WO2017213419A1 - Color transformation photonic crystal structure, color transformation photonic crystal sensor using same, and counterfeit petroleum detecting photosensor using same - Google Patents

Color transformation photonic crystal structure, color transformation photonic crystal sensor using same, and counterfeit petroleum detecting photosensor using same Download PDF

Info

Publication number
WO2017213419A1
WO2017213419A1 PCT/KR2017/005917 KR2017005917W WO2017213419A1 WO 2017213419 A1 WO2017213419 A1 WO 2017213419A1 KR 2017005917 W KR2017005917 W KR 2017005917W WO 2017213419 A1 WO2017213419 A1 WO 2017213419A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
refractive index
crystal structure
index layer
color conversion
Prior art date
Application number
PCT/KR2017/005917
Other languages
French (fr)
Korean (ko)
Inventor
정서현
박종목
공호열
배자영
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2017213419A1 publication Critical patent/WO2017213419A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8809Adjustment for highlighting flaws

Definitions

  • the present invention relates to a color conversion photonic crystal structure, a color conversion photonic crystal sensor using the same, and an optical sensor for detecting similar oil.
  • a photonic crystal is a structure in which dielectric materials having different refractive indices are arranged periodically, and superimposed interference occurs between light scattered at regular regular grid points to selectively transmit light in a specific wavelength range.
  • a material that reflects light that is, forms an optical band gap.
  • photonic crystals use photons instead of electrons as a means of information processing, and thus, the speed of information processing is excellent and is emerging as a key material for improving the efficiency of the information industry.
  • the photonic crystal can be implemented as a one-dimensional structure in which photons move in the principal axis direction, a two-dimensional structure in which the photons move along a plane, or a three-dimensional structure in which the photons move freely in all directions throughout the material. It is easy to control the optical characteristics and can be applied to various fields.
  • photonic crystals may be applied to optical devices such as photonic crystal fibers, light emitting devices, photovoltaic devices, photonic crystal sensors, semiconductor lasers, and the like.
  • the Bragg stack is a photonic crystal having a one-dimensional structure, and can be easily manufactured by only stacking two layers having different refractive indices, and controlling the optical properties by controlling the refractive index and thickness of the two layers is easy. There is this. Due to these features, the Bragg stack is widely used for applications as photonic crystal sensors that detect electrical, chemical, and thermal stimuli as well as energy devices such as solar cells. Accordingly, studies have been made on various materials and structures for easily manufacturing a photonic crystal sensor excellent in sensitivity and reproducibility.
  • the present inventors have made intensive efforts, and as described below, the repeating unit derived from the acrylate or acrylamide monomer having a repeating unit derived from a fluoroalkyl acrylate monomer and a photoactive functional group in one repeating layer of the Bragg stack.
  • the copolymer containing at the same time it was confirmed that it is possible to easily produce a color conversion photonic crystal structure that changes color according to the type and concentration change of the organic solvent and a photonic crystal sensor showing excellent sensitivity accordingly, the present invention Completed.
  • the present invention is to provide a color conversion photonic crystal structure sensitive to an organic solvent.
  • the present invention also provides a color conversion photonic crystal sensor having excellent sensitivity and reproducibility using the color conversion photonic crystal structure and exhibiting a fast response time.
  • the present invention is to provide an optical sensor for detecting similar petroleum, which can be repeatedly reused with excellent sensitivity and reproducibility, including a photonic crystal structure which is converted into color upon contact with similar petroleum.
  • the present invention is to provide a method for detecting similar petroleum using the optical sensor.
  • the present invention is a first refractive index layer comprising a first polymer exhibiting a first refractive index, alternately stacked; And a second refractive index layer including a second polymer exhibiting a second refractive index, wherein the first refractive index and the second refractive index are different, and one of the first polymer and the second polymer is represented by the following Chemical Formula 1 It provides a color conversion photonic crystal structure which is a copolymer represented by:
  • R 1 and R 2 are each independently hydrogen or C 1-3 alkyl
  • X 1 is C 1-10 fluoroalkyl
  • L 1 is O or NH
  • Y 1 is benzoylphenyl
  • Y 1 is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C 1-5 alkyl and C 1-5 alkoxy,
  • n and m are each independently an integer of 1 or more
  • n + m is 100-1,000.
  • the present invention also provides a color conversion photonic crystal sensor comprising the photonic crystal structure.
  • the present invention provides an optical sensor for detecting similar petroleum including the photonic crystal structure.
  • the present invention comprises the step of contacting the optical sensor with a sample and the optical
  • It provides a pseudo petroleum detection method comprising the step of detecting the pseudo petroleum in the sample through color conversion of the photonic crystal structure of the sensor.
  • the color conversion photonic crystal structure of the present invention comprises a low refractive index layer using a copolymer comprising a repeating unit derived from a fluoroalkyl acrylate monomer and a repeating unit derived from an acrylate or acrylamide monomer having a photoactive functional group. Including, the color can be converted to be visually determined according to the type and concentration change of the organic solvent, the photonic crystal sensor using the color conversion photonic crystal structure can exhibit a fast response time with excellent sensitivity and reproducibility have.
  • the optical sensor of the present invention uses a photonic crystal structure in which color is converted upon contact with pseudo petroleum, so that the detection of pseudo petroleum can be performed with the naked eye and can be easily used, while having excellent sensitivity and reproducibility and being reusable repeatedly. There is a characteristic.
  • FIG. 1 schematically illustrates a structure of a color conversion photonic crystal structure according to an embodiment.
  • FIG. 5 shows the results of thermogravimetric analysis of the copolymers prepared in Production Examples 2 to 4 and Comparative Production Example 1.
  • FIG. 10 shows the specular reflectance before and after the thermal shock test of the photonic crystal structures prepared in Examples 1 to 3 and Comparative Example 1.
  • FIG. 10 shows the specular reflectance before and after the thermal shock test of the photonic crystal structures prepared in Examples 1 to 3 and Comparative Example 1.
  • 11 to 13 show color conversion photographs (a) and specular reflectances (b) of benzene, toluene, xylene, ethanol and methanol of the photonic crystal structures prepared in Examples 1, 4 and 5, respectively.
  • 19A to 19C show reproducibility test results for benzene, toluene and xylene of the photonic crystal structure prepared in Example 1, respectively.
  • FIG. 20 shows the response time test results for benzene, toluene, xylene, ethanol and methanol of the photonic crystal structure prepared in Example 1.
  • FIG. 20 shows the response time test results for benzene, toluene, xylene, ethanol and methanol of the photonic crystal structure prepared in Example 1.
  • FIG. 21 shows color conversion photographs (a) and specular reflectances (b) of genuine gasoline, thinner, methanol, and toluene of the photonic crystal structure prepared in Example 5.
  • FIG. 21 shows color conversion photographs (a) and specular reflectances (b) of genuine gasoline, thinner, methanol, and toluene of the photonic crystal structure prepared in Example 5.
  • FIG. 22 shows color conversion photographs (a) and specular reflectances (b) of benzene, toluene, xylene, ethanol, and methanol of the photonic crystal structure prepared in Example 5.
  • FIG. 22 shows color conversion photographs (a) and specular reflectances (b) of benzene, toluene, xylene, ethanol, and methanol of the photonic crystal structure prepared in Example 5.
  • FIG. 23 shows color conversion photographs (a) and specular reflectances (b) of pseudo-petrol mixed with genuine gasoline and toluene in various ratios of the photonic crystal structure prepared in Example 5.
  • FIG. 23 shows color conversion photographs (a) and specular reflectances (b) of pseudo-petrol mixed with genuine gasoline and toluene in various ratios of the photonic crystal structure prepared in Example 5.
  • FIG. 24 shows color conversion photographs (a) and specular reflectances (b) of pseudo-petrol in which genuine gasoline and methanol of the photonic crystal structure prepared in Example 5 are mixed at various ratios.
  • FIG. 25 is a color conversion photograph (a) and a specular reflectance (b) of a pseudo gasoline in which the thinner, toluene and methanol of the photonic crystal structure prepared in Example 5 are mixed at various ratios.
  • the term 'color conversion photonic crystal structure' used in the present invention is a Bragg stack having a one-dimensional photonic crystal structure manufactured by repeatedly stacking materials having different refractive indices, and having a specific wavelength due to a periodic difference in refractive index of the stacked structures.
  • the light may reflect light in an area, and the reflected wavelength refers to a structure shifted by an external stimulus to convert a reflected color.
  • partial reflection of light occurs at the boundary of each layer of the structure, and many of these reflected waves can structurally interfere to reflect light of a specific wavelength having high intensity.
  • the shift of the reflection wavelength due to the external stimulus occurs as the wavelength of the scattered light changes as the lattice structure of the material forming the layer is changed by the external stimulus.
  • Such a color conversion photonic crystal structure may be manufactured in the form of a coating film coated on a separate substrate or a substrate, or in the form of a free standing film, and includes an optical device such as a photonic crystal fiber, a light emitting device, a photovoltaic device, a photonic crystal sensor, a semiconductor laser, and the like. It can be applied to.
  • the color conversion photonic crystal structure may be used in biosensors such as optical sensors, glucose sensors, protein sensors, DNA sensors, disease diagnosis sensors, portable diagnostic sensors, and the like, such as environmental elements for chemical and species detection. The application is not limited.
  • the color conversion photonic crystal structure of the present invention the first refractive index layer comprising a first polymer exhibiting a first refractive index, alternately stacked; And a second refractive index layer comprising a second polymer exhibiting a second refractive index, wherein the first refractive index and the second refractive index are different.
  • the first refractive index layer may be a high refractive index layer
  • the second refractive index layer may be a low refractive index layer
  • the first refractive index layer may be a low refractive index layer
  • the second refractive index layer may be a high refractive index layer
  • the term 'low refractive index layer' used in the present invention means a layer having a relatively low refractive index among two kinds of layers included in the photonic crystal structure.
  • the polymer included in the low refractive index layer is a copolymer represented by the following formula (1):
  • R 1 and R 2 are each independently hydrogen or C 1-3 alkyl
  • X 1 is C 1-10 fluoroalkyl
  • L 1 is O (oxygen) or NH
  • Y 1 is benzoylphenyl
  • Y 1 is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C 1-5 alkyl and C 1-5 alkoxy,
  • n and m are each independently an integer of 1 or more
  • n + m is 100-1,000.
  • the refractive index is lower than that of the polymer not containing the repeating unit, and thermal stability, chemical resistance, and oxidation Excellent chemical properties such as stability and excellent transparency.
  • 'fluoroalkyl' refers to a functional group in which one or more fluorine atoms are substituted for the hydrogen atom of alkyl, wherein one or more fluorine atoms may be substituted for the hydrogen atom of the side chain as well as the terminal of C1-10 alkyl, Two or more fluorine atoms may be all bonded to one carbon atom, or each may be bonded to two or more carbon atoms.
  • the refractive index becomes lower and the hydrophobicity may increase, thereby controlling the difference in refractive index between the high refractive index layer and the low refractive index layer according to the number of fluorine atoms.
  • Color conversion photonic crystal structure having a reflection wavelength can be implemented.
  • the copolymer represented by Chemical Formula 1 further includes repeating units derived from an acrylate or acrylamide-based monomer having a photoactive functional group (Y 1 ), so that photocuring itself is performed without a separate photoinitiator or crosslinker. It may be possible.
  • the copolymer represented by Chemical Formula 1 is prepared by random copolymerization of an acrylate or acrylamide monomer having a fluoroalkyl (X 1 ) acrylate monomer and a photoactive functional group (Y 1 ).
  • the repeating units between the brackets may be random copolymers arranged randomly from each other.
  • the copolymer represented by Formula 1 may be a block copolymer in which blocks of repeating units between square brackets of Formula 1 are connected by covalent bonds. Also, alternatively, it may be an alternating copolymer in which the repeating units between the brackets of Formula 1 are arranged alternately, or may be a graft copolymer in which any one of the repeating units is combined in a branched form. The form is not limited.
  • the copolymer represented by Formula 1 may exhibit a refractive index of 1.3 to 1.5.
  • a photonic crystal structure reflecting light having a desired wavelength may be implemented by a difference in refractive index with a polymer used in the high refractive index layer described later.
  • R 1 and R 2 may be each independently hydrogen or methyl.
  • R 1 and R 2 can be hydrogen.
  • X 1 may be C 1-5 fluoroalkyl.
  • X 1 is fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 1,1-difluoroethyl, 1,2-difluoroethyl , 2,2-difluoroethyl, 1,1,2-trifluoroethyl, 1,2,2-trifluoroethyl, 2,2,2-trifluoroethyl, 1-fluoropropyl, 2 -Fluoropropyl, 1,1-difluoropropyl, 1,2-difluoropropyl, 2,2-difluoropropyl, 1,1,2-trifluoropropyl, 1,2,2-tri Fluoropropyl, 2,2,2-trifluoropropyl, 1-fluorobutyl, 2-fluorobutyl, 1,1-difluorobutyl, 1,2-difluorobutyl, 2,2-di Fluorobutyl, 1,1,1,flu
  • Y 1 may be benzoylphenyl unsubstituted or substituted with C 1-3 alkyl.
  • Y 1 is benzoylphenyl, it may be advantageous in view of ease of photocuring.
  • n means the total number of repeating units derived from fluoroalkyl acrylate-based monomers in the copolymer
  • m is an acrylate or acryl having a photoactive functional group (Y 1 ) in the copolymer
  • Y 1 photoactive functional group
  • the copolymer represented by Chemical Formula 1 may have a molar ratio of n: m of 100: 1 to 100: 10 and a number average molecular weight of 10,000 to 100,000 g / mol.
  • the copolymer represented by Formula 1 may have a molar ratio of n: m of 100: 1 to 100: 5, specifically 100: 1 to 100: 2.
  • the copolymer represented by Chemical Formula 1 may have a number average molecular weight of 20,000 to 80,000 g / mol, specifically 20,000 to 60,000 g / mol. Within this range, it is possible to produce a copolymer having a low refractive index and easy photocuring.
  • the copolymer represented by Chemical Formula 1 may be one of the copolymers represented by the following Chemical Formulas 1-1 to 1-3:
  • n and m are as defined above.
  • the term 'high refractive index layer' used in the present invention means a layer having a relatively high refractive index among two kinds of layers included in the photonic crystal structure.
  • the polymer included in the high refractive index layer is not the copolymer represented by Chemical Formula 1, but is another one of the first polymer and the second polymer, and includes a structural unit derived from the following monomer, It can exhibit a high refractive index compared to the copolymer represented: (meth) acrylate type compound, (meth) acrylamide type compound, vinyl group containing aromatic compound, dicarboxylic acid, xylylene, alkylene oxide, arylene Oxides, and derivatives thereof. These can be applied individually or in mixture of 2 or more types.
  • the polymer included in the high refractive index layer may include one or two or more structural units derived from the following monomers: methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl ( Metha) acrylate, 1-phenylethyl (meth) acrylate, 2-phenylethyl (meth) acrylate, 1,2-diphenylethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylic (Meth) acrylate type monomers, such as a rate, m-nitrobenzyl (meth) acrylate, (beta) -naphthyl (meth) acrylate, and benzoylphenyl (meth) acrylate; Methyl (meth) acrylamide, ethyl (meth) acrylamide, isobutyl (meth) acrylamide, 1-phenylethyl (meth) acryl
  • Dicarboxylic acid monomers such as xylylene-based monomers such as o-xylene, m-xylene and p-xylene; Alkylene oxide monomers such as ethylene oxide and propylene oxide; Phenylene oxide type monomers, such as phenylene oxide and 2, 6- dimethyl- 1, 4- phenylene oxide.
  • the other of the first polymer and the second polymer may be a copolymer represented by the following formula (2):
  • R 3 and R 4 are each independently hydrogen or C 1-3 alkyl
  • R 11 is hydroxy, cyano, nitro, and amino, SO 3 H, SO 3 ( C 1- 5 alkyl), C 1-10 alkyl or C 1-10 alkoxy,
  • a1 is an integer of 0 to 5
  • L 2 is O or NH
  • Y 2 is benzoylphenyl
  • Y 2 is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C 1-5 alkyl and C 1-5 alkoxy,
  • n 'and m' are each independently an integer of 1 or more
  • n '+ m' is from 100 to 1,000.
  • the copolymer represented by Formula 2 includes a repeating unit derived from a styrene monomer, a high refractive index is higher than that of the copolymer including the repeating unit derived from the fluoroalkyl (X 1 ) acrylate monomer. Implementation of the layer is possible.
  • the copolymer represented by Chemical Formula 2 may further include a repeating unit derived from an acrylate or acrylamide monomer having a photoactive functional group (Y 2 ), and may be photocurable by itself without a separate photoinitiator or crosslinking agent. .
  • the copolymer represented by the formula ( 2 ) is a random copolymer of the styrene monomer and the acrylate or acrylamide monomer having a photoactive functional group (Y 2 ), the repeating units between the square brackets of the formula (2) are random from each other It may be a random copolymer arranged so as to.
  • the copolymer represented by Formula 2 may be a block copolymer in which blocks of repeating units between square brackets of Formula 2 are connected by covalent bonds.
  • it may be an alternating copolymer in which the repeating units between the brackets of Formula 2 are arranged alternately, or may be a graft copolymer in which any one of the repeating units is combined in a branched form, but the arrangement of the repeating units The form is not limited.
  • the copolymer represented by Formula 2 may exhibit a refractive index of 1.51 to 1.8.
  • a photonic crystal structure reflecting light of a desired wavelength may be implemented by a difference in refractive index with the polymer represented by Chemical Formula 1.
  • R 3 and R 4 may be each independently hydrogen or methyl.
  • R 3 and R 4 may be hydrogen.
  • R 11 may be methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, or tert-butyl.
  • a1 means the number of R 11 , and may be 0, 1, or 2.
  • Y 2 may be unsubstituted or benzoylphenyl substituted with C 1-3 alkyl.
  • Y 2 is benzoyl, phenyl, which is advantageous in terms of ease of photocuring.
  • n ' means the total number of repeating units derived from fluoroalkyl acrylate-based monomers in the copolymer
  • m' is an acrylate or acrylamide-based having a photoactive functional group in the copolymer The total number of repeat units derived from monomers.
  • the copolymer represented by Formula 2 has a molar ratio of n ': m' of 100: 1 to 100: 20, for example, 100: 1 to 100: 10, and for example, 100: 1 to 100: 5. Can be.
  • the copolymer represented by Formula 2 may have a number average molecular weight (Mn) of 10,000 to 300,000 g / mol, for example, 50,000 to 180,000 g / mol. In the above range, it is possible to prepare a copolymer represented by the formula (1) and the copolymer easy to cure photo having a refractive index difference of the above-described range.
  • the polymer represented by Formula 2 described above may swell upon contact with compounds that may be included as pseudopetroleum. This is because, as the compound represented by the formula (2) includes repeating units derived from styrene monomers, the swelling behavior is increased due to higher solubility in thinners, aromatic compounds, and alcohol compounds than the compound represented by the formula (1). That is, the color conversion of the photonic crystal structure may be caused by shifting the reflection wavelength of the photonic crystal structure due to swelling of the polymer represented by the formula (2).
  • the color conversion photonic crystal structure according to the present invention includes a first refractive index layer disposed on a lowermost portion, a second refractive index layer disposed on the first refractive index layer, and a first refractive index layer alternately stacked on the second refractive index layer. And a structure of the second refractive index layer.
  • the color conversion photonic crystal structure may further include a substrate on the other surface of the first refractive index layer of the first refractive index layer disposed on the lowermost part according to the use. Therefore, in this case, the substrate may be positioned at the bottom of the color conversion photonic crystal structure.
  • a color conversion photonic crystal structure 10 may include a substrate 11 and a first refractive index layer 13 and a second refractive index layer 15 alternately stacked on the substrate 11. It consists of
  • the first refractive index layer 13 may be positioned on the top of the color conversion photonic crystal structure. Accordingly, the first refractive index layer 13 is further laminated on the laminate in which the first refractive index layer 13 and the second refractive index layer 15 are alternately stacked, so that the photonic crystal structure includes an odd refractive index layer. Can have. In this case, constructive interference between the lights reflected at the interface of each layer is increased, as described later, so that the intensity of the reflection wavelength of the photonic crystal structure can be increased.
  • the substrate 11 is a carbon-based material, metal foil, thin glass, silicon (Si), plastic, polyethylene (PE), polyethylene having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling and waterproofing It may be a polymer film such as terephthalate (PET), polypropylene (PP), paper, skin, clothing, or a wearable material, but is not limited thereto, and various materials that are flexible or not flexible depending on the intended application. Can be used.
  • a difference between the first refractive index n1 and the second refractive index n2 may be 0.01 to 0.5.
  • the difference between the first refractive index n1 and the second refractive index n2 may be 0.05 to 0.3, specifically 0.1 to 0.2.
  • the difference between the refractive indices increases, the optical band gap of the photonic crystal structure increases, so that the light having a desired wavelength may be reflected by adjusting the difference between the refractive indices within the above-described range.
  • the first refractive index n1 may be 1.51 to 1.8
  • the second refractive index n2 may be 1.3 to 1.5
  • the first refractive index layer 13 is a high refractive index layer
  • the second refractive index layer 15 corresponds to a low refractive index layer, so that the photonic crystal structure 10 is disposed on the substrate 11.
  • the low refractive index layer / high refractive index layer / low refractive index layer / high refractive index layer may have a structure stacked sequentially.
  • the first refractive index n1 may be 1.3 to 1.5
  • the second refractive index n2 may be 1.51 to 1.8
  • the first refractive index layer 13 is a low refractive index layer
  • the second refractive index layer 15 corresponds to a high refractive index layer, so that the photonic crystal structure 10 is formed on the substrate 11.
  • the high refractive index layer / low refractive index layer / high refractive index layer / low refractive index layer may have a structure that is sequentially stacked.
  • the thickness of the low refractive index layer may be greater than or equal to the thickness of the high refractive index layer.
  • the ratio of the thickness of the low refractive index layer to the thickness of the high refractive index layer may be 1: 1.1 to 1: 0.3.
  • the thickness of the low refractive index layer is 30 to 100nm
  • the thickness of the high refractive index layer may be 20 to 70 nm.
  • the total number of stacked layers of the photonic crystal structure is not limited thereto. Specifically, the total number of stacked layers of the first refractive index layer and the second refractive index layer may be 5 to 30 layers.
  • the interference of the reflected light at each layer boundary surface is sufficiently generated to have a reflection intensity such that a change in color due to an external stimulus is detected.
  • the reflection wavelength ⁇ of the color conversion photonic crystal structure 10 may be determined by Equation 1 below:
  • n1 and n2 are the refractive indices of the first and second refractive index layers 13 and 15, respectively, and d1 and d2 are the refractive indices of the first and second refractive index layers 13 and 15, respectively.
  • the color conversion photonic crystal structure 10 When there is no external stimulus, the color conversion photonic crystal structure 10 exhibits a reflection wavelength ⁇ corresponding to a visible light region of 200 to 760 nm according to Equation 1 to confirm the reflection color by the photonic crystal structure. Can be.
  • the color conversion photonic crystal structure 10 When the color conversion photonic crystal structure 10 is positioned in an environment subject to external stimulation, the crystal lattice of the first polymer and the second polymer constituting the first refractive index layer 13 and the second refractive index layer 15, respectively As the structure is changed, the photonic crystal structure 10 reflects the shifted wavelength [lambda] 'as the shape scattered at each layer boundary is changed. Therefore, the color implemented by the photonic crystal structure can be converted as compared with the case where there is no external stimulus. If the intensity of the external stimulus is high, since the degree of change of the crystal lattice structure of the first polymer and the second polymer is increased and the reflection wavelength is further shifted, the intensity of the external stimulus can be detected according to the color to be implemented.
  • the shift of the reflection wavelength of the photonic crystal structure 10 may be due to swelling of the first polymer and / or the second polymer by external stimulation.
  • the reflection wavelength ⁇ ′ shifted by the external stimulus may correspond to a visible light region that can be perceived by the human eye.
  • the reflection wavelength ⁇ ′ shifted by the external stimulus may be in the range of 380 nm to 760 nm.
  • the external stimulus may be a chemical stimulus, for example, a stimulus caused by a change in concentration of a chemical.
  • the external stimulus may be due to a change in concentration of the organic solvent.
  • the organic solvent may be an aromatic organic solvent or an organic solvent such as ethyl acetate (EA), tetrahydrofuran (THF), dimethylformamide (DMF), ethyl lactate, cyclohexanone, methylene chloride, methylethylketone (MEK), and the like. It may be a solvent.
  • the polymer included in the high refractive index layer of the photonic crystal structure may respond to the change in concentration of the aromatic organic solvent, and more specifically, the polymer represented by Formula 2 may be sensitive. That is, the shift of the reflection wavelength of the color conversion photonic crystal structure according to the embodiment according to the external stimulus may be due to the swelling of the polymer represented by the formula (2).
  • the degree of shift of the reflection wavelength of the structure may vary depending on the type of the organic solvent, and thus may exhibit different colors, because of the swelling behavior of the first polymer and / or the second polymer according to the type of the solvent. ) Is different.
  • the swelling behavior of the polymer with respect to the solvent can be determined by the solubility parameter ( ⁇ ), and Hansen solubility parameter is mainly used as the solubility parameter ( ⁇ ).
  • Hansen solubility parameters for benzene, xylene and toluene are shown in Table 1 below.
  • ⁇ t is Total hidebrand
  • ⁇ d is a dispersion component
  • ⁇ P is a polar component
  • ⁇ h means a hydrogen bonding component
  • the degree of swelling of the first polymer and / or the second polymer may be influenced by the dispersible component parameter ( ⁇ d ) of the solubility parameter, specifically, as the value of the dispersible component parameter increases The degree of swelling of the polymer and / or the second polymer may be increased.
  • the shift degree of the reflection wavelength ⁇ ′ of the color conversion photonic crystal structure may vary depending on the intensity of the external stimulus.
  • the intensity of the external stimulus increases, for example, as the concentration of the organic solvent increases, the reflection wavelength of the photonic crystal structure may increase. Therefore, the concentration of the organic solvent as well as the type of the organic solvent can be detected using the color conversion photonic crystal structure.
  • the color conversion photonic crystal structure as described above may be manufactured by a manufacturing method comprising the following steps:
  • description of the first refractive index, the first polymer, the second refractive index, the second polymer, the first refractive index layer, and the second refractive index layer is as described above.
  • a first dispersion composition and a second dispersion composition are prepared.
  • Each dispersion composition can be prepared by dispersing a polymer in a solvent, where the dispersion composition is used as a term indicating various states such as solution phase, slurry phase or paste phase.
  • the solvent may be used as long as it can dissolve the first and second polymers, and the first and second polymers may be included in an amount of 0.5 to 5 wt% based on the total weight of the dispersion composition.
  • a dispersion composition having a viscosity suitable for being applied onto a substrate can be prepared.
  • the first dispersion composition may consist of a solvent and a first polymer
  • the second dispersion composition may consist of a solvent and a second polymer.
  • the photocuring agent may not include a separate photoinitiator and a crosslinking agent or inorganic particles. Therefore, the photonic crystal structure can be manufactured more easily and economically, and the dispersion of the optical properties according to the position of the prepared photonic crystal structure can be reduced by not including a separate additive.
  • spin coating dip coating, roll coating, screen coating, spray coating, or the like may be applied by applying the dispersion composition onto a substrate or a refractive index layer.
  • Spin casting, flow coating, screen printing, ink jet, drop casting, or the like may be used, but is not limited thereto.
  • the light irradiation step may be performed by irradiation with 365 nm wavelength under nitrogen conditions.
  • the photocured refractive index layer may be prepared by acting as a photoinitiator of the benzophenone moiety contained in the polymer by the light irradiation.
  • a color conversion photonic crystal sensor including the color conversion photonic crystal structure described above is provided.
  • the color conversion photonic crystal sensor may be used for detecting an organic solvent as the reflection wavelength of the photonic crystal structure is shifted according to the change of the organic solvent concentration.
  • the color conversion photonic crystal sensor can detect not only the presence of the organic solvent as the detection material but also the concentration, and thus can be used for both qualitative and quantitative analysis of the detection material.
  • the color conversion photonic crystal sensor is not only the color conversion due to the external stimulus is clear, it can be quickly restored to the original state when the external stimulus is stopped, it can be used repeatedly.
  • the petroleum-like petroleum on the market includes a compound such as thinner, an aromatic organic solvent, or an alcoholic organic solvent as described above.
  • the aromatic organic solvent include benzene, toluene or xylene
  • examples of the alcoholic organic solvent include methanol, ethanol, isopropanol, isobutanol and the like. Therefore, for the detection of pseudo petroleum, a sensor capable of rapidly reacting with the compound is required. In addition, such a detection sensor is preferably portable and can be reused repeatedly so that anyone can easily use.
  • the optical sensor for detecting similar petroleum of the present invention includes a photonic crystal structure in which the color is converted upon contact with the similar petroleum, so that the presence of the similar petroleum in the sample may be visually confirmed.
  • the photonic crystal structure includes a first refractive index layer including a first polymer exhibiting a first refractive index, alternately stacked, and a second refractive index layer including a second polymer exhibiting a second refractive index different from the first refractive index. do.
  • the reflection wavelength of such a photonic crystal structure is such that when the photonic crystal structure comes into contact with compounds that may be included as pseudopetroleum, the reflection wavelength of the structure is caused by swelling of the first polymer and / or the second polymer included in the photonic crystal structure. Will be shifted. This is because when the first polymer and / or the second polymer are swollen, the crystal lattice structure of each refractive index layer is changed to change the shape of light scattered at each layer boundary.
  • the photonic crystal structure shows the converted color by the shifted reflection wavelength ⁇ ', and it is possible to confirm the presence of pseudo petroleum by the color conversion of the photonic crystal structure.
  • the reflection wavelength ⁇ and the shifted reflection wavelength ⁇ 'of the photonic crystal structure are within the range of 380 nm to 760 nm, which is the visible light region, color conversion of the photonic crystal structure can be easily confirmed with the naked eye.
  • the photonic crystal structure may have a different color due to the shift of the reflection wavelength depending on the type of the compound, and the reason may be different colors because of the swelling behavior of the first polymer and / or the second polymer depending on the type of the solvent. behavior is different. Accordingly, by using the optical sensor including the photonic crystal structure, it is possible not only to confirm the presence of pseudopetroleum, but also to check the components of the compound constituting the pseudopetroleum.
  • the swelling behavior of the first polymer and / or the second polymer may be determined by the solubility parameter (d).
  • the swelling behavior of the first polymer and / or the second polymer is influenced by the dispersible component parameter dd, so that the degree of swelling of the first polymer and / or the second polymer increases as the value of the dispersible component parameter increases.
  • the shifted degree of the reflection wavelength of the photonic crystal structure is increased.
  • the swelling of the first polymer and / or the second polymer, as xylene, toluene and benzene have dispersible component parameter values of 17.8, 18.1 and 18.4 (cal / ml) 1 ⁇ 2 respectively The degree is increased in the order of xylene, toluene and benzene.
  • the reflection wavelength of the photonic crystal structure may also be shifted in order of xylene, toluene, and benzene in order of long wavelength, for example, to change the color represented by the photonic crystal structure, and thus, it may be possible to identify a component of the compound constituting the pseudopetroleum.
  • the petroleum-like organic solvent when included in the petroleum-like swelling behavior of the first polymer and / or the second polymer may be determined by hydrogen bonding with the alcohol-based organic solvent. Specifically, the first polymer and / or the second polymer may be swollen by hydrogen bonding between the hydroxy group in the alcoholic organic solvent and the acrylate or acrylamide having the benzoylphenyl group included in the first polymer and / or the second polymer. Can be.
  • the thickness and refractive index of the first refractive index layer and / or the second refractive index layer including the same may be changed, so that color conversion of the photonic crystal structure may occur.
  • the optical sensor may be provided with a detection unit including the above-described photonic crystal structure that can be converted to the color when contacted with the petroleum similar oil to determine the presence of petroleum and a fixing portion for fixing it.
  • the optical sensor having the same may be manufactured in various sizes and shapes depending on the intended use.
  • the optical sensor may further include a reference unit that exemplifies a color converted according to a kind of a compound which may be included as genuine petroleum and similar petroleum for reference. Through the color illustrated in the reference unit, it is possible to check whether or not the genuine petroleum and the kind of the compound included in the sample.
  • the optical sensor may visually detect pseudo petroleum through color conversion of the photonic crystal structure when the pseudo petroleum in the sample contains about 10% (V / V) or more. In this case, when measuring the specular reflectance of the photonic crystal structure of the optical sensor, it is possible to detect pseudo petroleum until the content of pseudo petroleum in the sample is ppm.
  • the optical sensor can determine whether or not a similar petroleum is present in the sample even if a small amount of the sample as long as the amount of sample can penetrate into the photonic crystal structure.
  • the optical sensor may exhibit a response time within about 2 minutes. Therefore, it is possible to immediately check whether or not a similar petroleum at the site of gasoline or diesel using the optical sensor.
  • the optical sensor can be used repeatedly and continuously.
  • the photonic crystal structure in the optical sensor may be repeatedly reused after a predetermined time since the photonic crystal structure is restored to the original color. Therefore, it can be environmentally friendly and economical compared to the sensor that must be discarded after one use.
  • the quasi-petroleum detection method includes the following steps:
  • step 1) The contact between the optical sensor and the sample in step 1) is sufficient to allow the sample to get wet inside the photonic crystal structure in the optical sensor.
  • similar petroleum detection may be possible with only a small amount of sample.
  • step 2) the color conversion in step 2) can be clearly seen within a short time, as can be seen in the embodiments described later.
  • Triethylamine A product of 99% purity TCI (Tokyo Chemical Industry) was used.
  • Tetrahydrofuran A Burdick & jackson product having a purity of 99.99% was used.
  • Azobisisobutyronitrile Purified by JUNSEI from 98% purity.
  • 1,4-dioxane Sigma-aldrich manufactured at 99% purity was used.
  • N-isopropyl acrylamide TCI (Tokyo Chemical Industry) company of purity 98% was used.
  • 2,2,2-trifluoroethylacrylate A product of TCI (Tokyo Chemical Industry) having a purity of 98% was used.
  • Mn number average molecular weight
  • Tg glass transition temperature
  • Refractive index It measured by ellipsometer.
  • TGA Thermogravimetric analysis
  • the copolymers prepared in Preparation Examples 2 to 4 had weight loss from about 350 ° C. or higher, whereas the copolymers prepared in Comparative Preparation Example 1 had weight loss as soon as the temperature started to rise. It can be seen. As a result, it can be seen that the thermal stability of the copolymer prepared in Preparation Example is excellent.
  • the high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 1 to 1 wt% in toluene, and preparing Poly (FEA-BPAA) prepared in Preparation Example 2 in ethyl acetate. It was dissolved to wt% to prepare a low refractive index dispersion composition.
  • the low refractive index dispersion composition was coated on a glass substrate using a spin coater at 2,000 rpm for 50 seconds and then cured at 365 nm for 5 minutes to prepare a low refractive index layer having a thickness of 71.6 nm.
  • the glass substrate on which the low refractive index layer was formed was placed in an ethyl acetate solution to remove the uncured portion.
  • the high refractive index dispersion composition was applied on the low refractive index layer for 50 seconds at 2,000 rpm using a spin coater, and then cured for 5 minutes at 365 nm to prepare a high refractive index layer having a thickness of 33.8 nm.
  • the glass substrate in which the said low refractive index layer and the high refractive index layer were formed was put into the toluene solution, and the part which is not hardened was removed.
  • the low refractive index layer and the high refractive index layer were repeatedly stacked on the high refractive index layer to prepare a photonic crystal structure in which a total of 15 refractive index layers were stacked.
  • the low refractive index dispersion composition was prepared by dissolving Poly (DFEA-BPAA) prepared in Preparation Example 3 to 2wt% in ethyl acetate, and applying the low refractive index dispersion composition at 2,000 rpm for 5 minutes at 365 nm under nitrogen. Except for curing, a photonic crystal structure in which a total of 15 layers of 65.7 nm thick low refractive index layer and 33.8 nm thick high refractive index layer were repeatedly stacked on a glass substrate was used in the same manner as in Example 1.
  • the poly (TFEA-BPAA) prepared in Preparation Example 4 was dissolved in ethyl acetate to 2wt%, and the low refractive index dispersion composition was cured using nitrogen in the same manner as in Example 1 except curing for 20 minutes at 365 nm under nitrogen.
  • a photonic crystal structure in which a total of 15 layers of a low refractive index layer having a thickness of 32.8 nm and a high refractive index layer having a thickness of 33.8 nm was repeatedly stacked on the substrate was manufactured.
  • the high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 1 to 1.2 wt% in toluene, except that the low refractive index dispersion composition was applied at 1,900 rpm. Using the same method, a photonic crystal structure in which a total of 15 layers of a low refractive index layer having a thickness of 72.5 nm and a high refractive index layer having a thickness of 55.6 nm were repeatedly stacked on a glass substrate was prepared.
  • the high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 1 to 1.2 wt% in toluene, except that the low refractive index dispersion composition was applied at 1,700 rpm. Using the same method, a photonic crystal structure in which a total of 15 layers of a 76.8 nm thick low refractive index layer and a 58.8 nm thick high refractive index layer were repeatedly stacked on a glass substrate was used.
  • the high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 2 to 1.2 wt% in toluene, except that the low refractive index dispersion composition was applied at 1,500 rpm. Using the same method, a photonic crystal structure in which a total of 15 layers of 85.1 nm thick low refractive index layer and 63.2 nm thick high refractive index layer were repeatedly stacked on a glass substrate was prepared.
  • Example 6 Using the same method as Example 6, a photonic crystal structure in which a total of 195.1 layers of a low refractive index layer having a thickness of 85.1 nm and a high refractive index layer having a thickness of 63.2 nm were repeatedly stacked on a glass substrate was prepared.
  • Example 6 Using the same method as in Example 6, a photonic crystal structure in which a total of 25 layers of a low refractive index layer having a thickness of 85.1 nm and a high refractive index layer having a thickness of 63.2 nm were repeatedly stacked on a glass substrate was prepared.
  • the high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 1 to 1 wt% in toluene, and preparing Poly (FEA-BPAA) prepared in Preparation Example 2 in ethyl acetate. It was dissolved to wt% to prepare a low refractive index dispersion composition.
  • a silicon wafer was used as the substrate, and the low refractive index dispersion composition and the high refractive index dispersion composition were applied on the silicon wafer substrate using the same method as in Example 1, except that 50 seconds were applied at 2,000 rpm for 50 seconds.
  • Example 67.1 was prepared on the glass substrate using the same method as in Example 1, except that the low refractive index dispersion composition was prepared by dissolving Poly (NIPAM-BPAA) prepared in Comparative Preparation Example 1 to 2 wt% in 1-propanol.
  • NIPAM-BPAA dissolving Poly
  • Comparative Preparation Example 1 to 2 wt% in 1-propanol A photonic crystal structure in which 15 nm-thick low refractive index layers and 39.6 nm-thick high refractive index layers were repeatedly stacked in total was prepared.
  • the contact angle with respect to water was measured using a contact angle meter (PHOENIX product name, manufactured by Surface Electro Optic). At this time, 3.2 ⁇ l of water droplets were used, and the measured contact angle data means an average value of five repeated measurements. The results and the optical photographs are shown in Table 5 and FIGS. 6 to 9, respectively.
  • thermal shock test (Thermal Shock test) was repeated using a thermal shock test chamber (manufactured by Espec Corporation) for 50 cycles of leaving the photonic crystal structures at -20 ° C for 30 minutes and at 100 ° C for 30 minutes. Afterwards, specular reflectances of the photonic crystal structures were re-measured using a reflectometer (USB 4000, Ocean Optics).
  • the photonic crystal structure of Comparative Example 1 using Poly (NIPAM-BPAA) as the low refractive index layer polymer before the thermal shock test showed low specular reflectance of about 10% over a wide wavelength range
  • the photonic crystal structure of 2 can exhibit high specular reflectance in a narrow wavelength range. Therefore, by using a photonic crystal structure including a copolymer containing a repeating unit derived from a fluoroalkyl acrylate monomer, a photonic crystal sensor can be easily identified by visually shifting the color conversion due to a clear shift in reflection wavelength due to an external stimulus. It was confirmed that it can be prepared.
  • the photonic crystal structures of Examples 1 and 2 have almost no change in the reflected wavelength even after the thermal shock test, and thus the optical crystal structures having excellent heat resistance can be manufactured using the photonic crystal structures.
  • the photonic crystal structure prepared in Example 1 was soaked in benzene, toluene, xylene, ethanol and methanol until there was no color change, and the changed color was observed.
  • the photo is shown in Fig. 11A.
  • the specular reflectance of the photonic crystal structure prepared in Example 1 according to the solvent change was measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIG. 11B.
  • "pristine" means the color of the photonic crystal structure before immersion in the solvent.
  • the reflection wavelength of the photonic crystal structure prepared in Example 1 is changed according to the type of solvent, the color represented is different.
  • the change of the reflection wavelength is larger than that of the initial structure, so that a visible color change can be observed with the naked eye.
  • the photonic crystal structure has a large degree of shift of the reflection wavelength in the order of ethanol, methanol, xylene, toluene and benzene.
  • the optical sensor including the photonic crystal structure may be used as a sensor for detecting an aromatic organic solvent such as benzene, toluene and xylene.
  • the photonic crystal structures prepared in Examples 4 and 5 with different coating rates of the low refractive index dispersion composition were no longer added to benzene, toluene, xylene, ethanol and methanol, respectively. After soaking until no color change, the changed color was observed, and the photographs are shown in FIGS. 12A and 13A, respectively.
  • the specular reflectances of the photonic crystal structures prepared in Examples 4 and 5 according to the solvent change were measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIGS. 12B and 13B, respectively.
  • “initial” means the color of the photonic crystal structure before immersion in the solvent.
  • the reflection wavelength and the degree of shift of the photonic crystal structure are changed so that the color observed according to the change of the solvent is different.
  • the shift of the reflection wavelength is the same in the order of ethanol, methanol, xylene, toluene and benzene, and thus a sensor for detecting aromatic organic solvents such as benzene, toluene and xylene It was confirmed that it can be used as.
  • the color conversion of the structure due to the presence of benzene, toluene, xylene, etc. can be easily visually confirmed when the thickness of the high refractive index layer is 20 to 70 nm.
  • the specular reflectance according to the concentration change of benzene vapor of the photonic crystal structures prepared in Examples 4 and 6 were measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIGS. 14 and 15, respectively.
  • the photonic crystal structures prepared in Examples 4 and 6 exhibited a clear shift in reflection wavelength even with small changes in benzene of 25 to 75 ppm, and thus excellent sensitivity to changes in benzene concentration. can confirm.
  • the reflection wavelength of the color conversion photonic crystal structure is shifted in the direction of increasing wavelength as the concentration of benzene increases.
  • the shifted reflection wavelength corresponds to the visible light region, so that the change in the reflection wavelength of the photonic crystal structure can be observed with the naked eye. Therefore, the photonic crystal structure according to the embodiment can be used not only for qualitative analysis of organic solvent but also for quantitative analysis. Can be.
  • the specular reflectivity increases as the total number of stacked layers of the refractive index layer increases. This means that as the number of alternating high refractive index layers and low refractive index layers is increased, constructive interference between partial reflection wavelengths of the layer boundary portion is strengthened, thereby increasing the intensity of the reflection wavelength.
  • the reflectance (USB 4000, Ocean Optics) is used to change the specular reflectivity when the photonic crystal structure of Example 9 is exposed to benzene vapor using a silicon wafer substrate. was measured, and the results are shown in FIG.
  • the specular reflectance of the photonic crystal structure when there is no color change is measured using a reflectometer (USB 4000, Ocean Optics), and then The reproducibility was tested by repeating the cycle of measuring the specular reflectance of the photonic crystal structure when returning to the color of the photonic crystal structure before immersion 10 times. The results are shown in Figs. 19A, 19B and 19C, respectively.
  • the photonic crystal structure prepared in Example 1 exhibits the reflection wavelength in the same range as the first cycle even after repeated several cycles for all solvents. This means that the color conversion photonic crystal structure is excellent in reproducibility.
  • the photonic crystal structure prepared in Example 1 was immersed in benzene, toluene, xylene, ethanol and methanol, respectively, and the reflection wavelength over time was reflected on a reflectometer (USB 4000, Ocean Optics). Was measured using, and the results are shown in FIG.
  • the photonic crystal structure prepared in Example 1 exhibits a response time within about 2 minutes due to a rapid shift in reflection wavelength with respect to most solvents.
  • the photonic crystal structure prepared in Example 5 was no longer used in genuine gasoline (Gasoline, SK Energy Co., Ltd.), thinner (manufactured by Namyang Chemical Co., Ltd.), methanol, and toluene, respectively. After soaking until no color change, the changed color was observed, and the photograph is shown in FIG. 21A. In this case, "pristine" means the color of the photonic crystal structure before immersion in the compound.
  • specular reflectance of the photonic crystal structure prepared in Example 5 according to the genuine gasoline, methanol and toluene was measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIG. 21B.
  • the reflection wavelength of the photonic crystal structure of the example is changed according to the kind of the compound to be contacted, so that the displayed color is different.
  • the change in reflection wavelength does not occur compared with before contact, and thus there is almost no color change, but an aromatic organic solvent such as benzene, toluene and xylene or an alcoholic organic such as ethanol and methanol
  • an aromatic organic solvent such as benzene, toluene and xylene
  • an alcoholic organic such as ethanol and methanol
  • the reflection wavelength and the shifted reflection wavelength of the photonic crystal structure correspond to the visible light region, so that the color conversion of the photonic crystal structure can be visually observed.
  • the photonic crystal structure according to an embodiment of the present invention does not cause color conversion to genuine gasoline, but is suitable for detecting pseudo gasoline by causing color conversion only for pseudo gasoline.
  • the degree of reflection wavelength shift of the photonic crystal structure is larger in order of ethanol, methanol, xylene, toluene and benzene.
  • the values of the solubility parameters in the order of xylene, toluene and benzene increased, so that the degree of swelling of the polymer in the photonic crystal structure prepared in the above example increased in this order. Therefore, the type of aromatic organic solvent, such as benzene, toluene and xylene, included in the pseudo petroleum can be identified using the optical sensor including the photonic crystal structure.
  • a pseudo gasoline in which methanol is mixed in various ratios with the genuine gasoline is prepared, and the optical sensor prepared in Example 5 is used for the pseudo gasoline. After soaking until no color change, the changed color was observed, and the photograph is shown in FIG. 24A.
  • the specular reflectance of the optical sensor prepared in Example 5 according to pseudo gasoline mixed with methanol at various ratios in the genuine gasoline was measured using a reflectometer (USB 4000, Ocean Optics), and the result is shown in FIG. 24B. Indicated.
  • the optical sensor of Example 4 is different from the genuine gasoline shown in FIG. 21 when contacted with various similar gasoline, and the reflection wavelength shift is clear according to the shape of the pseudo gasoline. Accordingly, it can be seen that it is possible to detect several types of similar gasoline in the market using the optical sensor according to an embodiment of the present invention.
  • first refractive index layer 15 second refractive index layer

Abstract

The present invention relates to a photonic crystal structure and a counterfeit petroleum detecting photosensor comprising the same. The photosensor has excellent sensitivity and reproductivity and exhibits a fast response time, and the same enables detection of counterfeit petroleum by the naked eye and can be reused repeatedly.

Description

색변환 광결정 구조체, 이를 이용한 색변환 광결정 센서 및 유사 석유 검출용 광센서Color conversion photonic crystal structure, color conversion photonic crystal sensor and optical sensor for quasi oil detection
본 발명은 색변환 광결정 구조체, 이를 이용한 색변환 광결정 센서 및 유사 석유 검출용 광센서에 관한 것이다.The present invention relates to a color conversion photonic crystal structure, a color conversion photonic crystal sensor using the same, and an optical sensor for detecting similar oil.
광결정(Photonic crystal)이란, 서로 다른 굴절률을 갖는 유전물질이 주기적으로 배열된 구조체로서, 각각의 규칙적인 격자점에서 산란되는 빛들 사이에 중첩적 간섭이 일어나 특정한 파장 영역대에서 빛을 투과시키지 않고 선택적으로 반사하는, 즉 광밴드갭을 형성하는 물질을 의미한다.A photonic crystal is a structure in which dielectric materials having different refractive indices are arranged periodically, and superimposed interference occurs between light scattered at regular regular grid points to selectively transmit light in a specific wavelength range. Refers to a material that reflects light, that is, forms an optical band gap.
이러한 광결정은 정보 처리의 수단으로 전자 대신 광자를 이용함으로써, 정보처리의 속도가 우수하여 정보화 산업의 효율 향상을 위한 핵심 물질로 부각되고 있다. 더욱이, 광결정은 광자가 주축 방향으로 이동하는 1차원 구조, 평면을 따라 이동하는 2차원 구조, 또는 물질 전체를 통해 모든 방향으로 자유롭게 이동하는 3차원 구조로 구현될 수 있고, 광밴드갭 조절을 통한 광학적 특성의 제어가 용이하여 다양한 분야에 적용 가능하다. 예를 들어, 광결정은 광결정 섬유, 발광소자, 광기전소자, 광결정 센서, 반도체레이저 등 광학 소자에 응용될 수 있다.Such photonic crystals use photons instead of electrons as a means of information processing, and thus, the speed of information processing is excellent and is emerging as a key material for improving the efficiency of the information industry. Furthermore, the photonic crystal can be implemented as a one-dimensional structure in which photons move in the principal axis direction, a two-dimensional structure in which the photons move along a plane, or a three-dimensional structure in which the photons move freely in all directions throughout the material. It is easy to control the optical characteristics and can be applied to various fields. For example, photonic crystals may be applied to optical devices such as photonic crystal fibers, light emitting devices, photovoltaic devices, photonic crystal sensors, semiconductor lasers, and the like.
특히, 브래그 스택(Bragg stack)은 1차원 구조를 갖는 광결정으로서, 상이한 굴절률을 갖는 두 층의 적층만으로 쉽게 제조가 가능하고, 상기 두 층의 굴절률 및 두께 조절에 의한 광학적 특성의 제어가 용이하다는 장점이 있다. 이러한 특징으로 인해 상기 브래그 스택은 태양 전지와 같은 에너지 소자뿐만 아니라, 전기적, 화학적, 열적 자극 등을 감지하는 광결정 센서로의 응용에 널리 이용되고 있다. 이에 따라, 감도 및 재현성이 우수한 광결정 센서를 용이하게 제조하기 위한 여러 가지 물질 및 구조에 대한 연구가 이루어지고 있다.In particular, the Bragg stack is a photonic crystal having a one-dimensional structure, and can be easily manufactured by only stacking two layers having different refractive indices, and controlling the optical properties by controlling the refractive index and thickness of the two layers is easy. There is this. Due to these features, the Bragg stack is widely used for applications as photonic crystal sensors that detect electrical, chemical, and thermal stimuli as well as energy devices such as solar cells. Accordingly, studies have been made on various materials and structures for easily manufacturing a photonic crystal sensor excellent in sensitivity and reproducibility.
이에 본 발명자들은 예의 노력한 결과, 후술할 바와 같이 브래그 스택 중 반복되는 하나의 층에 플루오로알킬 아크릴레이트계 모노머로부터 유도된 반복 단위 및 광활성 관능기를 갖는 아크릴레이트 또는 아크릴아미드계 모노머부터 유도된 반복 단위를 동시에 포함하는 코폴리머를 이용할 경우, 유기 용매의 종류 및 농도 변화에 따라 색이 변화하는 색변환 광결정 구조체 및 이에 따른 우수한 감도를 나타내는 광결정 센서를 용이하게 제조할 수 있음을 확인하여, 본 발명을 완성하였다.Accordingly, the present inventors have made intensive efforts, and as described below, the repeating unit derived from the acrylate or acrylamide monomer having a repeating unit derived from a fluoroalkyl acrylate monomer and a photoactive functional group in one repeating layer of the Bragg stack. When using a copolymer containing at the same time, it was confirmed that it is possible to easily produce a color conversion photonic crystal structure that changes color according to the type and concentration change of the organic solvent and a photonic crystal sensor showing excellent sensitivity accordingly, the present invention Completed.
본 발명은 유기 용매에 감응하는 색변환 광결정 구조체를 제공하기 위한 것이다.The present invention is to provide a color conversion photonic crystal structure sensitive to an organic solvent.
또한, 본 발명은 상기 색변환 광결정 구조체를 이용한 우수한 감도 및 재현성을 가지면서 빠른 응답 시간을 나타내는 색변환 광결정 센서를 제공하기 위한 것이다.The present invention also provides a color conversion photonic crystal sensor having excellent sensitivity and reproducibility using the color conversion photonic crystal structure and exhibiting a fast response time.
또한, 본 발명은 유사 석유와 접촉 시 색이 변환되는 광결정 구조체를 포함하는, 우수한 감도 및 재현성을 가지면서 반복적으로 재사용할 수 있는 유사 석유 검출용 광센서를 제공하기 위한 것이다.In addition, the present invention is to provide an optical sensor for detecting similar petroleum, which can be repeatedly reused with excellent sensitivity and reproducibility, including a photonic crystal structure which is converted into color upon contact with similar petroleum.
또한, 본 발명은 상기 광센서를 사용하여 유사 석유를 검출하는 방법을 제공하기 위한 것이다.In addition, the present invention is to provide a method for detecting similar petroleum using the optical sensor.
상기 과제를 해결하기 위하여, 본 발명은 교대로 적층된, 제1 굴절률을 나타내는 제1 폴리머를 포함하는 제1 굴절률층; 및 제2 굴절률을 나타내는 제2 폴리머를 포함하는 제2 굴절률층;을 포함하고, 상기 제1 굴절률과 상기 제2 굴절률은 상이하고, 상기 제1 폴리머 및 상기 제2 폴리머 중 하나는, 하기 화학식 1로 표시되는 코폴리머인 색변환 광결정 구조체를 제공한다:In order to solve the above problems, the present invention is a first refractive index layer comprising a first polymer exhibiting a first refractive index, alternately stacked; And a second refractive index layer including a second polymer exhibiting a second refractive index, wherein the first refractive index and the second refractive index are different, and one of the first polymer and the second polymer is represented by the following Chemical Formula 1 It provides a color conversion photonic crystal structure which is a copolymer represented by:
[화학식 1][Formula 1]
Figure PCTKR2017005917-appb-I000001
Figure PCTKR2017005917-appb-I000001
상기 화학식 1에서,In Chemical Formula 1,
R1 및 R2는 각각 독립적으로 수소 또는 C1-3 알킬이고,R 1 and R 2 are each independently hydrogen or C 1-3 alkyl,
X1은 C1-10 플루오로알킬이고,X 1 is C 1-10 fluoroalkyl,
L1은 O 또는 NH이고,L 1 is O or NH,
Y1은 벤조일페닐이고,Y 1 is benzoylphenyl,
여기서 Y1은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,Wherein Y 1 is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C 1-5 alkyl and C 1-5 alkoxy,
n 및 m은 각각 독립적으로 1 이상의 정수이고,n and m are each independently an integer of 1 or more,
n+m은 100 내지 1,000이다.n + m is 100-1,000.
또한, 본 발명은 상기 광결정 구조체를 포함하는 색변환 광결정 센서를 제공한다.The present invention also provides a color conversion photonic crystal sensor comprising the photonic crystal structure.
또한, 본 발명은 상기 광결정 구조체를 포함하는 유사 석유 검출용 광센서를 제공한다.In addition, the present invention provides an optical sensor for detecting similar petroleum including the photonic crystal structure.
또한, 본 발명은 상기 광센서를 시료와 접촉시키는 단계 및 상기 광In addition, the present invention comprises the step of contacting the optical sensor with a sample and the optical
센서의 광결정 구조체의 색변환을 통하여 상기 시료 내 유사 석유를 검출하는 단계를 포함하는 유사 석유 검출 방법을 제공한다.It provides a pseudo petroleum detection method comprising the step of detecting the pseudo petroleum in the sample through color conversion of the photonic crystal structure of the sensor.
본 발명의 색변환 광결정 구조체는, 플루오로알킬 아크릴레이트계 모노머로부터 유도된 반복 단위 및 광활성 관능기를 갖는 아크릴레이트 또는 아크릴아미드계 모노머부터 유도된 반복 단위를 동시에 포함하는 코폴리머를 이용한 저굴절률층을 포함하여, 유기 용매의 종류 및 농도 변화에 따라 시각적으로 판단 가능하도록 색이 변환될 수 있고, 상기 색변환 광결정 구조체를 이용한 광결정 센서는 우수한 감도 및 재현성을 가지면서 빠른 응답 시간을 나타낼 수 있다는 특징이 있다.The color conversion photonic crystal structure of the present invention comprises a low refractive index layer using a copolymer comprising a repeating unit derived from a fluoroalkyl acrylate monomer and a repeating unit derived from an acrylate or acrylamide monomer having a photoactive functional group. Including, the color can be converted to be visually determined according to the type and concentration change of the organic solvent, the photonic crystal sensor using the color conversion photonic crystal structure can exhibit a fast response time with excellent sensitivity and reproducibility have.
본 발명의 광센서는, 유사 석유와 접촉시 색이 변환되는 광결정 구조체를 이용함으로써, 유사 석유의 검출이 육안으로 가능하여 용이하게 사용할 수 있으면서, 우수한 감도 및 재현성을 가짐과 동시에 반복적으로 재사용 가능하다는 특징이 있다.The optical sensor of the present invention uses a photonic crystal structure in which color is converted upon contact with pseudo petroleum, so that the detection of pseudo petroleum can be performed with the naked eye and can be easily used, while having excellent sensitivity and reproducibility and being reusable repeatedly. There is a characteristic.
도 1은, 일 실시예에 따른 색변환 광결정 구조체의 구조를 간략하게 나타낸 것이다.FIG. 1 schematically illustrates a structure of a color conversion photonic crystal structure according to an embodiment.
도 2 내지 4는, 각각 제조예 2 내지 4에서 제조한 코폴리머의 1H-NMR 스펙트럼을 나타낸 것이다.2 to 4 show the 1 H-NMR spectra of the copolymers prepared in Production Examples 2 to 4, respectively.
도 5는, 제조예 2 내지 4 및 비교제조예 1에서 제조한 코폴리머의 열중량 분석 결과를 나타낸 것이다.5 shows the results of thermogravimetric analysis of the copolymers prepared in Production Examples 2 to 4 and Comparative Production Example 1. FIG.
도 6 내지 9는, 각각 실시예 1 내지 3 및 비교예 1에서 제조한 광결정 구조체의 표면의 물에 대한 접촉각의 광학 사진을 나타낸 것이다.6 to 9 show optical photographs of contact angles with respect to water on the surfaces of the photonic crystal structures prepared in Examples 1 to 3 and Comparative Example 1, respectively.
도 10은, 실시예 1 내지 3 및 비교예 1에서 제조한 광결정 구조체의 열충격 시험 전/후의 정반사도를 나타낸 것이다.10 shows the specular reflectance before and after the thermal shock test of the photonic crystal structures prepared in Examples 1 to 3 and Comparative Example 1. FIG.
도 11 내지 13은, 각각 실시예 1, 4 및 5에서 제조한 광결정 구조체의 벤젠, 톨루엔, 자일렌, 에탄올 및 메탄올에 대한 색변환 사진(a) 및 정반사도(b)를 나타낸 것이다.11 to 13 show color conversion photographs (a) and specular reflectances (b) of benzene, toluene, xylene, ethanol and methanol of the photonic crystal structures prepared in Examples 1, 4 and 5, respectively.
도 14 내지 18은, 각각 실시예 4, 6 내지 9에서 제조한 광결정 구조체의 벤젠의 농도 변화에 따른 정반사도를 나타낸 것이다.14 to 18 show specular reflection according to changes in the concentration of benzene in the photonic crystal structures prepared in Examples 4 and 6 to 9, respectively.
도 19a 내지 19c는, 각각 실시예 1에서 제조한 광결정 구조체의 벤젠, 톨루엔 및 자일렌에 대한 재현성 테스트 결과를 나타낸 것이다.19A to 19C show reproducibility test results for benzene, toluene and xylene of the photonic crystal structure prepared in Example 1, respectively.
도 20은, 실시예 1에서 제조한 광결정 구조체의 벤젠, 톨루엔, 자일렌, 에탄올 및 메탄올에 대한 응답 시간 테스트 결과를 나타낸 것이다.20 shows the response time test results for benzene, toluene, xylene, ethanol and methanol of the photonic crystal structure prepared in Example 1. FIG.
도 21은, 실시예 5에서 제조한 광결정 구조체의 정품 휘발유, 시너, 메탄올 및 톨루엔에 대한 색변환 사진(a) 및 정반사도(b)를 나타낸 것이다.FIG. 21 shows color conversion photographs (a) and specular reflectances (b) of genuine gasoline, thinner, methanol, and toluene of the photonic crystal structure prepared in Example 5. FIG.
도 22는, 실시예 5에서 제조한 광결정 구조체의 벤젠, 톨루엔, 자일렌, 에탄올 및 메탄올에 대한 색변환 사진(a) 및 정반사도(b)를 나타낸 것이다.FIG. 22 shows color conversion photographs (a) and specular reflectances (b) of benzene, toluene, xylene, ethanol, and methanol of the photonic crystal structure prepared in Example 5. FIG.
도 23은 실시예 5에서 제조한 광결정 구조체의 정품 휘발유과 톨루엔이 여러 비율로 혼합된 유사 휘발유에 대한 색변환 사진(a) 및 정반사도(b)를 나타낸 것이다.FIG. 23 shows color conversion photographs (a) and specular reflectances (b) of pseudo-petrol mixed with genuine gasoline and toluene in various ratios of the photonic crystal structure prepared in Example 5. FIG.
도 24는 실시예 5에서 제조한 광결정 구조체의 정품 휘발유과 메탄올이 여러비율로 혼합된 유사 휘발유에 대한 색변환 사진(a) 및 정반사도(b)를 나타낸 것이다.FIG. 24 shows color conversion photographs (a) and specular reflectances (b) of pseudo-petrol in which genuine gasoline and methanol of the photonic crystal structure prepared in Example 5 are mixed at various ratios.
도 25는 실시예 5에서 제조한 광결정 구조체의 시너, 톨루엔 및 메탄올이 여러 비율로 혼합된 유사 휘발유에 대한 색변환 사진(a) 및 정반사도(b)를 나타낸 것이다.FIG. 25 is a color conversion photograph (a) and a specular reflectance (b) of a pseudo gasoline in which the thinner, toluene and methanol of the photonic crystal structure prepared in Example 5 are mixed at various ratios.
이하에서 본 발명을 더욱 구체적으로 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
또한 본 발명의 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.In addition, the meaning of “comprising” as used in the specification of the present invention embodies a particular characteristic, region, integer, step, operation, element and / or component, and other characteristics, region, integer, step, operation, element and / or It does not exclude the presence or addition of ingredients.
이하의 명세서에서 사용된 용어의 일부는 다음과 같이 정의될 수 있다.Some of the terms used in the following specification may be defined as follows.
먼저, 본 발명에서 사용하는 용어 '색변환 광결정 구조체'는 굴절률이 상이한 물질을 반복적으로 교대 적층하여 제조된 1차원 광결정 구조를 갖는 브래그 스택으로, 적층된 구조의 굴절률의 주기적인 차이에 의해 특정한 파장 영역대의 빛을 반사할 수 있고, 이러한 반사 파장은 외부 자극에 의해 시프트(Shift)되어 반사색이 변환되는 구조체를 의미한다. 구체적으로, 구조체 각각의 층의 경계에서 빛의 부분 반사가 일어나게 되고, 이러한 많은 반사파가 구조적으로 간섭하여 높은 강도를 갖는 특정 파장의 빛이 반사될 수 있다. 이때, 외부 자극에 의한 반사파장의 시프트는, 층을 형성하는 물질의 격자 구조가 외부 자극에 의해 변화함에 따라 산란되는 빛의 파장이 변화되면서 일어나게 된다. 이러한, 색변환 광결정 구조체는 별도의 기재 또는 기판 상에 코팅된 코팅막 형태로, 혹은 프리 스탠딩 필름의 형태로 제조될 수 있고, 광결정 섬유, 발광소자, 광기전소자, 광결정 센서, 반도체레이저 등 광학 소자에 응용될 수 있다. 예를 들어, 상기 색변환 광결정 구조체는 화학 및 생물 종 탐지를 위한 환경 소자와 같은 광센서, 글루코스 센서, 단백질 센서, DNA 센서, 질병 진단센서, 휴대용 진단센서와 같은 바이오 센서 등에 사용될 수 있으나, 그 응용 분야가 제한되는 것은 아니다.First, the term 'color conversion photonic crystal structure' used in the present invention is a Bragg stack having a one-dimensional photonic crystal structure manufactured by repeatedly stacking materials having different refractive indices, and having a specific wavelength due to a periodic difference in refractive index of the stacked structures. The light may reflect light in an area, and the reflected wavelength refers to a structure shifted by an external stimulus to convert a reflected color. Specifically, partial reflection of light occurs at the boundary of each layer of the structure, and many of these reflected waves can structurally interfere to reflect light of a specific wavelength having high intensity. At this time, the shift of the reflection wavelength due to the external stimulus occurs as the wavelength of the scattered light changes as the lattice structure of the material forming the layer is changed by the external stimulus. Such a color conversion photonic crystal structure may be manufactured in the form of a coating film coated on a separate substrate or a substrate, or in the form of a free standing film, and includes an optical device such as a photonic crystal fiber, a light emitting device, a photovoltaic device, a photonic crystal sensor, a semiconductor laser, and the like. It can be applied to. For example, the color conversion photonic crystal structure may be used in biosensors such as optical sensors, glucose sensors, protein sensors, DNA sensors, disease diagnosis sensors, portable diagnostic sensors, and the like, such as environmental elements for chemical and species detection. The application is not limited.
한편, 본 발명의 색변환 광결정 구조체는, 교대로 적층된, 제1 굴절률을 나타내는 제1 폴리머를 포함하는 제1 굴절률층; 및 제2 굴절률을 나타내는 제2 폴리머를 포함하는 제2 굴절률층;을 포함하고, 상기 제1 굴절률과 상기 제2 굴절률은 상이하다.On the other hand, the color conversion photonic crystal structure of the present invention, the first refractive index layer comprising a first polymer exhibiting a first refractive index, alternately stacked; And a second refractive index layer comprising a second polymer exhibiting a second refractive index, wherein the first refractive index and the second refractive index are different.
따라서, 상기 제1 굴절률층이 고굴절률층이고, 상기 제2 굴절률층이 저굴절률층이거나, 다르게는 상기 제1 굴절률층이 저굴절률층이고, 상기 제2 굴절률층이 고굴절률층일 수 있다.Accordingly, the first refractive index layer may be a high refractive index layer, the second refractive index layer may be a low refractive index layer, or alternatively, the first refractive index layer may be a low refractive index layer, and the second refractive index layer may be a high refractive index layer.
저굴절률층Low refractive index layer
본 발명에서 사용하는 용어 '저굴절률층'은 광결정 구조체 내에 포함된 두 종류의 층 중에서 상대적으로 굴절률이 낮은 층을 의미한다. 이때, 상기 제1 폴리머 및 상기 제2 폴리머 중 하나로서, 상기 저굴절률층에 포함되는 폴리머는 하기 화학식 1로 표시되는 코폴리머이다:The term 'low refractive index layer' used in the present invention means a layer having a relatively low refractive index among two kinds of layers included in the photonic crystal structure. In this case, as one of the first polymer and the second polymer, the polymer included in the low refractive index layer is a copolymer represented by the following formula (1):
[화학식 1][Formula 1]
Figure PCTKR2017005917-appb-I000002
Figure PCTKR2017005917-appb-I000002
상기 화학식 1에서,In Chemical Formula 1,
R1 및 R2는 각각 독립적으로 수소 또는 C1-3 알킬이고,R 1 and R 2 are each independently hydrogen or C 1-3 alkyl,
X1은 C1-10 플루오로알킬이고,X 1 is C 1-10 fluoroalkyl,
L1은 O(산소) 또는 NH이고,L 1 is O (oxygen) or NH,
Y1은 벤조일페닐이고,Y 1 is benzoylphenyl,
여기서 Y1은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,Wherein Y 1 is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C 1-5 alkyl and C 1-5 alkoxy,
n 및 m은 각각 독립적으로 1 이상의 정수이고,n and m are each independently an integer of 1 or more,
n+m은 100 내지 1,000이다.n + m is 100-1,000.
상기 화학식 1로 표시되는 코폴리머는, 플루오로알킬(X1) 아크릴레이트계 모노머로부터 유도된 반복 단위 및 광활성 관능기(Photo-active functional group, Y1)를 갖는 아크릴레이트(L1 = O) 또는 아크릴아미드(L1 = NH)계 모노머부터 유도된 반복 단위를 동시에 포함하는 고분자를 의미한다.The copolymer represented by the formula (1) is an acrylate (L1 = O) or acrylamide having a repeating unit derived from a fluoroalkyl (X1) acrylate monomer and a photo-active functional group (Y1) L 1 = NH) refers to a polymer including a repeating unit derived from a monomer at the same time.
상기 화학식 1로 표시되는 코폴리머가 플루오로알킬(X1) 아크릴레이트계 모노머로부터 유도된 반복 단위를 포함하는 경우, 상기 반복 단위를 포함하지 않는 폴리머에 비하여 굴절률이 낮고, 열적 안정성, 내화학성, 산화 안정성 등 화학적 성질이 우수하며, 투명성이 뛰어나다. 여기서, '플루오로알킬'은, 하나 이상의 불소 원자가 알킬의 수소 원자를 치환하고 있는 작용기를 의미하며, 이때 하나 이상의 불소 원자는 C1-10 알킬의 말단 뿐만 아니라 측쇄의 수소 원자를 치환할 수도 있으며, 2개 이상의 불소 원자는 하나의 탄소 원자에 모두 결합되어 있거나, 혹은 2개 이상의 탄소 원자에 각각 결합되어 있을 수 있다.When the copolymer represented by Formula 1 includes a repeating unit derived from a fluoroalkyl (X1) acrylate monomer, the refractive index is lower than that of the polymer not containing the repeating unit, and thermal stability, chemical resistance, and oxidation Excellent chemical properties such as stability and excellent transparency. Here, 'fluoroalkyl' refers to a functional group in which one or more fluorine atoms are substituted for the hydrogen atom of alkyl, wherein one or more fluorine atoms may be substituted for the hydrogen atom of the side chain as well as the terminal of C1-10 alkyl, Two or more fluorine atoms may be all bonded to one carbon atom, or each may be bonded to two or more carbon atoms.
또한, 상기 화학식 1로 표시되는 코폴리머 내 불소 원자의 수가 증가할수록 굴절률이 더욱 낮아지고, 소수성이 증가할 수 있어, 불소 원자의 수에 따라 고굴절률층과 저굴절률층간의 굴절률 차이를 조절하여 원하는 반사 파장을 갖는 색변환 광결정 구조체가 구현될 수 있다.In addition, as the number of fluorine atoms in the copolymer represented by Chemical Formula 1 increases, the refractive index becomes lower and the hydrophobicity may increase, thereby controlling the difference in refractive index between the high refractive index layer and the low refractive index layer according to the number of fluorine atoms. Color conversion photonic crystal structure having a reflection wavelength can be implemented.
더욱이, 상기 화학식 1로 표시되는 코폴리머는 광활성 관능기(Y1)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머부터 유도된 반복 단위를 추가로 포함하여, 별도의 광개시제 혹은 가교제(crosslinker) 없이도 자체적으로 광경화가 가능할 수 있다.Furthermore, the copolymer represented by Chemical Formula 1 further includes repeating units derived from an acrylate or acrylamide-based monomer having a photoactive functional group (Y 1 ), so that photocuring itself is performed without a separate photoinitiator or crosslinker. It may be possible.
이러한 상기 화학식 1로 표시되는 코폴리머는, 플루오로알킬(X1) 아크릴레이트계 모노머 및 광활성 관능기(Y1)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머를 랜덤하게 공중합하여 제조된, 상기 화학식 1의 대괄호 사이의 반복 단위들이 서로 랜덤하게 배열되어 있는 랜덤 코폴리머일 수 있다.The copolymer represented by Chemical Formula 1 is prepared by random copolymerization of an acrylate or acrylamide monomer having a fluoroalkyl (X 1 ) acrylate monomer and a photoactive functional group (Y 1 ). The repeating units between the brackets may be random copolymers arranged randomly from each other.
다르게는, 상기 화학식 1로 표시되는 코폴리머는, 상기 화학식 1의 대괄호 사이의 반복 단위들의 블록이 공유 결합에 의해 연결되어 있는 블록 코폴리머일 수 있다. 또한 다르게는, 상기 화학식 1의 대괄호 사이의 반복 단위들이 교차되어 배열되어 있는 교호 코폴리머이거나, 혹은 어느 하나의 반복 단위가 가지 형태로 결합되어 있는 그라프트 코폴리머일 수 있으나, 상기 반복 단위들의 배열 형태가 한정되지는 않는다.Alternatively, the copolymer represented by Formula 1 may be a block copolymer in which blocks of repeating units between square brackets of Formula 1 are connected by covalent bonds. Also, alternatively, it may be an alternating copolymer in which the repeating units between the brackets of Formula 1 are arranged alternately, or may be a graft copolymer in which any one of the repeating units is combined in a branched form. The form is not limited.
이러한 상기 화학식 1로 표시되는 코폴리머는 1.3 내지 1.5의 굴절률을 나타낼 수 있다. 상술한 범위일 때, 후술하는 고굴절률층에 사용된 폴리머와의 굴절률 차이에 의해 원하는 파장의 빛을 반사하는 광결정 구조체가 구현될 수 있다.The copolymer represented by Formula 1 may exhibit a refractive index of 1.3 to 1.5. In the above-described range, a photonic crystal structure reflecting light having a desired wavelength may be implemented by a difference in refractive index with a polymer used in the high refractive index layer described later.
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소 또는 메틸일수 있다. 예를 들어, R1 및 R2는 수소일 수 있다.In Formula 1, R 1 and R 2 may be each independently hydrogen or methyl. For example, R 1 and R 2 can be hydrogen.
또한, 상기 화학식 1에서, X1은 C1-5 플루오로알킬일 수 있다.In addition, in Chemical Formula 1, X 1 may be C 1-5 fluoroalkyl.
예를 들어, X1은 플루오로메틸, 디플루오로메틸, 트리플루오로메틸, 1-플루오로에틸, 2-플루오로에틸, 1,1-디플루오로에틸, 1,2-디플루오로에틸, 2,2-디플루오로에틸, 1,1,2-트리플루오로에틸, 1,2,2-트리플루오로에틸, 2,2,2-트리플루오로에틸, 1-플로오로프로필, 2-플루오로프로필, 1,1-디플루오로프로필, 1,2-디플루오로프로필, 2,2-디플루오로프로필, 1,1,2-트리플루오로프로필, 1,2,2-트리플루오로프로필, 2,2,2-트리플루오로프로필, 1-플로오로부틸, 2-플루오로부틸, 1,1-디플루오로부틸, 1,2-디플루오로부틸, 2,2-디플루오로부틸, 1,1,2-트리플루오로부틸, 1,2,2-트리플루오로부틸 또는 2,2,2-트리플루오로부틸일 수 있다.For example, X 1 is fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 1,1-difluoroethyl, 1,2-difluoroethyl , 2,2-difluoroethyl, 1,1,2-trifluoroethyl, 1,2,2-trifluoroethyl, 2,2,2-trifluoroethyl, 1-fluoropropyl, 2 -Fluoropropyl, 1,1-difluoropropyl, 1,2-difluoropropyl, 2,2-difluoropropyl, 1,1,2-trifluoropropyl, 1,2,2-tri Fluoropropyl, 2,2,2-trifluoropropyl, 1-fluorobutyl, 2-fluorobutyl, 1,1-difluorobutyl, 1,2-difluorobutyl, 2,2-di Fluorobutyl, 1,1,2-trifluorobutyl, 1,2,2-trifluorobutyl or 2,2,2-trifluorobutyl.
또한, 상기 화학식 1에서, Y1은 비치환되거나, 또는 C1-3 알킬로 치환된 벤조일페닐일 수 있다. Y1이 벤조일페닐인 경우, 광경화의 용이성 측면에서 유리할 수 있다.In addition, in Chemical Formula 1, Y 1 may be benzoylphenyl unsubstituted or substituted with C 1-3 alkyl. When Y 1 is benzoylphenyl, it may be advantageous in view of ease of photocuring.
또한, 상기 화학식 1에서, n은 상기 코폴리머 내 플루오로알킬 아크릴레이트계 모노머로부터 유도된 반복 단위의 총 개수를 의미하고, m은 상기 코폴리머 내 광활성 관능기(Y1)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머로부터 유도된 반복 단위의 총 개수를 의미한다.In addition, in Formula 1, n means the total number of repeating units derived from fluoroalkyl acrylate-based monomers in the copolymer, m is an acrylate or acryl having a photoactive functional group (Y 1 ) in the copolymer The total number of repeat units derived from amide monomers.
이때, 상기 화학식 1로 표시되는 코폴리머는 n:m의 몰비가 100:1 내지 100:10일 수 있고, 수 평균 분자량이 10,000 내지 100,000 g/mol일 수 있다. 예를 들어, 상기 화학식 1로 표시되는 코폴리머는 n:m의 몰비가 100:1 내지 100:5, 구체적으로 100:1 내지 100:2일 수 있다. 또한 예를 들어, 상기 화학식 1로 표시되는 코폴리머는 수 평균 분자량이 20,000 내지 80,000 g/mol, 구체적으로 20,000 내지 60,000 g/mol일 수 있다. 상기 범위에서, 굴절률이 낮으면서도 광경화가 용이한 코폴리머의 제조가 가능하다.In this case, the copolymer represented by Chemical Formula 1 may have a molar ratio of n: m of 100: 1 to 100: 10 and a number average molecular weight of 10,000 to 100,000 g / mol. For example, the copolymer represented by Formula 1 may have a molar ratio of n: m of 100: 1 to 100: 5, specifically 100: 1 to 100: 2. In addition, for example, the copolymer represented by Chemical Formula 1 may have a number average molecular weight of 20,000 to 80,000 g / mol, specifically 20,000 to 60,000 g / mol. Within this range, it is possible to produce a copolymer having a low refractive index and easy photocuring.
구체적으로, 상기 화학식 1로 표시되는 코폴리머는, 하기 화학식 1-1 내지 1-3으로 표시되는 코폴리머 중 하나일 수 있다:Specifically, the copolymer represented by Chemical Formula 1 may be one of the copolymers represented by the following Chemical Formulas 1-1 to 1-3:
[화학식 1-1][Formula 1-1]
Figure PCTKR2017005917-appb-I000003
Figure PCTKR2017005917-appb-I000003
[화학식 1-2][Formula 1-2]
Figure PCTKR2017005917-appb-I000004
Figure PCTKR2017005917-appb-I000004
[화학식 1-3][Formula 1-3]
Figure PCTKR2017005917-appb-I000005
Figure PCTKR2017005917-appb-I000005
하기 화학식 1-1 내지 1-3에서, n 및 m의 정의는 앞서 정의한 바와 같다.In Formulas 1-1 to 1-3, the definitions of n and m are as defined above.
고굴절률층High refractive index layer
본 발명에서 사용하는 용어 '고굴절률층'은 광결정 구조체 내에 포함된 두 종류의 층 중에서 상대적으로 굴절률이 높은 층을 의미한다. 상기 고굴절률층에 포함된 폴리머는 상기 화학식 1로 표시되는 코폴리머가 아닌, 상기 제1 폴리머 및 상기 제2 폴리머 중 다른 하나로서, 다음의 모노머로부터 유도된 구조 단위를 포함하여, 상기 화학식 1로 표시되는 코폴리머에 비하여 높은 굴절률을 나타낼 수 있다: (메타)아크릴레이트계 화합물, (메타)아크릴아미드계 화합물, 비닐기 함유 방향족 화합물, 디카르복시산, 자일릴렌(xylylene), 알킬렌옥사이드, 아릴렌옥사이드, 및 이들의 유도체. 이들은 단독 또는 2 종 이상 혼합하여 적용될 수 있다.The term 'high refractive index layer' used in the present invention means a layer having a relatively high refractive index among two kinds of layers included in the photonic crystal structure. The polymer included in the high refractive index layer is not the copolymer represented by Chemical Formula 1, but is another one of the first polymer and the second polymer, and includes a structural unit derived from the following monomer, It can exhibit a high refractive index compared to the copolymer represented: (meth) acrylate type compound, (meth) acrylamide type compound, vinyl group containing aromatic compound, dicarboxylic acid, xylylene, alkylene oxide, arylene Oxides, and derivatives thereof. These can be applied individually or in mixture of 2 or more types.
예를 들어, 상기 고굴절률층에 포함된 폴리머는 다음의 모노머로부터 유도된 구조 단위를 1 종 또는 2 종 이상 포함할 수 있다: 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, 이소부틸 (메타)아크릴레이트, 1-페닐에틸 (메타)아크릴레이트, 2-페닐에틸 (메타)아크릴레이트, 1,2-디페닐에틸 (메타)아크릴레이트, 페닐 (메타)아크릴레이트, 벤질 (메타)아크릴레이트, m-니트로벤질 (메타)아크릴레이트, β-나프틸 (메타)아크릴레이트, 벤조일페닐 (메타)아크릴레이트 등의 (메타)아크릴레이트계 모노머; 메틸 (메타)아크릴아미드, 에틸 (메타) 아크릴아미드, 이소부틸 (메타)아크릴아미드, 1-페닐에틸 (메타) 아크릴아미드, 2-페닐에틸(메타) 아크릴아미드, 페닐 (메타)아크릴아미드, 벤질 (메타)아크릴아미드, 벤조일페닐 (메타)아크릴아미드 등의 (메타)아크릴아미드계 모노머; 스티렌, o-메틸스티렌, m-메틸스티렌, p-메틸스티렌, p-메톡시스티렌, o-메톡시스티렌, 4-메톡시-2-메틸스티렌 등의 스티렌계 모노머; p-디비닐벤젠, 2-비닐나프탈렌, 비닐카바졸, 비닐플루오렌 등의 방향족계 모노머; 테레프탈산, 이소프탈산, 2,6-나프탈렌 디카르복시산, 2,7-나프탈렌 디카르복시산, 1,4-나프탈렌 디카르복시산, 1,4-페닐렌 디옥시페닐렌산, 1,3-페닐렌 디옥시디아세트산 등의 디카르복시산 모노머; o-자일릴렌, m-자일릴렌, p-자일릴렌 등의 자일릴렌계 모노머; 에틸렌 옥사이드, 프로필렌 옥사이드 등의 알킬렌 옥사이드계 모노머; 페닐렌 옥사이드, 2,6-디메틸-1,4-페닐렌 옥사이드 등의 페닐렌 옥사이드계 모노머. 이 중, 바람직한 굴절률 차이 구현 및 광경화의 용이성 측면에서 스티렌계 모노머로부터 유도된 구조 단위 및 (메타)아크릴레이트 및 (메타)아크릴아미드 중 하나로부터 유도된 구조 단위를 갖는 것이 바람직하다.For example, the polymer included in the high refractive index layer may include one or two or more structural units derived from the following monomers: methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl ( Metha) acrylate, 1-phenylethyl (meth) acrylate, 2-phenylethyl (meth) acrylate, 1,2-diphenylethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylic (Meth) acrylate type monomers, such as a rate, m-nitrobenzyl (meth) acrylate, (beta) -naphthyl (meth) acrylate, and benzoylphenyl (meth) acrylate; Methyl (meth) acrylamide, ethyl (meth) acrylamide, isobutyl (meth) acrylamide, 1-phenylethyl (meth) acrylamide, 2-phenylethyl (meth) acrylamide, phenyl (meth) acrylamide, benzyl (Meth) acrylamide monomers, such as (meth) acrylamide and benzoylphenyl (meth) acrylamide; Styrene monomers such as styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-methoxy styrene, o-methoxy styrene, and 4-methoxy-2-methyl styrene; aromatic monomers such as p-divinylbenzene, 2-vinylnaphthalene, vinylcarbazole and vinylfluorene; Terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,4-phenylene dioxyphenylene acid, 1,3-phenylene dioxydiacetic acid, etc. Dicarboxylic acid monomers; xylylene-based monomers such as o-xylene, m-xylene and p-xylene; Alkylene oxide monomers such as ethylene oxide and propylene oxide; Phenylene oxide type monomers, such as phenylene oxide and 2, 6- dimethyl- 1, 4- phenylene oxide. Among them, it is preferable to have structural units derived from styrene-based monomers and structural units derived from one of (meth) acrylate and (meth) acrylamide in view of implementing a desirable refractive index difference and ease of photocuring.
구체적으로, 상기 화학식 1로 표시되는 코폴리머가 아닌, 상기 제1폴리머 및 상기 제2 폴리머 중 다른 하나는, 하기 화학식 2로 표시되는 코폴리머일수 있다:Specifically, other than the copolymer represented by Formula 1, the other of the first polymer and the second polymer may be a copolymer represented by the following formula (2):
[화학식 2][Formula 2]
Figure PCTKR2017005917-appb-I000006
Figure PCTKR2017005917-appb-I000006
상기 화학식 2에서,In Chemical Formula 2,
R3 및 R4는 각각 독립적으로 수소 또는 C1-3 알킬이고,R 3 and R 4 are each independently hydrogen or C 1-3 alkyl,
R11은 하이드록시, 시아노, 니트로, 아미노, SO3H, SO3(C1- 5알킬), C1-10 알킬 또는 C1-10 알콕시이고,R 11 is hydroxy, cyano, nitro, and amino, SO 3 H, SO 3 ( C 1- 5 alkyl), C 1-10 alkyl or C 1-10 alkoxy,
a1은 0 내지 5의 정수이고,a1 is an integer of 0 to 5,
L2는 O 또는 NH이고,L 2 is O or NH,
Y2는 벤조일페닐이고,Y 2 is benzoylphenyl,
여기서 Y2는 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,Wherein Y 2 is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C 1-5 alkyl and C 1-5 alkoxy,
n' 및 m'는 각각 독립적으로 1 이상의 정수이고,n 'and m' are each independently an integer of 1 or more,
n'+ m'는 100 내지 1,000이다.n '+ m' is from 100 to 1,000.
상기 화학식 2로 표시되는 코폴리머는, 스티렌계 모노머로부터 유도된 구조 단위 및 광활성 관능기(Y2)를 갖는 아크릴레이트(L2 = O) 또는 아크릴아미드(L2 = NH)계 모노머부터 유도된 반복 단위를 동시에 포함하는 고분자를 의미할 수 있다.The copolymer represented by the formula ( 2 ) is a repeat derived from an acrylate (L 2 = O) or acrylamide (L 2 = NH) monomer having a structural unit and a photoactive functional group (Y 2 ) derived from a styrene monomer It may mean a polymer including a unit at the same time.
상기 화학식 2로 표시되는 코폴리머가 스티렌계 모노머로부터 유도되는 반복 단위를 포함하는 경우, 상기 플루오로알킬(X1) 아크릴레이트계 모노머로부터 유도되는 반복 단위를 포함하는 경우에 비하여 굴절률이 높아 고굴절률층의 구현이 가능하다.When the copolymer represented by Formula 2 includes a repeating unit derived from a styrene monomer, a high refractive index is higher than that of the copolymer including the repeating unit derived from the fluoroalkyl (X 1 ) acrylate monomer. Implementation of the layer is possible.
더욱이, 상기 화학식 2로 표시되는 코폴리머는 광활성 관능기(Y2)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머부터 유도된 반복 단위를 추가로 포함하여, 별도의 광개시제 혹은 가교제 없이도 자체적으로 광경화가 가능할 수 있다.Furthermore, the copolymer represented by Chemical Formula 2 may further include a repeating unit derived from an acrylate or acrylamide monomer having a photoactive functional group (Y 2 ), and may be photocurable by itself without a separate photoinitiator or crosslinking agent. .
이러한 상기 화학식 2로 표시되는 코폴리머는, 스티렌계 모노머 및 광활성 관능기(Y2)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머를 랜덤하게 공중합하여 제조된, 상기 화학식 2의 대괄호 사이의 반복 단위들이 서로 랜덤하게 배열되어 있는 랜덤 코폴리머일 수 있다.The copolymer represented by the formula ( 2 ) is a random copolymer of the styrene monomer and the acrylate or acrylamide monomer having a photoactive functional group (Y 2 ), the repeating units between the square brackets of the formula (2) are random from each other It may be a random copolymer arranged so as to.
다르게는, 상기 화학식 2로 표시되는 코폴리머는, 상기 화학식 2의 대괄호 사이의 반복 단위들의 블록이 공유 결합에 의해 연결되어 있는 블록 코폴리머일 수 있다. 또한 다르게는, 상기 화학식 2의 대괄호 사이의 반복 단위들이 교차되어 배열되어 있는 교호 코폴리머이거나, 혹은 어느 하나의 반복 단위가 가지 형태로 결합되어 있는 그라프트 코폴리머일 수 있으나, 상기 반복 단위들의 배열 형태가 한정되지는 않는다.Alternatively, the copolymer represented by Formula 2 may be a block copolymer in which blocks of repeating units between square brackets of Formula 2 are connected by covalent bonds. In addition, alternatively, it may be an alternating copolymer in which the repeating units between the brackets of Formula 2 are arranged alternately, or may be a graft copolymer in which any one of the repeating units is combined in a branched form, but the arrangement of the repeating units The form is not limited.
이러한 상기 화학식 2로 표시되는 코폴리머는 1.51 내지 1.8의 굴절률을 나타낼 수 있다. 상술한 범위일 때, 상기 화학식 1로 표시되는 폴리머와의 굴절률 차이에 의해 원하는 파장의 빛을 반사하는 광결정 구조체가 구현될 수 있다.The copolymer represented by Formula 2 may exhibit a refractive index of 1.51 to 1.8. When in the above-described range, a photonic crystal structure reflecting light of a desired wavelength may be implemented by a difference in refractive index with the polymer represented by Chemical Formula 1.
상기 화학식 2에서, R3 및 R4는 각각 독립적으로 수소 또는 메틸일 수 있다. 예를 들어, R3 및 R4는 수소일 수 있다.In Formula 2, R 3 and R 4 may be each independently hydrogen or methyl. For example, R 3 and R 4 may be hydrogen.
또한, 상기 화학식 2에서, R11은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, sec-부틸, 또는 tert-부틸일 수 있다. 이때, a1은 R11의 개수를 의미하는 것으로, 0, 1 또는 2일 수 있다.In addition, in Formula 2, R 11 may be methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, or tert-butyl. In this case, a1 means the number of R 11 , and may be 0, 1, or 2.
또한, 상기 화학식 2에서, Y2는 비치환되거나, 또는 C1-3 알킬로 치환된 벤조일페닐일 수 있다. Y2가 벤조일페닐인 경우, 광경화의 용이성 측면에서 유리하다.In addition, in Chemical Formula 2, Y 2 may be unsubstituted or benzoylphenyl substituted with C 1-3 alkyl. When Y 2 is benzoyl, phenyl, which is advantageous in terms of ease of photocuring.
또한, 상기 화학식 2에서, n'는 상기 코폴리머 내 플루오로알킬 아크릴레이트계 모노머로부터 유도된 반복 단위의 총 개수를 의미하고, m'는 상기 코폴리머 내 광활성 관능기를 갖는 아크릴레이트 또는 아크릴아미드계 모노머로부터 유도된 반복 단위의 총 개수를 의미한다.In addition, in Formula 2, n 'means the total number of repeating units derived from fluoroalkyl acrylate-based monomers in the copolymer, m' is an acrylate or acrylamide-based having a photoactive functional group in the copolymer The total number of repeat units derived from monomers.
이때, 상기 화학식 2로 표시되는 코폴리머는 n':m'의 몰비가 100:1 내지 100:20, 예를 들어, 100:1 내지 100:10, 또한 예를 들어 100:1 내지 100:5일 수 있다. 또한, 상기 화학식 2로 표시되는 코폴리머는 수 평균 분자량(Mn)이 10,000 내지 300,000 g/mol, 예를 들어, 50,000 내지 180,000 g/mol일 수 있다. 상기 범위에서, 상기 화학식 1로 표시되는 코폴리머와 상술한 범위의 굴절률 차이를 가지면서도 광경화가 용이한 코폴리머의 제조가 가능하다.In this case, the copolymer represented by Formula 2 has a molar ratio of n ': m' of 100: 1 to 100: 20, for example, 100: 1 to 100: 10, and for example, 100: 1 to 100: 5. Can be. In addition, the copolymer represented by Formula 2 may have a number average molecular weight (Mn) of 10,000 to 300,000 g / mol, for example, 50,000 to 180,000 g / mol. In the above range, it is possible to prepare a copolymer represented by the formula (1) and the copolymer easy to cure photo having a refractive index difference of the above-described range.
상술한 화학식 2로 표시되는 폴리머가 유사 석유로 포함될 수 있는 화합물들과 접촉시 팽윤될 수 있다. 이는 화학식 2로 표시되는 화합물이 스티렌계 모노머로부터 유도된 반복 단위를 포함함에 따라, 화학식 1로 표시되는 화합물보다 시너, 방향족계 화합물 및 알코올계 화합물에 대한 용해도가 높아 팽윤 거동이 커지기 때문이다. 즉, 광결정 구조체의 색 변환은 화학식 2로 표시되는 폴리머의 팽윤에 의해 광결정 구조체의 반사 파장이 시프트되면서 나타나는 것일 수 있다.The polymer represented by Formula 2 described above may swell upon contact with compounds that may be included as pseudopetroleum. This is because, as the compound represented by the formula (2) includes repeating units derived from styrene monomers, the swelling behavior is increased due to higher solubility in thinners, aromatic compounds, and alcohol compounds than the compound represented by the formula (1). That is, the color conversion of the photonic crystal structure may be caused by shifting the reflection wavelength of the photonic crystal structure due to swelling of the polymer represented by the formula (2).
색변환Color conversion 광결정Photonic crystal 구조체 Structure
본 발명에 따른 색변환 광결정 구조체는, 최하부에 배치된 제1 굴절률층, 상기 제1 굴절률층 상에 배치된 제2 굴절률층 및 상기 제2 굴절률층 상에 교대로 적층되어 배치된 제1 굴절률층 및 제2 굴절률층의 구조를 갖는다.The color conversion photonic crystal structure according to the present invention includes a first refractive index layer disposed on a lowermost portion, a second refractive index layer disposed on the first refractive index layer, and a first refractive index layer alternately stacked on the second refractive index layer. And a structure of the second refractive index layer.
또한, 상기 색변환 광결정 구조체는, 용도에 따라 상기 최하부에 배치된 제1 굴절률층의 제2 굴절률층이 배치되지 않은 다른 일면에 기판을 더 포함할 수 있다. 따라서, 이 경우 상기 색변환 광결정 구조체의 최하부에는 기판이 위치할 수 있다.In addition, the color conversion photonic crystal structure may further include a substrate on the other surface of the first refractive index layer of the first refractive index layer disposed on the lowermost part according to the use. Therefore, in this case, the substrate may be positioned at the bottom of the color conversion photonic crystal structure.
이하, 본 발명의 일 구현예에 따른 색변환 광결정 구조체(10) 의 개략적인 구조를 도 1을 참조하여 설명한다.Hereinafter, a schematic structure of the color conversion photonic crystal structure 10 according to an embodiment of the present invention will be described with reference to FIG. 1.
도 1을 참조하면, 일 구현예에 따른 색변환 광결정 구조체(10)는 기판(11), 및 상기 기판(11) 상에 교대로 적층된 제1 굴절률층(13) 및 제2 굴절률층(15)으로 구성된다.Referring to FIG. 1, a color conversion photonic crystal structure 10 according to an embodiment may include a substrate 11 and a first refractive index layer 13 and a second refractive index layer 15 alternately stacked on the substrate 11. It consists of
이때, 제1 굴절률층(13)은 색변환 광결정 구조체의 최상부에 위치할 수 있다. 따라서, 제1 굴절률층(13)과 제2 굴절률층(15)이 교대로 적층된 적층체 상에 제1 굴절률층(13)이 추가로 적층되어, 상기 광결정 구조체는 홀수 개 층의 굴절률층을 가질 수 있다. 상기의 경우에, 후술하는 바와 같이 각각의 층의 경계면에서 반사된 빛들 간의 보강 간섭이 증가하여, 광결정 구조체의 반사 파장의 강도가 증가할 수 있다.In this case, the first refractive index layer 13 may be positioned on the top of the color conversion photonic crystal structure. Accordingly, the first refractive index layer 13 is further laminated on the laminate in which the first refractive index layer 13 and the second refractive index layer 15 are alternately stacked, so that the photonic crystal structure includes an odd refractive index layer. Can have. In this case, constructive interference between the lights reflected at the interface of each layer is increased, as described later, so that the intensity of the reflection wavelength of the photonic crystal structure can be increased.
상기 기판(11)은 기계적 강도, 열적 안정성, 투명성, 표면 평활성, 취급 용이성 및 방수성이 우수한 탄소계 재료, 금속 포일, 박막 유리(thin glass), 실리콘(Si), 플라스틱, 폴리에틸렌(PE), 폴리에틸렌테레프탈레이트(PET), 폴리프로필렌(PP) 등과 같은 고분자 필름, 종이, 피부, 의류, 또는 웨어러블 소재일 수 있으나, 이에 한정되지 않으며, 적용되는 용도에 따라 가요성이 있거나 혹은 가요성이 없는 다양한 소재를 이용할 수 있다.The substrate 11 is a carbon-based material, metal foil, thin glass, silicon (Si), plastic, polyethylene (PE), polyethylene having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling and waterproofing It may be a polymer film such as terephthalate (PET), polypropylene (PP), paper, skin, clothing, or a wearable material, but is not limited thereto, and various materials that are flexible or not flexible depending on the intended application. Can be used.
상기 기판(11) 상에 교대로 적층된 상기 제1 굴절률층(13)은 제1 굴절률(n1)을 나타내는 제1 폴리머를 포함하고, 상기 제2 굴절률층(15)은 제2 굴절률(n2)을 나타내는 제2 폴리머를 포함한다. 이때, 상기 제1 굴절률(n1)과 상기 제2 굴절률(n2)의 차이는 0.01 내지 0.5일 수 있다. 예를 들어, 상기 제1 굴절률(n1)과 상기 제2 굴절률(n2)의 차이는 0.05 내지 0.3, 구체적으로 0.1 내지 0.2일 수 있다. 이러한 굴절률간의 차이가 클수록 광결정 구조체의 광 밴드갭이 커지므로, 상술한 범위 내에서 굴절률간의 차이를 조절하여 원하는 파장의 빛이 반사되도록 제어할 수 있다.The first refractive index layer 13, which is alternately stacked on the substrate 11, includes a first polymer exhibiting a first refractive index n1, and the second refractive index layer 15 has a second refractive index n2. It includes a second polymer that represents. In this case, a difference between the first refractive index n1 and the second refractive index n2 may be 0.01 to 0.5. For example, the difference between the first refractive index n1 and the second refractive index n2 may be 0.05 to 0.3, specifically 0.1 to 0.2. As the difference between the refractive indices increases, the optical band gap of the photonic crystal structure increases, so that the light having a desired wavelength may be reflected by adjusting the difference between the refractive indices within the above-described range.
예를 들어, 상기 제1 굴절률(n1)은 1.51 내지 1.8이고, 상기 제2 굴절률 (n2)은 1.3 내지 1.5일 수 있다. 다시 말하면, 상기 제1 굴절률층(13)이 고굴절률층이고, 상기 제2 굴절률층(15)이 저굴절률층에 해당되어, 상기 광결정 구조체(10)는 기판(11) 상에 고굴절률층/ 저굴절률층/ 고굴절률층/ 저굴절률층/ 고굴절률층이 순차적으로 적층된 구조를 가질 수 있다.For example, the first refractive index n1 may be 1.51 to 1.8, and the second refractive index n2 may be 1.3 to 1.5. In other words, the first refractive index layer 13 is a high refractive index layer, and the second refractive index layer 15 corresponds to a low refractive index layer, so that the photonic crystal structure 10 is disposed on the substrate 11. The low refractive index layer / high refractive index layer / low refractive index layer / high refractive index layer may have a structure stacked sequentially.
다르게는, 상기 제1 굴절률(n1)은 1.3 내지 1.5이고, 상기 제2 굴절률(n2)은 1.51 내지 1.8일 수 있다. 다시 말하면, 상기 제1 굴절률층(13)이 저굴절률층이고, 상기 제2 굴절률층(15)이 고굴절률층에 해당되어, 상기 광결정 구조체(10)는 기판(11) 상에 저굴절률층/ 고굴절률층/ 저굴절률층/ 고굴절률층/ 저굴절률층이 순차적으로 적층된 구조를 가질 수 있다.Alternatively, the first refractive index n1 may be 1.3 to 1.5, and the second refractive index n2 may be 1.51 to 1.8. In other words, the first refractive index layer 13 is a low refractive index layer, and the second refractive index layer 15 corresponds to a high refractive index layer, so that the photonic crystal structure 10 is formed on the substrate 11. The high refractive index layer / low refractive index layer / high refractive index layer / low refractive index layer may have a structure that is sequentially stacked.
또한, 상기 저굴절률층의 두께는 상기 고굴절률층의 두께 이상일 수 있다. 예를 들어, 상기 저굴절률층의 두께 대 상기 고굴절률층의 두께의 비는 1:1.1 내지 1:0.3일 수 있다. 구체적으로, 상기 저굴절률층의 두께는 30 내지 100nm이고, 상기 고굴절률층의 두께는 20 내지 70 nm일 수 있다. 상술한 범위로 두께를 조절하여, 광결정 구조체의 반사 파장을 조절할 수 있다. 각 굴절률층의 두께는 폴리머 분산액 조성물 내 폴리머의 농도 또는 분산액 조성물의 코팅 속도를 달리하여 조절 가능하다.In addition, the thickness of the low refractive index layer may be greater than or equal to the thickness of the high refractive index layer. For example, the ratio of the thickness of the low refractive index layer to the thickness of the high refractive index layer may be 1: 1.1 to 1: 0.3. Specifically, the thickness of the low refractive index layer is 30 to 100nm, the thickness of the high refractive index layer may be 20 to 70 nm. By adjusting the thickness in the above-described range, it is possible to adjust the reflection wavelength of the photonic crystal structure. The thickness of each refractive index layer can be adjusted by varying the concentration of the polymer in the polymer dispersion composition or the coating speed of the dispersion composition.
도 1에서는 총 5층으로 구성된 광결정 구조체(10)만을 도시하나, 상기 광결정 구조체의 총 적층수가 이에 한정되는 것은 아니다. 구체적으로, 상기 제1 굴절률층과 상기 제2 굴절률층의 총 적층수는 5 내지 30 층일 수 있다. 상술한 범위로 적층된 구조체일 경우에, 각각의 층 경계 면에서 반사된 빛들의 간섭이 충분히 일어나 외부 자극에 따른 색의 변화가 감지될 정도의 반사 강도를 가질 수 있다.In FIG. 1, only the photonic crystal structure 10 having a total of five layers is illustrated, but the total number of stacked layers of the photonic crystal structure is not limited thereto. Specifically, the total number of stacked layers of the first refractive index layer and the second refractive index layer may be 5 to 30 layers. In the case of the structures stacked in the above-described range, the interference of the reflected light at each layer boundary surface is sufficiently generated to have a reflection intensity such that a change in color due to an external stimulus is detected.
한편, 상기 색변환 광결정 구조체(10)에 등비례의 모든 색으로 이루어진 다색의 백색광이 입사되면, 각각의 층 경계면에서 입사광의 부분 반사가 일어나게 되고, 이렇게 부분 반사된 빛들의 간섭에 의해 하나의 파장으로 집중된 반사파장(λ)에 따른 색을 나타낼 수 있다.On the other hand, when the multi-colored white light of all colors in equal proportion is incident on the color conversion photonic crystal structure 10, partial reflection of incident light occurs at each layer boundary surface, and one wavelength is caused by the interference of the partially reflected light. It can represent the color according to the reflected wavelength (λ).
구체적으로, 상기 색변환 광결정 구조체(10)의 반사 파장(λ)은 하기 식 1에 의해 결정될 수 있다:Specifically, the reflection wavelength λ of the color conversion photonic crystal structure 10 may be determined by Equation 1 below:
[식 1][Equation 1]
λ = 2(n1*d1 + n2*d2)λ = 2 (n1 * d1 + n2 * d2)
상기 식에서, n1 및 n2는 각각 제1 굴절률층(13) 및 제2 굴절률층(15)의 굴절률을 의미하고, d1 및 d2는 각각 제1 굴절률층(13) 및 제2 굴절률층(15)의 두께를 의미한다. 따라서, 제1 및 제2 폴리머의 종류 및 제1 굴절률층(13) 및 제2 굴절률층(15)의 두께를 조절하여 원하는 반사 파장(λ)을 구현할 수 있다.Wherein n1 and n2 are the refractive indices of the first and second refractive index layers 13 and 15, respectively, and d1 and d2 are the refractive indices of the first and second refractive index layers 13 and 15, respectively. Means thickness. Accordingly, the desired reflection wavelength λ may be realized by adjusting the types of the first and second polymers and the thicknesses of the first refractive index layer 13 and the second refractive index layer 15.
상기 색변환 광결정 구조체(10)는, 외부 자극이 없는 경우에 상기 수학식 1에 따라 200 내지 760 nm의 가시 광선 영역에 해당하는 반사 파장(λ)을 나타내어, 상기 광결정 구조체에 의한 반사색을 확인할 수 있다.When there is no external stimulus, the color conversion photonic crystal structure 10 exhibits a reflection wavelength λ corresponding to a visible light region of 200 to 760 nm according to Equation 1 to confirm the reflection color by the photonic crystal structure. Can be.
이러한 상기 색변환 광결정 구조체(10)가 외부 자극을 받는 환경에 위치되는 경우, 제1 굴절률층(13) 및 제2 굴절률층(15)을 각각 구성하고 있는 제1 폴리머 및 제2 폴리머의 결정 격자 구조가 변화하게 됨으로써, 각각의 층 경계면에서 산란되는 형태가 변화함에 따라, 상기 광결정 구조체(10)는 시프트된 파장(λ')을 반사하게 된다. 따라서, 외부 자극이 없는 경우와 비교하여 광결정 구조체에 의해 구현되는 색이 변환될 수 있다. 만일 외부 자극의 강도가 높다면, 상기 제1 폴리머 및 제2 폴리머의 결정 격자 구조의 변화의 정도가 커져 반사 파장은 더욱 시프트되게 되므로, 구현되는 색에 따라 외부 자극의 강도를 검출할 수 있다.When the color conversion photonic crystal structure 10 is positioned in an environment subject to external stimulation, the crystal lattice of the first polymer and the second polymer constituting the first refractive index layer 13 and the second refractive index layer 15, respectively As the structure is changed, the photonic crystal structure 10 reflects the shifted wavelength [lambda] 'as the shape scattered at each layer boundary is changed. Therefore, the color implemented by the photonic crystal structure can be converted as compared with the case where there is no external stimulus. If the intensity of the external stimulus is high, since the degree of change of the crystal lattice structure of the first polymer and the second polymer is increased and the reflection wavelength is further shifted, the intensity of the external stimulus can be detected according to the color to be implemented.
예를 들어, 상기 광결정 구조체(10)의 반사 파장의 시프트는 외부자극에 의한 제1 폴리머 및/또는 제2 폴리머의 팽윤(swelling)에 의한 것일 수 있다. 특히, 외부 자극에 의해 시프트된 반사 파장(λ')은 사람이 육안으로 인지 가능한 가시광선 영역에 해당할 수 있다. 예를 들어, 외부 자극에 의해 시프트된 반사 파장(λ')은 380 nm 내지 760 nm 범위 내일 수 있다. 상기 반사 파장(λ) 및 시프트된 반사 파장(λ')은 반사계(Reflectometer)와 같은 장치로 측정 가능하다.For example, the shift of the reflection wavelength of the photonic crystal structure 10 may be due to swelling of the first polymer and / or the second polymer by external stimulation. In particular, the reflection wavelength λ ′ shifted by the external stimulus may correspond to a visible light region that can be perceived by the human eye. For example, the reflection wavelength λ ′ shifted by the external stimulus may be in the range of 380 nm to 760 nm. The reflection wavelength [lambda] and the shifted reflection wavelength [lambda] 'can be measured by a device such as a reflectometer.
여기서, 외부 자극은 화학적 자극, 예를 들어 화학 물질의 농도 변화에 의한 자극일 수 있다. 구체적으로, 상기 외부 자극은 유기 용매 농도의 변화에 의한 것일 수 있다. 예컨대, 유기 용매는 방향족 유기 용매, 또는 에틸 아세테이트(EA), 테트라하이드로퓨란(THF), 디메틸포름아마이드(DMF), 에틸 락테이트, 사이클로헥사논, 메틸렌 클로라이드, 메틸에틸케톤(MEK) 등과 같은 유기 용매일 수 있다. 특히, 벤젠, 자일렌, 톨루엔 등과 같은 방향족 유기 용매의 농도 변화에 의한 외부 자극에 높은 감도로 감응할 수 있다. 이때, 방향족 유기 용매의 농도 변화에 대하여 상기 광결정 구조체의 고굴절률층에 포함된 폴리머가 감응할 수 있고, 보다 구체적으로 상기 화학식 2로 표시되는 폴리머가 감응할 수 있다. 즉, 외부 자극에 따른 일 실시예에 따른 색변환 광결정 구조체의 반사파장의 시프트는 상기 화학식 2로 표시되는 폴리머의 팽윤에 의한 것일 수 있다.Here, the external stimulus may be a chemical stimulus, for example, a stimulus caused by a change in concentration of a chemical. Specifically, the external stimulus may be due to a change in concentration of the organic solvent. For example, the organic solvent may be an aromatic organic solvent or an organic solvent such as ethyl acetate (EA), tetrahydrofuran (THF), dimethylformamide (DMF), ethyl lactate, cyclohexanone, methylene chloride, methylethylketone (MEK), and the like. It may be a solvent. In particular, it is possible to respond with high sensitivity to external stimuli caused by a change in concentration of an aromatic organic solvent such as benzene, xylene, toluene and the like. In this case, the polymer included in the high refractive index layer of the photonic crystal structure may respond to the change in concentration of the aromatic organic solvent, and more specifically, the polymer represented by Formula 2 may be sensitive. That is, the shift of the reflection wavelength of the color conversion photonic crystal structure according to the embodiment according to the external stimulus may be due to the swelling of the polymer represented by the formula (2).
또한, 상기 유기 용매의 종류에 따라 구조체의 반사 파장의 시프트 정도가 달라져 다른 색을 나타낼 수 있는 데, 그 이유는 용매의 종류에 따라 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤 거동(Swelling behavior)이 달라지기 때문이다. 구체적으로, 폴리머의 용매에 대한 팽윤 거동은 용해도 파라미터(δ)에 의해 결정될 수 있고, 용해도 파라미터(δ)로서 Hansen solubility parameter가 주로 사용된다.In addition, the degree of shift of the reflection wavelength of the structure may vary depending on the type of the organic solvent, and thus may exhibit different colors, because of the swelling behavior of the first polymer and / or the second polymer according to the type of the solvent. ) Is different. Specifically, the swelling behavior of the polymer with respect to the solvent can be determined by the solubility parameter (δ), and Hansen solubility parameter is mainly used as the solubility parameter (δ).
구체적으로, 벤젠, 자일렌 및 톨루엔에 대한 Hansen solubility parameter를 하기 표 1에 나타내었다.Specifically, Hansen solubility parameters for benzene, xylene and toluene are shown in Table 1 below.
Figure PCTKR2017005917-appb-T000001
Figure PCTKR2017005917-appb-T000001
상기 표 1에서, δt는 Total hidebrand이고, δd는 분산성 성분(Dispersion component)이고, δP는 극성 성분(Polar component)이고, δdP는 (δdP=(δ2 d2 P)1/2)이고, δh는 수소 결합 성분(Hydrogen bonding component)을 의미한다.In Table 1, δ t is Total hidebrand, δ d is a dispersion component, δ P is a polar component, δ dP is (δ dP = (δ 2 d + δ 2 P) ) 1/2 ), and δ h means a hydrogen bonding component.
예를 들어, 제1 폴리머 및/또는 제2 폴리머가 팽윤되는 정도는 상기 용해도 파라미터의 분산성 성분 파라미터(δd)에 영향을 받을 수 있는 데, 구체적으로 분산성 성분 파라미터 값이 증가할수록 제1 폴리머 및/또는 제2 폴리머의 팽윤되는 정도가 증가할 수 있다.For example, the degree of swelling of the first polymer and / or the second polymer may be influenced by the dispersible component parameter (δ d ) of the solubility parameter, specifically, as the value of the dispersible component parameter increases The degree of swelling of the polymer and / or the second polymer may be increased.
상기 표 1에 나타난 바와 같이, 자일렌, 톨루엔 및 벤젠이 각각 17.8, 18.1 및 18.4 (cal/ml)½의 분산성 성분 파라미터 값을 가짐에 따라서, 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤 정도는 자일렌, 톨루엔 및 벤젠 순서대로 증가하게 된다. 따라서, 동일한 광결정 구조체라 하더라도 이의 반사 파장은 자일렌, 톨루엔 및 벤젠 순서대로 장파장 쪽으로 시프트되므로, 이에 따라 각 용매의 검출이 용이할 수 있다.As shown in Table 1 above, swelling of the first polymer and / or the second polymer, as xylene, toluene and benzene have dispersible component parameter values of 17.8, 18.1 and 18.4 (cal / ml) ½ respectively The degree is increased in the order of xylene, toluene and benzene. Therefore, even in the same photonic crystal structure, since its reflection wavelength is shifted toward the longer wavelength in the order of xylene, toluene and benzene, detection of each solvent can be facilitated accordingly.
또한, 상기 색변환 광결정 구조체의 반사 파장(λ')의 시프트 정도는 외부 자극의 강도에 따라 달라질 수 있다. 구체적으로, 외부 자극의 강도가 높아지는 경우, 예를 들어 유기 용매의 농도가 증가함에 따라, 상기 광결정 구조체의 반사 파장은 길어질 수 있다. 따라서, 상기 색변환 광결정 구조체를 사용하여 유기용매의 종류뿐만 아니라, 유기 용매의 농도를 검출할 수 있다.In addition, the shift degree of the reflection wavelength λ ′ of the color conversion photonic crystal structure may vary depending on the intensity of the external stimulus. In detail, when the intensity of the external stimulus increases, for example, as the concentration of the organic solvent increases, the reflection wavelength of the photonic crystal structure may increase. Therefore, the concentration of the organic solvent as well as the type of the organic solvent can be detected using the color conversion photonic crystal structure.
상술한 바와 같은 색변환 광결정 구조체는 다음의 단계를 포함하는 제조 방법에 의해 제조될 수 있다:The color conversion photonic crystal structure as described above may be manufactured by a manufacturing method comprising the following steps:
1) 제1 굴절률을 나타내는 제1 폴리머를 포함하는 제1 분산액 조성물을 사용하여 제1 굴절률층을 제조하는 단계;1) preparing a first refractive index layer using a first dispersion composition comprising a first polymer exhibiting a first refractive index;
2) 제2 굴절률을 나타내는 제2 폴리머를 포함하는 제2 분산액 조성물을 사용하여 상기 제1 굴절률층 상에 제2 굴절률층을 제조하는 단계; 및2) preparing a second index of refraction layer on the first index of refraction layer using a second dispersion composition comprising a second polymer exhibiting a second index of refraction; And
3) 상기 제1 굴절률층과 상기 제2 굴절률층을 교대로 적층하여, 5 내지 30 층이 적층된 광결정 구조체를 제조하는 단계.3) alternately stacking the first refractive index layer and the second refractive index layer to produce a photonic crystal structure in which 5 to 30 layers are stacked.
상기 색변환 광결정 구조체의 제조 방법에서, 제1 굴절률, 제1 폴리머, 제2 굴절률, 제2 폴리머, 제1 굴절률층 및 제2 굴절률층에 대한 설명은 전술한 바와 같다.In the method of manufacturing the color conversion photonic crystal structure, description of the first refractive index, the first polymer, the second refractive index, the second polymer, the first refractive index layer, and the second refractive index layer is as described above.
먼저, 제1 분산액 조성물 및 제2 분산액 조성물을 제조한다. 각각의 분산액 조성물은 폴리머를 용매에 분산시켜 제조될 수 있고, 여기서 분산액 조성물은 용액상, 슬러리상 또는 페이스트상 등의 여러 가지 상태를 나타내는 용어로서 사용된다. 이때, 용매는 제1 및 제2 폴리머를 용해시킬 수 있는 것이면 어느 것이든 사용 가능하며, 제1 및 제2 폴리머는 각각 분산액 조성물 총중량을 기준으로 0.5 내지 5 중량%으로 포함될 수 있다. 상술한 범위에서, 기판 상에 도포되기에 적절한 점도를 갖는 분산액 조성물을 제조할 수 있다.First, a first dispersion composition and a second dispersion composition are prepared. Each dispersion composition can be prepared by dispersing a polymer in a solvent, where the dispersion composition is used as a term indicating various states such as solution phase, slurry phase or paste phase. In this case, the solvent may be used as long as it can dissolve the first and second polymers, and the first and second polymers may be included in an amount of 0.5 to 5 wt% based on the total weight of the dispersion composition. In the above-described range, a dispersion composition having a viscosity suitable for being applied onto a substrate can be prepared.
예를 들어, 상기 제1 분산액 조성물은 용매 및 제1 폴리머로 이루어지고, 상기 제2 분산액 조성물은 용매 및 제2 폴리머로 이루어질 수 있다. 다시 말하면, 광경화를 위한 별도의 광개시제 및 가교제, 혹은 무기물 입자를 포함하지 않을 수 있다. 따라서, 광결정 구조체를 보다 용이하고 경제적으로 제조할 수 있으며, 별도의 첨가제를 포함하지 않아 제조된 광결정 구조체의 위치에 따른 광특성의 편차가 감소될 수 있다.For example, the first dispersion composition may consist of a solvent and a first polymer, and the second dispersion composition may consist of a solvent and a second polymer. In other words, the photocuring agent may not include a separate photoinitiator and a crosslinking agent or inorganic particles. Therefore, the photonic crystal structure can be manufactured more easily and economically, and the dispersion of the optical properties according to the position of the prepared photonic crystal structure can be reduced by not including a separate additive.
다음으로, 제조된 제1 분산액 조성물을 기판 또는 기재 상에 도포한 후 광조사를 수행하여 제1 굴절률층을 제조하고, 이후, 상기 제1 굴절률층 상에 제조된 제2 분산액 조성물을 도포한 후 광조사를 수행하여 제2 굴절률층을 제조할 수 있다.Next, after applying the prepared first dispersion composition on a substrate or substrate to perform a light irradiation to prepare a first refractive index layer, and then after applying the prepared second dispersion composition on the first refractive index layer Irradiation may be performed to prepare a second refractive index layer.
여기서, 상기 분산액 조성물을 기판 또는 굴절률층 상에 도포하는 방법으로 스핀코팅(spin coating), 딥코팅(dip coating), 롤코팅(roll coating), 스크린 코팅(screen coating), 분무코팅(spray coating), 스핀 캐스팅(spin casting), 흐름코팅(flow coating), 스크린 인쇄(screen printing), 잉크젯(ink jet) 또는 드롭 캐스팅(drop casting) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.Here, spin coating, dip coating, roll coating, screen coating, spray coating, or the like may be applied by applying the dispersion composition onto a substrate or a refractive index layer. Spin casting, flow coating, screen printing, ink jet, drop casting, or the like may be used, but is not limited thereto.
상기 광조사 단계는 질소 조건 하에서 365 nm 파장을 조사하는 방법으로 수행할 수 있다. 상기 광조사에 의해 폴리머 내에 포함된 벤조페논 모이어티가 광개시제로 작용하여 광경화된 굴절률층이 제조될 수 있다.The light irradiation step may be performed by irradiation with 365 nm wavelength under nitrogen conditions. The photocured refractive index layer may be prepared by acting as a photoinitiator of the benzophenone moiety contained in the polymer by the light irradiation.
색변환Color conversion 광결정Photonic crystal 센서 sensor
한편, 본 발명의 또 다른 구현예에 따르면, 상술한 색변환 광결정 구조체를 포함하는 색변환 광결정 센서가 제공된다.On the other hand, according to another embodiment of the present invention, a color conversion photonic crystal sensor including the color conversion photonic crystal structure described above is provided.
상기 색변환 광결정 센서는 상기 광결정 구조체의 반사 파장이 유기용매 농도의 변화에 따라 시프트됨에 따라 유기 용매 감지용으로 사용 가능하다.The color conversion photonic crystal sensor may be used for detecting an organic solvent as the reflection wavelength of the photonic crystal structure is shifted according to the change of the organic solvent concentration.
더욱이, 상기 색변환 광결정 센서는 검출 물질인 유기 용매의 존재뿐만 아니라, 농도까지 검출 가능하여, 검출 물질의 정성 및 정량 분석 모두에 사용될 수 있다. 또한, 상기 색변환 광결정 센서는 외부 자극으로 인한 색변환이 명확할 뿐만 아니라, 외부 자극의 중단 시 빠르게 원래의 상태로 회복될 수 있어, 반복적으로 사용이 가능하다.Furthermore, the color conversion photonic crystal sensor can detect not only the presence of the organic solvent as the detection material but also the concentration, and thus can be used for both qualitative and quantitative analysis of the detection material. In addition, the color conversion photonic crystal sensor is not only the color conversion due to the external stimulus is clear, it can be quickly restored to the original state when the external stimulus is stopped, it can be used repeatedly.
유사 석유 검출용 광센서Light sensor for quasi oil detection
한편, 시중에 유통되고 있는 유사 석유는 전술한 바와 같이 시너(Thinner), 방향족계 유기 용매, 또는 알코올계 유기 용매 등의 화합물을 포함한다. 이때 방향족계 유기 용매의 예로서 벤젠, 톨루엔 또는 자일렌 등을 들 수 있고, 알코올계 유기 용매의 예로서 메탄올, 에탄올, 이소프로판올, 또는 이소부탄올 등을 들 수 있다. 따라서, 유사 석유 검출을 위해서는 상기 화합물에 빠른 속도로 감응할 수 있는 센서가 요구된다. 또한, 이러한 검출용 센서는 누구나 쉽게 이용할 수 있도록 휴대가 간편하고 반복적으로 재사용이 가능한 것이 바람직하다.On the other hand, the petroleum-like petroleum on the market includes a compound such as thinner, an aromatic organic solvent, or an alcoholic organic solvent as described above. At this time, examples of the aromatic organic solvent include benzene, toluene or xylene, and examples of the alcoholic organic solvent include methanol, ethanol, isopropanol, isobutanol and the like. Therefore, for the detection of pseudo petroleum, a sensor capable of rapidly reacting with the compound is required. In addition, such a detection sensor is preferably portable and can be reused repeatedly so that anyone can easily use.
본 발명의 유사 석유 검출용 광센서는 상기 유사 석유와 접촉시 색이 변환되는 광결정 구조체를 포함함으로써, 시료 내 유사 석유의 존재 여부가 육안으로 확인 가능할 수 있다. 이때, 광결정 구조체는 교대로 적층된, 제1 굴절률을 나타내는 제1 폴리머를 포함하는 제1 굴절률층 및 상기 제1 굴절률과는 상이한 제2 굴절률을 나타내는 제2 폴리머를 포함하는 제2 굴절률층을 포함한다.The optical sensor for detecting similar petroleum of the present invention includes a photonic crystal structure in which the color is converted upon contact with the similar petroleum, so that the presence of the similar petroleum in the sample may be visually confirmed. In this case, the photonic crystal structure includes a first refractive index layer including a first polymer exhibiting a first refractive index, alternately stacked, and a second refractive index layer including a second polymer exhibiting a second refractive index different from the first refractive index. do.
이러한 광결정 구조체의 반사 파장은, 광결정 구조체가 유사 석유로 포함될 수 있는 화합물들과 접촉시, 광결정 구조체 내에 포함된 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤(swelling)에 의하여 구조체의 반사 파장이 시프트되게 된다. 상기 제1 폴리머 및/또는 제2 폴리머가 팽윤되면 각각의 굴절률층의 결정 격자 구조가 변하여 각각의 층 경계면에서 산란되는 빛의 형태가 변하기 때문이다.The reflection wavelength of such a photonic crystal structure is such that when the photonic crystal structure comes into contact with compounds that may be included as pseudopetroleum, the reflection wavelength of the structure is caused by swelling of the first polymer and / or the second polymer included in the photonic crystal structure. Will be shifted. This is because when the first polymer and / or the second polymer are swollen, the crystal lattice structure of each refractive index layer is changed to change the shape of light scattered at each layer boundary.
즉, 시프트된 반사 파장(λ')에 의해 광결정 구조체는 변환된 색을 나타내게 되고, 이러한 광결정 구조체의 색변환에 의하여 유사 석유 존재 여부를 확인할 수 있다.That is, the photonic crystal structure shows the converted color by the shifted reflection wavelength λ ', and it is possible to confirm the presence of pseudo petroleum by the color conversion of the photonic crystal structure.
특히, 광결정 구조체의 반사 파장(λ)과 시프트된 반사 파장(λ')이 가시광선 영역인 380 nm 내지 760 nm 범위 이내인 경우, 광결정 구조체의 색변환은 육안으로 용이하게 확인 가능하다.In particular, when the reflection wavelength λ and the shifted reflection wavelength λ 'of the photonic crystal structure are within the range of 380 nm to 760 nm, which is the visible light region, color conversion of the photonic crystal structure can be easily confirmed with the naked eye.
더욱이, 상기 광결정 구조체는 화합물의 종류에 따라 반사 파장이 시프트되는 정도가 달라져 다른 색을 나타낼 수 있는 데, 그 이유는 용매의 종류에 따라 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤 거동(Swelling behavior)이 달라지기 때문이다. 이에 따라, 상기 광결정 구조체를 포함하는 광센서를 사용하여, 유사 석유의 존재 여부 확인뿐 아니라, 유사 석유를 구성하는 화합물의 성분 확인 또한 가능하다.In addition, the photonic crystal structure may have a different color due to the shift of the reflection wavelength depending on the type of the compound, and the reason may be different colors because of the swelling behavior of the first polymer and / or the second polymer depending on the type of the solvent. behavior is different. Accordingly, by using the optical sensor including the photonic crystal structure, it is possible not only to confirm the presence of pseudopetroleum, but also to check the components of the compound constituting the pseudopetroleum.
이때, 유사 석유에 방향족계 유기 용매가 포함되는 경우 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤 거동은 용해도 파라미터(d)에 의해 결정될 수 있다.In this case, when the pseudo petroleum includes an aromatic organic solvent, the swelling behavior of the first polymer and / or the second polymer may be determined by the solubility parameter (d).
구체적으로, 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤 거동은 분산성 성분 파라미터인 dd에 영향을 받아, 분산성 성분 파라미터 값이 증가할수록 제1 폴리머 및/또는 제2 폴리머의 팽윤되는 정도가 증가하여 광결정 구조체의 반사 파장의 시프트된 정도가 증가하게 된다. 따라서, 표 1에 나타난 바와 같이, 자일렌, 톨루엔 및 벤젠이 각각 17.8, 18.1 및 18.4 (cal/ml)½의 분산성 성분 파라미터 값을 가지므로, 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤 정도는 자일렌, 톨루엔 및 벤젠 순서대로 증가하게 된다. 이에 따라 광결정 구조체의 반사 파장 또한 자일렌, 톨루엔 및 벤젠 순으로 더 많이, 예를 들어 장파장으로 시프트되어 광결정 구조체가 나타내는 색이 달라지므로 유사 석유를 구성하는 화합물의 성분 확인이 가능할 수 있다.Specifically, the swelling behavior of the first polymer and / or the second polymer is influenced by the dispersible component parameter dd, so that the degree of swelling of the first polymer and / or the second polymer increases as the value of the dispersible component parameter increases. As a result, the shifted degree of the reflection wavelength of the photonic crystal structure is increased. Thus, as shown in Table 1, the swelling of the first polymer and / or the second polymer, as xylene, toluene and benzene have dispersible component parameter values of 17.8, 18.1 and 18.4 (cal / ml) ½ respectively The degree is increased in the order of xylene, toluene and benzene. Accordingly, the reflection wavelength of the photonic crystal structure may also be shifted in order of xylene, toluene, and benzene in order of long wavelength, for example, to change the color represented by the photonic crystal structure, and thus, it may be possible to identify a component of the compound constituting the pseudopetroleum.
한편, 유사 석유에 알코올계 유기 용매가 포함되는 경우 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤 거동은 알코올계 유기 용매와의 수소 결합에 의해 결정될 수 있다. 구체적으로, 알코올계 유기용매 내 하이드록시기와 제1 폴리머 및/또는 제2 폴리머에 포함되어 있는 벤조일페닐기를 갖는 아크릴레이트 또는 아크릴아미드간의 수소 결합에 의해 제1 폴리머 및/또는 제2 폴리머가 팽윤될 수 있다.On the other hand, when the petroleum-like organic solvent is included in the petroleum-like swelling behavior of the first polymer and / or the second polymer may be determined by hydrogen bonding with the alcohol-based organic solvent. Specifically, the first polymer and / or the second polymer may be swollen by hydrogen bonding between the hydroxy group in the alcoholic organic solvent and the acrylate or acrylamide having the benzoylphenyl group included in the first polymer and / or the second polymer. Can be.
이에 따라 이를 포함하는 제1 굴절률층 및/또는 제2 굴절률층의 두께 및 굴절률이 달라져서 광결정 구조체의 색변환이 일어날 수 있다.Accordingly, the thickness and refractive index of the first refractive index layer and / or the second refractive index layer including the same may be changed, so that color conversion of the photonic crystal structure may occur.
한편, 상기 광센서는 유사 석유와 접촉시 색이 변환되어 유사 석유 존재 여부를 확인할 수 있는 상술한 광결정 구조체를 포함하는 검출부 및 이를 고정시키기 위한 고정부를 구비할 수 있다.On the other hand, the optical sensor may be provided with a detection unit including the above-described photonic crystal structure that can be converted to the color when contacted with the petroleum similar oil to determine the presence of petroleum and a fixing portion for fixing it.
상기 광결정 구조체는 얇은 필름의 형태를 가져 다양한 크기 및 모양으로 제작 가능하므로, 이를 구비하는 상기 광센서는 사용처에 따라 다양한 크기 및 형태로 제조될 수 있다.Since the photonic crystal structure can be manufactured in various sizes and shapes by taking the form of a thin film, the optical sensor having the same may be manufactured in various sizes and shapes depending on the intended use.
추가적으로, 상기 광센서는 참조를 위하여 정품 석유 및 유사 석유로 포함될 수 있는 화합물의 종류에 따라 변환되는 색을 예시하여 놓은 기준부를 더 구비할 수 있다. 상기 기준부에 예시된 색을 통하여, 정품 석유인지 여부 및 시료에 포함된 화합물의 종류를 확인할 수 있다.In addition, the optical sensor may further include a reference unit that exemplifies a color converted according to a kind of a compound which may be included as genuine petroleum and similar petroleum for reference. Through the color illustrated in the reference unit, it is possible to check whether or not the genuine petroleum and the kind of the compound included in the sample.
상기 광센서는 시료 내 유사 석유가 약 10 %(V/V) 이상 포함되어 있는 경우에 광결정 구조체의 색변환을 통하여 육안으로 유사석유를 검출할 수 있다. 이때, 상기 광센서의 광결정 구조체의 정반사도를 측정하는 경우에는 시료 내 유사 석유의 함량이 ppm 단위인 경우까지 유사 석유의 검출이 가능하다.The optical sensor may visually detect pseudo petroleum through color conversion of the photonic crystal structure when the pseudo petroleum in the sample contains about 10% (V / V) or more. In this case, when measuring the specular reflectance of the photonic crystal structure of the optical sensor, it is possible to detect pseudo petroleum until the content of pseudo petroleum in the sample is ppm.
뿐만 아니라, 상기 광센서는 시료의 양이 광결정 구조체 내로 스며들 수 있기만 하면 적은 양의 시료라 하더라도 시료 내 유사 석유 존재 여부를 확인할 수 있다.In addition, the optical sensor can determine whether or not a similar petroleum is present in the sample even if a small amount of the sample as long as the amount of sample can penetrate into the photonic crystal structure.
또한, 상기 광센서는 약 2 분 이내의 응답 시간을 나타낼 수 있다. 따라서, 상기 광센서를 이용하여 휘발유 또는 경유 사용 현장에서 유사 석유인지 여부에 대한 즉각적인 확인이 가능하다.In addition, the optical sensor may exhibit a response time within about 2 minutes. Therefore, it is possible to immediately check whether or not a similar petroleum at the site of gasoline or diesel using the optical sensor.
더욱이, 상기 광센서는 계속적으로 반복하여 사용될 수 있다. 구체적으로, 상기 광센서 내의 광결정 구조체는 1회 사용 이후에도 일정 시간이 경과하면 원래의 색으로 회복되기 때문에 반복 재사용이 가능할 수 있다. 따라서, 1회 사용 후 폐기하여야 하는 센서에 비하여 친환경적이고 경제적일 수 있다.Moreover, the optical sensor can be used repeatedly and continuously. In detail, the photonic crystal structure in the optical sensor may be repeatedly reused after a predetermined time since the photonic crystal structure is restored to the original color. Therefore, it can be environmentally friendly and economical compared to the sensor that must be discarded after one use.
유사 석유 검출 방법Pseudo-oil detection method
한편, 본 발명의 또 다른 구현예에 따르면, 상술한 유사 석유 검출용 광센서를 이용하여 유사 석유를 검출하는 방법이 제공된다.On the other hand, according to another embodiment of the present invention, there is provided a method for detecting similar petroleum using the optical sensor for detecting similar petroleum.
상기 유사 석유 검출 방법은 다음의 단계를 포함한다:The quasi-petroleum detection method includes the following steps:
1) 상술한 광센서를 시료와 접촉시키는 단계; 및1) contacting the above-described optical sensor with a sample; And
2) 상기 광센서의 광결정 구조체의 색변환을 통하여 상기 시료 내 유사 석유를 검출하는 단계.2) detecting pseudo petroleum in the sample through color conversion of the photonic crystal structure of the optical sensor.
상기 단계 1)에서 광센서와 시료의 접촉은 광센서 내 광결정 구조체 내부까지 시료가 젖어들 수 있을 정도면 충분하다. 따라서, 소량의 시료만으로도 유사 석유 검출이 가능할 수 있다. 또한, 상기 단계 2)에서의 색변환은 후술하는 실시예에서 확인할 수 있는 바와 같이 짧은 시간 내에 명확하게 나타날 수 있다.The contact between the optical sensor and the sample in step 1) is sufficient to allow the sample to get wet inside the photonic crystal structure in the optical sensor. Thus, similar petroleum detection may be possible with only a small amount of sample. In addition, the color conversion in step 2) can be clearly seen within a short time, as can be seen in the embodiments described later.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다.Hereinafter, preferred examples are provided to aid in understanding the present invention.
그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의하여 본 발명의 내용이 한정되는 것은 아니다.However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
사용 물질Material used
이하 제조예 및 비교제조예에서 하기의 물질을 사용하였다. 이때, 각 물질들을 별도의 정제 공정 없이 사용하였다.The following materials were used in the following Preparation and Comparative Preparation Examples. At this time, each material was used without a separate purification process.
- 4-아미노벤조페논: 순도 98%의 TCI(Tokyo chemical industry) 사4-aminobenzophenone: TCI (Tokyo chemical industry) with 98% purity
제품을 사용하였다.Product was used.
- 트리에틸아민: 순도 99%의 TCI(Tokyo chemical industry) 사 제품을 사용하였다.Triethylamine: A product of 99% purity TCI (Tokyo Chemical Industry) was used.
- 디클로로메탄: 순도 99.9%의 Burdick&jackson 사 제품을 사용하였다.-Dichloromethane: Purity 99.9% Burdick & Jackson product was used.
- 아크릴로일 클로라이드: 순도 96%의 Merck 사 제품을 사용하였다.Acryloyl chloride: Merck company of purity 96% was used.
- 테트라하이드로퓨란: 순도 99.99%의 Burdick&jackson 사 제품을 사용하였다.Tetrahydrofuran: A Burdick & jackson product having a purity of 99.99% was used.
- p-메틸스티렌: 순도 96%의 Sigma-aldrich 사 제품을 사용하였다.p-methylstyrene: Sigma-aldrich from 96% purity was used.
- 아조비스이소부티로니트릴: 순도 98%의 JUNSEI 사 제품을 사용하였다.Azobisisobutyronitrile: Purified by JUNSEI from 98% purity.
- 1,4-다이옥산: 순도 99%의 Sigma-aldrich 사 제품을 사용하였다.1,4-dioxane: Sigma-aldrich manufactured at 99% purity was used.
- N-이소프로필 아크릴아미드: 순도 98%의 TCI(Tokyo chemical industry) 사 제품을 사용하였다.N-isopropyl acrylamide: TCI (Tokyo Chemical Industry) company of purity 98% was used.
- 2,2,2-트리플루오로에틸아크릴레이트: 순도 98%의 TCI(Tokyo chemical industry) 사 제품을 사용하였다.2,2,2-trifluoroethylacrylate: A product of TCI (Tokyo Chemical Industry) having a purity of 98% was used.
모노머 및 Monomers and 코폴리머의Copolymer 표기 Mark
이하의 제조예 및 비교제조예에서 제조한, 모노머 및 코폴리머의 명칭 및 표기는 하기 표 2와 같다.The names and notations of the monomers and copolymers prepared in the following Preparation Examples and Comparative Preparation Examples are shown in Table 2 below.
[규칙 제91조에 의한 정정 09.08.2017] 
Figure WO-DOC-TABLE-2
[Correction under Article 91 of the Rule 09.08.2017]
Figure WO-DOC-TABLE-2
(모노머 합성)(Monomer synthesis)
제조예Production Example A:  A: BPAA의Of BPAA 제조 Produce
9.96 g의 4-아미노벤조페논, 7 mL의 트리에틸아민, 80 mL의 디클로로메탄을 250 mL 라운드 플라스크에 넣은 후 상기 플라스크를 얼음물에 두었다.9.96 g of 4-aminobenzophenone, 7 mL of triethylamine, 80 mL of dichloromethane were placed in a 250 mL round flask and the flask was placed in ice water.
4.06 mL의 아크릴로일 클로라이드를 8 mL의 디클로로메탄에 희석시킨 후 상기 플라스크 내에 천천히 한방울씩 떨어트린 후 12 시간 교반하였다. 상기 반응 종료 후 분별깔때기를 이용하여 미반응물 및 염을 5% NaHCO3 와 염화나트륨 포화수용액으로 제거해준 다음 유기층을 무수 NaSO4를 이용하여 여분의 물을 제거한 후 회전 증발 농축기를 이용하여 용매를 제거한 후, 상온 진공 오븐에 건조시켜, 노란색 고체의 표제 화합물을 얻었다.4.06 mL of acryloyl chloride was diluted in 8 mL of dichloromethane and slowly dropped dropwise into the flask, followed by stirring for 12 hours. After completion of the reaction, the unreacted materials and salts were removed with a 5% NaHCO 3 and saturated aqueous sodium chloride solution using a separatory funnel. Drying in a vacuum oven gave the title compound as a yellow solid.
제조예Production Example B:  B: FEA의Of FEA 제조 Produce
30 mL의 아크릴로일 클로라이드(37.5 mmol), 52 ml의 트리에틸아민(37.5 mmol) 및 200 mL의 테트라하이드로퓨란을 One-neck round flask에 넣은 후 상기 플라스크를 얼음물에 두었다. 18.3 mL의 2-플루오로에탄올(31.2 mmol)을 30mL의 테트라하이드로퓨란에 희석 시킨 후 상기 플라스크 내에 천천히 한 방울씩 넣어주며 교반하였다. 희석된 용액이 다 들어가면 상온에서 12 시간 교반하였다. 상기 반응 종료 후 침전물을 여과하고, 남은 용액을 회전 증발 농축기를 이용하여 농축시켰다. 농축된 시료를 헥산:에틸 아세테이트(1:3)로 컬럼을 하여 물질만 분리한 후, 회전 증발 농축기로 용매를 제거하여 표제 화합물을 얻었다.30 mL of acryloyl chloride (37.5 mmol), 52 ml of triethylamine (37.5 mmol) and 200 mL of tetrahydrofuran were placed in a One-neck round flask and the flask was placed in ice water. 18.3 mL of 2-fluoroethanol (31.2 mmol) was diluted in 30 mL of tetrahydrofuran and slowly stirred dropwise into the flask. When the diluted solution enters, the mixture was stirred at room temperature for 12 hours. After completion of the reaction, the precipitate was filtered and the remaining solution was concentrated using a rotary evaporator. The concentrated sample was columned with hexane: ethyl acetate (1: 3) to separate only the material, and then the solvent was removed using a rotary evaporator to obtain the title compound.
제조예Production Example C:  C: DFEA의DFEA 제조 Produce
224 mL의 아크릴로일 클로라이드(29.3 mmol), 40.8 ml의 트리에틸아민(29.3 mmol) 및 200 mL의 테트라하이드로퓨란을 One-neck round flask에 넣은 후 상기 플라스크를 얼음물에 두었다. 15.4 mL의 2,2-디플루오로에탄올(24.4 mmol)을 30 mL의 테트라하이드로퓨란에 희석 시킨 후 상기 플라스크 내에 천천히 한 방울씩 넣어주며 교반하였다. 희석된 용액이 다 들어가면 상온에서 12 시간 교반하였다.224 mL of acryloyl chloride (29.3 mmol), 40.8 ml of triethylamine (29.3 mmol) and 200 mL of tetrahydrofuran were placed in a one-neck round flask and the flask was placed in ice water. 15.4 mL of 2,2-difluoroethanol (24.4 mmol) was diluted in 30 mL of tetrahydrofuran, and then slowly added dropwise into the flask and stirred. When the diluted solution enters, the mixture was stirred at room temperature for 12 hours.
상기 반응 종료 후 침전물을 여과하고, 남은 용액을 회전 증발 농축기를 이용하여 농축시켰다. 농축된 시료를 헥산:에틸 아세테이트(1:3)로 컬럼을 하여 물질만 분리한 후, 회전 증발 농축기로 용매를 제거하여 표제 화합물을 얻었다.After completion of the reaction, the precipitate was filtered and the remaining solution was concentrated using a rotary evaporator. The concentrated sample was columned with hexane: ethyl acetate (1: 3) to separate only the material, and then the solvent was removed using a rotary evaporator to obtain the title compound.
(( 코폴리머의Copolymer 합성) synthesis)
제조예Production Example 1:  One: Poly(p-MS-BPAA)의Of Poly (p-MS-BPAA) 제조 Produce
Figure PCTKR2017005917-appb-I000007
Figure PCTKR2017005917-appb-I000007
3 ml의 p-메틸스티렌, 0.451 g의 상기 제조예 A에서 제조한 BPAA, 0.0046 g의 아조비스이소부티로니트릴(0.0913 mmol), 30 mL의 1,4-다이옥산을 25ml의 슈랭크 라운드 플라스크에 넣어준 다음 교반하였다. Freeze-pump-thaw를 3 번 정도 한 후 질소로 20 분간 불어준 다음 80 도 오일 배스에 플라스크를 넣어서 15 시간 반응을 진행하였다. 상기 반응 종료 후 메탄올로 침전을 잡은 다음 필터하여 고분자를 추출한 후 상온 진공오븐에 건조시켜, Poly(p-MS-BPAA)(n'= 250, m'=9)를 얻었다.3 ml of p-methylstyrene, 0.451 g of BPAA prepared in Preparation Example A, 0.0046 g of azobisisobutyronitrile (0.0913 mmol), and 30 mL of 1,4-dioxane were placed in a 25 ml Schrank round flask. Put and then stirred. After freeze-pump-thaw was blown three times for 20 minutes with nitrogen, the flask was placed in an 80 degree oil bath for 15 hours. After the completion of the reaction, the precipitate was caught with methanol, filtered, the polymer was extracted, and dried in a vacuum oven at room temperature to obtain Poly (p-MS-BPAA) (n '= 250, m' = 9).
제조예Production Example 2:  2: Poly(FEA-BPAA)의Of Poly (FEA-BPAA) 제조 Produce
Figure PCTKR2017005917-appb-I000008
Figure PCTKR2017005917-appb-I000008
1.64 g의 상기 제조예 B에서 제조한 FEA(1.38 mmol), 0.0351 g의 상기 제조예 A에서 제조한 BPAA(0.14 mmol), 0.0046 g의 아조비스이소부티로니트릴(0.028 mmol), 6 mL의 1,4-다이옥산을 25 ml의 슈랭크 라운드 플라스크에 넣어준 다음 교반하였다. Freeze-pump-thaw를 3 번 정도 한 후 질소로 20 분간 불어준 다음 80 도 오일 배스에 플라스크를 넣어서 15 시간 반응을 진행하였다. 상기 반응 종료 후 에탄올로 침전을 잡은 다음 필터하여 고분자를 추출한 후 상온 진공오븐에 건조시켜, Poly(FEA-BPAA)(n= 495, m= 5)를 얻었다.1.64 g of FEA (1.38 mmol) prepared in Preparation Example B, 0.0351 g of BPAA (0.14 mmol) prepared in Preparation Example A, 0.0046 g of azobisisobutyronitrile (0.028 mmol), 6 mL of 1 , 4-Dioxane was placed in a 25 ml Schrank round flask and stirred. After freeze-pump-thaw was blown three times for 20 minutes with nitrogen, the flask was placed in an 80 degree oil bath for 15 hours. After the completion of the reaction, the precipitate was caught with ethanol, filtered and the polymer was extracted, and dried in a vacuum oven at room temperature to obtain Poly (FEA-BPAA) (n = 495, m = 5).
제조예Production Example 3:  3: Poly(DFEA-BPAA)의Of Poly (DFEA-BPAA) 제조 Produce
Figure PCTKR2017005917-appb-I000009
Figure PCTKR2017005917-appb-I000009
1.89 g의 상기 제조예 C에서 제조한 DFEA(1.38 mmol), 0.0351 g의 상기 제조예 A에서 제조한 BPAA(0.14 mmol), 0.0046 g의 아조비스이소부티로니트릴(0.028 mmol), 6 mL의 1,4-다이옥산을 25 ml의 슈랭크 라운드 플라스크에 넣어준 다음 교반하였다. Freeze-pump-thaw를 3 번 정도 한 후 질소로 20 분간 불어준 다음 80 도 오일 배스에 플라스크를 넣어서 15 시간 반응을 진행하였다. 상기 반응종료 후 에탄올로 침전을 잡은 다음 필터하여 고분자를 추출한 후 상온 진공오븐에 건조시켜, Poly(DFEA-BPAA)(n= 495, m= 9)를 얻었다.1.89 g of DFEA (1.38 mmol) prepared in Preparation Example C, 0.0351 g of BPAA (0.14 mmol) prepared in Preparation Example A, 0.0046 g of azobisisobutyronitrile (0.028 mmol), 6 mL of 1 , 4-Dioxane was placed in a 25 ml Schrank round flask and stirred. After freeze-pump-thaw was blown three times for 20 minutes with nitrogen, the flask was placed in an 80 degree oil bath for 15 hours. After completion of the reaction, the precipitate was caught with ethanol, filtered and the polymer was extracted and dried in a vacuum oven at room temperature to obtain Poly (DFEA-BPAA) (n = 495, m = 9).
제조예Production Example 4:  4: Poly(TFEA-BPAA)의Of Poly (TFEA-BPAA) 제조 Produce
Figure PCTKR2017005917-appb-I000010
Figure PCTKR2017005917-appb-I000010
1.75 mL의 TFEA(1.38 mmol), 0.0351 g의 상기 제조예 A에서 제조한 BPAA(0.14 mmol), 0.0046 g의 아조비스이소부티로니트릴(0.028 mmol), 8 mL의 1,4-다이옥산을 25 ml의 슈랭크 라운드 플라스크에 넣어준 다음 교반하였다. Freeze-pump-thaw를 3 번 정도 한 후 질소로 20 분간 불어준 다음 80 도 오일 배스에 플라스크를 넣어서 15 시간 반응을 진행하였다. 상기 반응 종료 후 에탄올로 침전을 잡은 다음 필터하여 고분자를 추출한 후 상온 진공오븐에 건조시켜, Poly(TFEA-BPAA)(n= 495, m= 7)를 얻었다.25 ml of 1.75 mL of TFEA (1.38 mmol), 0.0351 g of BPAA (0.14 mmol) prepared in Preparation A, 0.0046 g of azobisisobutyronitrile (0.028 mmol), 8 mL of 1,4-dioxane Was put into a Schlenk round flask, followed by stirring. After freeze-pump-thaw was blown three times for 20 minutes with nitrogen, the flask was placed in an 80 degree oil bath for 15 hours. After the completion of the reaction, the precipitate was caught with ethanol, filtered and the polymer was extracted, and dried in a vacuum oven at room temperature to obtain Poly (TFEA-BPAA) (n = 495, m = 7).
비교제조예Comparative Production Example 1:  One: Poly(NIPAM-BPAA)의Of Poly (NIPAM-BPAA) 제조 Produce
Figure PCTKR2017005917-appb-I000011
Figure PCTKR2017005917-appb-I000011
1.57 g의 N-이소프로필 아크릴아미드(1.38 mmol), 0.0351 g의 상기 제조예 1에서 제조한 BPAA(0.14 mmol), 0.0046 g의 아조비스이소부티로니트릴(0.028 mmol), 6 mL의 1,4-다이옥산을 25 ml의 슈랭크 라운드 플라스크에 넣어준 다음 교반하였다. Freeze-pump-thaw를 3 번 정도 한 후 질소로 20 분간 불어준 다음 80 도 오일 배스에 플라스크를 넣어서 15 시간 반응을 진행하였다. 상기 반응 종료 후 냉각된 에틸 에테르로 침전을 잡은 다음 필터하여 고분자를 추출한 후 상온 진공오븐에 건조시켜, Poly(NIPAM-BPAA)(n= 495, m= 6)를 얻었다.1.57 g of N-isopropyl acrylamide (1.38 mmol), 0.0351 g of BPAA (0.14 mmol) prepared in Preparation Example 1 above, 0.0046 g of azobisisobutyronitrile (0.028 mmol), 6 mL of 1,4 Dioxane was placed in a 25 ml Schrank round flask and stirred. After freeze-pump-thaw was blown three times for 20 minutes with nitrogen, the flask was placed in an 80 degree oil bath for 15 hours. After the completion of the reaction, the precipitate was caught with cooled ethyl ether, filtered, the polymer was extracted, and dried in a vacuum oven at room temperature to obtain Poly (NIPAM-BPAA) (n = 495, m = 6).
실험예Experimental Example 1:  One: 코폴리머의Copolymer 물성 측정 Property measurement
상기 제조예 1 내지 4 및 비교제조예 1에서 제조한 코폴리머의 구체적인 물성을 하기의 방법으로 측정하였다. 그 결과를 표 3에 나타내었고, 이 중 제조예 2 내지 4의 코폴리머에 대한 1H-NMR 스펙트럼을 각각 도 2 내지 4에 나타내었다.Specific physical properties of the copolymers prepared in Preparation Examples 1 to 4 and Comparative Preparation Example 1 were measured by the following method. The results are shown in Table 3, and 1H-NMR spectra of the copolymers of Preparation Examples 2 to 4 are shown in FIGS. 2 to 4, respectively.
1) Mn(수 평균 분자량): 폴리메틸 메타크릴레이트를 Calibration용 표준 시료로 하여 겔투과크로마토그래피(GPC)를 사용하여 측정하였다.1) Mn (number average molecular weight): Polymethyl methacrylate was measured using gel permeation chromatography (GPC) as a standard sample for calibration.
2) Tg(유리전이온도): DSC(differential scanning calorimeter)를 사용하여 측정하였다.2) Tg (glass transition temperature): Measured using a differential scanning calorimeter (DSC).
3) BPAA 구조 단위의 함량: NMR에 의해 측정하였다.3) Content of BPAA structural unit: measured by NMR.
4) 굴절률: 타원계측법(Ellipsometer)에 의해 측정하였다.4) Refractive index: It measured by ellipsometer.
Figure PCTKR2017005917-appb-T000003
Figure PCTKR2017005917-appb-T000003
실험예Experimental Example 2:  2: 코폴리머의Copolymer 열중량Heat weight 분석 analysis
상기 제조예 2 내지 4 및 비교제조예 1에서 제조한 코폴리머 각각에 대하여 열중량 분석(Thermogravimetric analysis; TGA)을 실시하였고, 그 결과를 도 5에 나타내었다.Thermogravimetric analysis (TGA) was performed on each of the copolymers prepared in Preparation Examples 2 to 4 and Comparative Preparation Example 1, and the results are shown in FIG. 5.
도 5에서 보는 바와 같이, 제조예 2 내지 4에서 제조한 코폴리머는 약 350℃ 이상부터 중량 감소가 일어나는 반면, 비교제조예 1에서 제조한 코폴리머는 온도의 상승이 시작되자마자 중량 손실이 일어남을 알 수 있다. 이로써, 상기 제조예에서 제조한 코폴리머의 열안정성이 우수함을 알 수 있다.As shown in FIG. 5, the copolymers prepared in Preparation Examples 2 to 4 had weight loss from about 350 ° C. or higher, whereas the copolymers prepared in Comparative Preparation Example 1 had weight loss as soon as the temperature started to rise. It can be seen. As a result, it can be seen that the thermal stability of the copolymer prepared in Preparation Example is excellent.
(( 색변환Color conversion 광결정Photonic crystal 구조체의 제조) Manufacture of structures)
실시예Example 1 One
상기 제조예 1에서 제조한 Poly(p-MS-BPAA)를 톨루엔에 1 wt%가 되도록 녹여 고굴절률 분산액 조성물을 제조하였고, 상기 제조예 2에서 제조한 Poly(FEA-BPAA)를 에틸 아세테이트에 2 wt%가 되도록 녹여 저굴절률 분산액 조성물을 제조하였다.The high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 1 to 1 wt% in toluene, and preparing Poly (FEA-BPAA) prepared in Preparation Example 2 in ethyl acetate. It was dissolved to wt% to prepare a low refractive index dispersion composition.
유리 기판 상에 상기 저굴절률 분산액 조성물을 스핀 코터를 이용하여 2,000 rpm에서 50 초간 도포한 후 365 nm에서 5 분간 경화시켜 71.6 nm 두께의 저굴절률층을 제조하였다. 상기 저굴절률층이 형성된 유리 기판을 에틸 아세테이트 용액에 넣어 경화되지 않은 부분을 제거하였다.The low refractive index dispersion composition was coated on a glass substrate using a spin coater at 2,000 rpm for 50 seconds and then cured at 365 nm for 5 minutes to prepare a low refractive index layer having a thickness of 71.6 nm. The glass substrate on which the low refractive index layer was formed was placed in an ethyl acetate solution to remove the uncured portion.
다음으로, 상기 저굴절률층 상에 상기 고굴절률 분산액 조성물을 스핀 코터를 이용하여 2,000 rpm에서 50 초간 도포한 후 365 nm에서 5 분간 경화시켜 33.8 nm 두께의 고굴절률층을 제조하였다. 상기 저굴절률층 및 고굴절률층이 형성된 유리 기판을 톨루엔 용액에 넣어 경화되지 않는 부분을 제거하였다.Next, the high refractive index dispersion composition was applied on the low refractive index layer for 50 seconds at 2,000 rpm using a spin coater, and then cured for 5 minutes at 365 nm to prepare a high refractive index layer having a thickness of 33.8 nm. The glass substrate in which the said low refractive index layer and the high refractive index layer were formed was put into the toluene solution, and the part which is not hardened was removed.
이후, 상기 고굴절률층 상에 저굴절률층 및 고굴절률층을 반복적으로 적층하여, 총 15 층의 굴절률층이 적층된 광결정 구조체를 제조하였다.Thereafter, the low refractive index layer and the high refractive index layer were repeatedly stacked on the high refractive index layer to prepare a photonic crystal structure in which a total of 15 refractive index layers were stacked.
실시예Example 2 2
상기 제조예 3에서 제조한 Poly(DFEA-BPAA)를 에틸 아세테이트에 2wt%가 되도록 녹여 저굴절률 분산액 조성물을 제조하고, 상기 저굴절률 분산액 조성물을 2,000 rpm으로 도포한 후 질소 상태에서 365 nm에서 5 분간 경화 제외하고는 실시예 1과 동일한 방법을 사용하여 유리 기판 상에 65.7 nm 두께의 저굴절률층 및 33.8 nm 두께의 고굴절률층이 반복적으로 총 15 층 적층된 광결정 구조체를 제조하였다.The low refractive index dispersion composition was prepared by dissolving Poly (DFEA-BPAA) prepared in Preparation Example 3 to 2wt% in ethyl acetate, and applying the low refractive index dispersion composition at 2,000 rpm for 5 minutes at 365 nm under nitrogen. Except for curing, a photonic crystal structure in which a total of 15 layers of 65.7 nm thick low refractive index layer and 33.8 nm thick high refractive index layer were repeatedly stacked on a glass substrate was used in the same manner as in Example 1.
실시예Example 3 3
상기 제조예 4에서 제조한 Poly(TFEA-BPAA)를 에틸 아세테이트에 2wt%가 되도록 녹여 저굴절률 분산액 조성물을 질소 상태에서 365 nm에서 20 분간 경화 제외하고는, 실시예 1과 동일한 방법을 사용하여 유리 기판 상에 32.8 nm 두께의 저굴절률층 및 33.8 nm 두께의 고굴절률층이 반복적으로 총 15 층 적층된 광결정 구조체를 제조하였다.The poly (TFEA-BPAA) prepared in Preparation Example 4 was dissolved in ethyl acetate to 2wt%, and the low refractive index dispersion composition was cured using nitrogen in the same manner as in Example 1 except curing for 20 minutes at 365 nm under nitrogen. A photonic crystal structure in which a total of 15 layers of a low refractive index layer having a thickness of 32.8 nm and a high refractive index layer having a thickness of 33.8 nm was repeatedly stacked on the substrate was manufactured.
실시예Example 4 4
상기 제조예 1에서 제조한 Poly(p-MS-BPAA)를 톨루엔에 1.2 wt%가 되도록 녹여 고굴절률 분산액 조성물을 제조하였고, 저굴절률 분산액 조성물을 1,900 rpm으로 도포한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 유리 기판 상에 72.5 nm 두께의 저굴절률층 및 55.6 nm 두께의 고굴절률층이 반복적으로 총 15 층 적층된 광결정 구조체를 제조하였다.The high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 1 to 1.2 wt% in toluene, except that the low refractive index dispersion composition was applied at 1,900 rpm. Using the same method, a photonic crystal structure in which a total of 15 layers of a low refractive index layer having a thickness of 72.5 nm and a high refractive index layer having a thickness of 55.6 nm were repeatedly stacked on a glass substrate was prepared.
실시예Example 5 5
상기 제조예 1에서 제조한 Poly(p-MS-BPAA)를 톨루엔에 1.2 wt%가 되도록 녹여 고굴절률 분산액 조성물을 제조하였고, 저굴절률 분산액 조성물을 1,700 rpm으로 도포한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 유리 기판 상에 76.8 nm 두께의 저굴절률층 및 58.8 nm 두께의 고굴절률층이 반복적으로 총 15 층 적층된 광결정 구조체를 제조하였다.The high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 1 to 1.2 wt% in toluene, except that the low refractive index dispersion composition was applied at 1,700 rpm. Using the same method, a photonic crystal structure in which a total of 15 layers of a 76.8 nm thick low refractive index layer and a 58.8 nm thick high refractive index layer were repeatedly stacked on a glass substrate was used.
실시예Example 6 6
상기 제조예 2에서 제조한 Poly(p-MS-BPAA)를 톨루엔에 1.2 wt%가 되도록 녹여 고굴절률 분산액 조성물을 제조하였고, 저굴절률 분산액 조성물을 1,500 rpm으로 도포한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 유리 기판 상에 85.1 nm 두께의 저굴절률층 및 63.2 nm 두께의 고굴절률층이 반복적으로 총 15 층 적층된 광결정 구조체를 제조하였다.The high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 2 to 1.2 wt% in toluene, except that the low refractive index dispersion composition was applied at 1,500 rpm. Using the same method, a photonic crystal structure in which a total of 15 layers of 85.1 nm thick low refractive index layer and 63.2 nm thick high refractive index layer were repeatedly stacked on a glass substrate was prepared.
실시예Example 7 7
실시예 6과 동일한 방법을 사용하여 유리 기판 상에 85.1 nm 두께의 저굴절률층 및 63.2 nm 두께의 고굴절률층이 반복적으로 총 19 층 적층된 광결정 구조체를 제조하였다.Using the same method as Example 6, a photonic crystal structure in which a total of 195.1 layers of a low refractive index layer having a thickness of 85.1 nm and a high refractive index layer having a thickness of 63.2 nm were repeatedly stacked on a glass substrate was prepared.
실시예Example 8 8
실시예 6과 동일한 방법을 사용하여 유리 기판 상에 85.1 nm 두께의 저굴절률층 및 63.2 nm 두께의 고굴절률층이 반복적으로 총 25 층 적층된 광결정 구조체를 제조하였다.Using the same method as in Example 6, a photonic crystal structure in which a total of 25 layers of a low refractive index layer having a thickness of 85.1 nm and a high refractive index layer having a thickness of 63.2 nm were repeatedly stacked on a glass substrate was prepared.
실시예Example 9 9
상기 제조예 1에서 제조한 Poly(p-MS-BPAA)를 톨루엔에 1 wt%가 되도록 녹여 고굴절률 분산액 조성물을 제조하였고, 상기 제조예 2에서 제조한 Poly(FEA-BPAA)를 에틸 아세테이트에 2 wt%가 되도록 녹여 저굴절률 분산액 조성물을 제조하였다.The high refractive index dispersion composition was prepared by dissolving Poly (p-MS-BPAA) prepared in Preparation Example 1 to 1 wt% in toluene, and preparing Poly (FEA-BPAA) prepared in Preparation Example 2 in ethyl acetate. It was dissolved to wt% to prepare a low refractive index dispersion composition.
다음으로, 기판으로서 실리콘 웨이퍼를 사용하고, 상기 저굴절률 분산액 조성물과 고굴절률 분산액 조성물을 각각 2,000 rpm에서 50 초간 도포한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 실리콘 웨이퍼 기판 상에 71.6 nm 두께의 저굴절률층 및 39.6 nm 두께의 고굴절률층이 반복적으로 총 15 층 적층된 광결정 구조체를 제조하였다.Next, a silicon wafer was used as the substrate, and the low refractive index dispersion composition and the high refractive index dispersion composition were applied on the silicon wafer substrate using the same method as in Example 1, except that 50 seconds were applied at 2,000 rpm for 50 seconds. A photonic crystal structure in which 15 nm-thick low refractive index layers and 39.6 nm-thick high refractive index layers were repeatedly stacked in total was prepared.
비교예Comparative example 1 One
상기 비교제조예 1에서 제조한 Poly(NIPAM-BPAA)를 1-프로판올에 2wt%가 되도록 녹여 저굴절률 분산액 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 유리 기판 상에 67.1 nm 두께의 저굴절률층 및 39.6 nm 두께의 고굴절률층이 반복적으로 총 15 층 적층된 광결정 구조체를 제조하였다.67.1 was prepared on the glass substrate using the same method as in Example 1, except that the low refractive index dispersion composition was prepared by dissolving Poly (NIPAM-BPAA) prepared in Comparative Preparation Example 1 to 2 wt% in 1-propanol. A photonic crystal structure in which 15 nm-thick low refractive index layers and 39.6 nm-thick high refractive index layers were repeatedly stacked in total was prepared.
상기 실시예 및 비교예에서 제조한 광결정 구조체에 대하여 하기 표 4에 정리하였다.The photonic crystal structures prepared in Examples and Comparative Examples are summarized in Table 4 below.
Figure PCTKR2017005917-appb-T000004
Figure PCTKR2017005917-appb-T000004
실험예Experimental Example 3:  3: 광결정Photonic crystal 구조체의  Struct 접촉각Contact angle 측정 Measure
상기 실시예 1 내지 3 및 비교예 1에서 제조한 광결정 구조체의 표면에 대하여, 접촉각 미터(PHOENIX제품명, Surface Electro Optic사 제조)를 사용하여 물에 대한 접촉각을 측정하였다. 이때, 3.2 ㎕의 물방울을 사용하였고, 측정된 접촉각 데이터는 5 회 반복 측정한 값의 평균값을 의미한다. 그 결과 및 광학사진을 각각 표 5 및 도 6 내지 9에 나타내었다.For the surfaces of the photonic crystal structures prepared in Examples 1 to 3 and Comparative Example 1, the contact angle with respect to water was measured using a contact angle meter (PHOENIX product name, manufactured by Surface Electro Optic). At this time, 3.2 μl of water droplets were used, and the measured contact angle data means an average value of five repeated measurements. The results and the optical photographs are shown in Table 5 and FIGS. 6 to 9, respectively.
Figure PCTKR2017005917-appb-T000005
Figure PCTKR2017005917-appb-T000005
상기 표 5 및 도 6 내지 9에서 보는 바와 같이, 저굴절률층의 코폴리머로서 플루오로알킬 아크릴레이트를 사용하는 경우 Poly(NIPAM-BPAA)를 사용하는 경우에 비하여, 불소에 의해 광결정 구조체의 표면이 소수성을 나타냄을 알 수 있다. 또한, 저굴절률층의 코폴리머 내 불소의 함량이 증가할수록 물에 대한 접촉각 값이 커져 소수성이 증가함을 알 수 있다.As shown in Table 5 and Figures 6 to 9, when the fluoroalkyl acrylate is used as the copolymer of the low refractive index layer, compared to the case of using Poly (NIPAM-BPAA), the surface of the photonic crystal structure by fluorine It can be seen that it represents hydrophobicity. In addition, it can be seen that as the content of fluorine in the copolymer of the low refractive index layer increases, the contact angle with respect to water increases to increase the hydrophobicity.
실험예Experimental Example 4:  4: 광결정Photonic crystal 구조체의  Struct 열충격Thermal shock 시험 exam
열충격 시험 전에, 상기 실시예 1 내지 3 및 비교예 1에서 제조한 광결정 구조체의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였다.Prior to the thermal shock test, specular reflectances of the photonic crystal structures prepared in Examples 1 to 3 and Comparative Example 1 were measured using a reflectometer (USB 4000, Ocean Optics).
이후, 상기 광결정 구조체들을 -20℃에서 30분 및 100℃에서 30분 동안 방치하는 사이클을 50 회 반복하는 열충격 시험(Thermal shock test)을 Thermal shock test chamber(Espec Corporation 사 제품)를 사용하여 실시하였고, 이후 상기 광결정 구조체들의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 재측정하였다.Thereafter, a thermal shock test (Thermal Shock test) was repeated using a thermal shock test chamber (manufactured by Espec Corporation) for 50 cycles of leaving the photonic crystal structures at -20 ° C for 30 minutes and at 100 ° C for 30 minutes. Afterwards, specular reflectances of the photonic crystal structures were re-measured using a reflectometer (USB 4000, Ocean Optics).
상기 열충격 시험 전/후의 정반사도 측정 결과를 도 10에 나타내었다.The specular reflectance measurement results before and after the thermal shock test are shown in FIG. 10.
도 10에서 보는 바와 같이, 열충격 시험 전 저굴절률층 폴리머로서 Poly(NIPAM-BPAA)를 사용한 비교예 1의 광결정 구조체는 넓은 파장 범위에서 약 10% 정도의 낮은 정반사도를 나타내는 반면, 실시예 1 및 2의 광결정 구조체는 좁은 파장 범위에서 높은 정반사도를 나타낼 수 있다. 따라서, 플루오로알킬 아크릴레이트계 모노머로부터 유도된 반복단위를 함유하는 코폴리머를 포함한 광결정 구조체를 이용하여, 외부 자극에 따른 반사 파장의 시프트가 명확하여 색변환을 육안으로 쉽게 확인할 수 있는 광결정 센서를 제조할 수 있음을 확인하였다.As shown in FIG. 10, the photonic crystal structure of Comparative Example 1 using Poly (NIPAM-BPAA) as the low refractive index layer polymer before the thermal shock test showed low specular reflectance of about 10% over a wide wavelength range, The photonic crystal structure of 2 can exhibit high specular reflectance in a narrow wavelength range. Therefore, by using a photonic crystal structure including a copolymer containing a repeating unit derived from a fluoroalkyl acrylate monomer, a photonic crystal sensor can be easily identified by visually shifting the color conversion due to a clear shift in reflection wavelength due to an external stimulus. It was confirmed that it can be prepared.
더욱이, 실시예 1 및 2의 광결정 구조체는 열충격 시험 후에도 반사파장의 변화가 거의 없어, 이를 사용하여 내열성이 우수한 광센서의 제조가 가능하다.Further, the photonic crystal structures of Examples 1 and 2 have almost no change in the reflected wavelength even after the thermal shock test, and thus the optical crystal structures having excellent heat resistance can be manufactured using the photonic crystal structures.
실험예Experimental Example 5: 용매 변화에 따른  5: according to the change of solvent 색변환Color conversion 관찰 observe
용매에 따른 색변환 정도를 확인하기 위하여, 상기 실시예 1에서 제조한 광결정 구조체를 각각 벤젠, 톨루엔, 자일렌, 에탄올 및 메탄올에 더 이상 색변화가 없을 때까지 담근 후, 변화된 색을 관찰하였고, 그 사진을 도 11a에 나타내었다. 또한, 상기 용매 변화에 따른 상기 실시예 1에서 제조한 광결정 구조체의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 도 11b에 나타내었다. 이때, “pristine”은 용매에 담그기 전의 광결정 구조체의 색을 의미한다.In order to confirm the degree of color conversion according to the solvent, the photonic crystal structure prepared in Example 1 was soaked in benzene, toluene, xylene, ethanol and methanol until there was no color change, and the changed color was observed. The photo is shown in Fig. 11A. In addition, the specular reflectance of the photonic crystal structure prepared in Example 1 according to the solvent change was measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIG. 11B. In this case, "pristine" means the color of the photonic crystal structure before immersion in the solvent.
도 11a 및 11b에서 보는 바와 같이, 용매의 종류에 따라 상기 실시예 1에서 제조한 광결정 구조체의 반사 파장이 달라져서, 나타내는 색이 달라짐을 확인할 수 있다. 특히, 상기 광결정 구조체를 벤젠, 톨루엔 및 자일렌 등의 방향족 유기 용매들에 노출한 경우에, 초기의 구조체에 비해 반사 파장의 시프트가 커서 육안으로 뚜렷한 색변화를 관찰할 수 있다. 구체적으로, 상기 광결정 구조체는 에탄올, 메탄올, 자일렌, 톨루엔 및 벤젠 순서대로 반사 파장의 시프트 정도가 크다.As shown in Figures 11a and 11b, it can be seen that the reflection wavelength of the photonic crystal structure prepared in Example 1 is changed according to the type of solvent, the color represented is different. In particular, when the photonic crystal structure is exposed to aromatic organic solvents such as benzene, toluene, and xylene, the change of the reflection wavelength is larger than that of the initial structure, so that a visible color change can be observed with the naked eye. Specifically, the photonic crystal structure has a large degree of shift of the reflection wavelength in the order of ethanol, methanol, xylene, toluene and benzene.
이는, 상술한 바와 같이 자일렌, 톨루엔 및 벤젠 순서대로 용해도 파라미터의 값이 증가하여, 상기 실시예에서 제조한 광결정 구조체 내 폴리머의 팽윤 정도가 상기 순서대로 증가했음을 의미한다. 따라서, 상기 광결정 구조체를 포함하는 광센서의 경우 벤젠, 톨루엔 및 자일렌 등의 방향족 유기 용매를 검출하기 위한 센서로 사용될 수 있다.This means that as described above, the values of the solubility parameters in the order of xylene, toluene and benzene increased, so that the degree of swelling of the polymer in the photonic crystal structure prepared in the above example increased in this order. Therefore, the optical sensor including the photonic crystal structure may be used as a sensor for detecting an aromatic organic solvent such as benzene, toluene and xylene.
추가적으로, 저굴절률층 두께에 따른 색변환을 관찰하기 위하여, 저굴절 분산액 조성물의 코팅 속도를 달리한 실시예 4 및 5에서 제조한 광결정 구조체를 각각 벤젠, 톨루엔, 자일렌, 에탄올 및 메탄올에 더 이상 색 변화가 없을 때까지 담근 후, 변화된 색을 관찰하였고, 그 사진을 각각 도 12a 및 13a에 나타내었다. 또한, 상기 용매 변화에 따른 상기 실시예 4 및 5에서 제조한 광결정 구조체의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 각각 도 12b 및 13b에 나타내었다. 이때, “initial”은 용매에 담그기 전의 광결정 구조체의 색을 의미한다.In addition, in order to observe the color conversion according to the low refractive index layer thickness, the photonic crystal structures prepared in Examples 4 and 5 with different coating rates of the low refractive index dispersion composition were no longer added to benzene, toluene, xylene, ethanol and methanol, respectively. After soaking until no color change, the changed color was observed, and the photographs are shown in FIGS. 12A and 13A, respectively. In addition, the specular reflectances of the photonic crystal structures prepared in Examples 4 and 5 according to the solvent change were measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIGS. 12B and 13B, respectively. In this case, “initial” means the color of the photonic crystal structure before immersion in the solvent.
도 12 및 13에서 보는 바와 같이, 고굴절률층의 두께가 달라지는 경우, 광결정 구조체의 반사 파장 및 시프트 정도가 달라져서 용매의 변화에 따라 관찰되는 색이 달라짐을 알 수 있다. 그러나, 고굴절률층의 두께가 달라지더라도 에탄올, 메탄올, 자일렌, 톨루엔 및 벤젠 순으로 반사 파장의 시프트가 커지는 경향은 동일하여, 벤젠, 톨루엔 및 자일렌 등의 방향족 유기 용매를 검출하기 위한 센서로 사용 가능함을 확인하였다.As shown in FIGS. 12 and 13, when the thickness of the high refractive index layer is changed, it can be seen that the reflection wavelength and the degree of shift of the photonic crystal structure are changed so that the color observed according to the change of the solvent is different. However, even if the thickness of the high refractive index layer is different, the shift of the reflection wavelength is the same in the order of ethanol, methanol, xylene, toluene and benzene, and thus a sensor for detecting aromatic organic solvents such as benzene, toluene and xylene It was confirmed that it can be used as.
또한, 상기 결과로서 고굴절률층의 두께가 특히 20 내지 70 nm일 때, 벤젠, 톨루엔 및 자일렌 등의 존재에 따른 구조체의 색변환을 육안으로 쉽게 확인할 수 있음을 알 수 있다.In addition, it can be seen that the color conversion of the structure due to the presence of benzene, toluene, xylene, etc. can be easily visually confirmed when the thickness of the high refractive index layer is 20 to 70 nm.
실험예Experimental Example 6: 벤젠의 농도의 변화에 따른 정반사도 측정 6: Measurement of specular reflectance according to the change of benzene concentration
상기 실시예 4 및 6에서 제조한 광결정 구조체의 벤젠 증기의 농도 변화에 따른 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 각각 도 14 및 15에 나타내었다.The specular reflectance according to the concentration change of benzene vapor of the photonic crystal structures prepared in Examples 4 and 6 were measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIGS. 14 and 15, respectively.
도 14 및 15에서 보는 바와 같이, 실시예 4 및 6에서 제조한 광결정 구조체는 25 내지 75 ppm의 벤젠의 작은 농도의 변화에도 반사 파장의 시프트가 명확하여, 벤젠의 농도의 변화에 대한 감도가 우수함을 확인할 수 있다. 또한, 상기 색변환 광결정 구조체의 반사 파장은 벤젠의 농도가 높아짐에 따라 파장이 길어지는 방향으로 시프트됨을 알 수 있다. 이때, 시프트된 반사 파장은 가시광선 영역에 해당하여 상기 광결정 구조체의 반사 파장의 변화를 육안으로 관측할 수 있어, 실시예에 따른 광결정 구조체는 유기 용매의 정성 분석뿐 아니라 정량 분석에도 사용 가능함을 확인할 수 있다.As shown in Figs. 14 and 15, the photonic crystal structures prepared in Examples 4 and 6 exhibited a clear shift in reflection wavelength even with small changes in benzene of 25 to 75 ppm, and thus excellent sensitivity to changes in benzene concentration. can confirm. In addition, it can be seen that the reflection wavelength of the color conversion photonic crystal structure is shifted in the direction of increasing wavelength as the concentration of benzene increases. In this case, the shifted reflection wavelength corresponds to the visible light region, so that the change in the reflection wavelength of the photonic crystal structure can be observed with the naked eye. Therefore, the photonic crystal structure according to the embodiment can be used not only for qualitative analysis of organic solvent but also for quantitative analysis. Can be.
실험예Experimental Example 7:  7: 굴절률층의On the refractive index layer  gun 적층수에On stack 따른 정반사도 측정 Specular reflectance
상기 광결정 구조체의 굴절률층의 총 적층수에 따른 정반사도의 경향을 확인하기 위하여, 상기 실시예 6 내지 8에서 제조한 광결정 구조체의 벤젠 증기의 농도 변화에 따른 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 각각 도 15 내지 17에 나타내었다.In order to confirm the tendency of specular reflectivity according to the total number of stacked layers of the refractive index layer of the photonic crystal structure, the specular reflectivity according to the concentration change of benzene vapor of the photonic crystal structures prepared in Examples 6 to 8 was measured using a reflectometer (USB 4000, Ocean Optics). ), And the results are shown in FIGS. 15 to 17, respectively.
도 15 내지 17에서 보는 바와 같이, 굴절률층의 총 적층수가 증가할 수록 정반사도가 증가함을 알 수 있다. 이는, 교대로 적층된 고굴절률층 및 저굴절률층의 수가 많을수록 층 경계부분의 부분 반사 파장간의 보강 간섭이 강화되어 반사 파장의 강도가 강해짐을 의미한다.15 to 17, it can be seen that the specular reflectivity increases as the total number of stacked layers of the refractive index layer increases. This means that as the number of alternating high refractive index layers and low refractive index layers is increased, constructive interference between partial reflection wavelengths of the layer boundary portion is strengthened, thereby increasing the intensity of the reflection wavelength.
실험예Experimental Example 8: 실리콘 웨이퍼 기판에서의 정반사도 측정 8: Measurement of Specular Reflectance on Silicon Wafer Substrates
상기 광결정 구조체의 기판의 변화에 따른 정반사도의 경향을 확인하기 위하여, 실리콘 웨이퍼 기판을 사용한 실시예 9의 광결정 구조체의 벤젠 증기에 노출시 정반사도의 변화를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 도 18에 나타내었다.In order to confirm the tendency of specular reflectivity according to the change of the substrate of the photonic crystal structure, the reflectance (USB 4000, Ocean Optics) is used to change the specular reflectivity when the photonic crystal structure of Example 9 is exposed to benzene vapor using a silicon wafer substrate. Was measured, and the results are shown in FIG.
상기 도 18에서 보는 바와 같이, 유리 기판을 사용한 경우에 비하여 실리콘 웨이퍼 기판의 특성상 굴절률층의 두께가 얇더라도 매우 높은 정반사도를 나타냄을 알 수 있다. 따라서, 기판의 종류를 변경하여 용도에 따라 다양한 형태의 광결정 구조체의 제조가 가능함을 확인하였다.As shown in FIG. 18, it can be seen that even though the thickness of the refractive index layer is thin due to the characteristics of the silicon wafer substrate, the specular reflectance is very high compared to the case of using the glass substrate. Therefore, it was confirmed that various types of photonic crystal structures could be manufactured according to the use by changing the type of substrate.
실험예Experimental Example 9: 재현성 테스트 9: reproducibility test
상기 실시예 1에서 제조한 광결정 구조체를 벤젠, 톨루엔 및 자일렌에 각각 담가서 더 이상 색 변화가 없을 때의 광결정 구조체의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정한 다음, 용매에 담그기 전의 광결정 구조체의 색으로 돌아온 때의 광결정 구조체의 정반사도를 측정하는 사이클을 10 회 반복하여 재현성을 테스트하였다. 그 결과를 각각 도 19a, 19b 및 19c에 나타내었다.After dipping the photonic crystal structure prepared in Example 1 into benzene, toluene and xylene, respectively, the specular reflectance of the photonic crystal structure when there is no color change is measured using a reflectometer (USB 4000, Ocean Optics), and then The reproducibility was tested by repeating the cycle of measuring the specular reflectance of the photonic crystal structure when returning to the color of the photonic crystal structure before immersion 10 times. The results are shown in Figs. 19A, 19B and 19C, respectively.
도 19a 내지 19c에서 보는 바와 같이, 실시예 1에서 제조한 광결정 구조체는 모든 용매에 대하여 여러 사이틀의 반복에도 첫 사이클과 동일한 범위의 반사 파장을 나타냄을 알 수 있다. 이는, 상기 색변환 광결정 구조체의 재현성이 우수함을 의미한다.As shown in FIGS. 19A to 19C, it can be seen that the photonic crystal structure prepared in Example 1 exhibits the reflection wavelength in the same range as the first cycle even after repeated several cycles for all solvents. This means that the color conversion photonic crystal structure is excellent in reproducibility.
실험예Experimental Example 10: 응답 시간 테스트 10: Response time test
상기 광결정 구조체의 응답 속도를 확인하기 위하여, 상기 실시예 1 에서 제조한 광결정 구조체를 각각 벤젠, 톨루엔, 자일렌, 에탄올 및 메탄올에 담그고, 시간 경과에 따른 반사 파장을 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 도 20에 나타내었다In order to confirm the response speed of the photonic crystal structure, the photonic crystal structure prepared in Example 1 was immersed in benzene, toluene, xylene, ethanol and methanol, respectively, and the reflection wavelength over time was reflected on a reflectometer (USB 4000, Ocean Optics). Was measured using, and the results are shown in FIG.
도 20에서 보는 바와 같이, 실시예 1에서 제조한 광결정 구조체는 대부분의 용매에 대하여 빠르게 반사 파장이 시프트되어 약 2 분 이내의 응답 시간을 나타냄을 알 수 있다.As shown in FIG. 20, it can be seen that the photonic crystal structure prepared in Example 1 exhibits a response time within about 2 minutes due to a rapid shift in reflection wavelength with respect to most solvents.
따라서, 실험예 9 및 10을 통하여, 본 발명의 일 실시예에 따른 광결정 구조체를 이용하는 경우 재현성이 우수하면서 빠른 응답 속도를 나타내는 센서를 제조할 수 있음을 확인할 수 있다.Therefore, through Experimental Examples 9 and 10, it can be seen that when using the photonic crystal structure according to an embodiment of the present invention, a sensor having excellent reproducibility and showing a fast response speed can be manufactured.
실험예Experimental Example 11. 유사 석유로 포함될 수 있는 화합물에 따른  11.According to compounds that may be included as pseudo petroleum 색변환Color conversion 관찰 observe
여러 가지 화합물에 따른 색변환 정도를 확인하기 위하여, 상기 실시예 5에서 제조한 광결정 구조체를 각각 정품 휘발유(Gasoline, SK 에너지 사 제품), 시너(㈜남양케미칼 사 제조), 메탄올 및 톨루엔에 더 이상 색 변화가 없을 때까지 담근 후, 변화된 색을 관찰하였고, 그 사진을 도 21a에 나타내었다. 이때, “pristine”은 상기 화합물에 담그기 전의 광결정 구조체의 색을 의미한다. 또한, 상기 정품 휘발유, 메탄올 및 톨루엔에 따른 상기 실시예 5에서 제조한 광결정 구조체의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 도 21b에 나타내었다.In order to confirm the degree of color conversion according to various compounds, the photonic crystal structure prepared in Example 5 was no longer used in genuine gasoline (Gasoline, SK Energy Co., Ltd.), thinner (manufactured by Namyang Chemical Co., Ltd.), methanol, and toluene, respectively. After soaking until no color change, the changed color was observed, and the photograph is shown in FIG. 21A. In this case, "pristine" means the color of the photonic crystal structure before immersion in the compound. In addition, the specular reflectance of the photonic crystal structure prepared in Example 5 according to the genuine gasoline, methanol and toluene was measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIG. 21B.
또한 추가적으로 상기 실시예 5에서 제조한 광결정 구조체를 벤젠, 톨루엔, 자일렌, 에탄올 및 메탄올에 더 이상 색 변화가 없을 때까지 담근 후, 변화된 색을 관찰하였고, 그 사진을 도 22a에 나타내었다. 또한, 상기 화합물 종류에 따른 상기 실시예 5에서 제조한 광결정 구조체의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 도 22b에 나타내었다.In addition, after dipping the photonic crystal structure prepared in Example 5 until there is no more color change in benzene, toluene, xylene, ethanol and methanol, the changed color was observed, the photo is shown in Figure 22a. In addition, the specular reflectance of the photonic crystal structure prepared in Example 5 according to the compound type was measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in FIG. 22B.
도 21 및 도 22에서 보는 바와 같이, 접촉하는 화합물의 종류에 따라 실시예의 광결정 구조체의 반사 파장이 달라져서, 나타내는 색이 달라짐을 확인할 수 있다. 특히, 상기 광결정 구조체가 정품 휘발유와 접촉하는 경우 접촉 전과 비교하여 반사 파장의 시프트가 일어나지 않아 색상 변화가 거의 없으나, 벤젠, 톨루엔 및 자일렌 등의 방향족계 유기 용매 혹은 에탄올 및 메탄올 등의 알코올계 유기 용매와 접촉하는 경우 반사 파장의 시프트가 커서 뚜렷한 색변화가 나타남을 알 수 있다. 더욱이 광결정 구조체의 반사 파장 및 시프트된 반사 파장은 가시광선 영역 내에 해당되어 광결정 구조체의 색변환은 육안으로 관찰 가능하다. 이로써, 본 발명의 일 실시예에 따른 광결정 구조체는 정품 휘발유에는 색변환을 일으키지 않으나 유사 휘발유에만 색변환을 일으켜 유사 휘발유의 검출용으로 적합함을 알 수 있다.As shown in FIG. 21 and FIG. 22, it can be seen that the reflection wavelength of the photonic crystal structure of the example is changed according to the kind of the compound to be contacted, so that the displayed color is different. In particular, when the photonic crystal structure is in contact with genuine gasoline, the change in reflection wavelength does not occur compared with before contact, and thus there is almost no color change, but an aromatic organic solvent such as benzene, toluene and xylene or an alcoholic organic such as ethanol and methanol In the case of contact with the solvent, it can be seen that the shift of the reflection wavelength is large, resulting in a clear color change. Moreover, the reflection wavelength and the shifted reflection wavelength of the photonic crystal structure correspond to the visible light region, so that the color conversion of the photonic crystal structure can be visually observed. Thus, it can be seen that the photonic crystal structure according to an embodiment of the present invention does not cause color conversion to genuine gasoline, but is suitable for detecting pseudo gasoline by causing color conversion only for pseudo gasoline.
또한, 광결정 구조체의 반사 파장 시프트 정도는 에탄올, 메탄올, 자일렌, 톨루엔 및 벤젠 순서대로 크다. 이는, 상술한 바와 같이 자일렌, 톨루엔 및 벤젠 순서대로 용해도 파라미터의 값이 증가하여, 상기 실시예에서 제조한 광결정 구조체 내 폴리머의 팽윤 정도가 상기 순서대로 증가했음을 의미한다. 따라서, 상기 광결정 구조체를 포함하는 광센서를 이용하여 유사 석유 내에 포함되어 있는 벤젠, 톨루엔 및 자일렌 등의 방향족계 유기 용매의 종류를 확인할 수 있다.The degree of reflection wavelength shift of the photonic crystal structure is larger in order of ethanol, methanol, xylene, toluene and benzene. This means that as described above, the values of the solubility parameters in the order of xylene, toluene and benzene increased, so that the degree of swelling of the polymer in the photonic crystal structure prepared in the above example increased in this order. Therefore, the type of aromatic organic solvent, such as benzene, toluene and xylene, included in the pseudo petroleum can be identified using the optical sensor including the photonic crystal structure.
실험예Experimental Example 5: 유사 석유 형태에 따른  5: according to similar petroleum type 색변환Color conversion 관찰 observe
정품 휘발유에 톨루엔이 혼합된 형태의 유사 휘발유의 검출이 가능한지 확인하기 위하여, 정품 휘발유에 다양한 비율로 톨루엔이 혼합된 유사 휘발유를 제조하여, 상기 실시예 5에서 제조한 광센서를 유사 휘발유에 더 이상 색 변화가 없을 때까지 담근 후, 변화된 색을 관찰하였고, 그 사진을 도 23a에 나타내었다.In order to check whether the similar gasoline in the form of toluene mixed with genuine gasoline can be detected, pseudo gasoline mixed with toluene in various ratios with genuine gasoline is manufactured, and the optical sensor manufactured in Example 5 is no longer used for the gasoline. After soaking until no color change, the changed color was observed, and the photograph is shown in FIG. 23A.
또한, 상기 정품 휘발유에 다양한 비율로 톨루엔이 혼합된 유사 휘발유에 따른 상기 실시예 5에서 제조한 광센서의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 표 6 및 도 23b에 나타내었다.In addition, the specular reflectance of the optical sensor manufactured in Example 5 according to pseudo gasoline mixed with toluene at various ratios in the genuine gasoline was measured using a reflectometer (USB 4000, Ocean Optics), and the results are shown in Table 6 and It is shown in Figure 23b.
Figure PCTKR2017005917-appb-T000006
Figure PCTKR2017005917-appb-T000006
또한, 정품 휘발유에 메탄올이 혼합된 형태의 유사 휘발유의 검출이 가능한지 확인하기 위하여, 정품 휘발유에 다양한 비율로 메탄올이 혼합된 유사 휘발유를 제조하여, 상기 실시예 5에서 제조한 광센서를 유사 휘발유에 더 이상 색변화가 없을 때까지 담근 후, 변화된 색을 관찰하였고, 그 사진을 도 24a에 나타내었다. 또한, 상기 정품 휘발유에 다양한 비율로 메탄올이 혼합된 유사 휘발유에 따른 상기 실시예 5에서 제조한 광센서의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 도 24b에 나타내었다.In addition, in order to check whether the pseudo gasoline in the form of methanol mixed with genuine gasoline can be detected, a pseudo gasoline in which methanol is mixed in various ratios with the genuine gasoline is prepared, and the optical sensor prepared in Example 5 is used for the pseudo gasoline. After soaking until no color change, the changed color was observed, and the photograph is shown in FIG. 24A. In addition, the specular reflectance of the optical sensor prepared in Example 5 according to pseudo gasoline mixed with methanol at various ratios in the genuine gasoline was measured using a reflectometer (USB 4000, Ocean Optics), and the result is shown in FIG. 24B. Indicated.
또한, 정품 휘발유 없이 시너, 톨루엔 및 메탄올이 혼합된 형태의 유사 휘발유의 검출이 가능한지 확인하기 위하여, 시너, 톨루엔 및 메탄올이 다양한 비율로 혼합된 유사 휘발유를 제조하여, 상기 실시예 5에서 제조한 광센서를 유사 휘발유에 더 이상 색 변화가 없을 때까지 담근 후, 변화된 색을 관찰하였고, 그 사진을 도 25a에 나타내었다. 또한, 시너, 톨루엔 및 메탄올이 다양한 비율로 혼합된 유사 휘발유에 따른 상기 실시예 5에서 제조한 광센서의 정반사도를 Reflectometer(USB 4000, Ocean Optics)를 이용하여 측정하였고, 그 결과를 도 25b에 나타내었다.In addition, in order to determine whether it is possible to detect similar gasoline in the form of a mixture of thinner, toluene and methanol without using genuine gasoline, an analogous gasoline in which the thinner, toluene and methanol are mixed in various ratios is prepared, and thus the light prepared in Example 5 After soaking the sensor until there is no color change in the pseudo gasoline, the changed color was observed and the photograph is shown in FIG. 25A. In addition, the specular reflectance of the optical sensor prepared in Example 5 according to pseudo gasoline in which thinner, toluene and methanol were mixed at various ratios was measured by using a reflectometer (USB 4000, Ocean Optics), and the result is illustrated in FIG. 25B. Indicated.
상기 도 23 내지 25에서 보는 바와 같이, 실시예 4의 광센서는 다양한 유사 휘발유와 접촉시 도 21에서 나타난 정품 휘발유와는 다르게 색이 변환되고, 유사 휘발유의 형태에 따라 반사 파장 시프트가 명확함을 확인하였고, 이에 따라 본 발명의 일 실시예에 따른 광센서를 이용하여 시중에서 유통되는 여러 종류의 유사 휘발유의 검출이 가능함을 알 수 있다.As shown in FIGS. 23 to 25, the optical sensor of Example 4 is different from the genuine gasoline shown in FIG. 21 when contacted with various similar gasoline, and the reflection wavelength shift is clear according to the shape of the pseudo gasoline. Accordingly, it can be seen that it is possible to detect several types of similar gasoline in the market using the optical sensor according to an embodiment of the present invention.
[부호의 설명][Description of the code]
10: 색변환 광결정 구조체 11: 기판10: color conversion photonic crystal structure 11: substrate
13: 제1 굴절률층 15: 제2 굴절률층13: first refractive index layer 15: second refractive index layer

Claims (14)

  1. 교대로 적층된, 제1 굴절률을 나타내는 제1 폴리머를 포함하는 제1굴절률층; 및 제2 굴절률을 나타내는 제2 폴리머를 포함하는 제2 굴절률층;을 포함하고,A first refractive index layer comprising a first polymer exhibiting a first refractive index, alternately stacked; And a second refractive index layer comprising a second polymer exhibiting a second refractive index,
    상기 제1 굴절률과 상기 제2 굴절률은 상이하고,The first refractive index and the second refractive index are different,
    상기 제1 폴리머 및 상기 제2 폴리머 중 하나는, 하기 화학식 1로 표시되는 코폴리머인, 색변환 광결정 구조체:One of the first polymer and the second polymer is a copolymer represented by Formula 1, color conversion photonic crystal structure:
    [화학식 1][Formula 1]
    Figure PCTKR2017005917-appb-I000012
    Figure PCTKR2017005917-appb-I000012
    (식 중, R1 및 R2는 각각 독립적으로 수소 또는 C1-3 알킬이고,(Wherein R 1 and R 2 are each independently hydrogen or C 1-3 alkyl,
    X1은 C1-10 플루오로알킬이고,X 1 is C1-10 fluoroalkyl,
    L1은 O 또는 NH이고,L 1 is O or NH,
    Y1은 벤조일페닐이고,Y 1 is benzoylphenyl,
    상기 벤조일페닐은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,The benzoylphenyl is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C 1-5 alkyl and C 1-5 alkoxy,
    n 및 m은 각각 독립적으로 1 이상의 정수이고,n and m are each independently an integer of 1 or more,
    n+m은 100 내지 1,000임).n + m is from 100 to 1,000).
  2. 청구항 1에 있어서, R1 및 R2는 각각 독립적으로 수소 또는 메틸이고,The method according to claim 1, R 1 and R 2 are each independently hydrogen or methyl,
    X1은 플루오로메틸, 디플루오로메틸, 트리플루오로메틸, 1-플루오로에틸, 2-플루오로에틸, 1,1-디플루오로에틸, 1,2-디플루오로에틸, 2,2-디플루오로에틸, 1,1,2-트리플루오로에틸, 1,2,2-트리플루오로에틸, 2,2,2-트리플루오로에틸, 1-플로오로프로필, 2-플루오로프로필, 1,1-디플루오로프로필, 1,2-디플루오로프로필, 2,2-디플루오로프로필, 1,1,2-트리플루오로프로필, 1,2,2-트리플루오로프로필, 2,2,2-트리플루오로프로필, 1-플로오로부틸, 2-플루오로부틸, 1,1-디플루오로부틸, 1,2-디플루오로부틸, 2,2-디플루오로부틸, 1,1,2-트리플루오로부틸, 1,2,2-트리플루오로부틸 또는 2,2,2-트리플루오로부틸인, 색변환 광결정 구조체.X 1 is fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 1,1-difluoroethyl, 1,2-difluoroethyl, 2,2 -Difluoroethyl, 1,1,2-trifluoroethyl, 1,2,2-trifluoroethyl, 2,2,2-trifluoroethyl, 1-fluoropropyl, 2-fluoropropyl , 1,1-difluoropropyl, 1,2-difluoropropyl, 2,2-difluoropropyl, 1,1,2-trifluoropropyl, 1,2,2-trifluoropropyl, 2,2,2-trifluoropropyl, 1-fluorobutyl, 2-fluorobutyl, 1,1-difluorobutyl, 1,2-difluorobutyl, 2,2-difluorobutyl, Color converting photonic crystal structure, which is 1,1,2-trifluorobutyl, 1,2,2-trifluorobutyl or 2,2,2-trifluorobutyl.
  3. 청구항 1에 있어서, 상기 화학식 1로 표시되는 코폴리머는 n:m의 몰비가 100:1 내지 100:10이고, 수 평균 분자량이 10,000 내지 100,000 g/mol인, 색변환 광결정 구조체.The color conversion photonic crystal structure of claim 1, wherein the copolymer represented by Chemical Formula 1 has a molar ratio of n: m of 100: 1 to 100: 10 and a number average molecular weight of 10,000 to 100,000 g / mol.
  4. 청구항 1에 있어서, 상기 제1 폴리머 및 상기 제2 폴리머 중 다른 하나는, 하기 화학식 2로 표시되는 코폴리머인, 색변환 광결정 구조체:The color converting photonic crystal structure of claim 1, wherein the other of the first polymer and the second polymer is a copolymer represented by the following Chemical Formula 2:
    [화학식 2][Formula 2]
    Figure PCTKR2017005917-appb-I000013
    Figure PCTKR2017005917-appb-I000013
    (식 중, (In the meal,
    R3 및 R4는 각각 독립적으로 수소 또는 C1-3 알킬이고,R 3 and R 4 are each independently hydrogen or C 1-3 alkyl,
    R11은 하이드록시, 시아노, 니트로, 아미노, SO3H, SO3(C1- 5알킬), C1-10 알킬 또는 C1-10 알콕시이고,R 11 is hydroxy, cyano, nitro, and amino, SO 3 H, SO 3 ( C 1- 5 alkyl), C 1-10 alkyl or C 1-10 alkoxy,
    a1은 0 내지 5의 정수이고,a1 is an integer of 0 to 5,
    L2는 O 또는 NH이고,L 2 is O or NH,
    Y2는 벤조일페닐이고,Y 2 is benzoylphenyl,
    상기 벤조일페닐은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,The benzoylphenyl is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C 1-5 alkyl and C 1-5 alkoxy,
    n' 및 m'는 각각 독립적으로 1 이상의 정수이고,n 'and m' are each independently an integer of 1 or more,
    n'+ m'는 100 내지 1,000임).n '+ m' is between 100 and 1,000).
  5. 청구항 4에 있어서, R3 및 R4는 각각 독립적으로 수소 또는 메틸이고, R11은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, sec-부틸, 또는 tert-부틸이고, a1은 0, 1 또는 2인, 색변환 광결정 구조체.The compound of claim 4, wherein R 3 and R 4 are each independently hydrogen or methyl, R 11 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, or tert-butyl, a1 is 0, 1 Or 2, a color conversion photonic crystal structure.
  6. 청구항 4에 있어서, 상기 화학식 2로 표시되는 코폴리머는 n':m'의 몰비가 100:1 내지 100:20이고, 수 평균 분자량이 10,000 내지 300,000 g/mol인, 색변환 광결정 구조체.The color conversion photonic crystal structure according to claim 4, wherein the copolymer represented by Chemical Formula 2 has a molar ratio of n ': m' of 100: 1 to 100: 20 and a number average molecular weight of 10,000 to 300,000 g / mol.
  7. 청구항 1에 있어서, 상기 제1 굴절률층과 상기 제2 굴절률층의 총 적층수는 5 내지 30 층인, 색변환 광결정 구조체.The color conversion photonic crystal structure of claim 1, wherein the total number of stacked layers of the first refractive index layer and the second refractive index layer is 5 to 30 layers.
  8. 청구항 1에 있어서, 상기 제1 굴절률층이 두께가 30 내지 100 nm인 저굴절률층이고, 상기 제2 굴절률층이 두께가 20 내지 70 nm인 고굴절률층인, 색변환 광결정 구조체.The color conversion photonic crystal structure according to claim 1, wherein the first refractive index layer is a low refractive index layer having a thickness of 30 to 100 nm, and the second refractive index layer is a high refractive index layer having a thickness of 20 to 70 nm.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 광결정 구조체의 반사 파장은 외부 자극에 의해 시프트되고,The reflection wavelength of the photonic crystal structure is shifted by an external stimulus,
    상기 외부 자극은 유기 용매의 농도의 변화에 의한 것인, 색변환 광결정 구조체.The external stimulus is due to a change in the concentration of the organic solvent, color conversion photonic crystal structure.
  10. 청구항 1 내지 9 중 어느 한 항의 색변환 광결정 구조체를 포함하는, 색변환 광결정 센서.A color conversion photonic crystal sensor comprising the color conversion photonic crystal structure of claim 1.
  11. 청구항 1 내지 9 중 어느 한 항의 색변환 광결정 구조체를 포함하는 유사 석유 검출용 광센서.Claims 1 to 9 pseudo-petroleum detection optical sensor comprising the color conversion photonic crystal structure of any one of claims.
  12. 청구항 11에 있어서, 유사 석유와 접촉시 상기 제1 폴리머 또는 제2 폴리머의 팽윤에 의해 상기 광결정 구조체의 반사 파장이 시프트되는, 유사 석유 검출용 광센서.The optical sensor of claim 11, wherein the reflection wavelength of the photonic crystal structure is shifted by swelling of the first polymer or the second polymer upon contact with pseudo petroleum.
  13. 청구항 11에 있어서,The method according to claim 11,
    상기 유사 석유는 시너(Thinner), 방향족계 유기 용매, 또는 알코올계 유기용매를 포함하는, 유사 석유 검출용 광센서.The pseudo-petroleum includes a thinner, an aromatic organic solvent, or an alcohol-based organic solvent, optical sensor for detecting similar petroleum.
  14. 청구항 11의 광센서를 시료와 접촉시키는 단계; 및Contacting the optical sensor of claim 11 with a sample; And
    상기 광센서의 광결정 구조체의 색변환 여부를 확인하는 단계;를 포함하는 유사 석유 검출 방법.Checking whether or not the color conversion of the photonic crystal structure of the optical sensor; pseudo oil detection method comprising a.
PCT/KR2017/005917 2016-06-07 2017-06-07 Color transformation photonic crystal structure, color transformation photonic crystal sensor using same, and counterfeit petroleum detecting photosensor using same WO2017213419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160070547A KR101782783B1 (en) 2016-06-07 2016-06-07 Photo sensor for detecting adulterated petroleum
KR10-2016-0070547 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017213419A1 true WO2017213419A1 (en) 2017-12-14

Family

ID=60035893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005917 WO2017213419A1 (en) 2016-06-07 2017-06-07 Color transformation photonic crystal structure, color transformation photonic crystal sensor using same, and counterfeit petroleum detecting photosensor using same

Country Status (2)

Country Link
KR (1) KR101782783B1 (en)
WO (1) WO2017213419A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100319A (en) * 2019-12-17 2020-05-05 华南农业大学 Preparation method and application of amorphous photonic crystal structure color material for visual detection of ethylene gas concentration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763653B (en) * 2019-09-16 2023-12-29 深圳大学 Terahertz gas sensor based on polymer Bluoch surface wave
KR102501370B1 (en) * 2021-06-03 2023-02-17 한국화학연구원 Colorimetric photonic crystal structure and colorimetric photonic crystal sensor using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293802A1 (en) * 2009-10-16 2012-11-22 Opalux Incorporated Photonic crystal combinatorial sensor
KR101280480B1 (en) * 2012-04-12 2013-07-01 (주)티엘씨테크놀로지 System and method for monitoring gasoline
US9519066B2 (en) * 2014-10-29 2016-12-13 The University Of Massachusetts Photonic polymer multilayers for colorimetric radiation sensing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167139A (en) 1980-05-27 1981-12-22 Daikin Ind Ltd Sensitive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293802A1 (en) * 2009-10-16 2012-11-22 Opalux Incorporated Photonic crystal combinatorial sensor
KR101280480B1 (en) * 2012-04-12 2013-07-01 (주)티엘씨테크놀로지 System and method for monitoring gasoline
US9519066B2 (en) * 2014-10-29 2016-12-13 The University Of Massachusetts Photonic polymer multilayers for colorimetric radiation sensing

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIAPPELLI, M. C.: "Photonic Multilayer Sensors from Photo-Crosslinkable Polymer Films", ADVANCED MATERIALS, 10 September 2012 (2012-09-10), XP055585220 *
S AMYN, P.: "Colorimetric sensing properties of catechol-functional polymerized vesicles in aqueous solution and at solid surfaces", COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 13 September 2013 (2013-09-13), pages 242 - 254, XP028793750, DOI: doi:10.1016/j.colsurfa.2013.09.003 *
SAMYN, P.: "Fluorescent sensibility of microarrays through functionalized adhesive polydiacetylene vesicles", SENSORS AND ACTUATORS A: PHYSICAL, vol. 214, 1 August 2014 (2014-08-01), pages 45 - 57, XP055598684 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100319A (en) * 2019-12-17 2020-05-05 华南农业大学 Preparation method and application of amorphous photonic crystal structure color material for visual detection of ethylene gas concentration
CN111100319B (en) * 2019-12-17 2021-06-04 华南农业大学 Preparation method and application of amorphous photonic crystal structure color material for visual detection of ethylene gas concentration

Also Published As

Publication number Publication date
KR101782783B1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2016122117A1 (en) Metal complex and color conversion film comprising same
WO2015084122A1 (en) Block copolymer
WO2015084125A1 (en) Block copolymer
WO2015084121A1 (en) Block copolymer
WO2010095905A2 (en) Modified polyvinyl alcohol resins and adhesive, polarizer, and display device containing the same
WO2016053007A1 (en) Method for producing patterned substrate
WO2017047917A1 (en) Modified polyimide and curable resin composition containing same
WO2018034411A1 (en) Film touch sensor and structure for film touch sensor
WO2017213419A1 (en) Color transformation photonic crystal structure, color transformation photonic crystal sensor using same, and counterfeit petroleum detecting photosensor using same
WO2017111300A1 (en) Polyamic acid solution to which diamine monomer having novel structure is applied, and polyimide film comprising same
WO2021177748A1 (en) Compound and optical film comprising same
WO2017073923A1 (en) Compound and color conversion film comprising same
WO2017119761A1 (en) Film touch sensor and method for manufacturing same
WO2013100298A1 (en) Positive photosensitive resin composition
WO2018128381A1 (en) Photonic crystal structure and anti-forgery color conversion film comprising same
WO2022182014A1 (en) Photonic crystal structure and manufacturing method therefor
WO2014104496A1 (en) Monomer, hardmask composition including monomer, and method for forming pattern by using hardmask composition
WO2023177186A1 (en) Cnt film using click reaction, cnt-based biosensor using same, and manufacturing method therefor
WO2020153655A1 (en) Film touch sensor and manufacturing method therefor
WO2023191535A1 (en) Patterned cnt film-coated substrate using click reaction and manufacturing method therefor
WO2020159086A1 (en) Polyamide resin film and resin laminate using same
WO2023167562A1 (en) Optical film, composition for forming coating layer, and electronic device
WO2018066941A1 (en) Colorimetric photonic crystal structure and colorimetric photonic crystal sensor using same
WO2019160355A1 (en) Film touch sensor and structural body for film touch sensor
WO2021221374A1 (en) Polyamide-based composite film and display device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810542

Country of ref document: EP

Kind code of ref document: A1