WO2017215343A1 - 单载波均衡器及包括该单载波均衡器的接收机系统 - Google Patents

单载波均衡器及包括该单载波均衡器的接收机系统 Download PDF

Info

Publication number
WO2017215343A1
WO2017215343A1 PCT/CN2017/080939 CN2017080939W WO2017215343A1 WO 2017215343 A1 WO2017215343 A1 WO 2017215343A1 CN 2017080939 W CN2017080939 W CN 2017080939W WO 2017215343 A1 WO2017215343 A1 WO 2017215343A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
iter
pow
iterative
error
Prior art date
Application number
PCT/CN2017/080939
Other languages
English (en)
French (fr)
Inventor
牛进
刘小同
张锦红
王纯
Original Assignee
晶晨半导体(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶晨半导体(上海)股份有限公司 filed Critical 晶晨半导体(上海)股份有限公司
Priority to US15/560,157 priority Critical patent/US10153923B2/en
Publication of WO2017215343A1 publication Critical patent/WO2017215343A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure

Definitions

  • the present invention relates to the field of equalizer technologies, and in particular, to a single carrier equalizer and a receiver system including the single carrier equalizer.
  • the industry In order to effectively recover the distorted signal, the industry generally sets a time domain equalizer or a frequency domain equalizer at the receiver end.
  • the current equalizer cannot meet the demand, especially in the complicated and varied.
  • the performance of the equalizer is even more worrying, which in turn leads to a significant reduction in the performance of the entire receiver system.
  • the performance of the existing equalizer is greatly reduced.
  • it is necessary to calculate the iteration factor each time because in the equalization, the interference energy of the region where the narrow-band interference exists affects the entire time-domain decision value through the Fourier variation, which are all known to those skilled in the art. Not expected to see.
  • the present invention provides a single carrier equalizer applicable to data transmission in a single carrier mode and a receiver system including the single carrier equalizer, which implements iterative frequency domain equalization by setting an iterative updater, that is, An iterative approach is used to gradually improve the performance of the frequency domain equalization to improve the anti-multipath and mobility performance of the equalizer, thereby improving the demodulation performance of the entire receiver system, and improving the single-carrier iterative equalizer in narrowband interference during equalization. Performance under reduced narrowband interference.
  • a single carrier equalizer comprising:
  • An iterative updater that iterates the input signal according to a frequency domain value (R) of the input signal and a frequency domain value (H) of the input signal transmission channel, and outputs a frequency domain value (U) of the iterative input signal
  • An iterative stop condition is pre-stored in the iterative updater, and the iterative updater first determines whether the number of iterations of the input signal satisfies the iterative stop condition; if so, stops the iterative operation; otherwise, continues Performing the iterative operation;
  • An inverse fast Fourier variator coupled to the iterative updater to convert a frequency domain value of the iterative input signal to a time domain value (d);
  • a signal determiner coupled to the inverse fast Fourier variator, the fast Fourier variator, and the iterative updater, respectively, to input signal according to a time domain value (d) of the received iterative input signal Make a judgment;
  • the decision signal (s) output by the signal determiner and the time domain of the decision signal A value (dec) is sent to the iterative updater, and the fast Fourier variator receives the decision signal to output a frequency domain value (S) of the decision signal to the iterative updater.
  • U is the frequency domain value of the input signal after iteration, iter is the number of iterations, c is the frequency domain subcarrier number, C is the iterative update factor, R is the frequency domain value of the input signal, and S is the frequency domain value of the decision signal.
  • H is the frequency domain value of the input signal transmission channel response, conj is the conjugate, rou is the iterative confidence factor, abs is the modulo, M_H is the channel average energy, and Factor is the noise correction factor.
  • Pow_Signal is the signal energy
  • Pow_Error is the noise energy
  • Pow_Error(c) abs(Error(c)) ⁇ 2; wherein Error is an error signal.
  • Error (c) is divided into p segments, each of k subcarriers, and p and k are positive integers;
  • Pow_Error(c) Mean(abs(Error(c)) ⁇ 2), where pk-1>c>(p-1)k and c ⁇ pk-1.
  • Signal(c) is divided into p segments, each of k subcarriers, and p and k are positive integers;
  • Pow_Signal(c) Mean(abs(Signal(c)) ⁇ 2), where pk-1>c>(p-1)k and c ⁇ pk-1.
  • Pow_Signal(iter-1,c) Pow_Signal(iter-2,c)*(1-alpha)+alpha*Pow_Signal(c);
  • alpha is the iterative forgetting factor
  • Pow_Error(i,iter-1,c) Pow_Error(i-1,iter-1,c)*(1-beta) +Pow_Error(c)*beta;
  • Pow_Signal(i,iter-1,c) Pow_Signal(i-1,iter-1,c)*(1-beta)+Pow_Signal(c)*beta;
  • Beta is the interframe forgetting factor.
  • Rou(iter-1) abs(mean(d(iter-1,n)*conj(dec(iter-1,n))))) ⁇ 2/mean(abs(d(iter-1,n)) ⁇ 2) /mean(abs(dec(iter-1,n)) ⁇ 2)
  • mean is an average value
  • d is a time domain value of the input signal after iteration
  • dec is a time domain value of the decision signal
  • n is a signal time domain intraframe number
  • the hard judgment criterion is to use a point on the constellation diagram that has the smallest Euclidean distance from the input value as a signal decision value.
  • the present application also discloses a receiver system including the single carrier equalizer described above.
  • the performance of the frequency domain equalizer can be gradually improved.
  • the iterative updater is used to perform the initial iteration and then sent to the inverse fast Fourier.
  • Leaf variator and use signal judger to counter fast The value of the output of the fast Fourier variator is judged, and the output signal of the decider is transmitted to the fast Fourier variator and the iterative updater respectively, that is, the signal after calculating the fast Fourier variator also enters the iterative updater.
  • the iterative updater can start the next iteration equalization operation, and reciprocate until the iteration stop condition is reached; and in the equalization, the iterative factor calculator is used to improve the performance of the single-carrier iterative equalizer under narrowband interference, and reduce the narrowband. The impact of interference.
  • FIG. 1 is a schematic structural diagram of a single carrier equalizer according to an embodiment of the present invention.
  • the embodiment relates to a single carrier equalizer, which may include an iterative updater, an inverse fast Fourier variator (IFFT), a fast Fourier variator (FFT), and a signal decider.
  • the iterative updater may iterate the input signal according to the frequency domain value (R) of the input signal and the frequency domain value (H) of the input signal transmission channel by using formula (1) to output the frequency domain of the input signal after iteration.
  • an iterative stop condition is pre-stored in the iterative updater to determine whether the iteration number of the input signal satisfies the iteration stop condition when the iterative updater performs the iterative operation; if it is satisfied, the iterative operation is stopped; otherwise, The iterative operation continues; the inverse fast Fourier variator (IFFT) is coupled to the iterative updater to convert the frequency domain value (U) of the iterative input signal to a time domain value (d); A leaf variator (FFT) is coupled to the iterative updater; the signal determiner can be coupled to an inverse fast Fourier variator (IFFT), a fast Fourier variator (FFT), and an iterative updater, respectively, based on the received iteration The time domain value (d) of the post input signal determines the input signal; wherein, in a preferred embodiment of the invention, the iterative updater uses equation (1) based on the frequency domain value (R) of the input signal and the input Frequency
  • R is the frequency domain value of the input signal
  • S is the frequency domain value of the decision signal
  • H is the frequency domain value of the input signal transmission channel response
  • conj is the conjugate
  • rou is the iterative confidence factor
  • abs is the modulo
  • M_H For channel average energy
  • Factor is Noise correction factor; here, it is worth mentioning that, where R(c) is on the carrier with interference, it needs to be set to zero.
  • Factor(iter-1, c) Pow_Signal(c)/Pow_Error(c); wherein Pow_Signal is signal energy, Pow_Error For noise energy.
  • Pow_Error(c) abs(Error(c)) ⁇ 2; wherein Error is an error signal.
  • Pow_Signal(c) abs(Signal(c)) ⁇ 2.
  • Signal(c) is divided into p segments, each of k subcarriers, p and k are positive integers;
  • Pow_Signal(c) Mean(abs(Signal( c)) ⁇ 2), where pk-1>c>(p-1)k and c ⁇ pk-1.
  • Pow_Error and Pow_Signal between different iterations iter can also be averaged.
  • mean is an average value
  • d is a time domain value of the input signal after iteration
  • dec is a time domain value of the decision signal
  • n is a signal time domain intraframe number
  • the signal decider uses a hard decision criterion to determine the input signal.
  • the hard decision criterion is to use a point on the constellation diagram that minimizes the Euclidean distance from the input value as a signal decision value.
  • the time domain value (dec) is sent to the iterative updater, and the fast Fourier variator receives the decision signal to output the frequency domain value (S) of the decision signal to the iterative updater; that is, the frequency domain value of the input signal and the input signal match
  • the frequency domain value of the channel ie, the channel transmitting the input signal
  • the signal is transmitted to the signal decider through the inverse fast Fourier variator, and the signal decider performs the decision.
  • the signals output after the operation are respectively sent to the fast Fourier variator and the iterative updater, and the fast Fourier transform is used to perform the fast Fourier transform on the frequency domain value of the determined signal, and then sent to the above iterative update.
  • the iterative updater can begin the next iteration equalization operation, and can reciprocate until the iteration stop condition is reached, so that the output signal meets the design requirements.
  • the signal decider may adopt various implementation manners, for example, a hard decision criterion may be adopted (for example, a point on the constellation diagram that minimizes the Euclidean distance from the input value as a signal decision value) may be used.
  • the input signal is used for decision, while the Fast Fourier Transformer (FFT) and the Inverse Fast Fourier Transformer (IFFT) can use standard calculation modules.
  • FFT Fast Fourier Transformer
  • IFFT Inverse Fast Fourier Transformer
  • the embodiment of the present application further provides a receiver system, which may include the single carrier equalizer described in any one of the above, and may further include components such as an analog to digital converter, a synchronous restorer, a serial to parallel converter, a controller, and the like. Specifically, it can be set based on actual needs. Since it can implement signal reception based on the existing receiver system and the single carrier equalizer in this application, it will not be described here.
  • a single carrier equalizer and a receiver system including the single carrier equalizer in the embodiment of the present application mainly improve the frequency domain equalizer by an iterative method.
  • the performance can be based on the frequency domain value of the input signal and the frequency domain value of the channel of the input signal.
  • the iterative updater After the initial iteration is performed by the iterative updater, it is sent to the inverse fast Fourier variator, and the signal decider is used to reverse The value of the fast Fourier variator output is determined, and the decision output signal is transmitted to the fast Fourier variator and the iterative updater respectively, that is, the signal after the fast Fourier variator is calculated also enters the iterative updater.
  • the iterative updater can start the next iteration equalization operation, and reciprocate until the iteration stop condition is reached, and in the equalization, improve the performance of the single-carrier iterative equalizer under narrowband interference, and reduce the influence of narrowband interference; It can effectively improve the anti-multipath and mobile performance of the equalizer while improving the demodulation performance of the entire receiver system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明涉及均衡器技术领域,具体涉及一种单载波均衡器及包括该单载波均衡器的接收机系统,通过迭代的方式来逐步提升频域均衡器的性能,即可基于输入信号的频域值及输入信号的信道的频域值,利用迭代更新器进行初次迭代后,将其发送至反快速傅里叶变化器,并利用信号判决器对反快速傅里叶变化器输出的值进行判决,而判决器输出信号则又分别传送至快速傅里叶变化器及迭代更新器,即计算完快速傅里叶变化器后的信号也进入迭代更新器,此时迭代更新器开始下一次迭代均衡操作,并以此往复,直到迭代停止条件达到,且在均衡时,利用迭代计算器提高单载波迭代均衡器在窄带干扰下的性能,减少窄带干扰的影响。

Description

单载波均衡器及包括该单载波均衡器的接收机系统 技术领域
本发明涉及均衡器技术领域,具体涉及一种单载波均衡器及包括该单载波均衡器的接收机系统。
背景技术
目前,随着社会的进步及科技的发展,人们对于数据传输的速度及准确率要求越来越高,尤其是利用无线信号进行数据收/发领域中,由于其具有较佳的便携性,人们的期待往往更高。但是,在当下的无线数据收/发系统中,由于数据传输过程中受到较多的外部干扰,仍然会使得传输信号经常出现失真,尤其是在有限带宽及多路径的信道传输过程时,数据失真尤为突出。
业界为了对失真信号进行有效恢复,一般会在接收器端设置时域均衡器或频域均衡器,但由于各种技术的限制使得当前的均衡器均无法满足需求,尤其是在复杂多变的多径数据传输中,均衡器的性能表现的更为堪忧,进而导致整个接收机系统的性能大大降低。当存在频域窄带干扰时,现有均衡器性能大幅度下降。尤其在单载波均衡器中,需要计算每次的迭代因子,因为在均衡时,窄带干扰存在区域的干扰能量会通过傅里叶变化影响了整个时域判决值,这些都是本领域技术人员所不期望见到的。
发明内容
针对现有技术的不足,本发明提供可应用于单载波模式进行数据传输的单载波均衡器及包括该单载波均衡器的接收机系统,通过设置迭代更新器来实现迭代频域均衡,即通过采用迭代的方式来逐步提升频域均衡的性能,以提升均衡器的抗多径及移动性能,进而提升整个接收机系统的解调性能,且在均衡时,提高单载波迭代均衡器在窄带干扰下的性能,减少窄带干扰的影响。
本申请中的技术方案具体为:
一种单载波均衡器,包括:
迭代更新器,根据输入信号的频域值(R)及与该输入信号传输信道的频域值(H)对输入信号进行迭代,并输出迭代后输入信号的频域值(U),所述迭代更新器中预存有迭代停止条件,且所述迭代更新器进行迭代操作时先判断输入信号的迭代次数是否满足所述迭代停止条件;若满足,则停止进行所述迭代操作;否则,则继续进行所述迭代操作;
反快速傅里叶变化器,与所述迭代更新器连接,以将迭代后输入信号的频域值转换为时域值(d);
快速傅里叶变化器,与所述迭代更新器连接;
信号判决器,分别与所述反快速傅里叶变化器、所述快速傅里叶变化器及所述迭代更新器连接,以根据接收的迭代后输入信号的时域值(d)对输入信号进行判决;
其中,所述信号判决器输出的判决信号(s)及判决信号的时域 值(dec)发送至所述迭代更新器,所述快速傅里叶变化器接收所述判决信号以输出判决信号的频域值(S)至所述迭代更新器。
上述的单载波均衡器,其中,所述迭代更新器利用公式(1)根据输入信号的频域值(R)及与该输入信号传输信道的频域值(H)对输入信号进行迭代,并输出迭代后输入信号的频域值(U);所述公式(1)为:
U(iter,c)=C(iter,c)*(R(c)-S(iter-1,c)*H(c));
且所述公式(1)中,C(iter,c)=conj(H(c))/((1-rou(iter-1))*abs(H(c))^2+M_H/Factor(iter-1,c))
其中,U为迭代后输入信号的频域值,iter为迭代次数,c为频域子载波序号,C为迭代更新因子,R为输入信号的频域值,S为判决信号的频域值,H为输入信号传输信道响应的频域值,conj为取共轭,rou为迭代置信因子,abs为取模,M_H为信道平均能量,Factor为噪声修正因子。
上述的单载波均衡器,其中,当iter=1时,所述公式(1)中,Factor(iter-1,c)=Pow_Signal(c)/Pow_Error(c);
其中,Pow_Signal为信号能量,Pow_Error为噪声能量。
上述的单载波均衡器,其中,所述公式(1)中,Pow_Error(c)=abs(Error(c))^2;其中,Error为误差信号。
上述的单载波均衡器,其中,所述公式(1)中,Error(c)=R(c)-H(c)*S(iter-1,c),其中S(iter-1,c)是第iter-1次迭代时,判决值经过DFT(离散傅里叶变换)变换到频域的值。
上述的单载波均衡器,其中,所述公式(1)中,Pow_Signal(c)=abs(Signal(c))^2。
上述的单载波均衡器,其中,所述公式(1)中,Signal(c)=R(c)或Signal(c)=H(c)*S(iter-1,c)。
上述的单载波均衡器,其中,所述公式(1)中,Error(c)分成p段,每段k个子载波,p和k均为正整数;
Pow_Error(c)=Mean(abs(Error(c))^2),其中pk-1>c>(p-1)k并且c<pk-1。
上述的单载波均衡器,其中,所述公式(1)中,Signal(c)分成p段,每段k个子载波,p和k均为正整数;
Pow_Signal(c)=Mean(abs(Signal(c))^2),其中pk-1>c>(p-1)k并且c<pk-1。
上述的单载波均衡器,其中,当iter>1时,所述公式(1)中,Factor(iter-1,c)=Pow_Signal(iter-1,c)/Pow_Error(iter-1,c);
其中,Pow_Error(iter-1,c)=Pow_Error(iter-2,c)*(1-alpha)+alpha*Pow_Error(c);
Pow_Signal(iter-1,c)=Pow_Signal(iter-2,c)*(1-alpha)+alpha*Pow_Signal(c);
其中,alpha为迭代遗忘因子。
上述的单载波均衡器,其中,假设计算第i帧的因子,则Factor(i,iter-1,c)=Pow_Signal(i,iter-1,c)/Pow_Error(i,iter-1,c);
其中,Pow_Error(i,iter-1,c)=Pow_Error(i-1,iter-1,c)*(1-beta) +Pow_Error(c)*beta;
Pow_Signal(i,iter-1,c)=Pow_Signal(i-1,iter-1,c)*(1-beta)+Pow_Signal(c)*beta;
beta为帧间遗忘因子。
上述的单载波均衡器,其中,所述公式(1)中:
Factor(iter-1,c)=mean(abs(d(iter-1,n))^2)/mean(abs(dec(iter-1,n)-d(iter-1,n))^2);
rou(iter-1)=abs(mean(d(iter-1,n)*conj(dec(iter-1,n))))^2/mean(abs(d(iter-1,n))^2)/mean(abs(dec(iter-1,n))^2)
M_H=mean(abs(H(c))^2);
其中,mean为取平均值,d为迭代后输入信号的时域值,dec为判决信号的时域值,n为信号时域帧内序号。
上述的单载波均衡器,其中,所述信号判决器采用硬判断准则对输入信号进行判决。
上述的单载波均衡器,其中,所述硬判断准则为将星座图上离输入值欧式距离最小的点作为信号判决值。
本申请还公开了一种接收机系统,包括上述的单载波均衡器。
与现有技术相比,本发明的优点是:
通过迭代的方式,能够逐步提升频域均衡器的性能,可基于输入信号的频域值及输入信号的信道的频域值,利用迭代更新器进行初次迭代后,将其发送至反快速傅里叶变化器,并利用信号判决器对反快 速傅里叶变化器输出的值进行判决,而判决器输出信号则又分别传送至快速傅里叶变化器及迭代更新器,即计算完快速傅里叶变化器后的信号也进入迭代更新器,此时迭代更新器可以开始下一次迭代均衡操作,并以此往复,直到迭代停止条件达到;且在均衡时,利用迭代因子计算器提高单载波迭代均衡器在窄带干扰下的性能,减少窄带干扰的影响。
附图说明
图1为本发明实施例中单载波均衡器的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
如图1所示,本实施例涉及一种单载波均衡器,可包括迭代更新器、反快速傅里叶变化器(IFFT)、快速傅里叶变化器(FFT)及信号判决器等器件。其中,迭代更新器可利用公式(1)根据输入信号的频域值(R)及与该输入信号传输信道的频域值(H)对输入信号进行迭代,以输出迭代后输入信号的频域值(U),迭代更新器中预存有迭代停止条件,以在迭代更新器进行迭代操作时可先判断输入信号的迭代次数是否满足迭代停止条件;若满足,则停止进行迭代操作;否则,则继续进行所述迭代操作;而反快速傅里叶变化器(IFFT)则与迭代更新器连接,以将迭代后输入信号的频域值(U)转换为时域值(d);快速傅里叶变化器(FFT)则与迭代更新器连接;信号判决器可分别与反快速傅里叶变化器(IFFT)、快速傅里叶变化器(FFT)及迭代更新器连接,以根据接收的迭代后输入信号的时域值(d)对输入信号进行判决;其中,在本发明一个优选的实施例中,迭代更新器利用公式(1)根据输入信号的频域值(R)及与该输入信号传输信道的频域值(H)对输入信号进行迭代,并输出迭代后输入信号的频域值(U);公式(1)为:U(iter,c)=C(iter,c)*(R(c)-S(iter-1,c)*H(c));且公式(1)中,C(iter,c)=conj(H(c))/((1-rou(iter-1))*abs(H(c))^2+M_H/Factor(iter-1,c))其中,U为迭代后输入信号的频域值,iter为迭代次数,c为频域子载波序号,C为迭代更新因子,R为输入信号的频域值,S为判决信号的频域值,H为输入信号传输信道响应的频域值,conj为取共轭,rou为迭代置信因子,abs为取模,M_H为信道平均能量,Factor为 噪声修正因子;在此,值得一提的是,其中,R(c)在有干扰的载波,需要置零。
在本发明一个优选的实施例中,当iter=1时,上述公式(1)中,Factor(iter-1,c)=Pow_Signal(c)/Pow_Error(c);其中,Pow_Signal为信号能量,Pow_Error为噪声能量。
在本发明一个优选的实施例中,上述公式(1)中,Pow_Error(c)=abs(Error(c))^2;其中,Error为误差信号。
在此基础上,进一步的,上述公式(1)中,Error(c)=R(c)-H(c)*S(iter-1,c)。
在本发明一个优选的实施例中,上述公式(1)中,Pow_Signal(c)=abs(Signal(c))^2。
在此基础上,进一步的,上述公式(1)中,Signal(c)=R(c)或Signal(c)=H(c)*S(iter-1,c)。
在本发明一个优选的实施例中,上述公式(1)中,Error(c)分成p段,每段k个子载波,p和k均为正整数,p和k的选择有多种可能,;Pow_Error(c)=Mean(abs(Error(c))^2),其中pk-1>c>(p-1)k并且c<pk-1。
在本发明一个优选的实施例中,上述公式(1)中,Signal(c)分成p段,每段k个子载波,p和k均为正整数;Pow_Signal(c)=Mean(abs(Signal(c))^2),其中pk-1>c>(p-1)k并且c<pk-1。
在本发明一个优选的实施例中,也可以将不同迭代次数iter之间的Pow_Error和Pow_Signal平均起来,当iter>1时,上述公式(1) 中,Factor(iter-1,c)=Pow_Signal(iter-1,c)/Pow_Error(iter-1,c);其中,Pow_Error(iter-1,c)=Pow_Error(iter-2,c)*(1-alpha)+alpha*Pow_Error(c);Pow_Signal(iter-1,c)=Pow_Signal(iter-2,c)*(1-alpha)+alpha*Pow_Signal(c);其中,alpha为迭代遗忘因子。
在本发明一个优选的实施例中,还有一种基于上述计算,不同帧之间的平均方法;假设计算第i帧的因子,则Factor(i,iter-1,c)=Pow_Signal(i,iter-1,c)/Pow_Error(i,iter-1,c);其中,Pow_Error(i,iter-1,c)=Pow_Error(i-1,iter-1,c)*(1-beta)+Pow_Error(c)*beta;Pow_Signal(i,iter-1,c)=Pow_Signal(i-1,iter-1,c)*(1-beta)+Pow_Signal(c)*beta;beta为帧间遗忘因子。
在本发明一个优选的实施例中,上述公式(1)中:Factor(iter-1,c)=mean(abs(d(iter-1,n))^2)/mean(abs(dec(iter-1,n)-d(iter-1,n))^2);rou(iter-1)=abs(mean(d(iter-1,n)*conj(dec(iter-1,n))))^2/mean(abs(d(iter-1,n))^2)/mean(abs(dec(iter-1,n))^2)M_H=mean(abs(H(c))^2);
其中,mean为取平均值,d为迭代后输入信号的时域值,dec为判决信号的时域值,n为信号时域帧内序号。
在本发明一个优选的实施例中,信号判决器采用硬判断准则对输入信号进行判决。
在本发明一个优选的实施例中,硬判断准则为将星座图上离输入值欧式距离最小的点作为信号判决值。
进一步的,上述的信号判决器输出的判决信号(s)及判决信号 的时域值(dec)发送至迭代更新器,快速傅里叶变化器接收判决信号以输出判决信号的频域值(S)至迭代更新器;即将输入信号的频域值及该输入信号匹配(即传送该输入信号的信道)的频域值输入至迭代更新器先进行初次迭代,并在初次迭代之后通过反快速傅里叶变化器将信号传送至信号判决器,该信号判决器进行判决操作后输出的信号分别发送至快速傅里叶变化器及迭代更新器,且利用快速傅里叶变化器对判决后的信号的频域值进行快速傅里叶变换后也发送至上述的迭代更新器,此时迭代更新器就可以开始进行下一次迭代均衡操作,并可以此往复,直到迭代停止条件达到,以使得输出的信号达到设计需求。
在本发明一个优选的实施例中,上述的信号判决器可采用多种实现方式,例如可采用硬判断准则(例如,可将星座图上离输入值欧式距离最小的点作为信号判决值)对输入信号进行判决,而快速傅里叶变化器(FFT)及反快速傅里叶变化器(IFFT)则可以采用标准计算模块。
另外,本申请实施例还提供一种接收机系统,可包括上述任意一项所述的单载波均衡器,还可包括诸如模数转换器、同步恢复器、串并转换器、控制器等部件,即具体可基于实际需求而设定,由于其可基于现有的接收机系统的基础上结合本申请中的单载波均衡器来实现对信号的接收,故在此便不予累述。
综上所述,本申请实施例中的一种单载波均衡器及包括该单载波均衡器的接收机系统,主要是通过迭代的方式来逐步提升频域均衡器 的性能,即可基于输入信号的频域值及输入信号的信道的频域值,利用迭代更新器进行初次迭代后,将其发送至反快速傅里叶变化器,并利用信号判决器对反快速傅里叶变化器输出的值进行判决,而判决器输出信号则又分别传送至快速傅里叶变化器及迭代更新器,即计算完快速傅里叶变化器后的信号也进入迭代更新器,此时迭代更新器可以开始下一次迭代均衡操作,并以此往复,直到迭代停止条件达到,且在均衡时,提高单载波迭代均衡器在窄带干扰下的性能,减少窄带干扰的影响;进而能够有效提升均衡器的抗多径及移动性能同时,提升整个接收机系统的解调性能。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (15)

  1. 一种单载波均衡器,其特征在于,包括:
    迭代更新器,根据输入信号的频域值及与该输入信号传输信道的频域值对输入信号进行迭代,并输出迭代后输入信号的频域值,所述迭代更新器中预存有迭代停止条件,且所述迭代更新器进行迭代操作时先判断输入信号的迭代次数是否满足所述迭代停止条件;若满足,则停止进行所述迭代操作;否则,则继续进行所述迭代操作;
    反快速傅里叶变化器,与所述迭代更新器连接,以将迭代后输入信号的频域值转换为时域值;
    快速傅里叶变化器,与所述迭代更新器连接;
    信号判决器,分别与所述反快速傅里叶变化器、所述快速傅里叶变化器及所述迭代更新器连接,以根据接收的迭代后输入信号的时域值对输入信号进行判决;
    其中,所述信号判决器输出的判决信号及判决信号的时域值发送至所述迭代更新器,所述快速傅里叶变化器接收所述判决信号以输出判决信号的频域值至所述迭代更新器。
  2. 如权利要求1所述的单载波均衡器,其特征在于,所述迭代更新器利用公式(1)根据输入信号的频域值及与该输入信号传输信道的频域值对输入信号进行迭代,并输出迭代后输入信号的频域值;所述公式(1)为:
    U(iter,c)=C(iter,c)*(R(c)-S(iter-1,c)*H(c));
    且所述公式(1)中,C(iter,c)=conj(H(c))/((1-rou(iter-1)) *abs(H(c))^2+M_H/Factor(iter-1,c))
    其中,U为迭代后输入信号的频域值,iter为迭代次数,c为频域子载波序号,C为迭代更新因子,R为输入信号的频域值,S为判决信号的频域值,H为输入信号传输信道响应的频域值,conj为取共轭,rou为迭代置信因子,abs为取模,M_H为信道平均能量,Factor为噪声修正因子。
  3. 如权利要求2所述的单载波均衡器,其特征在于,当iter=1时,所述公式(1)中,Factor(iter-1,c)=Pow_Signal(c)/Pow_Error(c);
    其中,Pow_Signal为信号能量,Pow_Error为噪声能量。
  4. 如权利要求3所述的单载波均衡器,其特征在于,所述公式(1)中,Pow_Error(c)=abs(Error(c))^2;其中,Error为误差信号。
  5. 如权利要求4所述的单载波均衡器,其特征在于,所述公式(1)中,Error(c)=R(c)-H(c)*S(iter-1,c)。
  6. 如权利要求3所述的单载波均衡器,其特征在于,所述公式(1)中,Pow_Signal(c)=abs(Signal(c))^2。
  7. 如权利要求6所述的单载波均衡器,其特征在于,所述公式 (1)中,Signal(c)=R(c)或Signal(c)=H(c)*S(iter-1,c)。
  8. 如权利要求3所述的单载波均衡器,其特征在于,所述公式(1)中,Error(c)分成p段,每段k个子载波,p和k均为正整数;
    Pow_Error(c)=Mean(abs(Error(c))^2),其中pk-1>c>(p-1)k并且c<pk-1。
  9. 如权利要求3所述的单载波均衡器,其特征在于,所述公式(1)中,Signal(c)分成p段,每段k个子载波,p和k均为正整数;
    Pow_Signal(c)=Mean(abs(Signal(c))^2),其中pk-1>c>(p-1)k并且c<pk-1。
  10. 如权利要求2所述的单载波均衡器,其特征在于,当iter>1时,所述公式(1)中,Factor(iter-1,c)=Pow_Signal(iter-1,c)/Pow_Error(iter-1,c);
    其中,Pow_Error(iter-1,c)=Pow_Error(iter-2,c)*(1-alpha)+alpha*Pow_Error(c);
    Pow_Signal(iter-1,c)=Pow_Signal(iter-2,c)*(1-alpha)+alpha*Pow_Signal(c);
    其中,alpha为迭代遗忘因子。
  11. 如权利要求2所述的单载波均衡器,其特征在于,假设计算第i帧的因子,则Factor(i,iter-1,c)=Pow_Signal(i,iter-1,c)/Pow_Error(i,iter-1,c);
    其中,Pow_Error(i,iter-1,c)=Pow_Error(i-1,iter-1,c)*(1-beta)+Pow_Error(c)*beta;
    Pow_Signal(i,iter-1,c)=Pow_Signal(i-1,iter-1,c)*(1-beta)+Pow_Signal(c)*beta;
    beta为帧间遗忘因子。
  12. 如权利要求2所述的单载波均衡器,其特征在于,所述公式(1)中:
    Factor(iter-1,c)=mean(abs(d(iter-1,n))^2)/mean(abs(dec(iter-1,n)-d(iter-1,n))^2);
    rou(iter-1)=abs(mean(d(iter-1,n)*conj(dec(iter-1,n))))^2/mean(abs(d(iter-1,n))^2)/mean(abs(dec(iter-1,n))^2)
    M_H=mean(abs(H(c))^2);
    其中,mean为取平均值,d为迭代后输入信号的时域值,dec为判决信号的时域值,n为信号时域帧内序号。
  13. 如权利要求1所述的单载波均衡器,其特征在于,所述信号判决器采用硬判断准则对输入信号进行判决。
  14. 如权利要求13所述的单载波均衡器,其特征在于,所述硬判断准则为将星座图上离输入值欧式距离最小的点作为信号判决值。
  15. 一种接收机系统,其特征在于,包括如权利要求1~14中任意一项所述的单载波均衡器。
PCT/CN2017/080939 2016-06-15 2017-04-18 单载波均衡器及包括该单载波均衡器的接收机系统 WO2017215343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/560,157 US10153923B2 (en) 2016-06-15 2017-04-18 Single carrier equalizer and a receiver system comprising the single carrier equalizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610423401.7A CN105897628A (zh) 2016-06-15 2016-06-15 单载波均衡器及包括该单载波均衡器的接收机系统
CN201610423401.7 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017215343A1 true WO2017215343A1 (zh) 2017-12-21

Family

ID=56730551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080939 WO2017215343A1 (zh) 2016-06-15 2017-04-18 单载波均衡器及包括该单载波均衡器的接收机系统

Country Status (3)

Country Link
US (1) US10153923B2 (zh)
CN (1) CN105897628A (zh)
WO (1) WO2017215343A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105897628A (zh) * 2016-06-15 2016-08-24 晶晨半导体(上海)有限公司 单载波均衡器及包括该单载波均衡器的接收机系统
CN111884959B (zh) * 2020-07-14 2021-07-13 西安交通大学 一种用于单载波宽带无线通信系统的迭代均衡方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752244A (zh) * 2012-07-25 2012-10-24 浙江大学 一种无循环前缀的单载波频域均衡方法
US8718203B2 (en) * 2010-03-16 2014-05-06 Anchor Hill Communications, Llc Single carrier communication in dynamic fading channels
CN105610750A (zh) * 2015-12-30 2016-05-25 晶晨半导体(上海)有限公司 单载波均衡器及包括该单载波均衡器的接收机系统
CN105897628A (zh) * 2016-06-15 2016-08-24 晶晨半导体(上海)有限公司 单载波均衡器及包括该单载波均衡器的接收机系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451933B2 (en) * 2002-07-18 2013-05-28 Coherent Logix, Incorporated Detection of low-amplitude echoes in a received communication signal
US8615035B2 (en) * 2005-03-29 2013-12-24 Qualcomm Incorporated Method and apparatus for block-wise decision-feedback equalization for wireless communication
DE102007023881A1 (de) * 2007-03-26 2008-10-02 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Ermittlung einer unverkürzten Kanalimpulsantwort in einem OFDM-Übertragungssystem
US8576934B2 (en) * 2009-07-02 2013-11-05 Nec Corporation Receiving device, receiving method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718203B2 (en) * 2010-03-16 2014-05-06 Anchor Hill Communications, Llc Single carrier communication in dynamic fading channels
CN102752244A (zh) * 2012-07-25 2012-10-24 浙江大学 一种无循环前缀的单载波频域均衡方法
CN105610750A (zh) * 2015-12-30 2016-05-25 晶晨半导体(上海)有限公司 单载波均衡器及包括该单载波均衡器的接收机系统
CN105897628A (zh) * 2016-06-15 2016-08-24 晶晨半导体(上海)有限公司 单载波均衡器及包括该单载波均衡器的接收机系统

Also Published As

Publication number Publication date
US20180191531A1 (en) 2018-07-05
US10153923B2 (en) 2018-12-11
CN105897628A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN103095639B (zh) Ofdm水声通信并行迭代ici消除方法
WO2012092900A2 (zh) 一种信道频偏估计方法、装置及系统
CN103269321B (zh) 单载波频域均衡系统中基于独特字的信道估计方法
KR101241824B1 (ko) Ofdm 통신 시스템의 수신 장치 및 그의 위상 잡음 완화 방법
CN108712353A (zh) 软迭代信道估计方法
WO2016015473A1 (zh) 一种自干扰信道估计方法和设备
CN108881082B (zh) 信噪比确定方法及装置、信道均衡方法及装置
US8233573B2 (en) Dynamic optimization of overlap-and-add length
WO2017215343A1 (zh) 单载波均衡器及包括该单载波均衡器的接收机系统
WO2010097034A1 (zh) 干扰抑制方法和通信设备
TW201021564A (en) Single-carrier/multi-carrier community receiver
CN103944852A (zh) 一种基于压缩感知的冲激噪声估计与消除方法及装置
TWI466508B (zh) 一種用於正交多頻分工系統中消除符際干擾的接收器及其訊號接收方法
Shen et al. SNR estimation algorithm based on pilot symbols for DFT-spread OFDM systems over underwater acoustic channels
CN104135455B (zh) 一种通信系统迭代接收方法
TW201806341A (zh) 處理通道脈衝響應的有效路徑的裝置及方法
US20180167235A1 (en) Adaptive channel estimation
CN105610750A (zh) 单载波均衡器及包括该单载波均衡器的接收机系统
EP2146470B1 (en) Inter-carrier interference reduction for multi-carrier signals
CN104022983A (zh) 一种ofdm系统中的cpe抑制方法
US10892916B2 (en) Channel estimation method and circuit
JP2019501582A (ja) 高次qam信号を復調するための方法およびシステム
WO2017215342A1 (zh) 一种信号判决器及信号判决方法
TWI674759B (zh) 執行頻寬偵測的裝置及方法
CN102594742B (zh) 单载波系统中基于导频的信道岭估计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812455

Country of ref document: EP

Kind code of ref document: A1