WO2017216942A1 - テラヘルツ波測定装置 - Google Patents
テラヘルツ波測定装置 Download PDFInfo
- Publication number
- WO2017216942A1 WO2017216942A1 PCT/JP2016/068028 JP2016068028W WO2017216942A1 WO 2017216942 A1 WO2017216942 A1 WO 2017216942A1 JP 2016068028 W JP2016068028 W JP 2016068028W WO 2017216942 A1 WO2017216942 A1 WO 2017216942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- terahertz wave
- frequency
- measurement
- intermediate frequency
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims abstract description 142
- 230000005540 biological transmission Effects 0.000 claims abstract description 33
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 27
- 230000003287 optical effect Effects 0.000 claims description 15
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 230000008054 signal transmission Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 19
- 230000003111 delayed effect Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 235000014366 other mixer Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
- G01N21/3586—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
Definitions
- the present invention relates to a terahertz wave measuring apparatus.
- a terahertz wave measurement device is a device that irradiates a measurement target with a terahertz wave and observes the reflected or transmitted waves to detect intensity changes and phase differences caused by the measurement target. It is an effective device for non-destructive observation of contained components.
- a terahertz wave is an electromagnetic wave having a frequency range of about 0.1 THz to 10 THz, and has superior permeability to many substances such as paper, wood, and plastic compared to far infrared rays, which are electromagnetic waves in a higher frequency band. Compared to millimeter waves, which are electromagnetic waves of a lower frequency band, there is a feature that is superior in straightness and resolution.
- the internal structure such as the surface irregularities of the measurement object, the layer thickness of the layer structure, and the cavity It can be observed nondestructively. Therefore, it is expected that a wide range of terahertz wave applied technologies applicable to pharmaceutical inspection, material inspection, structural inspection, etc. will be realized in the future.
- the above-described problem is, for example, a terahertz wave measuring apparatus that irradiates a measurement target with a terahertz wave and measures the phase and intensity of the changed terahertz wave, and transmits a terahertz wave having a first frequency.
- a second terahertz wave transmitting unit that transmits a terahertz wave having a second frequency, a terahertz wave that has been changed by irradiating the measurement object with the terahertz wave having the first frequency, and a terahertz wave having the second frequency
- a measurement frequency mixer that outputs a measurement intermediate frequency signal that is a difference between the first frequency and the second frequency, irradiates the terahertz wave to the measurement object, and the first terahertz wave transmission unit
- a reference intermediate frequency signal transmission that outputs a reference intermediate frequency signal that is a difference between the first frequency and the second frequency synchronized with the second terahertz wave transmission unit.
- a terahertz wave measuring device that receives the output measurement intermediate frequency signal and the reference intermediate frequency signal, and outputs a phase and intensity of the measurement signal of the intermediate frequency It is solved by.
- the present invention it is possible to provide a terahertz wave measuring apparatus with high resolution and high sensitivity. Furthermore, the apparatus can be reduced in size and simplified by using a small electronic device transmitter. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
- the present invention provides a technique that enables terahertz wave measurement with a small size, high resolution, and high sensitivity.
- representative means for achieving the above object will be described.
- the reference IF signal is generated by the reference frequency mixer after branching by the branching unit.
- the terahertz wave irradiated to the measurement object is input to the measurement frequency mixer to generate a measurement IF signal.
- This configuration eliminates the need for a high-accuracy terahertz wave transmitter that uses a phase-locked loop that suppresses phase noise, making it possible to easily perform highly accurate phase measurement and intensity measurement with a small, low-cost terahertz wave transmitter. As a result, distance resolution measurement of an optical path difference sufficiently shorter than the wavelength becomes possible.
- detection signals in a plurality of phases can be obtained by setting an arbitrary phase difference without fixing the phase difference between the reference IF signals input to the standard phase low frequency mixer and the delayed phase low frequency mixer to 90 °. Can be measured.
- the measurement IF waveform is a sine wave without interference or distortion.
- the intermediate frequency measuring unit having the configuration (1) cannot accurately measure the phase and intensity. Therefore, the reference IF signal output from the delay unit that outputs an arbitrary phase is input to the delay phase low-frequency mixer, thereby reproducing the phase waveform from the detected wave intensity for each phase and calculating the highly accurate phase.
- phase measurement can be performed with high accuracy even in the case of a complicated reflected waveform.
- the measurement IF signal and the reference IF signal input to the intermediate signal measurement unit are converted into digital signals by the analog / digital conversion unit, respectively, and the digital signal processing circuit is used, thereby measuring the IF signal and the reference IF signal. It is possible to measure the phase difference and the intensity ratio with the high speed and high accuracy.
- the optical path length of the reference frequency is fixed, and fluctuations due to vibration of the device and ambient temperature are suppressed. Compared to a coaxial cable or spatial propagation, it is possible to suppress phase fluctuations.
- Measurement frequency The frequency of the terahertz wave is controlled by the signal processing unit, and the phase change of the terahertz wave by the measurement object is measured for a plurality of frequencies. Thereby, it becomes possible to measure the phase of the measurement object with higher accuracy.
- FIG. 3 is a schematic diagram showing the configuration of the heterodyne detection method for high sensitivity.
- a terahertz wave transmission unit 1 transmits a measurement frequency terahertz wave 12 having a frequency f1 applied to the measurement target 5, and a terahertz wave transmission unit 2 transmits a reference frequency terahertz wave 13 having a frequency f2 for reference.
- the terahertz wave 14 reflected by the measurement target and reflected by the half mirror 4 or the transmitted measurement frequency terahertz wave and the reference frequency terahertz wave are respectively incident on the detection unit connected to the mixer 7 and detected.
- a mixer is a device that outputs the product of two input signals, and is composed of a diode, a transistor, or the like.
- the mixer When the mixer is a two-terminal element such as a diode, the measurement frequency terahertz wave and the reference frequency terahertz wave are combined and input. From the mixer, signals of frequencies
- the reflection intensity of the terahertz wave on the reference reflecting surface is recorded in advance, and then the reflection intensity of the terahertz wave when reflected on the measurement object is recorded, and the measurement object and the reference are recorded. Calculate the intensity ratio. In the case of transmission measurement, the intensity ratio is similarly calculated.
- phase of the terahertz wave cannot be directly measured in the configuration of FIG. 3, it is possible to heterodyne detect a signal that interferes with the optical path of the terahertz wave using a Michelson interference system or a Mach-Cender interference system. In this method, it is necessary to observe the change in interference intensity by expanding and contracting the optical path length. For this purpose, the position of the reference mirror is moved by a mechanical device. For this reason, the apparatus becomes large, leading to an increase in measurement time due to travel time. Therefore, as shown in FIG. 4, by using an intermediate frequency measuring unit 24 that measures the phase ⁇ and intensity of the measurement IF signal 16 converted by the mixer 7 and the frequency filter 8, the phase can be measured simultaneously without a time difference.
- a reference intermediate frequency transmission unit 41 having the same frequency as the measurement IF signal 16 is prepared, the measurement IF signal 16 and the reference IF signal 15 are input to one mixer 9, and the measurement IF signal 16 is input to the other mixer 22.
- a signal 17 whose phase is changed by 90 ° through the delay unit 10 is input to the reference IF signal.
- the mixer 9 outputs a reference phase signal (I) 18 proportional to sin ( ⁇ )
- the mixer 22 outputs a delayed phase signal (Q) 19 proportional to cos ( ⁇ ).
- I and Q are amplified to voltage amplitudes that can be easily processed by the signal detection unit 11, and are further input to the signal processing unit 21 as detection signals 20 converted into digital signals.
- a signal source of a transmission unit used for a terahertz wave has larger phase noise than a millimeter wave band or a microwave band, which are low frequency bands.
- the influence of internal resistance increases due to an increase in frequency, and a large phase noise occurs.
- the PLL (phase-locked loop) technique generally used to solve this problem requires a frequency divider that divides the measurement frequency terahertz wave to a frequency that can generate a high-precision frequency signal that is referenced for synchronization.
- the terahertz wave divider is difficult to realize due to the high frequency. Therefore, a simpler method is required.
- FIG. 1 is a block diagram showing a first embodiment of the terahertz wave measuring apparatus of the present invention.
- This is an apparatus for irradiating a measurement target with a terahertz wave and observing changes in the phase and intensity of the reflected terahertz wave.
- the measurement frequency terahertz wave transmission unit 1 and the reference frequency terahertz wave transmission unit 2 transmit a terahertz wave continuously oscillated at a frequency of about 0.1 to 3 THz, such as a Gunn diode, a resonant tunnel diode, and a transistor, respectively. Consists of containers. Since these transmitters oscillate autonomously and do not require phase synchronization control, the phase varies with time.
- the oscillation frequency may be controlled to a desired frequency by an external control signal.
- these transmission parts may be comprised also by the multiplier controlled by the transmission part of a different reference frequency.
- a reference intermediate frequency signal generation unit 23 configured by two branch units 3 and 103, a reference frequency mixer 6 and a frequency mixer 8 is used.
- Voltage signal waveform X 2 of the voltage signal waveform X 1 and the reference frequency terahertz wave 13 of the measuring frequency terahertz wave 12 is branched by the branching unit 3 is expressed as follows.
- the measurement frequency f 1 , the reference frequency f 2 , the measurement transmitter phase ⁇ 1 , the reference transmitter phase ⁇ 2 , the measurement transmitter amplitude A 1 , and the reference transmitter amplitude A 2 are used. If the power distribution ratio by the branching section is 1: 1, the voltage amplitude is 1 / ⁇ 2. It should be noted that the equations described below are ideal cases, and the attenuation coefficient due to signal transmission, conversion, and mismatching is omitted because it has little effect on phase measurement. The transfer characteristics of each mixer are linear with respect to the input intensity.
- the voltage amplitude X 3 of the measurement frequency terahertz wave 14 that has passed through the half mirror 4 and reflected by the measurement object 5 is again reflected by the half mirror 4 and input to the measurement frequency mixer 7.
- the voltage amplitude is attenuated to 1/2 by the half mirror 4 and further attenuated to 1 / ⁇ by the reflection coefficient ⁇ of the measurement object.
- the half mirror is made of, for example, a silicon plate.
- the mixer shown below is comprised, for example with a Schottky barrier diode, a resonant tunnel diode, a transistor, etc. When the mixer is a two-terminal element such as a diode, two input terahertz waves may be combined and input.
- phase difference ⁇ is expressed as follows between the optical path difference L and the phase difference ⁇ .
- ⁇ is the wavelength of the measurement frequency terahertz wave
- k is an arbitrary integer.
- a voltage waveform Y 1 is output as the product of the reflected terahertz wave 14 and the reference frequency terahertz wave 13.
- the reference frequency mixer 6 outputs a voltage waveform Y 2 as the product of the measurement frequency terahertz wave 112 and the reference frequency terahertz wave 113.
- the intermediate frequency signal measurement unit 24 is configured as follows.
- Y ′ 1 and Y ′ 2 are input to the standard phase low frequency mixer 9, and a voltage waveform Z 1 is output as a measurement standard phase signal 18 as a product thereof.
- the delayed phase low-frequency mixer 22 receives a signal 17 delayed by 90 ° of Y ′ 1 and Y ′ 2 that has passed through the delay unit 10, and a voltage waveform Z 2 as a product thereof is obtained as a measurement delayed phase signal 19. Is output.
- Each voltage waveform is expressed as follows.
- G is a conversion gain of the low-frequency mixer, and may be arbitrarily set so as to have a manageable amplitude.
- Z 1 and Z 2 are converted into signals that can be easily processed by the signal detectors 11 and 111, respectively.
- the signal detection unit may convert the signal into a digital signal by an analog / digital conversion unit.
- the detection signals 20 and 120 are input to the signal processing unit 21.
- the frequency 2 (f1-f2) component is removed using a frequency filter inside the signal processing unit 21
- the respective voltage waveforms Z ′ 1 and Z ′ 2 are expressed as follows.
- the frequency filter inside the signal processing unit may be digital signal processing.
- the phase ⁇ is calculated by the signal processing unit 21 as follows.
- the terms ⁇ 1 , ⁇ 2 , f 1 , and f 2 are removed and not included in the voltage waveforms Z ′ 1 and Z ′ 2 . Therefore, according to the configuration of the present invention, it is possible to measure only the phase difference ⁇ without being affected by the phase fluctuation or frequency fluctuation of the transmitter. Since unnecessary signal components for a minute phase difference signal are reduced, this means enables highly accurate phase detection. Further, the measurement signal intensity Z is expressed as follows.
- FIG. 2 is a block diagram showing a second embodiment of the terahertz wave measuring apparatus of the present invention.
- a configuration for performing transmission measurement using the configuration of the present invention shown in the first embodiment is shown.
- a measurement frequency terahertz wave 13 is irradiated to a measurement object, and the transmitted terahertz wave 22 is transmitted to the mixer 7.
- the signal attenuation factor of the measurement object can be measured from the signal intensity Z obtained in advance, and the refractive index of the measurement object can be measured from the phase difference ⁇ .
- FIG. 5 is a block diagram showing a third embodiment of the terahertz wave measuring apparatus of the present invention.
- the measurement frequency terahertz wave transmission unit 1 and the reference frequency terahertz wave transmission unit 2 shown in the first embodiment are the multiplication units 51 and 52 using semiconductor diodes or transistors, respectively, and the intermediate frequency transmission unit is also provided with a multiplication unit 53.
- the phase measuring device can be simply configured.
- a crystal oscillator capable of controlling the frequency and phase with high accuracy can be used.
- N and M are arbitrary integers.
- the measurement frequency f 1 is N + M times f 0 and the reference frequency f 2 is N times f 0 .
- the frequency f 3 of an intermediate frequency oscillator unit is M times.
- the output signal of the measurement frequency mixer 7 outputs M ⁇ f 0 which is the frequency of
- the signal processing unit 21 calculates and outputs the reflection coefficient and the phase difference of the measurement object.
- the number of reference frequency mixers can be reduced as compared with the first embodiment, and the size and cost can be reduced.
- the configuration of the first embodiment is desirable even when the multiplier is used in the terahertz wave transmission unit.
- FIG. 6 is a block diagram showing a fourth embodiment of the terahertz wave measuring apparatus according to the present invention.
- Z 1 and Z 2 are converted into signals that can be easily processed by the signal detectors 11 and 111, respectively.
- the signal detection unit may convert the signal into a digital signal by an analog / digital conversion unit.
- the detection signals 20 and 120 are input to the signal processing unit 21.
- the frequency 2 (f1-f2) component is removed using a frequency filter inside the signal processing unit 21
- the respective voltage waveforms Z ′ 1 and Z ′ 2 are expressed as follows.
- the frequency filter inside the signal processing unit may be digital signal processing.
- phase difference ⁇ can be calculated by the following equation.
- phase difference waveform ⁇ depending on ⁇ can be obtained. For example, by obtaining the average value of the phase difference waveform ⁇ , ⁇ that eliminates the influence of the error can be calculated. By this method, it is possible to reduce the error and measure the phase ⁇ with high accuracy compared to measuring Z ′ 2 with one ⁇ .
- FIG. 7 is a block diagram showing a fifth embodiment of the terahertz wave measuring apparatus of the present invention.
- a plurality of delay units 71 and 73 in which the delay phase ⁇ is changed to different values and a plurality of delay phase low frequency mixers 75 and 76 to which the delay phase IF signals 72 and 74 from the respective delay units are connected are used.
- the detection signals 79 and 80 detected by the signal detectors 11, 111 and 121 are measured, whereby the phase ⁇ can be measured with high accuracy and high speed.
- FIG. 8 is a block diagram showing a sixth embodiment of the terahertz wave measuring apparatus according to the present invention.
- the measurement IF signal and the reference IF signal are converted into digital signals by the analog / digital conversion units 81 and 83, respectively, and the phase difference and intensity ratio between the measurement IF signal and the reference IF signal are calculated by the digital signal processing unit 82.
- the accuracy of the phase difference and the intensity ratio can be improved.
- the analog / digital conversion units 81 and 83 and the digital signal processing unit 82 require a band and an operation speed corresponding to the frequency of the measurement IF signal.
- FIG. 9 is a block diagram showing a seventh embodiment of the terahertz wave measuring apparatus of the present invention.
- the measurement frequency terahertz wave transmission unit 1 and the branching unit 3 use the waveguide 93
- the reference frequency terahertz wave transmission unit 2 and the branching unit 3 use the waveguide 94
- the branching unit 3 and the measurement frequency mixer 7 use the waveguide 95. Connect.
- a horn antenna 91 is installed in the branch portion 3 for the measurement frequency terahertz wave, and a horn antenna 96 is installed in the measurement frequency mixer 7.
- FIG. 10 is a block diagram showing an eighth embodiment of the terahertz wave measuring apparatus of the present invention.
- the dependence of the phase ⁇ on the frequency f is expressed as follows.
- the optical path difference d of the measurement object and the speed of light c are used.
- the frequency dependence of d can be obtained, and the optical path difference d can be calculated from the average value.
- the optical path can be accurately obtained without using the control variable delay unit and the plurality of delay units for measuring a plurality of phases shown in the fourth and fifth embodiments.
- the difference d can be measured.
- this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
小型で安価な半導体デバイスのテラヘルツ波発信部を用いた連続波のテラヘルツ波を測定するシステムでは、テラヘルツ波発信部の周波数変動や位相変動が大きく、それに起因して位相精度や感度が低下する。 テラヘルツ波を測定対象物に照射し、変化したテラヘルツ波の位相と強度を測定するテラヘルツ波測定装置であって、第一の周波数のテラヘルツ波を発信する第一のテラヘルツ波発信部と、第二の周波数のテラヘルツ波を発信する第二のテラヘルツ波発信部と、前記第一の周波数のテラヘルツ波を測定対象物に照射し変化したテラヘルツ波および前記第二の周波数のテラヘルツ波を検出し、前記第一の周波数と前記第二の周波数の差となる測定中間周波数信号を出力する測定周波数ミキサと、測定対象物にテラヘルツ波を照射し、かつ前記第一のテラヘルツ波発信部および前記第二のテラヘルツ波発信部に同期した前記第一の周波数と前記第二の周波数の差となる参照中間周波数信号を出力する参照中間周波数信号発信部と、出力された前記測定中間周波数信号および前記参照中間周波数信号を入力し、前記中間周波数の測定信号の位相と強度を出力する中間周波数信号測定部とを有することを特徴とするテラヘルツ波測定装置により解決する。
Description
本発明は、テラヘルツ波測定装置に関する。
テラヘルツ波測定装置は、テラヘルツ波を測定対象に照射し、その反射波あるいは透過波を観測して測定対象によって生じた強度変化や位相差を検出する装置であり、測定対象の内部構造や混入異物、含有成分などを非破壊で観測するために有効な装置である。テラヘルツ波とは、およそ0.1THz~10THzの周波数範囲の電磁波であり、より高い周波数帯の電磁波である遠赤外線と比べて紙や木、プラスチックなどの多くの物質に対する透過性において優れ、一方でより低い周波数帯の電磁波であるミリ波と比べて直進性や分解能において優れている特徴がある。また、測定対象に反射したテラヘルツ波と基準となる金属などに反射したテラヘルツ波の位相の差を検出することにより、測定対象の表面凹凸や層構造の層の厚さ、空洞などの内部構造を非破壊で観測できる。そのため、医薬品検査、材料検査、構造物検査などに適用できる幅広いテラヘルツ波応用技術が将来実現されることが期待されている。
特許文献1や2に記載されているテラヘルツパルス波を測定するシステムでは、超短パルス光発生レーザ装置が必須であり、そのためにコストが高く、装置サイズが大型化し、また、振動や周辺温度の影響を受けやすいことから、使用条件に制限があった。また、特許文献3に記載されている連続波のテラヘルツ波を測定するシステムでは、低雑音で高感度とするために、波長可変レーザ装置や光変調器が必須であり、同様の課題がある。一方で、より小型で安価な半導体デバイスのテラヘルツ波発信部を用いた連続波のテラヘルツ波を測定するシステムでは、テラヘルツ波発信部の周波数変動や位相変動が大きく、それに起因して位相精度や感度が低下する課題が生じる。
本発明は上記問題を鑑みなされたものであり、テラヘルツ波の位相と強度を高精度かつ高感度に測定するテラヘルツ波測定装置を提供することを目的とする。
本発明は上記問題を鑑みなされたものであり、テラヘルツ波の位相と強度を高精度かつ高感度に測定するテラヘルツ波測定装置を提供することを目的とする。
上記課題は、例えば
テラヘルツ波を測定対象物に照射し、変化したテラヘルツ波の位相と強度を測定するテラヘルツ波測定装置であって、第一の周波数のテラヘルツ波を発信する第一のテラヘルツ波発信部と、第二の周波数のテラヘルツ波を発信する第二のテラヘルツ波発信部と、前記第一の周波数のテラヘルツ波を測定対象物に照射し変化したテラヘルツ波および前記第二の周波数のテラヘルツ波を検出し、前記第一の周波数と前記第二の周波数の差となる測定中間周波数信号を出力する測定周波数ミキサと、測定対象物にテラヘルツ波を照射し、かつ前記第一のテラヘルツ波発信部および前記第二のテラヘルツ波発信部に同期した前記第一の周波数と前記第二の周波数の差となる参照中間周波数信号を出力する参照中間周波数信号発信部と、出力された前記測定中間周波数信号および前記参照中間周波数信号を入力し、前記中間周波数の測定信号の位相と強度を出力する中間周波数信号測定部とを有することを特徴とするテラヘルツ波測定装置により解決される。
テラヘルツ波を測定対象物に照射し、変化したテラヘルツ波の位相と強度を測定するテラヘルツ波測定装置であって、第一の周波数のテラヘルツ波を発信する第一のテラヘルツ波発信部と、第二の周波数のテラヘルツ波を発信する第二のテラヘルツ波発信部と、前記第一の周波数のテラヘルツ波を測定対象物に照射し変化したテラヘルツ波および前記第二の周波数のテラヘルツ波を検出し、前記第一の周波数と前記第二の周波数の差となる測定中間周波数信号を出力する測定周波数ミキサと、測定対象物にテラヘルツ波を照射し、かつ前記第一のテラヘルツ波発信部および前記第二のテラヘルツ波発信部に同期した前記第一の周波数と前記第二の周波数の差となる参照中間周波数信号を出力する参照中間周波数信号発信部と、出力された前記測定中間周波数信号および前記参照中間周波数信号を入力し、前記中間周波数の測定信号の位相と強度を出力する中間周波数信号測定部とを有することを特徴とするテラヘルツ波測定装置により解決される。
本発明によると、高分解能かつ高感度なテラヘルツ波測定装置を提供することができる。更に、小型な電子デバイス発信部を用いることで装置の小型化と簡素化を図ることができる。
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明は、小型で高分解能かつ高感度のテラヘルツ波測定を可能とする技術を提供するものである。以下に、上記目的を達成するための代表的な手段を説明する。
(1)ヘテロダインに用いる2つのテラヘルツ波発信部のそれぞれの周波波変動および位相変動によらず、測定対象物によって生じる位相変化と強度変化のみを高精度に出力するために、2つのテラヘルツ波を分岐部により分岐して参照周波数ミキサにより参照IF信号を発生させる。測定対象に照射したテラヘルツ波は、測定周波数ミキサに入力して測定IF信号を発生させる。二つのテラヘルツ波のそれぞれの周波数変動や位相変動が生じた場合においても、後述するように、それぞれの間の周波数差と位相差は一致することから、測定IF信号と参照IF信号との間では、周波数は等しく、位相は測定対象物にのみ変化する。すなわち測定IF信号と参照IF信号の比較によって測定した測定IF信号の位相と強度は、テラヘルツ波発生部の周波数変動と位相変動によらず一定値となる。よって、この測定IF信号と参照IF信号との位相差を測定することにより、テラヘルツ波の測定対象物による位相変化を測定することができる。この構成により、位相雑音を抑制する位相同期ループなどを用いた高精度なテラヘルツ波発信部が不要となり、小型で低コストのテラヘルツ波発信部により容易に高精度な位相測定と強度測定が可能となり、ひいては波長より十分短い光路差の距離分解能測定が可能となる。
(1)ヘテロダインに用いる2つのテラヘルツ波発信部のそれぞれの周波波変動および位相変動によらず、測定対象物によって生じる位相変化と強度変化のみを高精度に出力するために、2つのテラヘルツ波を分岐部により分岐して参照周波数ミキサにより参照IF信号を発生させる。測定対象に照射したテラヘルツ波は、測定周波数ミキサに入力して測定IF信号を発生させる。二つのテラヘルツ波のそれぞれの周波数変動や位相変動が生じた場合においても、後述するように、それぞれの間の周波数差と位相差は一致することから、測定IF信号と参照IF信号との間では、周波数は等しく、位相は測定対象物にのみ変化する。すなわち測定IF信号と参照IF信号の比較によって測定した測定IF信号の位相と強度は、テラヘルツ波発生部の周波数変動と位相変動によらず一定値となる。よって、この測定IF信号と参照IF信号との位相差を測定することにより、テラヘルツ波の測定対象物による位相変化を測定することができる。この構成により、位相雑音を抑制する位相同期ループなどを用いた高精度なテラヘルツ波発信部が不要となり、小型で低コストのテラヘルツ波発信部により容易に高精度な位相測定と強度測定が可能となり、ひいては波長より十分短い光路差の距離分解能測定が可能となる。
(2)また、テラヘルツ波発信部に基準信号発生部の整数倍の周波数を発生する逓倍器を用いることで、2つの発信部の位相変動によらず、測定対象物によって生じる位相変化と強度変化のみを高精度に測定できる。基準信号周波数のN+M倍の逓倍器を測定周波数テラヘルツ波発信部とし、N倍の逓倍器を参照周波数テラヘルツ波発信部とする。さらにM倍の逓倍器を中間周波数信号発生部とすると、基準信号発生部の位相雑音が生じた場合においても、測定周波数ミキサの出力周波数と中間周波数信号発生部の出力周波数は一致する。よって、測定IF信号と参照IF信号との位相差と強度比は一定値となり、容易に位相測定が可能となる。
(3)また、標準位相低周波ミキサと遅延位相低周波ミキサにそれぞれ入力する参照IF信号の位相差を90°に固定せずに、任意の位相差にすることにより、複数の位相における検出信号を測定することが可能となる。(1)の構成の場合、測定IF波形には干渉や歪みがなく正弦波であることが前提となる。例えば多重反射により、複数の振幅や位相の異なる波形が干渉した場合には、(1)の構成の中間周波数測定部では正確に位相や強度を測定することはできない。そこで、任意の位相を出力する遅延部から出力される参照IF信号を遅延位相低周波ミキサに入力することにより、位相ごとの検出波強度から位相波形を再生して高精度な位相を算出する。この手段により、複雑な反射波形の場合においても、高精度に位相測定が可能となる。
(4)(3)のように複数の位相差からなる位相波形を同時に測定するため、n個の低周波ミキサにn個の遅延部によって遅延量を変化させた参照IF信号を入力し、n個の検出信号を出力させる。この構成により、一回の測定で位相波形を再生することができる。したがって、高速に複雑な構造の測定対象物の測定が可能となる。
(5) 中間信号測定部に入力される測定IF信号と参照IF信号とをアナログ・デジタル変換部により、それぞれデジタル信号に変換し、デジタル信号処理回路を用いることで、測定IF信号と参照IF信号との位相差と強度比を高速かつ高精度に測定することが可能になる。
(6)参照周波数テラヘルツ波の伝搬に導波管を用いて構成することにより、参照周波数の光路長が固定され、装置の振動や周辺温度による変動が抑制される。同軸ケーブルや空間伝搬と比較して、位相の変動を抑制することが可能となる。
(7)測定周波数テラヘルツ波の周波数を信号処理部によって制御し、複数の周波数について測定対象物によるテラヘルツ波の位相変化を測定する。これにより、測定対象物について、より高精度に位相を測定することが可能となる。
以下、本発明の実施の形態について図面を参照しながら説明する。
以下、本発明の実施の形態について図面を参照しながら説明する。
図3は、高感度化のためにヘテロダイン検出方式の構成を示す模式図である。テラヘルツ波発信部1から測定対象5に照射する周波数f1の測定周波数テラヘルツ波12を発信し、テラヘルツ波発信部2から、参照用に周波数f2の参照周波数テラヘルツ波13を発信する。測定対象に反射してハーフミラー4に反射されたテラヘルツ波14、または透過した測定周波数テラヘルツ波と、参照周波数テラヘルツ波は、それぞれミキサ7に接続された検出部に入射され、検出される。ミキサは二つの入力信号の積を出力するデバイスであり、ダイオードやトランジスタなどから構成される。ミキサがダイオードのように2端子素子の場合には、測定周波数テラヘルツ波と参照周波数テラヘルツ波を合波して入力する。ミキサからは、周波数|f1-f2|およびf1+f2の信号が出力される。周波数フィルタ8により、|f1-f2|の周波数信号のみ通過して測定IF信号16となり、信号検出部31で信号強度が検出される。信号検出部によって処理しやすい電圧振幅に増幅され、さらにデジタル信号に変換された検出信号20として信号処理部21に入力される。さらに信号処理部によって強度を算出して出力する。例えば反射による測定の場合、あらかじめ基準となる反射面のテラヘルツ波の反射強度を記録し、次に測定対象物に反射させた場合のテラヘルツ波の反射強度を記録し、測定対象物と基準との強度比を算出する。透過測定の場合も同様に強度比を算出する。周波数フィルタ8により中間周波数以外の雑音信号が除去され信号検出部31に入力されることにより、低雑音で高感度に測定が可能となる。
また、図3の構成ではテラヘルツ波の位相を直接測定できないため、テラヘルツ波の光路上にマイケルソン干渉系やマッハチェンダー干渉系を用いて干渉した信号をヘテロダイン検出することが可能である。この方式では光路長を伸縮して干渉強度の変化を観測する必要があり、そのために機械装置により参照ミラーの位置を移動する。このため装置が大型になり移動時間による測定時間の増加につながる。
そこで、図4に示すようにミキサ7と周波数フィルタ8によって変換された測定IF信号16の位相φと強度を測定する中間周波数測定部24を用いることで時間差なく同時に位相を測定可能となる。測定IF信号16と同じ周波数の参照中間周波数発信部41を用意して、一方のミキサ9には測定IF信号16と参照IF信号15を入力し、もう一方のミキサ22には測定IF信号16と参照IF信号に遅延部10を通過させて90°位相を変化させた信号17を入力する。これにより、ミキサ9からはsin(φ)に比例する基準位相信号(I)18が、ミキサ22からはcos(φ)に比例する遅延位相信号(Q)19が出力される。I,Qは信号検出部11によってそれぞれ処理しやすい電圧振幅に増幅され、さらにデジタル信号に変換された検出信号20として信号処理部21に入力される。信号処理部21において、電圧比から、φ=tan-1(I/Q)として求まる。さらに、Iが負の場合には180°+φに換算できる。この手段により、一回で任意の位相φを測定できる。位相差φを測定した場合にはλφ/4πの光路差が測定対象物によって生じたことになる。
そこで、図4に示すようにミキサ7と周波数フィルタ8によって変換された測定IF信号16の位相φと強度を測定する中間周波数測定部24を用いることで時間差なく同時に位相を測定可能となる。測定IF信号16と同じ周波数の参照中間周波数発信部41を用意して、一方のミキサ9には測定IF信号16と参照IF信号15を入力し、もう一方のミキサ22には測定IF信号16と参照IF信号に遅延部10を通過させて90°位相を変化させた信号17を入力する。これにより、ミキサ9からはsin(φ)に比例する基準位相信号(I)18が、ミキサ22からはcos(φ)に比例する遅延位相信号(Q)19が出力される。I,Qは信号検出部11によってそれぞれ処理しやすい電圧振幅に増幅され、さらにデジタル信号に変換された検出信号20として信号処理部21に入力される。信号処理部21において、電圧比から、φ=tan-1(I/Q)として求まる。さらに、Iが負の場合には180°+φに換算できる。この手段により、一回で任意の位相φを測定できる。位相差φを測定した場合にはλφ/4πの光路差が測定対象物によって生じたことになる。
この手段では、テラヘルツ波発信部1とテラヘルツ波発信部2の周波数差が一定で中間周波数発生部と一致することが必要である。しかし、テラヘルツの周波数における発信部では、高精度に周波数を制御することは非常に困難である。一般的にテラヘルツ波に用いる発信部の信号源は、低い周波数帯であるミリ波帯やマイクロ波帯よりも位相雑音が大きい。特に共振器を用いて発振する発信部は、周波数増加によって内部抵抗の影響が増大し大きな位相雑音が生じる。これを解決するために一般的に用いられるPLL(位相同期ループ)技術は、同期のために参照とする高精度周波数信号を生成可能な周波数まで測定周波数テラヘルツ波を分周する分周器を必要とするが、テラヘルツ波の分周器は高周波のために実現が困難である。そこで、より簡便な方法が求められる。
図1は、本発明のテラヘルツ波測定装置の第一の実施例を示すブロック図である。測定対象物にテラヘルツ波を照射し、反射したテラヘルツ波の位相と強度の変化を観測する装置である。本装置は、測定周波数テラヘルツ波発信部1、および参照周波数テラヘルツ波発信部2は、それぞれ、ガンダイオード、共鳴トンネルダイオード、トランジスタなどのおよそ0.1から3THzの周波数でテラヘルツ波を連続発振する発信器で構成される。これらの発信部は自律的に発振し位相同期制御の必要はないため、位相は時間変動している。また発振周波数は外部制御信号で所望の周波数に制御されてもよい。また、これらの発信部は、異なる基準周波数の発信部によって制御される逓倍器でも構成されてもよい。本実施例では、図4の構成に加えて、二つの分岐部3,103、参照周波数ミキサ6および周波数ミキサ8に構成される参照中間周波数信号発生部23を用いる。分岐部3によって分岐された測定周波数テラヘルツ波12の電圧信号波形X1と参照周波数テラヘルツ波13の電圧信号波形X2は、以下のように表される。ここで、測定周波数f1,参照周波数f2,測定用発信部位相θ1,参照用発信部位相θ2,測定用発信部振幅A1,参照用発信部振幅A2とする。また、分岐部による電力分配比は1:1とすると、電圧振幅は1/√2になる。なお、以下に記述する式は理想的な場合であり、信号の伝達、変換、不整合による減衰係数は位相測定への影響は小さいため省略している。また、各ミキサの伝達特性は入力強度に対して線形とする。
ハーフミラー4を通過して測定対象物5に反射した測定周波数テラヘルツ波14の電圧振幅X3は、再びハーフミラー4で反射して測定周波数ミキサ7に入力される。電圧振幅はハーフミラー4で1/2に減衰し、さらに測定対象物の反射係数Γによって1/Γに減衰する。ハーフミラーは、例えばシリコン板などで構成される。また以下に示すミキサは、例えばショットキーバリアダイオード、共鳴トンネルダイオード、トランジスタなどで構成される。ミキサがダイオードのように2端子素子の場合には、入力される二つのテラヘルツ波を合波して入力してよい。参照周波数ミキサ6に入射されるテラヘルツ波112の光路と、測定対象物に反射して測定周波数ミキサ7に入射されるテラヘルツ波14の光路との間の光路差Lが生じ、そのため電圧信号X3にも位相差φが生じる。よって電圧波形X3は以下のように表される。
中間周波数信号測定部24は以下のように構成される。標準位相低周波ミキサ9には、Y’1,Y’2が入力され、その積として電圧波形Z1が測定標準位相信号18として出力される。また、遅延位相低周波ミキサ22には、Y’1と遅延部10を通過したY’2の90°位相遅延した信号17が入力され、その積として電圧波形Z2が測定遅延位相信号19として出力される。それぞれの電圧波形は、以下のように表される。ここで、Gは低周波ミキサの変換利得であり、扱いやすい振幅となるように任意に設定してよい。
Z1,Z2は信号検出部11,111によってそれぞれ処理しやすい信号に変換される。信号検出部によってアナログ・デジタル変換部によってデジタル信号に変換してもよい。検出信号20,120として信号処理部21に入力される。さらに、信号処理部21の内部で周波数フィルタを用いて 周波数2(f1-f2)の成分を除去すると、それぞれの電圧波形Z’1,Z’2は、以下のように表される。信号処理部内部の周波数フィルタは、デジタル信号処理でもよい。
このように電圧波形Z’1,Z’2には、θ1,θ2,f1,f2の項は除去され含まれていない。したがって、本発明の構成によって、発信部の位相変動や周波数変動の影響を受けず、位相差φのみを測定することが可能となる。微小な位相差信号に対する不要な信号成分が低下することから、この手段によって高精度の位相検出が可能となる。
また、測定信号強度Zは、以下のように表される。
また、測定信号強度Zは、以下のように表される。
あらかじめ反射率が既知の基準測定対象物、例えば反射係数1の金属面の反射信号強度Z0を測定し、測定対象物の反射信号強度Zmとを測定し、Γ=Z0/Zmと比を算出することにより、反射係数Γを測定することが可能となる。
図2は、本発明のテラヘルツ波測定装置の第二の実施例を示すブロック図である。
第一の実施例にて示した本発明の構成を用いて、透過測定を実施する構成を示しており、測定周波数テラヘルツ波13を測定対象物に照射し、透過したテラヘルツ波22をミキサ7に入射している。第一の実施例と同様に、あらかじめ透過率得られた信号強度Zから測定対象物の信号減衰率を測定し、位相差φから測定対象物の屈折率を測定することができる。
第一の実施例にて示した本発明の構成を用いて、透過測定を実施する構成を示しており、測定周波数テラヘルツ波13を測定対象物に照射し、透過したテラヘルツ波22をミキサ7に入射している。第一の実施例と同様に、あらかじめ透過率得られた信号強度Zから測定対象物の信号減衰率を測定し、位相差φから測定対象物の屈折率を測定することができる。
図5は、本発明のテラヘルツ波測定装置の第三の実施例を示すブロック図である。
第一の実施例に示した測定周波数テラヘルツ波発信部1と参照周波数テラヘルツ波発信部2にそれぞれ半導体ダイオードまたはトランジスタを用いた逓倍部51、52とし、さらに中間周波数発信部にも逓倍部53を用い、共通の基準信号発信部54を用いることで、簡素に位相測定装置を構成することができる。
第一の実施例に示した測定周波数テラヘルツ波発信部1と参照周波数テラヘルツ波発信部2にそれぞれ半導体ダイオードまたはトランジスタを用いた逓倍部51、52とし、さらに中間周波数発信部にも逓倍部53を用い、共通の基準信号発信部54を用いることで、簡素に位相測定装置を構成することができる。
基準信号発信部54には、例えば周波数および位相を高精度に制御可能な水晶発振器を用いることができる。ここで基準発信周波数をf0とする。ここでN,Mを任意の整数とする。測定周波数f1は、f0のN+M倍、参照周波数f2はf0のN倍とする。また、中間周波数発信部の周波数f3はM倍とする。測定周波数ミキサ7の出力信号は周波数フィルタ8を介して|f1-f2|の周波数であるM×f0を測定中間周波数信号16として出力する。この周波数は、f3と一致する。したがって、実施例1と同様に、標準位相低周波数ミキサ9と遅延位相低周波数ミキサ22によって、標準位相信号18と遅延位相信号19を出力することができる。以下、実施例1と同様に、信号処理部21によって、測定対象物の反射係数と位相差を算出し出力する。
この構成によって、実施例1と比較して参照周波数ミキサを削減でき、小型、低コスト化を図ることができる。ただし、逓倍数N,Mが大きい場合には、逓倍器が生じる位相雑音が大きくなることから、テラヘルツ波発信部に逓倍器を用いる場合においても実施例1の構成が望ましい。
この構成によって、実施例1と比較して参照周波数ミキサを削減でき、小型、低コスト化を図ることができる。ただし、逓倍数N,Mが大きい場合には、逓倍器が生じる位相雑音が大きくなることから、テラヘルツ波発信部に逓倍器を用いる場合においても実施例1の構成が望ましい。
図6は、本発明のテラヘルツ波測定装置の第四の実施例を示すブロック図である。
制御可変遅延部61に任意の位相差をψとする遅延制御信号62を入力して、参照IF信号15の位相をψだけ遅延させると、標準位相信号18の波形Z1と、遅延位相信号19の波形Z2は以下のように表される。
制御可変遅延部61に任意の位相差をψとする遅延制御信号62を入力して、参照IF信号15の位相をψだけ遅延させると、標準位相信号18の波形Z1と、遅延位相信号19の波形Z2は以下のように表される。
Z1,Z2は信号検出部11,111によってそれぞれ処理しやすい信号に変換される。信号検出部によってアナログ・デジタル変換部によってデジタル信号に変換してもよい。検出信号20,120として信号処理部21に入力される。さらに、信号処理部21の内部で周波数フィルタを用いて 周波数2(f1-f2)の成分を除去すると、それぞれの電圧波形Z’1,Z’2は、以下のように表される。信号処理部内部の周波数フィルタは、デジタル信号処理でもよい。
信号処理部21により、位相ψを変化させながらZ’1,Z’2を複数回測定すると、ψに依存する位相差波形φを得ることができる。例えば位相差波形φの平均値を求めることにより、誤差の影響を除去したφを算出することができる。この手法により、一つのψでZ’2を測定するよりも誤差を縮小し、高精度に位相φを測定することが可能となる。
図7は、本発明のテラヘルツ波測定装置の第五の実施例を示すブロック図である。
実施例4に示した方法では、参照IF信号の位相ψを変化させながら複数回測定の必要があり、測定時間が長くなる課題がある。そこで、遅延位相ψをそれぞれ異なる値に変化させた複数の遅延部71,73と、それぞれの遅延部からの遅延位相IF信号72,74が接続される遅延位相低周波ミキサ75,76によって、複数の遅延位相信号77,78を同時に生成し、信号検出部11,111,121で検出した検出信号79,80を測定することで、位相φを高精度かつ高速に測定することが可能となる。
実施例4に示した方法では、参照IF信号の位相ψを変化させながら複数回測定の必要があり、測定時間が長くなる課題がある。そこで、遅延位相ψをそれぞれ異なる値に変化させた複数の遅延部71,73と、それぞれの遅延部からの遅延位相IF信号72,74が接続される遅延位相低周波ミキサ75,76によって、複数の遅延位相信号77,78を同時に生成し、信号検出部11,111,121で検出した検出信号79,80を測定することで、位相φを高精度かつ高速に測定することが可能となる。
図8は、本発明のテラヘルツ波測定装置の第六の実施例を示すブロック図である。
測定IF信号と参照IF信号をそれぞれアナログ・デジタル変換部81,83によってデジタル信号に変換し、デジタル信号処理部82によって測定IF信号と参照IF信号の位相差と強度比を算出することにより、位相差と強度比の精度を向上することができる。但し、アナログ・デジタル変換部81,83、デジタル信号処理部82には、測定IF信号の周波数に対応した帯域と動作速度が必要となる。
測定IF信号と参照IF信号をそれぞれアナログ・デジタル変換部81,83によってデジタル信号に変換し、デジタル信号処理部82によって測定IF信号と参照IF信号の位相差と強度比を算出することにより、位相差と強度比の精度を向上することができる。但し、アナログ・デジタル変換部81,83、デジタル信号処理部82には、測定IF信号の周波数に対応した帯域と動作速度が必要となる。
図9は、本発明のテラヘルツ波測定装置の第七の実施例を示すブロック図である。
測定周波数テラヘルツ波発信部1と分岐部3を導波管93、参照周波数テラヘルツ波発信部2と分岐部3を導波管94、そして分岐部3と測定周波数ミキサ7を導波管95を用いて接続する。
測定周波数テラヘルツ波発信部1と分岐部3を導波管93、参照周波数テラヘルツ波発信部2と分岐部3を導波管94、そして分岐部3と測定周波数ミキサ7を導波管95を用いて接続する。
また、測定対象物に対して空間伝搬テラヘルツ波92を照射および受信させるために、測定周波数テラヘルツ波用の分岐部3にホーンアンテナ91を、測定周波数ミキサ7にホーンアンテナ96を設置する。この構成とすることにより、参照周波数テラヘルツ波の光路長が固定され、振動や温度変動による影響を低減できる。
図10は、本発明のテラヘルツ波測定装置の第八の実施例を示すブロック図である。
測定周波数テラヘルツ波発信部2に信号処理部21から周波数制御信号101を入力し、測定周波数f2を変化させることにより、測定IF信号の位相が変化する。また、中間周波数も変化するため、周波数フィルタ8に周波数制御信号101を入力して通過帯域を変化させる。位相φは周波数fとの依存性は以下のように表される。ここで、測定対象物の光路差d、光の速度cとする。
測定周波数テラヘルツ波発信部2に信号処理部21から周波数制御信号101を入力し、測定周波数f2を変化させることにより、測定IF信号の位相が変化する。また、中間周波数も変化するため、周波数フィルタ8に周波数制御信号101を入力して通過帯域を変化させる。位相φは周波数fとの依存性は以下のように表される。ここで、測定対象物の光路差d、光の速度cとする。
複数の周波数fについてφを測定することにより、dの周波数依存性を求めることができ、その平均値から光路差dの算出できる。この構成により、干渉や波形歪みがある場合にも、実施例4や実施例5に示した複数の位相測定をするための制御可変遅延部や複数の遅延部を用いることなく、高精度に光路差dを測定することができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 測定周波数テラヘルツ波発信部、2 参照周波数テラヘルツ波発信部
3,103 テラヘルツ波分岐部、4 ハーフミラー、5 測定対象物
6 参照周波数ミキサ、7 測定周波数ミキサ、8,108 周波数フィルタ
9 標準位相低周波ミキサ、10 遅延部、11,111,121 信号検出部
12,112 測定周波数テラヘルツ波、13,113 参照周波数テラヘルツ波
14 測定対象物反射テラヘルツ波、15 参照IF信号、16 測定IF信号
17 遅延参照IF信号、18 測定標準位相信号、19 測定遅延位相信号
20,120 検出信号、21 信号処理部、22 遅延位相低周波ミキサ
23 参照中間周波数発信部、24 中間周波数信号測定部
25 測定対象物通過テラヘルツ波
31 中間周波数検出部、41 中間周波数発信部、51 測定周波数逓倍部
52 参照周波数逓倍部、53 中間周波数逓倍部、54 基準周波数発信部
61 制御可変遅延部、62 遅延制御信号、71 第1遅延部
72 第1遅延位相IF信号、73 第n遅延部、74 第n遅延位相IF信号
75 第1遅延位相低周波ミキサ、76 第n遅延位相低周波ミキサ
77 第1測定遅延位相信号、78 第n測定遅延位相信号、79 第1遅延検出信号
80 第n遅延検出信号、81,83 アナログ・デジタル変換部
82 デジタル信号処理部、91,96 ホーンアンテナ
92 空間伝搬テラヘルツ波、93,94,95 導波管
101 周波数制御信号
3,103 テラヘルツ波分岐部、4 ハーフミラー、5 測定対象物
6 参照周波数ミキサ、7 測定周波数ミキサ、8,108 周波数フィルタ
9 標準位相低周波ミキサ、10 遅延部、11,111,121 信号検出部
12,112 測定周波数テラヘルツ波、13,113 参照周波数テラヘルツ波
14 測定対象物反射テラヘルツ波、15 参照IF信号、16 測定IF信号
17 遅延参照IF信号、18 測定標準位相信号、19 測定遅延位相信号
20,120 検出信号、21 信号処理部、22 遅延位相低周波ミキサ
23 参照中間周波数発信部、24 中間周波数信号測定部
25 測定対象物通過テラヘルツ波
31 中間周波数検出部、41 中間周波数発信部、51 測定周波数逓倍部
52 参照周波数逓倍部、53 中間周波数逓倍部、54 基準周波数発信部
61 制御可変遅延部、62 遅延制御信号、71 第1遅延部
72 第1遅延位相IF信号、73 第n遅延部、74 第n遅延位相IF信号
75 第1遅延位相低周波ミキサ、76 第n遅延位相低周波ミキサ
77 第1測定遅延位相信号、78 第n測定遅延位相信号、79 第1遅延検出信号
80 第n遅延検出信号、81,83 アナログ・デジタル変換部
82 デジタル信号処理部、91,96 ホーンアンテナ
92 空間伝搬テラヘルツ波、93,94,95 導波管
101 周波数制御信号
Claims (9)
- テラヘルツ波を測定対象物に照射し、変化したテラヘルツ波の位相と強度を測定するテラヘルツ波測定装置であって、
第一の周波数のテラヘルツ波を発信する第一のテラヘルツ波発信部と、
第二の周波数のテラヘルツ波を発信する第二のテラヘルツ波発信部と、
前記第一の周波数のテラヘルツ波を測定対象物に照射し変化したテラヘルツ波および前記第二の周波数のテラヘルツ波を検出し、前記第一の周波数と前記第二の周波数の差となる測定中間周波数信号を出力する測定周波数ミキサと、
測定対象物にテラヘルツ波を照射し、かつ前記第一のテラヘルツ波発信部および前記第二のテラヘルツ波発信部に同期した前記第一の周波数と前記第二の周波数の差となる参照中間周波数信号を出力する参照中間周波数信号発信部と、
出力された前記測定中間周波数信号および前記参照中間周波数信号を入力し、前記中間周波数の測定信号の位相と強度を出力する中間周波数信号測定部とを有することを特徴とするテラヘルツ波測定装置。 - 請求項1に記載のテラヘルツ波測定装置であって、
前記中間周波数信号測定部は、
前記中間周波数の測定信号および前記中間周波数の参照信号を入力し、その積となる第一の位相信号を出力する第一の低周波ミキサと、
前記中間周波数の参照信号から指定した位相差をつけて出力する遅延部と、
前記中間周波数の測定信号と前記遅延部から出力された信号とを入力し、その積となる第二の位相信号を出力する第二の低周波ミキサと、
前記第一の位相信号を検出して第一の検出信号を出力する第一の信号検出部と、
前記第二の位相信号を検出して第二の検出信号を出力する第二の信号検出部と、
前記第一の検出信号と前記第二の検出信号から信号処理により測定中間周波数信号の位相と強度を算出する信号処理部とを有することを特徴とするテラヘルツ波測定装置。 - 請求項1に記載のテラヘルツ波測定装置であって、
前記参照中間周波数信号発信部は、
前記第一の周波数のテラヘルツ波を二つに分岐する第一のテラヘルツ波分岐部と、
前記第二の周波数のテラヘルツ波を二つに分岐する第二のテラヘルツ波分岐部と、
前記第一の周波数の分岐されたテラヘルツ波および前記第二の周波数の分岐されたテラヘルツ波を入射して参照中間周波数信号を出力する参照周波数ミキサと、を有し、
前記第一の周波数と前記第二の周波数の差となる参照中間周波数信号を出力することを特徴とするテラヘルツ波測定装置。 - 請求項1に記載のテラヘルツ波測定装置であって、
前記参照中間周波数信号発信部は、
第一の基準周波数の参照信号を発生する発信部と、
前記第一の基準周波数の参照信号を入力し、第一の整数倍数となる前記中間周波数の参照信号を発信する逓倍部と有し、
前記第一のテラヘルツ波発信部は、
前記第一の基準周波数の参照信号を入力し、前記基準周波数の第二の整数倍数となる第一の周波数のテラヘルツ波を発信する第一のテラヘルツ波逓倍部からなり、
前記第二のテラヘルツ波発信部は、
前記第一の基準周波数の参照信号を入力し、前記基準周波数の第三の整数倍数の前記第二の周波数のテラヘルツ波を発信する第二のテラヘルツ波逓倍部からなり、
前記第一の整数倍数が、前記第二の整数倍数と前記第三の整数倍数との差であることを特徴とするテラヘルツ波測定装置。 - 請求項2に記載のテラヘルツ波測定装置であって、
前記信号処理部から位相差を指定する遅延信号を出力して前記遅延部に入力し、
前記遅延部は前記参照中間周波数信号に対して前記遅延信号の指定した位相差をつけて出力することを特徴とするテラヘルツ波測定装置。 - 請求項1に記載のテラヘルツ波測定装置であって、
前記中間周波数信号測定部は、
前記測定中間周波数信号および前記参照中間周波数信号を入力し、その積となる第一の位相信号を出力する第一の低周波ミキサと、
前記中間周波数の参照信号から指定した第一からnを整数とする第nの位相差をつけて出力するn個の遅延部と、
前記測定中間周波数信号と前記第一から第nまでの遅延部から出力された信号とを入力し、それぞれの積となる第二から第n+1までの位相信号を出力する第二から第nまでの低周波ミキサと、
前記第一から第n+1までの位相信号を検出して第一から第n+1までのそれぞれの検出信号を出力する第一から第nの信号検出部と、
前記第一から第n+1までの検出信号を入力し信号処理により前記測定中間周波数信号の位相と強度を算出する信号処理部とを有することを特徴とするテラヘルツ波測定装置。 - 請求項1に記載のテラヘルツ波測定装置であって、
前記中間周波数信号測定部は、
前記測定中間周波数信号を入力して、デジタル信号に変換する第一のアナログ・デジタル変換部と、
前記参照中間周波数信号を入力して、デジタル信号に変換する第二のアナログ・デジタル変換部と、を有し、
前記測定中間周波数信号の位相と強度を信号処理する信号処理部とを有することを特徴とするテラヘルツ波測定装置。 - 請求項1に記載のテラヘルツ波測定装置であって、
前記第二のテラヘルツ波発信部と測定周波数ミキサとを導波管で接続し、前記第二の周波数のテラヘルツ波の光路長が一定であることを特徴とするテラヘルツ波測定装置。 - 請求項1に記載のテラヘルツ波測定装置であって、
前記第二のテラヘルツ波発信部に、前記信号処理部から測定周波数制御信号を入力し、前記測定周波数制御信号に従ってテラヘルツ波発信部の測定周波数テラヘルツ波を発生させることを特徴とするテラヘルツ波測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/068028 WO2017216942A1 (ja) | 2016-06-17 | 2016-06-17 | テラヘルツ波測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/068028 WO2017216942A1 (ja) | 2016-06-17 | 2016-06-17 | テラヘルツ波測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017216942A1 true WO2017216942A1 (ja) | 2017-12-21 |
Family
ID=60663211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/068028 WO2017216942A1 (ja) | 2016-06-17 | 2016-06-17 | テラヘルツ波測定装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017216942A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108183879A (zh) * | 2017-12-27 | 2018-06-19 | 北京理工大学 | 一种用于太赫兹通信的伪码辅助载波同步实现方法 |
CN110186568A (zh) * | 2019-07-12 | 2019-08-30 | 中国计量大学 | 一种光子混频太赫兹波探测装置 |
CN111965440A (zh) * | 2020-07-02 | 2020-11-20 | 云南大学 | 一种太赫兹接收机噪声测试系统 |
CN113078956A (zh) * | 2021-03-10 | 2021-07-06 | 中国科学院紫金山天文台 | 基于相位光栅的太赫兹多波段相干接收系统 |
CN114002665A (zh) * | 2021-12-30 | 2022-02-01 | 北京理工大学 | 一种应用太赫兹缩比测量的等效远场rcs测试方法 |
CN114813656A (zh) * | 2022-02-28 | 2022-07-29 | 江苏大学 | 一种基于毫米波太赫兹技术的谷物粉品质检测装置及方法 |
CN115078300A (zh) * | 2022-06-01 | 2022-09-20 | 中电科思仪科技股份有限公司 | 一种高分辨率太赫兹特征谱线精密测试装置及测试方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070114418A1 (en) * | 2005-09-20 | 2007-05-24 | Mueller Eric R | Security portal with THz trans-receiver |
JP2014185885A (ja) * | 2013-03-22 | 2014-10-02 | Nippon Telegr & Teleph Corp <Ntt> | ホモダイン検波方式電磁波分光測定システム |
JP2015129663A (ja) * | 2014-01-07 | 2015-07-16 | 日本電信電話株式会社 | ホモダイン検波方式電磁波分光測定システム |
-
2016
- 2016-06-17 WO PCT/JP2016/068028 patent/WO2017216942A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070114418A1 (en) * | 2005-09-20 | 2007-05-24 | Mueller Eric R | Security portal with THz trans-receiver |
JP2014185885A (ja) * | 2013-03-22 | 2014-10-02 | Nippon Telegr & Teleph Corp <Ntt> | ホモダイン検波方式電磁波分光測定システム |
JP2015129663A (ja) * | 2014-01-07 | 2015-07-16 | 日本電信電話株式会社 | ホモダイン検波方式電磁波分光測定システム |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108183879A (zh) * | 2017-12-27 | 2018-06-19 | 北京理工大学 | 一种用于太赫兹通信的伪码辅助载波同步实现方法 |
CN110186568A (zh) * | 2019-07-12 | 2019-08-30 | 中国计量大学 | 一种光子混频太赫兹波探测装置 |
CN110186568B (zh) * | 2019-07-12 | 2021-03-19 | 中国计量大学 | 一种光子混频太赫兹波探测装置 |
CN111965440A (zh) * | 2020-07-02 | 2020-11-20 | 云南大学 | 一种太赫兹接收机噪声测试系统 |
CN113078956A (zh) * | 2021-03-10 | 2021-07-06 | 中国科学院紫金山天文台 | 基于相位光栅的太赫兹多波段相干接收系统 |
CN113078956B (zh) * | 2021-03-10 | 2022-08-02 | 中国科学院紫金山天文台 | 基于相位光栅的太赫兹多波段相干接收系统 |
CN114002665A (zh) * | 2021-12-30 | 2022-02-01 | 北京理工大学 | 一种应用太赫兹缩比测量的等效远场rcs测试方法 |
CN114813656A (zh) * | 2022-02-28 | 2022-07-29 | 江苏大学 | 一种基于毫米波太赫兹技术的谷物粉品质检测装置及方法 |
CN115078300A (zh) * | 2022-06-01 | 2022-09-20 | 中电科思仪科技股份有限公司 | 一种高分辨率太赫兹特征谱线精密测试装置及测试方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017216942A1 (ja) | テラヘルツ波測定装置 | |
US10509065B1 (en) | Imaging of electromagnetic fields | |
JP2017015681A (ja) | テラヘルツ波を用いたリアルタイム非接触非破壊厚さ測定装置 | |
US9835494B2 (en) | Terahertz wave phase difference measurement device | |
US10488259B2 (en) | Apparatus and method for measurement of optical frequency shifts | |
JP6792933B2 (ja) | 合成波レーザー測距センサ及び方法 | |
US20180202923A1 (en) | Gas Detection Device and Gas Detection Method | |
JP5713501B2 (ja) | ホモダイン検波方式電磁波分光測定システム | |
Stanze et al. | Multilayer thickness determination using continuous wave THz spectroscopy | |
US3523735A (en) | Interferometer system for distance measurement | |
JP6836048B2 (ja) | 距離測定装置 | |
JP2015094760A5 (ja) | ||
US8515290B2 (en) | Method for coupling two pulsed lasers having an adjustable difference of the pulse frequencies, which is not equal to zero | |
Minamide et al. | Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration | |
JP5917218B2 (ja) | 内部欠陥検査装置及び内部欠陥の検査方法 | |
TWI794526B (zh) | 光距離測量裝置 | |
US20180248332A1 (en) | Laser frequency control and sensing system | |
Zhai et al. | Underwater distance measurement using frequency comb laser | |
WO2017014098A1 (ja) | ガス検知装置およびガス検知方法 | |
RU2634785C1 (ru) | Автодинный измеритель отклонения от номинального значения внутренних размеров металлических изделий | |
CN106199623B (zh) | 一种飞秒激光模间拍频法测距系统 | |
JP6709710B2 (ja) | 検査装置 | |
Kaname et al. | Fast three-dimensional terahertz imaging with continuous-wave photomixing | |
Noskov et al. | Measurement errors and dynamic range of autodyne vibration meters | |
KR20100043463A (ko) | 테라헤르츠 펄스파 푸리에 변환 분광기 및 그 분광기를 이용한 분광방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16905497 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16905497 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |