion of the sensor chip 10 while making the diaphragm 14 have an appropriate thickness.
 また、センサチップ10の表面11は、保護膜18により被覆され保護されている。保護膜18は、ポリイミド樹脂やシリコン窒化膜(SiN)等の電気絶縁性を有する絶縁膜によって構成されている。 Further, the surface 11 of the sensor chip 10 is covered and protected by a protective film 18. The protective film 18 is made of an insulating film having an electrical insulating property such as polyimide resin or silicon nitride film (SiN).
 このように構成されたセンサチップ10は、半導体ダイヤフラム式の圧力センサS1のセンサ部として機能する。すなわち、センサチップ10は、圧力印加が為されると、ピエゾ抵抗17のピエゾ抵抗効果によって、印加された圧力に応じた電気信号を出力する。より詳しくは、ダイヤフラム14にて圧力を受け、その圧力によってダイヤフラム14が歪むと、ダイヤフラム14に形成されたピエゾ抵抗17の抵抗値が変化し、ピエゾ抵抗17a~17dが構成するホイートストンブリッジ回路の中点電圧が変化する。これにより、センサチップ10より、印加された圧力に対応する電気信号を出力すること、つまり印加された圧力を電気信号に変換して出力することが可能となる。 The sensor chip 10 thus configured functions as a sensor portion of the semiconductor diaphragm type pressure sensor S1. That is, when pressure is applied, the sensor chip 10 outputs an electrical signal corresponding to the applied pressure due to the piezoresistive effect of the piezoresistor 17. More specifically, when the diaphragm 14 receives pressure from the diaphragm 14 and the diaphragm 14 is distorted by the pressure, the resistance value of the piezoresistor 17 formed on the diaphragm 14 changes, and the piezoresistors 17a to 17d constitute the Wheatstone bridge circuit. The point voltage changes. As a result, the sensor chip 10 can output an electrical signal corresponding to the applied pressure, that is, the applied pressure can be converted into an electrical signal and output.
 また、本実施形態では、センサチップ10は、その裏面12側において、支持部15が配線基板20に接合されている。ここでは、センサチップ10の裏面12の支持部15は、配線基板20に対して接着剤30を介して接合されている。従来では、センサチップ10をガラス製台座に貼り付け、ガラス製台座を介してセンサチップ10を配線基板20に接合した構造とされていたが、ここではセンサチップ10を配線基板20に対して直接接合した構造としている。接着剤30としては、例えばシリコーンゴムやエポキシ樹脂等よりなるものが挙げられ、更に言えば、低弾性のものが望ましい。このように低弾性のもので接着剤30を構成することで、センサチップ10に加えられる応力の低減を図ることが可能となる。 Further, in the present embodiment, the sensor chip 10 has the support portion 15 bonded to the wiring substrate 20 on the back surface 12 side. Here, the support portion 15 on the back surface 12 of the sensor chip 10 is bonded to the wiring substrate 20 via an adhesive 30. Conventionally, the sensor chip 10 is attached to a glass pedestal, and the sensor chip 10 is bonded to the wiring board 20 via the glass pedestal. Here, the sensor chip 10 is directly attached to the wiring board 20. It has a joined structure. Examples of the adhesive 30 include those made of, for example, silicone rubber, epoxy resin, or the like. Thus, by constituting the adhesive 30 with a low elasticity, it is possible to reduce the stress applied to the sensor chip 10.
 より詳しくは、図1に示すように、接着剤30は、ダイヤフラム14よりも一回り大きくダイヤフラム14の形状に合わせて八角形とされた開口部30aを有し、外形形状も八角形とされている。本実施形態の場合、開口部30aの各辺および接着剤30の外形形状が構成する八角形の各辺は、共に、ダイヤフラム14の各辺と平行とされている。この接着剤30が配置される八角形の領域において、センサチップ10が配線基板20に接続されている。 More specifically, as shown in FIG. 1, the adhesive 30 has an opening 30 a that is slightly larger than the diaphragm 14 and has an octagonal shape corresponding to the shape of the diaphragm 14, and the outer shape is also octagonal. Yes. In the present embodiment, each side of the opening 30 a and each side of the octagon formed by the outer shape of the adhesive 30 are parallel to each side of the diaphragm 14. The sensor chip 10 is connected to the wiring board 20 in an octagonal region where the adhesive 30 is disposed.
 配線基板20は、例えばアルミナ等のセラミックよりなるセラミック基板や、プリント基板などの樹脂基板等よりなるものである。センサチップ10と配線基板20とは、図示しないボンディングワイヤ等により電気的に接続されており、上記したホイートストンブリッジ回路の出力が配線基板20に対して伝えられる。なお、ここでは図示していないが、配線基板20には、信号処理回路を構成するチップコンデンサなどの他の回路素子も備えられており、ホイートストンブリッジ回路の出力が適宜信号処理されたのち、外部に出力できるようになっている。 The wiring board 20 is made of, for example, a ceramic board made of ceramic such as alumina, or a resin board such as a printed board. The sensor chip 10 and the wiring board 20 are electrically connected by a bonding wire or the like (not shown), and the output of the Wheatstone bridge circuit is transmitted to the wiring board 20. Although not shown here, the wiring board 20 is also provided with other circuit elements such as a chip capacitor constituting the signal processing circuit, and the output of the Wheatstone bridge circuit is appropriately subjected to signal processing and then externally provided. Can be output to.
 また、配線基板20におけるセンサチップ10とは反対側の面、すなわち図2における配線基板20の下には、樹脂ケース40が設けられ、樹脂ケース40と配線基板20とは、接着剤31を介して接合されることで、固定されている。接着剤31としては、上記接着剤30と同様のシリコーンゴムを用いることができる。 In addition, a resin case 40 is provided on the surface of the wiring board 20 opposite to the sensor chip 10, that is, below the wiring board 20 in FIG. 2, and the resin case 40 and the wiring board 20 are connected via an adhesive 31. Are fixed by being joined together. As the adhesive 31, the same silicone rubber as that of the adhesive 30 can be used.
 樹脂ケース40は、例えば排気管のホース等に取り付けられるもので、測定される圧力を導入する圧力導入通路41を有している。同様に、配線基板20には、センサチップ10の裏面12側からダイヤフラム14に圧力を導入するための圧力導入孔21が設けられている。この圧力導入孔21は、樹脂ケース40の圧力導入通路41に通じており、これら圧力導入通路41および圧力導入孔21を通じて、図2に示されるように、センサチップ10の裏面12側からダイヤフラム14に、圧力の測定対象となる圧力媒体が導入されるようになっている。 The resin case 40 is attached to, for example, a hose of an exhaust pipe and has a pressure introduction passage 41 for introducing a pressure to be measured. Similarly, the wiring board 20 is provided with a pressure introduction hole 21 for introducing pressure from the back surface 12 side of the sensor chip 10 to the diaphragm 14. The pressure introduction hole 21 communicates with the pressure introduction passage 41 of the resin case 40, and the diaphragm 14 passes through the pressure introduction passage 41 and the pressure introduction hole 21 from the back surface 12 side of the sensor chip 10 as shown in FIG. In addition, a pressure medium to be measured for pressure is introduced.
 さらに、図3Aおよび図3Bに示すように、センサチップ10の裏面12側から配線基板20に至るまで、封止ゲル50によって封止してある。このように封止ゲル50による封止を行うことで、接着剤30やセンサチップ10が測定する圧力媒体に直接触れなくても済むようにしている。封止ゲル50としては、例えばシリコーン系ゲル、フッ素系ゲル、フロロシリコーン系ゲルなどのゲル材料を用いることができる。 Further, as shown in FIGS. 3A and 3B, the sensor chip 10 is sealed with a sealing gel 50 from the back surface 12 side to the wiring substrate 20. By performing sealing with the sealing gel 50 in this way, it is not necessary to directly touch the pressure medium measured by the adhesive 30 or the sensor chip 10. As the sealing gel 50, for example, a gel material such as silicone gel, fluorine gel, or fluorosilicone gel can be used.
 また、従来では、台座を介してセンサチップ10を配線基板20に接合していたため、台座の厚み分、封止ゲル50の高さが高くなって封止ゲル50による応力増加が発生すると共に、ゲル量の増加を招いていた。これに対して、本実施形態のように、台座をなくしてセンサチップ10を配線基板20に直接接合した構造としていることから、封止ゲル50の高さを低くでき、封止ゲル50による応力を低減できると共に、ゲル量の低減を図ることも可能となる。 In addition, conventionally, since the sensor chip 10 is bonded to the wiring substrate 20 via the pedestal, the height of the sealing gel 50 is increased by the thickness of the pedestal, and stress increase due to the sealing gel 50 occurs. An increase in the amount of gel was incurred. On the other hand, since the sensor chip 10 is directly joined to the wiring board 20 without the pedestal as in the present embodiment, the height of the sealing gel 50 can be reduced, and the stress caused by the sealing gel 50 can be reduced. Can be reduced, and the amount of gel can also be reduced.
 ここで、例えばセンサチップ10の表面11側は、例えば大気圧であり、圧力の測定対象となる圧力媒体は、例えば排気ガスであって、ダイヤフラム14の裏面12側に印加される圧力は排気ガス圧である。 Here, for example, the front surface 11 side of the sensor chip 10 is, for example, atmospheric pressure, and the pressure medium to be measured for pressure is, for example, exhaust gas, and the pressure applied to the back surface 12 side of the diaphragm 14 is exhaust gas. Pressure.
 そして、圧力媒体の圧力がダイヤフラム14に導入されたとき、ダイヤフラム14の表面11と裏面12との差圧によりダイヤフラム14が歪む。すると、センサチップ10からはダイヤフラム14の歪みに基づくピエゾ抵抗効果によって、印加された圧力媒体の圧力に応じた電気信号が出力される。 Then, when the pressure of the pressure medium is introduced into the diaphragm 14, the diaphragm 14 is distorted due to the differential pressure between the front surface 11 and the back surface 12 of the diaphragm 14. Then, an electrical signal corresponding to the pressure of the applied pressure medium is output from the sensor chip 10 by the piezoresistive effect based on the distortion of the diaphragm 14.
 このような構成とされる場合、圧力センサS1は、相対圧型センサとなる。すなわち、圧力センサS1は、センサチップ10の表面11側からダイヤフラム14に印加される圧力と、センサチップ10の裏面12側からダイヤフラム14に印加される圧力との差圧により、ダイヤフラム14が歪む相対圧型センサとなる。 In the case of such a configuration, the pressure sensor S1 is a relative pressure type sensor. That is, the pressure sensor S1 has a relative relationship in which the diaphragm 14 is distorted by a differential pressure between the pressure applied to the diaphragm 14 from the front surface 11 side of the sensor chip 10 and the pressure applied to the diaphragm 14 from the back surface 12 side of the sensor chip 10. It becomes a pressure type sensor.
 以上のようにして、本実施形態にかかる圧力センサS1が構成されている。このように構成された圧力センサS1では、圧力導入通路41や圧力導入孔21を通じて圧力媒体の圧力がダイヤフラム14に印加されると、ダイヤフラム14は表面11側に印加される圧力と裏面12側に印加される圧力媒体の圧力との差圧に基づいて歪む。この歪みによって、ピエゾ抵抗17a~17dの抵抗値が変化する。したがって、ピエゾ抵抗17a~17dが構成するホイートストンブリッジ回路の入力端子に対して直流定電圧を与えたときに、ピエゾ抵抗17a~17dの抵抗値変化によってホイートストンブリッジ回路の中点電圧が変化する。これに基づいて、圧力媒体の圧力に応じた電気信号を出力として得ることが可能となる。 As described above, the pressure sensor S1 according to the present embodiment is configured. In the pressure sensor S1 configured as described above, when the pressure of the pressure medium is applied to the diaphragm 14 through the pressure introduction passage 41 and the pressure introduction hole 21, the diaphragm 14 is applied to the pressure applied to the front surface 11 side and the back surface 12 side. Distortion is based on the pressure difference from the pressure of the applied pressure medium. Due to this distortion, the resistance values of the piezo resistors 17a to 17d change. Therefore, when a DC constant voltage is applied to the input terminal of the Wheatstone bridge circuit formed by the piezoresistors 17a to 17d, the midpoint voltage of the Wheatstone bridge circuit changes due to the change in the resistance value of the piezoresistors 17a to 17d. Based on this, an electric signal corresponding to the pressure of the pressure medium can be obtained as an output.
 このような圧力センサS1において、上記したように、支持部15の外壁面の形状を八角形状にしている。 In such a pressure sensor S1, as described above, the shape of the outer wall surface of the support portion 15 is an octagonal shape.
 このように、支持部15の外壁面の形状を八角形状にすることで、凹部16を形成せずにセンサチップ10の外形形状となる四角形状のままにした場合と比較して、熱応力や実装応力を分散させられる。このため、熱応力や実装応力に対するゼロ点のオフセットの影響を抑制することが可能となる。 Thus, by making the shape of the outer wall surface of the support portion 15 an octagonal shape, compared with the case where the outer shape of the sensor chip 10 is left without forming the concave portion 16, thermal stress and Mounting stress can be dispersed. For this reason, it becomes possible to suppress the influence of the zero point offset on the thermal stress and the mounting stress.
 さらに、本実施形態では、支持部15の内壁面の上面形状、つまり凹部13により構成されるダイヤフラム14の形状を八角形状にしている。このように、支持部15の内壁面の上面形状を八角形状とする場合、円形状とする場合と比較して圧力印加に対するダイヤフラム14の歪み量を大きくすることが可能となり、圧力センサS1の感度を向上させることが可能となる。この理由について、以下に説明する。 Furthermore, in this embodiment, the shape of the upper surface of the inner wall surface of the support portion 15, that is, the shape of the diaphragm 14 constituted by the concave portion 13 is an octagonal shape. Thus, when the upper surface shape of the inner wall surface of the support portion 15 is an octagonal shape, it is possible to increase the amount of distortion of the diaphragm 14 with respect to the pressure application as compared with the circular shape, and the sensitivity of the pressure sensor S1. Can be improved. The reason for this will be described below.
 ダイヤフラム14の歪み量を決めるパラメータの一つとして支持部15の内壁面の形状が挙げられる。ダイヤフラム14の歪み量は、支持部15の内壁面の形状に基づく変形のし難さによって決まる。この変形のし難さは、断面二次モーメント、つまり曲げモーメントに対する梁部材の変形のし難さを示す量として表される。もしくは、断面二次モーメントを支持部15の内壁面からダイヤフラム14の中心軸までの距離で割った値である断面係数として表すことができる。これら断面二次モーメントもしくは断面係数に基づいて、ダイヤフラム14の歪み量について算出したところ、支持部15の内壁面の形状を円形状とすると、多角形状とする場合と比較してダイヤフラム14の歪み量が小さくなり、感度が低下することが確認された。例えば、支持部15の内壁面の形状を四角形状とした場合と比較すると円形状にした場合には0.73倍の感度となった。 The shape of the inner wall surface of the support 15 is one of the parameters that determine the amount of distortion of the diaphragm 14. The amount of distortion of the diaphragm 14 is determined by the difficulty of deformation based on the shape of the inner wall surface of the support portion 15. This difficulty of deformation is expressed as an amount indicating the difficulty of deformation of the beam member with respect to the cross-sectional secondary moment, that is, the bending moment. Alternatively, it can be expressed as a section modulus that is a value obtained by dividing the sectional moment of inertia by the distance from the inner wall surface of the support portion 15 to the central axis of the diaphragm 14. When the amount of strain of the diaphragm 14 is calculated based on the sectional moment of inertia or the section modulus, when the shape of the inner wall surface of the support portion 15 is a circular shape, the amount of strain of the diaphragm 14 is compared with a polygonal shape. Was reduced and the sensitivity was confirmed to decrease. For example, compared with the case where the shape of the inner wall surface of the support portion 15 is a quadrilateral shape, the sensitivity is 0.73 times higher when the shape is circular.
 センサチップ10のチップサイズを大きくすれば、支持部15の内壁面を円形状としても、多角形状とする場合と同等の感度を得ることができる。しかしながら、チップサイズの制限等に基づいて、熱応力や実装応力に対するゼロ点のオフセットへの影響抑制と感度向上とのトレードオフを考慮した感度設計を行う必要がある。このため、支持部15の内壁面を多角形状、ここでは八角形状とすることで、チップサイズの制限等があっても感度向上を実現できるようにしている。さらに、有限の大きさを持つピエゾ抵抗17a~17dをダイヤフラム14からはみ出さないようにしつつ、例えばサイドゲージについてはできるだけダイヤフラム14の外縁側に配置するようにすれば、より感度向上を図ることも可能となる。 If the chip size of the sensor chip 10 is increased, even if the inner wall surface of the support portion 15 is circular, it is possible to obtain the same sensitivity as when it is polygonal. However, it is necessary to design the sensitivity in consideration of the trade-off between the suppression of the influence on the offset of the zero point with respect to the thermal stress and the mounting stress and the sensitivity improvement based on the limitation of the chip size. For this reason, the inner wall surface of the support portion 15 is formed in a polygonal shape, in this case, an octagonal shape, so that an improvement in sensitivity can be realized even if there is a restriction on the chip size. Furthermore, if the piezoresistors 17a to 17d having a finite size are not protruded from the diaphragm 14, for example, the side gauge is arranged on the outer edge side of the diaphragm 14 as much as possible, the sensitivity can be further improved. It becomes possible.
 このような圧力センサS1は、例えば樹脂ケース40上に、配線基板20、センサチップ10を、接着剤30、31を介して順に積層して接合すると共に、センサチップ10と配線基板20とをワイヤボンディング等で電気的に接続すること等により、製造される。勿論、各部材の積層、接合の順序については任意であり、適宜変更しても良い。 Such a pressure sensor S1 is formed by, for example, laminating and bonding the wiring board 20 and the sensor chip 10 on the resin case 40 in order via the adhesives 30 and 31, and connecting the sensor chip 10 and the wiring board 20 to the wire. Manufactured by electrical connection by bonding or the like. Of course, the order of lamination and joining of each member is arbitrary, and may be changed as appropriate.
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対して凹部16の形状を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。なお、本実施形態にかかる圧力センサS1について、図4~図6を参照して説明する。図4は、図5のIV-IV断面図に相当するレイアウト図である。図5は、断面図ではないが、図を見易くするために、便宜上ハッチングを示してある。
(Second Embodiment)
A second embodiment will be described. In the present embodiment, the shape of the concave portion 16 is changed with respect to the first embodiment, and the others are the same as those in the first embodiment. Therefore, only the portions different from the first embodiment will be described. The pressure sensor S1 according to the present embodiment will be described with reference to FIGS. FIG. 4 is a layout diagram corresponding to the IV-IV sectional view of FIG. Although FIG. 5 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see.
 図4~図6に示すように、本実施形態では、各凹部16をライン状で構成している。具体的には、支持部15の外壁面については第1実施形態と同様に八角形状としているが、各凹部16を支持部15の外壁面の一辺に沿うライン状としている。そして、凹部16よりもセンサチップ10の中心から離れる側においては、センサチップ10の厚肉部が残された状態とされている。 As shown in FIGS. 4 to 6, in this embodiment, each recess 16 is formed in a line shape. Specifically, the outer wall surface of the support portion 15 has an octagonal shape as in the first embodiment, but each recess 16 has a line shape along one side of the outer wall surface of the support portion 15. The thicker portion of the sensor chip 10 is left on the side farther from the center of the sensor chip 10 than the recess 16.
 また、接着剤30についても、ダイヤフラム14を囲む開口部30aおよび外形形状が八角形の部分だけでなく、センサチップ10の四隅と対応する部分にも配置された状態となっている。 Also, the adhesive 30 is in a state of being disposed not only at the opening 30a surrounding the diaphragm 14 and the outer shape of the octagonal portion but also at the portions corresponding to the four corners of the sensor chip 10.
 このように、凹部16をライン状としても、その内側に形成される支持部15を多角形状で構成することができる。このため、本実施形態の構造の圧力センサS1においても、第1実施形態と同様の効果を得ることができる。 Thus, even if the concave portion 16 is formed in a line shape, the support portion 15 formed inside thereof can be formed in a polygonal shape. For this reason, also in the pressure sensor S1 of the structure of this embodiment, the same effect as 1st Embodiment can be acquired.
 なお、このような構造の圧力センサS1については、基本的に第1実施形態と同様であり、凹部16をエッチングによって形成する際のマスクを変更するだけで良い。また、ここでは各凹部16を1本のライン状で構成しているが、平行な複数本のライン状で構成することもできる。 Note that the pressure sensor S1 having such a structure is basically the same as that of the first embodiment, and it is only necessary to change the mask when the recess 16 is formed by etching. Moreover, although each recessed part 16 is comprised in the shape of one line here, it can also be comprised in the shape of a plurality of parallel lines.
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第1実施形態に対して支持部15の外壁面の上面形状を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。なお、本実施形態にかかる圧力センサS1について、図7~図9を参照して説明する。図7は、図8のVII-VII断面図に相当するレイアウト図である。図8は、断面図ではないが、図を見易くするために、便宜上ハッチングを示してある。
(Third embodiment)
A third embodiment will be described. In the present embodiment, the upper surface shape of the outer wall surface of the support portion 15 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment are described. explain. The pressure sensor S1 according to the present embodiment will be described with reference to FIGS. 7 is a layout diagram corresponding to the VII-VII cross-sectional view of FIG. Although FIG. 8 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see.
 図7~図9に示すように、本実施形態では、支持部15の内壁面の上面形状については多角形状のままとしつつ、支持部15の外壁面の上面形状を円形状としている。また、支持部15の外壁面の上面形状が円形状となるように、各凹部16のうち支持部15の外壁面を構成する部分を円弧状としている。 As shown in FIGS. 7 to 9, in this embodiment, the upper surface shape of the inner wall surface of the support portion 15 remains polygonal, while the upper surface shape of the outer wall surface of the support portion 15 is circular. Moreover, the part which comprises the outer wall surface of the support part 15 among each recessed part 16 is made into circular arc shape so that the upper surface shape of the outer wall surface of the support part 15 may become circular shape.
 また、接着剤30についても、ダイヤフラム14を囲む開口部30aについては八角形とされており、外形形状は円形とされている。 As for the adhesive 30, the opening 30a surrounding the diaphragm 14 is an octagon, and the outer shape is a circle.
 このように、支持部15の外壁面の上面形状を円形状としても、熱応力や実装応力に対するゼロ点のオフセットの影響を抑制することが可能となる。そして、その場合でも、支持部15の内壁面の上面形状、つまりダイヤフラム14の形状を多角形状とすることで、圧力センサS1の感度を向上させることが可能となる。 Thus, even if the upper surface shape of the outer wall surface of the support portion 15 is circular, it is possible to suppress the influence of the zero point offset on the thermal stress and the mounting stress. Even in this case, the sensitivity of the pressure sensor S1 can be improved by making the shape of the upper surface of the inner wall surface of the support portion 15, that is, the shape of the diaphragm 14, a polygonal shape.
 なお、このような構造の圧力センサS1についても、基本的に第1実施形態と同様であり、凹部16をエッチングによって形成する際のマスクを変更するだけで良い。 Note that the pressure sensor S1 having such a structure is basically the same as that of the first embodiment, and it is only necessary to change the mask when the recess 16 is formed by etching.
 (第4実施形態)
 第4実施形態について説明する。本実施形態も、第1実施形態に対して支持部15の外壁面の上面形状を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。なお、本実施形態にかかる圧力センサS1について、図10および図11を参照して説明する。図10は、図2のI-I断面図に相当するレイアウト図である。図11は、断面図ではないが、図を見易くするために、便宜上ハッチングを示してある。
(Fourth embodiment)
A fourth embodiment will be described. In this embodiment, the upper surface shape of the outer wall surface of the support portion 15 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment are described. explain. The pressure sensor S1 according to the present embodiment will be described with reference to FIGS. 10 is a layout diagram corresponding to the II cross-sectional view of FIG. Although FIG. 11 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see.
 図10および図11に示すように、本実施形態でも、支持部15の内壁面および外壁面の上面形状を共に多角形状、具体的には八角形状とている。ただし、支持部15の内壁面の上面形状が構成する多角形に対して、外壁面の上面形状が構成する多角形を周方向においてずらして形成している。 As shown in FIGS. 10 and 11, also in the present embodiment, the upper surface shapes of the inner wall surface and the outer wall surface of the support portion 15 are both polygonal shapes, specifically, octagonal shapes. However, the polygon which the upper surface shape of an outer wall surface comprises is shifted and formed in the circumferential direction with respect to the polygon which the upper surface shape of the inner wall surface of the support part 15 comprises.
 具体的には、支持部15の内壁面については、センサチップ10のうち四角形状とされた部分の四辺に対して、支持部15の内壁面の上面形状が構成する八角形状のうちの四辺がそれぞれ平行とされている。また、支持部15の内壁面の上面形状が構成する八角形状のうちの残る四辺がセンサチップ10のうち四角形状とされた部分の各対角線とそれぞれ平行とされている。 Specifically, with respect to the inner wall surface of the support portion 15, the four sides of the octagonal shape formed by the upper surface shape of the inner wall surface of the support portion 15 with respect to the four sides of the sensor chip 10 that are formed into a square shape. Each is parallel. Further, the remaining four sides of the octagonal shape formed by the upper surface shape of the inner wall surface of the support portion 15 are parallel to the diagonal lines of the sensor chip 10 that are square.
 一方、支持部15の外壁面については、当該外壁面が構成する八角形状が支持部15の内壁面が構成する八角形状に対して、センサチップ10の中心を回転軸として所定角度、例えば45°ずらした状態とされている。 On the other hand, with respect to the outer wall surface of the support portion 15, the octagon shape formed by the outer wall surface is a predetermined angle with respect to the octagon shape formed by the inner wall surface of the support portion 15 as the rotation axis, for example, 45 °. The state is shifted.
 また、接着剤30についても、ダイヤフラム14を囲む開口部30aについては、各辺がダイヤフラム14の各辺と平行とされている。そして、接着剤30の外形形状を構成する八角形については、ダイヤフラム14の各辺に対してセンサチップ10の中心を回転軸として所定角度ずらした状態とされている。 As for the adhesive 30, each side of the opening 30 a surrounding the diaphragm 14 is parallel to each side of the diaphragm 14. The octagon that forms the outer shape of the adhesive 30 is shifted from the sides of the diaphragm 14 by a predetermined angle with the center of the sensor chip 10 as the rotation axis.
 このように、支持部15の内壁面や外壁面が構成する多角形状をセンサチップ10の中心を回転軸として角度をずらしたレイアウトとすることもできる。このような構成としても、熱応力や実装応力に対するゼロ点のオフセットの影響を抑制できると共に、圧力センサS1の感度を向上させることが可能となる。 In this way, the polygonal shape formed by the inner wall surface and the outer wall surface of the support portion 15 can be a layout in which the angle is shifted with the center of the sensor chip 10 as the rotation axis. Even with such a configuration, it is possible to suppress the influence of the offset of the zero point on the thermal stress and mounting stress, and it is possible to improve the sensitivity of the pressure sensor S1.
 なお、このような構造の圧力センサS1についても、基本的に第1実施形態と同様であり、凹部16をエッチングによって形成する際のマスクを変更するだけで良い。 Note that the pressure sensor S1 having such a structure is basically the same as that of the first embodiment, and it is only necessary to change the mask when the recess 16 is formed by etching.
 (第5実施形態)
 第5実施形態について説明する。本実施形態は、第1、第3、第4実施形態に対して支持部15の外壁面の構成を変更したものであり、その他については第1、第3、第4実施形態と同様であるため、第1、第3、第4実施形態と異なる部分についてのみ説明する。なお、本実施形態にかかる圧力センサS1について、図12~図14を参照して説明する。図12は、図13のXII-XII断面図に相当するレイアウト図である。図13は、断面図ではないが、図を見易くするために、便宜上ハッチングを示してある。また、以下の説明では、第3実施形態のように支持部15の外壁面を円形状とする場合を例に挙げて説明するが、第1、第4実施形態のように多角形とする場合でも同様の構造を適用できる。
(Fifth embodiment)
A fifth embodiment will be described. In the present embodiment, the configuration of the outer wall surface of the support portion 15 is changed with respect to the first, third, and fourth embodiments, and the rest is the same as the first, third, and fourth embodiments. Therefore, only different portions from the first, third, and fourth embodiments will be described. The pressure sensor S1 according to the present embodiment will be described with reference to FIGS. 12 is a layout diagram corresponding to the XII-XII cross-sectional view of FIG. Although FIG. 13 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see. Moreover, in the following description, the case where the outer wall surface of the support portion 15 is circular as in the third embodiment will be described as an example. However, in the case where the outer wall surface is a polygon as in the first and fourth embodiments. But a similar structure can be applied.
 図12~図14に示すように、本実施形態では、支持部15の内壁面の上面形状については多角形状のままとしつつ、支持部15の外壁面の上面形状を円形状としている。そして、図12および図13に示すように、凹部16を等方性エッチングなどによって形成することで、支持部15の外壁面がテーパ状の傾斜面となるようにしている。 As shown in FIGS. 12 to 14, in this embodiment, the upper surface shape of the inner wall surface of the support portion 15 remains polygonal, while the upper surface shape of the outer wall surface of the support portion 15 is circular. As shown in FIGS. 12 and 13, the outer wall surface of the support portion 15 becomes a tapered inclined surface by forming the recess 16 by isotropic etching or the like.
 このように、支持部15の外壁面を傾斜面としても、上面形状を円形状や多角形状とすることで、熱応力や実装応力に対するゼロ点のオフセットの影響を抑制することが可能となる。そして、支持部15の内壁面の上面形状、つまりダイヤフラム14の形状を多角形状とすることで、圧力センサS1の感度を向上させることが可能となる。 As described above, even if the outer wall surface of the support portion 15 is an inclined surface, it is possible to suppress the influence of the zero point offset on the thermal stress and the mounting stress by making the upper surface shape circular or polygonal. And the sensitivity of pressure sensor S1 can be improved by making the upper surface shape of the inner wall surface of the support part 15, ie, the shape of the diaphragm 14, into a polygonal shape.
 なお、このような構造の圧力センサS1についても、基本的に第1実施形態と同様であり、凹部16を等方性エッチングによって形成することで、支持部15の外壁面を傾斜面とするだけで良い。 The pressure sensor S1 having such a structure is also basically the same as that of the first embodiment, and the recess 16 is formed by isotropic etching, so that the outer wall surface of the support portion 15 is merely an inclined surface. Good.
 (第6実施形態)
 第6実施形態について説明する。本実施形態は、第1~第4実施形態に対してセンサチップ10の構成を変更したものであり、その他については第1~第4実施形態と同様であるため、第1~第4実施形態と異なる部分についてのみ説明する。なお、本実施形態にかかる圧力センサS1について、図15~図17を参照して説明する。図15は、図16のXV-XV断面図に相当するレイアウト図である。図16は、断面図ではないが、図を見易くするために、便宜上ハッチングを示してある。なお、以下の説明では、第1実施形態のように開口部30aおよび接着剤30の外形形状がダイヤフラム14を囲むように八角形とされている場合を例に挙げて説明するが、第2~第4実施形態の形状とされる場合でも同様の構造を適用できるし、同様の効果が得られる。
(Sixth embodiment)
A sixth embodiment will be described. In the present embodiment, the configuration of the sensor chip 10 is changed with respect to the first to fourth embodiments, and the other parts are the same as those of the first to fourth embodiments. Therefore, the first to fourth embodiments are the same. Only different parts will be described. The pressure sensor S1 according to the present embodiment will be described with reference to FIGS. 15 is a layout diagram corresponding to the XV-XV sectional view of FIG. Although FIG. 16 is not a cross-sectional view, hatching is shown for convenience in order to make the drawing easy to see. In the following description, the case where the outer shapes of the opening 30a and the adhesive 30 are octagonal so as to surround the diaphragm 14 as in the first embodiment will be described as an example. Even in the case of the shape of the fourth embodiment, the same structure can be applied and the same effect can be obtained.
 図15~図17に示すように、センサチップ10には、ダイヤフラム14を形成するための凹部13が形成されているものの、その周囲の支持部15を構成する部分の凹部16については形成されていない。ただし、接着剤30については、第1実施形態と同様に、ダイヤフラム14を囲む八角形とされた開口部30aが形成されていると共に、外形形状が八角形とされたものとされている。 As shown in FIGS. 15 to 17, the sensor chip 10 has a recess 13 for forming the diaphragm 14, but the recess 16 that is a part of the surrounding support portion 15 is formed. Absent. However, the adhesive 30 has an octagonal opening 30a surrounding the diaphragm 14 and an outer shape of the octagon, as in the first embodiment.
 つまり、センサチップ10については凹部16を形成していないが、接着剤30については第1実施形態と同様の形状とし、センサチップ10の四隅において接着剤30が形成されていない非形成領域を構成している。これにより、センサチップ10の裏面12のうち接着剤30と接着される部分が第1実施形態と同様の形状となるようにしている。 That is, the recess 16 is not formed for the sensor chip 10, but the adhesive 30 has the same shape as that of the first embodiment, and non-formation areas where the adhesive 30 is not formed at the four corners of the sensor chip 10 are configured. is doing. Thereby, the part adhere | attached with the adhesive agent 30 among the back surfaces 12 of the sensor chip 10 is made to become the shape similar to 1st Embodiment.
 このように、本実施形態では、センサチップ10については凹部16を形成せずに、接着剤30の外形形状を八角形とすることで、実質的に支持部15の外壁面の形状を八角形状とした場合と同様としている。このため、センサチップ10の外形形状を四角形状のままにしつつ、接着剤30の外形形状も四角形状のままとした場合と比較して、熱応力や実装応力を分散させられる。したがって、熱応力や実装応力に対するゼロ点のオフセットの影響を抑制することが可能となる。 Thus, in the present embodiment, the sensor chip 10 is not formed with the recesses 16 and the outer shape of the adhesive 30 is an octagon, so that the shape of the outer wall surface of the support portion 15 is substantially an octagon. It is the same as the case. For this reason, it is possible to disperse the thermal stress and the mounting stress as compared with the case where the outer shape of the sensor chip 10 remains a square shape and the outer shape of the adhesive 30 remains a square shape. Therefore, it is possible to suppress the influence of the zero point offset on the thermal stress and the mounting stress.
 以上説明したように、接着剤30の外形形状をセンサチップ10と異なる形状とし、接着剤30の形状によって、実質的なセンサチップ10の外壁面の形状を規定するようにしても良い。その場合、ここで説明したように、接着剤30の外形形状を、支持部15の内壁面と同じ形状、つまり四角形以上の多角形となるようにしても良いし、第2~第4実施形態のように、支持部15の内壁面の形状と異なる形状となるようにしても良い。例えば、支持部15の内壁面の形状が四角形以上の多角形とされていて、接着剤30の外形形状が円形とされていたり支持部15の内壁面の形状と異なる多角形されていても良い。 As described above, the outer shape of the adhesive 30 may be different from that of the sensor chip 10, and the substantial shape of the outer wall surface of the sensor chip 10 may be defined by the shape of the adhesive 30. In this case, as described herein, the outer shape of the adhesive 30 may be the same shape as the inner wall surface of the support portion 15, that is, a polygon more than a quadrangle, or the second to fourth embodiments. As described above, the shape of the inner wall surface of the support portion 15 may be different. For example, the shape of the inner wall surface of the support portion 15 may be a polygon that is equal to or greater than a quadrangle, and the outer shape of the adhesive 30 may be a circle or may be a polygon that is different from the shape of the inner wall surface of the support portion 15. .
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described based on the above-described embodiment, the present disclosure is not limited to the embodiment, and includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 例えば、上記実施形態では、支持部15の内壁面が構成する多角形、つまりダイヤフラム14を構成する多角形や支持部15の外壁面が構成する多角形として八角形を例に挙げて説明した。しかしながら、これは一例を挙げたに過ぎず、四角形以上の多角形であれば、六角形、十角形、十二角形などの他の多角形であっても良い。ただし、ダイヤフラム14にピエゾ抵抗17a~17dによるホイートストンブリッジ回路を構成する場合、各ピエゾ抵抗17a~17dのサイドゲージ同士とセンターゲージ同士をダイヤフラム14内において対称配置するのが好ましい。したがって、偶数角の多角形状とするのが好ましい。 For example, in the above-described embodiment, an octagon has been described as an example of a polygon formed by the inner wall surface of the support portion 15, that is, a polygon formed by the diaphragm 14 or a polygon formed by the outer wall surface of the support portion 15. However, this is merely an example, and other polygons such as a hexagon, a decagon, and a dodecagon may be used as long as the polygon is a quadrangle or more. However, when a Wheatstone bridge circuit including piezoresistors 17a to 17d is formed on the diaphragm 14, it is preferable that the side gauges and the center gauges of the piezoresistors 17a to 17d are arranged symmetrically in the diaphragm 14. Therefore, it is preferable to use a polygonal shape with even angles.
 また、上記第1実施形態では、配線基板20に圧力導入孔21を設けることにより、裏面受圧型の圧力センサS1を実現したが、センサチップ10の表面11から測定圧力をダイヤフラム14が受圧するいわゆる表面受圧型としても良い。その場合、配線基板20に圧力導入孔21が無くても良い。 In the first embodiment, the pressure introduction hole 21 is provided in the wiring substrate 20 to realize the back pressure receiving pressure sensor S1. However, the diaphragm 14 receives the measurement pressure from the front surface 11 of the sensor chip 10. It may be a surface pressure-receiving type. In that case, the wiring board 20 may not have the pressure introducing hole 21.
 また、センサチップ10の裏面12側が接合される接合部材としては、上記した配線基板20に限定されるものではなく、例えばリードフレームや樹脂部材等、種々の部材が適用可能である。 Further, the joining member to which the back surface 12 side of the sensor chip 10 is joined is not limited to the wiring substrate 20 described above, and various members such as a lead frame and a resin member are applicable.
 さらに、上記各実施形態において、接着剤30は、すべてがシリコーンゴムやエポキシ樹脂等の材料で構成されている必要はない。例えば、図18に示すように、接着剤30に、接着剤30の厚み、つまり高さを保持するためのビーズ等の粒状部材30bが含有されていても良い。このような粒状部材30bを接着剤30に含有させて接着剤30の高さを大きくすると、線膨張係数の大きい樹脂等の膨張収縮による力がセンサチップ10に伝達されることを抑制できる。このため、センサチップ10による圧力測定精度を向上させることが可能となる。このような粒状部材30bとしては、ポリマー等、接着剤30を構成するシリコーンゴムやエポキシ樹脂等の材料に対して近い低弾性材料を用いると好ましい。 Further, in each of the above embodiments, the adhesive 30 does not have to be composed of a material such as silicone rubber or epoxy resin. For example, as shown in FIG. 18, the adhesive 30 may contain a granular member 30 b such as a bead for maintaining the thickness, that is, the height of the adhesive 30. When such a granular member 30b is contained in the adhesive 30 and the height of the adhesive 30 is increased, it is possible to suppress the force due to expansion and contraction of a resin having a large linear expansion coefficient from being transmitted to the sensor chip 10. For this reason, it becomes possible to improve the pressure measurement accuracy by the sensor chip 10. As such a granular member 30b, it is preferable to use a low elastic material such as a polymer such as a silicone rubber or an epoxy resin that constitutes the adhesive 30.
 また、圧力センサとしては、上述した排気圧力を検出するものに限定されるものではなく、大気圧、エンジンの吸気圧をはじめとして、各種機器や容器の圧力など、いろいろな用途の圧力検出に用いることができる。 Further, the pressure sensor is not limited to the one that detects the exhaust pressure described above, but is used for pressure detection of various applications such as atmospheric pressure, engine intake pressure, and various equipment and container pressure. be able to.

Claims (9)

  1.  印加された圧力に応じた電気信号が出力される圧力センサであって、
     矩形板状をなす半導体よりなるチップであって、裏面(12)に第1凹部(13)が形成されていると共に該第1凹部に対応した表面(11)側の薄肉部がダイヤフラム(14)として構成され、かつ、前記第1凹部の周囲が支持部(15)とされているとともに、前記表面にピエゾ抵抗(17)を有するセンサチップ(10)と、
     前記センサチップの裏面の前記支持部に接合される接合部材(20)と、を備え、
     前記センサチップの前記裏面に第2凹部(16)が形成され、前記支持部の外壁面の上面形状が四角形以上の多角形状とされていると共に、前記ダイヤフラムの形状を構成する前記支持部の内壁面の上面形状が四角形以上の多角形状とされている圧力センサ。
    A pressure sensor that outputs an electrical signal corresponding to an applied pressure,
    A chip made of a semiconductor having a rectangular plate shape, and a first recess (13) is formed on the back surface (12), and a thin portion on the front surface (11) side corresponding to the first recess is a diaphragm (14). And a sensor chip (10) having a piezoresistance (17) on the surface, the periphery of the first recess being a support portion (15),
    A bonding member (20) bonded to the support portion on the back surface of the sensor chip,
    A second recess (16) is formed on the back surface of the sensor chip, and an upper surface shape of the outer wall surface of the support portion is a polygonal shape equal to or greater than a quadrangle, and the inside of the support portion constituting the shape of the diaphragm A pressure sensor in which the shape of the upper surface of the wall surface is a polygonal shape greater than or equal to a square.
  2.  印加された圧力に応じた電気信号が出力される圧力センサであって、
     矩形板状をなす半導体よりなるチップであって、裏面(12)に第1凹部(13)が形成されていると共に該第1凹部に対応した表面(11)側の薄肉部がダイヤフラム(14)として構成され、かつ、前記第1凹部の周囲が支持部(15)とされているとともに、前記表面にピエゾ抵抗(17)を有するセンサチップ(10)と、
     前記センサチップの裏面の前記支持部に接合される接合部材(20)と、を備え、
     前記センサチップの前記裏面の四隅に第2凹部(16)が形成され、前記支持部の外壁面の上面形状が円形状とされていると共に、前記ダイヤフラムの形状を構成する前記支持部の内壁面の上面形状が四角形以上の多角形状とされている圧力センサ。
    A pressure sensor that outputs an electrical signal corresponding to an applied pressure,
    A chip made of a semiconductor having a rectangular plate shape, and a first recess (13) is formed on the back surface (12), and a thin portion on the front surface (11) side corresponding to the first recess is a diaphragm (14). And a sensor chip (10) having a piezoresistance (17) on the surface, the periphery of the first recess being a support portion (15),
    A bonding member (20) bonded to the support portion on the back surface of the sensor chip,
    Second recesses (16) are formed at the four corners of the back surface of the sensor chip, and the top surface shape of the outer wall surface of the support portion is circular, and the inner wall surface of the support portion constituting the shape of the diaphragm A pressure sensor in which the top surface shape is a polygonal shape greater than or equal to a quadrangle.
  3.  前記支持部の内壁面の上面形状が八角形状とされている請求項1または2に記載の圧力センサ。 The pressure sensor according to claim 1 or 2, wherein an upper surface shape of an inner wall surface of the support portion is an octagonal shape.
  4.  前記支持部の外壁面の上面形状が八角形状とされていると共に前記支持部の内壁面の上面形状が八角形状とされ、前記支持部の外壁面および内壁面が構成する各八角形状が同心状に配置され、かつ、前記支持部の外壁面および内壁面が構成する各八角形状の各辺を構成する壁面同士が互いに対向して配置されている請求項1に記載の圧力センサ。 The upper surface shape of the outer wall surface of the support portion is an octagonal shape, the upper surface shape of the inner wall surface of the support portion is an octagonal shape, and each octagon shape formed by the outer wall surface and the inner wall surface of the support portion is concentric. The pressure sensor according to claim 1, wherein the wall surfaces constituting each side of each octagonal shape formed by the outer wall surface and the inner wall surface of the support portion are arranged to face each other.
  5.  前記支持部の外壁面の上面形状が八角形状とされていると共に前記支持部の内壁面の上面形状が八角形状とされ、前記支持部の外壁面および内壁面が構成する各八角形状が同心状に配置され、かつ、前記支持部の内壁面が構成する八角形状に対して、前記支持部の外壁面が構成する八角形状が、前記ダイヤフラムの中心を回転軸として所定角度ずらして配置されている請求項1に記載の圧力センサ。 The upper surface shape of the outer wall surface of the support portion is an octagonal shape, the upper surface shape of the inner wall surface of the support portion is an octagonal shape, and each octagon shape formed by the outer wall surface and the inner wall surface of the support portion is concentric. And the octagon shape formed by the outer wall surface of the support portion is shifted by a predetermined angle with the center of the diaphragm as the rotation axis, with respect to the octagon shape formed by the inner wall surface of the support portion. The pressure sensor according to claim 1.
  6.  前記支持部の外壁面は、テーパ状の傾斜面とされている請求項1ないし5のいずれか1つに記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 5, wherein an outer wall surface of the support portion is a tapered inclined surface.
  7.  前記接合部材は、前記センサチップの裏面側から前記ダイヤフラムに圧力を導入するための孔(21)が設けられた配線基板(20)であり、
     前記センサチップの裏面の前記支持部は、前記配線基板に対して接着剤(30)を介して接合されており、
     前記第1凹部内には封止ゲル(50)が充填された状態とされている請求項1ないし6のいずれか1つに記載の圧力センサ。
    The bonding member is a wiring board (20) provided with a hole (21) for introducing pressure to the diaphragm from the back side of the sensor chip,
    The support portion on the back surface of the sensor chip is bonded to the wiring board via an adhesive (30),
    The pressure sensor according to any one of claims 1 to 6, wherein the first recess is filled with a sealing gel (50).
  8.  印加された圧力に応じた電気信号が出力される圧力センサであって、
     矩形板状をなす半導体よりなるチップであって、裏面(12)に第1凹部(13)が形成されていると共に該第1凹部に対応した表面(11)側の薄肉部がダイヤフラム(14)として構成され、かつ、前記第1凹部の周囲が支持部(15)とされているとともに、前記表面にピエゾ抵抗(17)を有するセンサチップ(10)と、
     前記センサチップの裏面の前記支持部に接合される接合部材(20)と、
     前記センサチップと前記接合部材との間に配置され、前記支持部と前記接合部材とを接合する接着剤(30)と、を備え、
     前記ダイヤフラムの形状を構成する前記支持部の内壁面の上面形状は、四角形以上の多角形状とされ、
     前記接着剤は、前記センサチップの四隅において該接着剤が形成されていない非形成領域が設けられることで、前記センサチップの表面側から見た外形形状が四角形以上の多角形状もしくは円形とされている圧力センサ。
    A pressure sensor that outputs an electrical signal corresponding to an applied pressure,
    A chip made of a semiconductor having a rectangular plate shape, and a first recess (13) is formed on the back surface (12), and a thin portion on the front surface (11) side corresponding to the first recess is a diaphragm (14). And a sensor chip (10) having a piezoresistance (17) on the surface, the periphery of the first recess being a support portion (15),
    A bonding member (20) bonded to the support portion on the back surface of the sensor chip;
    An adhesive (30) that is disposed between the sensor chip and the joining member and joins the support portion and the joining member;
    The upper surface shape of the inner wall surface of the support part that constitutes the shape of the diaphragm is a polygonal shape of a quadrangle or more,
    The adhesive is provided with non-formation regions where the adhesive is not formed at the four corners of the sensor chip, so that the outer shape viewed from the surface side of the sensor chip is a polygonal or circular shape of a quadrangle or more. Pressure sensor.
  9.  前記接着剤は、該接着剤の厚みを保持する粒状部材(30b)が含有されている請求項7または8に記載の圧力センサ。 The pressure sensor according to claim 7 or 8, wherein the adhesive contains a granular member (30b) that maintains the thickness of the adhesive.
PCT/JP2017/017876 2016-06-14 2017-05-11 Pressure sensor WO2017217150A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-118258 2016-06-14
JP2016118258 2016-06-14
JP2017-024339 2017-02-13
JP2017024339A JP2017223643A (en) 2016-06-14 2017-02-13 Pressure sensor

Publications (1)

Publication Number Publication Date
WO2017217150A1 true WO2017217150A1 (en) 2017-12-21

Family

ID=60663123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017876 WO2017217150A1 (en) 2016-06-14 2017-05-11 Pressure sensor

Country Status (1)

Country Link
WO (1) WO2017217150A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393163A (en) * 1986-10-07 1988-04-23 Fuji Electric Co Ltd Semiconductor pressure sensor
JPS63281034A (en) * 1987-05-13 1988-11-17 Toshiba Corp Semiconductor pressure sensor
JPH09304206A (en) * 1996-05-14 1997-11-28 Yamatake Honeywell Co Ltd Semiconductor pressure transducer
JP2010122037A (en) * 2008-11-19 2010-06-03 Denso Corp Pressure sensor
JP2014134427A (en) * 2013-01-09 2014-07-24 Denso Corp Physical quantity sensor and method for manufacturing the same
US20140252362A1 (en) * 2013-03-08 2014-09-11 Sensetech Co., Ltd Thin film apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393163A (en) * 1986-10-07 1988-04-23 Fuji Electric Co Ltd Semiconductor pressure sensor
JPS63281034A (en) * 1987-05-13 1988-11-17 Toshiba Corp Semiconductor pressure sensor
JPH09304206A (en) * 1996-05-14 1997-11-28 Yamatake Honeywell Co Ltd Semiconductor pressure transducer
JP2010122037A (en) * 2008-11-19 2010-06-03 Denso Corp Pressure sensor
JP2014134427A (en) * 2013-01-09 2014-07-24 Denso Corp Physical quantity sensor and method for manufacturing the same
US20140252362A1 (en) * 2013-03-08 2014-09-11 Sensetech Co., Ltd Thin film apparatus

Similar Documents

Publication Publication Date Title
KR101226852B1 (en) Pressure sensor
US9513182B2 (en) Pressure sensor having multiple piezoresistive elements
KR101222746B1 (en) Pressure sensor
JP6665589B2 (en) Pressure sensor chip and pressure sensor
JP5227730B2 (en) Pressure sensor
KR20090087847A (en) Semiconductor strain sensor
KR20080080005A (en) Pressure sensor
KR101223862B1 (en) Pressure sensor
JP5220866B2 (en) Semiconductor pressure sensor
JP2012018049A (en) Pressure measurement instrument
US6951136B2 (en) Semiconductor pressure sensor device to detect micro pressure
JP2010002405A (en) Semiconductor pressure sensor
US6865951B2 (en) Semiconductor pressure sensor
JP2017223643A (en) Pressure sensor
WO2017217150A1 (en) Pressure sensor
JP2009288170A (en) Semiconductor pressure sensor
JP2009265012A (en) Semiconductor sensor
JP2017062193A (en) Pressure sensor
US20190204171A1 (en) Pressure sensor
JP2512220B2 (en) Multi-function sensor
JPH10132682A (en) Semiconductor pressure sensor, its manufacture, and compound transmitter using it
RU2316743C2 (en) Pressure measuring device
JP2016053508A (en) Pressure sensor
JP2015114233A (en) Semiconductor pressure sensor
JP2006153516A (en) Acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813055

Country of ref document: EP

Kind code of ref document: A1