WO2017213342A1 - 동기신호 전송 장치 및 동기신호 전송 방법 - Google Patents

동기신호 전송 장치 및 동기신호 전송 방법 Download PDF

Info

Publication number
WO2017213342A1
WO2017213342A1 PCT/KR2017/003820 KR2017003820W WO2017213342A1 WO 2017213342 A1 WO2017213342 A1 WO 2017213342A1 KR 2017003820 W KR2017003820 W KR 2017003820W WO 2017213342 A1 WO2017213342 A1 WO 2017213342A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
radio resource
synchronization signal
unit
resource blocks
Prior art date
Application number
PCT/KR2017/003820
Other languages
English (en)
French (fr)
Inventor
최창순
나민수
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Priority to EP17810465.9A priority Critical patent/EP3471293B1/en
Priority to CN201780011938.5A priority patent/CN108702232B/zh
Priority to JP2018552728A priority patent/JP6817327B2/ja
Priority to ES17810465T priority patent/ES2957713T3/es
Publication of WO2017213342A1 publication Critical patent/WO2017213342A1/ko
Priority to US16/054,199 priority patent/US11071075B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0016Combination with other multiplexing techniques with FDM/FDMA and TDM/TDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation

Definitions

  • the present invention relates to a synchronization technique in a MIMO system.
  • the present invention relates to a technique for improving overall beamforming synchronization performance by enabling fast beam tracking in a receiver in performing synchronization between transmitters and receivers in a MIMO system.
  • the beamforming technique is a technique on the premise that a plurality of antennas of a transmitter and a number of antennas of a receiver are provided.
  • MIMO Multiple Input Multiple
  • the largest gains in the transmission capacity gain are the diversity gain and multiplexing gain through beamforming.
  • an optimal beam having the best channel environment is selected among the antenna beams of various directions / forms that can be formed in the transmitter and the antenna beams that can form in the receiver. It is very important to choose and synchronize.
  • the present invention is to propose a method for improving the overall beamforming synchronization performance by enabling fast beam tracking in the receiving apparatus.
  • An object of the present invention is to improve the overall beamforming synchronization performance by enabling fast beam tracking in a receiver in performing timing synchronization and beamforming synchronization between a transmitter and a receiver in a MIMO system.
  • Synchronization signal transmission apparatus for timing synchronization, timing synchronization performing unit for transmitting the first synchronization signal for frequency synchronization and the second synchronization signal for frame synchronization to the terminal; And a beamforming synchronization performing unit configured to transmit, to the terminal, a third synchronization signal formed in different directions through a plurality of antennas for beamforming synchronization.
  • the wireless resource configuration unit further comprises a plurality of radio resource blocks that combine two or more neighboring units of radio resources, which are divided into specific units, in a radio resource designated for inter-device synchronization;
  • the beamforming synchronization performing unit may perform beamforming synchronization based on the beam synchronization signal by transmitting a beam synchronization signal as the third synchronization signal through antenna beams in different directions formed for each of the plurality of radio resource blocks.
  • the number of unit radio resources constituting the radio resource block may be determined according to the number of antenna beams that can be formed by a receiving apparatus that receives the beam synchronization signal.
  • the receiving device receives the beam synchronizing signal through two or more antenna beams formed in different directions, and performs beamforming synchronization based on the beam synchronizing signal;
  • Each of the two or more antenna beams may be formed using a combination of unit radio resources assigned to each of the plurality of radio resource blocks.
  • the radio resource is one of a plurality of symbols in a downlink sync channel subframe allocated periodically;
  • the beamforming synchronization performing unit may transmit a beam synchronization signal in a direction different from a previous symbol for each of the plurality of radio resource blocks in each of the plurality of symbols.
  • the radio resource configuration unit in the radio resource, configures an information transmission block for transmitting communication system related information between each of the radio resource blocks, the information allocated to the information transmission block, information transmission block and It may be transmitted through an antenna beam formed in any one of two neighboring radio resource blocks.
  • the specific unit may be a minimum frequency unit of radio resources required to form one antenna beam in the receiver.
  • Synchronization signal transmission method timing synchronization, timing synchronization performing step for transmitting the first synchronization signal for frequency synchronization and the second synchronization signal for frame synchronization to the terminal; And a beamforming synchronization performing step of transmitting, to the terminal, a third synchronization signal formed in different directions through a plurality of antennas for beamforming synchronization.
  • the method further includes a radio resource configuration step of constituting a plurality of radio resource blocks combining two or more neighboring units of unit radio resources divided into specific units in a radio resource designated for inter-device synchronization; And the beamforming synchronization performing step, by transmitting a beam synchronization signal through antenna beams in different directions formed for each of the plurality of radio resource blocks, to perform beamforming synchronization based on the beam synchronization signal.
  • the receiving device receives the beam synchronizing signal through two or more antenna beams formed in different directions, and performs beamforming synchronization based on the beam synchronizing signal;
  • Each of the two or more antenna beams may be formed using a combination of unit radio resources assigned to each of the plurality of radio resource blocks.
  • the radio resource is one of a plurality of symbols in a subframe of a downlink sync channel that is periodically allocated;
  • the beamforming synchronization performing step may transmit a beam synchronization signal in a direction different from a previous symbol for each of the plurality of radio resource blocks in each of the plurality of symbols.
  • a method for configuring a radio resource structure of a downlink sync channel includes two or more neighboring units of radio resources of a downlink sync channel, which are allocated at predetermined intervals, among unit radio resources divided into specific units. Comprising a plurality of radio resource blocks combined; And mapping each of the plurality of radio resource blocks to each of a plurality of transmission antennas so that beam synchronization signals are transmitted through antenna beams of different directions formed for each of the plurality of radio resource blocks in each of the plurality of transmission antennas. It includes.
  • an information transmission block for transmitting communication system-related information between each of the radio resource blocks, and each of the information transmission block, which of the two radio resource blocks neighboring the information transmission block One may further include mapping to the mapped transmission antenna.
  • the radio resource includes a plurality of beam synchronization frequency domains including the plurality of radio resource blocks and the information transmission block for beamforming synchronization, and a timing synchronization frequency domain including radio resource blocks for timing synchronization.
  • the timing synchronization frequency domain may have a structure located between the two beam synchronization frequency domains.
  • the number of unit radio resources constituting the radio resource block may be determined according to the number of antenna beams that can be formed by a receiving apparatus that receives the beam synchronization signal.
  • the present invention in performing synchronization between transmitting / receiving devices in a MIMO system, it is possible to achieve fast beam tracking at the receiving device to improve the overall beamforming synchronization performance.
  • FIG. 1 is an exemplary view showing a MIMO system to which the present invention is applied.
  • FIG. 2 is an exemplary view showing a configuration of a synchronization signal transmission apparatus according to an embodiment of the present invention.
  • 3 and 5 are exemplary diagrams illustrating a radio resource structure of a downlink synchronization channel according to embodiments of the present invention.
  • FIG. 4 is an exemplary view showing a flow of a synchronization signal transmission method according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is an exemplary view showing a MIMO system according to the present invention.
  • MIMO Multiple Input Multiple Output
  • MIMO is a technology that expects a capacity gain that is proportional to the number of transmit antennas and receive antennas, even if no additional frequency or power is used. Diversity gain and multiplexing gain through.
  • Beamforming techniques used in MIMO systems are divided into digital beamforming, analog beamforming, and hybrid beamforming.
  • the multiple beams formed by the digital beamforming technique can be used as a means of improving the diversity of the receiving end to increase the signal quality (SINR), and also separating the multiple receiving end into different beams so as to have different signals. It can be used as multiplexing to receive.
  • SINR signal quality
  • a plurality of directions / types of antenna beams and receivers that can be formed in a transmitter, between a transmitter and a receiver may be used.
  • the antenna beams of various directions / forms that can be formed it is very important to select and synchronize the optimal beam having the best channel environment.
  • the transmitter corresponds to the base station 100 illustrated in FIG. 1
  • the receiver corresponds to each terminal illustrated in FIG. 1.
  • a transmitter for transmitting a synchronization signal will be collectively described as a base station 100 for timing synchronization and beamforming synchronization, and a receiver for receiving a synchronization signal will be described as a terminal 10. .
  • the transmitter that is, the base station 100, includes a plurality of antennas.
  • the receiving device that is, the terminal 10 is provided with two or more antennas.
  • the synchronization signal transmission device proposed by the present invention transmits a first synchronization signal for frequency synchronization and a second synchronization signal for frame synchronization to a terminal for timing synchronization.
  • the synchronization signal transmission apparatus proposed by the present invention transmits a third synchronization signal (hereinafter, referred to as a beam synchronization signal) that is formed in different directions through a plurality of antennas for beamforming synchronization to a terminal.
  • a beam synchronization signal a third synchronization signal that is formed in different directions through a plurality of antennas for beamforming synchronization to a terminal.
  • the synchronization signal transmission apparatus proposed in the present invention, in the radio resources designated for synchronization between the transmitting and receiving devices, that is, the base station 100 and the terminal 10, the neighboring two or more of the unit radio resources divided into specific units Beamforming synchronization based on the beam synchronization signal is performed by configuring a plurality of combined radio resource blocks and transmitting beam synchronization signals through antenna beams of different directions formed for each of the plurality of radio resource blocks.
  • the synchronization signal transmitting apparatus of the present invention is preferably the same as the performing agent performing timing synchronization and beamforming synchronization among the transmitting / receiving apparatus, i.e., the base station 100 and the terminal 10.
  • the same as the base station 100 I will explain.
  • the base station 100 as a synchronization signal transmission apparatus proposed by the present invention comprises a plurality of radio resource blocks that combine two or more neighbors among unit radio resources divided into specific units in a radio resource designated for synchronization between devices. do.
  • the base station 100 forms antenna beams in different directions for each of a plurality of radio resource blocks through each of a plurality of antennas provided therein.
  • the base station 100 performs beamforming synchronization based on the beam synchronization signal with the terminal 10 by transmitting a beam synchronization signal through antenna beams in different directions formed for each of a plurality of radio resource blocks. .
  • the number of unit radio resources constituting each radio resource block configured by the base station 100 may be determined according to the number of antenna beams that can be formed in the receiver 10 that receives the beam synchronization signal, that is, the terminal 10.
  • the terminal 10 forms antenna beams in different directions through each of two or more antennas provided by the terminal 10.
  • the terminal 10 receives beam synchronization signals through two or more antenna beams formed in different directions, and performs beamforming synchronization based on the beam synchronization signals with the base station 100.
  • each of the two or more antenna beams formed by the terminal 10 is formed using a combination of unit radio resources specified in each of the plurality of radio resource blocks described above in a radio resource designated for inter-device synchronization.
  • the receiving apparatus that is, the terminal 10
  • the receiving apparatus can quickly track the beam. This can reduce the failure rate of the beamforming synchronization, thereby improving the overall beamforming synchronization performance.
  • the apparatus 100 for synchronizing signals includes a first synchronization signal for frequency synchronization and a second synchronization signal for frame synchronization to a terminal for timing synchronization.
  • the synchronization signal transmission apparatus 100 in the radio resources designated for synchronization between devices, the radio resource configuration unit 110 for configuring a plurality of radio resource blocks combining two or more neighboring units of radio resources divided into specific units ) May be further included.
  • the base station 100 will be described as a synchronization signal transmission apparatus of the present invention.
  • the synchronization signal transmission apparatus 100 that is, the base station 100, of the present invention includes a plurality of antennas A, B, ... N.
  • the base station 100 is provided with eight antennas.
  • the radio resource configuring unit 110 configures a plurality of radio resource blocks combining two or more neighboring units of unit radio resources divided into specific units in a radio resource designated for device-to-device synchronization.
  • the radio resource designated for device-to-device synchronization means one of a plurality of symbols in a downlink sync channel subframe allocated periodically.
  • the MIMO system periodically transmits a synchronization signal for timing synchronization and beamforming synchronization between devices through a downlink synchronization channel.
  • every frame (eg, subframes 0 to 49 and 10ms) of the downlink synchronization channel may convert a subframe (0,25) at a designated position into a subframe for device-to-device synchronization. a).
  • the MIMO system may periodically transmit a synchronization signal for device-to-device synchronization every 5 ms through the downlink synchronization channel.
  • the subframe a for synchronizing between devices will be referred to as a synchronization subframe.
  • the synchronization subframe a includes a plurality of symbols, for example, 14 ODFM symbols.
  • the radio resource configuration unit 110 specifically describes a function (method) for configuring a radio resource (OFDM symbol in a synchronization subframe) structure of a downlink synchronization channel as follows.
  • the radio resource constructing unit 110 converts a radio resource designated for device-to-device synchronization, that is, a radio resource of an OFDM symbol in a synchronization subframe (a) into a timing synchronization frequency region for timing synchronization and a beam synchronization frequency for beamforming synchronization. It can be divided into regions.
  • the timing synchronization performing unit 130 transmits a first synchronization signal for frequency synchronization and a second synchronization signal for frame synchronization through a plurality of antenna beams formed in the timing synchronization frequency domain to perform timing synchronization.
  • the first synchronization signal may be a primary sync signal (PSS)
  • the second synchronization signal may be a secondary sync signal (SSS).
  • the timing synchronization performing unit 130 may transmit (transmit) more synchronization signals such as an enhanced sync signal (ESS) for timing synchronization.
  • ESS enhanced sync signal
  • the beamforming synchronization performing unit 120 transmits a third synchronization signal for beamforming synchronization through a plurality of antenna beams formed in the beam synchronization frequency region to perform beamforming synchronization.
  • the third synchronization signal may be a beam synchronization signal, specifically, a BRS (Beam Reference Signal).
  • BRS Beam Reference Signal
  • the radio resource configuring unit 110 divides radio resources of OFDM symbols into specific units in OFDM symbols in a synchronization subframe (a) of a radio resource designated for device-to-device synchronization, that is, a periodically allocated downlink synchronization channel.
  • the specific unit may be a minimum frequency unit of radio resources required to form one antenna beam in the reception apparatus, that is, the terminal 10.
  • the specific unit may be a unit defined on a RB (Radio Block) basis or may be a unit defined on a carrier basis of an RB.
  • RB Radio Block
  • a specific unit is a unit defined on the basis of RB and is one RB.
  • the radio resource configuring unit 110 divides the radio resources of the OFDM symbols into units of one RB in the OFDM symbols in the synchronization subframe (a) of the downlink sync channel that is periodically allocated.
  • the radio resources of the OFDM symbol in the synchronization subframe (a) of the synchronization channel will be divided into several unit radio resources in one RB unit.
  • the radio resource configuring unit 110 includes a plurality of radio resource blocks combining two or more neighboring units of multiple unit radio resources divided into one RB unit in OFDM symbols in the synchronization subframe (a) of the downlink sync channel. Make up.
  • the number of unit radio resources constituting each radio resource block may be determined according to the number of antenna beams that can be formed in the reception apparatus that receives the beam synchronization signal, that is, the BRS, that is, the terminal 10.
  • the terminal 10 includes four antennas to form four antenna beams.
  • the synchronization signal transmission apparatus 100 that is, the base station 100, the terminal 10 is already provided with four antennas by performing the previous beamforming synchronization or uplink control channel-based information transmission and reception process You may be grasping.
  • the radio resource configuration unit 110 is associated with four (or eight or twelve, etc.) four neighbors among several unit radio resources in the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel.
  • a plurality of radio resource blocks may be configured.
  • the radio resource configuration unit 110 synchronizes the downlink synchronization channel.
  • N neighbors the estimated number of preset units, the number of antennas of a terminal having the largest number of antennas among commercially available terminals
  • Multiple can be configured.
  • the radio resource configuration unit 110 configures a plurality of radio resource blocks as described above in the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel, the number of antennas provided by the base station 100, In other words, as many radio resource blocks as the number of antenna beams that can be formed in the base station 100 may be configured.
  • the radio resource configuration unit 110 configures eight radio resource blocks in an OFDM symbol in a synchronization subframe (a) of a downlink synchronization channel.
  • the radio resource configuring unit 110 may configure eight radio resource blocks in the form of combining four neighboring unit radio resources in the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel. have.
  • the number of unit radio resources in the radio resource block depends on the number of antennas of the receiver, that is, the terminal 10, the number of unit radio resources constituting the radio resource block decreases as the number of antennas of the terminal 10 decreases. As the number of antennas of the terminal 10 increases, it will increase.
  • the radio resource configuring unit 110 determines the number of antennas for all terminals (mobile phones, laptops, etc.) existing in the cell coverage of the base station 100, and thus the minimum number of terminal antennas or the maximum number. According to a result obtained by applying the number of terminal antennas of the terminal antennas or the minimum and maximum number of terminal antennas to a separately defined algorithm, it may be possible to flexibly adjust the number of unit radio resources in the radio resource block.
  • the radio resource configuring unit 110 maps each of a plurality of radio resource blocks, that is, eight radio resource blocks, to each of eight antennas provided by the plurality of transmission antennas, that is, the base station 100, and thus, each of the eight antennas. It is possible to form antenna beams in different directions for each of the RRCs.
  • radio resources designated for device-to-device synchronization that is, radio resources of OFDM symbols in the synchronization subframe (a) are divided into a timing synchronization frequency domain for timing synchronization and a beam synchronization frequency domain for beamforming synchronization.
  • the radio resources of the OFDM symbol in the synchronization subframe (a) are divided into two beam synchronization frequency domains and a timing synchronization frequency domain located between the two beam synchronization frequency domains.
  • the radio resource configuring unit 110 configures eight radio resource blocks in the form of combining four neighboring unit radio resources in the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel, Four radio resource blocks # 1, # 2, # 3, # 4 are configured in one of the beam synchronization frequency domains, and the remaining four radio resource blocks # 5, # 6, # 7, # 8 in the other one region. Can be configured.
  • radio resource blocks # 1, # 2, # 3, and # 4 are shown for convenience.
  • PBCH information transmission block
  • MIN Master Information Block
  • SIB System Information Block
  • the information transport block that is, the PBCH
  • the PBCH will belong to the beam synchronization frequency domain, depending on the premise between each radio resource block.
  • the radio resource of the OFDM symbol in the synchronization subframe (a) of the downlink sync channel is a radio resource block # 1, # 2 having four unit radio resources (b) combined.
  • # 3, # 4 PBCH between radio resource blocks # 1 and # 2, PBCH between radio resource blocks # 2 and # 3, PBCH between radio resource blocks # 3 and # 4, Includes a timing synchronization frequency domain for timing synchronization.
  • the radio resources of the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel are radio resource blocks # 5, # 6, # 7 having four unit radio resources (b) combined.
  • # 8 a PBCH between radio resource blocks # 5 and # 6, a PBCH between radio resource blocks # 6 and # 7, and a PBCH between radio resource blocks # 7 and # 8.
  • the timing synchronization performing unit 130 transmits synchronization signals for timing synchronization, that is, PSS, SSS, and ESS, through a plurality of antenna beams formed in the timing synchronization frequency domain to perform timing synchronization.
  • the base station 100 forms a plurality of antenna beams toward the entire area of the cell coverage of the base station 100 through each of the eight antennas provided by the base station 100.
  • timing synchronization performing unit 130 through the plurality of antenna beams toward the entire area within the cell coverage of the base station 100 formed in the timing synchronization frequency domain synchronization signals for timing synchronization, that is, PSS, SSS, and ESS In this manner, timing synchronization with the terminal 10 may be performed.
  • the beamforming synchronization performing unit 120 transmits a beam synchronization signal, that is, a BRS, through an antenna beam in different directions formed for each of a plurality of radio resource blocks # 1 to # 8, and performs BRS-based beamforming synchronization.
  • a beam synchronization signal that is, a BRS
  • the base station 100 forms antenna beams in different directions for each of the eight radio resource blocks # 1 to # 8 mapped to each antenna through each of the eight antennas included in the base station 100.
  • the beamforming synchronization performing unit 120 transmits the BRS through antenna beams A, B, C, D, ..., H in different directions formed for each of eight radio resource blocks # 1 to # 8. In this manner, BRS-based beamforming synchronization with the terminal 10 may be performed.
  • the base station 100 forms as many antenna beams A, B, C, D, ..., H as the number of antennas it has, but in view of each antenna beam one radio Four neighboring unit radio resources in the resource block are bundled to form the same antenna beam.
  • each of the eight radio resource blocks # 1 ⁇ # 8 through each of the eight antennas in a different direction than the previous OFDM symbol Form an antenna beam.
  • the beamforming synchronization performing unit 120 performs the BRS in a direction different from the previous OFDM symbol for each of eight radio resource blocks # 1 to # 8 in each of the OFDM symbols in the synchronization subframe (a) of the downlink synchronization channel. I can send it.
  • the information allocated to the PBCH for example, the MIB and the SIM, is preferably transmitted through an antenna beam formed in any one of two radio resource blocks neighboring the PBCH.
  • the radio resource configuration unit 110 maps each of the PBCHs to a transmission antenna to which one of two radio resource blocks adjacent to the PBCH is mapped, that is, to the antenna of the base station 100.
  • the information of this PBCH may be transmitted through an antenna beam formed in any one of two radio resource blocks # 1 and # 2 neighboring the PBCH. Can be.
  • the radio resource configuration unit 110 in the case of a PBCH between radio resource blocks # 1 and # 2, the base station 100 to which any one of the two radio resource blocks # 1 and # 2 are mapped. It can be mapped to the antenna of.
  • the information in the PBCH between the radio resource blocks # 1 and # 2 is equal to the radio resource block # 1.
  • information in the PBCH between radio resource blocks # 2 and # 3 is transmitted through the same antenna beam B, such as radio resource block # 2, and in the PBCH between radio resource blocks # 3 and # 4
  • the information may be transmitted through an antenna beam C such as radio resource block # 3.
  • the radio resource of the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel is configured by interleaving information related to the communication system, that is, the MIB and the SIM between the radio resource blocks, several antenna beams A, By simultaneously transmitting the same MIB and SIM through B, C, D, E, F, and G, frequency diversity gain through beamforming can be achieved.
  • the receiver that is, the terminal 10 forms antenna beams in different directions through each of two or more antennas provided in the receiver 10.
  • the terminal 10 includes four antennas to form four antenna beams in different directions.
  • the terminal 10 performs BRS-based beamforming synchronization with the base station 100 by receiving a beam synchronization signal, that is, BRS, through four antenna beams formed in different directions.
  • a beam synchronization signal that is, BRS
  • each of the four antenna beams formed by the terminal 10 is formed by using a combination of unit radio resources specified in each of the plurality of radio resource blocks described above in the radio resources designated for inter-device synchronization. Is that.
  • the terminal 10 for each of four antennas is a unit radio resource assigned to each of a plurality of radio resource blocks # 1 to # 8 in radio resources of OFDM symbols in the synchronization subframe a of the downlink sync channel.
  • the antenna beams 1, 2, 3, and 4 are formed using the combination of.
  • the method of designating a unit radio resource of each radio resource block for each antenna in the reception apparatus may be a random method or a sequential method.
  • the reception apparatus designates a unit radio resource of each radio resource block for each antenna in a sequential manner.
  • the terminal 10 uses the sequentially designated unit radio resource 1 of the radio resource block # 1 to form the antenna beam 1, and forms the antenna beam 2.
  • Uses radio resources 1-2 in sequentially designated units of radio resource block # 1 uses radio resources 1-3 in sequentially specified units of radio resource block # 1 for antenna beam 3 formation, Radio resource 1-4 in sequentially designated unit of resource block # 1 will be used.
  • the terminal 10 forms the antenna beam 1, the unit radio resource 1-1 of the radio resource block # 1, the unit radio resource 2-1 of the radio resource block # 2, and the unit radio of the radio resource block # 3.
  • Unit of resource 3-1, unit of radio resource block # 4 unit of radio resource 4-1, unit of radio resource block # 5 unit of radio resource 5-1, unit of radio resource block # 6 of radio resource 6-1, unit of radio resource block # 7 The unit radio resource 7-1 and the unit radio resource 8-1 of the radio resource block # 8 are used in combination.
  • the terminal 10 forms four antenna beams 1, 2, 3, and 4 in different directions, and receives the BRS through the antenna beams 1, 2, 3, and 4, and the base station 100. It will perform BRS-based beamforming synchronization with.
  • the terminal 10 forms as many antenna beams 1, 2, 3, and 4 as the number of antennas it has, and in terms of each antenna beam, a unit designated to each of eight radio resource blocks Eight unit radio resources are combined to form the same antenna beam.
  • the terminal 10 in each of the OFDM symbols in the synchronization subframe (a) of the downlink synchronization channel, the antenna beam A of the base station 100 for receiving the antenna beams 1, 2, 3, 4 formed by itself, A series of beam tracking measurements for measuring signal-to-interference-plus-noise ratio (SINR) for B, C, D, ..., H beams, i.e., BRS, and reporting them to the base station 100. The process is repeated.
  • SINR signal-to-interference-plus-noise ratio
  • the base station 100 determines the best beam (beam of the base station 00 and the beam pair of the terminal 10) having the best SINR, based on the information reported from the terminal 10, thereby the base station 100 And beam synchronization signal (BRS) based beamforming synchronization between the terminals 10.
  • BRS beam synchronization signal
  • the base station 100 determines the next-order beams (eg, second-order beams, third-order beams) in addition to the optimal beam having the best SINR for the terminal 10, and stores relevant information, thereby synchronizing the beamforming later. If the communication quality of the optimal beam determined before the re-execution is deteriorated, the next-order beam (eg, second-order beam, third-rank beam) is used when communicating with the terminal 10 by using the previously stored related information. It would also be possible.
  • the next-order beams eg, second-order beams, third-order beams
  • the terminal 10 may randomly use each PBCH interleaved between radio resource blocks when forming antenna beams 1, 2, 3, and 4, or use each PBCH. It can be used sequentially when forming the antenna beams 1, 2, 3, and 4.
  • the terminal 10 in the first OFDM symbol, PBCH between radio resource blocks # 1 and # 2 is used to form the antenna beam 1, between the radio resource blocks # 2 and # 3 PBCH is used to form antenna beam 2, PBCH between radio resource blocks # 3 and # 4 is used to form antenna beam 3, and PBCH between radio resource blocks # 5 and # 6 is formed to antenna beam 4 PBCH between radio resource blocks # 6 and # 7 may be used for antenna beam 1 formation, and PBCH between radio resource blocks # 7 and # 8 may be used for antenna beam 2 formation.
  • the terminal 10 uses the antenna beam 3 in the case of the PBCH between the radio resource blocks # 1 and # 2, and the antenna beam 4 in the case of the PBCH between the radio resource blocks # 2 and # 3.
  • PBCH between radio resource blocks # 3 and # 4 is used for formation
  • PBCH between radio resource blocks # 5 and # 6 is used for antenna beam2 formation.
  • the PBCH between # 6 and # 7 may be used to form the antenna beam 3
  • the PBCH between radio resource blocks # 7 and # 8 may be used to form the antenna beam 4.
  • the radio resource of the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel is configured by interleaving information related to the communication system, that is, the MIB and the SIM between the radio resource blocks, several antenna beams 1, By simultaneously receiving the same MIB and SIM via 2, 3, and 4, frequency diversity gain through beamforming is obtained.
  • the base station 100 forms as many antenna beams A, B, C, D, ..., H as the number of antennas it has, but in view of each antenna beam Beamforming based on a radio resource structure (OFDM symbol in a synchronization subframe) of a downlink sync channel, which combines two or more (eg, four) unit radio resources in one radio resource block to form the same antenna beam. Perform synchronization.
  • a radio resource structure OFDM symbol in a synchronization subframe
  • the terminal 10 forms as many antenna beams 1, 2, 3, and 4 as the number of antennas provided by the terminal 10, and in view of each antenna beam, a plurality (eg, eight) A radio resource structure (OFDM symbol in a synchronization subframe) of a downlink sync channel forming a same antenna beam by combining a plurality of unit radio resources (for example, eight) that combines unit radio resources specified in each radio resource block Based on the beamforming synchronization.
  • a radio resource structure OFDM symbol in a synchronization subframe
  • the receiver when beamforming synchronization is performed based on the radio resource structure of the downlink synchronization channel according to the present invention, the receiver, that is, the terminal 10, may quickly perform beam tracking during synchronization. This will result in fewer beamforming synchronization failures due to failure to track optimal beams.
  • the base station 100 bundles frequency unit radio resources to form one antenna beam, and the terminal 10 each of the frequency unit radio resources designated in the antenna beam for each antenna beam transmitted from the base station 100.
  • the terminal 10 receives the same beam synchronization signal (for example, BRS of the antenna beam A) from the base station 100 to generate several antenna beams (eg, antenna beams 1, 2, 3, 4).
  • BRS beam synchronization signal
  • the same beamforming synchronization performance may be obtained through an embodiment using a code division.
  • the base station 100 forms one antenna beam based on four different codes (eg, c1, c2, c3, c4).
  • the base station 100 forms four antenna beams different from each other when the antenna beams A, B, C, and D are formed in the radio resource blocks # 1, # 2, # 3, and # 4.
  • Form based on code eg c1, c2, c3, c4.
  • the terminal 10 forms each antenna beam in a radio resource block such as each antenna beam transmitted from the base station 100, but the terminal 10 has four different codes (for example, through its respective antenna beams). Receive a signal based on c1, c2, c3, c4).
  • each of its own antenna beam 1 Antenna beams from code division resources (1-C1,1-C2,1-C2,1-C4) divided based on four codes (e.g. c1, c2, c3, c4) through 2,3,4 It is possible to receive A's BRS.
  • the terminal 10 divides the BRSs of the antenna beams A, B, C ..., H from the base station 100 through the antenna beam 1 based on the code c1 (1). -C1,2-C1,3-C1,4-C1,5-C1,6-C1,7-C1,8-C1).
  • the base station 100 will be described with reference to the foregoing description as a synchronization signal transmission apparatus.
  • reaching the preset period means a transmission time of the synchronization subframe (a) of the downlink synchronization channel periodically allocated as described above with reference to FIG. 3.
  • the synchronization signal transmission method of the base station 100 is a timing for timing synchronization of radio resources of OFDM symbols in the synchronization subframe (a) of the downlink synchronization channel.
  • a synchronization frequency domain and a beam synchronization frequency domain for beamforming synchronization may be divided (configured) (S105).
  • the synchronization signal transmission method of the base station 100 includes two neighboring units of unit radio resources divided into specific units in a beam synchronization frequency region of an OFDM symbol in a synchronization subframe (a) of a downlink synchronization channel.
  • a plurality of radio resource blocks combining the above is configured (S110).
  • the synchronization signal transmission method of the base station 100 in the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel, a plurality of unit radios divided by one RB unit Eight radio resource blocks combining four neighboring resources may be configured.
  • the synchronization signal transmission method of the base station 100 maps each of the eight radio resource blocks to each of eight antennas provided by the base station 100, and each of the eight antennas for each of eight radio resource blocks. It is possible to form antenna beams in different directions.
  • the method of transmitting a synchronization signal of the base station 100 before the step S100, out of a plurality of unit radio resources divided by one RB unit in the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel.
  • the synchronization signal transmission method of the base station 100 interleaves an information transmission block (hereinafter referred to as PBCH) between each of the radio resource blocks (S120).
  • PBCH information transmission block
  • the PBCH may be interleaved between # 2, the PBCH may be interleaved between radio resource blocks # 2 and # 3, and the PBCH may be interleaved between radio resource blocks # 3 and # 4.
  • the method for transmitting a synchronization signal of the base station 100 is based on the radio resource block # 5 in the radio resource of the OFDM symbol in the synchronization subframe (a) of the downlink synchronization channel.
  • the PBCH may be interleaved between # 6, the PBCH may be interleaved between radio resource blocks # 6 and # 7, and the PBCH may be interleaved between radio resource blocks # 7 and # 8.
  • each of the PBCHs it is preferable to map each of the PBCHs to an antenna of the base station 100 to which one of two radio resource blocks adjacent to the PBCH is mapped.
  • the method for transmitting a synchronization signal of the base station 100 may include any one of two radio resource blocks # 1 and # 2. May be mapped to the antenna of the mapped base station 100.
  • the step S100 eight radio resource blocks and PBCHs are configured and mapped in OFDM symbols in the synchronization subframe (a) of the downlink synchronization channel.
  • the preset period (S100) it is also possible to check only the eight radio resource blocks and the PBCH configuration previously configured.
  • timing synchronization signals for example, PSS, SSS, and ESS
  • a beam synchronization signal for example, BRS
  • Timing synchronization with the terminal 10 may be performed by transmitting synchronization signals for timing synchronization, ie, PSS, SSS, and ESS, through the beam.
  • the synchronization signal transmission method of the base station 100 the antenna of different directions formed for each of a plurality of radio resource blocks # 1 ⁇ # 8 in the beam synchronization frequency region of the OFDM symbol in the synchronization subframe (a)
  • the beam synchronization signal, that is, BRS is transmitted through the beam to perform BRS-based beamforming synchronization.
  • each of eight radio resource blocks # 1 to # 8 mapped to each antenna is provided in a different direction through each of the eight antennas provided in the base station 100. Form an antenna beam.
  • the synchronization signal transmission method of the base station 100 the antenna beams A, B, C, D, ..., H in different directions formed for each of eight radio resource blocks # 1 ⁇ # 8
  • the BRS-based beamforming synchronization with the terminal 10 may be performed.
  • the antenna beams A, B, C, D, ..., H are formed as many as the number of antennas provided by the base station 100, but the viewpoint of each antenna beam In this case, four neighboring unit radio resources in one radio resource block are bundled to form the same antenna beam.
  • the synchronization signal transmission method of the base station 100 if previously defined radio resource block transmission (antenna mapping) of the two radio resource blocks neighboring the PBCH, as shown in FIG.
  • the information in the PBCH between the resource blocks # 1 and # 2 is transmitted through the same antenna beam A as the radio resource block # 1, and the information in the PBCH between the radio resource blocks # 2 and # 3 is the antenna such as the radio resource block # 2.
  • Transmission through the beam B, and information in the PBCH between the radio resource block # 3 and # 4 may be transmitted through the antenna beam C, such as the radio resource block # 3 (S130).
  • the synchronization signal transmission method of the base station 100 checks whether all of the radio resources of the downlink synchronization channel, that is, the OFDM symbols in the synchronization subframe a, are used (S140). In other words, it is to check whether all 14 OFDM symbols in the synchronization subframe (a) are used.
  • the synchronization signal transmission method of the base station 100 if all 14 OFDM symbols in the synchronization subframe (a) are not used (S140 No), eight radio resources through each of eight antennas in the next OFDM symbol For each of blocks # 1 to # 8, antenna beams A, B, C, D, ..., H in different directions from the previous OFDM symbol are formed, and timing synchronization and beamforming synchronization with the terminal 10 are continuously performed. (S130).
  • the method of transmitting a synchronization signal of the base station 100 in each of the OFDM symbols in the synchronization subframe (a) of the downlink synchronization channel, eight radio resource blocks # 1 through # 8 through each of the eight antennas.
  • the BRS for beamforming synchronization can be transmitted for each of eight radio resource blocks # 1 to # 8 in a different direction from the previous OFDM symbol.
  • the method of transmitting a synchronization signal of the base station 100 if all 14 OFDM symbols in the synchronization subframe (a) are used (S140 Yes), the result of performing the timing synchronization and beamforming synchronization that have been performed so far.
  • the timing and the optimal beam between the base station 100 and the terminal 10 are determined based on S150.
  • the synchronization signal transmission method of the base station 100 forms the antenna beams A, B, C, D, ..., H as many as the number of antennas it has, but each antenna From the perspective of the beam, beamforming synchronization is based on a radio resource structure (OFDM symbol in a synchronization subframe) of a downlink synchronization channel that combines four neighboring unit radio resources in one radio resource block to form the same antenna beam.
  • a radio resource structure OFDM symbol in a synchronization subframe
  • the receiver that is, the terminal 10 forms the antenna beams 1, 2, 3, 4 as many as the number of antennas provided by the receiver 10.
  • a radio resource structure of a downlink sync channel (synchronization sub), which combines eight unit radio resources combining a specified unit radio resource in each of a plurality of radio resource blocks (eg, eight) to form the same antenna beam. Based on the OFDM symbol in the frame, beamforming synchronization is performed.
  • the receiver when timing synchronization and beamforming synchronization are performed based on the radio resource structure of the downlink synchronization channel according to the present invention, the receiver, that is, the terminal 10, may quickly perform beam tracking during synchronization. This will reduce the chance of failing to track the optimal beam and failing beamforming synchronization.
  • the present invention in performing synchronization between the base station 100 and the terminal 10, it is possible to improve the overall beamforming synchronization performance by enabling fast beam tracking in the terminal 10.
  • Implementations of the subject matter described in this specification may be implemented in digital electronic circuitry, computer software, firmware or hardware including the structures and structural equivalents disclosed herein, or one or more of them. It can be implemented in combination. Implementations of the subject matter described herein are one or more computer program products, ie one or more modules pertaining to computer program instructions encoded on a program storage medium of tangible type for controlling or by the operation of a processing system. Can be implemented.
  • the computer readable medium may be a machine readable storage device, a machine readable storage substrate, a memory device, a composition of materials affecting a machine readable propagated signal, or a combination of one or more thereof.
  • system encompasses all the instruments, devices, and machines for processing data, including, for example, programmable processors, computers, or multiple processors or computers.
  • the processing system may include, in addition to hardware, code that forms an execution environment for a computer program on demand, such as code constituting processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more thereof. .
  • Computer programs may be written in any form of programming language, including compiled or interpreted languages, or a priori or procedural languages. It can be deployed in any form, including components, subroutines, or other units suitable for use in a computer environment. Computer programs do not necessarily correspond to files in the file system.
  • a program may be in a single file provided to the requested program, in multiple interactive files (eg, a file that stores one or more modules, subprograms, or parts of code), or part of a file that holds other programs or data. (Eg, one or more scripts stored in a markup language document).
  • the computer program may be deployed to run on a single computer or on multiple computers located at one site or distributed across multiple sites and interconnected by a communication network.
  • Computer-readable media suitable for storing computer program instructions and data include, for example, semiconductor memory devices such as EPROM, EEPROM, and flash memory devices, such as magnetic disks such as internal hard disks or external disks, magneto-optical disks, and CDs. It may include all types of nonvolatile memory, media and memory devices, including -ROM and DVD-ROM disks.
  • semiconductor memory devices such as EPROM, EEPROM, and flash memory devices, such as magnetic disks such as internal hard disks or external disks, magneto-optical disks, and CDs. It may include all types of nonvolatile memory, media and memory devices, including -ROM and DVD-ROM disks.
  • the processor and memory can be supplemented by or integrated with special purpose logic circuitry.
  • Implementations of the subject matter described herein may include, for example, a backend component such as a data server, or include a middleware component such as, for example, an application server, or a web browser or graphical user, for example, where a user may interact with the implementation of the subject matter described herein. It may be implemented in a computing system that includes a front end component, such as a client computer with an interface, or any combination of one or more of such back end, middleware or front end components. The components of the system may be interconnected by any form or medium of digital data communication such as, for example, a communication network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)

Abstract

본 발명은, 빔 포밍 기술을 기반으로 통신하는 송/수신장치 간에 동기화를 수행하는데 있어서, 수신장치에서의 빠른 빔 트래킹(tracking)을 가능하게 하여 전체적인 빔포밍 동기화 성능을 향상시키는 기술이다.

Description

동기신호 전송 장치 및 동기신호 전송 방법
본 발명은, MIMO 시스템에서의 동기화 기술에 관한 것이다.
더욱 상세하게는, MIMO 시스템에서 송/수신장치 간에 동기화를 수행하는데 있어서, 수신장치에서의 빠른 빔 트래킹(tracking)을 가능하게 하여 전체적인 빔포밍 동기화 성능을 향상시키는 기술에 관한 것이다.
빔 포밍 기술은, 송신장치의 안테나 수 및 수신장치의 안테나 수를 다수 개 구비하는 것을 전제로 하는 기술이다.
빔 포밍 기술 기반의 통신을 수행하여, 주파수나 파워를 추가로 사용하지 않더라도 송신/수신 안테나 수와 비례하는 전송용량 이득을 기대할 수 있는 다양한 기술들이 등장하였으며, 그 대표적인 기술로는 MIMO(Multiple Input Multiple Output) 기술이 있다.
MIMO 기술의 통신 시스템(이하, MIMO 시스템)에서 전송용량 이득을 얻는 가장 큰 부분은, 빔 포밍을 통한 다이버시티(Divercity) 이득과 멀티플렉싱(Multiplexing) 이득이다.
빔 포밍 기술을 기반으로 통신하는 송/수신장치 간에는, 송신장치에서 형성 가능한 여러 방향/형태의 안테나 빔들 및 수신장치에서 형성 가능한 여러 방향/형태의 안테나 빔들 중, 채널 환경이 가장 우수한 최적의 빔을 선택하여 동기화하는 것이 매우 중요하다.
헌데, 현재까지의 빔 포밍 기술에서는, 송/수신장치 간에 타이밍 동기화 및 빔포밍 동기화를 수행하는 방식이 구체적으로 제안되어 있지 않은 실정이다.
따라서, 수신장치에서 빔 트래킹(tracking)을 빠르게 진행할 수 있고 이로 인해 송/수신장치 간 빔포밍 동기화의 실패율을 낮추어 전체적인 빔포밍 동기화 성능을 향상시킬 수 있는, 구체적인 방안이 요구되고 있다.
이에, 본 발명에서는, 수신장치에서의 빠른 빔 트래킹(tracking)을 가능하게 하여 전체적인 빔포밍 동기화 성능을 향상시키는 방안을 제안하고자 한다.
본 발명에서 도달하고자 하는 목적은, MIMO 시스템에서 송/수신장치 간에 타이밍 동기화 및 빔포밍 동기화를 수행하는데 있어서, 수신장치에서의 빠른 빔 트래킹(tracking)을 가능하게 하여 전체적인 빔포밍 동기화 성능을 향상시키는데 있다.
본 발명의 일 실시예에 따른 동기신호 전송 장치는, 타이밍 동기화를 위해, 주파수 동기화를 위한 제1동기신호 및 프레임 동기화를 위한 제2동기신호를 단말로 전송하는 타이밍동기화수행부; 및 빔포밍 동기화를 위해, 다수의 안테나를 통해 서로 다른 방향으로 형성되는 제3동기신호를 상기 단말로 전송하는 빔포밍동기화수행부를 포함한다.
구체적으로, 장치 간 동기화를 위해 지정된 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성하는 무선자원구성부를 더 포함하며; 상기 빔포밍동기화수행부는, 상기 다수 개의 무선자원블록 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 상기 제3동기신호로서의 빔 동기신호를 송신하여, 상기 빔 동기신호 기반의 빔포밍 동기화를 수행할 수 있다.
구체적으로, 상기 무선자원블록을 구성하는 단위 무선자원의 개수는, 상기 빔 동기신호를 수신하는 수신장치에서 형성 가능한 안테나 빔의 개수에 따라 결정될 수 있다.
구체적으로, 상기 수신장치는, 서로 다른 방향으로 형성되는 2 이상의 안테나 빔을 통해 상기 빔 동기신호를 수신하여, 상기 빔 동기신호 기반의 빔포밍 동기화를 수행하며; 상기 2 이상의 안테나 빔 각각은, 상기 다수 개의 무선자원블록 각각에 지정되어 있는 단위 무선자원의 조합을 이용해서 형성될 수 있다.
구체적으로, 상기 무선자원은, 주기적으로 할당되는 다운링크 동기채널 서브프레임 내 다수의 심볼 중 하나이며; 상기 빔포밍동기화수행부는, 상기 다수의 심볼 각각에서, 상기 다수 개의 무선자원블록 별로 이전 심볼과는 다른 방향으로 빔 동기신호를 송신할 수 있다.
구체적으로, 상기 무선자원구성부는, 상기 무선자원에서, 상기 무선자원블록 각각 사이에 통신시스템 관련 정보를 전송하기 위한 정보전송블록을 구성하며, 상기 정보전송블록에 할당되는 정보는, 정보전송블록과 이웃하는 2 개의 무선자원블록 중 어느 하나에서 형성되는 안테나 빔을 통해 송신될 수 있다.
구체적으로, 상기 특정 단위는, 상기 수신장치에서 하나의 안테나 빔을 형성하는데 요구되는 무선자원의 최소 주파수단위일 수 있다.
본 발명의 일 실시예에 따른 동기신호 전송 방법은, 타이밍 동기화를 위해, 주파수 동기화를 위한 제1동기신호 및 프레임 동기화를 위한 제2동기신호를 단말로 전송하는 타이밍동기화수행단계; 및 빔포밍 동기화를 위해, 다수의 안테나를 통해 서로 다른 방향으로 형성되는 제3동기신호를 상기 단말로 전송하는 빔포밍동기화수행단계를 포함한다.
구체적으로, 장치 간 동기화를 위해 지정된 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성하는 무선자원구성단계를 더 포함하며; 및 상기 빔포밍동기화수행단계는, 상기 다수 개의 무선자원블록 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 빔 동기신호를 송신하여, 상기 빔 동기신호 기반의 빔포밍 동기화를 수행할 수 있다.
구체적으로, 상기 수신장치는, 서로 다른 방향으로 형성되는 2 이상의 안테나 빔을 통해 상기 빔 동기신호를 수신하여, 상기 빔 동기신호 기반의 빔포밍 동기화를 수행하며; 상기 2 이상의 안테나 빔 각각은, 상기 다수 개의 무선자원블록 각각에 지정되어 있는 단위 무선자원의 조합을 이용해서 형성될 수 있다.
구체적으로, 상기 무선자원은, 주기적으로 할당되는 다운링크 동기채널의 서브프레임 내 다수의 심볼 중 하나이며; 상기 빔포밍동기화수행단계는, 상기 다수의 심볼 각각에서, 상기 다수 개의 무선자원블록 별로 이전 심볼과는 다른 방향으로 빔 동기신호를 송신할 수 있다.
본 발명의 일 실시예에 따른 다운링크 동기채널의 무선자원 구조를 구성하는 방법은, 기 설정된 주기마다 할당되는 다운링크 동기채널의 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개로 구성하는 단계; 및 상기 다수 개의 무선자원블록 각각을 다수 개의 송신안테나 각각에 맵핑시켜, 상기 다수 개의 송신안테나 각각에서 상기 다수 개의 무선자원블록 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 빔 동기신호가 송신되도록 하는 단계를 포함한다.
구체적으로, 상기 무선자원에서, 상기 무선자원블록 각각 사이에 통신시스템 관련 정보를 전송하기 위한 정보전송블록을 구성하며, 상기 정보전송블록 각각을, 정보전송블록과 이웃하는 2 개의 무선자원블록 중 어느 하나가 맵핑된 송신안테나에 맵핑시키는 단계를 더 포함할 수 있다.
구체적으로, 상기 무선자원은, 빔포밍 동기화를 위한 상기 다수 개의 무선자원블록과 상기 정보전송블록을 포함하는 2 개의 빔동기 주파수영역, 타이밍 동기화를 위한 무선자원블록을 포함하는 타이밍동기 주파수영역으로 구성되며, 상기 타이밍동기 주파수영역은, 상기 2 개의 빔동기 주파수영역 사이에 위치하는 구조를 가질 수 있다.
구체적으로, 상기 무선자원블록을 구성하는 단위 무선자원의 개수는, 상기 빔 동기신호를 수신하는 수신장치에서 형성 가능한 안테나 빔의 개수에 따라 결정될 수 있다.
본 발명에 따르면, MIMO 시스템에서 송/수신장치 간에 동기화를 수행하는데 있어서, 수신장치에서의 빠른 빔 트래킹(tracking)을 가능하게 하여 전체적인 빔포밍 동기화 성능을 향상시키는 효과를 도출한다.
도 1은 본 발명이 적용되는 MIMO 시스템을 보여주는 예시도이다.
도 2는 본 발명의 일 실시예에 따른 동기신호 전송 장치의 구성을 보여주는 예시도이다.
도 3 및 도 5는 본 발명의 실시예들에 따른 다운링크 동기채널의 무선자원 구조를 보여주는 예시도이다.
도 4는 본 발명의 일 실시예에 따른 동기신호 전송 방법이 진행되는 흐름을 보여주는 예시도이다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 명세서에 개시된 기술의 사상을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 명세서에 개시된 기술이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 명세서에 개시된 기술의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 명세서에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예들을 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 본 명세서에 개시된 기술을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 기술의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 기술의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 그 기술의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
이하에서는, 본 발명의 일 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대하여 설명한다.
도 1은 본 발명이 MIMO 시스템을 보여주는 예시도이다.
MIMO(Multiple Input Multiple Output) 기술은, 주파수나 파워를 추가로 사용하지 않더라도 송신안테나 수 및 수신안테나 수와 비례하는 전송용량 이득을 기대할 수 있는 기술로서, 전송용량 이득을 얻는 가장 큰 부분은 빔 포밍을 통한 다이버시티(Divercity) 이득과 멀티플렉싱(Multiplexing) 이득이다.
MIMO 시스템에서 사용하는 빔 포밍 기술은, 디지털 빔 포밍, 아날로그 빔 포밍, 하이브리드 빔 포밍으로 나뉜다.
디지털 빔 포밍 기술에 의해 형성된 다수의 빔은, 수신단의 다이버시티를 향상시켜 신호품질(SINR: Signal to Interference Noise Ratio)를 높이는 수단으로 사용될 수 있고, 또한 다수 수신단을 다른 빔으로 분리시켜 각각 다른 신호를 수신하도록 하는 멀티플렉싱으로 사용될 수 있다.
하지만, 디지털 빔 포밍 기술에서 형성하는 빔의 개수는, RF 체인의 개수에 의해 결정되기 때문에, 설치 비용이 증가하는 단점이 있다.
반면, 아날로그 빔 포밍 기술에서 형성하는 다수의 빔은, 수신단의 다이버시티를 향상시켜 신호품질(SINR)를 높이는 수단으로만 한정적으로 사용되는 단점이 있다.
결국, MIMO 시스템에서는, 설치 비용이 증가하는 디지털 빔 포밍 기술과 성능 이득이 한정된 아날로그 빔 포밍 기술의 단점 때문에, 이들 두 빔 포밍 기술을 결합한 형태의 하이브리드 빔 포밍 기술을 주로 사용한다.
이에 따라, 이하에서는 본 발명에서도 하이브리드 빔 포밍 기술을 언급하여 설명하도록 하겠다.
도 1에 도시된 바와 같이, 본 발명이 적용되는 빔 포밍 기술 예컨대 하이브리드 빔 포밍 기술을 사용하는 MIMO 시스템에서는, 송/수신장치 간에, 송신장치에서 형성 가능한 여러 방향/형태의 안테나 빔들 및 수신장치에서 형성 가능한 여러 방향/형태의 안테나 빔들 중, 채널 환경이 가장 우수한 최적의 빔을 선택하여 동기화하는 것이 매우 중요하다.
이때, 송신장치는 도 1에 도시된 기지국(100)에 해당하며, 수신장치는 도 1에 도시된 각 단말에 해당한다.
따라서, 이하 설명에서는, 타이밍 동기화 및 빔포밍 동기화를 동기신호를 전송하는 송신장치를 기지국(100)로 통칭하여 설명하고, 동기신호를 수신하는 수신장치를 단말(10)로 언급/통칭하여 설명하겠다.
송신장치 즉 기지국(100)은, 안테나를 다수 개 구비하고 있다.
수신장치 즉 단말(10)은, 안테나를 2 이상 구비하고 있다.
본 발명에서 제안하는 동기신호 전송 장치는, 타이밍 동기화를 위해, 주파수 동기화를 위한 제1동기신호 및 프레임 동기화를 위한 제2동기신호를 단말로 전송한다.
본 발명에서 제안하는 동기신호 전송 장치는, 빔포밍 동기화를 위해, 다수의 안테나를 통해 서로 다른 방향으로 형성되는 제3동기신호(이하, 빔 동기신호)를 단말로 전송한다.
특히, 본 발명에서 제안하는 동기신호 전송 장치는, 송/수신장치 즉 기지국(100) 및 단말(10) 간 동기화를 위해 지정된 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성하고, 다수 개의 무선자원블록 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 빔 동기신호를 송신하는 방식으로 빔 동기신호 기반의 빔포밍 동기화를 수행한다.
이러한 본 발명의 동기신호 전송 장치는, 송/수신장치 즉 기지국(100) 및 단말(10) 중에서 타이밍 동기화 및 빔포밍 동기화를 수행하는 수행 주체와 동일한 것이 바람직하며, 이하에서는 기지국(100)과 동일한 것으로 설명하겠다.
즉, 본 발명에서 제안하는 동기신호 전송 장치로서의 기지국(100)은, 장치 간 동기화를 위해 지정된 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성한다.
그리고, 기지국(100)은, 자신이 구비하고 있는 다수 개의 안테나 각각을 통해서 다수 개의 무선자원블록 별로 서로 다른 방향의 안테나 빔을 형성한다.
이에, 기지국(100)은, 다수 개의 무선자원블록 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 빔 동기신호를 송신하는 방식으로, 단말(10)과의 빔 동기신호 기반의 빔포밍 동기화를 수행한다.
이때, 기지국(100)이 구성한 각 무선자원블록을 구성하는 단위 무선자원의 개수는, 빔 동기신호를 수신하는 수신장치 즉 단말(10)에서 형성 가능한 안테나 빔의 개수에 따라 결정될 수 있다.
단말(10)은, 자신이 구비하고 있는 2 이상의 안테나 각각을 통해서 서로 다른 방향의 안테나 빔을 형성한다.
이에, 단말(10)은, 서로 다른 방향으로 형성되는 2 이상의 안테나 빔을 통해 빔 동기신호를 수신하는 방식으로, 기지국(100)과의 빔 동기신호 기반의 빔포밍 동기화를 수행한다.
이때, 단말(10)이 형성하는 2 이상의 안테나 빔 각각은, 장치 간 동기화를 위해 지정된 무선자원에서 전술한 다수 개의 무선자원블록 각각에 지정되어 있는 단위 무선자원의 조합을 이용해서 형성된다.
전술한 바와 같은 방식으로 기지국(100) 및 단말(10) 간에 빔 동기신호 기반의 빔포밍 동기화를 수행하면, 빔포밍 동기화를 수행하는데 있어서 수신장치 즉 단말(10)에서 빔 트래킹(tracking)을 빠르게 진행할 수 있고, 이로 인해 빔포밍 동기화의 실패율을 낮추어 전체적인 빔포밍 동기화 성능을 향상시킬 수 있다.
이하에서는, 본 발명에서 제안하는 동기화 수행 방식을 보다 구체적으로 설명하여, 전술의 효과들이 도출되는 과정을 설명하겠다.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 동기신호 전송 장치(100)는, 타이밍 동기화를 위해, 주파수 동기화를 위한 제1동기신호 및 프레임 동기화를 위한 제2동기신호를 단말로 전송하는 타이밍동기화수행부(130)과, 빔포밍 동기화를 위해, 다수의 안테나를 통해 서로 다른 방향으로 형성되는 제3동기신호를 단말로 전송하는 빔포밍동기화수행부(120)를 포함한다.
아울러, 동기신호 전송 장치(100)는, 장치 간 동기화를 위해 지정된 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성하는 무선자원구성부(110)를 더 포함할 수 있다.
이하 설명에서는, 본 발명의 동기신호 전송 장치로서 기지국(100)를 언급하여 설명하겠다.
본 발명의 동기신호 전송 장치(100) 즉 기지국(100)은, 다수 개의 안테나(A,B,...N)를 구비하고 있다. 이하에서는, 설명의 편의 상, 기지국(100)이 8개의 안테나를 구비한 것으로 가정하여 설명하겠다.
무선자원구성부(110)는, 장치 간 동기화를 위해 지정된 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성한다.
여기서, 장치 간 동기화를 위해 지정된 무선자원이란, 주기적으로 할당되는 다운링크 동기채널 서브프레임 내 다수의 심볼 중 하나를 의미한다.
구체적으로, MIMO 시스템에서는, 다운링크 동기채널을 통해, 장치 간 타이밍 동기화 및 빔포밍 동기화를 위한 동기신호를 주기적으로 전송한다.
예를 들면, 도 3에 도시된 바와 같이, 다운링크 동기채널의 매 프레임(예: 서브프레임0~49, 10ms) 마다 지정된 위치의 서브프레임(0,25)을 장치 간 동기화를 위한 서브프레임(a)으로 할당할 수 있다.
이렇게 되면, MIMO 시스템에서는, 다운링크 동기채널을 통해 장치 간 동기화를 위한 동기신호를 5ms 마다 주기적으로 전송할 수 있다.
이하에서는, 장치 간 동기화를 위한 서브프레임(a)을 동기화 서브프레임이라 명명하겠다.
여기서, 도 3에 도시된 바와 같이, 동기화 서브프레임(a)은, 다수의 심볼 예를 들면 14개의 ODFM 심볼로 이루어진다.
무선자원구성부(110)에서 다운링크 동기채널의 무선자원(동기화 서브프레임 내 OFDM 심볼) 구조를 구성하는 기능(방법)을 구체적으로 설명하면 다음과 같다.
무선자원구성부(110)는, 장치 간 동기화를 위해 지정된 무선자원, 즉 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원을, 타이밍 동기화를 위한 타이밍동기주파수영역과 빔포밍 동기화를 위한 빔동기주파수영역으로 구분(구성)할 수 있다.
이에, 타이밍동기화수행부(130)은, 타이밍동기주파수영역에서 형성되는 다수의 안테나 빔을 통해 주파수 동기화를 위한 제1동기신호 및 프레임 동기화를 위한 제2동기신호를 송신하여, 타이밍 동기화를 수행한다.
이때, 제1동기신호는 PSS(primary Sync Signal)일 수 있고, 제2동기신호는 SSS(Secondary Sync Signal)일 수 있다. 이외에도, 타이밍동기화수행부(130)은, 타이밍 동기화를 위해 ESS(Enhanced Sync Signal) 등 더 많은 동기신호를 송신(전송)할 수도 있다.
한편, 빔포밍동기화수행부(120)는, 빔동기주파수영역에서 형성되는 다수의 안테나 빔을 통해 빔포밍 동기화를 위한 제3동기신호를 송신하여, 빔포밍 동기화를 수행한다.
이때, 제3동기신호는, 빔 동기신호이며, 구체적으로는 BRS(Beam Reference Signal)일 수 있다.
이하에서는, 다운링크 동기채널의 무선자원(동기화 서브프레임 내 OFDM 심볼) 중, 빔동기주파수영역에 대해 구체적으로 설명하겠다.
무선자원구성부(110)는, 장치 간 동기화를 위해 지정된 무선자원 즉 주기적으로 할당되는 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, OFDM 심볼의 무선자원을 특정 단위로 구분한다.
여기서, 특정 단위는, 수신장치 즉 단말(10)에서 하나의 안테나 빔을 형성하는데 요구되는 무선자원의 최소 주파수단위일 수 있다.
특정 단위는, RB(Radio Block) 기준으로 정의되는 단위일 수도 있고, RB을 이루는 캐리어(Carrier)기준으로 정의되는 단위일 수도 있다.
이하에서는, 설명의 편의 상, 특정 단위는, RB 기준으로 정의되는 단위이며, 1개 RB인 것으로 가정하겠다.
이 경우, 무선자원구성부(110)는 주기적으로 할당되는 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, OFDM 심볼의 무선자원을 1개 RB 단위로 구분한다.
이렇게 되면, 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원은, 1개 RB 단위의 단위 무선자원 여러 개로 구분될 것이다.
그리고, 무선자원구성부(110)는 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, 1개 RB 단위로 구분된 여러 개의 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성한다.
이때, 각 무선자원블록을 구성하는 단위 무선자원의 개수는, 빔 동기신호 즉 BRS를 수신하는 수신장치 즉 단말(10)에서 형성 가능한 안테나 빔의 개수에 따라 결정될 수 있다.
예컨대, 단말(10)이 4개의 안테나를 구비하여 4개의 안테나 빔을 형성할 수 있다고 가정한다.
이때, 동기신호 전송 장치(100) 즉 기지국(100)에서, 이전의 빔포밍 동기화를 수행하는 과정 또는 업링크 제어채널 기반 정보 송수신 과정을 통해 단말(10)이 4개 안테나를 구비하고 있음을 이미 파악하고 있을 수 있다.
이 경우, 무선자원구성부(110)는, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, 여러 개의 단위 무선자원 중 이웃하는 4개(또는 8개 또는 12개 등, 4와 관련된 개수)를 결합한 무선자원블록을 다수 개 구성할 수 있다.
한편, 동기신호 전송 장치(100) 즉 기지국(100)에서, 단말(10)이 4개 안테나를 구비하고 있음을 파악하고 있지 못한 경우, 무선자원구성부(110)는, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, 여러 개의 단위 무선자원 중 이웃하는 N개(기 설정된 추정개수, 상용화된 단말들 중 가장 많은 수의 안테나를 구비한 단말의 안테나 개수)를 결합한 무선자원블록을 다수 개 구성할 수 있다.
이하에서는 설명의 편의 상, 이웃하는 4개의 단위 무선자원을 결합한 무선자원블록을 다수 개 구성하는 실시예를 언급하여 설명하겠다.
아울러, 무선자원구성부(110)는, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서 전술과 같이 다수 개의 무선자원블록을 구성하되, 기지국(100)이 구비하고 있는 안테나 수, 달리 말하면 기지국(100)에서 형성 가능한 안테나 빔의 개수 만큼의 무선자원블록을 구성할 수 있다.
이하에서는, 무선자원구성부(110)는, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, 8개의 무선자원블록을 구성하는 것으로 가정하겠다.
이렇게 되면, 무선자원구성부(110)는, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, 이웃하는 4개의 단위 무선자원을 결합한 형태의 무선자원블록을, 8개를 구성할 수 있다.
무선자원블록 내 단위 무선자원의 개수는, 수신장치 즉 단말(10)의 안테나 수에 따르므로, 무선자원블록을 구성하는 단위 무선자원의 개수는 단말(10)의 안테나 수가 작아질수록 작아지고, 단말(10)의 안테나 수가 많아질수록 많아질 것이다.
따라서, 무선자원구성부(110)는, 기지국(100)의 셀 커버리지 내 존재하는 모든 단말(이동전화, 노트북, 등)을 대상으로 안테나 수를 파악하여, 최소 개수의 단말 안테나 수, 또는 최대 개수의 단말 안테나 수, 또는 최소 개수 및 최대 개수의 단말 안테나 수를 별도 정의된 알고리즘에 적용하여 얻은 결과에 따라서, 무선자원블록 내 단위 무선자원의 개수를 유동적으로 조정하는 것도 가능할 것이다.
그리고, 무선자원구성부(110)는, 다수 개의 무선자원블록 즉 8개의 무선자원블록 각각을 다수 개의 송신안테나 즉 기지국(100)이 구비한 8개의 안테나 각각에 맵핑시켜, 8개의 안테나 각각에서 8개의 무선자원블록 별로 서로 다른 방향의 안테나 빔을 형성할 수 있도록 한다.
한편, 본 발명에서는, 장치 간 동기화를 위해 지정된 무선자원, 즉 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원을, 타이밍 동기화를 위한 타이밍동기주파수영역과 빔포밍 동기화를 위한 빔동기주파수영역으로 구분(구성)하되, 도 3에 도시된 바와 같이, 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원은, 2개의 빔동기주파수영역과, 2개의 빔동기주파수영역 사이에 위치하는 타이밍동기주파수영역으로 구성할 수 있다.
이 경우, 무선자원구성부(110)는, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, 이웃하는 4개의 단위 무선자원을 결합한 형태의 무선자원블록 8개를 구성하되, 2개의 빔동기주파수영역 중 하나의 영역에서 4개의 무선자원블록 #1,#2,#3,#4을 구성하고 나머지 하나의 영역에서 나머지 4개의 무선자원블록 #5,#6,#7,#8을 구성할 수 있다.
도 3에서는 편의 상, 4개의 무선자원블록 #1,#2,#3,#4 만을 도시하였다.
아울러, 무선자원구성부(110)는, 전술과 같이 구성한 무선자원블록 각각 사이에 통신시스템 관련 정보 예컨대 MIN(Master Information Block), SIB(System Information Block)를 전송하기 위한 정보전송블록(이하, PBCH(Physical Broadcasting Channel))을 구성할 수 있다.
물론, 정보전송블록 즉 PBCH는 무선자원블록 각각 사이에 위치하는 전제에 따라, 빔동기주파수영역에 속하게 될 것이다.
이렇게 되면, 도 3에 도시된 바와 같이, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원은, 단위 무선자원(b)를 4개 결합한 형태의 무선자원블록 #1,#2,#3,#4, 무선자원블록 #1과 #2 사이의 PBCH, 무선자원블록 #2과 #3 사이의 PBCH, 무선자원블록 #3과 #4 사이의 PBCH를 포함하는 빔동기주파수영역, 타이밍 동기화를 위한 타이밍동기주파수영역을 포함한다.
물론, 도 3에서는 생략되었지만, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원은, 단위 무선자원(b)를 4개 결합한 형태의 무선자원블록 #5,#6,#7,#8, 무선자원블록 #5과 #6 사이의 PBCH, 무선자원블록 #6과 #7 사이의 PBCH, 무선자원블록 #7과 #8 사이의 PBCH를 포함하는 빔동기주파수영역도 포함한다.
타이밍동기화수행부(130)은, 타이밍동기주파수영역에서 형성되는 다수의 안테나 빔을 통해 타이밍 동기화를 위한 동기신호들 즉 PSS, SSS, 및 ESS를 송신하여, 타이밍 동기화를 수행한다.
즉, 기지국(100)은, 자신이 구비하고 있는 8개의 안테나 각각을 통해, 기지국(100)의 셀 커버리지 내 전체 영역을 향해 다수의 안테나 빔을 형성한다.
이에, 타이밍동기화수행부(130)은, 타이밍동기주파수영역에서 형성되는 기지국(100)의 셀 커버리지 내 전체 영역을 향한 다수의 안테나 빔을 통해 타이밍 동기화를 위한 동기신호들 즉 PSS, SSS, 및 ESS를 송신하는 방식으로, 단말(10)과의 타이밍 동기화를 수행할 수 있다.
빔포밍동기화수행부(120)는, 다수 개의 무선자원블록 #1~#8 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 빔 동기신호 즉 BRS를 송신하여, BRS 기반의 빔포밍 동기화를 수행한다.
즉, 기지국(100)은, 자신이 구비하고 있는 8개의 안테나 각각을 통해서, 각 안테나에 맵핑되어 있는 8개의 무선자원블록 #1~#8 별로 서로 다른 방향의 안테나 빔을 형성한다.
이에, 빔포밍동기화수행부(120)는, 8개의 무선자원블록 #1~#8 별로 형성되는 서로 다른 방향의 안테나 빔A,B,C,D,...,H을 통해 BRS를 송신하는 방식으로, 단말(10)과의 BRS 기반의 빔포밍 동기화를 수행할 수 있다.
즉, 본 발명에서 기지국(100)은, 자신이 구비하고 있는 안테나 수 만큼의 안테나 빔A,B,C,D,...,H을 형성하되, 각 안테나 빔의 관점에서 볼 때 하나의 무선자원블록 내 이웃하는 단위 무선자원 4개를 묶어서 동일한 안테나 빔을 형성하는 것이다.
그리고, 기지국(100)은, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼 각각에서, 8개의 안테나 각각을 통해 8개의 무선자원블록 #1~#8 별로 이전 OFDM 심볼과는 다른 방향의 안테나 빔을 형성한다.
이에, 빔포밍동기화수행부(120)는, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼 각각에서, 8개의 무선자원블록 #1~#8 별로 이전 OFDM 심볼과는 다른 방향으로 BRS를 송신할 수 있다.
한편, PBCH에 할당되는 정보 예컨대 MIB 및 SIM는, PBCH와 이웃하는 2 개의 무선자원블록 중 어느 하나에서 형성되는 안테나 빔을 통해 송신되는 것이 바람직하다.
이를 위해, 무선자원구성부(110)는, PBCH 각각을, PBCH와 이웃하는 2 개의 무선자원블록 중 어느 하나가 맵핑된 송신안테나 즉 기지국(100)의 안테나에 맵핑시키는 것이 바람직하다.
예를 들어, 무선자원블록 #1과 #2 사이의 PBCH의 경우라면, 이 PBCH의 정보는 PBCH와 이웃하는 2 개의 무선자원블록 #1과 #2 중 어느 하나에서 형성되는 안테나 빔을 통해 송신될 수 있다.
이를 위해, 무선자원구성부(110)는, 무선자원블록 #1과 #2 사이의 PBCH의 경우라면, 이 PBCH를 2 개의 무선자원블록 #1과 #2 중 어느 하나가 맵핑된 기지국(100)의 안테나에 맵핑시킬 수 있다.
따라서, PBCH와 이웃하는 2 개의 무선자원블록 중 앞선 무선자원블록 송신을 사전 정의한다면, 도 3에 도시된 바와 같이, 무선자원블록 #1과 #2 사이의 PBCH 내 정보는 무선자원블록 #1과 같은 안테나 빔A를 통해 송신되고, 무선자원블록 #2과 #3 사이의 PBCH 내 정보는 무선자원블록 #2과 같은 안테나 빔B를 통해 송신되고, 무선자원블록 #3과 #4 사이의 PBCH 내 정보는 무선자원블록 #3과 같은 안테나 빔C를 통해 송신될 수 있다.
결국, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원에서, 통신시스템과 관련된 정보 즉 MIB 및 SIM를 무선자원블록 사이에 삽입(Interleaving)하여 구성하게 되면, 여러 안테나 빔A,B,C,D,E,F,G를 통해 동시에 동일한 MIB 및 SIM를 송신하게 됨으로써, 빔 포밍을 통한 주파수 다이버시티(Divercity) 이득을 꾀할 수 있다.
수신장치 즉 단말(10)은, 자신이 구비하고 있는 2 이상의 안테나 각각을 통해서 서로 다른 방향의 안테나 빔을 형성한다.
이하에서는, 단말(10)이 4개의 안테나를 구비하여 서로 다른 방향의 4개 안테나 빔을 형성하는 것으로 가정하겠다.
이에, 단말(10)은, 서로 다른 방향으로 형성되는 4개의 안테나 빔을 통해 빔 동기신호 즉 BRS를 수신하는 방식으로, 기지국(100)과의 BRS 기반의 빔포밍 동기화를 수행한다.
이때, 중요한 점은, 단말(10)이 형성하는 4개의 안테나 빔 각각은, 장치 간 동기화를 위해 지정된 무선자원에서 전술한 다수 개의 무선자원블록 각각에 지정되어 있는 단위 무선자원의 조합을 이용해서 형성된다는 점이다.
즉, 단말(10)은, 4개의 안테나 별로, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원에서, 다수 개의 무선자원블록 #1~#8 각각에 지정되어 있는 단위 무선자원의 조합을 이용해서 안테나 빔1,2,3,4를 형성하는 것이다.
여기서, 수신장치에서 안테나 별로 무선자원블록 각각의 단위 무선자원을 지정하는 방식은, 랜덤 방식일 수 있고 또는 순차 방식일 수 있다.
도 3에서는, 수신장치에서 안테나 별로 무선자원블록 각각의 단위 무선자원을 순차 방식으로 지정하는 경우로 도시하였다.
이에, 도 3의 무선자원블록 #1을 언급하여 설명하면, 단말(10)은 안테나 빔1 형성을 위해 무선자원블록 #1의 순차 지정된 단위 무선자원1-1을 이용하고, 안테나 빔2 형성을 위해 무선자원블록 #1의 순차 지정된 단위 무선자원1-2을 이용하고, 안테나 빔3 형성을 위해 무선자원블록 #1의 순차 지정된 단위 무선자원1-3을 이용하고, 안테나 빔4 형성을 위해 무선자원블록 #1의 순차 지정된 단위 무선자원1-4을 이용할 것이다.
이렇게 되면, 단말(10)은, 안테나 빔1 형성하는데 있어, 무선자원블록 #1의 단위 무선자원1-1, 무선자원블록 #2의 단위 무선자원2-1, 무선자원블록 #3의 단위 무선자원3-1, 무선자원블록 #4의 단위 무선자원4-1, 무선자원블록 #5의 단위 무선자원5-1, 무선자원블록 #6의 단위 무선자원6-1, 무선자원블록 #7의 단위 무선자원7-1, 및 무선자원블록 #8의 단위 무선자원8-1을 조합하여 이용하게 된다.
이와 같이, 단말(10)은, 서로 다른 방향으로 4개의 안테나 빔1,2,3,4를 형성하고, 안테나 빔 1,2,3,4를 통해 BRS를 수신하는 방식으로, 기지국(100)과의 BRS 기반의 빔포밍 동기화를 수행할 것이다.
즉, 본 발명에서 단말(10)은, 자신이 구비하고 있는 안테나 수 만큼의 안테나 빔1,2,3,4을 형성하되, 각 안테나 빔의 관점에서 볼 때 8개의 무선자원블록 각각에 지정된 단위 무선자원을 조합한 8개의 단위 무선자원을 묶어서 동일한 안테나 빔을 형성하는 것이다.
이에, 단말(10)은, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼 각각에서, 자신이 형성한 안테나 빔1,2,3,4 별로 수신하는 기지국(100)의 안테나 빔A,B,C,D,...,H 별 빔 동기신호 즉 BRS에 대한 SINR(Signal-to-Interference-plus-Noise Ratio)을 측정 및 이를 기지국(100)에 보고하는 일련의 빔 트래킹(tracking) 과정을 반복하게 된다.
이에, 기지국(100)은, 단말(10)로부터 보고받은 정보를 기반으로, SINR이 가장 우수한 최적의 빔(기지국(00)의 빔 및 단말(10)의 빔쌍)을 결정함으로써, 기지국(100) 및 단말(10) 간의 빔 동기신호(BRS) 기반 빔포밍 동기화가 수행되는 것이다.
물론, 기지국(100)은, 단말(10)에 대하여 SINR이 가장 우수한 최적의 빔 외에도, 차순위 빔(예: 2순위 빔, 3순위 빔)도 결정하되 관련 정보를 저장해 둠으로써, 차후 빔포밍 동기화가 재 수행되기 이전에 앞서 결정한 최적 빔의 통신품질이 저하되는 경우, 기 저장해둔 관련정보를 활용하여 단말(10)과의 통신 시 차순위 빔(예: 2순위 빔, 3순위 빔)을 사용하는 것도 가능할 것이다.
한편, 단말(10)은, 도 3에 도시된 바와 같이 무선자원블록 사이에 삽입(Interleaving)된 각 PBCH를, 안테나 빔1,2,3,4 형성 시 랜덤하게 이용할 수 있고, 또는 각 PBCH를 안테나 빔1,2,3,4 형성 시 순차적으로 이용할 수 있다.
예를 들어, 순차적으로 이용한다면, 단말(10)은, 첫번째 OFDM 심볼에서, 무선자원블록 #1과 #2 사이의 PBCH의 경우 안테나 빔1 형성 시 이용하고, 무선자원블록 #2와 #3 사이의 PBCH의 경우 안테나 빔2 형성 시 이용하고, 무선자원블록 #3과 #4 사이의 PBCH의 경우 안테나 빔3 형성 시 이용하고, 무선자원블록 #5와 #6 사이의 PBCH의 경우 안테나 빔4 형성 시 이용하고, 무선자원블록 #6과 #7 사이의 PBCH의 경우 안테나 빔1 형성 시 이용하고, 무선자원블록 #7과 #8 사이의 PBCH의 경우 안테나 빔2 형성 시 이용할 수 있다.
그리고, 단말(10)은, 다음 OFDM 심볼에서, 무선자원블록 #1과 #2 사이의 PBCH의 경우 안테나 빔3 형성 시 이용하고, 무선자원블록 #2와 #3 사이의 PBCH의 경우 안테나 빔4 형성 시 이용하고, 무선자원블록 #3과 #4 사이의 PBCH의 경우 안테나 빔1 형성 시 이용하고, 무선자원블록 #5와 #6 사이의 PBCH의 경우 안테나 빔2 형성 시 이용하고, 무선자원블록 #6과 #7 사이의 PBCH의 경우 안테나 빔3 형성 시 이용하고, 무선자원블록 #7과 #8 사이의 PBCH의 경우 안테나 빔4 형성 시 이용할 수 있다.
결국, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원에서, 통신시스템과 관련된 정보 즉 MIB 및 SIM를 무선자원블록 사이에 삽입(Interleaving)하여 구성하게 되면, 여러 안테나 빔1,2,3,4를 통해 동시에 동일한 MIB 및 SIM를 수신하게 됨으로써, 빔 포밍을 통한 주파수 다이버시티(Divercity) 이득을 얻게 된다.
전술한 바와 같이, 본 발명에서 기지국(100)은, 자신이 구비하고 있는 안테나 수 만큼의 안테나 빔A,B,C,D,...,H을 형성하되, 각 안테나 빔의 관점에서 볼 때 하나의 무선자원블록 내 이웃하는 2 이상(예: 4개)의 단위 무선자원을 묶어서 동일한 안테나 빔을 형성하는 다운링크 동기채널의 무선자원 구조(동기화 서브프레임 내 OFDM 심볼)를 기반으로, 빔포밍 동기화를 수행한다.
그리고, 본 발명에서, 단말(10)은, 자신이 구비하고 있는 안테나 수 만큼의 안테나 빔1,2,3,4을 형성하되, 각 안테나 빔의 관점에서 볼 때 다수 개(예: 8개)의 무선자원블록 각각에 지정된 단위 무선자원을 조합한 다수 개(예: 8개)의 단위 무선자원을 묶어서 동일한 안테나 빔을 형성하는 다운링크 동기채널의 무선자원 구조(동기화 서브프레임 내 OFDM 심볼)를 기반으로, 빔포밍 동기화를 수행한다.
이와 같이, 본 발명에 따른 다운링크 동기채널의 무선자원 구조를 기반으로 빔포밍 동기화를 수행하게 되면, 수신장치 즉 단말(10)이 동기화 수행 과정에서 빔 트래킹(tracking)을 빠르게 진행할 수 있고, 이로 인해 최적의 빔을 트래킹(tracking)하지 못하여 빔포밍 동기화에 실패하는 일이 줄어들 것이다.
결국, 본 발명에 따르면, 기지국(100) 및 단말(10) 간 타이밍 동기화 및 빔포밍 동기화를 수행하는데 있어서, 단말(10)에서의 빠른 빔 트래킹(tracking)을 가능하게 하여 전체적인 빔포밍 동기화 성능을 향상시킬 수 있다.
한편, 도 3에서는, 기지국(100)은 주파수 단위 무선자원을 묶어서 하나의 안테나 빔을 형성하고, 단말(10)은 기지국(100)에서 송신되는 각 안테나 빔 별로 안테나 빔 내 지정된 주파수 단위 무선자원 각각에서 각 안테나 빔을 형성함으로써, 단말(10)이 기지국(100)으로부터의 동일한 빔 동기신호(예: 안테나 빔A의 BRS)를 여러 안테나 빔(예: 안테나 빔1,2,3,4)를 통해 수신하게 되는, 주파수 영역(frequency domain)을 활용한 방식의 실시예를 보여주고 있다.
하지만, 본 발명에서는, 도 5에 도시된 바와 같이, 코드 영역(code division)을 활용한 방식의 실시예를 통해서도 동일한 빔포밍 동기화 성능을 얻을 수 있다.
즉, 단말(10)이 4개의 안테나를 구비한다는 가정 하에, 기지국(100)은 서로 다른 4개의 코드(예: c1,c2,c3,c4)를 기반으로 하나의 안테나 빔을 형성한다.
이에 도 5에 도시된 바와 같이 기지국(100)은, 무선자원블록 #1,#2,#3,#4 각각에서 안테나 빔A,B,C,D 형성 시, 각 안테나 빔을 서로 다른 4개의 코드(예: c1,c2,c3,c4)를 기반으로 형성한다.
그리고, 단말(10)은 기지국(100)에서 송신되는 각 안테나 빔과 같은 무선자원블록에서 각 안테나 빔을 형성하되, 단말(10)이 자신의 각 안테나 빔을 통해 서로 다른 4개의 코드(예: c1,c2,c3,c4)를 기반으로 신호를 수신한다.
즉, 도 5에 도시된 바와 같이, 기지국(100)에서 송신되는 안테나 빔A를 언급하여 설명하면, 단말(10)은, 안테나 빔A과 같은 무선자원블록 #1에서, 자신의 각 안테나 빔1,2,3,4를 통해 4개의 코드(예: c1,c2,c3,c4)를 기반으로 구분되는 코드분할자원(1-C1,1-C2,1-C2,1-C4)으로부터 안테나 빔A의 BRS를 수신할 수 있게 된다.
이렇게 되면, 단말(10)은, 안테나 빔 1을 통해서, 기지국(100)으로부터의 안테나 빔A,B,C...,H 각각의 BRS를, 코드c1을 기반으로 구분한 코드분할자원 (1-C1,2-C1,3-C1,4-C1,5-C1,6-C1,7-C1,8-C1)으로부터 수신할 것이다.
이하에서는, 도 4를 참조하여 본 발명의 일 실시예에 따른 동기신호 전송 방법에 대해 구체적으로 설명하겠다.
설명의 편의를 위해, 동기신호 전송 장치로서 앞선 설명과 일치되도록 기지국(100)을 언급하여 설명하겠다.
본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 기 설정된 주기에 도달하면(S100), 장치 간 동기화 수행을 개시한다.
이때, 기 설정된 주기에 도달하는 것은, 도 3을 참조하여 앞서 설명한 주기적으로 할당되는 다운링크 동기채널의 동기화 서브프레임(a)의 송신 시점을 의미한다.
이처럼 기 설정된 주기에 도달하면(S100), 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원을, 타이밍 동기화를 위한 타이밍동기주파수영역과 빔포밍 동기화를 위한 빔동기주파수영역으로 구분(구성)할 수 있다(S105).
그리고, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼 내 빔동기주파수영역에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성한다(S110).
전술의 예시와 같이 가정하면, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, 1개 RB 단위로 구분된 여러 개의 단위 무선자원 중 이웃하는 4개를 결합한 무선자원블록을 8개 구성할 수 있다.
그리고, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 8개의 무선자원블록 각각을 기지국(100)이 구비한 8개의 안테나 각각에 맵핑시켜, 8개의 안테나 각각에서 8개의 무선자원블록 별로 서로 다른 방향의 안테나 빔을 형성할 수 있도록 한다.
물론, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, S100단계 이전에, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서 1개 RB 단위로 구분된 여러 개의 단위 무선자원 중 이웃하는 4개를 결합한 무선자원블록을 8개 구성 및 맵핑해두고, 기 설정된 주기에 도달하면(S100), 앞서 구성해둔 8개의 무선자원블록 구성을 확인만 하는 것도 가능하다.
아울러, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 무선자원블록 각각 사이에 정보전송블록(이하, PBCH)를 인터리빙한다(S120).
즉, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 도 3에 도시된 바와 같이, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원에서, 무선자원블록 #1과 #2 사이에 PBCH를 인터리빙하고, 무선자원블록 #2과 #3 사이에 PBCH를 인터리빙하고, 무선자원블록 #3과 #4 사이에 PBCH를 인터리빙하여 구성할 수 있다.
물론, 도 3에서는 편의 상 생략되었지만, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼의 무선자원에서, 무선자원블록 #5과 #6 사이에 PBCH를 인터리빙하고, 무선자원블록 #6과 #7 사이에 PBCH를 인터리빙하고, 무선자원블록 #7과 #8 사이에 PBCH를 인터리빙하여 구성할 수 있다.
이 경우, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, PBCH 각각을, PBCH와 이웃하는 2 개의 무선자원블록 중 어느 하나가 맵핑된 기지국(100)의 안테나에 맵핑시키는 것이 바람직하다.
예를 들어, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 무선자원블록 #1과 #2 사이의 PBCH의 경우라면, 이 PBCH를 2 개의 무선자원블록 #1과 #2 중 어느 하나가 맵핑된 기지국(100)의 안테나에 맵핑시킬 수 있다.
물론, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, S100단계 이전에, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서 8개의 무선자원블록 및 PBCH를 구성 및 맵핑 해두고, 기 설정된 주기에 도달하면(S100), 앞서 구성해둔 8개의 무선자원블록 및 PBCH 구성을 확인만 하는 것도 가능하다.
이후, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼에서, 타이밍 동기화를 위한 타이밍 동기신호(예: PSS, SSS, 및 ESS) 및 빔포밍 동기화를 위한 빔 동기신호(예: BRS)를 송신하여, 타이밍 동기화 및 빔포밍 동기화를 수행한다(S130).
구체적으로, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 동기화 서브프레임(a) 내 OFDM 심볼의 타이밍동기주파수영역에서 형성되는 기지국(100)의 셀 커버리지 내 전체 영역을 향한 다수의 안테나 빔을 통해 타이밍 동기화를 위한 동기신호들 즉 PSS, SSS, 및 ESS를 송신하는 방식으로, 단말(10)과의 타이밍 동기화를 수행할 수 있다.
한편, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 동기화 서브프레임(a) 내 OFDM 심볼의 빔동기주파수영역 내 다수 개의 무선자원블록 #1~#8 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 빔 동기신호 즉 BRS를 송신하여, BRS 기반의 빔포밍 동기화를 수행한다.
즉, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 자신이 구비하고 있는 8개의 안테나 각각을 통해서, 각 안테나에 맵핑되어 있는 8개의 무선자원블록 #1~#8 별로 서로 다른 방향의 안테나 빔을 형성한다.
이에, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 8개의 무선자원블록 #1~#8 별로 형성되는 서로 다른 방향의 안테나 빔A,B,C,D,...,H을 통해 BRS를 송신하는 방식으로, 단말(10)과의 BRS 기반의 빔포밍 동기화를 수행할 수 있다.
즉, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 자신이 구비하고 있는 안테나 수 만큼의 안테나 빔A,B,C,D,...,H을 형성하되, 각 안테나 빔의 관점에서 볼 때 하나의 무선자원블록 내 이웃하는 단위 무선자원 4개를 묶어서 동일한 안테나 빔을 형성하는 것이다.
이때, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, PBCH와 이웃하는 2 개의 무선자원블록 중 앞선 무선자원블록 송신(안테나 맵핑)을 사전 정의한다면, 도 3에 도시된 바와 같이, 무선자원블록 #1과 #2 사이의 PBCH 내 정보는 무선자원블록 #1과 같은 안테나 빔A를 통해 송신하고, 무선자원블록 #2과 #3 사이의 PBCH 내 정보는 무선자원블록 #2과 같은 안테나 빔B를 통해 송신하고, 무선자원블록 #3과 #4 사이의 PBCH 내 정보는 무선자원블록 #3과 같은 안테나 빔C를 통해 송신할 수 있다(S130).
그리고, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 다운링크 동기채널의 무선자원 즉 동기화 서브프레임(a) 내 OFDM 심볼을 모두 이용했는지 확인한다(S140). 달리 말하면, 동기화 서브프레임(a) 내 OFDM 심볼 14개가 모두 이용되어 있는지 확인하는 것이다.
본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 동기화 서브프레임(a) 내 OFDM 심볼 14개가 모두 이용되지 않았으면(S140 No), 다음 OFDM 심볼에서 8개의 안테나 각각을 통해 8개의 무선자원블록 #1~#8 별로 이전 OFDM 심볼과는 다른 방향의 안테나 빔A,B,C,D,...,H을 형성하고, 단말(10)과의 타이밍 동기화 및 빔포밍 동기화를 계속해서 수행한다(S130).
이로 인해, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 다운링크 동기채널의 동기화 서브프레임(a) 내 OFDM 심볼 각각에서, 8개의 안테나 각각을 통해 8개의 무선자원블록 #1~#8 별로 이전 OFDM 심볼과는 다른 방향의 안테나 빔을 형성하여, 8개의 무선자원블록 #1~#8 별로 이전 OFDM 심볼과는 다른 방향으로 빔포밍 동기화를 위한 BRS를 송신할 수 있다.
한편, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 동기화 서브프레임(a) 내 OFDM 심볼 14개가 모두 이용되었으면(S140 Yes), 지금까지 진행한 타이밍 동기화 및 빔포밍 동기화 수행에 따른 결과를 기반으로 기지국(100) 및 단말(10) 간의 타이밍 및 최적의 빔을 결정한다(S150).
전술한 바와 같이, 본 발명에 따른 기지국(100)의 동기신호 전송 방법은, 자신이 구비하고 있는 안테나 수 만큼의 안테나 빔A,B,C,D,...,H을 형성하되, 각 안테나 빔의 관점에서 볼 때 하나의 무선자원블록 내 이웃하는 단위 무선자원 4개를 묶어서 동일한 안테나 빔을 형성하는 다운링크 동기채널의 무선자원(동기화 서브프레임 내 OFDM 심볼) 구조를 기반으로, 빔포밍 동기화를 수행한다.
그리고, 도 4를 참조한 구체적인 설명에서는 생략하였지만, 앞서 설명한 바와 같이 수신장치 즉 단말(10)가, 자신이 구비하고 있는 안테나 수 만큼의 안테나 빔1,2,3,4을 형성하되, 각 안테나 빔의 관점에서 볼 때 다수 개(예: 8개)의 무선자원블록 각각에 지정된 단위 무선자원을 조합한 8개의 단위 무선자원을 묶어서 동일한 안테나 빔을 형성하는 다운링크 동기채널의 무선자원 구조(동기화 서브프레임 내 OFDM 심볼)를 기반으로, 빔포밍 동기화를 수행한다.
이와 같이, 본 발명에 따른 다운링크 동기채널의 무선자원 구조를 기반으로 타이밍 동기화 및 빔포밍 동기화를 수행하게 되면, 수신장치 즉 단말(10)이 동기화 수행 과정에서 빔 트래킹(tracking)을 빠르게 진행할 수 있고, 이로 인해 최적의 빔을 트래킹(tracking)하지 못하여 빔포밍 동기화에 실패하는 일이 줄어들 것이다.
결국, 본 발명에 따르면, 기지국(100) 및 단말(10) 간 동기화를 수행하는데 있어서, 단말(10)에서의 빠른 빔 트래킹(tracking)을 가능하게 하여 전체적인 빔포밍 동기화 성능을 향상시킬 수 있다.
한편, 본 명세서에서 설명하는 기능적인 동작과 주제의 구현물들은 디지털 전자 회로로 구현되거나, 본 명세서에서 개시하는 구조 및 그 구조적인 등가물들을 포함하는 컴퓨터 소프트웨어, 펌웨어 혹은 하드웨어로 구현되거나, 이들 중 하나 이상의 결합으로 구현 가능하다.  본 명세서에서 설명하는 주제의 구현물들은 하나 이상의 컴퓨터 프로그램 제품, 다시 말해 처리 시스템의 동작을 제어하기 위하여 혹은 이것에 의한 실행을 위하여 유형의 프로그램 저장매체 상에 인코딩된 컴퓨터 프로그램 명령에 관한 하나 이상의 모듈로서 구현될 수 있다.
컴퓨터로 판독 가능한 매체는 기계로 판독 가능한 저장 장치, 기계로 판독 가능한 저장 기판, 메모리 장치, 기계로 판독 가능한 전파형 신호에 영향을 미치는 물질의 조성물 혹은 이들 중 하나 이상의 조합일 수 있다.
본 명세서에서 "시스템"이나 "장치"라 함은 예컨대 프로그래머블 프로세서, 컴퓨터 혹은 다중 프로세서나 컴퓨터를 포함하여 데이터를 처리하기 위한 모든 기구, 장치 및 기계를 포괄한다. 처리 시스템은, 하드웨어에 부가하여, 예컨대 프로세서 펌웨어를 구성하는 코드, 프로토콜 스택, 데이터베이스 관리 시스템, 운영 체제 혹은 이들 중 하나 이상의 조합 등 요청 시 컴퓨터 프로그램에 대한 실행 환경을 형성하는 코드를 포함할 수 있다.
컴퓨터 프로그램(프로그램, 소프트웨어, 소프트웨어 어플리케이션, 스크립트 혹은 코드로도 알려져 있음)은 컴파일되거나 해석된 언어나 선험적 혹은 절차적 언어를 포함하는 프로그래밍 언어의 어떠한 형태로도 작성될 수 있으며, 독립형 프로그램이나 모듈, 컴포넌트, 서브루틴 혹은 컴퓨터 환경에서 사용하기에 적합한 다른 유닛을 포함하여 어떠한 형태로도 전개될 수 있다. 컴퓨터 프로그램은 파일 시스템의 파일에 반드시 대응하는 것은 아니다. 프로그램은 요청된 프로그램에 제공되는 단일 파일 내에, 혹은 다중의 상호 작용하는 파일(예컨대, 하나 이상의 모듈, 하위 프로그램 혹은 코드의 일부를 저장하는 파일) 내에, 혹은 다른 프로그램이나 데이터를 보유하는 파일의 일부(예컨대, 마크업 언어 문서 내에 저장되는 하나 이상의 스크립트) 내에 저장될 수 있다. 컴퓨터 프로그램은 하나의 사이트에 위치하거나 복수의 사이트에 걸쳐서 분산되어 통신 네트워크에 의해 상호 접속된 다중 컴퓨터나 하나의 컴퓨터 상에서 실행되도록 전개될 수 있다.
한편, 컴퓨터 프로그램 명령어와 데이터를 저장하기에 적합한 컴퓨터로 판독 가능한 매체는, 예컨대 EPROM, EEPROM 및 플래시메모리 장치와 같은 반도체 메모리 장치, 예컨대 내부 하드디스크나 외장형 디스크와 같은 자기 디스크, 자기광학 디스크 및 CD-ROM과 DVD-ROM 디스크를 포함하여 모든 형태의 비휘발성 메모리, 매체 및 메모리 장치를 포함할 수 있다. 프로세서와 메모리는 특수 목적의 논리 회로에 의해 보충되거나, 그것에 통합될 수 있다.
본 명세서에서 설명한 주제의 구현물은 예컨대 데이터 서버와 같은 백엔드 컴포넌트를 포함하거나, 예컨대 어플리케이션 서버와 같은 미들웨어 컴포넌트를 포함하거나, 예컨대 사용자가 본 명세서에서 설명한 주제의 구현물과 상호 작용할 수 있는 웹 브라우저나 그래픽 유저 인터페이스를 갖는 클라이언트 컴퓨터와 같은 프론트엔드 컴포넌트 혹은 그러한 백엔드, 미들웨어 혹은 프론트엔드 컴포넌트의 하나 이상의 모든 조합을 포함하는 연산 시스템에서 구현될 수도 있다. 시스템의 컴포넌트는 예컨대 통신 네트워크와 같은 디지털 데이터 통신의 어떠한 형태나 매체에 의해서도 상호 접속 가능하다.
본 명세서는 다수의 특정한 구현물의 세부사항들을 포함하지만, 이들은 어떠한 발명이나 청구 가능한 것의 범위에 대해서도 제한적인 것으로서 이해되어서는 안되며, 오히려 특정한 발명의 특정한 실시형태에 특유할 수 있는 특징들에 대한 설명으로서 이해되어야 한다. 마찬가지로, 개별적인 실시형태의 문맥에서 본 명세서에 기술된 특정한 특징들은 단일 실시형태에서 조합하여 구현될 수도 있다. 반대로, 단일 실시형태의 문맥에서 기술한 다양한 특징들 역시 개별적으로 혹은 어떠한 적절한 하위 조합으로도 복수의 실시형태에서 구현 가능하다. 나아가, 특징들이 특정한 조합으로 동작하고 초기에 그와 같이 청구된 바와 같이 묘사될 수 있지만, 청구된 조합으로부터의 하나 이상의 특징들은 일부 경우에 그 조합으로부터 배제될 수 있으며, 그 청구된 조합은 하위 조합이나 하위 조합의 변형물로 변경될 수 있다.
또한, 본 명세서에서는 특정한 순서로 도면에서 동작들을 묘사하고 있지만, 이는 바람직한 결과를 얻기 위하여 도시된 그 특정한 순서나 순차적인 순서대로 그러한 동작들을 수행하여야 한다거나 모든 도시된 동작들이 수행되어야 하는 것으로 이해되어서는 안 된다. 특정한 경우, 멀티태스킹과 병렬 프로세싱이 유리할 수 있다. 또한, 상술한 실시형태의 다양한 시스템 컴포넌트의 분리는 그러한 분리를 모든 실시형태에서 요구하는 것으로 이해되어서는 안되며, 설명한 프로그램 컴포넌트와 시스템들은 일반적으로 단일의 소프트웨어 제품으로 함께 통합되거나 다중 소프트웨어 제품에 패키징될 수 있다는 점을 이해하여야 한다
이와 같이, 본 명세서는 그 제시된 구체적인 용어에 본 발명을 제한하려는 의도가 아니다. 따라서, 상술한 예를 참조하여 본 발명을 상세하게 설명하였지만, 당업자라면 본 발명의 범위를 벗어나지 않으면서도 본 예들에 대한 개조, 변경 및 변형을 가할 수 있다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 동기신호 전송 장치에 있어서,
    타이밍 동기화를 위해, 주파수 동기화를 위한 제1동기신호 및 프레임 동기화를 위한 제2동기신호를 단말로 전송하는 타이밍동기화수행부; 및
    빔포밍 동기화를 위해, 다수의 안테나를 통해 서로 다른 방향으로 형성되는 제3동기신호를 상기 단말로 전송하는 빔포밍동기화수행부를 포함하는 것을 특징으로 하는 동기신호 전송 장치.
  2. 제 1 항에 있어서,
    장치 간 동기화를 위해 지정된 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성하는 무선자원구성부를 더 포함하며;
    상기 빔포밍동기화수행부는,
    상기 다수 개의 무선자원블록 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 상기 제3동기신호로서의 빔 동기신호를 송신하여, 상기 빔 동기신호 기반의 빔포밍 동기화를 수행하는 것을 특징으로 하는 동기신호 전송 장치.
  3. 제 2 항에 있어서,
    상기 무선자원블록을 구성하는 단위 무선자원의 개수는,
    상기 빔 동기신호를 수신하는 수신장치에서 형성 가능한 안테나 빔의 개수에 따라 결정되는 것을 특징으로 하는 동기신호 전송 장치.
  4. 제 3 항에 있어서,
    상기 수신장치는,
    서로 다른 방향으로 형성되는 2 이상의 안테나 빔을 통해 상기 빔 동기신호를 수신하여, 상기 빔 동기신호 기반의 빔포밍 동기화를 수행하며;
    상기 2 이상의 안테나 빔 각각은,
    상기 다수 개의 무선자원블록 각각에 지정되어 있는 단위 무선자원의 조합을 이용해서 형성되는 것을 특징으로 하는 동기신호 전송 장치.
  5. 제 2 항에 있어서,
    상기 무선자원은, 주기적으로 할당되는 다운링크 동기채널 서브프레임 내 다수의 심볼 중 하나이며;
    상기 빔포밍동기화수행부는,
    상기 다수의 심볼 각각에서, 상기 다수 개의 무선자원블록 별로 이전 심볼과는 다른 방향으로 빔 동기신호를 송신하는 것을 특징으로 하는 동기신호 전송 장치.
  6. 제 2 항에 있어서,
    상기 무선자원구성부는,
    상기 무선자원에서, 상기 무선자원블록 각각 사이에 통신시스템 관련 정보를 전송하기 위한 정보전송블록을 구성하며,
    상기 정보전송블록에 할당되는 정보는, 정보전송블록과 이웃하는 2 개의 무선자원블록 중 어느 하나에서 형성되는 안테나 빔을 통해 송신되는 것을 특징으로 하는 동기신호 전송 장치.
  7. 제 2 항에 있어서,
    상기 특정 단위는,
    상기 수신장치에서 하나의 안테나 빔을 형성하는데 요구되는 무선자원의 최소 주파수단위인 것을 특징으로 하는 동기신호 전송 장치.
  8. 동기신호 전송 방법에 있어서,
    타이밍 동기화를 위해, 주파수 동기화를 위한 제1동기신호 및 프레임 동기화를 위한 제2동기신호를 단말로 전송하는 타이밍동기화수행단계; 및
    빔포밍 동기화를 위해, 다수의 안테나를 통해 서로 다른 방향으로 형성되는 제3동기신호를 상기 단말로 전송하는 빔포밍동기화수행단계를 포함하는 것을 특징으로 하는 동기신호 전송 방법.
  9. 제 8 항에 있어서,
    장치 간 동기화를 위해 지정된 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개 구성하는 무선자원구성단계를 더 포함하며; 및
    상기 빔포밍동기화수행단계는,
    상기 다수 개의 무선자원블록 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 빔 동기신호를 송신하여, 상기 빔 동기신호 기반의 빔포밍 동기화를 수행하는 것을 특징으로 하는 동기신호 전송 방법.
  10. 제 9 항에 있어서,
    상기 수신장치는,
    서로 다른 방향으로 형성되는 2 이상의 안테나 빔을 통해 상기 빔 동기신호를 수신하여, 상기 빔 동기신호 기반의 빔포밍 동기화를 수행하며;
    상기 2 이상의 안테나 빔 각각은,
    상기 다수 개의 무선자원블록 각각에 지정되어 있는 단위 무선자원의 조합을 이용해서 형성되는 것을 특징으로 하는 동기신호 전송 방법.
  11. 제 9 항에 있어서,
    상기 무선자원은, 주기적으로 할당되는 다운링크 동기채널의 서브프레임 내 다수의 심볼 중 하나이며;
    상기 빔포밍동기화수행단계는,
    상기 다수의 심볼 각각에서, 상기 다수 개의 무선자원블록 별로 이전 심볼과는 다른 방향으로 빔 동기신호를 송신하는 것을 특징으로 하는 동기신호 전송 방법.
  12. 다운링크 동기채널의 무선자원 구조를 구성하는 방법에 있어서,
    기 설정된 주기마다 할당되는 다운링크 동기채널의 무선자원에서, 특정 단위로 구분되는 단위 무선자원 중 이웃하는 2 이상을 결합한 무선자원블록을 다수 개로 구성하는 단계; 및
    상기 다수 개의 무선자원블록 각각을 다수 개의 송신안테나 각각에 맵핑시켜, 상기 다수 개의 송신안테나 각각에서 상기 다수 개의 무선자원블록 별로 형성되는 서로 다른 방향의 안테나 빔을 통해 빔 동기신호가 송신되도록 하는 단계를 포함하는 것을 특징으로 하는 다운링크 동기채널의 무선자원 구조 구성 방법.
  13. 제 12 항에 있어서,
    상기 무선자원에서, 상기 무선자원블록 각각 사이에 통신시스템 관련 정보를 전송하기 위한 정보전송블록을 구성하며,
    상기 정보전송블록 각각을, 정보전송블록과 이웃하는 2 개의 무선자원블록 중 어느 하나가 맵핑된 송신안테나에 맵핑시키는 단계를 더 포함하는 것을 특징으로 하는 다운링크 동기채널의 무선자원 구조 구성 방법.
  14. 제 13 항에 있어서,
    상기 무선자원은,
    빔포밍 동기화를 위한 상기 다수 개의 무선자원블록과 상기 정보전송블록을 포함하는 2 개의 빔동기 주파수영역, 타이밍 동기화를 위한 무선자원블록을 포함하는 타이밍동기 주파수영역으로 구성되며,
    상기 타이밍동기 주파수영역은, 상기 2 개의 빔동기 주파수영역 사이에 위치하는 구조를 갖는 것을 특징으로 하는 다운링크 동기채널의 무선자원 구조 구성 방법.
  15. 제 12 항에 있어서,
    상기 무선자원블록을 구성하는 단위 무선자원의 개수는,
    상기 빔 동기신호를 수신하는 수신장치에서 형성 가능한 안테나 빔의 개수에 따라 결정되는 것을 특징으로 하는 다운링크 동기채널의 무선자원 구조 구성 방법.
PCT/KR2017/003820 2016-06-10 2017-04-07 동기신호 전송 장치 및 동기신호 전송 방법 WO2017213342A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17810465.9A EP3471293B1 (en) 2016-06-10 2017-04-07 Apparatus for transmitting synchronous signal and method for transmitting synchronous signal
CN201780011938.5A CN108702232B (zh) 2016-06-10 2017-04-07 用于发送同步信号的设备和用于发送同步信号的方法
JP2018552728A JP6817327B2 (ja) 2016-06-10 2017-04-07 同期信号伝送装置及び同期信号伝送方法
ES17810465T ES2957713T3 (es) 2016-06-10 2017-04-07 Aparato de transmisión de señales síncronas y procedimiento de transmisión de señales síncronas
US16/054,199 US11071075B2 (en) 2016-06-10 2018-08-03 Apparatus for transmitting synchronous signal, terminal for receiving synchronous signal and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160072377A KR102226264B1 (ko) 2016-06-10 2016-06-10 동기신호 전송 장치 및 동기신호 전송 방법
KR10-2016-0072377 2016-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/054,199 Continuation US11071075B2 (en) 2016-06-10 2018-08-03 Apparatus for transmitting synchronous signal, terminal for receiving synchronous signal and method thereof

Publications (1)

Publication Number Publication Date
WO2017213342A1 true WO2017213342A1 (ko) 2017-12-14

Family

ID=60578774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003820 WO2017213342A1 (ko) 2016-06-10 2017-04-07 동기신호 전송 장치 및 동기신호 전송 방법

Country Status (7)

Country Link
US (1) US11071075B2 (ko)
EP (1) EP3471293B1 (ko)
JP (1) JP6817327B2 (ko)
KR (1) KR102226264B1 (ko)
CN (1) CN108702232B (ko)
ES (1) ES2957713T3 (ko)
WO (1) WO2017213342A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391578B (zh) * 2017-08-11 2022-07-22 华为技术有限公司 信号发送方法、信号接收方法、终端设备及网络设备
US11856432B2 (en) * 2018-06-08 2023-12-26 Qualcomm Incorporated Acknowledgement design for multi-transmission configuration indicator state transmission
KR102548093B1 (ko) * 2018-08-03 2023-06-27 삼성전자주식회사 빔포밍에 기반한 통신을 수행하는 전자 장치 및 이를 위한 방법
KR20200082646A (ko) 2018-12-31 2020-07-08 삼성전자주식회사 빔포밍에 기반한 통신을 수행하는 전자 장치 및 이를 위한 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034618A (ko) * 2008-05-27 2011-04-05 다 탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 빔 포밍 전송 방법, 시스템, 장치
KR20110083724A (ko) * 2008-12-09 2011-07-20 모토로라 모빌리티, 인크. 폐루프 다중 입력 다중 출력 무선 통신 시스템에서의 수동 조정
WO2014208844A1 (ko) * 2013-06-28 2014-12-31 중앙대학교 산학협력단 빔 트레이닝 장치 및 방법
WO2015093892A1 (ko) * 2013-12-20 2015-06-25 삼성전자주식회사 빔포밍 시스템에서 단말의 셀 탐색을 위한 방법 및 장치
KR20160059480A (ko) * 2013-09-24 2016-05-26 소니 주식회사 통신 제어 장치, 통신 제어 방법, 단말 장치 및 정보 처리 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212804A (ja) * 2009-03-06 2010-09-24 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
KR20130028397A (ko) * 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
KR101944796B1 (ko) * 2012-01-17 2019-04-17 삼성전자주식회사 빔포밍 기반 무선통신 시스템의 상향링크 빔 트래킹 방법 및 장치
KR101995266B1 (ko) * 2012-08-17 2019-07-02 삼성전자 주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치
JP6336728B2 (ja) * 2013-08-20 2018-06-06 株式会社Nttドコモ 同期信号送信方法及び基地局装置
MX364274B (es) * 2014-03-25 2019-04-22 Ericsson Telefon Ab L M Sistema y método para un acceso aleatorio físico basado en un haz.
JP6680676B2 (ja) * 2014-07-25 2020-04-15 株式会社Nttドコモ 無線送信局および無線通信ネットワーク
US9866299B2 (en) * 2014-09-24 2018-01-09 Mediatek Inc. Synchronization in a beamforming system
US9967886B2 (en) * 2014-12-03 2018-05-08 Industrial Technology Research Institute Hierarchical beamforming method and base station and user equipment using the same
KR20160146501A (ko) * 2015-06-11 2016-12-21 엘지전자 주식회사 무선 통신 시스템에서 비직교다중접속을 위한 다중 사용자 선택 및 자원 할당 방법 및 장치
US10720973B2 (en) * 2016-02-04 2020-07-21 Kt Corporation Method for ultra-high frequency mobile communication system transreceiving reference signal and feedback and apparatus for same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034618A (ko) * 2008-05-27 2011-04-05 다 탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 빔 포밍 전송 방법, 시스템, 장치
KR20110083724A (ko) * 2008-12-09 2011-07-20 모토로라 모빌리티, 인크. 폐루프 다중 입력 다중 출력 무선 통신 시스템에서의 수동 조정
WO2014208844A1 (ko) * 2013-06-28 2014-12-31 중앙대학교 산학협력단 빔 트레이닝 장치 및 방법
KR20160059480A (ko) * 2013-09-24 2016-05-26 소니 주식회사 통신 제어 장치, 통신 제어 방법, 단말 장치 및 정보 처리 장치
WO2015093892A1 (ko) * 2013-12-20 2015-06-25 삼성전자주식회사 빔포밍 시스템에서 단말의 셀 탐색을 위한 방법 및 장치

Also Published As

Publication number Publication date
EP3471293A1 (en) 2019-04-17
ES2957713T3 (es) 2024-01-24
US20180343629A1 (en) 2018-11-29
KR102226264B1 (ko) 2021-03-09
EP3471293A4 (en) 2020-01-22
EP3471293B1 (en) 2023-08-16
JP2019519953A (ja) 2019-07-11
JP6817327B2 (ja) 2021-01-20
CN108702232B (zh) 2020-11-27
CN108702232A (zh) 2018-10-23
US11071075B2 (en) 2021-07-20
KR20170139867A (ko) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2017176022A1 (en) Method and apparatus for managing beam in beamforming system
WO2016036111A1 (en) Resource management method and apparatus
WO2017014602A1 (ko) 셀룰러 시스템에서 iot 운영 방법 및 그 시스템
WO2016126136A1 (ko) D2d 네트워크에서 ue 디스커버리 방법 및 시스템
WO2017213342A1 (ko) 동기신호 전송 장치 및 동기신호 전송 방법
WO2018182244A1 (ko) 무선 통신 시스템에서 위상 잡음 제거를 위한 ptrs 할당 방법 및 그 장치
WO2020145633A1 (ko) 무선 통신 시스템에서 송신 전력을 할당하기 위한 방법 및 장치
WO2020145701A1 (en) Method and apparatus for transmitting and receiving a signal in a wireless communication system
WO2009088251A2 (en) Method for multiple tdd systems coexistence
WO2014046499A1 (en) Method and apparatus for transmitting and receiving channel state information in a wireless communication system
WO2016043502A1 (ko) 무선 통신 시스템에서 채널 접속 방법 및 장치
WO2011090294A2 (ko) 분산 안테나 시스템에서의 신호 송수신 장치
WO2015020464A1 (en) Method and apparatus for transmitting and receiving feedback information in mobile communication system based on 2 dimensional massive mimo
WO2013070035A1 (ko) 제어 채널 모니터링 방법 및 무선기기
WO2017213374A1 (en) Method and device for providing different services in mobile communication system
WO2020231161A1 (ko) 무선 통신 시스템에서 시스템 정보 블록 송수신 방법 및 장치
WO2016195346A1 (ko) 랜덤 액세스 처리 방법 및 그 장치
WO2017200327A2 (en) Method and apparatus for transmission and reception in wireless communication system supporting scalable frame structure
WO2015111959A1 (ko) Lte 스몰셀의 디스커버리 신호 송수신 장치
WO2011021782A2 (ko) 무선 통신 시스템에서 위치기반서비스를 위한 신호 전송방법 및 이를 위한 장치, 상기 신호를 이용한 단말의 위치측정방법 및 이를 위한 장치
WO2017176017A1 (en) Method and apparatus for transmitting and receiving feedback in wireless communication system
EP4211917A1 (en) Method and apparatus for beam failure recovery in a wireless communication system
EP4055928A1 (en) Method and apparatus for transmission and reception of broadcast information in wireless communication system
WO2015005751A1 (ko) 무선 셀룰라 통신 시스템에서 기지국 간 단말의 단말 대 단말 발견 신호 전송 방법 및 장치
WO2021107609A1 (en) Method and apparatus for sharing frequency resource dynamically in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017810465

Country of ref document: EP

Effective date: 20190110