WO2017214984A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2017214984A1
WO2017214984A1 PCT/CN2016/086265 CN2016086265W WO2017214984A1 WO 2017214984 A1 WO2017214984 A1 WO 2017214984A1 CN 2016086265 W CN2016086265 W CN 2016086265W WO 2017214984 A1 WO2017214984 A1 WO 2017214984A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
synchronization signal
secondary synchronization
correspondence
subframes
Prior art date
Application number
PCT/CN2016/086265
Other languages
English (en)
French (fr)
Inventor
李振宇
李汉涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16905098.6A priority Critical patent/EP3461212A4/en
Priority to CN201680086844.XA priority patent/CN109417818A/zh
Priority to PCT/CN2016/086265 priority patent/WO2017214984A1/zh
Priority to JP2018565864A priority patent/JP2019518394A/ja
Publication of WO2017214984A1 publication Critical patent/WO2017214984A1/zh
Priority to US16/219,378 priority patent/US20190124614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • the spectrum is the basis of wireless communication. According to the latest international spectrum white paper issued by the Federal Communications Commission (FCC), there are more license-free or unlicensed spectrum resources than authorized or licensed spectrum resources. Unlicensed spectrum resources are not constrained by the use of wireless communication systems and operators. Then multiple operators of multiple communication systems want to occupy the same spectrum. In order to realize the spectrum of different wireless communication systems on unlicensed spectrum resources. The fairness of resource use, in some areas, wireless communication equipment needs to follow certain rules when using unlicensed spectrum resources, such as the first in ETSI EN 301 893 issued by the European Telecommunications Standards Institute (ETSI). After listening to listen (listen before talk, referred to as LBT), channel bandwidth occupancy requirements and other mechanisms.
  • ETSI EN 301 893 issued by the European Telecommunications Standards Institute
  • the wireless communication device needs to use the LBT mechanism when occupying unlicensed spectrum resources, that is, the device first monitors whether the channel is idle or available before using the channel, and can use the non-authorization if the channel is idle or available. Spectrum resources.
  • the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) cannot be obtained at a fixed absolute time.
  • the device functioning at the base station is sent to the terminal, thereby affecting the downlink synchronization, so that the terminal cannot synchronize with the device having the function of the base station.
  • This application describes a communication method and apparatus.
  • an embodiment of the present application provides a communication method, where the method includes: when detecting that a carrier is idle, a base station determines a first subframe for transmitting a downlink synchronization signal, where the downlink synchronization signal includes a primary synchronization signal and a secondary synchronization signal; the base station determines a location of the primary synchronization signal and a secondary synchronization signal on the first subframe, wherein a location of the secondary synchronization signal is a subframe number according to the first subframe And determining, by the base station, the downlink synchronization signal, in the first subframe, according to the determined position of the primary synchronization signal and the secondary synchronization signal in the first subframe, where The first correspondence relationship includes a correspondence between a subframe number and a position of the secondary synchronization signal in the subframe.
  • the base station sends a downlink synchronization signal according to the subframe number and the first correspondence relationship
  • the terminal can obtain the subframe number of the subframe in which the synchronization signal is located by using the detection of the synchronization signal without occupying additional resources, so that the downlink synchronization can be completed.
  • the first correspondence is associated with the type of communication system.
  • all subframes in a radio frame include at least one set, and the positions of the secondary sync signals in each subframe of each set are different.
  • the positions of the secondary synchronization signals on the subframes with the subframe number of (k-1)*N/m to k*N/m-1 are different, wherein the one radio frame is in the middle.
  • the position of the primary synchronization signal in the subframe is fixed.
  • the primary synchronization signal may be fixed in a communication system, and the position of the primary synchronization signal in the subframe may change in different communication systems.
  • the primary synchronization signal occupies the last symbol of the first time slot in the subframe. In this way, the transmission method of the PSS of the existing protocol can be used to minimize the change of the protocol.
  • the secondary synchronization codes of the secondary synchronization signals on the subframes in one set are the same, and the different sets correspond to different secondary synchronization codes.
  • the manner of sending the common signaling may be determined according to the preemption condition of the carrier. For example, when the carrier preemption is relatively easy, the PSS/SSS transmission and the common signaling may be sent in different subframes; When carrier preemption is difficult, PSS/SSS/ and common signaling can be packaged and sent in one subframe.
  • the above common signaling includes but is not limited to PBCH and SIB. This can make the signaling transmission method more flexible.
  • the preemption of the carrier is easy or difficult in various manners. For example, the probability of successfully preempting the carrier transmission synchronization signal in the T synchronization window can be counted. If the probability is greater than the preset threshold, the carrier preemption is considered to be relatively easy. If the probability is less than the preset threshold, carrier preemption may be considered to be difficult.
  • the above solution can be applied to unlicensed bands, especially the ulicense standalone scenario.
  • an embodiment of the present application provides a communication method, the method comprising: receiving, by a terminal, data from a base station, where the data includes a primary synchronization signal and a secondary synchronization signal; and the terminal passes the primary synchronization signal and the secondary Detecting a synchronization signal, acquiring location information of the secondary synchronization signal in the first subframe; determining the first sub-port according to location information of the secondary synchronization signal in the first subframe and a first correspondence relationship a subframe number of the frame, where the first correspondence relationship includes a correspondence between a subframe number and a position of the secondary synchronization signal in the subframe.
  • the above method in the sub-frame through PSS/SSS
  • the positional relationship or the position of the secondary synchronization signal in the first subframe to distinguish different subframes is an implicit indication method.
  • the terminal Under the effective solution of the detection mechanism, the terminal cannot maintain with the device with the base station function. There is no need to take extra resources while synchronizing the issue.
  • the terminal determines the subframe number of the first subframe according to the positional relationship of the primary synchronization signal and the secondary synchronization signal in the first subframe and the first correspondence.
  • the terminal determines the subframe number of the first subframe according to the location of the secondary synchronization signal in the first subframe and the first correspondence.
  • all subframes in a radio frame include at least one set, and the positions of the secondary sync signals in each subframe of each set are different.
  • the positions of the secondary synchronization signals on the subframes with the subframe number of (k-1)*N/m to k*N/m-1 are different, wherein the one radio frame is in the middle.
  • the position of the primary synchronization signal in the subframe is fixed.
  • the primary synchronization signal may be fixed in a communication system, and the position of the primary synchronization signal in the subframe may change in different communication systems.
  • the location information of the secondary synchronization signal in the first subframe includes: a location of the secondary synchronization signal in the first subframe or the primary synchronization signal and the secondary synchronization signal are in the The positional relationship in the first subframe is described.
  • the above scheme can be applied to unlicensed bands, especially for the ulicense standalone scenario.
  • the first correspondence further includes a correspondence between the subframe number and the position of the primary synchronization signal in the subframe.
  • the subframe number of the first subframe is determined by the correspondence between the number and the position of the secondary synchronization signal in the subframe.
  • the terminal determines a communication system according to a positional relationship of the primary synchronization signal and the secondary synchronization signal in the first subframe or a position of the secondary synchronization signal in the first subframe. type.
  • an embodiment of the present invention provides a communication method, where the method includes: determining, by the base station, that the carrier is idle; the base station transmitting data on the idle carrier, where the data includes service data and a synchronization signal, where the synchronization signal is The symbol is transmitted on the symbol before the service data, the service data is followed by the synchronization signal, and the starting subframe of the service data is wireless.
  • the first subframe of the frame on the base station side, based on the burst transmission, the starting point of the radio frame is redefined, that is, the subframe number is redefined based on the burst, and the synchronization signal is added before each burst, so that the terminal can complete the frame timing relatively easily. , that is, downlink synchronization.
  • an embodiment of the present invention provides a communication method, where the method includes: receiving, by the terminal, the data sent by the base station; and detecting, by the terminal, the synchronization signal, determining, by the subframe, the subframe of the synchronization signal as the first of the radio frame Subframes.
  • the terminal detects the synchronization signal of the received data.
  • the terminal finds the frame boundary and completes the frame timing, that is, the downlink synchronization.
  • the downlink synchronization method is simple.
  • an embodiment of the present invention provides a base station, which has a function of implementing a behavior of a base station in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the base station includes a processor and a transmitter configured to support the base station to perform the corresponding functions in the above methods.
  • the transmitter is configured to support communication between the base station and the terminal, and send information or instructions involved in the foregoing method to the terminal.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a terminal, where the terminal has a function of implementing terminal behavior in the design of the foregoing method.
  • the function can be implemented by hardware, and the structure of the terminal includes a receiver and a processor.
  • the corresponding software implementation can also be performed by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • an embodiment of the present invention provides a communication system, including the base station and the terminal in the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal, including a program designed to perform the above aspects.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a scenario in which a communication system operates independently on an unlicensed frequency band according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a CCA process according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of preempting a transmission synchronization signal through a synchronization window according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a radio frame according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of symbol positions of a primary synchronization signal and a secondary synchronization signal according to an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of symbol positions of a primary synchronization signal and a secondary synchronization signal according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a communication method according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a positional relationship between a synchronization signal and service data according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a wireless communication system to which the technical solution of the embodiment of the present invention is applicable.
  • the communication system includes at least one base station (BS) and a plurality of terminals.
  • BS base station
  • the communication system may be a variety of radio access technology (RAT) systems, such as code division multiple access (CDMA), time division multiple access (TDMA), and frequency division.
  • RAT radio access technology
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA Frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division
  • An OFDMA system can implement such as evolved universal radio land access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • the communication system can also be applied to the communication technology of the future, and the technology provided by the embodiment of the present invention is applicable to the scenario that the communication system adopting the new communication technology faces a scenario similar to the downlink synchronization problem mentioned in the background of the present application.
  • the system architecture and the service scenario described in the embodiments of the present invention are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the communication system in the embodiment of the present invention may be, for example, a long-term Long term evolution (LTE) and various systems based on LTE evolution.
  • LTE long-term Long term evolution
  • the base station mentioned in the embodiment of the present invention is a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, referred to as an evolved Node B (eNB or eNodeB).
  • eNB evolved Node B
  • eNodeB evolved Node B
  • the above-mentioned devices for providing wireless communication functions to terminals are collectively referred to as base stations.
  • the terminals involved in the embodiments of the present invention may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the terminal may also be referred to as a mobile station (MS), a user equipment, a terminal equipment, and may also include a subscriber unit, a cellular phone, and a smart phone.
  • MS mobile station
  • PDA personal digital assistant
  • modem modem
  • handheld device laptop computer
  • cordless phone cordless phone
  • WLL wireless local loop
  • MTC machine type communication
  • the above communication system may use unlicensed spectrum resources or licensed spectrum resources.
  • Authorized spectrum resources refer to licensed radio frequency bands.
  • Unlicensed spectrum resources refer to radio bands that can be used without permission. Many countries have allocated spectrum allocations in the 900MHz, 2.4GHz and 5GHz bands for unauthorized use, for ease of explanation.
  • the unlicensed spectrum resources are simply referred to as unlicensed frequency bands, and the licensed spectrum resources are simply referred to as licensed frequency bands.
  • the use of unlicensed bands herein includes, but is not limited to, scenarios in which the communication system operates independently on unlicensed standalones and licensed spectrum assisted access.
  • the licensed band or the unlicensed band is used, if it is necessary to determine whether to transmit data after detecting the state of the carrier, it may cause the PSS and the SSS to fail to be from the device having the base station function at a fixed absolute time.
  • the problem is transmitted to the terminal, thereby affecting the downlink synchronization, so that the terminal cannot synchronize with the device having the function of the base station.
  • the problem is particularly prominent in the scenario where the communication system works independently on the unlicensed frequency band.
  • the scenario in which the communication system operates independently on the unlicensed frequency band is as shown in FIG. 2.
  • the base station 201 can transmit the communication signal to the terminal 202 and the bidirectional link 200 using the bidirectional link 200 on the frequency F1 of the unlicensed frequency band.
  • a communication signal is received from terminal 202.
  • the embodiment of the invention provides a communication method, which proposes a technical solution for transmitting a downlink synchronization signal, which is used to solve the above technical problem.
  • the downlink synchronization signals mentioned in the embodiments of the present invention include PSS and SSS.
  • a sequence of three PSSs is defined in the 3GPP protocol, and a sequence of each PSS corresponds to a physical group identifier of a cell; and a sequence of the SSS is interleaved by two 31-bit binary sequences, and the generated sequence is further generated. Scrambled by a set of scrambling code sequences, the scrambling code sequence is determined by the sector number in the main synchronizing signal, and the sequence of two 31-bit long sequences concatenated is different in the 0th subframe and the 5th subframe. .
  • the sequence of the above PSS and the sequence of the SSS may also be referred to as a primary synchronization code and a secondary synchronization code.
  • PSS and SSS For a detailed description of PSS and SSS, reference may be made to the related description in 3GPP TS 36.211, 3GPP TS 36.212, which is not described in detail in the embodiments of the present invention, but the PSS and SSS mentioned in the embodiments of the present invention are not limited to the current protocol. The form prescribed in the text.
  • FIG. 3 shows a schematic flowchart of a communication method according to an embodiment of the present invention.
  • the base station determines, when detecting that the carrier is idle, the first subframe used to send the downlink synchronization signal.
  • the base station detects the state of the carrier in the unlicensed band or the licensed band before determining the first subframe for transmitting the downlink synchronization signal, where the state of the carrier may include Occupied or idle.
  • the detection of the carrier state may be implemented by a clear channel assessment (CCA).
  • CCA clear channel assessment
  • FIG. 4 illustrates the general process of the CCA.
  • the carrier is the carrier wave of the transmission signal, and may also be referred to as a channel in a part of the communication system.
  • the detection can be implemented by various schemes, for example:
  • the energy level of the carrier may be detected. If it is determined that the energy exceeds the threshold, the carrier is considered to be occupied, and data cannot be transmitted on the carrier; otherwise, if it is determined that the energy is lower than the threshold, The carrier is considered to be idle and data can be transmitted on the carrier.
  • the base station indicates the channel occupation time in the transmitted frame format, and other devices perform backoff by knowing the time occupied by the channel.
  • the 802.11 radio frame header contains a Duration field indicating the time it takes for the frame to complete. After receiving the frame, all other stations update their network allocation vector according to the Duration field.
  • Network allocation vector (NAV), no data will be transmitted at other sites before the end of NAV.
  • carrier state detection may be performed by using various technical means well known to those skilled in the art, which is not limited in this embodiment of the present invention.
  • the base station may occupy the unlicensed band or the licensed band to send the downlink synchronization signal, that is, send the downlink synchronization signal through the unlicensed band or the subframe of the licensed band.
  • a window of a preset time length may be used to determine the subframe for transmitting the downlink synchronization signal on the unlicensed band or the licensed band.
  • the window of the preset time length may be referred to as a synchronization window, and the length of the synchronization window may be set according to actual needs, for example, may be 10 ms.
  • the synchronization window may be periodic, and the period size may be based on The actual needs of the setting may be, for example, 40 ms, which is not limited by the embodiment of the present invention. As shown in FIG.
  • the base station may transmit a synchronization signal in any one of the subframes, as shown by A in FIG. 5; If the carrier is busy in the entire synchronization window, the downlink synchronization signal cannot be sent in the synchronization window, as shown by B in FIG. 5; if the base station arrives in the synchronization window, the carrier is in a busy state, but in the middle of the synchronization window.
  • the carrier is idle at a certain location, and the base station can send a downlink synchronization signal on any idle subframe, as shown by C in FIG.
  • the foregoing detecting the carrier state and determining the first subframe for transmitting the downlink synchronization signal can be understood as an LBT.
  • the base station determines a location of the primary synchronization signal and the secondary synchronization signal on the first subframe.
  • the radio frame is 10 milliseconds, which is further divided into 10 subframes having a length of 1 millisecond, each subframe including two 0.5 millisecond slots, wherein the 10 subframe numbers are 0 in sequence. -9, as shown in Figure 6.
  • the subframe number of the subframe can be obtained according to the system timing.
  • the primary synchronization signal can be fixed at a certain position of the subframe without distinguishing the type of the communication system; or the position of the primary synchronization signal in the subframe is associated with the type of the communication system, that is, in different types.
  • the position of the primary synchronization signal in the subframe is different, but in a communication system, the position of the primary synchronization signal in the subframe is fixed, and in this case, the primary synchronization signal can also be considered as being in the subframe.
  • the position is fixed, for example, the position of the primary synchronization signal in the time division duplex (TDD) system may be different from the position of the primary synchronization signal in the frequency division duplex system; or the position of the primary synchronization signal in the subframe is also Flexible settings.
  • TDD time division duplex
  • the first correspondence may be preset, and the first correspondence includes at least a correspondence between the subframe number and the position of the secondary synchronization signal in the subframe.
  • the first correspondence may include only the correspondence between the subframe number and the position of the secondary synchronization signal in the subframe, or the first correspondence may also be the position of the primary synchronization signal, the secondary synchronization signal in the subframe, and the subframe. The correspondence of the numbers.
  • the positions of the foregoing primary synchronization signal and the secondary synchronization signal in each subframe may be: the symbols occupied by the primary synchronization signal in the subframe are fixed, and the symbols occupied by the secondary synchronization signals in each subframe of each set are different.
  • the position setting of the primary synchronization signal and the secondary synchronization signal in the subframe can be reused between different sets.
  • it can be understood to include one or more sets, where the set is for convenience of description of the categorization or grouping of the subframes, and does not necessarily need to be divided in advance.
  • N subframes include m sets, where N and m are natural numbers, and N is an integer multiple of m, and each set includes N/m subframes, then the kth The subframe number of the subframe in the set is (k-1)*N/m, (k-1)*N/m+1,...,k*N/m-1,1 ⁇ k ⁇ m, then The location of the primary synchronization signal and the secondary synchronization signal in each subframe may specifically be: a position of the fixed primary synchronization signal in each subframe in the radio frame, for example, may be the last symbol of the first slot in the subframe, The positions of the secondary synchronization signals on the subframes whose frame numbers are (k-1)*N/m to k*N/m-1 are different.
  • the primary synchronization signal can be fixedly transmitted on the seventh symbol in each subframe (symbol number is 6), and the secondary synchronization signal is in the sub-segment.
  • the occupied symbols on the frame 0-4 are as follows: (a) subframe 0: the sixth symbol (the symbol number is 5); (b) the subframe 1: the fifth symbol (symbol) No. 4); (c) Subframe 2: 4th symbol (symbol number 3); (d) Subframe 3: 3rd symbol (symbol number 2); (e) Subframe 4: 2nd Symbols (symbol number 1).
  • the positional relationship between the primary synchronization signal and the secondary synchronization signal in the subframes 5-9 is the same as that of the subframes 0-4, which are not shown in FIG.
  • the positional relationship between the primary synchronization signal and the secondary synchronization signal shown in FIG. 7 it can be understood that because the position of the primary synchronization signal in the subframe is fixed, the position of the subframe number and the secondary synchronization signal in the subframe can be preset.
  • the correspondence relationship for example, as shown in Table 1, may also be a correspondence between the preset subframe number and the position of the primary synchronization signal and the secondary synchronization signal in the subframe, as shown in Table 2.
  • Subframe number Symbol number of the secondary sync signal Symbol number of the main sync signal 0 5 6 1 4 6 2 3 6 3 2 6 4 1 6 5 5 6 6 4 6 7 3 6 8 2 6 9 1 6
  • the corresponding first correspondence corresponding to the primary synchronization signal and the secondary synchronization signal may be similar to the manner of Table 1 or Table 2, except that the secondary synchronization signal is in the sub- The position in the frame is different.
  • the first correspondence may be different for different types of communication systems.
  • Base station will root The first correspondence is determined according to the type of the communication system. Further, the base station may send information about the type of the communication system to the terminal, or may not send information of the type of the communication system to the terminal, and the terminal according to the determined primary synchronization signal and the secondary synchronization signal in the first The positional relationship in a subframe or the position of the secondary synchronization signal in the first subframe determines the type of communication system.
  • FIG. 7 and FIG. 8 are only examples.
  • the specific position of the secondary synchronization signal in each subframe is not limited, as long as the terminal can be detected.
  • the primary synchronization signal and the secondary synchronization signal are outputted, and the corresponding subframe number is further identified.
  • the embodiment of the present invention does not limit the expression of the first correspondence.
  • the secondary synchronization codes of the secondary synchronization signals in the subframes in one set are the same, but the different sets may correspond to different secondary synchronization codes, that is, the secondary synchronization signals on the subframes.
  • the secondary synchronization code (SSS1), for example, is similar to the secondary synchronization code of the subframe 0 defined in the LTE system, and the secondary synchronization signal on the subframe 5-9 may correspond to the second secondary synchronization code, for example, similar to the LTE system.
  • the synchronization signal corresponds to a secondary synchronization code.
  • the base station sends the downlink synchronization signal to the terminal in the first subframe according to the determined position of the primary synchronization signal and the secondary synchronization signal in the first subframe.
  • the base station may send a downlink synchronization signal to the terminal in the first subframe according to the position of the primary synchronization signal and the secondary synchronization signal described above in the first subframe.
  • the data sent by the base station to the terminal may include other signals, such as signals carried on a physical broadcast channel (PBCH), and a system information block (system information block, in addition to the downlink synchronization signal.
  • PBCH physical broadcast channel
  • system information block system information block
  • the short-lived SIB the signal carried on the physical downlink shared channel (PDSCH) of the physical downlink shared channel, and the like, and the manner of transmitting the signal except the primary synchronization signal and the secondary synchronization signal in the embodiment of the present invention (for example, Which symbol is occupied) and the content is not limited, for example, reference may be made to an existing protocol.
  • the base station may determine, according to the preemption condition of the carrier, a manner of sending the common signaling, for example, in the carrier.
  • the PSS/SSS transmission and the common signaling may be sent in different subframes; when the carrier preemption is difficult, the PSS/SSS/ and the common signaling may be packaged and sent in one subframe.
  • the above common signaling includes but is not limited to PBCH and SIB.
  • the preemption of the carrier is easy or difficult in various manners. For example, the probability of successfully preempting the carrier transmission synchronization signal in the T synchronization window can be counted. If the probability is greater than the preset threshold, the carrier preemption is considered to be relatively easy. If the probability is less than the preset threshold, carrier preemption may be considered to be difficult.
  • T is a natural number greater than 1, and T and the preset threshold may be set according to actual needs, which is not limited by the embodiment of the present invention.
  • different sub-frame numbers are implicitly indicated by the positional relationship of the PSS/SSS or the position of the SSS in the subframe, and may be made without occupying additional resources.
  • the terminal can obtain the subframe number of the first subframe where the synchronization signal is located conveniently and easily, so that the downlink synchronization can be completed.
  • the terminal receives data from a base station, where the data includes a primary synchronization signal and a secondary synchronization signal.
  • the data sent by the base station received by the terminal may be sent through an unlicensed frequency band or may be sent in a licensed frequency band.
  • the data involved in the embodiments of the present invention is a generalized concept, and may include service data, and may also include non-service data, such as synchronization signals, control signals, system broadcast information, and the like.
  • the terminal acquires location information of the SSS in the first subframe by detecting the primary synchronization signal and the secondary synchronization signal.
  • the detection of the PSS and the SSS can be performed by using various technical means well known to those skilled in the art, and details are not described herein.
  • the location information of the SSS in the first subframe may be known, and the location information may be the location of the SSS in the first subframe; or the positional relationship between the PSS and the SSS in the first subframe.
  • the SSS is a symbol before the PSS or the SSS is a symbol after the PSS. It can be understood that each positional relationship can also be referred to as a pattern of PSS and SSS.
  • the location information and the first correspondence between the foregoing SSS in the first subframe may be used to determine the subframe number of the subframe in which the synchronization signal is transmitted, and the frame timing may be further completed.
  • the terminal determines the subframe number of the first subframe according to the location information of the SSS in the first subframe and the first correspondence.
  • the terminal can know the location of the SSS or the bits of the PSS and the SSS in each subframe.
  • the subframe number of the first subframe may be determined by combining at least the location information of the SSS obtained in 305 in the first subframe.
  • the positional relationship in the subframe or the position of the SSS in the first subframe can determine a unique subframe number; for the case of m>1, combined with the first correspondence, in the first subframe by PSS and SSS
  • the location relationship or the location of the SSS in the first subframe, together with the detected secondary synchronization code, can determine a unique subframe number. By determining the subframe number, it can be considered that the frame timing is completed.
  • the position information of the SSS in the first subframe can be obtained: SSS is on symbol 4, or SSS is in front of PSS, then according to the figure. 7 or Table 1 or Table 2, it can be known that the downlink synchronization signal is transmitted on the subframe 1 or the subframe 6. If the secondary synchronization code of the SSS is detected as the first secondary synchronization code, the downlink synchronization signal can be uniquely determined. It is transmitted on the subframe 1. If it is detected that the secondary synchronization code of the SSS is the second secondary synchronization code, it can be uniquely determined that the downlink synchronization signal is transmitted on the subframe 6.
  • FIG. 8 it is assumed that the SSS is detected with 3 symbols after the PSS. Similarly, according to FIG. 8, it can be known that the downlink synchronization signal is transmitted on the subframe 7.
  • the first correspondence may be different, which means that the location setting of the SSS in the subframe or the positional relationship of the SSS and the PSS in the subframe are set in different types of communication.
  • the system may be different.
  • the terminal may further determine the type of the communication system according to the determined positional relationship of the PSS and the SSS in the first subframe or the location of the SSS in the first subframe.
  • the communication method provided by the embodiment of the present invention distinguishes different subframes by the positional relationship in the subframe of the PSS/SSS or the position of the SSS in the subframe, which is an implicit indication method, and is effectively solved.
  • the terminal Under the detection mechanism, the terminal cannot keep synchronization with the device with the function of the base station, and does not need to occupy additional resources.
  • Another embodiment of the present invention provides a communication method. As shown in FIG. 9, the communication method includes:
  • the base station determines, by detecting, that the carrier is idle.
  • the manner in which the base station detects the carrier status on the licensed band or the unlicensed band can refer to the related description at 301.
  • the base station sends data on an idle carrier, where the data includes service data and a synchronization signal, where the synchronization signal is transmitted on a symbol before the service data, and the service data is followed by the synchronization signal, where the starting subframe of the service data is The first subframe of the radio frame;
  • the synchronization signal here is a signal for facilitating the terminal to complete the detection and the synchronization between the terminal and the base station.
  • the specific synchronization signal may be in the form of, for example, at least one of the PSS and the SSS of the current protocol. Not limited.
  • the base station When the base station detects that the carrier is idle, it can perform preemption to transmit data, add a synchronization signal before the service data (burst), identify the starting point of a radio frame with the synchronization signal, and immediately define the subframe of the synchronization signal.
  • the first subframe of the radio frame is, for example, subframe 0, and the subframe numbers of other subframes are analogous.
  • FIG. 10 illustrates a positional relationship between a synchronization signal and a burst.
  • the starting point of the radio frame is redefined, that is, the subframe number is redefined based on the burst, and the synchronization signal is added before each burst, so that the terminal can be relatively easy.
  • the frame timing is completed, that is, downlink synchronization.
  • the terminal receives the foregoing data from the base station.
  • the terminal detects the synchronization signal, and determines a subframe immediately subsequent to the synchronization signal as the first subframe of the radio frame.
  • the terminal detects the synchronization signal of the received data.
  • the terminal finds the frame boundary and completes the frame timing, that is, the downlink synchronization.
  • the downlink synchronization method is simple.
  • the communication method provided by the embodiment of the present invention is introduced from the perspective of the interaction between the network elements and the network elements.
  • each network element such as a terminal, a base station, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • FIG. 11 is a schematic diagram showing a possible structure of a base station involved in the above embodiment.
  • the base station can be a base station as shown in FIG.
  • the base station shown includes a processor 1101, a transmitter 1102.
  • the processor 1101 can be used to perform control or to handle various functions for communicating with terminals or other network devices, and the transmitter 1102 can be used to support communication between the base station and the terminals described in the above embodiments.
  • the traffic data and signaling messages are processed by the processor 1101 and coordinated by the transmitter 1102 to generate a downlink signal and transmitted to the terminal via the antenna.
  • Transmitter 1102 and The processor 1101 can also be used to perform an execution process involving a base station and/or other processes used in the embodiments of the present invention in the embodiment shown in FIG. 3, for example, the processor 1101, for detecting that the carrier is idle.
  • the downlink synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • determining the primary synchronization signal and the auxiliary on the first subframe a location of the synchronization signal, where the location of the secondary synchronization signal is determined according to a subframe number of the first subframe and a first correspondence, where the first correspondence includes a subframe number and a secondary synchronization signal in the subframe Corresponding relationship of the location; the transmitter 1102, according to the position of the primary synchronization signal and the secondary synchronization signal determined by the processor 1101 in the first subframe, transmitting the primary synchronization signal to the terminal on the first subframe and Secondary sync signal.
  • the processor 1101 is further configured to determine the first correspondence according to a type of the communication system.
  • the processor 1101 is configured to: when the carrier that detects the unlicensed spectrum resource is idle, determine the first subframe that is used to send the downlink synchronization signal on the unlicensed spectrum resource.
  • the transmitter 1102 is further configured to send common signaling to the terminal.
  • the transmitter 1102 and the processor 1101 may be further configured to perform an execution process involving a base station in the embodiment shown in FIG. 9 and/or other processes used in the techniques described in the embodiments of the present invention, for example, the processor 1101.
  • the carrier is determined to be idle by detecting; the transmitter 1102 is configured to send data on the idle carrier, where the data includes service data and a synchronization signal, where the synchronization signal is transmitted on a symbol before the service data, and the service data is followed by the synchronization signal.
  • the starting subframe of the service data is the first subframe of the radio frame.
  • the above base station may further include a memory 1103, which may be used to store program codes and data of the base station.
  • a memory 1103 which may be used to store program codes and data of the base station.
  • Figure 11 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, processors, memories, etc., and all base stations that can implement the embodiments of the present invention are within the scope of the present invention.
  • processors and the transmitter may be implemented by one or more hardware modules, or may be implemented by one or more software modules, the processor may also be a processing unit, and the transmitter may also be a sending unit.
  • the memory can also be a storage unit.
  • FIG. 12 shows a simplified schematic diagram of one possible design structure of a terminal involved in the above embodiment, which may be one of the UEs as shown in FIG. 1.
  • the above terminal includes a receiver 1201 and a processor 1202.
  • receiver 1201 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received through the antenna and provides input samples.
  • the processor 1202 is configured to perform various management, control, and the like related functions in the terminal. The receiver 1201 and the processor 1202 may also be used to perform the execution process involving the terminal in FIG. 3 and/or for the present application.
  • a receiver 1201 for receiving data from a base station, wherein the data includes a primary synchronization signal and a secondary synchronization signal; the processor 1202, by the primary synchronization signal and the secondary Detecting a synchronization signal, acquiring location information of the secondary synchronization signal in the first subframe, and determining the first according to location information of the secondary synchronization signal in the first subframe and a first correspondence relationship a subframe number of the subframe; wherein the first correspondence relationship includes a correspondence between the subframe number and a position of the secondary synchronization signal in the subframe.
  • the processor 1202 is specifically configured to determine, according to the location of the secondary synchronization signal in the first subframe and the first correspondence, a subframe number of the first subframe or Determining a positional relationship between the primary synchronization signal and the secondary synchronization signal in the first subframe, a correspondence between the subframe number and a position of the primary synchronization signal in the subframe, and a subframe number and a secondary synchronization signal in the subframe The correspondence of the locations determines the subframe number of the first subframe.
  • the processor 1202 is further configured to determine, according to a positional relationship of the primary synchronization signal and the secondary synchronization signal in the first subframe, or a location of the secondary synchronization signal in the first subframe. The type of system.
  • the processor 1202 is further configured to determine, according to location information of the secondary synchronization signal in the first subframe, the first correspondence and the secondary synchronization code to determine a subframe number of the first subframe. .
  • the receiver 1201 and the processor 1202 may also be used to perform an execution process involving the terminal in the embodiment shown in FIG. 9 and/or other processes for the techniques described in the embodiments of the present invention, for example, the receiver 1201 is configured to Receiving data from a base station, wherein the data includes service data and a synchronization signal, wherein the synchronization signal is transmitted on a symbol preceding the service data, the service data is immediately followed by the synchronization signal, and the starting subframe of the service data is a wireless frame a sub-frame; the processor 1202 is configured to detect the synchronization signal, and determine the subframe immediately following the synchronization signal as the first subframe of the radio frame.
  • the foregoing terminal may further include a memory 1203, which can be used to store program codes and data of the terminal.
  • the detection of the PSS and the SSS by the processor 1202 may be implemented by at least one correlator, and the correlator may also be considered as a part of the processor.
  • processor and receiver can be implemented by one or more hardware modules, or by one or more software modules, the processor can also be a processing unit, and the receiver can also be a receiving unit.
  • the memory can also be a storage unit.
  • the processor for implementing the foregoing base station and terminal of the embodiment of the present invention may be a central processing unit. (CPU), general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术领域,提供了一种通信方法,该方法公开了基站在检测到载波空闲时,确定用于发送下行同步信号的第一子帧,其中所述下行同步信号包括主同步信号和辅同步信号,并根据所述第一子帧的子帧号以及第一对应关系在所述第一子帧上向终端发送所述下行同步信号。对应的,终端进行同步信号的检测,至少根据辅同步信号在所述第一子帧中的位置信息以及第一对应关系进行帧定时。从而可以实现在LBT机制下的下行同步。

Description

通信方法和装置 技术领域
本发明涉及无线通信技术领域,尤其涉及一种通信方法和装置。
背景技术
频谱是无线通信的基础。根据联邦通讯委员会(federal communications commission,简称FCC)最新发布的国际频谱白皮书,免许可或非授权(unlicensed)频谱资源要多于授权或许可(licensed)频谱资源。非授权频谱资源对无线通信系统和运营商使用没有约束,那么就会存在多种通信系统的多个运营商都想要占用相同频谱的情况,为了实现非授权频谱资源上不同无线通信系统对该频谱资源使用的公平性,在某些地区,无线通信设备在使用非授权频谱资源时需要遵循特定的规则,例如欧洲电信标准协会(European Telecommunications Standards Institute,简称ETSI)发布的ETSI EN 301 893中的先听后说(listen before talk,简称LBT)、信道带宽占用需求等机制。根据ETSI EN 301 893的规定,无线通信设备在占用非授权频谱资源时需使用LBT机制,即设备在使用信道之前,首先监听信道是否空闲或是否可用,如果信道空闲或者可用则可以使用该非授权频谱资源。
随着技术的发展,针对非授权频谱资源,因为LBT机制的引入,会导致主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)等不能在固定的绝对时刻从具有基站功能的设备发送给终端,从而影响到下行同步,使得终端不能和具有基站功能的设备保持同步。
发明内容
本申请描述了一种通信方法和装置。
一方面,本申请的实施例提供一种通信方法,该方法包括:基站在检测到载波空闲时,确定用于发送下行同步信号的第一子帧,其中所述下行同步信号包括主同步信号和辅同步信号;所述基站确定在所述第一子帧上的所述主同步信号和辅同步信号的位置,其中,所述辅同步信号的位置是根据所述第一子帧的子帧号和第一对应关系确定;所述基站根据确定的主同步信号和辅同步信号在所述第一子帧中的位置,在所述第一子帧上向终端发送所述下行同步信号;其中,所述第一对应关系包括子帧号与辅同步信号在子帧中的位置的对应关系。通过本实施例提供的方案,基站根据子帧号与第一对应关系发送下行同步信号, 可以在不占用额外的资源的情况下,使得终端通过对同步信号的检测,能够较为方便和容易的获取同步信号所在的子帧的子帧号,从而可以完成下行同步。
在一个可能的设计中,第一对应关系与通信系统的类型关联。
在一个可能的设计中,一个无线帧中的所有子帧包括至少一个集合,每个集合的各个子帧中的辅同步信号的位置不同。
在一个可能的设计中,子帧号为(k-1)*N/m至k*N/m-1的子帧上的辅同步信号的位置各不相同,其中,所述一个无线帧中有N个子帧,并且所述N个子帧包括m个集合,N和m为自然数,且N为m的整数倍,1≤k≤m。、
在一个可能的设计中,主同步信号在所述子帧中的位置固定。具体的,可以是主同步信号在一种通信系统中是固定的,在不同的通信系统中,主同步信号在子帧中的位置可能会发生变化。
在一个可能的设计中,主同步信号占用子帧中第一个时隙的最后一个符号。这样,可以沿用现有协议的PSS的发送方式,尽量减小对协议的变化。
在一个可能的设计中,m>1,一个集合内的子帧上的所述辅同步信号的辅同步码相同,不同的集合对应不同的辅同步码。例如m=2,这样可以最大化的继承当前的辅同步码的设计方案,也减少同步信号图案的设计复杂度。
在一个可能的设计中,可以根据载波的抢占情况来确定发送公共信令的方式,例如:在载波抢占比较容易时,可以将PSS/SSS发送和公共信令在不同的子帧中发送;当载波抢占困难时,可以将PSS/SSS/和公共信令打包在一个子帧中发送。上述的公共信令包括但不限于PBCH和SIB。这样可以使得信令的发送方式更加灵活。
具体地,可以通过多种方式判断对载波的抢占是容易还是困难,例如可以统计T次同步窗口中成功抢占到载波发送同步信号的概率,如果该概率大于预设阈值,可以认为载波抢占比较容易,如果该概率小于预设阈值,可以认为载波抢占比较困难。
在一个可能的设计中,上述方案可以适用于非授权频段,尤其是ulicense standalone的场景。
另一方面,本申请的实施例提供一种通信方法,该方法包括:终端从基站接收数据,其中,所述数据中包括主同步信号和辅同步信号;所述终端通过对主同步信号和辅同步信号的检测,获取所述辅同步信号在第一子帧中的位置信息;根据所述辅同步信号在所述第一子帧中的位置信息以及第一对应关系,确定所述第一子帧的子帧号,所述第一对应关系包括子帧号与辅同步信号在子帧中的位置的对应关系。以上方法,通过PSS/SSS的在子帧 中的位置关系或辅同步信号在第一子帧中的位置来区别不同的子帧,是一种隐含的指示方法,在有效的解决了检测机制下,终端不能和具有基站功能的设备保持同步的问题的同时,也无需占用额外的资源。
在一个可能的设计中,所述终端根据所述主同步信号和辅同步信号在所述第一子帧中的位置关系和所述第一对应关系确定所述第一子帧的子帧号。
在一个可能的设计中,所述终端根据所述辅同步信号在所述第一子帧中的位置以及所述第一对应关系,确定所述第一子帧的子帧号。
在一个可能的设计中,一个无线帧中的所有子帧包括至少一个集合,每个集合的各个子帧中的辅同步信号的位置不同。
在一个可能的设计中,子帧号为(k-1)*N/m至k*N/m-1的子帧上的辅同步信号的位置各不相同,其中,所述一个无线帧中有N个子帧,并且所述N个子帧包括m个集合,N和m为自然数,且N为m的整数倍,1≤k≤m。、
在一个可能的设计中,主同步信号在所述子帧中的位置固定。具体的,可以是主同步信号在一种通信系统中是固定的,在不同的通信系统中,主同步信号在子帧中的位置可能会发生变化。
在一个可能的设计中,所述辅同步信号在第一子帧中的位置信息包括:所述辅同步信号在所述第一子帧中的位置或者所述主同步信号和辅同步信号在所述第一子帧中的位置关系。
在一个可能的设计中,上述方案可以适用于非授权频段,尤其是对ulicense standalone的场景。
在一个可能的设计中,第一对应关系还包括子帧号与主同步信号在子帧中的位置的对应关系。
在一个可能的设计中,所述终端所述主同步信号和辅同步信号在所述第一子帧中的位置关系,子帧号与主同步信号在子帧中的位置的对应关系以及子帧号与辅同步信号在子帧中的位置的对应关系,确定所述第一子帧的子帧号。
在一个可能的设计中,所述终端根据所述主同步信号和辅同步信号在所述第一子帧中的位置关系或者所述辅同步信号在所述第一子帧中的位置确定通信系统的类型。
另一方面,本发明实施例提供了一种通信方法,该方法包括:基站通过检测确定载波空闲;基站在空闲的载波上发送数据,所述数据包括业务数据和同步信号,其中,同步信号在业务数据之前的符号上传输,业务数据紧接着同步信号,业务数据的起始子帧为无线 帧的第一个子帧。上述方法,在基站侧,基于burst的发送,重新定义了无线帧的起始点,也就是说子帧号基于burst重新定义,在每个burst之前增加同步信号,使得终端可以较为容易的完成帧定时,即下行同步。
再一方面,本发明实施例提供了一种通信方法,该方法包括:终端接收基站发送的上述数据;终端对同步信号进行检测,将紧接着该同步信号的子帧确定为无线帧的第一个子帧。上述过程中,终端对接收到的数据进行同步信号的检测,当检测到同步信号,就相当于找到了帧边界,完成了帧定时,即下行同步,该下行同步方法算法简单。
另一方面,本发明实施例提供了一种基站,该基站具有实现上述方法设计中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,基站的结构中包括处理器和发送器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述发送器用于支持基站与终端之间的通信,向终端发送上述方法中所涉及的信息或者指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种终端,该终端具有实现上述方法设计中终端行为的功能。所述功能可以通过硬件实现,终端的结构中包括接收器和处理器。也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的基站和终端。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种通信系统组成示意图;
图2为本发明实施例的通信系统独立工作在非授权频段上的场景示意图;
图3为本发明实施例提供的一种通信方法流程示意图;
图4为本发明实施例提供的CCA过程示意图;
图5为本发明实施例提供的通过同步窗口抢占发送同步信号的示意图;
图6为本发明实施例提供的无线帧的结构示意图;
图7为本发明实施例提供的主同步信号和辅同步信号的符号位置示意图;
图8为本发明实施例提供的主同步信号和辅同步信号的符号位置另一种示意图;
图9为本发明又一实施例提供的一种通信方法流程示意图;
图10为本发明实施例提供的一种同步信号和业务数据的位置关系示意图;
图11为本发明实施例提供的一种基站结构示意图;
图12为本发明实施例提供的一种终端结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
图1是可应用本发明实施例技术方案的无线通信系统的一个示意图。
在本实施例的方案中,如图1所述的通信系统中,该通信系统至少包括至少一个基站(base station,BS)和多个终端。
所述通信系统可以为各种无线接入技术(radio access technology,RAT)系统,例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。此外,所述通信系统还可以适用于面向未来的通信技术,只要采用新通信技术的通信系统面临与本申请背景技术提到的下行同步问题所类似的场景,都适用本发明实施例提供的技术方案。本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。具体的,本发明实施例中的通信系统例如可以是长期 演进(long term evolution,LTE)和基于LTE演进的各种系统。
本发明实施例中所提到的基站是一种部署在无线接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB)。为方便描述,本发明所有实施例中,上述为终端提供无线通信功能的装置统称为基站。
本发明实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端也可以称为移动台(mobile station,简称MS),用户设备(user equipment),终端设备(terminal equipment),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端等。为方便描述,本发明所有实施例中,上面提到的设备统称为终端。
需要说明的是,图1所示的通信系统中所包含的终端的数量和类型仅仅是一种例举,本发明实施例也并不限制于此。
上述的通信系统可以使用非授权频谱资源,也可以使用授权频谱资源。授权频谱资源是指经过许可使用的无线电频段,非授权频谱资源指不经许可即可使用的无线电频段,许多国家已经将900MHz、2.4GHz和5GHz频段的频谱分配用于非授权使用,为便于说明,以下将非授权频谱资源简称为非授权频段,将授权频谱资源简称为授权频段。此处的使用非授权频段包括但不限于该通信系统独立工作在非授权频段上(unlicensed Standalone)和授权频谱辅助接入的场景。
在上述的通信系统无论是使用授权频段还是非授权频段时,如果需要通过检测去确定载波的状态后决定是否发送数据,可能会导致PSS和SSS等不能在固定的绝对时刻从具有基站功能的设备发送给终端,从而影响到下行同步,使得终端不能和具有基站功能的设备保持同步,可以理解的是,该问题在该通信系统独立工作在非授权频段上的场景中尤为突出。通信系统独立工作在非授权频段上的场景如图2所示,该场景下,基站201可以在非授权频段的频率F1上,使用双向链路200向终端202发送通信信号和利用双向链路200从终端202接收通信信号。
本发明实施例提出了一种通信方法,该通信方法提出了一种发送下行同步信号的技术方案,用于解决上述技术问题。
需要说明的是,本发明实施例中所提到的下行同步信号包括PSS和SSS。例如,在3GPP协议中定义了3种PSS的序列,每个PSS的序列与小区的物理组内标识对应;而SSS的序列是由两个31位长的二进制序列相互交织生成,生成的序列再由一组扰码序列加扰,该扰码序列取决于主同步信号中的扇区号,两个31位长的序列串联后的序列,在第0号子帧和第5号子帧是不同的。上述PSS的序列和SSS的序列也可以称为主同步码和辅同步码。关于PSS和SSS的具体介绍可以进一步参考3GPP TS 36.211,3GPP TS 36.212中的相关描述,本发明实施例不再详细描述,但本发明实施例中所提到的PSS和SSS并不局限于目前协议中所规定的形式。
具体地,图3示出了根据本发明实施例的通信方法的示意性流程图。
301,基站在检测到载波空闲时,确定用于发送下行同步信号的第一子帧;
可以理解的是,本发明实施例中,基站在确定用于发送下行同步信号的第一子帧之前,先检测非授权频段或者授权频段上的载波的状态,其中,载波的状态可以包括是被占用还是空闲。
具体的,载波状态的检测可以是通过空闲信道评估(clear channel assessment,简称CCA)的方式实现,图4示意了CCA的大致过程,当检测到有数据传输时,认为载波被占用,而检测到没有数据传输时,认为载波空闲。需要说明的是,上述提到的载波就是传输信号的载体电波,在一部分通信系统中也可以被称为信道。
具体的,检测可以通过多种方案实现,例如:
1.能量检侧:
具体的,当基站有数据要传输时,可以检测载波的能量水平,如果判断出能量超过阈值,则认为该载波被占用,不能在该载波上传输数据;反之,如果判断出能量低于阈值,则认为该载波空闲,可以在该载波上传输数据。
2.虚拟载波监听:
基站在发送的帧格式中指示信道占用时间,其他设备通过获知其信道占用的时间会进行退避。例如,802.11无线帧帧头中都包含一个持续时间(Duration)字段,表明本帧传送完所需要花费的时间,所有其它站点收到此帧后,都会根据Duration字段来更新自身的网络分配矢量(network allocation vector,简称NAV),在NAV结束前其它站点都不会传输数据。
需要说明的是,可以采用本领域技术人员所熟知的多种技术手段进行载波状态的检测,本发明实施例对此不做限定。
而基站在某个时刻确定非授权频段或者授权频段可用的时候,可以占用非授权频段或者授权频段发送下行同步信号,即通过非授权频段或者授权频段的子帧发送下行同步信号。
进一步的,考虑到为基站节约开销和/或终端省电等因素,可以使用一个预设时间长度的窗口来确定非授权频段或者授权频段上的用于发送下行同步信号的子帧。为便于说明,可以将该预设时间长度的窗口称为同步窗口,同步窗口的时间长度可以根据实际需要设定,例如可以为10ms,此外,同步窗口可以是周期性的,其周期大小可以根据实际需要设定,例如可以为40ms,本发明实施例对此不做限定。如图5所示,如果在同步窗口到达时,基站判定非授权频段上的载波可用,则基站可以在该窗口的任意一个子帧发送同步信号,如图5中的A所示;如果基站在整个同步窗口内都判定载波为忙,则该同步窗内无法发送下行同步信号,如图5中的B所示;如果基站在同步窗口到达时,载波为忙的状态,但是在同步窗口中间的某个位置发现载波空闲,基站可以在任意的空闲的子帧上发送下行同步信号,如图5中的C所示。
可以理解的是,上述先检测载波状态,再确定用于发送下行同步信号的第一子帧可以理解为是LBT。
302,基站确定在所述第一子帧上的所述主同步信号和辅同步信号的位置。
在LTE系统或者基于LTE演进的系统中,无线帧为10毫秒,其进一步分成长度为1毫秒的10个子帧,每个子帧包括两个0.5毫秒的时隙,其中这10个子帧号依次为0-9,如图6所示。基站确定用于发送下行同步信号的子帧后,根据系统定时便可以获知该子帧的子帧号。
可以理解的是,主同步信号可以不区分通信系统的类型,固定在子帧的某个位置上;或者主同步信号在子帧中的位置与通信系统的类型是关联的,即在不同类型的通信系统中,主同步信号在子帧中的位置不同,但是在一种通信系统中,主同步信号在子帧中的位置是固定的,这种情况也可以认为主同步信号在子帧中的位置是固定的,比如在时分双工(TDD)系统中的主同步信号的位置可能和在频分双工系统中的主同步信号的位置不同;或者,主同步信号在子帧中的位置也是灵活设置的。
其中,可以预先设定第一对应关系,所述第一对应关系至少包括子帧号与辅同步信号在子帧中的位置的对应关系。第一对应关系可以只包括子帧号与辅同步信号在子帧中的位置的对应关系,或第一对应关系也可以是主同步信号、辅同步信号在子帧中的位置与子帧 号的对应关系。
可以理解的是,根据上述第一对应关系,在确定了第一子帧的子帧号后,便可以根据该子帧号,确定出在第一子帧的具体哪个位置(例如符号)上发送主同步信号和辅同步信号。
具体的,上述主同步信号和辅同步信号在各个子帧中的位置可以是:主同步信号在子帧中占用的符号固定,辅同步信号在每个集合的各个子帧中占用的符号是不同的,不同集合之间可以重复利用主同步信号和辅同步信号在子帧中的位置设置。此处,对于一个无线帧中的所有子帧,可以理解为包括一个或者多个集合,此处的集合是为了便于说明子帧的归类或者分组,并不一定需要事先去划分。
假设一个无线帧中有N个子帧,并且N个子帧包括m个集合,其中,N和m为自然数,且N为m的整数倍,每个集合中包括N/m个子帧,那么第k个集合中的子帧的子帧号依次为(k-1)*N/m,(k-1)*N/m+1,…,k*N/m-1,1≤k≤m,那么在各个子帧中主同步信号和辅同步信号的位置具体可以是:固定主同步信号在无线帧中每个子帧中的位置,例如可以是子帧中第一个时隙的最后一个符号,子帧号为(k-1)*N/m至k*N/m-1的子帧上的辅同步信号的位置各不相同。
例如,以N=10,m=2为例,如图7所示,可以使得主同步信号在每个子帧中都固定在第7个符号上传输(符号编号为6),辅同步信号在子帧(subframe)0-4上的所占用的符号(symbol)情况如下:(a)子帧0:第6个符号(符号编号为5);(b)子帧1:第5个符号(符号编号为4);(c)子帧2:第4个符号(符号编号为3);(d)子帧3:第3个符号(符号编号为2);(e)子帧4:第2个符号(符号编号为1)。而子帧5-9中主同步信号和辅同步信号的位置关系与子帧0-4的依次相同,图7中未示出。对于图7所示的主同步信号和辅同步信号的位置关系,可以理解的是,因为主同步信号在子帧中的位置固定,可以预设子帧号与辅同步信号在子帧中的位置的对应关系,例如表1所示,也可以是预设子帧号与主同步信号、辅同步信号在子帧中的位置的对应关系,例如表2所示。
表1
子帧号 辅同步信号所占符号编号
0 5
1 4
2 3
3 2
4 1
5 5
6 4
7 3
8 2
9 1
表2
子帧号 辅同步信号所占符号编号 主同步信号所占符号编号
0 5 6
1 4 6
2 3 6
3 2 6
4 1 6
5 5 6
6 4 6
7 3 6
8 2 6
9 1 6
又例如,N=10,m=1,此时10个子帧就被看作是一个集合,如图8所示,可以使得主同步信号在每个子帧中都固定在第7个符号上传输(符号编号为6),辅同步信号在子帧(subframe)0-10上的所占用的符号(symbol)情况如下:(a)子帧0:第6个符号(符号编号为5);(b)子帧1:第5个符号(符号编号为4);(c)子帧2:第4个符号(符号编号为3);(d)子帧3:第3个符号(符号编号为2);(e)子帧4:第2个符号(符号编号为1);(f)子帧5:第8个符号(符号编号为7);(g)子帧6:第9个符号(符号编号为8);(h)子帧7:第10个符号(符号编号为9);(i)子帧8:第11个符号(符号编号为10);(j)子帧9:第12个符号(符号编号为11)。对于如图8所示的主同步信号和辅同步信号在子帧中的位置,其所对应的预设的第一对应关系,可以是类似表1或表2的方式,只是辅同步信号在子帧中的位置不同。
可以理解的是,对于不同类型的通信系统,第一对应关系可能会有所不同。基站会根 据通信系统的类型确定第一对应关系。进一步的,基站可以将与通信系统的类型的信息发送给终端,也可以不发送与通信系统的类型的信息给终端,由终端根据确定出的所述主同步信号和辅同步信号在所述第一子帧中的位置关系或者所述辅同步信号在所述第一子帧中的位置确定通信系统的类型。
需要说明的是,图7和图8仅是举例说明,本发明实施例中对主同步信号固定在哪个位置,以及辅同步信号在每个子帧上的具体位置不做限定,只要能够使得终端检测出主同步信号和辅同步信号,并进一步识别出对应的子帧号即可。此外,本发明实施例对于第一对应关系的表达形式不做限定。
进一步的,m大于1时,一个集合内的子帧上的辅同步信号的辅同步码相同,但是不同的集合可以对应不同的辅同步码,也就是说,子帧上的辅同步信号的辅同步码与集合相对应,一个集合对应一种辅同步码。例如N=10,m=2时,可以将子帧0-4看作是第一集合,子帧5-9看作是第二集合,子帧0-4上的辅同步信号可以对应第一辅同步码(SSS1),比如说类似于LTE系统中定义的子帧0的辅同步码,子帧5-9上的辅同步信号的可以对应第二辅同步码,比如说类似于LTE系统中定义的子帧5的辅同步码。而m=1时,可以是所有的子帧上的辅同步信号的辅同步码相同,此时也可以理解为这一个集合对应了一种辅同步码;也可以是每一部分子帧上的辅同步信号对应一种辅同步码,具体将一个无线帧的所有子帧划分为几个部分可以根据有几种辅同步码确定,也可以根据其他规则确定,本发明实施例对此不做限定。无论是m>1还是m=1,上述过程中,根据子帧号可以确定出子帧所在的集合或者子帧的所属的部分,因此,基站根据子帧号就可以确定出具体对应哪种辅同步码。
303,基站根据确定的主同步信号和辅同步信号在第一子帧中的位置,在第一子帧上向终端发送所述下行同步信号。
基站可以按照上面描述的主同步信号和辅同步信号在第一子帧中的位置在第一子帧上发送下行同步信号给终端。
可以理解的是,在基站发送给终端的数据除下行同步信号之外,还可以包括其他信号,例如物理广播信道(physical broadcast channel,简称PBCH)上承载的信号,系统消息块(system information block,简称SIB),物理下行共享信道物理下行共享信道(physical downlink shared channel,简称PDSCH)上承载的信号等,而本发明实施例对除主同步信号和辅同步信号之外的信号的发送方式(例如占用哪个符号)以及内容不做限定,例如可以参考现有协议。
进一步的,基站可以根据载波的抢占情况来确定发送公共信令的方式,例如:在载波 抢占比较容易时,可以将PSS/SSS发送和公共信令在不同的子帧中发送;当载波抢占困难时,可以将PSS/SSS/和公共信令打包在一个子帧中发送。上述的公共信令包括但不限于PBCH和SIB。
具体地,可以通过多种方式判断对载波的抢占是容易还是困难,例如可以统计T次同步窗口中成功抢占到载波发送同步信号的概率,如果该概率大于预设阈值,可以认为载波抢占比较容易,如果该概率小于预设阈值,可以认为载波抢占比较困难。需要说明的是,T为大于1的自然数,T和上述预设阈值可以根据实际需要设置,本发明实施例对此不做限定。
本发明实施例中,在基站侧,通过PSS/SSS的位置关系或者SSS的在子帧中的位置来隐式的指示了不同的子帧号,在不占用额外的资源的情况下,可以使得终端能够较为方便和容易的获取同步信号所在的第一子帧的子帧号,从而可以完成下行同步。
304,终端接收来自基站的数据,其中,所述数据中包括主同步信号和辅同步信号。
其中,终端接收的基站发送的数据,可能是通过非授权频段发送的,也可能是授权频段发送的。
可以理解的是,本发明实施例所涉及的数据是一个广义的概念,可以包括业务数据,也可以包括非业务数据,例如同步信号,控制信号,系统广播信息等。
305,终端通过对主同步信号和辅同步信号的检测,获取所述SSS在第一子帧中的位置信息。
其中,PSS和SSS的检测可以采用本领域技术人员所熟知的多种技术手段进行检测,本发明实施例对此不做赘述。通过对PSS和SSS的检测,可以知道SSS在第一子帧中的位置信息,该位置信息可以是SSS在第一子帧中的位置;或者,PSS和SSS在第一子帧中的位置关系,例如SSS在PSS前一个符号或者,SSS在PSS后一个符号等。可以理解的是,每种位置关系也可以称为PSS和SSS的一种图案。
结合上述SSS在第一子帧中的位置信息和第一对应关系,便可以用于确定传输同步信号的子帧的子帧号,进一步可以完成帧定时。
关于PSS和SSS在不同子帧中的位置,以及第一对应关系的描述可以参考前述实施例,此处不再赘述。
306,终端根据所述SSS在所述第一子帧中的位置信息以及第一对应关系,确定第一子帧的子帧号。
根据第一对应关系,终端是可以知道在每一个子帧中的SSS的位置或者PSS和SSS的位 置关系的,那么至少结合305中获得的SSS在第一子帧中的位置信息,可以确定第一子帧的子帧号。
例如,在获知SSS在第一子帧中的位置,或者,PSS和SSS在第一子帧中的位置关系后,对于不同的情况,终端确定第一子帧的子帧号的方式可能有所不同:例如,对m=1的情况,由于PSS和SSS的在每个子帧中的位置关系或者SSS在每个子帧中的位置都不同,那么结合第一对应关系,根据PSS和SSS在第一子帧中的位置关系或者SSS在第一子帧中的位置便可以确定出唯一的子帧号;对于m>1的情况,结合第一对应关系,通过PSS和SSS在第一子帧中的位置关系或者SSS在第一子帧中的位置,并结合检测出的辅同步码可以确定出唯一的子帧号。通过确定出子帧号,可以认为完成了帧定时。
下面结合图7和图8分别进行说明。
以图7为例,假设检测出SSS在PSS前2个符号,可以得到SSS在第一子帧中的位置信息是:SSS在符号4上,或者是SSS在PSS前2个符号,那么根据图7或者表1或者表2,可以知道下行同步信号信号是在子帧1或者子帧6上传输,如果检测出SSS的辅同步码是第一辅同步码,那么可以唯一确定出下行同步信号信号是在子帧1上传输的,如果检测出SSS的辅同步码是第二辅同步码,那么可以唯一确定出下行同步信号信号是在子帧6上传输的。
以图8为例,假设检测出SSS在PSS后3个符号,类似的,根据图8,可以知道下行同步信号信号是在子帧7上传输。
进一步的,对于不同类型的通信系统,第一对应关系可能会有所不同,也就意味着SSS在子帧中的位置设置或者SSS和PSS在子帧中的位置关系的设置在不同类型的通信系统中会有所不同,终端根据确定出的所述PSS和SSS在所述第一子帧中的位置关系或者所述SSS在所述第一子帧中的位置可以进一步确定通信系统的类型。
本发明实施例提供的通信方法,通过PSS/SSS的在子帧中的位置关系或者SSS在子帧中的位置来区别不同的子帧,是一种隐含的指示方法,在有效的解决了检测机制下,终端不能和具有基站功能的设备保持同步的问题的同时,也无需占用额外的资源。
本发明又一实施例提供了一种通信方法,如图9所示,该通信方法包括:
901,基站通过检测确定载波空闲;
此处,基站在授权频段或者非授权频段上的检测载波状态的方式可以参考301处的相关描述。
902,基站在空闲的载波上发送数据,所述数据包括业务数据和同步信号,其中,同步信号在业务数据之前的符号上传输,业务数据紧接着同步信号,业务数据的起始子帧为 无线帧的第一个子帧;
此处的同步信号是便于终端完成检测,并实现终端和基站之间进行同步的信号,具体的同步信号的形式可以是例如目前协议的PSS和SSS中的至少一种,本发明实施例对此不做限定。
当基站检测到载波空闲时,可以进行抢占,用来发送数据,在业务数据(burst)之前添加同步信号,以该同步信号来标识一个无线帧的起始点,将紧接着同步信号的子帧定义为无线帧的第一个子帧,例如为子帧0,其他子帧的子帧号依次类推。例如图10示意了一种同步信号和burst的位置关系。
本发明实施例中,在基站侧,基于burst的发送,重新定义了无线帧的起始点,也就是说子帧号基于burst重新定义,在每个burst之前增加同步信号,使得终端可以较为容易的完成帧定时,即下行同步。
903,终端从基站接收上述数据;
904,终端对同步信号进行检测,将紧接着该同步信号的子帧确定为无线帧的第一个子帧。
上述过程中,终端对接收到的数据进行同步信号的检测,当检测到同步信号,就相当于找到了帧边界,完成了帧定时,即下行同步,该下行同步方法算法简单。
上述本发明提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本发明实施例提供的通信方法进行了介绍。可以理解的是,各个网元,例如终端、基站,等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图11示出了上述实施例中所涉及的基站的一种可能的结构示意图。该基站可以是如图1中所示的基站。
所示基站包括处理器1101,发送器1102。处理器1101可以用于执行控制或者处理各种用于与终端或其他网络设备通信的功能,所述发送器1102可以用于支持基站与上述实施例中的所述的终端之间通信。在下行链路上,业务数据和信令消息由处理器1101进行处理,并由发送器1102进行调解来产生下行链路信号,并经由天线发送给终端。发送器1102和处 理器1101还可以用于执行图3所示实施例中涉及基站的执行过程和/或用于本发明实施例所描述的技术的其他过程,例如,处理器1101,用于在检测到载波空闲时,确定用于发送下行同步信号的第一子帧,其中所述下行同步信号包括主同步信号和辅同步信号,以及用于确定在所述第一子帧上的所述主同步信号和辅同步信号的位置,其中,所述辅同步信号的位置根据所述第一子帧的子帧号以及第一对应关系确定,所述第一对应关系包括子帧号与辅同步信号在子帧中的位置的对应关系;发送器1102,根据处理器1101确定的主同步信号和辅同步信号在所述第一子帧中的位置在所述第一子帧上向终端发送所述主同步信号和辅同步信号。可选的,处理器1101还可以用于根据通信系统的类型确定所述第一对应关系。可选的,处理器1101具体用于:在检测到非授权频谱资源的载波空闲时,确定在所述非授权频谱资源上的用于发送所述下行同步信号的所述第一子帧。可选的,发送器1102还可以用于向所述终端发送公共信令。
或者,发送器1102和处理器1101还可以用于执行图9所示实施例中涉及基站的执行过程和/或用于本发明实施例所描述的技术的其他过程,例如,处理器1101,用于通过检测确定载波空闲;发送器1102,用于在空闲的载波上发送数据,所述数据包括业务数据和同步信号,其中,同步信号在业务数据之前的符号上传输,业务数据紧接着同步信号,业务数据的起始子帧为无线帧的第一个子帧。
此外,上述基站还可以包括存储器1103,可以用于存储基站的程序代码和数据。可以理解的是,图11仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发送器,处理器,存储器等,而所有可以实现本发明实施例的基站都在本发明的保护范围之内。
对于基站中各个模块/单元的具体的实现过程和方式可以进一步参考相关实施例中的描述。
可以理解是的,上述的处理器和发送器分别可以通过一个或者多个硬件模块实现,也可以通过一个或者多个软件模块实现,处理器也可以是处理单元,发送器也可以是发送单元,存储器也可以是存储单元。
图12示出了上述实施例中所涉及的终端的一种可能的设计结构的简化示意图,所述终端可以是如图1所示中的UE中的一个。上述终端包括接收器1201,处理器1202。
在下行链路上,接收器1201调节(例如,滤波、放大、下变频以及数字化等)通过天线接收的信号并提供输入采样。处理器1202用于执行终端中各种管理、控制等与处理相关的功能。接收器1201和处理器1202还可以用于执行图3中涉及终端的执行过程和/或用于本 发明实施例所描述的技术的其他过程,例如,接收器1201,用于从基站接收数据,其中,所述数据中包括主同步信号和辅同步信号;处理器1202,通过对主同步信号和辅同步信号的检测,获取所述辅同步信号在第一子帧中的位置信息,以及根据所述辅同步信号在所述第一子帧中的位置信息以及第一对应关系,确定所述第一子帧的子帧号;其中,所述第一对应关系包括子帧号与辅同步信号在子帧中的位置的对应关系。可选的,处理器1202具体用于根据所述辅同步信号在所述第一子帧中的位置以及所述第一对应关系,确定所述第一子帧的子帧号或者用于根据所述主同步信号和辅同步信号在所述第一子帧中的位置关系,所述子帧号与主同步信号在子帧中的位置的对应关系以及子帧号与辅同步信号在子帧中的位置的对应关系,确定所述第一子帧的子帧号。可选的,处理器1202还可以用于根据所述主同步信号和辅同步信号在所述第一子帧中的位置关系或者所述辅同步信号在所述第一子帧中的位置确定通信系统的类型。可选的,处理器1202还可以用于根据所述辅同步信号在所述第一子帧中的位置信息,所述第一对应关系以及辅同步码确定所述第一子帧的子帧号。
或者,接收器1201和处理器1202还可以用于执行图9所示实施例中涉及终端的执行过程和/或用于本发明实施例所描述的技术的其他过程,例如,接收器1201用于接收来自基站的数据,其中,所述数据包括业务数据和同步信号,其中,同步信号在业务数据之前的符号上传输,业务数据紧接着同步信号,业务数据的起始子帧为无线帧的第一个子帧;处理器1202,用于对同步信号进行检测,将紧接着该同步信号的子帧确定为无线帧的第一个子帧。
此外,可以理解的是,上述终端还可以包括存储器1203,可以用于存储终端的程序代码和数据。
具体的,处理器1202对PSS和SSS的检测,可以通过至少一个相关器实现,相关器也可以认为是处理器的一部分。
可以理解的是,对于终端中各个模块/单元的具体的实现过程和方式可以进一步参考相关实施例中的描述。
可以理解是的,上述的处理器和接收器分别可以通过一个或者多个硬件模块实现,也可以通过一个或者多个软件模块实现,处理器也可以是处理单元,接收器也可以是接收单元,存储器也可以是存储单元。
需要说明的是,用于实现本发明实施例的上述基站和终端的处理器可以是中央处理器 (CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    基站在检测到载波空闲时,确定用于发送下行同步信号的第一子帧,其中所述下行同步信号包括主同步信号和辅同步信号;
    所述基站确定在所述第一子帧上的所述主同步信号和辅同步信号的位置,其中,所述辅同步信号的位置是根据所述第一子帧的子帧号和第一对应关系确定的,所述第一对应关系包括子帧号与辅同步信号在子帧中的位置的对应关系;
    所述基站根据确定的主同步信号和辅同步信号在所述第一子帧中的位置,在所述第一子帧上向终端发送所述下行同步信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一对应关系与通信系统的类型关联,所述方法还包括:
    所述基站根据通信系统的类型确定所述第一对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,一个无线帧中的所有子帧包括至少一个集合,每个集合的各个子帧中的辅同步信号的位置不同。
  4. 根据权利要求3所述的方法,其特征在于,所述每个集合的各个子帧中的辅同步信号的位置不同,包括:
    子帧号为(k-1)*N/m至k*N/m-1的子帧上的辅同步信号的位置各不相同,其中,所述一个无线帧中有N个子帧,并且所述N个子帧包括m个集合,N和m为自然数,且N为m的整数倍,1≤k≤m。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述主同步信号在各个子帧中的位置固定。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,一个无线帧中的所有子帧包括至少两个集合,每个集合内的子帧上的辅同步信号的辅同步码相同,不同的集合对应不同的辅同步码。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一对应关系还包括子帧号与主同步信号在子帧中的位置的对应关系。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述基站在检测到载波空闲时,确定用于发送下行同步信号的第一子帧,包括:所述基站在检测到非授权频谱资源的载波空闲时,确定在所述非授权频谱资源上的用于发送所述下行 同步信号的所述第一子帧。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,还包括:基站向所述终端发送公共信令;
    其中,如果T次同步窗口中成功抢占到载波发送所述下行同步信号的概率大于预设阈值,所述公共信令和所述下行同步信号在不同的子帧中;
    或者,
    如果T次同步窗口中成功抢占到载波发送所述下行同步信号的概率小于预设阈值,所述公共信令和所述下行同步信号在相同的子帧中,T为大于1的自然数。
  10. 一种通信方法,其特征在于,包括:
    终端从基站接收数据,其中,所述数据中包括主同步信号和辅同步信号;
    所述终端通过对主同步信号和辅同步信号的检测,获取所述辅同步信号在第一子帧中的位置信息;
    所述终端根据所述辅同步信号在所述第一子帧中的位置信息以及第一对应关系,确定所述第一子帧的子帧号,所述第一对应关系包括子帧号与辅同步信号在子帧中的位置的对应关系。
  11. 根据权利要求10所述的方法,其特征在于,一个无线帧中的所有子帧包括至少一个集合,每个集合的各个子帧中的辅同步信号的位置不同。
  12. 根据权利要求11所述的方法,其特征在于,所述每个集合的各个子帧中的辅同步信号的位置不同,包括:
    子帧号为(k-1)*N/m至k*N/m-1的子帧上的辅同步信号的位置各不相同,其中,所述一个无线帧中有N个子帧,并且所述N个子帧包括m个集合,N和m为自然数,且N为m的整数倍,1≤k≤m。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述主同步信号在各个子帧中的位置固定。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,一个无线帧中的所有子帧包括至少两个集合,每个集合内的子帧上的辅同步信号的辅同步码相同,不同的集合对应不同的辅同步码。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述辅同步信号在 所述第一子帧中的位置信息以及第一对应关系,确定所述第一子帧的子帧号包括:
    根据所述辅同步信号在所述第一子帧中的位置信息,所述第一对应关系以及辅同步码确定所述第一子帧的子帧号。
  16. 根据权利要求15所述的方法,其特征在于,所述辅同步信号在第一子帧中的位置信息包括:所述辅同步信号在所述第一子帧中的位置或者所述主同步信号和辅同步信号在所述第一子帧中的位置关系。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述第一对应关系还包括:子帧号与主同步信号在子帧中的位置的对应关系。
  18. 根据权利要求17所述的方法,其特征在于,所述终端根据所述辅同步信号在所述第一子帧中的位置信息以及第一对应关系,确定所述第一子帧的子帧号,包括:
    所述终端所述主同步信号和辅同步信号在所述第一子帧中的位置关系,子帧号与主同步信号在子帧中的位置的对应关系以及子帧号与辅同步信号在子帧中的位置的对应关系,确定所述第一子帧的子帧号。
  19. 根据权利要求10-18任一项所述的方法,其特征在于,还包括:所述终端根据所述主同步信号和辅同步信号在所述第一子帧中的位置关系或者所述辅同步信号在所述第一子帧中的位置确定通信系统的类型。
  20. 一种基站,其特征在于,包括:
    处理器,用于在检测到载波空闲时,确定用于发送下行同步信号的第一子帧,其中所述下行同步信号包括主同步信号和辅同步信号;
    所述处理器还用于确定在所述第一子帧上的所述主同步信号和辅同步信号的位置,其中,所述辅同步信号的位置是根据所述第一子帧的子帧号和第一对应关系确定的,所述第一对应关系包括子帧号与辅同步信号在子帧中的位置的对应关系;
    发送器,用于根据所述处理器确定的主同步信号和辅同步信号在所述第一子帧中的位置在所述第一子帧上向终端发送所述主同步信号和辅同步信号。
  21. 根据权利要求20所述的基站,所述处理器还用于根据通信系统的类型确定所述第一对应关系。
  22. 根据权利要求20或21所述的基站,其特征在于,一个无线帧中的所有子帧包括至少一个集合,每个集合的各个子帧中的辅同步信号的位置不同。
  23. 根据权利要求22所述的基站,所述每个集合的各个子帧中的辅同步信号的位置不同,包括:
    子帧号为(k-1)*N/m至k*N/m-1的子帧上的辅同步信号的位置各不相同,其中,所述一个无线帧中有N个子帧,并且所述N个子帧包括m个集合,N和m为自然数,且N为m的整数倍,1≤k≤m。
  24. 根据权利要求20-23任一项所述的基站,其特征在于,所述主同步信号在各个子帧中的位置固定。
  25. 根据权利要求20-24任一项所述的基站,其特征在于,一个无线帧中的所有子帧包括至少两个集合,每个集合内的子帧上的辅同步信号的辅同步码相同,不同的集合对应不同的辅同步码。
  26. 根据权利要求20-25任一项所述的基站,其特征在于,所述处理器具体用于:在检测到非授权频谱资源的载波空闲时,确定在所述非授权频谱资源上的用于发送所述下行同步信号的所述第一子帧。
  27. 根据权利要求20-26任一项所述的基站,其特征在于,所述发送器还用于:向所述终端发送公共信令;
    其中,如果T次同步窗口中成功抢占到载波发送所述下行同步信号的概率大于预设阈值,所述公共信令和所述下行同步信号在不同的子帧中;
    或者,
    如果T次同步窗口中成功抢占到载波发送所述下行同步信号的概率小于预设阈值,所述公共信令和所述下行同步信号在相同的子帧中,T为大于1的自然数。
  28. 根据权利要求20-27任一项所述的基站,其特征在于,所述第一对应关系还包括:子帧号与主同步信号在子帧中的位置的对应关系。
  29. 一种终端,其特征在于,包括:
    接收器,用于从基站接收数据,其中,所述数据中包括主同步信号和辅同步信号;
    处理器,用于通过对主同步信号和辅同步信号的检测,获取所述辅同步信号 在第一子帧中的位置信息,以及根据所述辅同步信号在所述第一子帧中的位置信息以及第一对应关系,确定所述第一子帧的子帧号;其中,所述第一对应关系包括子帧号与辅同步信号在子帧中的位置的对应关系。
  30. 根据权利要求29所述的终端,其特征在于,所述第一对应关系还包括:子帧号与主同步信号在子帧中的位置的对应关系。
  31. 根据权利要求29或30所述的终端,其特征在于,所述处理器具体用于:根据所述辅同步信号在所述第一子帧中的位置以及所述第一对应关系,确定所述第一子帧的子帧号。
  32. 根据权利要求30所述的终端,其特征在于,所述处理器具体用于:根据所述主同步信号和辅同步信号在所述第一子帧中的位置关系,所述子帧号与主同步信号在子帧中的位置的对应关系以及子帧号与辅同步信号在子帧中的位置的对应关系,确定所述第一子帧的子帧号。
  33. 根据权利要求29-32任一项所述的终端,其特征在于,一个无线帧中的所有子帧包括至少一个集合,每个集合的各个子帧中的辅同步信号的位置不同。
  34. 根据权利要求33所述的终端,其特征在于,所述每个集合的各个子帧中的辅同步信号的位置不同,包括:
    子帧号为(k-1)*N/m至k*N/m-1的子帧上的辅同步信号的位置各不相同,其中,所述一个无线帧中有N个子帧,并且所述N个子帧包括m个集合,N和m为自然数,且N为m的整数倍,1≤k≤m。
  35. 根据权利要求29-34任一项所述的终端,其特征在于,所述主同步信号在各个子帧中的位置固定。
  36. 根据权利要求29-35任一项所述的终端,其特征在于,一个无线帧中的所有子帧包括至少两个集合,每个集合内的子帧上的辅同步信号的辅同步码相同,不同的集合对应不同的辅同步码。
  37. 根据权利要求36所述的终端,其特征在于,所述处理器具体用于:
    根据所述辅同步信号在所述第一子帧中的位置信息,所述第一对应关系以及辅同步码确定所述第一子帧的子帧号。
  38. 根据权利要求29-37任一项所述的终端,其特征在于,所述处理器还用于根据所述主同步信号和辅同步信号在所述第一子帧中的位置关系或者所述辅同步信号在所述第一子帧中的位置确定通信系统的类型。
PCT/CN2016/086265 2016-06-17 2016-06-17 通信方法和装置 WO2017214984A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16905098.6A EP3461212A4 (en) 2016-06-17 2016-06-17 COMMUNICATION METHOD AND APPARATUS
CN201680086844.XA CN109417818A (zh) 2016-06-17 2016-06-17 通信方法和装置
PCT/CN2016/086265 WO2017214984A1 (zh) 2016-06-17 2016-06-17 通信方法和装置
JP2018565864A JP2019518394A (ja) 2016-06-17 2016-06-17 通信方法および装置
US16/219,378 US20190124614A1 (en) 2016-06-17 2018-12-13 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086265 WO2017214984A1 (zh) 2016-06-17 2016-06-17 通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/219,378 Continuation US20190124614A1 (en) 2016-06-17 2018-12-13 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2017214984A1 true WO2017214984A1 (zh) 2017-12-21

Family

ID=60663915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086265 WO2017214984A1 (zh) 2016-06-17 2016-06-17 通信方法和装置

Country Status (5)

Country Link
US (1) US20190124614A1 (zh)
EP (1) EP3461212A4 (zh)
JP (1) JP2019518394A (zh)
CN (1) CN109417818A (zh)
WO (1) WO2017214984A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520164A (ja) * 2017-05-10 2020-07-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated 広帯域カバレージ拡張のための同期

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030774A1 (ko) * 2016-08-11 2018-02-15 삼성전자 주식회사 강건하고 신뢰성 있는 5G New Radio 통신 방법 및 그 장치
US11363465B2 (en) 2018-09-26 2022-06-14 Qualcomm Incorporated Licensed supplemental uplink as fallback with unlicensed uplink and downlink
WO2020143756A1 (en) * 2019-01-10 2020-07-16 Mediatek Singapore Pte. Ltd. Sidelink synchronization signal block (s-ssb) design
JP7395400B2 (ja) * 2020-03-25 2023-12-11 株式会社Nttドコモ 通信装置
CN112822771B (zh) * 2020-12-30 2024-01-26 中信科智联科技有限公司 一种同步方法、装置及终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
US20160127098A1 (en) * 2014-11-03 2016-05-05 Samsung Electronics Co., Ltd. Method and apparatus for channel access for lte on unlicensed spectrum
CN105577339A (zh) * 2014-11-06 2016-05-11 中兴通讯股份有限公司 数据传输方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123344B2 (en) * 2013-03-06 2018-11-06 Qualcomm Incorporated Methods and apparatus for multi-subframe scheduling
CN105359604B (zh) * 2014-02-28 2020-02-14 华为技术有限公司 一种使用非授权频谱通信的方法、设备及系统
US10362546B2 (en) * 2014-10-31 2019-07-23 Kyocera Corporation Preamble synchronization signal in unlicensed frequency band
KR102282590B1 (ko) * 2014-12-03 2021-07-29 삼성전자 주식회사 비면허 대역에서 동작하는 이동통신 시스템에서의 채널 감지 방법 및 장치
JP2018520528A (ja) * 2015-05-08 2018-07-26 インテル アイピー コーポレーション 構成可能な同期信号およびチャネル設計のデバイスおよび方法
WO2017026434A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017048105A1 (ko) * 2015-09-15 2017-03-23 엘지전자(주) 무선 통신 시스템에서의 셀 탐색 방법 및 이를 위한 장치
WO2017107298A1 (zh) * 2015-12-24 2017-06-29 华为技术有限公司 一种发送信道预约信号的方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
US20160127098A1 (en) * 2014-11-03 2016-05-05 Samsung Electronics Co., Ltd. Method and apparatus for channel access for lte on unlicensed spectrum
CN105577339A (zh) * 2014-11-06 2016-05-11 中兴通讯股份有限公司 数据传输方法及装置
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3461212A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520164A (ja) * 2017-05-10 2020-07-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated 広帯域カバレージ拡張のための同期

Also Published As

Publication number Publication date
EP3461212A1 (en) 2019-03-27
CN109417818A (zh) 2019-03-01
JP2019518394A (ja) 2019-06-27
US20190124614A1 (en) 2019-04-25
EP3461212A4 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
WO2017214984A1 (zh) 通信方法和装置
EP3592063B1 (en) Data transmission method and terminal device
US20200037277A1 (en) Downlink synchronization signal sending method and receiving method and device
WO2017121097A1 (zh) 非授权频谱上指示上行子帧的方法及装置
CN110771107B (zh) 用于交叉数字基本配置调度的方法和设备
EP3873160B1 (en) Method and device for transmitting ssb in an unlicensed spectrum
CN109076463B (zh) 上行参考信号发送方法、上行参考信号接收方法和装置
WO2019029706A1 (zh) 一种信息发送、信息接收方法及装置
US20200329446A1 (en) Signal transmission method, terminal device and network device
US20220256487A1 (en) Rate matching indication method and apparatus, and device and storage medium
US10015761B2 (en) Apparatus and method for channel access for long term evolution nodes in unlicensed band
US11012207B2 (en) Method and device for transmitting tracking reference signal
CN114258716A (zh) 一种资源的指示方法和通信设备
CN109937603B (zh) 基于竞争的传输方法和设备
WO2019127466A1 (zh) 无线通信方法、网络设备和终端设备
US10763948B2 (en) Signal sending method and apparatus, and signal receiving method and apparatus
KR102499121B1 (ko) 신호 전송 방법, 신호 수신 방법, 신호 전송 장치 및 신호 수신 장치, 및 통신 시스템
CN109565768B (zh) 信号传输的方法、终端设备和网络设备
CN111801983B (zh) 信道传输的方法和设备
CN112956261B (zh) 用于免授权频谱上的数据传输的控制信道设计的方法及设备
CN113543142A (zh) 信息传输方法和设备
US20220279482A1 (en) Prioritized discovery for high spectral efficiency nr sidelink
WO2021062722A1 (zh) 确定不可用资源的方法、终端设备和网络设备
CN113825232A (zh) 资源更新方法及装置
CN114342520A (zh) 系统信息的传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565864

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016905098

Country of ref document: EP

Effective date: 20181220