WO2017215098A1 - Procédé de conception de composants majeurs d'alliages d'aluminium à trempabilité élevée et à résistance élevée - Google Patents

Procédé de conception de composants majeurs d'alliages d'aluminium à trempabilité élevée et à résistance élevée Download PDF

Info

Publication number
WO2017215098A1
WO2017215098A1 PCT/CN2016/094097 CN2016094097W WO2017215098A1 WO 2017215098 A1 WO2017215098 A1 WO 2017215098A1 CN 2016094097 W CN2016094097 W CN 2016094097W WO 2017215098 A1 WO2017215098 A1 WO 2017215098A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardenability
strength
aluminum alloy
alloy
designing
Prior art date
Application number
PCT/CN2016/094097
Other languages
English (en)
Chinese (zh)
Inventor
许晓静
朱金鑫
丁清
罗勇
吴瑶
谈成
赵建吉
张香丽
杨帆
张冲
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2017215098A1 publication Critical patent/WO2017215098A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the invention belongs to the field of metal alloys, and in particular relates to a method for designing a main component of a high-hardenability high-strength Al-Zn-Mg-Cu-based aluminum alloy.
  • high-strength aluminum alloy is one of the higher strengths of aluminum alloy. Materials, demand is also increasing.
  • the main body of the high-strength aluminum alloy is an Al-Zn-Mg-Cu system (referred to as 7000 series) alloy, which has good plasticity, toughness, stress corrosion resistance and processing property.
  • Chinese patent CN104004946A discloses a 690-730 MPa ultra high strength and high hardenability aluminum alloy and a preparation method thereof, and the single end hardening depth of the aluminum alloy can reach 80-100 mm.
  • Chinese patent CN102703782A discloses an ultra-high strength and high hardenability Al-Zn-Mg-Cu alloy which has a hardness of up to 214 HV after quenching and a single-end hardenable depth of about 82 mm.
  • both of these patents only give the main components of the alloy and do not provide a method for designing the two aluminum alloy compositions.
  • the object of the present invention is to solve the problem that the design theory and method of the Al-Zn-Mg-Cu high-hardenability high-strength Al-Zn-Mg-Cu-based aluminum alloy component are lacking, and the invention can be used for guiding high quenching.
  • a method for designing a main component of a high-hardenability high-strength Al-Zn-Mg-Cu-based aluminum alloy characterized in that, when designing a main component of a high-hardenability high-strength Al-Zn-Mg-Cu-based aluminum alloy, Obtaining high hardenability.
  • the mass percentage of the main components of the Al-Zn-Mg-Cu-based aluminum alloy When designing the mass percentage of the main components of the Al-Zn-Mg-Cu-based aluminum alloy, first calculate the total difference ⁇ of the radius difference of the main alloying element atoms Zn, Mg, Cu and Al atoms, so that the main The alloying element atomic Zn, Mg, Cu and Al atom radius difference sum ⁇ satisfies 0.059% ⁇ ⁇ ⁇ 0.344%; at the same time, the ⁇ value is as small as possible within the above range, and the main alloying element Zn is found by substituting into the formula.
  • the composition should also follow the following principle: the ratio of the mass percentage of Zn and Mg in the alloying element should satisfy 4 ⁇ Wt Zn / Wt Mg ⁇ 5.5, the mass percentage of Mg Wt Mg should satisfy 1.4% ⁇ Wt Mg ⁇ 3.5%.
  • Wt Zn is the mass percentage of Zn in the aluminum alloy
  • Wt Mg is the mass percentage of Mg in the aluminum alloy
  • Wt Cu is the mass percentage of Cu in the aluminum alloy.
  • a method for designing a main component of a high-hardenability high-strength Al-Zn-Mg-Cu-based aluminum alloy proposed by the present invention is a pioneering method at home and abroad, and proposes a new and reliable composition design method.
  • the problem that there is no recognized and accurate design method in the design of high-hardenability high-strength Al-Zn-Mg-Cu-based aluminum alloy composition has been solved.
  • the invention obtains an ideal method for designing the main components of the high-hardenability high-strength Al-Zn-Mg-Cu alloy by a large number of tests and calculations, and the calculation is simple and convenient, and the method is reliable.
  • Figure 1 is a dimensional view of an end-hardened bar of the present invention.
  • Figure 2 is a photograph of the end quenching scene of the present invention.
  • Fig. 3 is a schematic view showing the wire cutting of the end-hardened bar of the present invention.
  • Figure 4 is a dimensional view of a tensile specimen of the present invention.
  • Fig. 5 is a graph showing the end-hardening of the hardness-distinguish end distance according to the first embodiment of the present invention.
  • Fig. 6 is a graph showing the end-hardening of the hardness-distinguish end distance of the second embodiment of the present invention.
  • Figure 7 is a graph showing the end-hardness of the hardness-distinguish end distance of the third embodiment of the present invention.
  • Figure 8 is a graph showing the end-hardness of the hardness-distinguish end distance of Comparative Example 1 of the present invention.
  • Figure 9 is a graph showing the end-hardening curves of the hardness-distinguish end distances of the first, second, third and comparative examples of the present invention.
  • three typical 7000 series aluminum alloy compositions will be designed in accordance with the method provided by the present invention.
  • a comparative example will be provided. It is a 7075 alloy, and the composition design of the comparative alloy is contrary to the principle in the method provided by the present invention.
  • the materials of all the above examples and comparative examples were subjected to the following material preparation, heat treatment, hardenability and tensile properties tests.
  • the alloy is smelted according to the designed alloy composition, and the melting temperature is 850 ° C to 900 ° C.
  • the ingot is subjected to homogenization annealing treatment, the annealing mechanism is 470 ° C ⁇ 24 h, and then cooled to 200 ° C with the furnace, and finally air cooling is taken out.
  • the ingot is subjected to hot extrusion processing to obtain an extruded bar having a diameter of ⁇ 30 mm.
  • the extrusion ratio is 20:1.
  • the bar obtained in the previous step is processed into a tensile test bar of ⁇ 30 mm ⁇ 40 mm and an end-hardened bar as shown in (1).
  • quenching treatment the terminal hardened bar after the above solid solution solidification is immediately quenched at the end, the quenching transfer time is not more than 10 seconds, the quenching medium is 20 ° C water, and the end quenching site is as shown in the figure.
  • the above-mentioned tensile test bar after strengthening solid solution is subjected to water quenching treatment, and the quenching transfer time is not more than 10 seconds, and the bar is directly immersed in clean water at 20 ° C until the bar is completely cooled.
  • Hardenability test Using the method of wire cutting, the end quenched bar is cut according to the method shown in Figure (3), and the cut test piece is polished. Starting from the small end, the hardness is measured at intervals. The hardness is plotted as the end-hardening curve of the hardness-distance from the quenching end, and the hardness is reduced by 10% to the single-end hardening depth.
  • Tensile test The wire was cut into a tensile test piece as shown in (4) by a wire cutting method, and a tensile test was performed to measure the tensile strength of the sample.
  • a 7085 aluminum alloy is designed, which is composed of Al-7Zn-1.41Mg-1.5Cu and a very small amount of 0.4% Zr and 0.025% Sr, which is called 7085-1 alloy.
  • the alloy was subjected to the above materials preparation, heat treatment, hardenability and tensile properties test, and the end-hardening curve of hardness-disturbing end distance was shown in Fig.
  • the single-end hardening depth of the -1 aluminum alloy is greater than 140 mm, so its hardenability is at least 280 mm, the hardenability is very high, and the tensile strength is 518.25 MPa.
  • the -2 aluminum alloy has a single-end hardenability of more than 140 mm, so its hardenability is at least 280 mm, the
  • the -1 aluminum alloy has a single-end hardened depth of more than 140 mm, so its hardenability is at least 280 mm, the hard
  • a 7075 aluminum alloy was designed, which was made of Al-5.6Zn-2.5Mg-1.6Cu.
  • the alloy was prepared by the above materials and heat-treated to prepare experimental samples. The hardenability and tensile properties of the alloy were tested.
  • the end-hardening curve of the hardness-distance from the quenching end is shown in Fig. (8).
  • the single-end hardening depth of the 7075 aluminum alloy is about 36 mm, so the hardenability is 72 mm, and the hardenability is not good.
  • the condition of 4 ⁇ Wt Zn /Wt Mg ⁇ 5.5 is not satisfied, and the tensile strength is 505 MPa, and the tensile strength thereof is not high.
  • compositions of the 7085-1, 7085-2, and 7085-3 alloys provided by the three examples are all designed according to the principles and methods provided by the present invention.
  • the hardenability is very high, while the composition of the comparative one 7075 alloy is inconsistent with the principle provided by the present invention, the hardenability is very low, and the strength is also the lowest among the alloys.
  • the hardness of the four alloys - the quenching end The end quenching curve of the distance is plotted in a graph. As shown in Fig. (9), it can be found that the 7805 alloy provided according to the present invention has a hardenability of at least 3.8 times that of the 7075 alloy.
  • the rationality and superiority of the composition design method provided by the present invention can be seen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

La présente invention concerne un procédé de conception de composants majeurs d'alliages d'aluminium de série Al-Zn-Mg-Cu à trempabilité élevée et à résistance élevée. Afin d'obtenir la trempabilité élevée, le principe selon lequel la somme du pourcentage de différence de rayon des atomes d'éléments d'alliage principaux et des atomes de Al est réduite au minimum est appliqué, de sorte que la somme de pourcentage de différence de rayon d'atome delta satisfait à 0,059 % ≤ δ ≤ 0,3044 %. Afin d'obtenir la résistance élevée, les principes selon lesquels les pourcentages en masse de Zn et Mg dans les éléments d'alliage doivent satisfaire à WtZn/WtMg ≥ 4, et le pourcentage en masse Mg de Mg devrait satisfaire à WtMg ≥ 4 devraient être suivis lorsque les composants sont conçus. Un procédé idéal pour la conception des composants majeurs des alliages de série Al-Zn-Mg-Cu à trempabilité élevée et à résistance élevée est obtenu sur la base d'une grande quantité d'essais et de calculs, où les calculs sont simples et pratiques, le procédé est fiable, et le problème selon lequel le domaine de conception des composants d'alliages de série Al-Zn-Mg-Cu à trempabilité élevée et à résistance élevée est dépourvu d'un procédé de conception reconnu et précis est résolu.
PCT/CN2016/094097 2016-06-16 2016-08-09 Procédé de conception de composants majeurs d'alliages d'aluminium à trempabilité élevée et à résistance élevée WO2017215098A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610431322.0 2016-06-16
CN201610431322.0A CN105908028B (zh) 2016-06-16 2016-06-16 一种设计高淬透性高强度铝合金主要成分的方法

Publications (1)

Publication Number Publication Date
WO2017215098A1 true WO2017215098A1 (fr) 2017-12-21

Family

ID=56751470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094097 WO2017215098A1 (fr) 2016-06-16 2016-08-09 Procédé de conception de composants majeurs d'alliages d'aluminium à trempabilité élevée et à résistance élevée

Country Status (2)

Country Link
CN (1) CN105908028B (fr)
WO (1) WO2017215098A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048565A1 (fr) * 2005-10-25 2007-05-03 Aleris Aluminum Koblenz Gmbh Alliage al-cu-mg adapte a une application aerospatiale
CN101701308A (zh) * 2009-11-11 2010-05-05 苏州有色金属研究院有限公司 高损伤容限型超高强铝合金及其制备方法
US8043445B2 (en) * 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
CN102703782A (zh) * 2012-04-20 2012-10-03 北京工业大学 一种超高强高淬透性Al-Zn-Mg-Cu合金
CN104404321A (zh) * 2014-11-26 2015-03-11 中国石油天然气集团公司 一种超深井用超高强度铝合金钻杆管体及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010016472A (ko) * 2000-12-13 2001-03-05 주식회사 하바메탈 강도 및 인성이 우수한알루미늄-마그네슘-아연-스칸디움계 합금 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043445B2 (en) * 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
WO2007048565A1 (fr) * 2005-10-25 2007-05-03 Aleris Aluminum Koblenz Gmbh Alliage al-cu-mg adapte a une application aerospatiale
CN101701308A (zh) * 2009-11-11 2010-05-05 苏州有色金属研究院有限公司 高损伤容限型超高强铝合金及其制备方法
CN102703782A (zh) * 2012-04-20 2012-10-03 北京工业大学 一种超高强高淬透性Al-Zn-Mg-Cu合金
CN104404321A (zh) * 2014-11-26 2015-03-11 中国石油天然气集团公司 一种超深井用超高强度铝合金钻杆管体及其制造方法

Also Published As

Publication number Publication date
CN105908028A (zh) 2016-08-31
CN105908028B (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
CN104711465A (zh) 一种Al-Zn-Mg-Cu高强铝合金材料及其制备方法
WO2014117684A1 (fr) Alliage de laiton sans plomb, facile à découper et résistant à la corrosion avec une bonne performance de thermoformage
CN104711468A (zh) 一种高强高耐热性铝合金材料及其制备方法
Xiong et al. Development of High Performance of Al Alloys via Cryo‐Forming: A Review
Emamy et al. Microstructures and tensile properties of hot-extruded Al matrix composites containing different amounts of Mg2Si
CN101906555A (zh) 一种含Mn的抗蠕变轧制锌合金板带材及其制备方法
CN109266901B (zh) 一种Cu15Ni8Sn高强耐磨合金杆/丝的制备方法
CN101654764A (zh) 一种铁镍基高弹性合金及其毛细管和毛细管的制造方法
EP2929061B1 (fr) Alliage résistant à la chaleur à base d'aluminium et procédé de fabrication
CN102400069A (zh) 一种Al-Li-Cu-X系铝锂合金多级时效强韧化工艺
US20150165519A1 (en) Shaped parts made from corrosion-resistant copper alloys
CN106319282B (zh) 一种低成本、高塑性、耐海水腐蚀钛合金
Koyama et al. Effects of Si on tensile properties associated with deformation-induced ε-martensitic transformation in high Mn austenitic alloys
US20210292879A1 (en) Superalloy seamless tube and preparation method thereof
CN101914704B (zh) 一种含Cr的抗蠕变挤压锌合金及其制备方法
CN105401005A (zh) 一种Al-Si合金材料及其生产方法
WO2016065498A1 (fr) Matériau d'alliage à base de zinc à haute résistance déformable
CN108570583A (zh) 不含稀土低合金超高强韧镁合金及其制备方法
JP6096488B2 (ja) 7000系アルミニウム合金の押出成形用ビレット及び押出形材の製造方法
WO2009113601A1 (fr) Alliage de magnésium-lithium, matériau laminé et article moulé
JP2022044919A (ja) アルミニウム合金製鍛造部材及びその製造方法
CN111575554A (zh) 一种高强度耐磨铝合金的生产方法
WO2017215098A1 (fr) Procédé de conception de composants majeurs d'alliages d'aluminium à trempabilité élevée et à résistance élevée
EP3431622B1 (fr) Alliage à base de ni à haute teneur en cr résistant à la corrosion et à la chaleur et présentant une excellente aptitude au forgeage à chaud
CN107779665B (zh) 一种钛合金及其加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905211

Country of ref document: EP

Kind code of ref document: A1