WO2017213217A1 - Reactive polymer, photocurable resin composition, and laminate - Google Patents

Reactive polymer, photocurable resin composition, and laminate Download PDF

Info

Publication number
WO2017213217A1
WO2017213217A1 PCT/JP2017/021303 JP2017021303W WO2017213217A1 WO 2017213217 A1 WO2017213217 A1 WO 2017213217A1 JP 2017021303 W JP2017021303 W JP 2017021303W WO 2017213217 A1 WO2017213217 A1 WO 2017213217A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
reactive polymer
acrylate
group
polymer
Prior art date
Application number
PCT/JP2017/021303
Other languages
French (fr)
Japanese (ja)
Inventor
未央 安井
益功 黒田
敦史 長谷川
Original Assignee
住友化学株式会社
大成ファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 大成ファインケミカル株式会社 filed Critical 住友化学株式会社
Priority to KR1020197000724A priority Critical patent/KR102389723B1/en
Priority to JP2018521772A priority patent/JP6962911B2/en
Priority to CN201780035346.7A priority patent/CN109312019A/en
Publication of WO2017213217A1 publication Critical patent/WO2017213217A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/147Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • C08L87/005Block or graft polymers not provided for in groups C08L1/00 - C08L85/04
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a reactive polymer, a photocurable resin composition containing the same, and a laminate having the cured film thereof.
  • a photocurable resin composition for forming a hard coat layer on a transparent substrate film for example, a photocurable resin composition containing an ultraviolet absorber, urethane acrylate and a photopolymerization initiator (Patent Document 1), A photocurable resin composition containing a polyorganosiloxane, a bifunctional acrylate, an ultraviolet absorber and a photopolymerization initiator (Patent Document 2) has been known.
  • JP 2009-6513 A paragraph 0062
  • an object of the present invention is to improve the adhesion between the hard coat layer and the substrate and the light resistance of the hard coat layer.
  • the present invention includes the inventions described in [1] to [15] below.
  • [1] A reactive polymer having an alkoxysilane group and a (meth) acrylate group in the side chain.
  • [2] It has a main chain composed of a (meth) acrylate polymer, and the (meth) acrylate group as the side chain is bonded to the terminal of a urethane polymer and / or a urethane oligomer bonded to the main chain,
  • the reactive polymer as described in.
  • [3] The reactive polymer according to [1] or [2], wherein the reactive polymer has a weight average molecular weight Mw of 10,000 to 250,000.
  • a method for producing a laminate (1) A step of obtaining a composition layer by applying the photocurable resin composition according to any one of [7] to [11] onto a substrate, and (2) by exposing the composition layer. Curing the composition layer.
  • the method according to [14], wherein the base film is a base film made of polyimide.
  • the transparent substrate film when the cured film of the photocurable resin composition containing the reactive polymer is formed as a hard coat layer on the transparent substrate film, the transparent substrate film is hard coated.
  • a laminate for example, a hard coat film having excellent adhesion to the layer and having good light resistance of the hard coat layer can be obtained.
  • the reactive polymer has an alkoxysilane group and a (meth) acrylate group in the side chain.
  • the reactive polymer has an alkoxysilane group in the side chain, excellent adhesion can be obtained. Further, since the reactive polymer has a (meth) acrylate group in the side chain, curing with ultraviolet rays becomes possible.
  • (meth) acrylate means a generic name including both acrylate and methacrylate.
  • alkoxysilane group examples include a methoxysilane group, an ethoxysilane group, a propoxysilane group, and a butoxysilane group.
  • the (meth) acrylate group may be an acrylate group or a methacrylate group.
  • the reactive polymer has a main chain composed of a (meth) acrylate polymer, and the (meth) acrylate group as a side chain has a reactivity bonded to the end of the urethane oligomer and / or urethane polymer bonded to the main chain.
  • Polymers are preferred.
  • the (meth) acrylate polymer is a (meth) acrylic polymer [hereinafter also referred to as a hydroxyl group-containing (meth) acrylic polymer A] containing two or more hydroxyl groups in the molecule.
  • the urethane oligomer is an acrylic urethane oligomer (hereinafter also referred to as (meth) acryl urethane oligomer B) having one isocyanate group and one or more (meth) acrylate groups.
  • the urethane polymer is an acrylic urethane polymer [hereinafter also referred to as (meth) acrylic urethane polymer C] having one isocyanate group and one or more (meth) acrylate groups.
  • the reactive polymer is a hydroxyl group-containing (meth) acrylic polymer A and (meth) acrylurethane oligomer B alone or (meth) acrylurethane polymer C alone or (meth) acrylurethane oligomer B and (meth) acrylurethane polymer C.
  • a reactive polymer (hereinafter also referred to as a reactive polymer E) which is an addition reaction product of the isocyanate group-containing alkoxysilane D.
  • Hydroxyl group-containing (meth) acrylic polymer A is a (meth) acrylic polymer containing two or more hydroxyl groups in the molecule.
  • the weight average molecular weight Mw is not particularly limited, but is preferably 3,000 to 200,000, more preferably 10,000 to 160,000, and further preferably 30,000 to 120,000. preferable. When the weight average molecular weight Mw is 3,000 or less, there is a possibility that the hardness of the reactive polymer E becomes high and flexibility cannot be sufficiently exhibited.
  • (meth) acrylate means a generic name including both acrylate and methacrylate.
  • the hydroxyl group-containing (meth) acrylic polymer A has a glass transition point (Tg) of preferably 0 to 70 ° C., more preferably 10 to 60 ° C., and further preferably 20 to 50 ° C.
  • Tg glass transition point
  • the glass transition point (Tg) of the hydroxyl group-containing (meth) acrylic polymer A is within the above range, sufficient hardness and flexibility can be obtained, but when the glass transition point (Tg) is 0 ° C. or less. There is a risk of causing a significant decrease in hardness.
  • the glass transition point (Tg) is 70 ° C. or higher, the hardness tends to be high and the flexibility may be lowered.
  • the glass transition point (Tg) is a value measured using a differential scanning calorimeter.
  • the (meth) acryl urethane oligomer B is an acrylic urethane oligomer having one isocyanate group and one or more (meth) acrylate groups, and is a monofunctional (meth) acrylate or polyfunctional (difunctional) having a diisocyanate and one hydroxyl group ( It is an acrylic urethane oligomer obtained by reacting meth) acrylate or these.
  • the molecular weight is preferably 3,000 or less, more preferably 2,000 or less, and even more preferably 1,000 or less. When the molecular weight is 3,000 or more, the ultraviolet curability of the reactive polymer E tends to decrease.
  • (Meth) acrylic urethane polymer C is an acrylic urethane polymer having one isocyanate group and one or more (meth) acrylate groups, and one end of a prepolymer of both end isocyanates reacted with excess diisocyanate and diol.
  • the weight average molecular weight Mw is preferably 1,000 to 50,000, more preferably 3,000 to 20,000, and even more preferably 5,000 to 10,000.
  • the flexibility of the reactive polymer E may not be obtained at all or may not be sufficient.
  • the weight average molecular weight Mw is 50,000 or more, in order to obtain the reactive polymer E, the reaction rate during the addition reaction to the hydroxyl group-containing (meth) acrylic polymer A is remarkably lowered, resulting in varnish separation and cloudiness. Stability may be significantly reduced.
  • Reactive polymer E includes hydroxyl group-containing (meth) acrylic polymer A, (meth) acrylic urethane oligomer B alone or (meth) acrylic urethane polymer C alone, or (meth) acrylic urethane oligomer B and (meth) acrylic urethane. After both of the polymers C are subjected to an addition reaction, an isocyanate group-containing alkoxysilane D is subjected to an addition reaction.
  • the reactive polymer E has an alkoxysilane group and a (meth) acrylate group in the side chain.
  • excellent adhesion can be obtained.
  • the reactive polymer E has a (meth) acrylate group in the side chain, curing with ultraviolet rays becomes possible.
  • the reactive polymer has the formula (1): [Wherein, n1 and n2 each represents an integer of 1 to 10.
  • R 1 , R 2 , R 6 and R 7 each independently represents an alkylene group having 2 to 6 carbon atoms.
  • R 3 represents a polyurethane chain.
  • R 4 , R 5 and R 11 each independently represent a methyl group or a hydrogen atom.
  • R 8 and R 9 each independently represent a methyl group, a methoxy group, an ethoxy group, a propoxy group, or a butoxy group.
  • R 10 represents a methoxy group, an ethoxy group, a propoxy group, or a butoxy group.
  • Examples of the alkylene group having 2 to 6 carbon atoms as R 1 , R 2 , R 6 and R 7 include an ethylene group, a propylene group, a butylene group, a pentanediyl group and a hexanediyl group. ] It has a structural unit indicated by
  • the polyurethane chain as R 3 may be a divalent group derived from a urethane polymer and / or a urethane oligomer.
  • the divalent group derived from the urethane polymer and / or the urethane oligomer is a group obtained by removing two hydrogen atoms from the (meth) acryl urethane oligomer B and / or the (meth) acryl urethane polymer C.
  • the urethane polymer preferably has a weight average molecular weight Mw of 1,000 to 50,000.
  • the urethane oligomer preferably has a weight average molecular weight Mw of 3,000 or less.
  • the reactive polymer E can be produced by a conventionally known method.
  • the reactive polymer E has a hydroxyl group of the hydroxyl group-containing (meth) acrylic polymer A, (meth) acrylurethane oligomer B alone, (meth) acrylurethane polymer C alone, or (meth) acrylurethane oligomer B and (meth) ) After adding both of the acrylic urethane polymer C, it can be obtained by adding an isocyanate group-containing alkoxysilane D.
  • the hydroxyl group-containing (meth) acrylic polymer A can be obtained by a conventionally known method such as solution polymerization, bulk polymerization or suspension polymerization.
  • a (meth) acrylate monomer and a polymerization initiator into an organic solvent at a reaction temperature of 80 to 150 ° C. under a nitrogen stream and causing a polymerization reaction.
  • the hydroxyl group-containing (meth) acrylic polymer A can be obtained, for example, by polymerizing a hydroxyl group-containing (meth) acrylate with an alkyl (meth) acrylate or cycloalkyl ester and / or other vinyl monomers. .
  • hydroxyl group-containing (meth) acrylate monomer examples include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) ) Acrylates, monofunctional (meth) acrylates such as polypropylene glycol mono (meth) acrylate, and polyfunctional (meth) acrylates such as pentaerythritol tri (meth) acrylate. These may be used alone or in combination of two or more.
  • esters of alkyl (meth) acrylate or cycloalkyl and / or other vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tertiary.
  • “(meth) acrylic acid” means a generic name including both acrylic acid and methacrylic acid
  • the polymerization initiator is not particularly limited, and examples thereof include azo polymerization initiators such as azobisisobutyronitrile, peroxide polymerization initiators such as benzoyl peroxide, and the like. These may be used alone or in combination. May be.
  • organic solvents examples include aromatics such as toluene and xylene, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and esters such as ethyl acetate, nbutyl acetate, and propyl acetate. These may be used alone or in combination. May be used. Ketones are preferred from the viewpoint of good solubility of the hydroxyl group-containing (meth) acrylic polymer A.
  • the (meth) acryl urethane oligomer B is obtained by reacting a hydroxyl group of a hydroxyl group-containing (meth) acrylate monomer with one end of diisocyanate at a reaction temperature in the range of 40 ° C. to 120 ° C. in a mixed gas stream of nitrogen and oxygen. .
  • These may contain an organic solvent.
  • an organic solvent the organic solvent described in the description regarding manufacture of the above-mentioned hydroxyl group-containing (meth) acrylic polymer A can be used, and these may be used alone or in combination.
  • a polymerization catalyst such as an organic tin compound such as dioctyltin, or a double bond reaction inhibitor during addition reaction such as methoquinone may be used.
  • Diisocyanates used for the production of (meth) acryl urethane oligomer B include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), methylenebisphenyl diisocyanate (MDI), xylene diisocyanate (XDI), dicyclohexylmethane. Examples thereof include diisocyanate (HMDI), and these may be used alone or in combination. Examples of the hydroxyl group-containing (meth) acrylate monomer include 2-hydroxyethyl acrylate.
  • Examples of the (meth) acryl urethane oligomer B include 2-hydroxyethyl acrylate adduct of isophorone diisocyanate, 2-hydroxyethyl acrylate adduct of hexamethylene diisocyanate, 2-hydroxyethyl acrylate adduct of toluene diisocyanate, and methylene bisphenyl diisocyanate.
  • Examples include 2-hydroxyethyl acrylate adducts, 2-hydroxyethyl acrylate adducts of xylene diisocyanate, 2-hydroxyethyl acrylate adducts of dicyclohexylmethane diisocyanate, and these may be used alone or in combination.
  • the weight average molecular weight Mw of the acrylic urethane oligomer is preferably 3,000 or less, more preferably 2,000 or less, and even more preferably 1,000 or less.
  • (Meth) acrylic urethane polymer C is obtained by reacting excess diisocyanate with diol at a reaction temperature in the range of 40 ° C to 120 ° C in a stream of mixed gas of nitrogen and oxygen to obtain a urethane polymer with isocyanate groups at both ends. Thereafter, the hydroxyl group of the hydroxyl group-containing (meth) acrylate monomer is reacted with the isocyanate at one end of the urethane polymer.
  • These may contain an organic solvent.
  • an organic solvent the organic solvent described in the description regarding manufacture of the above-mentioned hydroxyl group-containing (meth) acrylic polymer A can be used.
  • a polymerization catalyst such as an organic tin compound such as dioctyltin, or a double bond reaction inhibitor during addition reaction such as methoquinone may be used.
  • diisocyanate of the (meth) acryl urethane polymer C for example, isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), methylene bisphenyl diisocyanate (MDI), xylene diisocyanate (XDI), dicyclohexylmethane diisocyanate ( HMDI) and the like. These may be used alone or in combination.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI toluene diisocyanate
  • MDI methylene bisphenyl diisocyanate
  • XDI xylene diisocyanate
  • HMDI dicyclohexylmethane diisocyanate
  • diol of (meth) acryl urethane polymer C examples include polyether diol, polycarbonate diol, polyester diol, 1,6-hexanediol, 1,5-pentanediol, 1,12-dodecanediol, and the like. These may be used alone or in combination.
  • hydroxyl group-containing (meth) acrylate monomer the same as (meth) acryl urethane oligomer B, for example, 2-hydroxyethyl acrylate can be used.
  • the weight average molecular weight Mw of the (meth) acryl urethane polymer C is preferably 1,000 to 50,000, more preferably 3,000 to 20,000, and even more preferably 5,000 to 10,000.
  • Reactive polymer E is a single compound of (meth) acryl urethane oligomer B on the hydroxyl group of hydroxyl group-containing (meth) acrylic polymer A at a reaction temperature in the range of 50 ° C. to 120 ° C. under a mixed gas stream of nitrogen and oxygen.
  • the isocyanate group of isocyanate-containing alkoxysilane D is hydroxylated. It can be obtained by reacting with the hydroxyl group remaining in the contained (meth) acrylic polymer A.
  • a double bond reaction inhibitor such as methoquinone at the time of addition reaction may be used.
  • Examples of the alkoxysilane group of the isocyanate group-containing alkoxysilane D include a methoxysilane group, an ethoxysilane group, a propoxysilane group, and a butoxysilane group.
  • an ethoxysilane group is preferable because the photocurable resin composition is excellent in adhesion and storage stability, and appropriate reactivity can be obtained.
  • Examples of the isocyanate group-containing alkoxysilane D include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, 3-isocyanatepropylmethyldiethoxysilane, and the like.
  • the compounds can be used alone or in combination.
  • the content of the alkoxysilane group in the reactive polymer E is preferably more than 0% by weight and less than 40% by weight based on the reactive polymer, more preferably 1% by weight to 35% by weight, and even more preferably 5% by weight to Contains 30% by mass.
  • the photocurable composition containing the reactive polymer has sufficient adhesion.
  • the double bond equivalent of the reactive polymer E is not particularly limited, but is preferably 800 to 125,000, more preferably 1,000 to 100,000, and still more preferably 1,500 to 70,000.
  • the double bond equivalent of the reactive polymer is within the above range, the flexibility and light resistance are sufficient.
  • the double bond equivalent is 800 or less, the hardness of the cured coating film becomes too high and sufficient flexibility cannot be obtained, and when the double bond equivalent is 125,000 or more, the UV curable property is lowered, resulting in light resistance. There will be a concern that this will decrease.
  • the weight average molecular weight Mw of the reactive polymer E is not particularly limited, but is preferably 10,000 to 250,000, more preferably 15,000 to 200,000, and 20,000 to 150,000. More preferably. When the weight average molecular weight of the reactive polymer is within the above range, sufficient ultraviolet curability, flexibility and adhesion can be obtained. When the weight average molecular weight is 10,000 or less, the flexibility is lowered, and when it is 250,000 or more, the ultraviolet curability and the storage stability are lowered.
  • the reactive polymer according to one embodiment has an alkoxysilane group and an ultraviolet curable (meth) acrylate group in the side chain, it can be suitably used for a photocurable resin composition.
  • the photocurable resin composition contains a bifunctional or higher polyfunctional (meth) acrylate monomer, a reactive polymer, a photopolymerization initiator, and an ultraviolet absorber.
  • the polyfunctional (meth) acrylate monomer is a compound having two or more (meth) acrylate groups.
  • a bifunctional (meth) acrylate having two (meth) acrylate groups, a trifunctional (meth) acrylate having three (meth) acrylate groups, and four (meth) acrylate groups It may be a tetrafunctional (meth) acrylate and a mixture of two or more thereof, for example, a mixture of trifunctional (meth) acrylate and tetrafunctional (meth) acrylate.
  • the content of the polyfunctional (meth) acrylate monomer or the mixture thereof in the photocurable resin composition is 40 to 95 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate monomer and the reactive polymer. And 50 to 90 parts by mass.
  • bifunctional or higher polyfunctional (meth) acrylate monomer examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol (meth) acrylate, and ethylene glycol diester.
  • (Meth) acrylate triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, 3-methylpentanediol di (meth) acrylate, diethylene glycol bis ⁇ - (meth) Acryloyloxypropionate, trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol Sa (meth) acrylate, tri (2-hydroxyethyl) isocyanate di (meth) acrylate, pentaerythritol tetra (meth) acrylate, 2,3-bis (meth) acryloyloxyethyloxymethyl [2.2.1] heptane, Poly 1,2-butadiene di (meth) acrylate, 1,2-bis (meth)
  • the reactive polymer of the present invention described above is used as the reactive polymer.
  • the content of the reactive polymer in the photocurable resin composition is 5 to 60 parts by mass, or 10 to 50 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer. There may be.
  • the content of the reactive polymer is within the above range, the surface hardness and adhesion of the laminate tend to be sufficient.
  • the content of the alkoxysilane group in the reactive polymer may be the same as the content of the alkoxysilane group in the reactive polymer of the present invention described above.
  • the total content of the polyfunctional (meth) acrylate monomer and the reactive polymer is preferably 4.5% by mass or more, more preferably 9% by mass or more, and still more preferably based on the total mass of the photocurable resin composition. Is 18% by mass or more, particularly preferably 36% by mass or more, preferably 55% by mass or less, more preferably 50% by mass or less, and further preferably 45% by mass or less.
  • the photopolymerization initiator may be a photopolymerization initiator that can exhibit photopolymerization initiation ability by light irradiation in the presence of an ultraviolet absorber.
  • a photopolymerization initiator include acetophenone, acetophenone benzyl ketal, anthraquinone, 1- (4-isopropylphenyl-2-hydroxy-2-methylpropan-1-one, carbazole, xanthone, 4-chlorobenzophenone, 4 , 4'-diaminobenzophenone, 1,1-dimethoxydeoxybenzoin, 3,3'-dimethyl-4-methoxybenzophenone, thioxanthone, 2,2-dimethoxy-2-phenylacetophenone, 1- (4-dodecylphenyl) -2 -Hydroxy-2-methylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-
  • the photopolymerization initiator can be used alone or in combination of two or more. For example, when forming a thick cured film such as 10 ⁇ m or more, if two or more photopolymerization initiators are used, the curability tends to be improved. When the curability is improved, the photocurable resin composition can be cured more easily and sufficiently.
  • the content of the photopolymerization initiator may be, for example, 1 to 15 parts by mass or 3 to 10 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer.
  • the photopolymerization initiator that has not been used for initiating the photopolymerization may remain, which may cause adverse effects such as a decrease in the visible light transmittance of the cured film.
  • the content of the photopolymerization initiator is small, the photopolymerization initiating ability is not sufficiently exhibited, and there is a tendency that sufficient curing of the ultraviolet curable resin cannot be obtained.
  • the ultraviolet absorber known ones may be used. In order to obtain an ultraviolet absorbing ability (ultraviolet cutting ability) used in an electronic image display device, the ultraviolet absorbing ability of the benzotriazole or hydroxyphenyltriazine is high. An absorbent may be used. In order to widen the absorption range of ultraviolet rays, two or more ultraviolet absorbers having different maximum absorption wavelengths may be used in combination.
  • benzotriazole ultraviolet absorber examples include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl ] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxyhexyl) phenyl]- 2H-benzotriazole, 2- [2'-hydroxy-3'-tert-butyl-5 '-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-tert-butyl -3 ′-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2-
  • hydroxyphenyltriazine ultraviolet absorber 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] 4,6-bis (2,4-dimethylphenyl) -1 , 3,5-triazine, 2- [4- (2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4 dimethylphenyl) -1,3 5-triazine, 2- [4-[(2-hydroxy-3- (2′-ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, 3,5-triazine, 2,4-bis (2-hydroxy-4-butyloxyphenyl) -6- (2,4-bis-butyloxyphenyl) -1,3,5-triazine, 2- (2- Hydro Cy-4- [1-octyloxycarbonyleth
  • the content of the ultraviolet absorber can be appropriately adjusted according to the desired ultraviolet transmittance and the absorbance of the ultraviolet absorber, but for example, it is 1 for 100 parts by mass of the total of the polyfunctional (meth) acrylate monomer and the reactive polymer. It may be ⁇ 10 parts by mass, or 3 to 8 parts by mass.
  • permeability of the cured film obtained may fall.
  • there is little content of a ultraviolet absorber there exists a possibility that a cured film may not exhibit sufficient ultraviolet absorptivity.
  • the photocurable resin composition can further contain an inorganic compound.
  • an inorganic compound those known as inorganic particles and columnar, plate-like and layered inorganic compounds can be used, but those which have been subjected to an organic treatment so that they can be dispersed in a solvent are preferred.
  • the inorganic compound at least one selected from the group consisting of glass frit, silica particles, alumina particles, aluminum hydroxide particles, magnesium hydroxide particles, tin oxide particles, and clay minerals can be used.
  • the clay mineral may be an inorganic compound in which ultrathin unit crystal layers overlap to form one layered particle.
  • a clay compound having swellability in water can be preferably used. More specifically, it is a clay compound having the property of coordinating and absorbing / swelling water between ultrathin unit crystal layers, and generally has a tetrahedral structure in which Si 4+ is coordinated to O 2 ⁇ . And a layer in which Al 3+ , Mg 2+ , Fe 2+ , Fe 3+, etc. are coordinated with O 2 ⁇ and OH ⁇ to form an octahedral structure. 1 is a compound that binds at 1 and stacks to form a layered structure. This clay compound may be natural or synthesized.
  • Clay minerals include hydrous silicates such as phyllosilicate minerals, kaolinite clay minerals such as halloysite, kaolinite, endellite, dickite, and nacrite, antigolite and chrysotile, etc.
  • Antigolite group clay minerals montmorillonite, beidellite, nontronite, saponite, hectorite, saconite, and stevensite and other smectite group clay minerals, vermiculite group clay minerals such as vermiculite, mica such as muscovite and phlogopite, margarite Mica or mica group clay minerals such as tetrasilic mica and teniolite, and these clay minerals can be used alone or in combination of two or more.
  • smectite group clay minerals such as montmorillonite are particularly preferable.
  • Alumina particles include gibbsite, bayerite, boehmite, pseudoboehmite, diaspore, amorphous aluminum hydroxide (alumina hydrate), and ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ form of alumina. A crystal etc. are mentioned.
  • metal aluminum or a hydrolyzable aluminum compound is hydrolyzed with a specific amount of water to form an alumina slurry, and then peptized in the presence of a specific amount of organic sulfonic acid to obtain a predetermined alumina concentration. It may be concentrated up to.
  • These alumina particles can be used alone or in combination of two or more.
  • the inorganic compound can be used in an amount of preferably 5 to 50 parts by mass with respect to a total of 100 parts by mass of the bifunctional or higher polyfunctional (meth) acrylate monomer and the reactive polymer. If content of an inorganic compound is in the said range, the ultraviolet curable property of a curable composition will be favorable, and there exists a tendency for the fall of the visible light transmittance
  • the particle size of the inorganic compound is preferably 0.001 to 0.1 ⁇ m, and more preferably 0.005 to 0.05 ⁇ m. When the particle size is within the above range, industrial production is easy and the transparency of the resulting cured film tends to be less likely to occur.
  • the particle diameter of the inorganic compound was measured by a dynamic light scattering method according to JIS 8828.
  • the photocurable resin composition may further contain an antistatic agent.
  • antistatic agents may be metal oxides and / or metal salts.
  • the metal oxide include ITO (indium-tin composite oxide), ATO (antimony-tin composite oxide), tin oxide, antimony pentoxide, zinc oxide, zirconium oxide, titanium oxide, and aluminum oxide.
  • the metal salt include zinc antimonate.
  • the content of the antistatic agent can be appropriately adjusted according to the required antistatic performance, and is, for example, 1 to 100 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer. .
  • the content of the antistatic agent is within the above range, the photocurable resin composition has sufficient ultraviolet curability, and the resulting cured film tends to be less likely to cause a decrease in visible light transmittance.
  • there is much content of an antistatic agent there exists a tendency for the abrasion resistance of the cured film obtained to fall, or for film formability to fall.
  • the content of the antistatic agent is small, it tends to be difficult to obtain a sufficient antistatic effect.
  • the particle size of the antistatic agent may be 0.001 to 0.1 ⁇ m.
  • An antistatic agent with a very small particle size is difficult to produce industrially.
  • An antistatic agent having an excessively large particle size tends to lower the transparency of the resulting cured film.
  • the particle size of the antistatic agent was measured by a dynamic light scattering method according to JIS 8828.
  • the photocurable resin composition may contain additives such as a stabilizer, an antioxidant, a colorant, and a leveling agent as necessary.
  • additives such as a stabilizer, an antioxidant, a colorant, and a leveling agent as necessary.
  • a leveling agent is included, the smoothness and scratch resistance of the cured film can be enhanced.
  • the photocurable resin composition may further contain a solvent in order to be applied to the base film as described later.
  • solvents include methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol, 2-butanol (sec-butyl alcohol), 2-methyl-1-propanol (isobutyl alcohol), 2 Alcohol solvents such as methyl-2-propanol (tert-butyl alcohol); 2-ethoxyethanol, 2-butoxyethanol, 3-methoxy-1-propanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol Alkoxy alcohol solvents such as diacetone alcohol; Ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbon solvents such as toluene and xylene; Ester solvents such as ethyl acetate and butyl acetate And the like.
  • the content of the solvent is, for example, 20 to 10,000 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer.
  • the photocurable resin composition is composed of a polyfunctional (meth) acrylate monomer, a reactive polymer, a photopolymerization initiator, an ultraviolet absorber, a solvent, an inorganic compound, an antistatic agent, and other additives as necessary. Obtained by mixing with an agent. These mixing orders are not particularly limited.
  • FIG. 1 is a typical sectional view showing one embodiment of a layered product.
  • the laminated body 30 shown in FIG. 1 has the base film 10 and the cured film 20 laminated
  • the cured film 20 is formed from the photocurable resin composition according to the above-described embodiment. That is, the cured film is a cured product of the photocurable resin composition.
  • the laminated body which concerns on one Embodiment is excellent in adhesiveness.
  • the laminated body which concerns on one Embodiment may have a base film and the cured film which is a hardened
  • the base film may have transparency.
  • the base film may be, for example, a film made of polyester such as polyethylene terephthalate (PET), polycarbonate (PC), polyarylate (PAR), polyether sulfone (PES), or polyimide (PI).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PAR polyarylate
  • PES polyether sulfone
  • PI polyimide
  • the base film may be a film made of polyimide (PI) in that the effect relating to the cured film can be particularly remarkably exhibited.
  • the base film may contain an inorganic material. When the base film contains an inorganic material, the content thereof is in the range of more than 0% by weight to 60% by weight or less, for example, in the range of 5 to 55% by weight, 10 to 50% by weight, based on the weight of the base film. Range.
  • As an inorganic material what was illustrated about the inorganic compound which can be contained in the above-mentioned photocurable
  • the adhesion of the laminate can be measured according to JIS K 5600-5-6. For example, after scratching the surface of the hard coat of the laminated body in a grid pattern of 10 squares ⁇ 10 squares at intervals of 2 mm, applying an adhesive tape (made by Nichiban), and peeling it off in a direction of about 60 ° with respect to the surface Count the number of remaining grids.
  • an adhesive tape made by Nichiban
  • the light resistance of the laminate can be evaluated by performing the above-mentioned adhesion test after the QUV test.
  • the QUV test Atlas UVCON (lamp: UVB 313 nm) is used, and the coating surface is set to be irradiated with light, and a 24 hr irradiation test is performed. Thereafter, as described above, the adhesion is evaluated.
  • the laminate according to one embodiment preferably has 90 or more, more preferably 95 or more, and still more preferably 100 remaining after peeling.
  • the laminate according to one embodiment preferably has 90 or more, more preferably 95 or more, and still more preferably 100 remaining after peeling.
  • the bendability of the laminate can be determined based on the amount of cracks generated in a piece of the laminate in a bend test in accordance with JIS K 5600-5: 1: 1999.
  • the following bending test may be performed.
  • the laminate is cut into a size of 1 cm in length and 8 cm in width to prepare strip-like pieces (hereinafter referred to as measurement samples) of the laminate.
  • measurement samples strip-like pieces
  • a roll having a desired diameter is placed in the center of the measurement sample, and the operation of bending the measurement sample along the roll is performed about 10 times. Then, the presence or absence of the crack which arose in the cured film of a measurement sample is confirmed.
  • the measurement sample is excellent in flexibility.
  • the laminated body according to an embodiment can exhibit excellent flexibility because the cured film can absorb the stress even when the winding diameter is smaller and a larger stress acts on the measurement sample. it can.
  • the laminate according to one embodiment has a pencil hardness of 2H or more, or 3H or more measured according to JIS K 5600-5-4: 1999, measured with a load of 1 kg. It's okay.
  • the pencil hardness is 2H or more, the laminate tends to exhibit sufficient hardness as a hard coat film.
  • the pencil hardness measured by the above method is the pencil hardness of the laminate.
  • the pencil hardness of the laminate including the other layer is obtained.
  • the cured film in the bending test of the laminate using the roll having a diameter of 6 mm, the cured film may not be cracked, and the pencil hardness of the cured film may be 2H or more. In the laminate according to another embodiment, in the bending test of the laminate using the above-described roll having a diameter of 6 mm, the cured film does not crack, and the pencil hardness of the cured film may be 3H or more. .
  • the laminated body which has the cured film formed from the photocurable resin composition which concerns on one Embodiment suppresses discoloration (yellowing) of the base film by light shows light resistance.
  • Light resistance can be determined by the amount of change ( ⁇ YI) in the YI value of the laminate before and after light irradiation.
  • a laminated body is excellent in light resistance, so that the numerical value of (DELTA) YI is small.
  • the YI value is calculated by the tristimulus values X, Y and Z calculated by the calculation method defined in JIS Z 8701: 1982 and the following equation.
  • YI 100 (1.28X-1.06Z) / Y
  • the YI value can be measured using a commercially available spectrophotometer, for example, a product “U-4100” manufactured by Hitachi, Ltd.
  • the base film is a resin film that does not contain an ultraviolet absorber or a resin film having photosensitivity
  • the light resistance of the laminate can be significantly improved.
  • the cured film constituting the laminate is formed on at least one side of the base film.
  • the thickness of the cured film may be, for example, 3 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the cured film may be 5 ⁇ m or more and 10 ⁇ m or less.
  • a display device can be configured with a polarizing plate or the like as a hard coat film.
  • the laminate may have other layers in addition to the base film and the cured film.
  • another functional layer may be provided on the cured film of the laminate.
  • the functional layer include a hard coat layer and a surface treatment layer such as an antireflection layer or an antiglare layer.
  • the laminated body according to an embodiment is excellent in flexibility and hardness, and therefore can exhibit sufficient flexibility and high hardness even if a functional layer is further provided.
  • the cured film constituting the laminate is formed on at least one side of the base film.
  • the thickness of the cured film may be, for example, 3 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the cured film may be 5 ⁇ m or more and 10 ⁇ m or less.
  • a display device can be configured together with a polarizing plate or the like, for example, as a hard coat film.
  • the laminate may have other layers in addition to the base film and the cured film.
  • another functional layer may be provided on the cured film of the laminate.
  • the functional layer include a top hard coat layer and a surface treatment layer such as an antireflection layer or an antiglare layer.
  • the laminate according to one embodiment can have sufficient adhesion for the further functional layer.
  • the manufacturing method of the laminated body which has a cured film includes the following process (1) and (2), for example.
  • coating the photocurable resin composition of the above-mentioned this invention on a base film The composition layer containing a photocurable resin composition is provided in the single side
  • the base film may have transparency.
  • the base film may be, for example, a film of polyester such as polyethylene terephthalate (PET), polycarbonate (PC), polyarylate (PAR), polyether sulfone (PES), or polyimide (PI).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PAR polyarylate
  • PES polyether sulfone
  • PI polyimide
  • the base film may include a material.
  • the base film contains an inorganic material, the content thereof is in the range of more than 0% by weight and not more than 60% by weight based on the base film, for example, in the range of 5 to 55% by weight, in the range of 10 to 50% by weight It may be.
  • As an inorganic material what was illustrated about the inorganic compound which can be contained in the base film in description of the above-mentioned laminated body can be used.
  • the thickness of the base film may be 30 to 300 ⁇ m, or 50 to 200 ⁇ m. If the base film is thin, the strength of the laminate of the cured film and the base film tends to decrease. If the base film is thick, the transparency of the base film may be lowered or the flexibility may be lowered.
  • the base film may contain various additives. Such additives include, for example, stabilizers, plasticizers, lubricants, and flame retardants.
  • the base film may have an adhesive layer provided on the surface thereof.
  • the adhesive layer is for adhering the cured film to the base film, and is formed according to a conventional method.
  • the adhesive for forming the adhesive layer is appropriately selected according to the material of the base film and the cured film.
  • an acrylic adhesive adheresive
  • a silicone adhesive asdhesive
  • a polyester adhesive Etc. can be used.
  • the thickness of the adhesive may be in the range of 0.1 to 1 ⁇ m.
  • Examples of the method for applying the photocurable resin composition to the base film include a roll coating method, a spin coating method, a coil bar method, a dip coating method, and a die coating method.
  • a method such as a roll coating method that can be applied continuously is particularly advantageous in terms of productivity and production cost.
  • a step (1 ′) for removing the solvent from the composition layer may be provided.
  • the solvent is removed by evaporating the solvent from the composition layer by, for example, a heating means using a heating device such as a hot plate, a decompression means using a decompression device, or a combination thereof.
  • the conditions of the heating means and the decompression means can be selected according to the type of solvent contained in the composition layer. For example, in the case of a hot plate, the surface temperature of the hot plate can be set in a range of about 50 to 200 ° C.
  • the decompression means may be an appropriate decompressor, and the base film having the composition layer can be enclosed in the decompressor.
  • the pressure of the atmosphere formed by the decompression means may be, for example, about 1 to 1.0 ⁇ 10 5 Pa.
  • Step (2) The exposure is usually performed by ultraviolet irradiation.
  • ultraviolet rays include light rays in the visible light region.
  • a photoinitiator expresses photopolymerization initiating ability by light irradiation, and cures the composition layer obtained in the step (1).
  • the ultraviolet light may have a wavelength of 200 to 450 nm.
  • the photopolymerization initiator may have an absorption region at a light wavelength of 220 to 450 nm. In general, the wavelength of ultraviolet light is shorter than 380 nm, and the wavelength of visible light is 380 to 780 nm.
  • the wavelength of ultraviolet rays When the wavelength of ultraviolet rays is less than 200 nm, ultraviolet rays are easily absorbed by the ultraviolet absorber, and the photopolymerization initiation ability of the photopolymerization initiator is not sufficiently exhibited, so that the curability of the composition layer tends to be lowered.
  • the wavelength of ultraviolet rays exceeds 450 nm, the function as ultraviolet rays tends to deteriorate.
  • the wavelength of light in the absorption region of the photopolymerization initiator is less than 220 nm, the ultraviolet absorber tends to be absorbed, and the photopolymerization initiation ability tends to decrease.
  • photopolymerization initiators There are few kinds of photopolymerization initiators whose light wavelength in the absorption region exceeds 450 nm, and such photopolymerization initiators may cause insufficient photopolymerization initiation ability by ultraviolet rays.
  • the method for producing a laminate having a cured film can further include an optional step such as thermosetting or annealing step in addition to the steps (1) and (2).
  • Weight average molecular weight means a polystyrene-reduced weight average molecular weight measured by gel permeation chromatography (GPC). Measurement conditions were as follows: SHODEX GPC-104, column KF-602, mobile phase THF, flow rate 0.5 ml / min, temperature 40 ° C. As the value, a conversion value from a polystyrene standard was used.
  • Glass transition point A sample obtained by drying the synthesized poly (meth) acrylate solution, about 10 mg is weighed in an aluminum pan, set in a DSC apparatus (DSC3100 manufactured by MAC Science), cooled to ⁇ 100 ° C. with liquid nitrogen, and then 10 ° C./min. The glass transition temperature was determined from the DSC chart obtained by raising the temperature at.
  • Example 1 Synthesis of hydroxyl group-containing (meth) acrylic polymer A
  • a flask equipped with a stirrer, dropping funnel, condenser and thermometer was charged with 300 g of methyl isobutyl ketone, heated to 110 ° C. under a nitrogen stream, 245 g of methyl methacrylate, 55 g of 2-hydroxyethyl methacrylate, and 100 g of polypropylene glycol monoacrylate.
  • a mixed solution of 50 g of methyl isobutyl ketone and 3 g of azobisisobutyronitrile was charged into a dropping funnel and dropped at a constant rate over 2 hours, and further aged at the same temperature for 1 hour.
  • a (meth) acrylurethane oligomer B having an isocyanate group at one end and an acrylate group at the other end was synthesized.
  • the weight average molecular weight was about 400, and the heating residue was 50.1%.
  • the transparent substrate film As the transparent substrate film, a resin substrate (silica particle content 60% by mass) containing 80 ⁇ m-thick polyimide and silica particles according to known literature (for example, US Pat. No. 8,207,256). Was made. Using the transparent polyimide film, the photocurable resin composition was applied with a bar coater so as to have a dry film thickness of 5 ⁇ m. Then, it dried for 5 minutes in 60 degreeC oven, and irradiated with the ultraviolet-ray with the energy of 500 mj / cm ⁇ 2 >, and was cured, and the laminated body of the cured film and the base material was obtained. The adhesion of the obtained laminate before and after the QUV test was measured as described above. The results are shown in Table 1. Further, the obtained laminate had a pencil hardness of 2H, and the flexibility with respect to diameters of 6 mm and 2 mm was ⁇ ⁇ ⁇ ⁇ on the inside and outside of the cured film, respectively.
  • Example 2 the isocyanate group-containing alkoxysilane D was blended so as to have the ethoxysilane group contents shown in Tables 1 to 3, and aluminum hydroxide and smectite were used in the contents shown in Table 3. Except for this, a laminate of a cured film and a substrate was obtained in the same manner as in Example 1. The results of measuring the adhesion between the obtained photocurable film and the substrate are shown in Tables 1 to 3.
  • the laminates obtained in Examples 2 to 8 and Comparative Example 1 had a pencil hardness of 2H, and the flexibility with respect to diameters of 6 mm and 2 mm was ⁇ on the inside and outside of the cured film, respectively.
  • the laminates obtained in Examples 9 to 14 had a pencil hardness of 3H, and the flexibility with respect to diameters of 6 mm and 2 mm was ⁇ on the inside and outside of the cured film, respectively.
  • the reaction was terminated by diluting with 210 g of methyl isobutyl ketone.
  • the reactive polymer E2 of Comparative Example 2 was synthesized. As a result of measuring the molecular weight of the obtained polymer, the weight average molecular weight was 195,000, and the heating residue was 40.6%. The double bond equivalent was 1933.
  • the reactive polymer, photocurable resin composition and laminate of the present invention can be used for a hard coat film provided on a display screen of an electronic image display device such as a plasma display (PD) or a liquid crystal display (LCD). it can.
  • a plasma display PD
  • LCD liquid crystal display

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a reactive polymer, a photocurable resin composition containing the polymer, and a laminate having a cured film of the composition. The purpose of the present invention is to improve the adhesive properties between a hard coat layer and a base material, and the lightfastness of a hard coat layer. This reactive polymer has an alkoxysilane group and a (meth)acrylate group in a side chain.

Description

反応性ポリマー、光硬化性樹脂組成物および積層体Reactive polymer, photocurable resin composition, and laminate
 本特許出願は、日本国特許出願第2016-116343号(出願日2016年6月10日)について優先権を主張するものであり、ここに参照することによって、それらの全体が本明細書中へ組み込まれるものとする。
 本発明は、反応性ポリマー、それを含む光硬化性樹脂組成物およびその硬化膜を有する積層体に関する。
This patent application claims priority from Japanese Patent Application No. 2016-116343 (filing date: June 10, 2016), which is hereby incorporated by reference in its entirety. Shall be incorporated.
The present invention relates to a reactive polymer, a photocurable resin composition containing the same, and a laminate having the cured film thereof.
 透明基材フィルム上にハードコート層を形成するための光硬化性樹脂組成物としては、例えば紫外線吸収剤、ウレタンアクリレートおよび光重合開始剤を含む光硬化性樹脂組成物(特許文献1)や、ポリオルガノシロキサン、2官能アクリレート、紫外線吸収剤および光重合開始剤を含む光硬化性樹脂組成物(特許文献2)が知られていた。
特開2009-6513号公報(段落0062) 特許第5576622号公報
As a photocurable resin composition for forming a hard coat layer on a transparent substrate film, for example, a photocurable resin composition containing an ultraviolet absorber, urethane acrylate and a photopolymerization initiator (Patent Document 1), A photocurable resin composition containing a polyorganosiloxane, a bifunctional acrylate, an ultraviolet absorber and a photopolymerization initiator (Patent Document 2) has been known.
JP 2009-6513 A (paragraph 0062) Japanese Patent No. 5576622
 上記特許文献1及び2に記載の光硬化性樹脂組成物からハードコート層を基材上に形成する場合には、屈曲性、硬度、ハードコート層と基材との密着性およびハードコート層の耐光性を全て同時に満足するものではなかった。 When a hard coat layer is formed on a substrate from the photocurable resin composition described in Patent Documents 1 and 2, the flexibility, hardness, adhesion between the hard coat layer and the substrate, and the hard coat layer Not all light resistance was satisfied at the same time.
 そこで、本発明は、ハードコート層と基材との密着性およびハードコート層の耐光性を改善することを目的とする。 Therefore, an object of the present invention is to improve the adhesion between the hard coat layer and the substrate and the light resistance of the hard coat layer.
 本発明は、以下の[1]~[15]に記載の発明を含む。
[1]アルコキシシラン基および(メタ)アクリレート基を側鎖に有する反応性ポリマー。
[2](メタ)アクリレートポリマーからなる主鎖を有し、および前記側鎖としての(メタ)アクリレート基は、前記主鎖に結合したウレタンポリマーおよび/またはウレタンオリゴマーの末端に結合する、[1]に記載の反応性ポリマー。
[3]前記反応性ポリマーの重量平均分子量Mwは10000~250000である、[1]または[2]に記載の反応性ポリマー。
[4]前記反応性ポリマーの二重結合当量は800~125000である、[1]~[3]のいずれかに記載の反応性ポリマー。
[5]前記(メタ)アクリレートポリマーのガラス転移点(Tg)は0~70℃である、[2]に記載の反応性ポリマー。
[6]アルコキシシラン基はエトキシシラン基である、[1]~[5]のいずれかに記載の反応性ポリマー。
[7]多官能(メタ)アクリレートモノマーと、[1]~[6]のいずれかに記載の反応性ポリマーと、光重合開始剤と、紫外線吸収剤とを含有する光硬化性樹脂組成物。
[8]前記反応性ポリマーの含有量は、多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して5~60質量部である、[7]に記載の光硬化性樹脂組成物。
[9]前記反応性ポリマー中のアルコキシシラン基の含有量は、反応性ポリマーを基準に0質量%を超え40質量%未満である、[7]または[8]に記載の光硬化性樹脂組成物。
[10]無機化合物を更に含有する、[7]~[9]のいずれかに記載の光硬化性樹脂組成物。
[11]柱状、板状および層状無機化合物からなる群から選択される少なくとも1種の無機化合物を含有する、[10]に記載の光硬化性樹脂組成物。
[12]基材フィルムと、前記基材フィルムの少なくとも片面側に積層された、[7]~[11]のいずれかに記載の光硬化性樹脂組成物の硬化物である硬化膜とを有する、積層体。
[13]基材がポリイミドである、[12]に記載の積層体。
[14]積層体の製造方法であって、
(1)[7]~[11]のいずれかに記載の光硬化性樹脂組成物を基材上に塗布することにより組成物層を得る工程、および
(2)組成物層を露光することにより該組成物層を硬化させる工程
を含む、方法。
[15]基材フィルムは、ポリイミドでできた基材フィルムである、[14]に記載の方法。
The present invention includes the inventions described in [1] to [15] below.
[1] A reactive polymer having an alkoxysilane group and a (meth) acrylate group in the side chain.
[2] It has a main chain composed of a (meth) acrylate polymer, and the (meth) acrylate group as the side chain is bonded to the terminal of a urethane polymer and / or a urethane oligomer bonded to the main chain, [1 ] The reactive polymer as described in.
[3] The reactive polymer according to [1] or [2], wherein the reactive polymer has a weight average molecular weight Mw of 10,000 to 250,000.
[4] The reactive polymer according to any one of [1] to [3], wherein the reactive polymer has a double bond equivalent of 800 to 125,000.
[5] The reactive polymer according to [2], wherein the (meth) acrylate polymer has a glass transition point (Tg) of 0 to 70 ° C.
[6] The reactive polymer according to any one of [1] to [5], wherein the alkoxysilane group is an ethoxysilane group.
[7] A photocurable resin composition comprising a polyfunctional (meth) acrylate monomer, the reactive polymer according to any one of [1] to [6], a photopolymerization initiator, and an ultraviolet absorber.
[8] The photocurable resin composition according to [7], wherein the content of the reactive polymer is 5 to 60 parts by mass with respect to a total of 100 parts by mass of the polyfunctional (meth) acrylate monomer and the reactive polymer. object.
[9] The photocurable resin composition according to [7] or [8], wherein the content of the alkoxysilane group in the reactive polymer is more than 0% by mass and less than 40% by mass based on the reactive polymer. object.
[10] The photocurable resin composition according to any one of [7] to [9], further containing an inorganic compound.
[11] The photocurable resin composition according to [10], containing at least one inorganic compound selected from the group consisting of columnar, plate-like, and layered inorganic compounds.
[12] A base film and a cured film, which is a cured product of the photocurable resin composition according to any one of [7] to [11], laminated on at least one side of the base film. , Laminate.
[13] The laminate according to [12], wherein the base material is polyimide.
[14] A method for producing a laminate,
(1) A step of obtaining a composition layer by applying the photocurable resin composition according to any one of [7] to [11] onto a substrate, and (2) by exposing the composition layer. Curing the composition layer.
[15] The method according to [14], wherein the base film is a base film made of polyimide.
 本発明の一側面に係る反応性ポリマーによれば、当該反応性ポリマーを含む光硬化性樹脂組成物の硬化膜を透明基材フィルムにハードコート層として形成した場合、透明基材フィルムにハードコート層との密着性に優れ、およびハードコート層の耐光性が良好である積層体(例えばハードコートフィルム)を得ることができる。 According to the reactive polymer according to one aspect of the present invention, when the cured film of the photocurable resin composition containing the reactive polymer is formed as a hard coat layer on the transparent substrate film, the transparent substrate film is hard coated. A laminate (for example, a hard coat film) having excellent adhesion to the layer and having good light resistance of the hard coat layer can be obtained.
積層体の一実施形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of a layered product.
 10  基材フィルム
 10a 主面
 20  硬化膜
 30  積層体
DESCRIPTION OF SYMBOLS 10 Base film 10a Main surface 20 Cured film 30 Laminated body
 以下、本発明について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。まず、一側面に係る反応性ポリマーについて説明する。 Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments. First, a reactive polymer according to one aspect will be described.
[反応性ポリマー]
 反応性ポリマーは、アルコキシシラン基および(メタ)アクリレート基を側鎖に有する。反応性ポリマーがアルコキシシラン基を側鎖に有することにより、優れた密着性が得られることとなる。また、反応性ポリマーが(メタ)アクリレート基を側鎖に有することにより、紫外線での硬化が可能となる。本明細書では、「(メタ)アクリレート」とは、アクリレートとメタクリレートの双方を含む総称を意味する。
[Reactive polymer]
The reactive polymer has an alkoxysilane group and a (meth) acrylate group in the side chain. When the reactive polymer has an alkoxysilane group in the side chain, excellent adhesion can be obtained. Further, since the reactive polymer has a (meth) acrylate group in the side chain, curing with ultraviolet rays becomes possible. In this specification, “(meth) acrylate” means a generic name including both acrylate and methacrylate.
 アルコキシシラン基としては、メトキシシラン基、エトキシシラン基、プロポキシシラン基、ブトキシシラン基等が挙げられる。 Examples of the alkoxysilane group include a methoxysilane group, an ethoxysilane group, a propoxysilane group, and a butoxysilane group.
 (メタ)アクリレート基は、アクリレート基であってもよいし、メタクリレート基であってもよい。 The (meth) acrylate group may be an acrylate group or a methacrylate group.
 反応性ポリマーとしては、(メタ)アクリレートポリマーからなる主鎖を有し、および側鎖としての(メタ)アクリレート基は、主鎖に結合したウレタンオリゴマーおよび/またはウレタンポリマーの末端に結合した反応性ポリマーが好ましい。
 (メタ)アクリレートポリマーは、分子中に水酸基を2個以上含有する(メタ)アクリルポリマー〔以下、水酸基含有(メタ)アクリルポリマーAともいう〕である。
 ウレタンオリゴマーは、1つのイソシアネート基と1つ以上の(メタ)アクリレート基を持ったアクリルウレタンオリゴマー〔以下、(メタ)アクリルウレタンオリゴマーBともいう〕である。また、ウレタンポリマーは、1つのイソシアネート基と1つ以上の(メタ)アクリレート基を持ったアクリルウレタンポリマー〔以下、(メタ)アクリルウレタンポリマーCともいう〕である。
 反応性ポリマーは、水酸基含有(メタ)アクリルポリマーAと、(メタ)アクリルウレタンオリゴマーBの単独または(メタ)アクリルウレタンポリマーCの単独もしくは(メタ)アクリルウレタンオリゴマーBと(メタ)アクリルウレタンポリマーCの両方との付加反応物と、イソシアネート基含有アルコキシシランDとの付加反応物である反応性ポリマー(以下、反応性ポリマーEともいう)である。
The reactive polymer has a main chain composed of a (meth) acrylate polymer, and the (meth) acrylate group as a side chain has a reactivity bonded to the end of the urethane oligomer and / or urethane polymer bonded to the main chain. Polymers are preferred.
The (meth) acrylate polymer is a (meth) acrylic polymer [hereinafter also referred to as a hydroxyl group-containing (meth) acrylic polymer A] containing two or more hydroxyl groups in the molecule.
The urethane oligomer is an acrylic urethane oligomer (hereinafter also referred to as (meth) acryl urethane oligomer B) having one isocyanate group and one or more (meth) acrylate groups. The urethane polymer is an acrylic urethane polymer [hereinafter also referred to as (meth) acrylic urethane polymer C] having one isocyanate group and one or more (meth) acrylate groups.
The reactive polymer is a hydroxyl group-containing (meth) acrylic polymer A and (meth) acrylurethane oligomer B alone or (meth) acrylurethane polymer C alone or (meth) acrylurethane oligomer B and (meth) acrylurethane polymer C. A reactive polymer (hereinafter also referred to as a reactive polymer E) which is an addition reaction product of the isocyanate group-containing alkoxysilane D.
[水酸基含有(メタ)アクリルポリマーA]
 水酸基含有(メタ)アクリルポリマーAは分子中に水酸基を2個以上含有する(メタ)アクリルポリマーである。重量平均分子量Mwについては特に限定されないが、3,000~200,000であることが好ましく、10,000~160,000であることがより好ましく、30,000~120,000であることがさらに好ましい。重量平均分子量Mwが3,000以下の場合、反応性ポリマーEの硬度が高くなり柔軟性が十分発現できないおそれがある。また重量平均分子量Mwが200,000以上の場合、反応性ポリマーEの紫外線硬化時の反応性が著しく低下するため、結果的に耐光性が低下するおそれがある。本明細書では、「(メタ)アクリレート」とは、アクリレートとメタクリレートの双方を含む総称を意味する。
[Hydroxyl group-containing (meth) acrylic polymer A]
Hydroxyl group-containing (meth) acrylic polymer A is a (meth) acrylic polymer containing two or more hydroxyl groups in the molecule. The weight average molecular weight Mw is not particularly limited, but is preferably 3,000 to 200,000, more preferably 10,000 to 160,000, and further preferably 30,000 to 120,000. preferable. When the weight average molecular weight Mw is 3,000 or less, there is a possibility that the hardness of the reactive polymer E becomes high and flexibility cannot be sufficiently exhibited. Further, when the weight average molecular weight Mw is 200,000 or more, the reactivity of the reactive polymer E at the time of ultraviolet curing is remarkably lowered, and as a result, the light resistance may be lowered. In this specification, “(meth) acrylate” means a generic name including both acrylate and methacrylate.
 水酸基含有(メタ)アクリル系ポリマーAはガラス転移点(Tg)が好ましくは0~70℃、より好ましくは10~60℃、さらに好ましくは20~50℃である。水酸基含有(メタ)アクリル系ポリマーAのガラス転移点(Tg)が上記範囲内である場合には、十分な硬度と屈曲性が得られるが、ガラス転移点(Tg)が0℃以下の場合は、著しい硬度の低下を生じるおそれがある。またガラス転移点(Tg)が70℃以上の場合は逆に硬度が高くなり屈曲性が低下するおそれがある。本発明では、ガラス転移点(Tg)は示差走査熱量計を用いて測定した値である。 The hydroxyl group-containing (meth) acrylic polymer A has a glass transition point (Tg) of preferably 0 to 70 ° C., more preferably 10 to 60 ° C., and further preferably 20 to 50 ° C. When the glass transition point (Tg) of the hydroxyl group-containing (meth) acrylic polymer A is within the above range, sufficient hardness and flexibility can be obtained, but when the glass transition point (Tg) is 0 ° C. or less. There is a risk of causing a significant decrease in hardness. On the other hand, when the glass transition point (Tg) is 70 ° C. or higher, the hardness tends to be high and the flexibility may be lowered. In the present invention, the glass transition point (Tg) is a value measured using a differential scanning calorimeter.
[(メタ)アクリルウレタンオリゴマーB]
 (メタ)アクリルウレタンオリゴマーBは、1つのイソシアネート基と1つ以上の(メタ)アクリレート基を持ったアクリルウレタンオリゴマーであり、ジイソシアネートと1つの水酸基を持った単官能(メタ)アクリレートまたは多官能(メタ)アクリレートもしくはこれらを反応させることにより得られるアクリルウレタンオリゴマーである。組成上、特に制限はない。分子量は3,000以下であることが好ましく、2,000以下であることがより好ましく、1,000以下であることがさらに好ましい。分子量が3,000以上の場合、反応性ポリマーEの紫外線硬化性が低下する傾向がある。
[(Meth) acrylic urethane oligomer B]
The (meth) acryl urethane oligomer B is an acrylic urethane oligomer having one isocyanate group and one or more (meth) acrylate groups, and is a monofunctional (meth) acrylate or polyfunctional (difunctional) having a diisocyanate and one hydroxyl group ( It is an acrylic urethane oligomer obtained by reacting meth) acrylate or these. There is no restriction | limiting in particular on a composition. The molecular weight is preferably 3,000 or less, more preferably 2,000 or less, and even more preferably 1,000 or less. When the molecular weight is 3,000 or more, the ultraviolet curability of the reactive polymer E tends to decrease.
[(メタ)アクリルウレタンポリマーC]
 (メタ)アクリルウレタンポリマーCは、1つのイソシアネート基と1つ以上の(メタ)アクリレート基を持ったアクリルウレタンポリマーであり、過剰のジイソシアネートとジオールを反応させた両末端イソシアネートのプレポリマーの片末端に1つの水酸基を持った単官能(メタ)アクリレートまたは多官能(メタ)アクリレートもしくはこれらを併用し反応させたアクリルウレタンポリマーである。組成上、特に制限はない。重量平均分子量Mwは1,000~50,000が好ましく、3,000~20,000がより好ましく、5,000~10,000がさらに好ましい。重量平均分子量Mwが1,000以下の場合、反応性ポリマーEの柔軟性がまったく得られないか、もしくは十分でないことがある。重量平均分子量Mwが50,000以上の場合、反応性ポリマーEを得るために水酸基含有(メタ)アクリルポリマーAへの付加反応時の反応率が著しく低下し、ワニスの分離や白濁が生じ、貯蔵安定性が著しく低下する場合がある。
[(Meth) acrylic urethane polymer C]
(Meth) acrylic urethane polymer C is an acrylic urethane polymer having one isocyanate group and one or more (meth) acrylate groups, and one end of a prepolymer of both end isocyanates reacted with excess diisocyanate and diol. A monofunctional (meth) acrylate or polyfunctional (meth) acrylate having a single hydroxyl group, or an acrylic urethane polymer obtained by reacting these in combination. There is no restriction | limiting in particular on a composition. The weight average molecular weight Mw is preferably 1,000 to 50,000, more preferably 3,000 to 20,000, and even more preferably 5,000 to 10,000. When the weight average molecular weight Mw is 1,000 or less, the flexibility of the reactive polymer E may not be obtained at all or may not be sufficient. When the weight average molecular weight Mw is 50,000 or more, in order to obtain the reactive polymer E, the reaction rate during the addition reaction to the hydroxyl group-containing (meth) acrylic polymer A is remarkably lowered, resulting in varnish separation and cloudiness. Stability may be significantly reduced.
[反応性ポリマーE]
 反応性ポリマーEは、水酸基含有(メタ)アクリルポリマーAに、(メタ)アクリルウレタンオリゴマーBの単独または(メタ)アクリルウレタンポリマーCの単独、もしくは(メタ)アクリルウレタンオリゴマーBと(メタ)アクリルウレタンポリマーCの両方を付加反応させた後、イソシアネート基含有アルコキシシランDを付加反応させて得られる。
[Reactive polymer E]
Reactive polymer E includes hydroxyl group-containing (meth) acrylic polymer A, (meth) acrylic urethane oligomer B alone or (meth) acrylic urethane polymer C alone, or (meth) acrylic urethane oligomer B and (meth) acrylic urethane. After both of the polymers C are subjected to an addition reaction, an isocyanate group-containing alkoxysilane D is subjected to an addition reaction.
 反応性ポリマーEは、アルコキシシラン基および(メタ)アクリレート基を側鎖に有する。反応性ポリマーEがアルコキシシラン基を側鎖に有することにより、優れた密着性が得られることとなる。また、反応性ポリマーEが(メタ)アクリレート基を側鎖に有することにより、紫外線での硬化が可能となる。 The reactive polymer E has an alkoxysilane group and a (meth) acrylate group in the side chain. When the reactive polymer E has an alkoxysilane group in the side chain, excellent adhesion can be obtained. Moreover, when the reactive polymer E has a (meth) acrylate group in the side chain, curing with ultraviolet rays becomes possible.
 反応性ポリマーは、式(1):
Figure JPOXMLDOC01-appb-C000001
〔式中、n1及びn2はそれぞれ1~10の整数を表す。R、R、R及びRはそれぞれ独立に炭素原子数2~6のアルキレン基を表す。Rはポリウレタン鎖を表す。R、R及びR11はそれぞれ独立にメチル基または水素原子を表す。R及びRはそれぞれ独立にメチル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基を表す。R10はメトキシ基、エトキシ基、プロポキシ基、ブトキシ基を表す。
 R、R、R及びRとしての炭素原子数2~6のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンタンジイル基、ヘキサンジイル基が挙げられる。〕
で示される構造単位を持つ。
The reactive polymer has the formula (1):
Figure JPOXMLDOC01-appb-C000001
[Wherein, n1 and n2 each represents an integer of 1 to 10. R 1 , R 2 , R 6 and R 7 each independently represents an alkylene group having 2 to 6 carbon atoms. R 3 represents a polyurethane chain. R 4 , R 5 and R 11 each independently represent a methyl group or a hydrogen atom. R 8 and R 9 each independently represent a methyl group, a methoxy group, an ethoxy group, a propoxy group, or a butoxy group. R 10 represents a methoxy group, an ethoxy group, a propoxy group, or a butoxy group.
Examples of the alkylene group having 2 to 6 carbon atoms as R 1 , R 2 , R 6 and R 7 include an ethylene group, a propylene group, a butylene group, a pentanediyl group and a hexanediyl group. ]
It has a structural unit indicated by
 Rとしてのポリウレタン鎖は、ウレタンポリマーおよび/またはウレタンオリゴマーに由来する二価の基であってよい。ウレタンポリマーおよび/またはウレタンオリゴマーに由来する二価の基とは、(メタ)アクリルウレタンオリゴマーBおよび/または(メタ)アクリルウレタンポリマーCから水素原子を2個除いた基である。ウレタンポリマーは、重量平均分子量Mwが1,000~50,000であるものが好ましい。ウレタンオリゴマーは、重量平均分子量Mwが3,000以下であるものが好ましい。 The polyurethane chain as R 3 may be a divalent group derived from a urethane polymer and / or a urethane oligomer. The divalent group derived from the urethane polymer and / or the urethane oligomer is a group obtained by removing two hydrogen atoms from the (meth) acryl urethane oligomer B and / or the (meth) acryl urethane polymer C. The urethane polymer preferably has a weight average molecular weight Mw of 1,000 to 50,000. The urethane oligomer preferably has a weight average molecular weight Mw of 3,000 or less.
 反応性ポリマーEは、従来公知の方法により製造することができる。反応性ポリマーEは、水酸基含有(メタ)アクリルポリマーAの水酸基に、(メタ)アクリルウレタンオリゴマーBの単独、または(メタ)アクリルウレタンポリマーCの単独、もしくは(メタ)アクリルウレタンオリゴマーBと(メタ)アクリルウレタンポリマーCの両方を付加させた後、イソシアネート基含有アルコキシシランDを付加させて得ることができる。 The reactive polymer E can be produced by a conventionally known method. The reactive polymer E has a hydroxyl group of the hydroxyl group-containing (meth) acrylic polymer A, (meth) acrylurethane oligomer B alone, (meth) acrylurethane polymer C alone, or (meth) acrylurethane oligomer B and (meth) ) After adding both of the acrylic urethane polymer C, it can be obtained by adding an isocyanate group-containing alkoxysilane D.
 水酸基含有(メタ)アクリルポリマーAは、従来公知の溶液重合、塊状重合、懸濁重合等の方法で得ることができる。例えば、溶液重合の場合、窒素気流下、反応温度80~150℃において有機溶剤中に(メタ)アクリレートモノマーと重合開始剤を滴下し重合反応させることにより得られる。(メタ)アクリレートの種類に特に制約はないが、次工程での(メタ)アクリルウレタンオリゴマーB、(メタ)アクリルウレタンポリマーC及びイソシアネート含有アルコキシシランDとの付加反応のため、少なくとも1種類以上の水酸基含有(メタ)アクリレート類を含む必要がある。 The hydroxyl group-containing (meth) acrylic polymer A can be obtained by a conventionally known method such as solution polymerization, bulk polymerization or suspension polymerization. For example, in the case of solution polymerization, it can be obtained by dropping a (meth) acrylate monomer and a polymerization initiator into an organic solvent at a reaction temperature of 80 to 150 ° C. under a nitrogen stream and causing a polymerization reaction. Although there is no restriction | limiting in particular in the kind of (meth) acrylate, Due to addition reaction with the (meth) acryl urethane oligomer B, the (meth) acryl urethane polymer C, and the isocyanate containing alkoxysilane D in the next process, at least 1 or more types of It is necessary to include hydroxyl group-containing (meth) acrylates.
 水酸基含有(メタ)アクリルポリマーAは、例えば、水酸基含有(メタ)アクリレート類と、(メタ)アクリル酸アルキル若しくはシクロアルキルのエステル及び/又はその他のビニル系モノマーとを重合することにより得ることができる。 The hydroxyl group-containing (meth) acrylic polymer A can be obtained, for example, by polymerizing a hydroxyl group-containing (meth) acrylate with an alkyl (meth) acrylate or cycloalkyl ester and / or other vinyl monomers. .
 水酸基含有(メタ)アクリレートモノマーとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の単官能(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能(メタ)アクリレートを挙げることができる。これらは単独もしくは2種以上を併用して使用してもよい。 Examples of the hydroxyl group-containing (meth) acrylate monomer include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) ) Acrylates, monofunctional (meth) acrylates such as polypropylene glycol mono (meth) acrylate, and polyfunctional (meth) acrylates such as pentaerythritol tri (meth) acrylate. These may be used alone or in combination of two or more.
 (メタ)アクリル酸アルキル若しくはシクロアルキルのエステル及び/又はその他のビニル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリーブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、(メタ)アクリル酸、ブトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、等が挙げられる。これらは単独もしくは併用して使用してもよい。本明細書では、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の双方を含む総称を意味する。 Examples of esters of alkyl (meth) acrylate or cycloalkyl and / or other vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tertiary. Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, Isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylamino ester Le (meth) acrylate, (meth) acrylic acid, butoxy diethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate. These may be used alone or in combination. In this specification, “(meth) acrylic acid” means a generic name including both acrylic acid and methacrylic acid.
 重合開始剤としては、特に限定されないが、アゾビスイソブチロニトリル等のアゾ系重合開始剤、ベンゾイルパーオキシド等の過酸化物系重合開始剤等が挙げられ、これらを単独もしくは併用して使用してもよい。 The polymerization initiator is not particularly limited, and examples thereof include azo polymerization initiators such as azobisisobutyronitrile, peroxide polymerization initiators such as benzoyl peroxide, and the like. These may be used alone or in combination. May be.
 有機溶剤としては、例えば、トルエン、キシレン等の芳香族類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸nブチル、酢酸プロピル等のエステル類等があり、これらは単独もしくは併用して使用してもよい。水酸基含有(メタ)アクリルポリマーAの溶解性が良好な点からケトン類が好ましい。 Examples of organic solvents include aromatics such as toluene and xylene, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and esters such as ethyl acetate, nbutyl acetate, and propyl acetate. These may be used alone or in combination. May be used. Ketones are preferred from the viewpoint of good solubility of the hydroxyl group-containing (meth) acrylic polymer A.
 (メタ)アクリルウレタンオリゴマーBは、窒素と酸素の混合気体の気流下、反応温度40℃~120℃の範囲でジイソシアネートの片末端に水酸基含有(メタ)アクリレートモノマーの水酸基を反応させることにより得られる。これらは有機溶剤を含んでいてもよい。有機溶剤としては、上述の水酸基含有(メタ)アクリルポリマーAの製造に関する説明において記載した有機溶剤を用いることができ、これらは単独もしくは併用して使用してもよい。また、例えばジオクチルスズといった有機錫化合物等の重合触媒やメトキノンのような付加反応時の二重結合反応禁止剤を用いてもよい。 The (meth) acryl urethane oligomer B is obtained by reacting a hydroxyl group of a hydroxyl group-containing (meth) acrylate monomer with one end of diisocyanate at a reaction temperature in the range of 40 ° C. to 120 ° C. in a mixed gas stream of nitrogen and oxygen. . These may contain an organic solvent. As an organic solvent, the organic solvent described in the description regarding manufacture of the above-mentioned hydroxyl group-containing (meth) acrylic polymer A can be used, and these may be used alone or in combination. Further, for example, a polymerization catalyst such as an organic tin compound such as dioctyltin, or a double bond reaction inhibitor during addition reaction such as methoquinone may be used.
 (メタ)アクリルウレタンオリゴマーBの製造に用いるジイソシアネートとしては、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)、メチレンビスフェニルジイソシアネート(MDI)、キシレンジイソシアネート(XDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)等が挙げられ、これらは単独もしくは併用して使用してもよい。
 水酸基含有(メタ)アクリレートモノマーとしては、例えば2-ヒドロキシエチルアクリレート等が挙げられる。
 (メタ)アクリルウレタンオリゴマーBとしては、例えばイソホロンジイソシアネートの2-ヒドロキシエチルアクリレート付加物、ヘキサメチレンジイソシアネートの2-ヒドロキシエチルアクリレート付加物、トルエンジイソシアネートの2-ヒドロキシエチルアクリレート付加物、メチレンビスフェニルジイソシアネートの2-ヒドロキシエチルアクリレート付加物、キシレンジイソシアネートの2-ヒドロキシエチルアクリレート付加物、ジシクロヘキシルメタンジイソシアネートの2-ヒドロキシエチルアクリレート付加物等が挙げられ、これらは単独もしくは併用して使用してもよい。アクリルウレタンオリゴマーの重量平均分子量Mwは、3,000以下が好ましく、2,000以下であることがより好ましく、1,000以下であることがさらに好ましい。
Diisocyanates used for the production of (meth) acryl urethane oligomer B include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), methylenebisphenyl diisocyanate (MDI), xylene diisocyanate (XDI), dicyclohexylmethane. Examples thereof include diisocyanate (HMDI), and these may be used alone or in combination.
Examples of the hydroxyl group-containing (meth) acrylate monomer include 2-hydroxyethyl acrylate.
Examples of the (meth) acryl urethane oligomer B include 2-hydroxyethyl acrylate adduct of isophorone diisocyanate, 2-hydroxyethyl acrylate adduct of hexamethylene diisocyanate, 2-hydroxyethyl acrylate adduct of toluene diisocyanate, and methylene bisphenyl diisocyanate. Examples include 2-hydroxyethyl acrylate adducts, 2-hydroxyethyl acrylate adducts of xylene diisocyanate, 2-hydroxyethyl acrylate adducts of dicyclohexylmethane diisocyanate, and these may be used alone or in combination. The weight average molecular weight Mw of the acrylic urethane oligomer is preferably 3,000 or less, more preferably 2,000 or less, and even more preferably 1,000 or less.
 (メタ)アクリルウレタンポリマーCは、窒素と酸素の混合気体の気流下、反応温度は40℃~120℃の範囲で過剰のジイソシアネートとジオールとを反応させることで両末端イソシアネート基のウレタンポリマーを得た後、ウレタンポリマーの片末端のイソシアネートに水酸基含有(メタ)アクリレートモノマーの水酸基を反応させることにより得られる。またこれらは有機溶剤を含んでいてもよい。有機溶剤としては、上述の水酸基含有(メタ)アクリルポリマーAの製造に関する説明において記載した有機溶剤を用いることができる。また、例えばジオクチルスズといった有機錫化合物等の重合触媒やメトキノンのような付加反応時の二重結合反応禁止剤を用いてもよい。 (Meth) acrylic urethane polymer C is obtained by reacting excess diisocyanate with diol at a reaction temperature in the range of 40 ° C to 120 ° C in a stream of mixed gas of nitrogen and oxygen to obtain a urethane polymer with isocyanate groups at both ends. Thereafter, the hydroxyl group of the hydroxyl group-containing (meth) acrylate monomer is reacted with the isocyanate at one end of the urethane polymer. These may contain an organic solvent. As an organic solvent, the organic solvent described in the description regarding manufacture of the above-mentioned hydroxyl group-containing (meth) acrylic polymer A can be used. Further, for example, a polymerization catalyst such as an organic tin compound such as dioctyltin, or a double bond reaction inhibitor during addition reaction such as methoquinone may be used.
 (メタ)アクリルウレタンポリマーCのジイソシアネートとしては、例えばイソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)、メチレンビスフェニルジイソシアネート(MDI)、キシレンジイソシアネート(XDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)等が挙げられる。これらは単独もしくは併用して使用してもよい。 As the diisocyanate of the (meth) acryl urethane polymer C, for example, isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), methylene bisphenyl diisocyanate (MDI), xylene diisocyanate (XDI), dicyclohexylmethane diisocyanate ( HMDI) and the like. These may be used alone or in combination.
 (メタ)アクリルウレタンポリマーCのジオールとしては、例えばポリエーテルジオール、ポリカーボネートジオール、ポリエステルジオール、1、6-ヘキサンジオール、1、5-ペンタンジオール、1,12-ドデカンジオール等が挙げられる。これらは単独もしくは併用して使用してもよい。 Examples of the diol of (meth) acryl urethane polymer C include polyether diol, polycarbonate diol, polyester diol, 1,6-hexanediol, 1,5-pentanediol, 1,12-dodecanediol, and the like. These may be used alone or in combination.
 水酸基含有(メタ)アクリレートモノマーとしては(メタ)アクリルウレタンオリゴマーBと同様のもの、例えば2-ヒドロキシエチルアクリレートを使用できる。 As the hydroxyl group-containing (meth) acrylate monomer, the same as (meth) acryl urethane oligomer B, for example, 2-hydroxyethyl acrylate can be used.
 (メタ)アクリルウレタンポリマーCの重量平均分子量Mwは、1,000~50,000が好ましく、3,000~20,000がより好ましく、5,000~10,000がさらに好ましい。 The weight average molecular weight Mw of the (meth) acryl urethane polymer C is preferably 1,000 to 50,000, more preferably 3,000 to 20,000, and even more preferably 5,000 to 10,000.
 反応性ポリマーEは、窒素と酸素の混合気体の気流下、50℃~120℃の範囲の反応温度にて、水酸基含有(メタ)アクリルポリマーAの水酸基に、(メタ)アクリルウレタンオリゴマーBの単独または(メタ)アクリルウレタンポリマーCの単独、もしくは(メタ)アクリルウレタンオリゴマーBと(メタ)アクリルウレタンオリゴマーポリマーの両方の片末端イソシアネート基を反応させた後、イソシアネート含有アルコキシシランDのイソシアネート基を水酸基含有(メタ)アクリルポリマーA中に残存する水酸基と反応させることにより得ることができる。上記反応においてメトキノンのような付加反応時の二重結合反応禁止剤を用いてもよい Reactive polymer E is a single compound of (meth) acryl urethane oligomer B on the hydroxyl group of hydroxyl group-containing (meth) acrylic polymer A at a reaction temperature in the range of 50 ° C. to 120 ° C. under a mixed gas stream of nitrogen and oxygen. Or after reacting the single-end isocyanate groups of (meth) acryl urethane polymer C alone or both of (meth) acryl urethane oligomer B and (meth) acryl urethane oligomer polymer, the isocyanate group of isocyanate-containing alkoxysilane D is hydroxylated. It can be obtained by reacting with the hydroxyl group remaining in the contained (meth) acrylic polymer A. In the above reaction, a double bond reaction inhibitor such as methoquinone at the time of addition reaction may be used.
 イソシアネート基含有アルコキシシランDのアルコキシシラン基としては、メトキシシラン基、エトキシシラン基、プロポキシシラン基、ブトキシシラン基等が挙げられる。これらの中でも、光硬化性樹脂組成物が密着性及び貯蔵安定性に優れることとなり、及び適度な反応性が得られることから、エトキシシラン基が好ましい。イソシアネート基含有アルコキシシランDとしては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン等が挙げられ、これらの化合物は単独又は組合せて使用することができる。 Examples of the alkoxysilane group of the isocyanate group-containing alkoxysilane D include a methoxysilane group, an ethoxysilane group, a propoxysilane group, and a butoxysilane group. Among these, an ethoxysilane group is preferable because the photocurable resin composition is excellent in adhesion and storage stability, and appropriate reactivity can be obtained. Examples of the isocyanate group-containing alkoxysilane D include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, 3-isocyanatepropylmethyldiethoxysilane, and the like. The compounds can be used alone or in combination.
 反応性ポリマーE中のアルコキシシラン基の含有量は、反応性ポリマーを基準に好ましくは0質量%を超え40質量%未満、より好ましくは1質量%~35質量%、さらに好ましくは5質量%~30質量%含有する。反応性ポリマー中のアルコキシシラン基の含有量が上記範囲内であると、反応性ポリマーを含む光硬化性組成物が十分な密着性を有することとなる。 The content of the alkoxysilane group in the reactive polymer E is preferably more than 0% by weight and less than 40% by weight based on the reactive polymer, more preferably 1% by weight to 35% by weight, and even more preferably 5% by weight to Contains 30% by mass. When the content of the alkoxysilane group in the reactive polymer is within the above range, the photocurable composition containing the reactive polymer has sufficient adhesion.
 反応性ポリマーEの二重結合当量は、特に限定されないが、好ましくは800~125,000、より好ましくは1,000~100,000、さらに好ましくは1,500~70,000である。反応性ポリマーの二重結合当量が上記範囲内である場合には、柔軟性と耐光性が十分なものとなる。二重結合当量が800以下の場合、硬化塗膜の硬度が高くなりすぎ、十分な柔軟性が得られず、二重結合当量が125,000以上では紫外線硬化性が低下し、結果として耐光性が低下する懸念が生じることとなる。 The double bond equivalent of the reactive polymer E is not particularly limited, but is preferably 800 to 125,000, more preferably 1,000 to 100,000, and still more preferably 1,500 to 70,000. When the double bond equivalent of the reactive polymer is within the above range, the flexibility and light resistance are sufficient. When the double bond equivalent is 800 or less, the hardness of the cured coating film becomes too high and sufficient flexibility cannot be obtained, and when the double bond equivalent is 125,000 or more, the UV curable property is lowered, resulting in light resistance. There will be a concern that this will decrease.
 反応性ポリマーEの重量平均分子量Mwは、特に限定されないが、10,000~250,000であることが好ましく、15,000~200,000であることがより好ましく、20,000~150,000であることがさらに好ましい。反応性ポリマーの重量平均分子量が上記範囲内である場合には、十分な紫外線硬化性、柔軟性、密着性が得られる。重量平均分子量が10,000以下の場合、柔軟性が低下し250,000以上の場合は紫外線硬化性や貯蔵安定性が低下することとなる。 The weight average molecular weight Mw of the reactive polymer E is not particularly limited, but is preferably 10,000 to 250,000, more preferably 15,000 to 200,000, and 20,000 to 150,000. More preferably. When the weight average molecular weight of the reactive polymer is within the above range, sufficient ultraviolet curability, flexibility and adhesion can be obtained. When the weight average molecular weight is 10,000 or less, the flexibility is lowered, and when it is 250,000 or more, the ultraviolet curability and the storage stability are lowered.
 一実施形態に係る反応性ポリマーは、アルコキシシラン基と紫外線硬化性の(メタ)アクリレート基を側鎖に有することから、光硬化性樹脂組成物に好適に用いることができる。 Since the reactive polymer according to one embodiment has an alkoxysilane group and an ultraviolet curable (meth) acrylate group in the side chain, it can be suitably used for a photocurable resin composition.
[光硬化性樹脂組成物]
 光硬化性樹脂組成物は、二官能以上の多官能(メタ)アクリレートモノマーと、反応性ポリマーと、光重合開始剤と、紫外線吸収剤とを含有する。
[Photocurable resin composition]
The photocurable resin composition contains a bifunctional or higher polyfunctional (meth) acrylate monomer, a reactive polymer, a photopolymerization initiator, and an ultraviolet absorber.
 多官能(メタ)アクリレートモノマーは、2以上の(メタ)アクリレート基を有する化合物である。多官能(メタ)アクリレートモノマーとしては、2つの(メタ)アクリレート基を有する二官能(メタ)アクリレート、3つの(メタ)アクリレート基を有する三官能(メタ)アクリレート、4つの(メタ)アクリレート基を有する四官能(メタ)アクリレートおよびこれらの2種以上の混合物、例えば三官能(メタ)アクリレートと四官能(メタ)アクリレートの混合物等であってよい。例えば光硬化性樹脂組成物中の多官能(メタ)アクリレートモノマーまたはその混合物の含有量は、多官能(メタ)アクリレートモノマー及び反応性ポリマーの合計100質量部に対して、40~95質量部、および50~90質量部等であってよい。 The polyfunctional (meth) acrylate monomer is a compound having two or more (meth) acrylate groups. As the polyfunctional (meth) acrylate monomer, a bifunctional (meth) acrylate having two (meth) acrylate groups, a trifunctional (meth) acrylate having three (meth) acrylate groups, and four (meth) acrylate groups It may be a tetrafunctional (meth) acrylate and a mixture of two or more thereof, for example, a mixture of trifunctional (meth) acrylate and tetrafunctional (meth) acrylate. For example, the content of the polyfunctional (meth) acrylate monomer or the mixture thereof in the photocurable resin composition is 40 to 95 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate monomer and the reactive polymer. And 50 to 90 parts by mass.
 二官能以上の多官能(メタ)アクリレートモノマーとしては、例えば1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、3-メチルペンタンジオールジ(メタ)アクリレート、ジエチレングリコールビスβ-(メタ)アクリロイルオキシプロピネート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(2-ヒドロキシエチル)イソシアネートジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、2,3-ビス(メタ)アクリロイルオキシエチルオキシメチル[2.2.1]ヘプタン、ポリ1,2-ブタジエンジ(メタ)アクリレート、1,2-ビス(メタ)アクリロイルオキシメチルヘキサン、ノナエチレングリコールジ(メタ)アクリレート、テトラデカンエチレングリコールジ(メタ)アクリレート、10-デカンジオール(メタ)アクリレート、3,8-ビス(メタ)アクリロイルオキシメチルトリシクロ[5.2.10]デカン、水素添加ビスフェノールAジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロイルオキシジエトキシフェニル)プロパン、1,4-ビス((メタ)アクリロイルオキシメチル)シクロヘキサン、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、及びエポキシ変性ビスフェノールAジ(メタ)アクリレートが挙げられる。これらは、1種単独で、または2種以上を組み合わせて用いることができる。 Examples of the bifunctional or higher polyfunctional (meth) acrylate monomer include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol (meth) acrylate, and ethylene glycol diester. (Meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, 3-methylpentanediol di (meth) acrylate, diethylene glycol bis β- (meth) Acryloyloxypropionate, trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol Sa (meth) acrylate, tri (2-hydroxyethyl) isocyanate di (meth) acrylate, pentaerythritol tetra (meth) acrylate, 2,3-bis (meth) acryloyloxyethyloxymethyl [2.2.1] heptane, Poly 1,2-butadiene di (meth) acrylate, 1,2-bis (meth) acryloyloxymethylhexane, nonaethylene glycol di (meth) acrylate, tetradecane ethylene glycol di (meth) acrylate, 10-decanediol (meth) Acrylate, 3,8-bis (meth) acryloyloxymethyltricyclo [5.2.10] decane, hydrogenated bisphenol A di (meth) acrylate, 2,2-bis (4- (meth) acryloyloxydiethoxyphenyl) ) Propane 1,4 -Bis ((meth) acryloyloxymethyl) cyclohexane, hydroxypivalate ester neopentyl glycol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, and epoxy-modified bisphenol A di (meth) acrylate. These can be used individually by 1 type or in combination of 2 or more types.
 反応性ポリマーとしては、上述の本発明の反応性ポリマーを用いる。例えば光硬化性樹脂組成物中の反応性ポリマーの含有量は、多官能(メタ)アクリレートモノマー及び反応性ポリマーの合計100質量部に対して、5~60質量部、または10~50質量部であってもよい。反応性ポリマーの含有量が上記範囲内である場合には、積層体の表面の硬度と密着性が十分なものとなる傾向がある。反応性ポリマー中のアルコキシシラン基の含有量は、上述の本発明の反応性ポリマー中のアルコキシシラン基の含有量と同様であってよい。 The reactive polymer of the present invention described above is used as the reactive polymer. For example, the content of the reactive polymer in the photocurable resin composition is 5 to 60 parts by mass, or 10 to 50 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer. There may be. When the content of the reactive polymer is within the above range, the surface hardness and adhesion of the laminate tend to be sufficient. The content of the alkoxysilane group in the reactive polymer may be the same as the content of the alkoxysilane group in the reactive polymer of the present invention described above.
 多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計の含有量は、光硬化性樹脂組成物の全質量に対して、好ましくは4.5質量%以上、より好ましくは9質量%以上、さらに好ましくは18質量%以上、特に好ましくは36質量%以上であり、好ましくは55質量%以下、より好ましくは50質量%以下、さらに好ましくは45質量%以下である。 The total content of the polyfunctional (meth) acrylate monomer and the reactive polymer is preferably 4.5% by mass or more, more preferably 9% by mass or more, and still more preferably based on the total mass of the photocurable resin composition. Is 18% by mass or more, particularly preferably 36% by mass or more, preferably 55% by mass or less, more preferably 50% by mass or less, and further preferably 45% by mass or less.
 光重合開始剤としては、紫外線吸収剤の存在下において光照射により光重合開始能を発現できる光重合開始剤であってよい。そのような光重合開始剤としては、例えばアセトフェノン、アセトフェノンベンジルケタール、アントラキノン、1-(4-イソプロピルフェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、カルバゾール、キサントン、4-クロロベンゾフェノン、4,4’-ジアミノベンゾフェノン、1,1-ジメトキシデオキシベンゾイン、3,3’-ジメチル-4-メトキシベンゾフェノン、チオキサントン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、トリフェニルアミン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、フルオレノン、フルオレン、ベンズアルデヒド、ベンゾインエチルエーテル、ベンゾイソプロピルエーテル、ベンゾフェノン、ミヒラーケトン、3-メチルアセトフェノン、3,3’,4,4’-テトラ-tert-ブチルパーオキシカルボニルベンゾフェノン(BTTB)、2-(ジメチルアミノ)-1-[4-(モルフォリニル)フェニル]-2-(フェニルメチル)-1-ブタノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、およびベンジル等が挙げられる。 The photopolymerization initiator may be a photopolymerization initiator that can exhibit photopolymerization initiation ability by light irradiation in the presence of an ultraviolet absorber. Examples of such a photopolymerization initiator include acetophenone, acetophenone benzyl ketal, anthraquinone, 1- (4-isopropylphenyl-2-hydroxy-2-methylpropan-1-one, carbazole, xanthone, 4-chlorobenzophenone, 4 , 4'-diaminobenzophenone, 1,1-dimethoxydeoxybenzoin, 3,3'-dimethyl-4-methoxybenzophenone, thioxanthone, 2,2-dimethoxy-2-phenylacetophenone, 1- (4-dodecylphenyl) -2 -Hydroxy-2-methylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, triphenylamine, 2,4,6-trimethylbenzoyldiphenyl Phosphine oxide, bis ( , 4,6-trimethylbenzoyl) phenylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, fluorenone, fluorene, benzaldehyde, benzoin ethyl ether, benzoisopropyl ether, Benzophenone, Michler's ketone, 3-methylacetophenone, 3,3 ′, 4,4′-tetra-tert-butylperoxycarbonylbenzophenone (BTTB), 2- (dimethylamino) -1- [4- (morpholinyl) phenyl]- Examples include 2- (phenylmethyl) -1-butanone, 4-benzoyl-4′-methyldiphenyl sulfide, and benzyl.
 光重合開始剤は、1種のみまたは2種以上を組み合わせて用いることができる。例えば10μm以上のように厚い硬化膜を形成する場合、光重合開始剤を2種以上用いると硬化性が向上する傾向にある。硬化性が向上すると、光硬化性樹脂組成物をより容易にかつ十分に硬化することができる。 The photopolymerization initiator can be used alone or in combination of two or more. For example, when forming a thick cured film such as 10 μm or more, if two or more photopolymerization initiators are used, the curability tends to be improved. When the curability is improved, the photocurable resin composition can be cured more easily and sufficiently.
 光重合開始剤の含有量は、例えば多官能(メタ)アクリレートモノマー及び反応性ポリマーの合計100質量部に対して1~15質量部、または3~10質量部であってよい。光重合開始剤の含有量が多いと、光重合開始に使用されなかった光重合開始剤が残存し、硬化膜の可視光線透過率が低下するなどの弊害が生ずるおそれがある。一方、光重合開始剤の含有量が少ないと、光重合開始能が十分に発現されず、紫外線硬化型樹脂の十分な硬化が得られ難くなる傾向がある。 The content of the photopolymerization initiator may be, for example, 1 to 15 parts by mass or 3 to 10 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer. When the content of the photopolymerization initiator is large, the photopolymerization initiator that has not been used for initiating the photopolymerization may remain, which may cause adverse effects such as a decrease in the visible light transmittance of the cured film. On the other hand, when the content of the photopolymerization initiator is small, the photopolymerization initiating ability is not sufficiently exhibited, and there is a tendency that sufficient curing of the ultraviolet curable resin cannot be obtained.
 紫外線吸収剤としては、公知のものを用いてよく、紫外線吸収性が高く、電子画像表示装置で用いられる紫外線吸収能(紫外線カット能)を得るために、ベンゾトリアゾール系またはヒドロキシフェニルトリアジン系の紫外線吸収剤を用いてもよい。紫外線の吸収幅を広くするために、最大吸収波長の異なる紫外線吸収剤を2種以上併用してもよい。 As the ultraviolet absorber, known ones may be used. In order to obtain an ultraviolet absorbing ability (ultraviolet cutting ability) used in an electronic image display device, the ultraviolet absorbing ability of the benzotriazole or hydroxyphenyltriazine is high. An absorbent may be used. In order to widen the absorption range of ultraviolet rays, two or more ultraviolet absorbers having different maximum absorption wavelengths may be used in combination.
 ベンゾトリアゾール系紫外線吸収剤としては、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシヘキシル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-tert-ブチル-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-tert-ブチル-3’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-クロロ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-メトキシ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-シアノ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-tert-ブチル-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-ニトロ-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-2H-ベンゾトリアゾール、ベンゼンプロパン酸-3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシ-,C7~9-ブランチ直鎖アルキルエステル、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、および2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール等が挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl ] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxyhexyl) phenyl]- 2H-benzotriazole, 2- [2'-hydroxy-3'-tert-butyl-5 '-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-tert-butyl -3 ′-(methacryloyloxyethyl) phenyl] -2H-be Zotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl]- 5-methoxy-2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -5-cyano-2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyl) Oxyethyl) phenyl] -5-tert-butyl-2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -5-nitro-2H-benzotriazole, 2- (2- Hydroxy-5-tert-butylphenyl) -2H-benzotriazole, benze Propanoic acid-3- (2H-benzotriazol-2-yl) -5- (1,1-dimethylethyl) -4-hydroxy-, C7-9-branched linear alkyl ester, 2- (2H-benzotriazole- 2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol and 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4 -(1,1,3,3-tetramethylbutyl) phenol and the like.
 ヒドロキシフェニルトリアジン系紫外線吸収剤としては、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブチルオキシフェニル)-6-(2,4-ビス-ブチルオキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-アセトキシエトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、および2,2’-ジヒドロキシ-4,4’-ジメトキシ-5,5’-ジスルホベンゾフェノン・2ナトリウム塩等が挙げられる。 As the hydroxyphenyltriazine ultraviolet absorber, 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] 4,6-bis (2,4-dimethylphenyl) -1 , 3,5-triazine, 2- [4- (2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4 dimethylphenyl) -1,3 5-triazine, 2- [4-[(2-hydroxy-3- (2′-ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, 3,5-triazine, 2,4-bis (2-hydroxy-4-butyloxyphenyl) -6- (2,4-bis-butyloxyphenyl) -1,3,5-triazine, 2- (2- Hydro Cy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2 , 2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-acetoxyethoxybenzophenone, 2-hydroxy-4-methoxy Benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, and 2,2'-dihydroxy-4 , 4'-Dimethoxy-5,5'-disulfobenzopheno Disodium salt.
 紫外線吸収剤の含有量は、求める紫外線透過率および紫外線吸収剤の吸光度に応じて適宜調節することができるが、例えば多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して1~10質量部、または3~8質量部であってよい。紫外線吸収剤の含有量が多いと、光硬化性樹脂組成物の紫外線による硬化性が低下する傾向があると共に、得られる硬化膜の可視光線透過率が低下するおそれがある。一方、紫外線吸収剤の含有量が少ないと、硬化膜が十分な紫外線吸収性を発揮することができないおそれがある。 The content of the ultraviolet absorber can be appropriately adjusted according to the desired ultraviolet transmittance and the absorbance of the ultraviolet absorber, but for example, it is 1 for 100 parts by mass of the total of the polyfunctional (meth) acrylate monomer and the reactive polymer. It may be ˜10 parts by mass, or 3 to 8 parts by mass. When there is much content of a ultraviolet absorber, while there exists a tendency for the sclerosis | hardenability by the ultraviolet-ray of a photocurable resin composition to fall, there exists a possibility that the visible light transmittance | permeability of the cured film obtained may fall. On the other hand, when there is little content of a ultraviolet absorber, there exists a possibility that a cured film may not exhibit sufficient ultraviolet absorptivity.
 光硬化性樹脂組成物は、無機化合物を更に含有することができる。無機化合物としては、無機粒子、および柱状、板状および層状無機化合物として公知のものが使用できるが、溶媒に分散できるように有機化処理が施してあるものが好ましい。 The photocurable resin composition can further contain an inorganic compound. As the inorganic compound, those known as inorganic particles and columnar, plate-like and layered inorganic compounds can be used, but those which have been subjected to an organic treatment so that they can be dispersed in a solvent are preferred.
 無機化合物としては、ガラスフリット、シリカ粒子、アルミナ粒子、水酸化アルミニウム粒子、水酸化マグネシウム粒子、酸化スズ粒子および粘土鉱物からなる群より選択される少なくとも1種を用いることができる。 As the inorganic compound, at least one selected from the group consisting of glass frit, silica particles, alumina particles, aluminum hydroxide particles, magnesium hydroxide particles, tin oxide particles, and clay minerals can be used.
 粘土鉱物は、極薄の単位結晶層が重なって1つの層状粒子を形成している無機化合物であってよい。特に水への膨潤性を有する粘土化合物を好ましく用いることができる。より具体的には、極薄の単位結晶層間に水を配位し、吸収・膨潤する性質を有する粘土化合物であり、一般には、Si4+がO2-に対して配位して四面体構造を構成する層と、Al3+、Mg2+、Fe2+、およびFe3+などが、O2-およびOHに対して配位して八面体構造を構成する層とが、1対1あるいは2対1で結合し、積み重なって層状構造を形成する化合物である。この粘土化合物は、天然のものであっても、合成されたものであってもよい。 The clay mineral may be an inorganic compound in which ultrathin unit crystal layers overlap to form one layered particle. In particular, a clay compound having swellability in water can be preferably used. More specifically, it is a clay compound having the property of coordinating and absorbing / swelling water between ultrathin unit crystal layers, and generally has a tetrahedral structure in which Si 4+ is coordinated to O 2− . And a layer in which Al 3+ , Mg 2+ , Fe 2+ , Fe 3+, etc. are coordinated with O 2− and OH to form an octahedral structure. 1 is a compound that binds at 1 and stacks to form a layered structure. This clay compound may be natural or synthesized.
 粘土鉱物の代表的な化合物としては、フィロケイ酸塩鉱物などの含水ケイ酸塩、例えば、ハロイサイト、カオリナイト、エンデライト、ディッカイト、およびナクライトなどのカオリナイト族粘土鉱物、アンチゴライトおよびクリソタイルなどのアンチゴライト族粘土鉱物、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、およびスチブンサイトなどのスメクタイト族粘土鉱物、バーミキュライトなどのバーミキュライト族粘土鉱物、白雲母および金雲母などの雲母、マーガライト、テトラシリリックマイカ、およびテニオライトなど雲母またはマイカ族粘土鉱物などが挙げられ、これらの粘土鉱物は、単独で、または2種以上を組み合わせて用いることができる。これらの粘土鉱物の中でも、モンモリロナイトなどのスメクタイト族粘土鉱物が特に好ましい。 Representative compounds of clay minerals include hydrous silicates such as phyllosilicate minerals, kaolinite clay minerals such as halloysite, kaolinite, endellite, dickite, and nacrite, antigolite and chrysotile, etc. Antigolite group clay minerals, montmorillonite, beidellite, nontronite, saponite, hectorite, saconite, and stevensite and other smectite group clay minerals, vermiculite group clay minerals such as vermiculite, mica such as muscovite and phlogopite, margarite Mica or mica group clay minerals such as tetrasilic mica and teniolite, and these clay minerals can be used alone or in combination of two or more. Among these clay minerals, smectite group clay minerals such as montmorillonite are particularly preferable.
 アルミナ粒子としては、ギブサイト、バイヤライト、ベーマイト、擬ベーマイト、ダイアスポア、無定形などの水酸化アルミニウム(アルミナ水和物)、およびγ、η、δ、ρ、κ、θ、χ、α形のアルミナ結晶等が挙げられる。有機溶媒中で、金属アルミニウムまたは加水分解性アルミニウム化合物を、特定量の水により加水分解してアルミナスラリーとし、続いて特定量の有機スルホン酸の存在下に解膠し、所定のアルミナ濃度になるまで濃縮したものであってもよい。これらのアルミナ粒子は、単独で、または2種以上を組み合わせて用いることができる。 Alumina particles include gibbsite, bayerite, boehmite, pseudoboehmite, diaspore, amorphous aluminum hydroxide (alumina hydrate), and γ, η, δ, ρ, κ, θ, χ, α form of alumina. A crystal etc. are mentioned. In an organic solvent, metal aluminum or a hydrolyzable aluminum compound is hydrolyzed with a specific amount of water to form an alumina slurry, and then peptized in the presence of a specific amount of organic sulfonic acid to obtain a predetermined alumina concentration. It may be concentrated up to. These alumina particles can be used alone or in combination of two or more.
 無機化合物は、二官能以上の多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して、好ましくは5~50質量部の量で用いることができる。無機化合物の含有量が上記範囲内であれば、硬化性組成物の紫外線硬化性が良好であり、得られる硬化膜の可視光線透過率の低下が起こり難くなる傾向がある。 The inorganic compound can be used in an amount of preferably 5 to 50 parts by mass with respect to a total of 100 parts by mass of the bifunctional or higher polyfunctional (meth) acrylate monomer and the reactive polymer. If content of an inorganic compound is in the said range, the ultraviolet curable property of a curable composition will be favorable, and there exists a tendency for the fall of the visible light transmittance | permeability of the cured film obtained will not occur easily.
 無機化合物の粒子径は、0.001~0.1μmであるのが好ましく、0.005~0.05μmであるのがより好ましい。粒子径が上記範囲内である場合には、工業的な生産が容易であり、得られる硬化膜の透明性の低下が起こり難くなる傾向がある。無機化合物の粒子径は、JIS 8828に従って動的光散乱法により測定した。 The particle size of the inorganic compound is preferably 0.001 to 0.1 μm, and more preferably 0.005 to 0.05 μm. When the particle size is within the above range, industrial production is easy and the transparency of the resulting cured film tends to be less likely to occur. The particle diameter of the inorganic compound was measured by a dynamic light scattering method according to JIS 8828.
 光硬化性樹脂組成物は、帯電防止剤を更に含有してもよい。かかる帯電防止剤は、金属酸化物および/または金属塩であってもよい。金属酸化物としては、例えばITO(インジウム-錫複合酸化物)、ATO(アンチモン-錫複合酸化物)、酸化錫、五酸化アンチモン、酸化亜鉛、酸化ジルコニウム、酸化チタン、及び酸化アルミニウム等が挙げられる。金属塩としては、アンチモン酸亜鉛等が挙げられる。 The photocurable resin composition may further contain an antistatic agent. Such antistatic agents may be metal oxides and / or metal salts. Examples of the metal oxide include ITO (indium-tin composite oxide), ATO (antimony-tin composite oxide), tin oxide, antimony pentoxide, zinc oxide, zirconium oxide, titanium oxide, and aluminum oxide. . Examples of the metal salt include zinc antimonate.
 帯電防止剤の含有量は、求める帯電防止性能に応じて適宜調節することができるが、例えば多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して1~100質量部である。帯電防止剤の含有量が上記範囲内であると、光硬化性樹脂組成物の紫外線硬化性が十分に得られ、得られる硬化膜の可視光線透過率の低下が起こり難くなる傾向がある。また、帯電防止剤の含有量が多いと、得られる硬化膜の耐擦傷性が低下したり、成膜性が低下したりする傾向がある。帯電防止剤の含有量が少ないと、十分な帯電防止効果が得られ難い傾向がある。 The content of the antistatic agent can be appropriately adjusted according to the required antistatic performance, and is, for example, 1 to 100 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer. . When the content of the antistatic agent is within the above range, the photocurable resin composition has sufficient ultraviolet curability, and the resulting cured film tends to be less likely to cause a decrease in visible light transmittance. Moreover, when there is much content of an antistatic agent, there exists a tendency for the abrasion resistance of the cured film obtained to fall, or for film formability to fall. When the content of the antistatic agent is small, it tends to be difficult to obtain a sufficient antistatic effect.
 帯電防止剤の粒子径は0.001~0.1μmであってよい。粒子径が極めて小さい帯電防止剤は、工業的な生産が難しい。粒子径が過度に大きい帯電防止剤は、得られる硬化膜の透明性を低下させる傾向がある。帯電防止剤の粒子径は、JIS 8828に従って動的光散乱法により測定した。 The particle size of the antistatic agent may be 0.001 to 0.1 μm. An antistatic agent with a very small particle size is difficult to produce industrially. An antistatic agent having an excessively large particle size tends to lower the transparency of the resulting cured film. The particle size of the antistatic agent was measured by a dynamic light scattering method according to JIS 8828.
 光硬化性樹脂組成物は、必要に応じて、安定化剤、酸化防止剤、着色剤、レベリング剤等の添加剤を含んでよい。レベリング剤を含む場合には、硬化膜の平滑性および耐擦傷性を高めることができる。 The photocurable resin composition may contain additives such as a stabilizer, an antioxidant, a colorant, and a leveling agent as necessary. When a leveling agent is included, the smoothness and scratch resistance of the cured film can be enhanced.
 光硬化性樹脂組成物は、後述するように基材フィルムに塗布するために、さらに溶剤を含有していてもよい。かかる溶剤としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール)、1-ブタノール、2-ブタノール(sec-ブチルアルコール)、2-メチル-1-プロパノール(イソブチルアルコール)、2-メチル-2-プロパノール(tert-ブチルアルコール)等のアルコール溶剤;2-エトキシエタノール、2-ブトキシエタノール、3-メトキシ-1-プロパノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール等のアルコキシアルコール溶剤;ジアセトンアルコール等のケトール溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;酢酸エチル、酢酸ブチル等のエステル溶剤等が挙げられる。 The photocurable resin composition may further contain a solvent in order to be applied to the base film as described later. Examples of such solvents include methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol, 2-butanol (sec-butyl alcohol), 2-methyl-1-propanol (isobutyl alcohol), 2 Alcohol solvents such as methyl-2-propanol (tert-butyl alcohol); 2-ethoxyethanol, 2-butoxyethanol, 3-methoxy-1-propanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol Alkoxy alcohol solvents such as diacetone alcohol; Ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbon solvents such as toluene and xylene; Ester solvents such as ethyl acetate and butyl acetate And the like.
 溶剤の含有量は、多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して、例えば20~10000質量部である。 The content of the solvent is, for example, 20 to 10,000 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer.
 光硬化性樹脂組成物は、多官能(メタ)アクリレートモノマーと、反応性ポリマーと、光重合開始剤と、紫外線吸収剤と、必要に応じて溶剤、無機化合物、帯電防止剤、およびその他の添加剤とを混合して得られる。これらの混合順等は特に限定されない。 The photocurable resin composition is composed of a polyfunctional (meth) acrylate monomer, a reactive polymer, a photopolymerization initiator, an ultraviolet absorber, a solvent, an inorganic compound, an antistatic agent, and other additives as necessary. Obtained by mixing with an agent. These mixing orders are not particularly limited.
[積層体]
 図1は、積層体の一実施形態を示す模式的断面図である。図1に示す積層体30は、基材フィルム10と、基材フィルム10の一方の主面10a上に積層された硬化膜20とを有する。硬化膜20は、上述の実施形態に係る光硬化性樹脂組成物から形成される。すなわち、硬化膜は、光硬化性樹脂組成物の硬化物である。一実施形態に係る積層体は、密着性に優れる。
[Laminate]
Drawing 1 is a typical sectional view showing one embodiment of a layered product. The laminated body 30 shown in FIG. 1 has the base film 10 and the cured film 20 laminated | stacked on one main surface 10a of the base film 10. FIG. The cured film 20 is formed from the photocurable resin composition according to the above-described embodiment. That is, the cured film is a cured product of the photocurable resin composition. The laminated body which concerns on one Embodiment is excellent in adhesiveness.
 一実施形態に係る積層体は、基材フィルムと、基材フィルムの少なくとも片面に、上述の本発明の光硬化性樹脂組成物の硬化物である硬化膜とを有するものであってよい。 The laminated body which concerns on one Embodiment may have a base film and the cured film which is a hardened | cured material of the photocurable resin composition of the above-mentioned this invention on the at least single side | surface of a base film.
 基材フィルムは、透明性を有していてもよい。基材フィルムは、例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、またはポリイミド(PI)でできたフィルムであってもよい。硬化膜に関する効果が特に顕著に発揮できる点において、基材フィルムはポリイミド(PI)でできたフィルムであってもよい。また、基材フィルムは、無機材料を含んでもよい。基材フィルムが無機材料を含む場合、その含有量は、基材フィルムの質量を基準に、0質量%を超え60重量%以下の範囲、例えば5~55重量%の範囲、10~50重量%の範囲であってよい。
 無機材料としては、上述の光硬化性組成物に含まれ得る無機化合物について例示したものを用いることができる。
The base film may have transparency. The base film may be, for example, a film made of polyester such as polyethylene terephthalate (PET), polycarbonate (PC), polyarylate (PAR), polyether sulfone (PES), or polyimide (PI). The base film may be a film made of polyimide (PI) in that the effect relating to the cured film can be particularly remarkably exhibited. The base film may contain an inorganic material. When the base film contains an inorganic material, the content thereof is in the range of more than 0% by weight to 60% by weight or less, for example, in the range of 5 to 55% by weight, 10 to 50% by weight, based on the weight of the base film. Range.
As an inorganic material, what was illustrated about the inorganic compound which can be contained in the above-mentioned photocurable composition can be used.
 積層体の密着性は、JIS K 5600-5-6に準拠して測定することができる。例えば積層体のハードコートの表面に、2mm間隔で10マス×10マスの碁盤目状に傷を入れ、粘着テープ(ニチバン製)を貼り付け、面に対し約60°の方向に引き剥がした後に残っている碁盤目の数をカウントする。 The adhesion of the laminate can be measured according to JIS K 5600-5-6. For example, after scratching the surface of the hard coat of the laminated body in a grid pattern of 10 squares × 10 squares at intervals of 2 mm, applying an adhesive tape (made by Nichiban), and peeling it off in a direction of about 60 ° with respect to the surface Count the number of remaining grids.
 また、積層体の耐光性は、QUV試験後に上述の密着性試験を行うことにより評価することができる。QUV試験は、Atlas製UVCON(ランプ:UVB313nm)を使用し、コーティング面に光が照射されるようにセッティングし、24hr照射試験を行う。その後、上述の通り、密着性の評価を行う。 Also, the light resistance of the laminate can be evaluated by performing the above-mentioned adhesion test after the QUV test. In the QUV test, Atlas UVCON (lamp: UVB 313 nm) is used, and the coating surface is set to be irradiated with light, and a 24 hr irradiation test is performed. Thereafter, as described above, the adhesion is evaluated.
 一実施形態に係る積層体は、上記密着性評価試験において、引き剥がした後に残っている碁盤目の数が好ましくは90以上、より好ましくは95以上、さらに好ましくは100である。 In the adhesion evaluation test, the laminate according to one embodiment preferably has 90 or more, more preferably 95 or more, and still more preferably 100 remaining after peeling.
 一実施形態に係る積層体は、上記QUV試験後の密着性評価試験において、引き剥がした後に残っている碁盤目の数が好ましくは90以上、より好ましくは95以上、さらに好ましくは100である。 In the adhesion evaluation test after the QUV test, the laminate according to one embodiment preferably has 90 or more, more preferably 95 or more, and still more preferably 100 remaining after peeling.
 積層体の屈曲性は、JIS K 5600-5-1:1999に準拠した屈曲試験において、積層体の断片に生じるヒビ割れの量に基づいて判断することができる。例えば、次の屈曲試験を行えばよい。まず積層体を、縦1cm×幅8cmのサイズに切断して、積層体の短冊状の断片(以下、測定サンプルという)を用意する。次にこの測定サンプルの中央に所望の直径を有するロールを置き、測定サンプルをロールに沿って折り曲げる操作を10回程度行う。その後、測定サンプルの硬化膜に生じたヒビ割れの有無を確認する。 The bendability of the laminate can be determined based on the amount of cracks generated in a piece of the laminate in a bend test in accordance with JIS K 5600-5: 1: 1999. For example, the following bending test may be performed. First, the laminate is cut into a size of 1 cm in length and 8 cm in width to prepare strip-like pieces (hereinafter referred to as measurement samples) of the laminate. Next, a roll having a desired diameter is placed in the center of the measurement sample, and the operation of bending the measurement sample along the roll is performed about 10 times. Then, the presence or absence of the crack which arose in the cured film of a measurement sample is confirmed.
 上記の屈曲試験において、測定サンプルの硬化膜を内側にして測定サンプルをロールに巻き付ける場合は、積層体を構成する硬化膜には圧縮応力が作用し、基材フィルムには引張応力が作用する。一方、硬化膜を外側にして測定サンプルをロールに巻き付ける場合は、積層体を構成する基材フィルムには圧縮応力が作用し、硬化膜には引張応力が作用する。この2通りの方法でそれぞれ屈曲試験を行い、硬化膜に生じるヒビ割れを確認することで、積層体の屈曲性を評価することができる。 In the above bending test, when the measurement sample is wound around a roll with the cured film of the measurement sample inside, a compressive stress acts on the cured film constituting the laminate, and a tensile stress acts on the base film. On the other hand, when the measurement sample is wound around a roll with the cured film facing outside, a compressive stress acts on the base film constituting the laminate, and a tensile stress acts on the cured film. Flexibility of the laminate can be evaluated by performing a bending test by each of these two methods and confirming cracks generated in the cured film.
 測定に使用するロールの直径が小さくなる、すなわち、巻き付け径が小さくなると、試験において測定サンプルにはより大きい応力が作用する。したがって、ロールの直径が小さい場合に、測定サンプルに生じるヒビ割れの発生が抑制されれば、その測定サンプルは屈曲性に優れるといえる。 When the diameter of the roll used for measurement is reduced, that is, the winding diameter is reduced, a larger stress acts on the measurement sample in the test. Therefore, if the occurrence of cracks in the measurement sample is suppressed when the diameter of the roll is small, it can be said that the measurement sample is excellent in flexibility.
 一実施形態に係る積層体は、JIS K 5600-5-1:1999に準拠する屈曲試験において、直径6mmのロール(巻き付け径:3mm)に硬化膜を内側にして巻き付けた場合であっても、外側にして巻き付けた場合であっても、ヒビ割れが生じにくい傾向にある。このようにヒビ割れの発生が抑制された積層体は、硬化膜が応力を吸収することができるため、屈曲性に優れる。 Even when the laminate according to one embodiment is wound around a roll having a diameter of 6 mm (winding diameter: 3 mm) with a cured film inside in a bending test in accordance with JIS K 5600-5-1: 1999, Even when it is wound outside, cracks tend not to occur. Thus, since the cured film can absorb stress, the laminated body in which generation of cracks is suppressed is excellent in flexibility.
 一実施形態に係る積層体は、JIS K 5600-5-1:1999に準拠する屈曲試験において、直径2mmのロール(巻き付け径:1mm)に硬化膜を内側にして巻き付けた場合であっても、外側にして巻き付けた場合であっても、ヒビ割れが生じにくい傾向にある。一実施形態に係る積層体は、巻き付け径がより小さく、測定サンプルにより大きい応力が作用する場合であっても、硬化膜が応力を吸収することができるため、優れた屈曲性を発揮することができる。 Even when the laminate according to an embodiment is wound around a roll having a diameter of 2 mm (winding diameter: 1 mm) with a cured film inside, in a bending test in accordance with JIS K 5600-5-1: 1999, Even when it is wound outside, cracks tend not to occur. The laminated body according to an embodiment can exhibit excellent flexibility because the cured film can absorb the stress even when the winding diameter is smaller and a larger stress acts on the measurement sample. it can.
 一実施形態に係る積層体は、JIS K 5600-5-4:1999に準拠し、荷重を1kgとして測定される、一実施形態に係る積層体の鉛筆硬度が、2H以上、または3H以上であってよい。鉛筆硬度が2H以上であると、積層体は、ハードコートフィルムとして十分な硬度を示す傾向にある。上記方法により測定される鉛筆硬度は積層体の鉛筆硬度である。硬化膜上に更に別の層が設けられている場合は、その別の層を含む積層体の鉛筆硬度となる。 The laminate according to one embodiment has a pencil hardness of 2H or more, or 3H or more measured according to JIS K 5600-5-4: 1999, measured with a load of 1 kg. It's okay. When the pencil hardness is 2H or more, the laminate tends to exhibit sufficient hardness as a hard coat film. The pencil hardness measured by the above method is the pencil hardness of the laminate. When another layer is provided on the cured film, the pencil hardness of the laminate including the other layer is obtained.
 一実施形態に係る積層体は、上述の直径6mmのロールを使用する積層体の屈曲試験において、硬化膜にヒビ割れが生じず、かつ上述の硬化膜の鉛筆硬度が2H以上であってよい。別の実施形態に係る積層体は、上述の直径6mmのロールを使用する積層体の屈曲試験において、硬化膜にヒビ割れが生じず、かつ上述の硬化膜の鉛筆硬度が3H以上であってよい。 In the laminate according to one embodiment, in the bending test of the laminate using the roll having a diameter of 6 mm, the cured film may not be cracked, and the pencil hardness of the cured film may be 2H or more. In the laminate according to another embodiment, in the bending test of the laminate using the above-described roll having a diameter of 6 mm, the cured film does not crack, and the pencil hardness of the cured film may be 3H or more. .
 一実施形態に係る光硬化性樹脂組成物から形成された硬化膜を有する積層体は、光による基材フィルムの変色(黄変)が抑制されるため、耐光性を示す。耐光性は、光を照射する前後における積層体のYI値の変化量(ΔYI)で判断することができる。積層体は、ΔYIの数値が小さいほど、耐光性に優れる。ここで、YI値は、JIS Z 8701:1982に規定されている計算方法により算出される三刺激値X,YおよびZと以下の式とにより算出される。
  YI=100(1.28X-1.06Z)/Y
Since the laminated body which has the cured film formed from the photocurable resin composition which concerns on one Embodiment suppresses discoloration (yellowing) of the base film by light, it shows light resistance. Light resistance can be determined by the amount of change (ΔYI) in the YI value of the laminate before and after light irradiation. A laminated body is excellent in light resistance, so that the numerical value of (DELTA) YI is small. Here, the YI value is calculated by the tristimulus values X, Y and Z calculated by the calculation method defined in JIS Z 8701: 1982 and the following equation.
YI = 100 (1.28X-1.06Z) / Y
 YI値は、市販の分光光度計を使用して測定することができ、例えば日立製作所製の製品「U-4100」などで測定することができる。 The YI value can be measured using a commercially available spectrophotometer, for example, a product “U-4100” manufactured by Hitachi, Ltd.
 例えば基材フィルムが、紫外線吸収剤を含まない樹脂フィルムまたは感光性を有する樹脂フィルムであると、積層体の耐光性が顕著に向上され得る。 For example, when the base film is a resin film that does not contain an ultraviolet absorber or a resin film having photosensitivity, the light resistance of the laminate can be significantly improved.
 積層体を構成する硬化膜は、基材フィルムの少なくとも片面側に形成される。硬化膜の厚みは、例えば3μm以上、20μm以下であってもよい。硬化膜の厚みは、5μm以上、10μm以下であってもよい。硬化膜の厚みが上記範囲内であると、基材フィルムと硬化膜を含む積層体が、屈曲性、硬度、および耐光性に特に優れる傾向にある。硬化膜が厚すぎると、鉛筆硬度は向上するものの、屈曲試験において、硬化膜を外側にして巻き付けた場合にヒビ割れが生じ易くなる傾向にある。 The cured film constituting the laminate is formed on at least one side of the base film. The thickness of the cured film may be, for example, 3 μm or more and 20 μm or less. The thickness of the cured film may be 5 μm or more and 10 μm or less. When the thickness of the cured film is within the above range, the laminate including the base film and the cured film tends to be particularly excellent in flexibility, hardness, and light resistance. When the cured film is too thick, the pencil hardness is improved, but in the bending test, cracking tends to occur when the cured film is wound outside.
 一実施形態に係る積層体は、屈曲性及び硬度に優れるため、例えば、ハードコートフィルムとして、偏光板などとともに表示装置を構成することができる。積層体は、基材フィルムおよび硬化膜の他に他の層を有していてもよい。例えば、積層体の硬化膜上に、別の機能層を設けてもよい。機能層としては、ハードコート層、および反射防止層または防眩層等の表面処理層が挙げられる。機能層は、接着剤または粘着剤を介して積層体に積層してもよい。接着剤および粘着剤としては、公知のものを適宜選択すればよい。 Since the laminate according to an embodiment is excellent in flexibility and hardness, for example, a display device can be configured with a polarizing plate or the like as a hard coat film. The laminate may have other layers in addition to the base film and the cured film. For example, another functional layer may be provided on the cured film of the laminate. Examples of the functional layer include a hard coat layer and a surface treatment layer such as an antireflection layer or an antiglare layer. You may laminate | stack a functional layer on a laminated body through an adhesive agent or an adhesive. What is necessary is just to select a well-known thing suitably as an adhesive agent and an adhesive.
 一実施形態に係る積層体は、屈曲性および硬度に優れるため、機能層を更に設けても、十分な屈曲性を示すとともに、高い硬度を有することができる。 The laminated body according to an embodiment is excellent in flexibility and hardness, and therefore can exhibit sufficient flexibility and high hardness even if a functional layer is further provided.
 積層体を構成する硬化膜は、基材フィルムの少なくとも片面側に形成される。硬化膜の厚みは、例えば3μm以上、20μm以下であってもよい。硬化膜の厚みは、5μm以上、10μm以下であってもよい。硬化膜の厚みが上記範囲内であると、基材フィルムと硬化膜を含む積層体が、密着性、屈曲性、硬度、および耐光性に特に優れる傾向にある。硬化膜が厚すぎると、鉛筆硬度は向上するものの、屈曲試験において、硬化膜を外側にして巻き付けた場合にヒビ割れが生じ易くなる傾向にある。 The cured film constituting the laminate is formed on at least one side of the base film. The thickness of the cured film may be, for example, 3 μm or more and 20 μm or less. The thickness of the cured film may be 5 μm or more and 10 μm or less. When the thickness of the cured film is within the above range, the laminate including the base film and the cured film tends to be particularly excellent in adhesion, flexibility, hardness, and light resistance. When the cured film is too thick, the pencil hardness is improved, but in the bending test, cracking tends to occur when the cured film is wound outside.
 一実施形態に係る積層体は、密着性に優れるため、例えばハードコートフィルムとして、偏光板などとともに表示装置を構成することができる。積層体は、基材フィルムおよび硬化膜の他に他の層を有していてもよい。例えば、積層体の硬化膜上に、別の機能層を設けてもよい。機能層としては、トップハードコート層、および反射防止層又は防眩層等の表面処理層が挙げられる。機能層は、接着剤または粘着剤を介して積層体に積層してもよい。接着剤及び粘着剤としては、公知のものを適宜選択すればよい。 Since the laminate according to one embodiment is excellent in adhesion, a display device can be configured together with a polarizing plate or the like, for example, as a hard coat film. The laminate may have other layers in addition to the base film and the cured film. For example, another functional layer may be provided on the cured film of the laminate. Examples of the functional layer include a top hard coat layer and a surface treatment layer such as an antireflection layer or an antiglare layer. You may laminate | stack a functional layer on a laminated body through an adhesive agent or an adhesive. What is necessary is just to select a well-known thing suitably as an adhesive agent and an adhesive.
 一実施形態に係る積層体は、更なる機能層について十分な密着性を有することができる。 The laminate according to one embodiment can have sufficient adhesion for the further functional layer.
[積層体の製造方法]
 次に、一実施形態の光硬化性樹脂組成物から形成される硬化膜を有する積層体を製造する方法について説明する。
[Manufacturing method of laminate]
Next, a method for producing a laminate having a cured film formed from the photocurable resin composition of one embodiment will be described.
 硬化膜を有する積層体の製造方法は、例えば次の工程(1)及び(2)を含む。
(1)上述の本発明の光硬化性樹脂組成物を基材フィルム上に塗布することにより組成物層を得る工程(光硬化性樹脂組成物を含む組成物層を基材フィルムの片面側に形成させる工程)、および
(2)組成物層を露光することにより該組成物層を硬化させる工程(組成物層に露光して該組成物層を硬化させることで、硬化膜を形成させる工程)。
The manufacturing method of the laminated body which has a cured film includes the following process (1) and (2), for example.
(1) The process of obtaining a composition layer by apply | coating the photocurable resin composition of the above-mentioned this invention on a base film (The composition layer containing a photocurable resin composition is provided in the single side | surface side of a base film. Step for forming), and (2) step for curing the composition layer by exposing the composition layer (step for forming a cured film by exposing the composition layer to cure the composition layer). .
工程(1)
 基材フィルムは、透明性を有していてもよい。基材フィルムは、例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、またはポリイミド(PI)のフィルムであってもよい。硬化膜に関する効果が特に顕著に発揮できる点において、基材フィルムはポリイミド(PI)フィルムであってもよい。また、基材フィルムは、材料を含んでもよい。基材フィルムが無機材料を含む場合、その含有量は、基材フィルムを基準に0重量%を超え60重量%以下の範囲、例えば5~55重量%の範囲、10~50重量%の範囲であってよい。
 無機材料としては、上述の積層体の説明における基材フィルムに含まれ得る無機化合物について例示したものを用いることができる。
Process (1)
The base film may have transparency. The base film may be, for example, a film of polyester such as polyethylene terephthalate (PET), polycarbonate (PC), polyarylate (PAR), polyether sulfone (PES), or polyimide (PI). A polyimide (PI) film may be sufficient as the base film in the point which can exhibit the effect regarding a cured film especially notably. Further, the base film may include a material. When the base film contains an inorganic material, the content thereof is in the range of more than 0% by weight and not more than 60% by weight based on the base film, for example, in the range of 5 to 55% by weight, in the range of 10 to 50% by weight It may be.
As an inorganic material, what was illustrated about the inorganic compound which can be contained in the base film in description of the above-mentioned laminated body can be used.
 基材フィルムの厚さは、30~300μm、または50~200μmであってもよい。基材フィルムが薄いと、硬化膜と基材フィルムとの積層体の強度が低下する傾向がある。基材フィルムが厚いと、基材フィルムの透明性が低下したり、屈曲性が低下したりすることがある。基材フィルムは、各種の添加剤を含有していてもよい。そのような添加剤として、例えば安定剤、可塑剤、滑剤、および難燃剤が挙げられる。 The thickness of the base film may be 30 to 300 μm, or 50 to 200 μm. If the base film is thin, the strength of the laminate of the cured film and the base film tends to decrease. If the base film is thick, the transparency of the base film may be lowered or the flexibility may be lowered. The base film may contain various additives. Such additives include, for example, stabilizers, plasticizers, lubricants, and flame retardants.
 基材フィルムは、その表面に設けられた接着層を有していてもよい。接着層は、硬化膜を基材フィルムに密着させるためのもので、常法に従って形成される。接着層を形成する接着剤としては、基材フィルム及び硬化膜の材質に応じて適宜選択されるが、例えばアクリル系接着剤(粘着剤)、シリコーン系接着剤(粘着剤)、ポリエステル系接着剤等が用いることができる。接着層が薄いと十分な接着力が得られ難く、接着層が厚くなり過ぎると硬化膜と基材フィルムとの積層体が硬くなりすぎてしまいフィルムとしての柔軟性が低下する傾向がある。そのため、接着剤の厚さは0.1~1μmの範囲であってもよい。 The base film may have an adhesive layer provided on the surface thereof. The adhesive layer is for adhering the cured film to the base film, and is formed according to a conventional method. The adhesive for forming the adhesive layer is appropriately selected according to the material of the base film and the cured film. For example, an acrylic adhesive (adhesive), a silicone adhesive (adhesive), a polyester adhesive Etc. can be used. When the adhesive layer is thin, it is difficult to obtain a sufficient adhesive force, and when the adhesive layer becomes too thick, the laminate of the cured film and the base film becomes too hard and the flexibility as a film tends to be lowered. Therefore, the thickness of the adhesive may be in the range of 0.1 to 1 μm.
 光硬化性樹脂組成物を基材フィルムに塗布する方法としては、例えば、ロールコート法、スピンコート法、コイルバー法、ディップコート法、およびダイコート法等が挙げられる。ロールコート法等、連続的に塗布することができる方法は、生産性および生産コストの点で特に有利である。 Examples of the method for applying the photocurable resin composition to the base film include a roll coating method, a spin coating method, a coil bar method, a dip coating method, and a die coating method. A method such as a roll coating method that can be applied continuously is particularly advantageous in terms of productivity and production cost.
 組成物層(塗付された光硬化性樹脂組成物)が溶剤を含む場合、組成物層から溶剤を除去する工程(1’)が設けられてもよい。溶剤の除去は、例えば、ホットプレート等の加熱装置を用いた加熱手段、減圧装置を用いた減圧手段、またはこれらの組み合わせにより、該組成物層から溶剤を蒸発させることにより行われる。加熱手段及び減圧手段の条件は、組成物層に含まれる溶剤の種類等に応じて選択できる。例えばホットプレートの場合、ホットプレートの表面温度を50~200℃程度の範囲に設定することができる。減圧手段は、適当な減圧機であってもよく、減圧機の中に、組成物層を有する基材フィルムを封入することができる。減圧手段による形成される雰囲気の圧力(減圧機の内部圧力)は、例えば1~1.0×10Pa程度であってもよい。組成物層から溶剤を除去することにより、溶媒を実質的に含まない組成物層を該基材フィルム上に形成することができる。 When the composition layer (applied photocurable resin composition) contains a solvent, a step (1 ′) for removing the solvent from the composition layer may be provided. The solvent is removed by evaporating the solvent from the composition layer by, for example, a heating means using a heating device such as a hot plate, a decompression means using a decompression device, or a combination thereof. The conditions of the heating means and the decompression means can be selected according to the type of solvent contained in the composition layer. For example, in the case of a hot plate, the surface temperature of the hot plate can be set in a range of about 50 to 200 ° C. The decompression means may be an appropriate decompressor, and the base film having the composition layer can be enclosed in the decompressor. The pressure of the atmosphere formed by the decompression means (internal pressure of the decompressor) may be, for example, about 1 to 1.0 × 10 5 Pa. By removing the solvent from the composition layer, a composition layer substantially free of the solvent can be formed on the substrate film.
工程(2)
 露光は、通常、紫外線の照射によって行われる。この際、紫外線は可視光線領域の光線を含む。光重合開始剤が、光照射によって光重合開始能を発現し、工程(1)で得られた組成物層を硬化させる。紫外線は200~450nmの波長を有していてもよい。光重合開始剤は光の波長220~450nmに吸収域を有していてもよい。一般に紫外線の波長は380nmよりも短く、可視光線の波長は380~780nmである。
Step (2)
The exposure is usually performed by ultraviolet irradiation. At this time, ultraviolet rays include light rays in the visible light region. A photoinitiator expresses photopolymerization initiating ability by light irradiation, and cures the composition layer obtained in the step (1). The ultraviolet light may have a wavelength of 200 to 450 nm. The photopolymerization initiator may have an absorption region at a light wavelength of 220 to 450 nm. In general, the wavelength of ultraviolet light is shorter than 380 nm, and the wavelength of visible light is 380 to 780 nm.
 紫外線の波長が200nm未満の場合、紫外線が紫外線吸収剤に吸収されやすくなり、光重合開始剤の光重合開始能が十分に発現されないために組成物層の硬化性が低下する傾向がある。紫外線の波長が450nmを超える場合、紫外線としての機能が低下する傾向がある。光重合開始剤の吸収域の光の波長が220nm未満の場合、紫外線吸収剤に紫外線が吸収されやすくなってその光重合開始能が低下する傾向がある。吸収域の光の波長が450nmを超える光重合開始剤はその種類が少なく、またそのような光重合開始剤は紫外線による光重合開始能の発現を不足させるおそれがある。 When the wavelength of ultraviolet rays is less than 200 nm, ultraviolet rays are easily absorbed by the ultraviolet absorber, and the photopolymerization initiation ability of the photopolymerization initiator is not sufficiently exhibited, so that the curability of the composition layer tends to be lowered. When the wavelength of ultraviolet rays exceeds 450 nm, the function as ultraviolet rays tends to deteriorate. When the wavelength of light in the absorption region of the photopolymerization initiator is less than 220 nm, the ultraviolet absorber tends to be absorbed, and the photopolymerization initiation ability tends to decrease. There are few kinds of photopolymerization initiators whose light wavelength in the absorption region exceeds 450 nm, and such photopolymerization initiators may cause insufficient photopolymerization initiation ability by ultraviolet rays.
その他の工程
 硬化膜を有する積層体の製造方法は、上記工程(1)および(2)の他に、任意の工程、例えば熱硬化やアニール工程等を更に含むことができる。
Other Steps The method for producing a laminate having a cured film can further include an optional step such as thermosetting or annealing step in addition to the steps (1) and (2).
 以下、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれら実施例の範囲に限定されるものではない。 Hereinafter, although the embodiment will be described more specifically with reference to examples and comparative examples, the present invention is not limited to the scope of the examples.
 以下の各実施例および比較例において、各物性は次のように測定した。 In the following examples and comparative examples, each physical property was measured as follows.
[密着性]
 JIS K 5600-5-6に準拠して測定した。
 2mm間隔で10マス×10マスの碁盤目状に傷を入れ、粘着テープ(ニチバン製)を貼り付け、面に対し約60°の方向に引き剥がした後の残っている碁盤目の数をカウントした。
[Adhesion]
The measurement was performed according to JIS K 5600-5-6.
Count the number of remaining grids after scratching in a grid pattern of 10 squares × 10 squares at intervals of 2 mm, applying adhesive tape (made by Nichiban), and peeling in a direction of about 60 ° to the surface. did.
[耐光性]
 上記の密着性試験をQUV試験後に行った。QUV試験は、Atlas製UVCON(ランプ:UVB313nm)を使用し、コーティング面に光が照射されるようにセッティングし、24hr照射試験を行った。
[Light resistance]
The above adhesion test was performed after the QUV test. In the QUV test, Atlas UVCON (lamp: UVB 313 nm) was used, and the coating surface was set to be irradiated with light, and a 24 hr irradiation test was performed.
[鉛筆硬度]
 JIS K 5600-5-4:1999に準拠して硬化膜の表面の鉛筆硬度を測定した。荷重は1kgとした。
[Pencil hardness]
The pencil hardness of the surface of the cured film was measured according to JIS K 5600-5-4: 1999. The load was 1 kg.
[屈曲性]
 JIS K 5600-5-1:1999に準拠して屈曲試験をした。硬化膜と基材フィルムとの積層体を1cm×8cmに切断して、測定サンプルを得た。測定サンプルを、硬化膜が内側または外側になる向きで、直径6mmまたは2mmのロールそれぞれに巻き付けた。
 硬化膜におけるヒビ割れの発生の有無に基づいて、屈曲性を次のように判定した。
(屈曲性の判定)
 ◎ :ヒビ割れが生じなかった
 ○ :ヒビ割れが1~4本生じた
 △ :ヒビ割れが5本以上生じた
 × :測定サンプルが材料破壊した
[Flexibility]
A bending test was performed in accordance with JIS K 5600-5-1: 1999. A laminate of the cured film and the base film was cut into 1 cm × 8 cm to obtain a measurement sample. The measurement sample was wound around a roll having a diameter of 6 mm or 2 mm, with the cured film facing inward or outward.
Based on the presence or absence of the occurrence of cracks in the cured film, the flexibility was determined as follows.
(Judgment of flexibility)
◎: No cracking occurred. ○: 1-4 cracks occurred. △: 5 or more cracks occurred.
[重量平均分子量]
 「重量平均分子量」は、gel permeation chromatography(GPC)で測定されたポリスチレン換算の重量平均分子量を意味する。測定条件は、SHODEX GPC-104、カラム KF-602、移動相 THF、流速0.5ml/min、温度40℃で行った。値は、ポリスチレン標準物質からの換算値を用いた。
[Weight average molecular weight]
“Weight average molecular weight” means a polystyrene-reduced weight average molecular weight measured by gel permeation chromatography (GPC). Measurement conditions were as follows: SHODEX GPC-104, column KF-602, mobile phase THF, flow rate 0.5 ml / min, temperature 40 ° C. As the value, a conversion value from a polystyrene standard was used.
[ガラス転移点]
 合成したポリ(メタ)アクリレート溶液を乾燥した試料、約10mgをアルミニウムパンに量り採り、DSC装置(MACサイエンス社製 DSC3100)にセットして液体窒素で-100℃まで冷却した後、10℃/minで昇温して得られたDSCチャートからガラス転移温度を求めた。
[Glass transition point]
A sample obtained by drying the synthesized poly (meth) acrylate solution, about 10 mg is weighed in an aluminum pan, set in a DSC apparatus (DSC3100 manufactured by MAC Science), cooled to −100 ° C. with liquid nitrogen, and then 10 ° C./min. The glass transition temperature was determined from the DSC chart obtained by raising the temperature at.
[二重結合当量]
 二重結合当量は以下の式に従って求めた。
二重結合当量(g/mol)=全モノマーの仕込み量(g)/二重結合に用いられたモノマーの単体量(mol)
[Double bond equivalent]
The double bond equivalent was determined according to the following formula.
Double bond equivalent (g / mol) = Total monomer charge (g) / Monomer amount used for double bond (mol)
実施例1
「水酸基含有(メタ)アクリルポリマーAの合成」
 攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、メチルイソブチルケトン300gを仕込み、窒素気流下で110℃まで昇温し、メチルメタクリレート245g、2-ヒドロキシエチルメタクリレート55g、ポリプロピレングリコールモノアクリレート100g、メチルイソブチルケトン50g、アゾビスイソブチロニトリル3gの混合溶液を滴下ロートに仕込み、2時間かけて等速に滴下し、さらに同温度で1時間エージングした。次いでアゾビスイソブチロニトリル2gとメチルイソブチルケトン100gを滴下ロートに仕込み2時間かけて等速に滴下した。その後、3時間エージングしメチルイソブチルケトン150gで希釈し水酸基含有(メタ)アクリルポリマーAを合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で71000であり、加熱残分は39.9%であった。示差走査熱量計を用いて測定したガラス転移点(Tg)は約30℃であった。
Example 1
"Synthesis of hydroxyl group-containing (meth) acrylic polymer A"
A flask equipped with a stirrer, dropping funnel, condenser and thermometer was charged with 300 g of methyl isobutyl ketone, heated to 110 ° C. under a nitrogen stream, 245 g of methyl methacrylate, 55 g of 2-hydroxyethyl methacrylate, and 100 g of polypropylene glycol monoacrylate. Then, a mixed solution of 50 g of methyl isobutyl ketone and 3 g of azobisisobutyronitrile was charged into a dropping funnel and dropped at a constant rate over 2 hours, and further aged at the same temperature for 1 hour. Next, 2 g of azobisisobutyronitrile and 100 g of methyl isobutyl ketone were charged into the dropping funnel and dropped at a constant speed over 2 hours. Thereafter, the mixture was aged for 3 hours and diluted with 150 g of methyl isobutyl ketone to synthesize a hydroxyl group-containing (meth) acrylic polymer A. As a result of measuring the molecular weight of the obtained polymer, the weight average molecular weight was 71000, and the heating residue was 39.9%. The glass transition point (Tg) measured using a differential scanning calorimeter was about 30 ° C.
「(メタ)アクリルウレタンオリゴマーBの合成」
 攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、メチルイソブチルケトン500g、イソホロンジイソシアネート(IPDI)318g、メトキノン0.5g、ジオクチルスズ0.05gを仕込み窒素と酸素の混合気流下で80℃まで昇温した。次いで2-ヒドロキシエチルアクリレート182gを滴下ロートに仕込み3時間かけて等速に滴下した。その後80℃で5時間エージングしNCO%が6~8%の時点で反応終了。片末端がイソシアネート基、もう一方の片末端がアクリレート基の(メタ)アクリルウレタンオリゴマーBを合成した。得られたオリゴマーの分子量を測定した結果、重量平均分子量で約400であり、加熱残分は50.1%であった。
“Synthesis of (Meth) acrylic urethane oligomer B”
A flask equipped with a stirrer, a dropping funnel, a condenser tube and a thermometer was charged with 500 g of methyl isobutyl ketone, 318 g of isophorone diisocyanate (IPDI), 0.5 g of methoquinone, and 0.05 g of dioctyltin, and 80 ° C. under a mixed stream of nitrogen and oxygen. The temperature was raised to. Next, 182 g of 2-hydroxyethyl acrylate was charged into the dropping funnel and dropped at a constant rate over 3 hours. Thereafter, aging was performed at 80 ° C. for 5 hours, and the reaction was completed when NCO% was 6 to 8%. A (meth) acrylurethane oligomer B having an isocyanate group at one end and an acrylate group at the other end was synthesized. As a result of measuring the molecular weight of the obtained oligomer, the weight average molecular weight was about 400, and the heating residue was 50.1%.
「(メタ)アクリルウレタンポリマーCの合成」
 攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、メチルイソブチルケトン300g三菱化学株式会社製PTMG650を265gとヘキサメチレンジイソアネート190g、ジオクチルスズ0.05gを仕込み窒素と酸素の混合気流下で80℃まで昇温しそのまま5時間反応させ、両末端イソシアネート基含有ウレタンオリゴマーを得た。次いでメトキノン0.5gを投入した後、2-ヒドロキシエチルアクリレート45gを滴下ロートに仕込み1時間かけて等速に滴下した。滴下後さらに3時間反応させた後、メチルイソブチルケトン200gにて希釈し片末端がイソシアネート基、もう一方の片末端がアクリル基の(メタ)アクリルウレタンポリマーCを合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で約7300であり加熱残分は50.2%であった。
"Synthesis of (meth) acrylic urethane polymer C"
A flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer was charged with 300 g of methyl isobutyl ketone, 265 g of PTMG650 manufactured by Mitsubishi Chemical Co., Ltd., 190 g of hexamethylene diisocyanate and 0.05 g of dioctyltin under a mixed air stream of nitrogen and oxygen. The mixture was heated up to 80 ° C. and reacted for 5 hours as it was to obtain a urethane oligomer containing both isocyanate groups. Next, 0.5 g of methoquinone was added, and then 45 g of 2-hydroxyethyl acrylate was charged into the dropping funnel and dropped at a constant speed over 1 hour. After the addition, the reaction was further continued for 3 hours, and then diluted with 200 g of methyl isobutyl ketone to synthesize (meth) acryl urethane polymer C having one end with an isocyanate group and the other end with an acrylic group. As a result of measuring the molecular weight of the obtained polymer, the weight average molecular weight was about 7300, and the heating residue was 50.2%.
「反応性ポリマーEの合成」
 攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、水酸基含有(メタ)アクリルポリマーA700g、(メタ)アクリルウレタンオリゴマーB140g、(メタ)アクリルウレタンポリマーC100g、メトキノン0.5g、ジオクチルスズ0.05gを仕込み窒素と酸素の混合気流下で90℃まで昇温し8時間反応させた後、イソシアネート基含有アルコキシシランD(3-イソシアネートプロピルトリエトキシシラン)を50g加えさらに3時間反応させた。FT-IRにてイソシアネート基のピークが消失したことを確認しメチルイソブチルケトン135gで希釈し反応を終了した。反応性ポリマーEを合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で86000であり、加熱残分が40.2%であった。二重結合当量は1812であった。
“Synthesis of Reactive Polymer E”
In a flask equipped with a stirrer, a dropping funnel, a condenser tube and a thermometer, a hydroxyl group-containing (meth) acrylic polymer A 700 g, (meth) acrylic urethane oligomer B140 g, (meth) acrylic urethane polymer C100 g, methoquinone 0.5 g, dioctyltin After adding 05 g, the temperature was raised to 90 ° C. under a mixed air stream of nitrogen and oxygen and reacted for 8 hours, and then 50 g of isocyanate group-containing alkoxysilane D (3-isocyanatepropyltriethoxysilane) was added and reacted for another 3 hours. After confirming the disappearance of the isocyanate group peak by FT-IR, the reaction was terminated by diluting with 135 g of methyl isobutyl ketone. Reactive polymer E was synthesized. As a result of measuring the molecular weight of the obtained polymer, the weight average molecular weight was 86000, and the heating residue was 40.2%. The double bond equivalent was 1812.
[光硬化性樹脂組成物の製造]
 4官能アクリレート(新中村化学(株)製、A-TMMT)30質量部、3官能アクリレート(新中村化学(株)製、A-TMPT)30質量部、反応性ポリマーE40質量部、トリアジン系紫外線吸収剤(BASF社製、TINUVIN(登録商標)479)3質量部、光重合開始剤(チバスペシャリティケミカルズ(株)製、IRGACURE(登録商標)184)5質量部、光重合開始剤(チバスペシャリティケミカルズ(株)製、IRGACURE(登録商標)819)3質量部、レベリング剤(ビックケミージャパン(株)製、BYK-350)0.6質量部、メチルエチルケトン30質量部を撹拌混合し、光硬化性樹脂組成物を得た。
[Production of photocurable resin composition]
30 parts by mass of tetrafunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT), 30 parts by mass of trifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMPT), 40 parts by mass of reactive polymer E, triazine UV 3 parts by mass of an absorbent (manufactured by BASF, TINUVIN (registered trademark) 479), 5 parts by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals Co., Ltd., IRGACURE (registered trademark) 184), a photopolymerization initiator (Ciba Specialty Chemicals) Co., Ltd., IRGACURE (registered trademark) 819) 3 parts by mass, leveling agent (BYK-350, BYK-350) 0.6 parts by mass, methyl ethyl ketone 30 parts by mass, photo-curing resin A composition was obtained.
[積層体の製造]
透明基材フィルムとしては、公知文献(例えば米国特許第8,207,256号)に準拠して、厚さ80μmのポリイミドとシリカ粒子とを含有する樹脂基材(シリカ粒子含有量60質量%)を作製した。その透明ポリイミドフィルムを用い、前記の光硬化性樹脂組成物を乾燥膜厚5μmとなるようにバーコーターで塗工した。その後、60℃のオーブンで5分間乾燥を行い、500mj/cmのエネルギーで紫外線を照射して硬化させることで、硬化膜と基材との積層体を得た。得られた積層体のQUV試験前後の密着性を上記のとおり測定した。
結果を表1に示す。また、得られた積層体は、鉛筆硬度が2Hであり、直径6mm及び2mmについての屈曲性がそれぞれ硬化膜の内側及び外側において◎であった。
[Manufacture of laminates]
As the transparent substrate film, a resin substrate (silica particle content 60% by mass) containing 80 μm-thick polyimide and silica particles according to known literature (for example, US Pat. No. 8,207,256). Was made. Using the transparent polyimide film, the photocurable resin composition was applied with a bar coater so as to have a dry film thickness of 5 μm. Then, it dried for 5 minutes in 60 degreeC oven, and irradiated with the ultraviolet-ray with the energy of 500 mj / cm < 2 >, and was cured, and the laminated body of the cured film and the base material was obtained. The adhesion of the obtained laminate before and after the QUV test was measured as described above.
The results are shown in Table 1. Further, the obtained laminate had a pencil hardness of 2H, and the flexibility with respect to diameters of 6 mm and 2 mm was そ れ ぞ れ on the inside and outside of the cured film, respectively.
実施例2~14および比較例1
 実施例1において、イソシアネート基含有アルコキシシランDを表1~3に記載のエトキシシラン基含有量となるように配合したこと、および水酸化アルミニウムやスメクタイトを表3に記載の含有量で用いたこと以外は、実施例1と同様にして硬化膜と基材との積層体を得た。得られた光硬化性膜と基材との密着性を測定した結果を表1~3に示す。また、実施例2~8及び比較例1において得られた積層体は、鉛筆硬度が2Hであり、直径6mm及び2mmについての屈曲性がそれぞれ硬化膜の内側及び外側において◎であった。実施例9~14において得られた積層体は、鉛筆硬度が3Hであり、直径6mm及び2mmについての屈曲性がそれぞれ硬化膜の内側及び外側において◎であった。
Examples 2 to 14 and Comparative Example 1
In Example 1, the isocyanate group-containing alkoxysilane D was blended so as to have the ethoxysilane group contents shown in Tables 1 to 3, and aluminum hydroxide and smectite were used in the contents shown in Table 3. Except for this, a laminate of a cured film and a substrate was obtained in the same manner as in Example 1. The results of measuring the adhesion between the obtained photocurable film and the substrate are shown in Tables 1 to 3. The laminates obtained in Examples 2 to 8 and Comparative Example 1 had a pencil hardness of 2H, and the flexibility with respect to diameters of 6 mm and 2 mm was ◎ on the inside and outside of the cured film, respectively. The laminates obtained in Examples 9 to 14 had a pencil hardness of 3H, and the flexibility with respect to diameters of 6 mm and 2 mm was ◎ on the inside and outside of the cured film, respectively.
比較例2
「水酸基含有(メタ)アクリルポリマーA2の合成」
 攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、メチルイソブチルケトン300gを仕込み、窒素気流下で110℃まで昇温し、メチルメタクリレート260g、2-ヒドロキシエチルメタクリレート140g、メチルイソブチルケトン50g、アゾビスイソブチロニトリル3gの混合溶液を滴下ロートに仕込み、2時間かけて等速に滴下し、さらに同温度で1時間エージングした。次いでアゾビスイソブチロニトリル2gとメチルイソブチルケトン100gを滴下ロートに仕込み2時間かけて等速に滴下した。その後、3時間エージングしメチルイソブチルケトン150gで希釈し水酸基含有(メタ)アクリルポリマーAを合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で86,000であり、加熱残分は40.1%であった。示差走査熱量計を用いて測定したガラス転移点(Tg)は約70℃であった。
Comparative Example 2
"Synthesis of hydroxyl group-containing (meth) acrylic polymer A2"
A flask equipped with a stirrer, dropping funnel, condenser and thermometer was charged with 300 g of methyl isobutyl ketone, heated to 110 ° C. under a nitrogen stream, 260 g of methyl methacrylate, 140 g of 2-hydroxyethyl methacrylate, 50 g of methyl isobutyl ketone, A mixed solution of 3 g of azobisisobutyronitrile was charged into a dropping funnel, dropped at a constant speed over 2 hours, and further aged at the same temperature for 1 hour. Next, 2 g of azobisisobutyronitrile and 100 g of methyl isobutyl ketone were charged into the dropping funnel and dropped at a constant speed over 2 hours. Thereafter, the mixture was aged for 3 hours and diluted with 150 g of methyl isobutyl ketone to synthesize a hydroxyl group-containing (meth) acrylic polymer A. As a result of measuring the molecular weight of the obtained polymer, the weight average molecular weight was 86,000, and the heating residue was 40.1%. The glass transition point (Tg) measured using a differential scanning calorimeter was about 70 ° C.
「反応性ポリマーE2の合成」
 攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、水酸基含有(メタ)アクリルポリマーA2を700g、(メタ)アクリルウレタンオリゴマーB140g、(メタ)アクリルウレタンポリマーC100g、メトキノン0.5g、ジオクチルスズ0.05gを仕込み窒素と酸素の混合気流下で90℃まで昇温し8時間反応させた後、イソシアネート基含有アルコキシシランDを100g加えさらに3時間反応させた。FT-IRにてイソシアネート基のピークが消失したことを確認しメチルイソブチルケトン210gで希釈し反応を終了した。比較例2の反応性ポリマーE2を合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で195,000であり、加熱残分が40.6%であった。二重結合当量は1933であった。
“Synthesis of Reactive Polymer E2”
In a flask equipped with a stirrer, a dropping funnel, a condenser tube and a thermometer, 700 g of hydroxyl group-containing (meth) acrylic polymer A2, 140 g of (meth) acrylic urethane oligomer B, 100 g of (meth) acrylic urethane polymer C, 0.5 g of methoquinone, dioctyltin 0.05 g was charged and heated to 90 ° C. under a mixed air stream of nitrogen and oxygen and reacted for 8 hours, and then 100 g of isocyanate group-containing alkoxysilane D was added and reacted for another 3 hours. After confirming the disappearance of the isocyanate group peak by FT-IR, the reaction was terminated by diluting with 210 g of methyl isobutyl ketone. The reactive polymer E2 of Comparative Example 2 was synthesized. As a result of measuring the molecular weight of the obtained polymer, the weight average molecular weight was 195,000, and the heating residue was 40.6%. The double bond equivalent was 1933.
[光硬化性樹脂組成物及び積層体の製造]
 実施例1の光硬化性樹脂組成物の調製に関し、反応性ポリマーEを用いたことに代えて反応性ポリマーE2を用いたこと以外は、実施例1と同様にして光硬化性樹脂組成物及び積層体を製造した。密着性を測定した結果を表1に示す。また、得られた積層体は、鉛筆硬度が2Hであり、直径6mm及び2mmについての屈曲性がそれぞれ硬化膜の内側及び外側において◎であった。
[Production of Photocurable Resin Composition and Laminate]
Regarding the preparation of the photocurable resin composition of Example 1, a photocurable resin composition and a photocurable resin composition were prepared in the same manner as in Example 1 except that the reactive polymer E2 was used instead of the reactive polymer E. A laminate was produced. The results of measuring the adhesion are shown in Table 1. Further, the obtained laminate had a pencil hardness of 2H, and the flexibility with respect to diameters of 6 mm and 2 mm was そ れ ぞ れ on the inside and outside of the cured film, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の反応性ポリマー、光硬化性樹脂組成物および積層体は、例えばプラズマディスプレイ(PD)、液晶ディスプレイ(LCD)等の電子画像表示装置の表示画面上に設けられるハードコートフィルムに用いることができる。 The reactive polymer, photocurable resin composition and laminate of the present invention can be used for a hard coat film provided on a display screen of an electronic image display device such as a plasma display (PD) or a liquid crystal display (LCD). it can.

Claims (15)

  1.  アルコキシシラン基および(メタ)アクリレート基を側鎖に有する反応性ポリマー。 A reactive polymer having an alkoxysilane group and a (meth) acrylate group in the side chain.
  2.  (メタ)アクリレートポリマーからなる主鎖を有し、および前記側鎖としての(メタ)アクリレート基は、前記主鎖に結合したウレタンポリマーおよび/またはウレタンオリゴマーの末端に結合する、請求項1に記載の反応性ポリマー。 The main chain which consists of a (meth) acrylate polymer, and the (meth) acrylate group as said side chain couple | bonds with the terminal of the urethane polymer and / or urethane oligomer couple | bonded with the said main chain. Reactive polymer.
  3.  前記反応性ポリマーの重量平均分子量は10,000~250,000である、請求項1または2に記載の反応性ポリマー。 The reactive polymer according to claim 1 or 2, wherein the weight average molecular weight of the reactive polymer is 10,000 to 250,000.
  4.  前記反応性ポリマーの二重結合当量は800~125,000である、請求項1~3のいずれかに記載の反応性ポリマー。 The reactive polymer according to any one of claims 1 to 3, wherein a double bond equivalent of the reactive polymer is 800 to 125,000.
  5.  前記(メタ)アクリレートポリマーのガラス転移点(Tg)は0~70℃である、請求項2に記載の反応性ポリマー。 The reactive polymer according to claim 2, wherein the glass transition point (Tg) of the (meth) acrylate polymer is 0 to 70 ° C.
  6.  アルコキシシラン基はエトキシシラン基である、請求項1~5のいずれかに記載の反応性ポリマー。 The reactive polymer according to any one of claims 1 to 5, wherein the alkoxysilane group is an ethoxysilane group.
  7.  多官能(メタ)アクリレートモノマーと、請求項1~6のいずれかに記載の反応性ポリマーと、光重合開始剤と、紫外線吸収剤とを含有する光硬化性樹脂組成物。 A photocurable resin composition comprising a polyfunctional (meth) acrylate monomer, the reactive polymer according to any one of claims 1 to 6, a photopolymerization initiator, and an ultraviolet absorber.
  8.  前記反応性ポリマーの含有量は、多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して5~60質量部である、請求項7に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 7, wherein the content of the reactive polymer is 5 to 60 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer.
  9.  前記反応性ポリマー中のアルコキシシラン基の含有量は、反応性ポリマーを基準に0質量%を超え40質量%未満である、請求項7または8に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 7 or 8, wherein the content of the alkoxysilane group in the reactive polymer is more than 0% by mass and less than 40% by mass based on the reactive polymer.
  10.  無機化合物を更に含有する、請求項7~9のいずれかに記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 7 to 9, further comprising an inorganic compound.
  11.  柱状、板状および層状無機化合物からなる群から選択される少なくとも1種の無機化合物を含有する、請求項10に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 10, comprising at least one inorganic compound selected from the group consisting of columnar, plate-like and layered inorganic compounds.
  12.  基材フィルムと、前記基材フィルムの少なくとも片面側に積層された、請求項7~11のいずれかに記載の光硬化性樹脂組成物の硬化物である硬化膜とを有する、積層体。 A laminate comprising a base film and a cured film, which is a cured product of the photocurable resin composition according to any one of claims 7 to 11, laminated on at least one side of the base film.
  13.  基材フィルムは、ポリイミドでできた基材フィルムである、請求項12に記載の積層体。 The substrate according to claim 12, wherein the substrate film is a substrate film made of polyimide.
  14.  積層体の製造方法であって、
    (1)請求項7~11のいずれかに記載の光硬化性樹脂組成物を基材上に塗布することにより組成物層を得る工程、および
    (2)組成物層を露光することにより該組成物層を硬化させる工程
    を含む、方法。
    A method for producing a laminate,
    (1) a step of obtaining a composition layer by coating the photocurable resin composition according to any one of claims 7 to 11 on a substrate, and (2) the composition layer by exposing the composition layer. A method comprising the step of curing a physical layer.
  15.  基材がポリイミドである、請求項14に記載の方法。 The method according to claim 14, wherein the substrate is polyimide.
PCT/JP2017/021303 2016-06-10 2017-06-08 Reactive polymer, photocurable resin composition, and laminate WO2017213217A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197000724A KR102389723B1 (en) 2016-06-10 2017-06-08 Reactive polymer, photocurable resin composition and laminate
JP2018521772A JP6962911B2 (en) 2016-06-10 2017-06-08 Reactive polymers, photocurable resin compositions and laminates
CN201780035346.7A CN109312019A (en) 2016-06-10 2017-06-08 Reactive polymer, Photocurable resin composition and laminated body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-116343 2016-06-10
JP2016116343 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017213217A1 true WO2017213217A1 (en) 2017-12-14

Family

ID=60578676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021303 WO2017213217A1 (en) 2016-06-10 2017-06-08 Reactive polymer, photocurable resin composition, and laminate

Country Status (5)

Country Link
JP (1) JP6962911B2 (en)
KR (1) KR102389723B1 (en)
CN (1) CN109312019A (en)
TW (1) TWI811192B (en)
WO (1) WO2017213217A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164602A (en) * 2019-03-28 2020-10-08 株式会社カネカ Curable composition and (meth) acrylic polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022156876A (en) * 2021-03-31 2022-10-14 Tdk株式会社 Resin composite laminate, production method of resin composite laminate and stretchable device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282805A (en) * 2005-03-31 2006-10-19 Emulsion Technology Co Ltd Adhesive composition curable with ultraviolet ray
JP2009128770A (en) * 2007-11-27 2009-06-11 Nof Corp Anti-reflection film having uv absorption, and manufacturing method thereof
WO2014102166A1 (en) * 2012-12-25 2014-07-03 Akzo Nobel Coatings International B.V. A coating composition, a preparation method therefore, and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115100B2 (en) * 2012-11-23 2017-04-19 デクセリアルズ株式会社 Photocurable composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282805A (en) * 2005-03-31 2006-10-19 Emulsion Technology Co Ltd Adhesive composition curable with ultraviolet ray
JP2009128770A (en) * 2007-11-27 2009-06-11 Nof Corp Anti-reflection film having uv absorption, and manufacturing method thereof
WO2014102166A1 (en) * 2012-12-25 2014-07-03 Akzo Nobel Coatings International B.V. A coating composition, a preparation method therefore, and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164602A (en) * 2019-03-28 2020-10-08 株式会社カネカ Curable composition and (meth) acrylic polymer
JP7395262B2 (en) 2019-03-28 2023-12-11 株式会社カネカ Curable composition and (meth)acrylic polymer

Also Published As

Publication number Publication date
CN109312019A (en) 2019-02-05
JPWO2017213217A1 (en) 2019-05-16
JP6962911B2 (en) 2021-11-05
KR20190018160A (en) 2019-02-21
TWI811192B (en) 2023-08-11
KR102389723B1 (en) 2022-04-25
TW201815854A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2013180512A1 (en) Hard coating composition
KR102356097B1 (en) Photocurable resin composition, cured coating film formed from the composition, and base material with coating film, and method of manufacturing the cured coating film and the base material with coating film
JP6458339B2 (en) Curable resin composition, cured product and laminate
JP5519064B2 (en) Laminate and its use
JP2011051340A (en) Laminated film for forming hard coat, roll film, and curable composition for forming hard coat
JP5555089B2 (en) Urethane (meth) acrylate and photocurable resin composition containing the same
WO2011129413A1 (en) Method for formation of multi-layered coating film, and coated article
US10040945B2 (en) Active energy ray curable resin composition, resin molded article, and method for producing resin molded article
KR20120003429A (en) Curable resin composition
JP2021169613A (en) Curable composition, cured article and laminate
JP5643533B2 (en) MULTILAYER COATING FORMATION METHOD AND COATED ARTICLE
WO2017213217A1 (en) Reactive polymer, photocurable resin composition, and laminate
WO2016076302A1 (en) Photocurable resin composition and method for producing laminate using same
JP2014151588A (en) Laminate and use thereof
WO2015115154A1 (en) Molded resin object and use thereof
JP5819481B2 (en) Urethane (meth) acrylate and photocurable resin composition containing the same
JP6938889B2 (en) Active energy ray-curable resin composition and coating agent
JP5892799B2 (en) Urethane (meth) acrylate that forms a cured product having elongation and excellent scratch resistance, and a photocurable resin composition containing the same
JP6903941B2 (en) Urethane (meth) acrylate oligomer
JP2012183519A (en) Multi-layered coated film formation method, and coated article
JP5643534B2 (en) MULTILAYER COATING FORMATION METHOD AND COATED ARTICLE
JP2017203068A (en) Active energy ray-curable resin composition and coating agent
JP6953683B2 (en) Urethane (meth) acrylate resin and laminated film
JP6891410B2 (en) Urethane (meth) acrylate resin and laminated film
JP6900172B2 (en) Active energy ray-curable resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521772

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000724

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17810390

Country of ref document: EP

Kind code of ref document: A1