JPWO2017213217A1 - Reactive polymer, photocurable resin composition and laminate - Google Patents

Reactive polymer, photocurable resin composition and laminate Download PDF

Info

Publication number
JPWO2017213217A1
JPWO2017213217A1 JP2018521772A JP2018521772A JPWO2017213217A1 JP WO2017213217 A1 JPWO2017213217 A1 JP WO2017213217A1 JP 2018521772 A JP2018521772 A JP 2018521772A JP 2018521772 A JP2018521772 A JP 2018521772A JP WO2017213217 A1 JPWO2017213217 A1 JP WO2017213217A1
Authority
JP
Japan
Prior art keywords
meth
reactive polymer
acrylate
polymer
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018521772A
Other languages
Japanese (ja)
Other versions
JP6962911B2 (en
Inventor
未央 安井
未央 安井
益功 黒田
益功 黒田
敦史 長谷川
敦史 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI FINE CHEMICAL CO., LTD.
Sumitomo Chemical Co Ltd
Original Assignee
TAISEI FINE CHEMICAL CO., LTD.
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI FINE CHEMICAL CO., LTD., Sumitomo Chemical Co Ltd filed Critical TAISEI FINE CHEMICAL CO., LTD.
Publication of JPWO2017213217A1 publication Critical patent/JPWO2017213217A1/en
Application granted granted Critical
Publication of JP6962911B2 publication Critical patent/JP6962911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/147Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • C08L87/005Block or graft polymers not provided for in groups C08L1/00 - C08L85/04
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、反応性ポリマー、それを含む光硬化性樹脂組成物およびその硬化膜を有する積層体に関するものである。本発明は、ハードコート層と基材との密着性およびハードコート層の耐光性を改善することを目的とする。本発明の反応性ポリマーは、アルコキシシラン基および(メタ)アクリレート基を側鎖に有する。The present invention relates to a reactive polymer, a photocurable resin composition containing the same, and a laminate having the cured film thereof. An object of the present invention is to improve the adhesion between a hard coat layer and a substrate and the light resistance of the hard coat layer. The reactive polymer of the present invention has an alkoxysilane group and a (meth) acrylate group in its side chain.

Description

本特許出願は、日本国特許出願第2016−116343号(出願日2016年6月10日)について優先権を主張するものであり、ここに参照することによって、それらの全体が本明細書中へ組み込まれるものとする。
本発明は、反応性ポリマー、それを含む光硬化性樹脂組成物およびその硬化膜を有する積層体に関する。
This patent application claims priority to Japanese Patent Application No. 2016-116343 (filing date: June 10, 2016), which is incorporated herein by reference in its entirety. It shall be incorporated.
The present invention relates to a reactive polymer, a photocurable resin composition containing the same, and a laminate having a cured film thereof.

透明基材フィルム上にハードコート層を形成するための光硬化性樹脂組成物としては、例えば紫外線吸収剤、ウレタンアクリレートおよび光重合開始剤を含む光硬化性樹脂組成物(特許文献1)や、ポリオルガノシロキサン、2官能アクリレート、紫外線吸収剤および光重合開始剤を含む光硬化性樹脂組成物(特許文献2)が知られていた。
特開2009−6513号公報(段落0062) 特許第5576622号公報
As a photocurable resin composition for forming a hard-coat layer on a transparent base film, the photocurable resin composition (patent document 1) which contains an ultraviolet absorber, urethane acrylate, and a photoinitiator, for example, There has been known a photocurable resin composition (Patent Document 2) containing a polyorganosiloxane, a bifunctional acrylate, a UV absorber and a photopolymerization initiator.
JP, 2009-6513, A (paragraph 0062) Patent No. 5576622

上記特許文献1及び2に記載の光硬化性樹脂組成物からハードコート層を基材上に形成する場合には、屈曲性、硬度、ハードコート層と基材との密着性およびハードコート層の耐光性を全て同時に満足するものではなかった。   When the hard coat layer is formed on the substrate from the photocurable resin composition described in Patent Documents 1 and 2, flexibility, hardness, adhesion between the hard coat layer and the substrate, hardness of the hard coat layer, etc. The light resistance was not all satisfied at the same time.

そこで、本発明は、ハードコート層と基材との密着性およびハードコート層の耐光性を改善することを目的とする。   Then, this invention aims at improving the adhesiveness of a hard-coat layer and a base material, and the light resistance of a hard-coat layer.

本発明は、以下の[1]〜[15]に記載の発明を含む。
[1]アルコキシシラン基および(メタ)アクリレート基を側鎖に有する反応性ポリマー。
[2](メタ)アクリレートポリマーからなる主鎖を有し、および前記側鎖としての(メタ)アクリレート基は、前記主鎖に結合したウレタンポリマーおよび/またはウレタンオリゴマーの末端に結合する、[1]に記載の反応性ポリマー。
[3]前記反応性ポリマーの重量平均分子量Mwは10000〜250000である、[1]または[2]に記載の反応性ポリマー。
[4]前記反応性ポリマーの二重結合当量は800〜125000である、[1]〜[3]のいずれかに記載の反応性ポリマー。
[5]前記(メタ)アクリレートポリマーのガラス転移点(Tg)は0〜70℃である、[2]に記載の反応性ポリマー。
[6]アルコキシシラン基はエトキシシラン基である、[1]〜[5]のいずれかに記載の反応性ポリマー。
[7]多官能(メタ)アクリレートモノマーと、[1]〜[6]のいずれかに記載の反応性ポリマーと、光重合開始剤と、紫外線吸収剤とを含有する光硬化性樹脂組成物。
[8]前記反応性ポリマーの含有量は、多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して5〜60質量部である、[7]に記載の光硬化性樹脂組成物。
[9]前記反応性ポリマー中のアルコキシシラン基の含有量は、反応性ポリマーを基準に0質量%を超え40質量%未満である、[7]または[8]に記載の光硬化性樹脂組成物。
[10]無機化合物を更に含有する、[7]〜[9]のいずれかに記載の光硬化性樹脂組成物。
[11]柱状、板状および層状無機化合物からなる群から選択される少なくとも1種の無機化合物を含有する、[10]に記載の光硬化性樹脂組成物。
[12]基材フィルムと、前記基材フィルムの少なくとも片面側に積層された、[7]〜[11]のいずれかに記載の光硬化性樹脂組成物の硬化物である硬化膜とを有する、積層体。
[13]基材がポリイミドである、[12]に記載の積層体。
[14]積層体の製造方法であって、
(1)[7]〜[11]のいずれかに記載の光硬化性樹脂組成物を基材上に塗布することにより組成物層を得る工程、および
(2)組成物層を露光することにより該組成物層を硬化させる工程
を含む、方法。
[15]基材フィルムは、ポリイミドでできた基材フィルムである、[14]に記載の方法。
The present invention includes the inventions described in the following [1] to [15].
[1] A reactive polymer having an alkoxysilane group and a (meth) acrylate group in its side chain.
[2] A main chain comprising a (meth) acrylate polymer, and the (meth) acrylate group as the side chain is bonded to the end of the urethane polymer and / or urethane oligomer bonded to the main chain, [1 ] The reactive polymer as described in.
[3] The reactive polymer according to [1] or [2], wherein the weight average molecular weight Mw of the reactive polymer is 10000 to 250000.
[4] The reactive polymer according to any one of [1] to [3], wherein a double bond equivalent of the reactive polymer is 800 to 125000.
[5] The reactive polymer according to [2], wherein the glass transition point (Tg) of the (meth) acrylate polymer is 0 to 70 ° C.
[6] The reactive polymer according to any one of [1] to [5], wherein the alkoxysilane group is an ethoxysilane group.
[7] A photocurable resin composition comprising a polyfunctional (meth) acrylate monomer, the reactive polymer according to any one of [1] to [6], a photopolymerization initiator, and a UV absorber.
[8] The photocurable resin composition according to [7], wherein the content of the reactive polymer is 5 to 60 parts by mass with respect to a total of 100 parts by mass of the polyfunctional (meth) acrylate monomer and the reactive polymer object.
[9] The photocurable resin composition according to [7] or [8], wherein the content of the alkoxysilane group in the reactive polymer is more than 0% by mass and less than 40% by mass based on the reactive polymer object.
[10] The photocurable resin composition according to any one of [7] to [9], which further contains an inorganic compound.
[11] The photocurable resin composition according to [10], which contains at least one inorganic compound selected from the group consisting of columnar, plate-like and layered inorganic compounds.
[12] A base film, and a cured film which is a cured product of the photocurable resin composition according to any one of [7] to [11], laminated on at least one side of the base film. , Stacks.
[13] The laminate according to [12], wherein the substrate is a polyimide.
[14] A method for producing a laminate,
(1) A step of obtaining a composition layer by applying the photocurable resin composition according to any one of [7] to [11] onto a substrate, and (2) by exposing the composition layer Curing the composition layer.
[15] The method according to [14], wherein the substrate film is a substrate film made of polyimide.

本発明の一側面に係る反応性ポリマーによれば、当該反応性ポリマーを含む光硬化性樹脂組成物の硬化膜を透明基材フィルムにハードコート層として形成した場合、透明基材フィルムにハードコート層との密着性に優れ、およびハードコート層の耐光性が良好である積層体(例えばハードコートフィルム)を得ることができる。   According to the reactive polymer according to one aspect of the present invention, when the cured film of the photocurable resin composition containing the reactive polymer is formed as a hard coat layer on a transparent base film, the hard coat is formed on the transparent base film It is possible to obtain a laminate (for example, a hard coat film) having excellent adhesion to the layer and good light resistance of the hard coat layer.

積層体の一実施形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of a layered product.

10 基材フィルム
10a 主面
20 硬化膜
30 積層体
10 substrate film 10a main surface 20 cured film 30 laminate

以下、本発明について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。まず、一側面に係る反応性ポリマーについて説明する。   Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments. First, the reactive polymer according to one aspect will be described.

[反応性ポリマー]
反応性ポリマーは、アルコキシシラン基および(メタ)アクリレート基を側鎖に有する。反応性ポリマーがアルコキシシラン基を側鎖に有することにより、優れた密着性が得られることとなる。また、反応性ポリマーが(メタ)アクリレート基を側鎖に有することにより、紫外線での硬化が可能となる。本明細書では、「(メタ)アクリレート」とは、アクリレートとメタクリレートの双方を含む総称を意味する。
[Reactive polymer]
The reactive polymer has alkoxysilane groups and (meth) acrylate groups in side chains. When the reactive polymer has an alkoxysilane group in the side chain, excellent adhesion can be obtained. In addition, when the reactive polymer has a (meth) acrylate group in its side chain, curing with ultraviolet light becomes possible. As used herein, “(meth) acrylate” is a generic term that includes both acrylate and methacrylate.

アルコキシシラン基としては、メトキシシラン基、エトキシシラン基、プロポキシシラン基、ブトキシシラン基等が挙げられる。   As an alkoxysilane group, a methoxysilane group, an ethoxysilane group, a propoxysilane group, a butoxysilane group etc. are mentioned.

(メタ)アクリレート基は、アクリレート基であってもよいし、メタクリレート基であってもよい。   The (meth) acrylate group may be an acrylate group or a methacrylate group.

反応性ポリマーとしては、(メタ)アクリレートポリマーからなる主鎖を有し、および側鎖としての(メタ)アクリレート基は、主鎖に結合したウレタンオリゴマーおよび/またはウレタンポリマーの末端に結合した反応性ポリマーが好ましい。
(メタ)アクリレートポリマーは、分子中に水酸基を2個以上含有する(メタ)アクリルポリマー〔以下、水酸基含有(メタ)アクリルポリマーAともいう〕である。
ウレタンオリゴマーは、1つのイソシアネート基と1つ以上の(メタ)アクリレート基を持ったアクリルウレタンオリゴマー〔以下、(メタ)アクリルウレタンオリゴマーBともいう〕である。また、ウレタンポリマーは、1つのイソシアネート基と1つ以上の(メタ)アクリレート基を持ったアクリルウレタンポリマー〔以下、(メタ)アクリルウレタンポリマーCともいう〕である。
反応性ポリマーは、水酸基含有(メタ)アクリルポリマーAと、(メタ)アクリルウレタンオリゴマーBの単独または(メタ)アクリルウレタンポリマーCの単独もしくは(メタ)アクリルウレタンオリゴマーBと(メタ)アクリルウレタンポリマーCの両方との付加反応物と、イソシアネート基含有アルコキシシランDとの付加反応物である反応性ポリマー(以下、反応性ポリマーEともいう)である。
The reactive polymer has a main chain composed of a (meth) acrylate polymer, and a (meth) acrylate group as a side chain is reactive with the urethane oligomer bonded to the main chain and / or the terminal of the urethane polymer Polymers are preferred.
The (meth) acrylate polymer is a (meth) acrylic polymer having two or more hydroxyl groups in the molecule [hereinafter, also referred to as a hydroxyl group-containing (meth) acrylic polymer A].
The urethane oligomer is an acrylic urethane oligomer having one isocyanate group and one or more (meth) acrylate groups [hereinafter, also referred to as (meth) acrylic urethane oligomer B]. The urethane polymer is an acrylic urethane polymer having one isocyanate group and one or more (meth) acrylate groups [hereinafter, also referred to as (meth) acrylic urethane polymer C].
The reactive polymer may be a hydroxyl group-containing (meth) acrylic polymer A and a (meth) acrylic urethane oligomer B alone or a (meth) acrylic urethane polymer C alone or a (meth) acrylic urethane oligomer B and (meth) acrylic urethane polymer C The reactive polymer (hereinafter, also referred to as reactive polymer E) which is an addition reaction product of the addition reaction product with both and the isocyanate group-containing alkoxysilane D.

[水酸基含有(メタ)アクリルポリマーA]
水酸基含有(メタ)アクリルポリマーAは分子中に水酸基を2個以上含有する(メタ)アクリルポリマーである。重量平均分子量Mwについては特に限定されないが、3,000〜200,000であることが好ましく、10,000〜160,000であることがより好ましく、30,000〜120,000であることがさらに好ましい。重量平均分子量Mwが3,000以下の場合、反応性ポリマーEの硬度が高くなり柔軟性が十分発現できないおそれがある。また重量平均分子量Mwが200,000以上の場合、反応性ポリマーEの紫外線硬化時の反応性が著しく低下するため、結果的に耐光性が低下するおそれがある。本明細書では、「(メタ)アクリレート」とは、アクリレートとメタクリレートの双方を含む総称を意味する。
[Hydroxyl-containing (meth) acrylic polymer A]
The hydroxyl group-containing (meth) acrylic polymer A is a (meth) acrylic polymer containing two or more hydroxyl groups in the molecule. The weight average molecular weight Mw is not particularly limited, but is preferably 3,000 to 200,000, more preferably 10,000 to 160,000, and still more preferably 30,000 to 120,000. preferable. When the weight average molecular weight Mw is 3,000 or less, the hardness of the reactive polymer E may be high, and the flexibility may not be sufficiently expressed. Further, when the weight average molecular weight Mw is 200,000 or more, the reactivity of the reactive polymer E at the time of ultraviolet curing is significantly reduced, and as a result, the light resistance may be reduced. As used herein, “(meth) acrylate” is a generic term that includes both acrylate and methacrylate.

水酸基含有(メタ)アクリル系ポリマーAはガラス転移点(Tg)が好ましくは0〜70℃、より好ましくは10〜60℃、さらに好ましくは20〜50℃である。水酸基含有(メタ)アクリル系ポリマーAのガラス転移点(Tg)が上記範囲内である場合には、十分な硬度と屈曲性が得られるが、ガラス転移点(Tg)が0℃以下の場合は、著しい硬度の低下を生じるおそれがある。またガラス転移点(Tg)が70℃以上の場合は逆に硬度が高くなり屈曲性が低下するおそれがある。本発明では、ガラス転移点(Tg)は示差走査熱量計を用いて測定した値である。   The hydroxyl group-containing (meth) acrylic polymer A preferably has a glass transition temperature (Tg) of 0 to 70 ° C., more preferably 10 to 60 ° C., and still more preferably 20 to 50 ° C. When the glass transition point (Tg) of the hydroxyl group-containing (meth) acrylic polymer A is within the above range, sufficient hardness and flexibility can be obtained, but when the glass transition point (Tg) is 0 ° C. or less There may be a significant reduction in hardness. On the other hand, when the glass transition point (Tg) is 70 ° C. or higher, the hardness may be increased to decrease the flexibility. In the present invention, the glass transition point (Tg) is a value measured using a differential scanning calorimeter.

[(メタ)アクリルウレタンオリゴマーB]
(メタ)アクリルウレタンオリゴマーBは、1つのイソシアネート基と1つ以上の(メタ)アクリレート基を持ったアクリルウレタンオリゴマーであり、ジイソシアネートと1つの水酸基を持った単官能(メタ)アクリレートまたは多官能(メタ)アクリレートもしくはこれらを反応させることにより得られるアクリルウレタンオリゴマーである。組成上、特に制限はない。分子量は3,000以下であることが好ましく、2,000以下であることがより好ましく、1,000以下であることがさらに好ましい。分子量が3,000以上の場合、反応性ポリマーEの紫外線硬化性が低下する傾向がある。
[(Meth) acrylic urethane oligomer B]
The (meth) acrylic urethane oligomer B is an acrylic urethane oligomer having one isocyanate group and one or more (meth) acrylate groups, and is a monofunctional (meth) acrylate or a polyfunctional (diisocyanate and one hydroxyl group) It is an acrylic urethane oligomer obtained by reacting meta) acrylate or these. There is no particular limitation on the composition. The molecular weight is preferably 3,000 or less, more preferably 2,000 or less, and still more preferably 1,000 or less. When the molecular weight is 3,000 or more, the ultraviolet curability of the reactive polymer E tends to decrease.

[(メタ)アクリルウレタンポリマーC]
(メタ)アクリルウレタンポリマーCは、1つのイソシアネート基と1つ以上の(メタ)アクリレート基を持ったアクリルウレタンポリマーであり、過剰のジイソシアネートとジオールを反応させた両末端イソシアネートのプレポリマーの片末端に1つの水酸基を持った単官能(メタ)アクリレートまたは多官能(メタ)アクリレートもしくはこれらを併用し反応させたアクリルウレタンポリマーである。組成上、特に制限はない。重量平均分子量Mwは1,000〜50,000が好ましく、3,000〜20,000がより好ましく、5,000〜10,000がさらに好ましい。重量平均分子量Mwが1,000以下の場合、反応性ポリマーEの柔軟性がまったく得られないか、もしくは十分でないことがある。重量平均分子量Mwが50,000以上の場合、反応性ポリマーEを得るために水酸基含有(メタ)アクリルポリマーAへの付加反応時の反応率が著しく低下し、ワニスの分離や白濁が生じ、貯蔵安定性が著しく低下する場合がある。
[(Meth) acrylic urethane polymer C]
The (meth) acrylic urethane polymer C is an acrylic urethane polymer having one isocyanate group and one or more (meth) acrylate groups, and one end of a prepolymer of both terminal isocyanate obtained by reacting an excess of diisocyanate and diol. Or a monofunctional (meth) acrylate or polyfunctional (meth) acrylate having one hydroxyl group, or an acrylic urethane polymer obtained by reacting these in combination. There is no particular limitation on the composition. 1,000-50,000 are preferable, as for a weight average molecular weight Mw, 3,000-20,000 are more preferable, and 5,000-10,000 are more preferable. When the weight average molecular weight Mw is 1,000 or less, the flexibility of the reactive polymer E may not be obtained at all or may not be sufficient. When the weight average molecular weight Mw is 50,000 or more, in order to obtain the reactive polymer E, the reaction rate at the time of addition reaction to the hydroxyl group-containing (meth) acrylic polymer A is significantly reduced, and the varnish is separated and clouded. Stability may be significantly reduced.

[反応性ポリマーE]
反応性ポリマーEは、水酸基含有(メタ)アクリルポリマーAに、(メタ)アクリルウレタンオリゴマーBの単独または(メタ)アクリルウレタンポリマーCの単独、もしくは(メタ)アクリルウレタンオリゴマーBと(メタ)アクリルウレタンポリマーCの両方を付加反応させた後、イソシアネート基含有アルコキシシランDを付加反応させて得られる。
[Reactive polymer E]
The reactive polymer E is a hydroxyl group-containing (meth) acrylic polymer A, a (meth) acrylic urethane oligomer B alone or a (meth) acrylic urethane polymer C alone, or (meth) acrylic urethane oligomer B and (meth) acrylic urethane It is obtained by subjecting both of the polymers C to an addition reaction, and then subjecting the isocyanate group-containing alkoxysilane D to an addition reaction.

反応性ポリマーEは、アルコキシシラン基および(メタ)アクリレート基を側鎖に有する。反応性ポリマーEがアルコキシシラン基を側鎖に有することにより、優れた密着性が得られることとなる。また、反応性ポリマーEが(メタ)アクリレート基を側鎖に有することにより、紫外線での硬化が可能となる。   The reactive polymer E has an alkoxysilane group and a (meth) acrylate group in its side chain. When the reactive polymer E has an alkoxysilane group in the side chain, excellent adhesion can be obtained. In addition, when the reactive polymer E has a (meth) acrylate group in its side chain, curing with ultraviolet light becomes possible.

反応性ポリマーは、式(1):

Figure 2017213217
〔式中、n1及びn2はそれぞれ1〜10の整数を表す。R、R、R及びRはそれぞれ独立に炭素原子数2〜6のアルキレン基を表す。Rはポリウレタン鎖を表す。R、R及びR11はそれぞれ独立にメチル基または水素原子を表す。R及びRはそれぞれ独立にメチル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基を表す。R10はメトキシ基、エトキシ基、プロポキシ基、ブトキシ基を表す。
、R、R及びRとしての炭素原子数2〜6のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンタンジイル基、ヘキサンジイル基が挙げられる。〕
で示される構造単位を持つ。The reactive polymer has the formula (1):
Figure 2017213217
[Wherein, n1 and n2 each represent an integer of 1 to 10]. R 1, represents an R 2, R 6 and R 7 independently represents an alkylene group having 2 to 6 carbon atoms. R 3 represents a polyurethane chain. R 4 , R 5 and R 11 each independently represent a methyl group or a hydrogen atom. R 8 and R 9 each independently represent a methyl group, a methoxy group, an ethoxy group, a propoxy group or a butoxy group. R 10 represents a methoxy group, an ethoxy group, a propoxy group or a butoxy group.
Examples of the alkylene group having 2 to 6 carbon atoms as R 1 , R 2 , R 6 and R 7 include ethylene group, propylene group, butylene group, pentanediyl group and hexanediyl group. ]
It has a structural unit indicated by.

としてのポリウレタン鎖は、ウレタンポリマーおよび/またはウレタンオリゴマーに由来する二価の基であってよい。ウレタンポリマーおよび/またはウレタンオリゴマーに由来する二価の基とは、(メタ)アクリルウレタンオリゴマーBおよび/または(メタ)アクリルウレタンポリマーCから水素原子を2個除いた基である。ウレタンポリマーは、重量平均分子量Mwが1,000〜50,000であるものが好ましい。ウレタンオリゴマーは、重量平均分子量Mwが3,000以下であるものが好ましい。The polyurethane chain as R 3 may be a divalent group derived from a urethane polymer and / or a urethane oligomer. The divalent group derived from the urethane polymer and / or urethane oligomer is a group obtained by removing two hydrogen atoms from the (meth) acrylic urethane oligomer B and / or the (meth) acrylic urethane polymer C. The urethane polymer preferably has a weight average molecular weight Mw of 1,000 to 50,000. The urethane oligomer preferably has a weight average molecular weight Mw of 3,000 or less.

反応性ポリマーEは、従来公知の方法により製造することができる。反応性ポリマーEは、水酸基含有(メタ)アクリルポリマーAの水酸基に、(メタ)アクリルウレタンオリゴマーBの単独、または(メタ)アクリルウレタンポリマーCの単独、もしくは(メタ)アクリルウレタンオリゴマーBと(メタ)アクリルウレタンポリマーCの両方を付加させた後、イソシアネート基含有アルコキシシランDを付加させて得ることができる。   The reactive polymer E can be produced by a conventionally known method. The reactive polymer E is a hydroxyl group-containing (meth) acrylic polymer A alone, (meth) acrylic urethane oligomer B alone, (meth) acrylic urethane polymer C alone, or (meth) acrylic urethane oligomer B ) After adding both of the acrylic urethane polymer C, it can be obtained by adding an isocyanate group-containing alkoxysilane D.

水酸基含有(メタ)アクリルポリマーAは、従来公知の溶液重合、塊状重合、懸濁重合等の方法で得ることができる。例えば、溶液重合の場合、窒素気流下、反応温度80〜150℃において有機溶剤中に(メタ)アクリレートモノマーと重合開始剤を滴下し重合反応させることにより得られる。(メタ)アクリレートの種類に特に制約はないが、次工程での(メタ)アクリルウレタンオリゴマーB、(メタ)アクリルウレタンポリマーC及びイソシアネート含有アルコキシシランDとの付加反応のため、少なくとも1種類以上の水酸基含有(メタ)アクリレート類を含む必要がある。   The hydroxyl group-containing (meth) acrylic polymer A can be obtained by conventionally known methods such as solution polymerization, bulk polymerization and suspension polymerization. For example, in the case of solution polymerization, it can be obtained by dropping a (meth) acrylate monomer and a polymerization initiator into an organic solvent at a reaction temperature of 80 to 150 ° C. in a nitrogen stream to cause a polymerization reaction. The type of (meth) acrylate is not particularly limited, but at least one or more types due to addition reaction with (meth) acrylic urethane oligomer B, (meth) acrylic urethane polymer C and isocyanate-containing alkoxysilane D in the next step. It is necessary to include hydroxyl group-containing (meth) acrylates.

水酸基含有(メタ)アクリルポリマーAは、例えば、水酸基含有(メタ)アクリレート類と、(メタ)アクリル酸アルキル若しくはシクロアルキルのエステル及び/又はその他のビニル系モノマーとを重合することにより得ることができる。   The hydroxyl group-containing (meth) acrylic polymer A can be obtained, for example, by polymerizing a hydroxyl group-containing (meth) acrylate with an ester of alkyl (meth) acrylate or cycloalkyl and / or another vinyl monomer. .

水酸基含有(メタ)アクリレートモノマーとしては、例えば2−ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の単官能(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能(メタ)アクリレートを挙げることができる。これらは単独もしくは2種以上を併用して使用してもよい。   As a hydroxyl group containing (meth) acrylate monomer, for example, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) And (iii) monofunctional (meth) acrylates such as acrylate and polypropylene glycol mono (meth) acrylate, and polyfunctional (meth) acrylates such as pentaerythritol tri (meth) acrylate. These may be used alone or in combination of two or more.

(メタ)アクリル酸アルキル若しくはシクロアルキルのエステル及び/又はその他のビニル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリーブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、(メタ)アクリル酸、ブトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、等が挙げられる。これらは単独もしくは併用して使用してもよい。本明細書では、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の双方を含む総称を意味する。   Examples of esters of alkyl (meth) acrylates or cycloalkyls and / or other vinyl-based monomers include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, Isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (Meth) acrylates, (meth) acrylic acid, butoxy diethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate. These may be used alone or in combination. As used herein, “(meth) acrylic acid” is a generic term that includes both acrylic acid and methacrylic acid.

重合開始剤としては、特に限定されないが、アゾビスイソブチロニトリル等のアゾ系重合開始剤、ベンゾイルパーオキシド等の過酸化物系重合開始剤等が挙げられ、これらを単独もしくは併用して使用してもよい。   Examples of the polymerization initiator include, but are not particularly limited to, azo polymerization initiators such as azobisisobutyronitrile, peroxide polymerization initiators such as benzoyl peroxide, and the like, which may be used alone or in combination. You may

有機溶剤としては、例えば、トルエン、キシレン等の芳香族類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸nブチル、酢酸プロピル等のエステル類等があり、これらは単独もしくは併用して使用してもよい。水酸基含有(メタ)アクリルポリマーAの溶解性が良好な点からケトン類が好ましい。   Examples of the organic solvent include aromatics such as toluene and xylene, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and esters such as ethyl acetate, n-butyl acetate and propyl acetate. These may be used alone or in combination. You may use it. Ketones are preferable from the viewpoint of good solubility of the hydroxyl group-containing (meth) acrylic polymer A.

(メタ)アクリルウレタンオリゴマーBは、窒素と酸素の混合気体の気流下、反応温度40℃〜120℃の範囲でジイソシアネートの片末端に水酸基含有(メタ)アクリレートモノマーの水酸基を反応させることにより得られる。これらは有機溶剤を含んでいてもよい。有機溶剤としては、上述の水酸基含有(メタ)アクリルポリマーAの製造に関する説明において記載した有機溶剤を用いることができ、これらは単独もしくは併用して使用してもよい。また、例えばジオクチルスズといった有機錫化合物等の重合触媒やメトキノンのような付加反応時の二重結合反応禁止剤を用いてもよい。   The (meth) acrylic urethane oligomer B is obtained by reacting the hydroxyl group of a hydroxyl group-containing (meth) acrylate monomer with one end of diisocyanate at a reaction temperature of 40 ° C. to 120 ° C. under a stream of mixed gas of nitrogen and oxygen . These may contain an organic solvent. As an organic solvent, the organic solvent described in the description regarding manufacture of the above-mentioned hydroxyl-containing (meth) acrylic polymer A can be used, and these may be used individually or in combination. Further, for example, a polymerization catalyst such as an organic tin compound such as dioctyltin, or a double bond reaction inhibitor during addition reaction such as methoquinone may be used.

(メタ)アクリルウレタンオリゴマーBの製造に用いるジイソシアネートとしては、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)、メチレンビスフェニルジイソシアネート(MDI)、キシレンジイソシアネート(XDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)等が挙げられ、これらは単独もしくは併用して使用してもよい。
水酸基含有(メタ)アクリレートモノマーとしては、例えば2−ヒドロキシエチルアクリレート等が挙げられる。
(メタ)アクリルウレタンオリゴマーBとしては、例えばイソホロンジイソシアネートの2−ヒドロキシエチルアクリレート付加物、ヘキサメチレンジイソシアネートの2−ヒドロキシエチルアクリレート付加物、トルエンジイソシアネートの2−ヒドロキシエチルアクリレート付加物、メチレンビスフェニルジイソシアネートの2−ヒドロキシエチルアクリレート付加物、キシレンジイソシアネートの2−ヒドロキシエチルアクリレート付加物、ジシクロヘキシルメタンジイソシアネートの2−ヒドロキシエチルアクリレート付加物等が挙げられ、これらは単独もしくは併用して使用してもよい。アクリルウレタンオリゴマーの重量平均分子量Mwは、3,000以下が好ましく、2,000以下であることがより好ましく、1,000以下であることがさらに好ましい。
As diisocyanates used for the production of (meth) acrylic urethane oligomer B, isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), methylenebisphenyl diisocyanate (MDI), xylene diisocyanate (XDI), dicyclohexylmethane And diisocyanates (HMDI) and the like, which may be used alone or in combination.
As a hydroxyl-containing (meth) acrylate monomer, 2-hydroxyethyl acrylate etc. are mentioned, for example.
As (meth) acrylic urethane oligomer B, for example, 2-hydroxyethyl acrylate adduct of isophorone diisocyanate, 2-hydroxyethyl acrylate adduct of hexamethylene diisocyanate, 2-hydroxyethyl acrylate adduct of toluene diisocyanate, methylene bisphenyl diisocyanate Examples thereof include 2-hydroxyethyl acrylate adduct, 2-hydroxyethyl acrylate adduct of xylene diisocyanate, 2-hydroxyethyl acrylate adduct of dicyclohexylmethane diisocyanate and the like, and these may be used alone or in combination. The weight-average molecular weight Mw of the acrylic urethane oligomer is preferably 3,000 or less, more preferably 2,000 or less, and still more preferably 1,000 or less.

(メタ)アクリルウレタンポリマーCは、窒素と酸素の混合気体の気流下、反応温度は40℃〜120℃の範囲で過剰のジイソシアネートとジオールとを反応させることで両末端イソシアネート基のウレタンポリマーを得た後、ウレタンポリマーの片末端のイソシアネートに水酸基含有(メタ)アクリレートモノマーの水酸基を反応させることにより得られる。またこれらは有機溶剤を含んでいてもよい。有機溶剤としては、上述の水酸基含有(メタ)アクリルポリマーAの製造に関する説明において記載した有機溶剤を用いることができる。また、例えばジオクチルスズといった有機錫化合物等の重合触媒やメトキノンのような付加反応時の二重結合反応禁止剤を用いてもよい。   The (meth) acrylic urethane polymer C is obtained by reacting an excess of diisocyanate and diol in the range of 40 ° C. to 120 ° C. in a stream of a mixed gas of nitrogen and oxygen to obtain a urethane polymer of both terminal isocyanate groups. Then, it is obtained by reacting the hydroxyl group of the hydroxyl group-containing (meth) acrylate monomer with the isocyanate at one end of the urethane polymer. They may also contain organic solvents. As an organic solvent, the organic solvent described in the description regarding manufacture of the above-mentioned hydroxyl-containing (meth) acrylic polymer A can be used. Further, for example, a polymerization catalyst such as an organic tin compound such as dioctyltin, or a double bond reaction inhibitor during addition reaction such as methoquinone may be used.

(メタ)アクリルウレタンポリマーCのジイソシアネートとしては、例えばイソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)、メチレンビスフェニルジイソシアネート(MDI)、キシレンジイソシアネート(XDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)等が挙げられる。これらは単独もしくは併用して使用してもよい。   Examples of diisocyanates of (meth) acrylic urethane polymer C include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), methylenebisphenyl diisocyanate (MDI), xylene diisocyanate (XDI), dicyclohexylmethane diisocyanate ( HMDI) etc. are mentioned. These may be used alone or in combination.

(メタ)アクリルウレタンポリマーCのジオールとしては、例えばポリエーテルジオール、ポリカーボネートジオール、ポリエステルジオール、1、6−ヘキサンジオール、1、5−ペンタンジオール、1,12−ドデカンジオール等が挙げられる。これらは単独もしくは併用して使用してもよい。   Examples of the diol of the (meth) acrylic urethane polymer C include polyether diol, polycarbonate diol, polyester diol, 1,6-hexanediol, 1,5-pentanediol, 1,12-dodecanediol and the like. These may be used alone or in combination.

水酸基含有(メタ)アクリレートモノマーとしては(メタ)アクリルウレタンオリゴマーBと同様のもの、例えば2−ヒドロキシエチルアクリレートを使用できる。   As the hydroxyl group-containing (meth) acrylate monomer, one similar to (meth) acrylic urethane oligomer B, for example, 2-hydroxyethyl acrylate can be used.

(メタ)アクリルウレタンポリマーCの重量平均分子量Mwは、1,000〜50,000が好ましく、3,000〜20,000がより好ましく、5,000〜10,000がさらに好ましい。   1,000-50,000 are preferable, as for the weight average molecular weight Mw of the (meth) acryl urethane polymer C, 3,000-20,000 are more preferable, and 5,000-10,000 are more preferable.

反応性ポリマーEは、窒素と酸素の混合気体の気流下、50℃〜120℃の範囲の反応温度にて、水酸基含有(メタ)アクリルポリマーAの水酸基に、(メタ)アクリルウレタンオリゴマーBの単独または(メタ)アクリルウレタンポリマーCの単独、もしくは(メタ)アクリルウレタンオリゴマーBと(メタ)アクリルウレタンオリゴマーポリマーの両方の片末端イソシアネート基を反応させた後、イソシアネート含有アルコキシシランDのイソシアネート基を水酸基含有(メタ)アクリルポリマーA中に残存する水酸基と反応させることにより得ることができる。上記反応においてメトキノンのような付加反応時の二重結合反応禁止剤を用いてもよい   The reactive polymer E is a monomer of (meth) acrylic urethane oligomer B alone at the hydroxyl group of the hydroxyl group-containing (meth) acrylic polymer A at a reaction temperature in the range of 50 ° C. to 120 ° C. under a stream of mixed gas of nitrogen and oxygen Alternatively, after reacting the single terminal isocyanate group of (meth) acrylic urethane polymer C or both (meth) acrylic urethane oligomer B and (meth) acrylic urethane oligomer polymer, the isocyanate group of isocyanate-containing alkoxysilane D is hydroxylated It can be obtained by reacting with the hydroxyl group remaining in the contained (meth) acrylic polymer A. In the above reaction, a double bond inhibitor during addition reaction such as methoquinone may be used

イソシアネート基含有アルコキシシランDのアルコキシシラン基としては、メトキシシラン基、エトキシシラン基、プロポキシシラン基、ブトキシシラン基等が挙げられる。これらの中でも、光硬化性樹脂組成物が密着性及び貯蔵安定性に優れることとなり、及び適度な反応性が得られることから、エトキシシラン基が好ましい。イソシアネート基含有アルコキシシランDとしては、例えば、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−イソシアネートプロピルメチルジメトキシシラン、3−イソシアネートプロピルメチルジエトキシシラン等が挙げられ、これらの化合物は単独又は組合せて使用することができる。   As an alkoxysilane group of isocyanate group containing alkoxysilane D, a methoxysilane group, an ethoxysilane group, a propoxysilane group, butoxysilane group etc. are mentioned. Among these, an ethoxysilane group is preferable because the photocurable resin composition is excellent in adhesion and storage stability, and appropriate reactivity is obtained. Examples of the isocyanate group-containing alkoxysilane D include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, 3-isocyanatepropylmethyldiethoxysilane and the like. The compounds can be used alone or in combination.

反応性ポリマーE中のアルコキシシラン基の含有量は、反応性ポリマーを基準に好ましくは0質量%を超え40質量%未満、より好ましくは1質量%〜35質量%、さらに好ましくは5質量%〜30質量%含有する。反応性ポリマー中のアルコキシシラン基の含有量が上記範囲内であると、反応性ポリマーを含む光硬化性組成物が十分な密着性を有することとなる。   The content of the alkoxysilane group in the reactive polymer E is preferably more than 0% by mass and less than 40% by mass, more preferably 1% by mass to 35% by mass, still more preferably 5% by mass based on the reactive polymer It contains 30% by mass. When the content of the alkoxysilane group in the reactive polymer is in the above range, the photocurable composition containing the reactive polymer has sufficient adhesion.

反応性ポリマーEの二重結合当量は、特に限定されないが、好ましくは800〜125,000、より好ましくは1,000〜100,000、さらに好ましくは1,500〜70,000である。反応性ポリマーの二重結合当量が上記範囲内である場合には、柔軟性と耐光性が十分なものとなる。二重結合当量が800以下の場合、硬化塗膜の硬度が高くなりすぎ、十分な柔軟性が得られず、二重結合当量が125,000以上では紫外線硬化性が低下し、結果として耐光性が低下する懸念が生じることとなる。   The double bond equivalent of the reactive polymer E is not particularly limited, but is preferably 800 to 125,000, more preferably 1,000 to 100,000, and still more preferably 1,500 to 70,000. When the double bond equivalent of the reactive polymer is within the above range, the flexibility and the light resistance will be sufficient. When the double bond equivalent is 800 or less, the hardness of the cured coating is too high, sufficient flexibility can not be obtained, and when the double bond equivalent is 125,000 or more, the ultraviolet curability decreases, and as a result, light resistance There is a concern that

反応性ポリマーEの重量平均分子量Mwは、特に限定されないが、10,000〜250,000であることが好ましく、15,000〜200,000であることがより好ましく、20,000〜150,000であることがさらに好ましい。反応性ポリマーの重量平均分子量が上記範囲内である場合には、十分な紫外線硬化性、柔軟性、密着性が得られる。重量平均分子量が10,000以下の場合、柔軟性が低下し250,000以上の場合は紫外線硬化性や貯蔵安定性が低下することとなる。   The weight average molecular weight Mw of the reactive polymer E is not particularly limited, but is preferably 10,000 to 250,000, more preferably 15,000 to 200,000, and 20,000 to 150,000. It is further preferred that When the weight average molecular weight of the reactive polymer is within the above range, sufficient ultraviolet curability, flexibility, and adhesiveness can be obtained. When the weight average molecular weight is 10,000 or less, the flexibility is reduced, and when it is 250,000 or more, the ultraviolet curability and storage stability are reduced.

一実施形態に係る反応性ポリマーは、アルコキシシラン基と紫外線硬化性の(メタ)アクリレート基を側鎖に有することから、光硬化性樹脂組成物に好適に用いることができる。   The reactive polymer according to one embodiment can be suitably used for a photocurable resin composition because it has an alkoxysilane group and an ultraviolet curable (meth) acrylate group in a side chain.

[光硬化性樹脂組成物]
光硬化性樹脂組成物は、二官能以上の多官能(メタ)アクリレートモノマーと、反応性ポリマーと、光重合開始剤と、紫外線吸収剤とを含有する。
[Photo-curable resin composition]
The photocurable resin composition contains a bifunctional or higher polyfunctional (meth) acrylate monomer, a reactive polymer, a photopolymerization initiator, and a UV absorber.

多官能(メタ)アクリレートモノマーは、2以上の(メタ)アクリレート基を有する化合物である。多官能(メタ)アクリレートモノマーとしては、2つの(メタ)アクリレート基を有する二官能(メタ)アクリレート、3つの(メタ)アクリレート基を有する三官能(メタ)アクリレート、4つの(メタ)アクリレート基を有する四官能(メタ)アクリレートおよびこれらの2種以上の混合物、例えば三官能(メタ)アクリレートと四官能(メタ)アクリレートの混合物等であってよい。例えば光硬化性樹脂組成物中の多官能(メタ)アクリレートモノマーまたはその混合物の含有量は、多官能(メタ)アクリレートモノマー及び反応性ポリマーの合計100質量部に対して、40〜95質量部、および50〜90質量部等であってよい。   The polyfunctional (meth) acrylate monomer is a compound having two or more (meth) acrylate groups. As a polyfunctional (meth) acrylate monomer, bifunctional (meth) acrylate having two (meth) acrylate groups, trifunctional (meth) acrylate having three (meth) acrylate groups, four (meth) acrylate groups And tetrafunctional (meth) acrylates and mixtures of two or more of these, such as mixtures of trifunctional (meth) acrylates and tetrafunctional (meth) acrylates. For example, the content of the polyfunctional (meth) acrylate monomer or the mixture thereof in the photocurable resin composition is 40 to 95 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer And 50 to 90 parts by mass.

二官能以上の多官能(メタ)アクリレートモノマーとしては、例えば1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、3−メチルペンタンジオールジ(メタ)アクリレート、ジエチレングリコールビスβ−(メタ)アクリロイルオキシプロピネート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(2−ヒドロキシエチル)イソシアネートジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、2,3−ビス(メタ)アクリロイルオキシエチルオキシメチル[2.2.1]ヘプタン、ポリ1,2−ブタジエンジ(メタ)アクリレート、1,2−ビス(メタ)アクリロイルオキシメチルヘキサン、ノナエチレングリコールジ(メタ)アクリレート、テトラデカンエチレングリコールジ(メタ)アクリレート、10−デカンジオール(メタ)アクリレート、3,8−ビス(メタ)アクリロイルオキシメチルトリシクロ[5.2.10]デカン、水素添加ビスフェノールAジ(メタ)アクリレート、2,2−ビス(4−(メタ)アクリロイルオキシジエトキシフェニル)プロパン、1,4−ビス((メタ)アクリロイルオキシメチル)シクロヘキサン、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、及びエポキシ変性ビスフェノールAジ(メタ)アクリレートが挙げられる。これらは、1種単独で、または2種以上を組み合わせて用いることができる。   As a polyfunctional (meth) acrylate monomer having two or more functions, for example, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol (meth) acrylate, ethylene glycol di (Meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, 3-methylpentanediol di (meth) acrylate, diethylene glycol bis β- (meth) Acryloyloxypropionate, trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hex (Meth) acrylate, tri (2-hydroxyethyl) isocyanate di (meth) acrylate, pentaerythritol tetra (meth) acrylate, 2,3-bis (meth) acryloyloxyethyloxymethyl [2.2.1] heptane, poly 1,2-Butadiene di (meth) acrylate, 1,2-bis (meth) acryloyloxymethylhexane, nona ethylene glycol di (meth) acrylate, tetradecane ethylene glycol di (meth) acrylate, 10-decanediol (meth) acrylate 3,8-bis (meth) acryloyloxymethyltricyclo [5.2.10] decane, hydrogenated bisphenol A di (meth) acrylate, 2,2-bis (4- (meth) acryloyloxydiethoxyphenyl) Propane, 1,4- Bis ((meth) acryloyloxymethyl) cyclohexane, hydroxypivalate neopentyl glycol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, and epoxy-modified bisphenol A di (meth) acrylate. These can be used singly or in combination of two or more.

反応性ポリマーとしては、上述の本発明の反応性ポリマーを用いる。例えば光硬化性樹脂組成物中の反応性ポリマーの含有量は、多官能(メタ)アクリレートモノマー及び反応性ポリマーの合計100質量部に対して、5〜60質量部、または10〜50質量部であってもよい。反応性ポリマーの含有量が上記範囲内である場合には、積層体の表面の硬度と密着性が十分なものとなる傾向がある。反応性ポリマー中のアルコキシシラン基の含有量は、上述の本発明の反応性ポリマー中のアルコキシシラン基の含有量と同様であってよい。   As the reactive polymer, the above-mentioned reactive polymer of the present invention is used. For example, the content of the reactive polymer in the photocurable resin composition is 5 to 60 parts by mass, or 10 to 50 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer It may be. When the content of the reactive polymer is in the above range, the hardness and adhesion of the surface of the laminate tend to be sufficient. The content of alkoxysilane groups in the reactive polymer may be similar to the content of alkoxysilane groups in the reactive polymer of the present invention described above.

多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計の含有量は、光硬化性樹脂組成物の全質量に対して、好ましくは4.5質量%以上、より好ましくは9質量%以上、さらに好ましくは18質量%以上、特に好ましくは36質量%以上であり、好ましくは55質量%以下、より好ましくは50質量%以下、さらに好ましくは45質量%以下である。   The total content of the polyfunctional (meth) acrylate monomer and the reactive polymer is preferably 4.5% by mass or more, more preferably 9% by mass or more, further preferably, based on the total mass of the photocurable resin composition. Is preferably 18% by mass or more, particularly preferably 36% by mass or more, preferably 55% by mass or less, more preferably 50% by mass or less, and still more preferably 45% by mass or less.

光重合開始剤としては、紫外線吸収剤の存在下において光照射により光重合開始能を発現できる光重合開始剤であってよい。そのような光重合開始剤としては、例えばアセトフェノン、アセトフェノンベンジルケタール、アントラキノン、1−(4−イソプロピルフェニル−2−ヒドロキシ−2−メチルプロパン−1−オン、カルバゾール、キサントン、4−クロロベンゾフェノン、4,4’−ジアミノベンゾフェノン、1,1−ジメトキシデオキシベンゾイン、3,3’−ジメチル−4−メトキシベンゾフェノン、チオキサントン、2,2−ジメトキシ−2−フェニルアセトフェノン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、トリフェニルアミン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、フルオレノン、フルオレン、ベンズアルデヒド、ベンゾインエチルエーテル、ベンゾイソプロピルエーテル、ベンゾフェノン、ミヒラーケトン、3−メチルアセトフェノン、3,3’,4,4’−テトラ−tert−ブチルパーオキシカルボニルベンゾフェノン(BTTB)、2−(ジメチルアミノ)−1−[4−(モルフォリニル)フェニル]−2−(フェニルメチル)−1−ブタノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、およびベンジル等が挙げられる。   The photopolymerization initiator may be a photopolymerization initiator capable of exhibiting a photopolymerization initiation ability by light irradiation in the presence of an ultraviolet absorber. As such a photopolymerization initiator, for example, acetophenone, acetophenone benzyl ketal, anthraquinone, 1- (4-isopropylphenyl-2-hydroxy-2-methylpropan-1-one, carbazole, xanthone, 4-chlorobenzophenone, 4 4,4'-diaminobenzophenone, 1,1-dimethoxydeoxybenzoin, 3,3'-dimethyl-4-methoxybenzophenone, thioxanthone, 2,2-dimethoxy-2-phenylacetophenone, 1- (4-dodecylphenyl) -2 -Hydroxy-2-methylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, triphenylamine, 2,4,6-trimethyl benzoyl diphenyl Phosphine oxide, bis ( , 4,6-trimethylbenzoyl) phenyl phosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, fluorenone, fluorene, benzaldehyde, benzoin ethyl ether, benzoisopropyl ether, Benzophenone, Michler's ketone, 3-methylacetophenone, 3,3 ', 4,4'-tetra-tert-butylperoxycarbonylbenzophenone (BTTB), 2- (dimethylamino) -1- [4- (morpholinyl) phenyl]- 2- (phenylmethyl) -1-butanone, 4-benzoyl-4'-methyl diphenyl sulfide, and benzyl.

光重合開始剤は、1種のみまたは2種以上を組み合わせて用いることができる。例えば10μm以上のように厚い硬化膜を形成する場合、光重合開始剤を2種以上用いると硬化性が向上する傾向にある。硬化性が向上すると、光硬化性樹脂組成物をより容易にかつ十分に硬化することができる。   The photopolymerization initiator can be used alone or in combination of two or more. For example, in the case of forming a thick cured film having a thickness of 10 μm or more, the use of two or more photopolymerization initiators tends to improve the curability. When the curability is improved, the photocurable resin composition can be cured more easily and sufficiently.

光重合開始剤の含有量は、例えば多官能(メタ)アクリレートモノマー及び反応性ポリマーの合計100質量部に対して1〜15質量部、または3〜10質量部であってよい。光重合開始剤の含有量が多いと、光重合開始に使用されなかった光重合開始剤が残存し、硬化膜の可視光線透過率が低下するなどの弊害が生ずるおそれがある。一方、光重合開始剤の含有量が少ないと、光重合開始能が十分に発現されず、紫外線硬化型樹脂の十分な硬化が得られ難くなる傾向がある。   The content of the photopolymerization initiator may be, for example, 1 to 15 parts by mass, or 3 to 10 parts by mass with respect to a total of 100 parts by mass of the polyfunctional (meth) acrylate monomer and the reactive polymer. When the content of the photopolymerization initiator is large, the photopolymerization initiator which has not been used for initiating the photopolymerization may remain, which may cause an adverse effect such as a decrease in the visible light transmittance of the cured film. On the other hand, when the content of the photopolymerization initiator is small, the photopolymerization initiation ability is not sufficiently expressed, and it tends to be difficult to obtain sufficient curing of the ultraviolet curable resin.

紫外線吸収剤としては、公知のものを用いてよく、紫外線吸収性が高く、電子画像表示装置で用いられる紫外線吸収能(紫外線カット能)を得るために、ベンゾトリアゾール系またはヒドロキシフェニルトリアジン系の紫外線吸収剤を用いてもよい。紫外線の吸収幅を広くするために、最大吸収波長の異なる紫外線吸収剤を2種以上併用してもよい。   As the UV absorber, known ones may be used, and in order to obtain UV absorbing ability (UV blocking ability) to be used in an electronic image display device, which has high UV absorbing ability, benzotriazole-based or hydroxyphenyltriazine-based UV-based UV absorbing agent. An absorbent may be used. In order to widen the absorption width of ultraviolet light, two or more types of ultraviolet light absorbers having different maximum absorption wavelengths may be used in combination.

ベンゾトリアゾール系紫外線吸収剤としては、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシメチル)フェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシプロピル)フェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシヘキシル)フェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−3’−tert−ブチル−5’−(メタクリロイルオキシエチル)フェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−tert−ブチル−3’−(メタクリロイルオキシエチル)フェニル]−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル]−5−クロロ−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル]−5−メトキシ−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル]−5−シアノ−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル]−5−tert−ブチル−2H−ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル]−5−ニトロ−2H−ベンゾトリアゾール、2−(2−ヒドロキシ−5−tert−ブチルフェニル)−2H−ベンゾトリアゾール、ベンゼンプロパン酸−3−(2H−ベンゾトリアゾール−2−イル)−5−(1,1−ジメチルエチル)−4−ヒドロキシ−,C7〜9−ブランチ直鎖アルキルエステル、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール、および2−(2H−ベンゾトリアゾール−2−イル)−6−(1−メチル−1−フェニルエチル)−4−(1,1,3,3−テトラメチルブチル)フェノール等が挙げられる。   As a benzotriazole-based ultraviolet absorber, 2- [2'-hydroxy-5 '-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxyethyl) phenyl ] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyhexyl) phenyl]- 2H-benzotriazole, 2- [2'-hydroxy-3'-tert-butyl-5 '-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-tert-butyl -3 '-(Methacryloyloxyethyl) phenyl] -2H-ben Triazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxyethyl) phenyl] -5 -Methoxy-2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-cyano-2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxy) Ethyl) phenyl] -5-tert-butyl-2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-nitro-2H-benzotriazole, 2- (2-hydroxy) -5-tert-Butylphenyl) -2H-benzotriazole, benzene Lopanoic acid 3- (2H-benzotriazol-2-yl) -5- (1,1-dimethylethyl) -4-hydroxy-, C7-9 branched linear alkyl ester, 2- (2H-benzotriazole) 2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol and 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4 -(1,1,3,3- tetramethyl butyl) phenol etc. are mentioned.

ヒドロキシフェニルトリアジン系紫外線吸収剤としては、2−[4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2−[4−(2−ヒドロキシ−3−トリデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4ジメチルフェニル)−1,3,5−トリアジン、2−[4−[(2−ヒドロキシ−3−(2’−エチル)ヘキシル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,4−ビス(2−ヒドロキシ−4−ブチルオキシフェニル)−6−(2,4−ビス−ブチルオキシフェニル)−1,3,5−トリアジン、2−(2−ヒドロキシ−4−[1−オクチルオキシカルボニルエトキシ]フェニル)−4,6−ビス(4−フェニルフェニル)−1,3,5−トリアジン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−アセトキシエトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、および2,2’−ジヒドロキシ−4,4’−ジメトキシ−5,5’−ジスルホベンゾフェノン・2ナトリウム塩等が挙げられる。   As a hydroxyphenyl triazine type ultraviolet absorber, 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] 4,6-bis (2,4-dimethylphenyl) -1 , 3,5-triazine, 2- [4- (2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4 dimethylphenyl) -1,3,6 5-triazine, 2- [4-[(2-hydroxy-3- (2'-ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, 3,5-Triazine, 2,4-bis (2-hydroxy-4-butyloxyphenyl) -6- (2,4-bis-butyloxyphenyl) -1,3,5-triazine, 2- (2- (2-hydroxy) Hydroki -4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2 ,, 2'-Dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-acetoxyethoxybenzophenone, 2-hydroxy-4-methoxybenzophenone 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, and 2,2'-dihydroxy-4, 4'-Dimethoxy-5,5'-disulfobenzophenone Disodium salt.

紫外線吸収剤の含有量は、求める紫外線透過率および紫外線吸収剤の吸光度に応じて適宜調節することができるが、例えば多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して1〜10質量部、または3〜8質量部であってよい。紫外線吸収剤の含有量が多いと、光硬化性樹脂組成物の紫外線による硬化性が低下する傾向があると共に、得られる硬化膜の可視光線透過率が低下するおそれがある。一方、紫外線吸収剤の含有量が少ないと、硬化膜が十分な紫外線吸収性を発揮することができないおそれがある。   The content of the ultraviolet light absorber can be appropriately adjusted according to the desired ultraviolet light transmittance and the absorbance of the ultraviolet light absorber, but for example, it is 1 per 100 parts by weight in total of the polyfunctional (meth) acrylate monomer and the reactive polymer. It may be 10 parts by mass, or 3 to 8 parts by mass. When the content of the ultraviolet light absorber is large, the curability of the photocurable resin composition by ultraviolet light tends to decrease, and the visible light transmittance of the obtained cured film may decrease. On the other hand, when the content of the ultraviolet absorber is small, there is a possibility that the cured film can not exhibit sufficient ultraviolet absorptivity.

光硬化性樹脂組成物は、無機化合物を更に含有することができる。無機化合物としては、無機粒子、および柱状、板状および層状無機化合物として公知のものが使用できるが、溶媒に分散できるように有機化処理が施してあるものが好ましい。   The photocurable resin composition can further contain an inorganic compound. As the inorganic compound, inorganic particles and those known as columnar, plate-like and layered inorganic compounds can be used, but those which have been subjected to an organic treatment so as to be able to be dispersed in a solvent are preferable.

無機化合物としては、ガラスフリット、シリカ粒子、アルミナ粒子、水酸化アルミニウム粒子、水酸化マグネシウム粒子、酸化スズ粒子および粘土鉱物からなる群より選択される少なくとも1種を用いることができる。   As the inorganic compound, at least one selected from the group consisting of glass frit, silica particles, alumina particles, aluminum hydroxide particles, magnesium hydroxide particles, tin oxide particles, and clay minerals can be used.

粘土鉱物は、極薄の単位結晶層が重なって1つの層状粒子を形成している無機化合物であってよい。特に水への膨潤性を有する粘土化合物を好ましく用いることができる。より具体的には、極薄の単位結晶層間に水を配位し、吸収・膨潤する性質を有する粘土化合物であり、一般には、Si4+がO2−に対して配位して四面体構造を構成する層と、Al3+、Mg2+、Fe2+、およびFe3+などが、O2−およびOHに対して配位して八面体構造を構成する層とが、1対1あるいは2対1で結合し、積み重なって層状構造を形成する化合物である。この粘土化合物は、天然のものであっても、合成されたものであってもよい。The clay mineral may be an inorganic compound in which ultra-thin unit crystal layers overlap to form one layered particle. In particular, clay compounds having a water-swelling property can be preferably used. More specifically, it is a clay compound having the property of coordinating water between very thin unit crystal layers, and absorbing and swelling, and generally, a tetrahedral structure in which Si 4+ coordinates to O 2- And the layer which composes the octahedral structure by coordinating to O 2 and OH such as Al 3+ , Mg 2+ , Fe 2+ , Fe 3+, etc. 1 is a compound that combines and stacks to form a layered structure. This clay compound may be natural or synthetic.

粘土鉱物の代表的な化合物としては、フィロケイ酸塩鉱物などの含水ケイ酸塩、例えば、ハロイサイト、カオリナイト、エンデライト、ディッカイト、およびナクライトなどのカオリナイト族粘土鉱物、アンチゴライトおよびクリソタイルなどのアンチゴライト族粘土鉱物、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、およびスチブンサイトなどのスメクタイト族粘土鉱物、バーミキュライトなどのバーミキュライト族粘土鉱物、白雲母および金雲母などの雲母、マーガライト、テトラシリリックマイカ、およびテニオライトなど雲母またはマイカ族粘土鉱物などが挙げられ、これらの粘土鉱物は、単独で、または2種以上を組み合わせて用いることができる。これらの粘土鉱物の中でも、モンモリロナイトなどのスメクタイト族粘土鉱物が特に好ましい。   Representative compounds of clay minerals include hydrous silicates such as phyllosilicate minerals such as kaolinite clay minerals such as halloysite, kaolinite, enderite, dickite and nacrite, antigorite and chrysotile, etc. Antigolite clay minerals, montmorillonite, beidellite, nontronite, saponite, hectorite, hectorite, soconite, and smectite clay minerals such as stevensite, vermiculite clay minerals such as vermiculite clay, mica such as muscovite and phlogopite, margarite And mica clays, such as teniolite, etc. These clay minerals may be used alone or in combination of two or more. Among these clay minerals, smectite clay minerals such as montmorillonite are particularly preferable.

アルミナ粒子としては、ギブサイト、バイヤライト、ベーマイト、擬ベーマイト、ダイアスポア、無定形などの水酸化アルミニウム(アルミナ水和物)、およびγ、η、δ、ρ、κ、θ、χ、α形のアルミナ結晶等が挙げられる。有機溶媒中で、金属アルミニウムまたは加水分解性アルミニウム化合物を、特定量の水により加水分解してアルミナスラリーとし、続いて特定量の有機スルホン酸の存在下に解膠し、所定のアルミナ濃度になるまで濃縮したものであってもよい。これらのアルミナ粒子は、単独で、または2種以上を組み合わせて用いることができる。   Examples of alumina particles include gibbsite, bayerite, boehmite, pseudoboehmite, diaspore, aluminum hydroxide such as amorphous (alumina hydrate), and alumina of γ, 、, 、, 、, 、, 、, χ, χ, α form. A crystal etc. are mentioned. The metal aluminum or hydrolyzable aluminum compound is hydrolyzed with a specified amount of water in an organic solvent to form an alumina slurry, which is subsequently peptized in the presence of a specified amount of organic sulfonic acid to reach a predetermined alumina concentration It may be concentrated to These alumina particles can be used alone or in combination of two or more.

無機化合物は、二官能以上の多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して、好ましくは5〜50質量部の量で用いることができる。無機化合物の含有量が上記範囲内であれば、硬化性組成物の紫外線硬化性が良好であり、得られる硬化膜の可視光線透過率の低下が起こり難くなる傾向がある。   The inorganic compound can be used preferably in an amount of 5 to 50 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer having two or more functions and the reactive polymer. If the content of the inorganic compound is within the above range, the ultraviolet curability of the curable composition is good, and the reduction of the visible light transmittance of the resulting cured film tends to be difficult to occur.

無機化合物の粒子径は、0.001〜0.1μmであるのが好ましく、0.005〜0.05μmであるのがより好ましい。粒子径が上記範囲内である場合には、工業的な生産が容易であり、得られる硬化膜の透明性の低下が起こり難くなる傾向がある。無機化合物の粒子径は、JIS 8828に従って動的光散乱法により測定した。   The particle diameter of the inorganic compound is preferably 0.001 to 0.1 μm, and more preferably 0.005 to 0.05 μm. When the particle diameter is in the above range, industrial production is easy, and the transparency of the resulting cured film tends to be less likely to decrease. The particle diameter of the inorganic compound was measured by a dynamic light scattering method according to JIS 8828.

光硬化性樹脂組成物は、帯電防止剤を更に含有してもよい。かかる帯電防止剤は、金属酸化物および/または金属塩であってもよい。金属酸化物としては、例えばITO(インジウム−錫複合酸化物)、ATO(アンチモン−錫複合酸化物)、酸化錫、五酸化アンチモン、酸化亜鉛、酸化ジルコニウム、酸化チタン、及び酸化アルミニウム等が挙げられる。金属塩としては、アンチモン酸亜鉛等が挙げられる。   The photocurable resin composition may further contain an antistatic agent. Such antistatic agents may be metal oxides and / or metal salts. Examples of metal oxides include ITO (indium-tin complex oxide), ATO (antimony-tin complex oxide), tin oxide, antimony pentoxide, zinc oxide, zirconium oxide, titanium oxide, and aluminum oxide. . Examples of the metal salt include zinc antimonate and the like.

帯電防止剤の含有量は、求める帯電防止性能に応じて適宜調節することができるが、例えば多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して1〜100質量部である。帯電防止剤の含有量が上記範囲内であると、光硬化性樹脂組成物の紫外線硬化性が十分に得られ、得られる硬化膜の可視光線透過率の低下が起こり難くなる傾向がある。また、帯電防止剤の含有量が多いと、得られる硬化膜の耐擦傷性が低下したり、成膜性が低下したりする傾向がある。帯電防止剤の含有量が少ないと、十分な帯電防止効果が得られ難い傾向がある。   The content of the antistatic agent can be appropriately adjusted in accordance with the desired antistatic performance, but is, for example, 1 to 100 parts by mass with respect to a total of 100 parts by mass of the polyfunctional (meth) acrylate monomer and the reactive polymer. . When the content of the antistatic agent is in the above range, the ultraviolet curability of the photocurable resin composition is sufficiently obtained, and it tends to be difficult to reduce the visible light transmittance of the obtained cured film. In addition, when the content of the antistatic agent is large, the abrasion resistance of the resulting cured film tends to decrease, or the film forming property tends to decrease. When the content of the antistatic agent is small, it tends to be difficult to obtain a sufficient antistatic effect.

帯電防止剤の粒子径は0.001〜0.1μmであってよい。粒子径が極めて小さい帯電防止剤は、工業的な生産が難しい。粒子径が過度に大きい帯電防止剤は、得られる硬化膜の透明性を低下させる傾向がある。帯電防止剤の粒子径は、JIS 8828に従って動的光散乱法により測定した。   The particle size of the antistatic agent may be 0.001 to 0.1 μm. Antistatic agents with extremely small particle sizes are difficult to industrially produce. An antistatic agent having an excessively large particle size tends to reduce the transparency of the resulting cured film. The particle size of the antistatic agent was measured by the dynamic light scattering method according to JIS 8828.

光硬化性樹脂組成物は、必要に応じて、安定化剤、酸化防止剤、着色剤、レベリング剤等の添加剤を含んでよい。レベリング剤を含む場合には、硬化膜の平滑性および耐擦傷性を高めることができる。   The photocurable resin composition may contain, if necessary, additives such as a stabilizer, an antioxidant, a colorant, and a leveling agent. When a leveling agent is included, the smoothness and scratch resistance of the cured film can be enhanced.

光硬化性樹脂組成物は、後述するように基材フィルムに塗布するために、さらに溶剤を含有していてもよい。かかる溶剤としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロピルアルコール)、1−ブタノール、2−ブタノール(sec−ブチルアルコール)、2−メチル−1−プロパノール(イソブチルアルコール)、2−メチル−2−プロパノール(tert−ブチルアルコール)等のアルコール溶剤;2−エトキシエタノール、2−ブトキシエタノール、3−メトキシ−1−プロパノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコキシアルコール溶剤;ジアセトンアルコール等のケトール溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;酢酸エチル、酢酸ブチル等のエステル溶剤等が挙げられる。   The photocurable resin composition may further contain a solvent in order to apply to a base film as described later. As such solvent, for example, methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol, 2-butanol (sec-butyl alcohol), 2-methyl-1-propanol (isobutyl alcohol), 2 Alcohol solvents such as -methyl-2-propanol (tert-butyl alcohol); 2-ethoxyethanol, 2-butoxyethanol, 3-methoxy-1-propanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol Alkoxy alcohol solvents such as ketol solvents such as diacetone alcohol; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as ethyl acetate and butyl acetate And the like.

溶剤の含有量は、多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して、例えば20〜10000質量部である。   The content of the solvent is, for example, 20 to 10000 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate monomer and the reactive polymer.

光硬化性樹脂組成物は、多官能(メタ)アクリレートモノマーと、反応性ポリマーと、光重合開始剤と、紫外線吸収剤と、必要に応じて溶剤、無機化合物、帯電防止剤、およびその他の添加剤とを混合して得られる。これらの混合順等は特に限定されない。   The photocurable resin composition contains a polyfunctional (meth) acrylate monomer, a reactive polymer, a photopolymerization initiator, an ultraviolet light absorber, and, if necessary, a solvent, an inorganic compound, an antistatic agent, and other additives. It is obtained by mixing with an agent. There is no particular limitation on the order of mixing, etc.

[積層体]
図1は、積層体の一実施形態を示す模式的断面図である。図1に示す積層体30は、基材フィルム10と、基材フィルム10の一方の主面10a上に積層された硬化膜20とを有する。硬化膜20は、上述の実施形態に係る光硬化性樹脂組成物から形成される。すなわち、硬化膜は、光硬化性樹脂組成物の硬化物である。一実施形態に係る積層体は、密着性に優れる。
[Laminate]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminate. A laminate 30 shown in FIG. 1 has a base film 10 and a cured film 20 laminated on one main surface 10 a of the base film 10. The cured film 20 is formed from the photocurable resin composition which concerns on the above-mentioned embodiment. That is, the cured film is a cured product of the photocurable resin composition. The laminate according to one embodiment is excellent in adhesion.

一実施形態に係る積層体は、基材フィルムと、基材フィルムの少なくとも片面に、上述の本発明の光硬化性樹脂組成物の硬化物である硬化膜とを有するものであってよい。   The laminate according to one embodiment may have a substrate film and a cured film which is a cured product of the above-described photocurable resin composition of the present invention on at least one surface of the substrate film.

基材フィルムは、透明性を有していてもよい。基材フィルムは、例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、またはポリイミド(PI)でできたフィルムであってもよい。硬化膜に関する効果が特に顕著に発揮できる点において、基材フィルムはポリイミド(PI)でできたフィルムであってもよい。また、基材フィルムは、無機材料を含んでもよい。基材フィルムが無機材料を含む場合、その含有量は、基材フィルムの質量を基準に、0質量%を超え60重量%以下の範囲、例えば5〜55重量%の範囲、10〜50重量%の範囲であってよい。
無機材料としては、上述の光硬化性組成物に含まれ得る無機化合物について例示したものを用いることができる。
The substrate film may have transparency. The base film may be, for example, a film made of polyester such as polyethylene terephthalate (PET), polycarbonate (PC), polyarylate (PAR), polyether sulfone (PES), or polyimide (PI). The base film may be a film made of polyimide (PI) in that the effect on the cured film can be particularly remarkably exhibited. The base film may also contain an inorganic material. When the substrate film contains an inorganic material, the content thereof is in the range of more than 0% by weight and 60% by weight or less based on the weight of the substrate film, for example, in the range of 5 to 55% by weight, 10 to 50% by weight It may be in the range of
As an inorganic material, what was illustrated about the inorganic compound which may be contained in the above-mentioned photocurable composition can be used.

積層体の密着性は、JIS K 5600−5−6に準拠して測定することができる。例えば積層体のハードコートの表面に、2mm間隔で10マス×10マスの碁盤目状に傷を入れ、粘着テープ(ニチバン製)を貼り付け、面に対し約60°の方向に引き剥がした後に残っている碁盤目の数をカウントする。   The adhesion of the laminate can be measured in accordance with JIS K 5600-5-6. For example, the surface of the hard coat of the laminate is scratched in a grid of 10 squares × 10 squares at 2 mm intervals, and an adhesive tape (manufactured by Nichiban) is attached and peeled off in the direction of about 60 ° to the surface. Count the number of grids remaining.

また、積層体の耐光性は、QUV試験後に上述の密着性試験を行うことにより評価することができる。QUV試験は、Atlas製UVCON(ランプ:UVB313nm)を使用し、コーティング面に光が照射されるようにセッティングし、24hr照射試験を行う。その後、上述の通り、密着性の評価を行う。   Moreover, the light resistance of a laminated body can be evaluated by performing the above-mentioned adhesion test after a QUV test. The QUV test uses UVCON (lamp: UVB 313 nm) manufactured by Atlas, is set so that the coated surface is irradiated with light, and is subjected to a 24 hr irradiation test. Thereafter, as described above, the adhesion is evaluated.

一実施形態に係る積層体は、上記密着性評価試験において、引き剥がした後に残っている碁盤目の数が好ましくは90以上、より好ましくは95以上、さらに好ましくは100である。   The laminate according to one embodiment preferably has a number of squares remaining after peeling in the adhesion evaluation test of 90 or more, more preferably 95 or more, and still more preferably 100.

一実施形態に係る積層体は、上記QUV試験後の密着性評価試験において、引き剥がした後に残っている碁盤目の数が好ましくは90以上、より好ましくは95以上、さらに好ましくは100である。   In the adhesion evaluation test after the QUV test, the laminate according to one embodiment preferably has a number of grids remaining after peeling of 90 or more, more preferably 95 or more, and still more preferably 100.

積層体の屈曲性は、JIS K 5600−5−1:1999に準拠した屈曲試験において、積層体の断片に生じるヒビ割れの量に基づいて判断することができる。例えば、次の屈曲試験を行えばよい。まず積層体を、縦1cm×幅8cmのサイズに切断して、積層体の短冊状の断片(以下、測定サンプルという)を用意する。次にこの測定サンプルの中央に所望の直径を有するロールを置き、測定サンプルをロールに沿って折り曲げる操作を10回程度行う。その後、測定サンプルの硬化膜に生じたヒビ割れの有無を確認する。   The flexibility of the laminate can be judged based on the amount of cracking in the laminate fragments in a flexing test in accordance with JIS K 5600-5-1: 1999. For example, the following bending test may be performed. First, the laminate is cut into a size of 1 cm long × 8 cm wide to prepare strip-like pieces of the laminate (hereinafter referred to as measurement samples). Next, a roll having a desired diameter is placed at the center of the measurement sample, and the measurement sample is bent about 10 times along the roll. Then, the presence or absence of the crack which arose in the cured film of the measurement sample is confirmed.

上記の屈曲試験において、測定サンプルの硬化膜を内側にして測定サンプルをロールに巻き付ける場合は、積層体を構成する硬化膜には圧縮応力が作用し、基材フィルムには引張応力が作用する。一方、硬化膜を外側にして測定サンプルをロールに巻き付ける場合は、積層体を構成する基材フィルムには圧縮応力が作用し、硬化膜には引張応力が作用する。この2通りの方法でそれぞれ屈曲試験を行い、硬化膜に生じるヒビ割れを確認することで、積層体の屈曲性を評価することができる。   In the above-mentioned bending test, when the measurement sample is wound on a roll with the cured film of the measurement sample inside, compressive stress acts on the cured film constituting the laminate and tensile stress acts on the base film. On the other hand, when the measurement film is wound around a roll with the cured film on the outside, compressive stress acts on the base film constituting the laminate and tensile stress acts on the cured film. The flexibility of the laminate can be evaluated by conducting a bending test in each of the two methods and confirming a crack in the cured film.

測定に使用するロールの直径が小さくなる、すなわち、巻き付け径が小さくなると、試験において測定サンプルにはより大きい応力が作用する。したがって、ロールの直径が小さい場合に、測定サンプルに生じるヒビ割れの発生が抑制されれば、その測定サンプルは屈曲性に優れるといえる。   As the diameter of the roll used for measurement is reduced, ie the winding diameter is reduced, more stress is exerted on the measurement sample in the test. Therefore, when the diameter of the roll is small, if the occurrence of cracking in the measurement sample is suppressed, it can be said that the measurement sample is excellent in flexibility.

一実施形態に係る積層体は、JIS K 5600−5−1:1999に準拠する屈曲試験において、直径6mmのロール(巻き付け径:3mm)に硬化膜を内側にして巻き付けた場合であっても、外側にして巻き付けた場合であっても、ヒビ割れが生じにくい傾向にある。このようにヒビ割れの発生が抑制された積層体は、硬化膜が応力を吸収することができるため、屈曲性に優れる。   The laminate according to one embodiment is a case where the cured film is wound inside a roll having a diameter of 6 mm (winding diameter: 3 mm) in a bending test in accordance with JIS K 5600-5-1: 1999, Even when wound on the outside, cracking tends not to occur easily. As described above, in the laminate in which the occurrence of the cracking is suppressed, the cured film can absorb the stress, so the flexibility is excellent.

一実施形態に係る積層体は、JIS K 5600−5−1:1999に準拠する屈曲試験において、直径2mmのロール(巻き付け径:1mm)に硬化膜を内側にして巻き付けた場合であっても、外側にして巻き付けた場合であっても、ヒビ割れが生じにくい傾向にある。一実施形態に係る積層体は、巻き付け径がより小さく、測定サンプルにより大きい応力が作用する場合であっても、硬化膜が応力を吸収することができるため、優れた屈曲性を発揮することができる。   The laminate according to one embodiment is a case where the cured film is wound inside a roll (winding diameter: 1 mm) with a diameter of 2 mm in a bending test according to JIS K 5600-5-1: 1999, Even when wound on the outside, cracking tends not to occur easily. The laminate according to one embodiment exhibits excellent flexibility because the cured film can absorb stress even when the winding diameter is smaller and a larger stress acts on the measurement sample. it can.

一実施形態に係る積層体は、JIS K 5600−5−4:1999に準拠し、荷重を1kgとして測定される、一実施形態に係る積層体の鉛筆硬度が、2H以上、または3H以上であってよい。鉛筆硬度が2H以上であると、積層体は、ハードコートフィルムとして十分な硬度を示す傾向にある。上記方法により測定される鉛筆硬度は積層体の鉛筆硬度である。硬化膜上に更に別の層が設けられている場合は、その別の層を含む積層体の鉛筆硬度となる。   The laminate according to one embodiment has a pencil hardness of 2H or more, or 3H or more according to JIS K 5600-5-4: 1999, measured with a load of 1 kg. You may When the pencil hardness is 2H or more, the laminate tends to exhibit sufficient hardness as a hard coat film. The pencil hardness measured by the above method is the pencil hardness of the laminate. When another layer is provided on the cured film, the pencil hardness of the laminate including the other layer is obtained.

一実施形態に係る積層体は、上述の直径6mmのロールを使用する積層体の屈曲試験において、硬化膜にヒビ割れが生じず、かつ上述の硬化膜の鉛筆硬度が2H以上であってよい。別の実施形態に係る積層体は、上述の直径6mmのロールを使用する積層体の屈曲試験において、硬化膜にヒビ割れが生じず、かつ上述の硬化膜の鉛筆硬度が3H以上であってよい。   The laminate according to one embodiment may be such that no cracks occur in the cured film and the pencil hardness of the cured film is 2H or more in the bending test of the laminate using the above-described roll having a diameter of 6 mm. The laminate according to another embodiment may be such that no cracks occur in the cured film and the pencil hardness of the cured film is 3H or more in the bending test of the laminate using the above-mentioned roll having a diameter of 6 mm .

一実施形態に係る光硬化性樹脂組成物から形成された硬化膜を有する積層体は、光による基材フィルムの変色(黄変)が抑制されるため、耐光性を示す。耐光性は、光を照射する前後における積層体のYI値の変化量(ΔYI)で判断することができる。積層体は、ΔYIの数値が小さいほど、耐光性に優れる。ここで、YI値は、JIS Z 8701:1982に規定されている計算方法により算出される三刺激値X,YおよびZと以下の式とにより算出される。
YI=100(1.28X−1.06Z)/Y
A laminate having a cured film formed from the photocurable resin composition according to one embodiment exhibits light resistance because discoloration (yellowing) of the substrate film due to light is suppressed. The light resistance can be judged by the amount of change (ΔYI) of the YI value of the laminate before and after light irradiation. The smaller the value of ΔYI, the better the light resistance of the laminate. Here, the YI value is calculated by tristimulus values X, Y and Z calculated by the calculation method defined in JIS Z 8701: 1982 and the following equation.
YI = 100 (1.28X-1.06Z) / Y

YI値は、市販の分光光度計を使用して測定することができ、例えば日立製作所製の製品「U−4100」などで測定することができる。   The YI value can be measured using a commercially available spectrophotometer, for example, a product "U-4100" manufactured by Hitachi, Ltd., or the like.

例えば基材フィルムが、紫外線吸収剤を含まない樹脂フィルムまたは感光性を有する樹脂フィルムであると、積層体の耐光性が顕著に向上され得る。   For example, when the base film is a resin film containing no ultraviolet light absorber or a resin film having photosensitivity, the light resistance of the laminate may be significantly improved.

積層体を構成する硬化膜は、基材フィルムの少なくとも片面側に形成される。硬化膜の厚みは、例えば3μm以上、20μm以下であってもよい。硬化膜の厚みは、5μm以上、10μm以下であってもよい。硬化膜の厚みが上記範囲内であると、基材フィルムと硬化膜を含む積層体が、屈曲性、硬度、および耐光性に特に優れる傾向にある。硬化膜が厚すぎると、鉛筆硬度は向上するものの、屈曲試験において、硬化膜を外側にして巻き付けた場合にヒビ割れが生じ易くなる傾向にある。   The cured film which comprises a laminated body is formed in the at least single side | surface side of a base film. The thickness of the cured film may be, for example, 3 μm or more and 20 μm or less. The thickness of the cured film may be 5 μm or more and 10 μm or less. When the thickness of the cured film is in the above range, the laminate including the base film and the cured film tends to be particularly excellent in flexibility, hardness, and light resistance. If the cured film is too thick, the pencil hardness is improved, but in the bending test, when the cured film is wound outward, cracking tends to occur easily.

一実施形態に係る積層体は、屈曲性及び硬度に優れるため、例えば、ハードコートフィルムとして、偏光板などとともに表示装置を構成することができる。積層体は、基材フィルムおよび硬化膜の他に他の層を有していてもよい。例えば、積層体の硬化膜上に、別の機能層を設けてもよい。機能層としては、ハードコート層、および反射防止層または防眩層等の表面処理層が挙げられる。機能層は、接着剤または粘着剤を介して積層体に積層してもよい。接着剤および粘着剤としては、公知のものを適宜選択すればよい。   Since the layered product concerning one embodiment is excellent in flexibility and hardness, it can constitute a display with a polarizing plate etc. as a hard court film, for example. The laminate may have other layers in addition to the base film and the cured film. For example, another functional layer may be provided on the cured film of the laminate. The functional layer includes a hard coat layer and a surface treatment layer such as an antireflective layer or an antiglare layer. The functional layer may be laminated to the laminate via an adhesive or an adhesive. As the adhesive and the pressure-sensitive adhesive, known ones may be appropriately selected.

一実施形態に係る積層体は、屈曲性および硬度に優れるため、機能層を更に設けても、十分な屈曲性を示すとともに、高い硬度を有することができる。   Since the layered product concerning one embodiment is excellent in flexibility and hardness, while providing sufficient functional layer, while showing sufficient flexibility, it can have high hardness.

積層体を構成する硬化膜は、基材フィルムの少なくとも片面側に形成される。硬化膜の厚みは、例えば3μm以上、20μm以下であってもよい。硬化膜の厚みは、5μm以上、10μm以下であってもよい。硬化膜の厚みが上記範囲内であると、基材フィルムと硬化膜を含む積層体が、密着性、屈曲性、硬度、および耐光性に特に優れる傾向にある。硬化膜が厚すぎると、鉛筆硬度は向上するものの、屈曲試験において、硬化膜を外側にして巻き付けた場合にヒビ割れが生じ易くなる傾向にある。   The cured film which comprises a laminated body is formed in the at least single side | surface side of a base film. The thickness of the cured film may be, for example, 3 μm or more and 20 μm or less. The thickness of the cured film may be 5 μm or more and 10 μm or less. When the thickness of the cured film is in the above range, the laminate including the base film and the cured film tends to be particularly excellent in adhesion, flexibility, hardness, and light resistance. If the cured film is too thick, the pencil hardness is improved, but in the bending test, when the cured film is wound outward, cracking tends to occur easily.

一実施形態に係る積層体は、密着性に優れるため、例えばハードコートフィルムとして、偏光板などとともに表示装置を構成することができる。積層体は、基材フィルムおよび硬化膜の他に他の層を有していてもよい。例えば、積層体の硬化膜上に、別の機能層を設けてもよい。機能層としては、トップハードコート層、および反射防止層又は防眩層等の表面処理層が挙げられる。機能層は、接着剤または粘着剤を介して積層体に積層してもよい。接着剤及び粘着剤としては、公知のものを適宜選択すればよい。   Since the layered product concerning one embodiment is excellent in adhesiveness, it can constitute a display with a polarizing plate etc., for example as a hard court film. The laminate may have other layers in addition to the base film and the cured film. For example, another functional layer may be provided on the cured film of the laminate. The functional layer includes a top hard coat layer and a surface treatment layer such as an antireflective layer or an antiglare layer. The functional layer may be laminated to the laminate via an adhesive or an adhesive. As the adhesive and the pressure-sensitive adhesive, known ones may be appropriately selected.

一実施形態に係る積層体は、更なる機能層について十分な密着性を有することができる。   The laminate according to one embodiment can have sufficient adhesion to the additional functional layer.

[積層体の製造方法]
次に、一実施形態の光硬化性樹脂組成物から形成される硬化膜を有する積層体を製造する方法について説明する。
[Method of manufacturing laminate]
Next, the method to manufacture the laminated body which has a cured film formed from the photocurable resin composition of one Embodiment is demonstrated.

硬化膜を有する積層体の製造方法は、例えば次の工程(1)及び(2)を含む。
(1)上述の本発明の光硬化性樹脂組成物を基材フィルム上に塗布することにより組成物層を得る工程(光硬化性樹脂組成物を含む組成物層を基材フィルムの片面側に形成させる工程)、および
(2)組成物層を露光することにより該組成物層を硬化させる工程(組成物層に露光して該組成物層を硬化させることで、硬化膜を形成させる工程)。
The method for producing a laminate having a cured film includes, for example, the following steps (1) and (2).
(1) A step of obtaining a composition layer by applying the above-described photocurable resin composition of the present invention onto a substrate film (a composition layer containing a photocurable resin composition is applied to one side of the substrate film Step of forming), and (2) Step of curing the composition layer by exposing the composition layer (step of forming a cured film by exposing the composition layer to cure the composition layer) .

工程(1)
基材フィルムは、透明性を有していてもよい。基材フィルムは、例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、またはポリイミド(PI)のフィルムであってもよい。硬化膜に関する効果が特に顕著に発揮できる点において、基材フィルムはポリイミド(PI)フィルムであってもよい。また、基材フィルムは、材料を含んでもよい。基材フィルムが無機材料を含む場合、その含有量は、基材フィルムを基準に0重量%を超え60重量%以下の範囲、例えば5〜55重量%の範囲、10〜50重量%の範囲であってよい。
無機材料としては、上述の積層体の説明における基材フィルムに含まれ得る無機化合物について例示したものを用いることができる。
Process (1)
The substrate film may have transparency. The substrate film may be, for example, a film of polyester such as polyethylene terephthalate (PET), polycarbonate (PC), polyarylate (PAR), polyether sulfone (PES), or polyimide (PI). The substrate film may be a polyimide (PI) film in that the effects relating to the cured film can be particularly remarkably exhibited. The base film may also contain a material. When the substrate film contains an inorganic material, the content is in the range of more than 0% by weight and 60% by weight or less based on the substrate film, for example, in the range of 5 to 55% by weight, and in the range of 10 to 50% by weight May be there.
As an inorganic material, what was illustrated about the inorganic compound which may be contained in the base film in description of the above-mentioned laminated body can be used.

基材フィルムの厚さは、30〜300μm、または50〜200μmであってもよい。基材フィルムが薄いと、硬化膜と基材フィルムとの積層体の強度が低下する傾向がある。基材フィルムが厚いと、基材フィルムの透明性が低下したり、屈曲性が低下したりすることがある。基材フィルムは、各種の添加剤を含有していてもよい。そのような添加剤として、例えば安定剤、可塑剤、滑剤、および難燃剤が挙げられる。   The thickness of the substrate film may be 30 to 300 μm, or 50 to 200 μm. When the base film is thin, the strength of the laminate of the cured film and the base film tends to decrease. When the substrate film is thick, the transparency of the substrate film may be reduced or the flexibility may be reduced. The substrate film may contain various additives. Such additives include, for example, stabilizers, plasticizers, lubricants, and flame retardants.

基材フィルムは、その表面に設けられた接着層を有していてもよい。接着層は、硬化膜を基材フィルムに密着させるためのもので、常法に従って形成される。接着層を形成する接着剤としては、基材フィルム及び硬化膜の材質に応じて適宜選択されるが、例えばアクリル系接着剤(粘着剤)、シリコーン系接着剤(粘着剤)、ポリエステル系接着剤等が用いることができる。接着層が薄いと十分な接着力が得られ難く、接着層が厚くなり過ぎると硬化膜と基材フィルムとの積層体が硬くなりすぎてしまいフィルムとしての柔軟性が低下する傾向がある。そのため、接着剤の厚さは0.1〜1μmの範囲であってもよい。   The substrate film may have an adhesive layer provided on the surface thereof. An adhesive layer is for sticking a cured film to a base film, and is formed in accordance with a conventional method. The adhesive for forming the adhesive layer is appropriately selected according to the material of the base film and the cured film, but, for example, acrylic adhesive (adhesive), silicone adhesive (adhesive), polyester adhesive Etc. can be used. When the adhesive layer is thin, it is difficult to obtain sufficient adhesive strength, and when the adhesive layer is too thick, the laminate of the cured film and the base film tends to be too hard and the flexibility as a film tends to decrease. Therefore, the thickness of the adhesive may be in the range of 0.1 to 1 μm.

光硬化性樹脂組成物を基材フィルムに塗布する方法としては、例えば、ロールコート法、スピンコート法、コイルバー法、ディップコート法、およびダイコート法等が挙げられる。ロールコート法等、連続的に塗布することができる方法は、生産性および生産コストの点で特に有利である。   As a method of apply | coating a photocurable resin composition to a base film, the roll coat method, a spin coat method, the coil bar method, the dip coat method, the die coat method etc. are mentioned, for example. A method that can be applied continuously, such as a roll coating method, is particularly advantageous in terms of productivity and production cost.

組成物層(塗付された光硬化性樹脂組成物)が溶剤を含む場合、組成物層から溶剤を除去する工程(1’)が設けられてもよい。溶剤の除去は、例えば、ホットプレート等の加熱装置を用いた加熱手段、減圧装置を用いた減圧手段、またはこれらの組み合わせにより、該組成物層から溶剤を蒸発させることにより行われる。加熱手段及び減圧手段の条件は、組成物層に含まれる溶剤の種類等に応じて選択できる。例えばホットプレートの場合、ホットプレートの表面温度を50〜200℃程度の範囲に設定することができる。減圧手段は、適当な減圧機であってもよく、減圧機の中に、組成物層を有する基材フィルムを封入することができる。減圧手段による形成される雰囲気の圧力(減圧機の内部圧力)は、例えば1〜1.0×10Pa程度であってもよい。組成物層から溶剤を除去することにより、溶媒を実質的に含まない組成物層を該基材フィルム上に形成することができる。When the composition layer (coated photocurable resin composition) contains a solvent, a step (1 ′) of removing the solvent from the composition layer may be provided. The removal of the solvent is performed, for example, by evaporating the solvent from the composition layer by heating means using a heating device such as a hot plate, pressure reducing means using a pressure reducing device, or a combination thereof. The conditions of the heating means and the pressure reducing means can be selected according to the type of solvent contained in the composition layer and the like. For example, in the case of a hot plate, the surface temperature of the hot plate can be set in the range of about 50 to 200 ° C. The pressure reducing means may be a suitable pressure reducing device, and the substrate film having the composition layer can be enclosed in the pressure reducing device. The pressure of the atmosphere formed by the pressure reducing means (the internal pressure of the pressure reducing device) may be, for example, about 1 to 1.0 × 10 5 Pa. By removing the solvent from the composition layer, a composition layer substantially free of the solvent can be formed on the substrate film.

工程(2)
露光は、通常、紫外線の照射によって行われる。この際、紫外線は可視光線領域の光線を含む。光重合開始剤が、光照射によって光重合開始能を発現し、工程(1)で得られた組成物層を硬化させる。紫外線は200〜450nmの波長を有していてもよい。光重合開始剤は光の波長220〜450nmに吸収域を有していてもよい。一般に紫外線の波長は380nmよりも短く、可視光線の波長は380〜780nmである。
Process (2)
Exposure is usually performed by irradiation of ultraviolet light. At this time, the ultraviolet light includes light in the visible light range. The photopolymerization initiator develops photopolymerization initiation ability by light irradiation, and the composition layer obtained in the step (1) is cured. The ultraviolet light may have a wavelength of 200 to 450 nm. The photopolymerization initiator may have an absorption range at a wavelength of 220 to 450 nm of light. In general, the wavelength of ultraviolet light is shorter than 380 nm, and the wavelength of visible light is 380 to 780 nm.

紫外線の波長が200nm未満の場合、紫外線が紫外線吸収剤に吸収されやすくなり、光重合開始剤の光重合開始能が十分に発現されないために組成物層の硬化性が低下する傾向がある。紫外線の波長が450nmを超える場合、紫外線としての機能が低下する傾向がある。光重合開始剤の吸収域の光の波長が220nm未満の場合、紫外線吸収剤に紫外線が吸収されやすくなってその光重合開始能が低下する傾向がある。吸収域の光の波長が450nmを超える光重合開始剤はその種類が少なく、またそのような光重合開始剤は紫外線による光重合開始能の発現を不足させるおそれがある。   If the wavelength of the ultraviolet light is less than 200 nm, the ultraviolet light tends to be absorbed by the ultraviolet light absorber, and the photopolymerization initiation ability of the photopolymerization initiator is not sufficiently expressed, so that the curability of the composition layer tends to be reduced. When the wavelength of the ultraviolet light exceeds 450 nm, the function as the ultraviolet light tends to decrease. When the wavelength of light in the absorption region of the photopolymerization initiator is less than 220 nm, the ultraviolet absorber tends to easily absorb the ultraviolet light, and the photopolymerization initiation ability tends to decrease. There are few kinds of photopolymerization initiators in which the wavelength of light in the absorption region exceeds 450 nm, and such photopolymerization initiators may cause the expression of photopolymerization initiation ability by ultraviolet light to be insufficient.

その他の工程
硬化膜を有する積層体の製造方法は、上記工程(1)および(2)の他に、任意の工程、例えば熱硬化やアニール工程等を更に含むことができる。
Other Steps In addition to the above steps (1) and (2), the method for producing a laminate having a cured film can further include an optional step such as a thermal curing or annealing step.

以下、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれら実施例の範囲に限定されるものではない。   Hereinafter, the embodiment will be more specifically described by way of examples and comparative examples, but the present invention is not limited to the scope of the examples.

以下の各実施例および比較例において、各物性は次のように測定した。   Each physical property was measured as follows in each of the following Examples and Comparative Examples.

[密着性]
JIS K 5600−5−6に準拠して測定した。
2mm間隔で10マス×10マスの碁盤目状に傷を入れ、粘着テープ(ニチバン製)を貼り付け、面に対し約60°の方向に引き剥がした後の残っている碁盤目の数をカウントした。
[Adhesiveness]
It measured based on JISK5600-5-6.
Make a scratch in a grid of 10 squares × 10 squares at 2 mm intervals, stick an adhesive tape (made by Nichiban), and count the number of squares left after peeling off in the direction of about 60 ° to the surface did.

[耐光性]
上記の密着性試験をQUV試験後に行った。QUV試験は、Atlas製UVCON(ランプ:UVB313nm)を使用し、コーティング面に光が照射されるようにセッティングし、24hr照射試験を行った。
[Lightfastness]
The above adhesion test was performed after the QUV test. The QUV test used UVCON (lamp: UVB 313 nm) manufactured by Atlas, was set so that the coated surface was irradiated with light, and was subjected to a 24 hr irradiation test.

[鉛筆硬度]
JIS K 5600−5−4:1999に準拠して硬化膜の表面の鉛筆硬度を測定した。荷重は1kgとした。
[Pencil hardness]
The pencil hardness of the surface of the cured film was measured in accordance with JIS K 5600-5-4: 1999. The load was 1 kg.

[屈曲性]
JIS K 5600−5−1:1999に準拠して屈曲試験をした。硬化膜と基材フィルムとの積層体を1cm×8cmに切断して、測定サンプルを得た。測定サンプルを、硬化膜が内側または外側になる向きで、直径6mmまたは2mmのロールそれぞれに巻き付けた。
硬化膜におけるヒビ割れの発生の有無に基づいて、屈曲性を次のように判定した。
(屈曲性の判定)
◎ :ヒビ割れが生じなかった
○ :ヒビ割れが1〜4本生じた
△ :ヒビ割れが5本以上生じた
× :測定サンプルが材料破壊した
[Flexibility]
The bending test was performed in accordance with JIS K 5600-5-1: 1999. The laminate of the cured film and the base film was cut into 1 cm × 8 cm to obtain a measurement sample. The measurement sample was wound on a roll with a diameter of 6 mm or 2 mm, respectively, with the direction of the cured film being inside or outside.
Flexibility was determined as follows based on the presence or absence of the occurrence of cracking in the cured film.
(Judgment of flexibility)
:: no cracks occurred ○: 1 to 4 cracks occurred △: 5 or more cracks occurred ×: material failure of the measurement sample

[重量平均分子量]
「重量平均分子量」は、gel permeation chromatography(GPC)で測定されたポリスチレン換算の重量平均分子量を意味する。測定条件は、SHODEX GPC−104、カラム KF−602、移動相 THF、流速0.5ml/min、温度40℃で行った。値は、ポリスチレン標準物質からの換算値を用いた。
[Weight average molecular weight]
"Weight average molecular weight" means a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC). The measurement conditions were SHODEX GPC-104, column KF-602, mobile phase THF, flow rate 0.5 ml / min, temperature 40 ° C. The value used was a converted value from a polystyrene standard substance.

[ガラス転移点]
合成したポリ(メタ)アクリレート溶液を乾燥した試料、約10mgをアルミニウムパンに量り採り、DSC装置(MACサイエンス社製 DSC3100)にセットして液体窒素で−100℃まで冷却した後、10℃/minで昇温して得られたDSCチャートからガラス転移温度を求めた。
[Glass transition point]
About 10 mg of a dried sample of the poly (meth) acrylate solution is weighed into an aluminum pan, set in a DSC (DSC 3100 manufactured by MAC Science), cooled to -100 ° C. with liquid nitrogen, and then 10 ° C./min. The glass transition temperature was determined from the DSC chart obtained by raising the temperature in the above.

[二重結合当量]
二重結合当量は以下の式に従って求めた。
二重結合当量(g/mol)=全モノマーの仕込み量(g)/二重結合に用いられたモノマーの単体量(mol)
[Double bond equivalent]
The double bond equivalent was determined according to the following formula.
Double bond equivalent (g / mol) = feed amount of total monomer (g) / single amount of monomer used for double bond (mol)

実施例1
「水酸基含有(メタ)アクリルポリマーAの合成」
攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、メチルイソブチルケトン300gを仕込み、窒素気流下で110℃まで昇温し、メチルメタクリレート245g、2−ヒドロキシエチルメタクリレート55g、ポリプロピレングリコールモノアクリレート100g、メチルイソブチルケトン50g、アゾビスイソブチロニトリル3gの混合溶液を滴下ロートに仕込み、2時間かけて等速に滴下し、さらに同温度で1時間エージングした。次いでアゾビスイソブチロニトリル2gとメチルイソブチルケトン100gを滴下ロートに仕込み2時間かけて等速に滴下した。その後、3時間エージングしメチルイソブチルケトン150gで希釈し水酸基含有(メタ)アクリルポリマーAを合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で71000であり、加熱残分は39.9%であった。示差走査熱量計を用いて測定したガラス転移点(Tg)は約30℃であった。
Example 1
"Synthesis of hydroxyl group-containing (meth) acrylic polymer A"
In a flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer, 300 g of methyl isobutyl ketone is charged, the temperature is raised to 110 ° C. under a nitrogen stream, methyl methacrylate 245 g, 2-hydroxyethyl methacrylate 55 g, polypropylene glycol monoacrylate 100 g A mixed solution of 50 g of methyl isobutyl ketone and 3 g of azobisisobutyronitrile was charged into a dropping funnel, dropped at equal speed over 2 hours, and then aged at the same temperature for 1 hour. Next, 2 g of azobisisobutyronitrile and 100 g of methyl isobutyl ketone were charged into a dropping funnel and dropped at equal speed over 2 hours. Then, it was aged for 3 hours and diluted with 150 g of methyl isobutyl ketone to synthesize a hydroxyl group-containing (meth) acrylic polymer A. As a result of measuring the molecular weight of the obtained polymer, it was 71000 by weight average molecular weight, and the heating residue was 39.9%. The glass transition point (Tg) measured using a differential scanning calorimeter was about 30 ° C.

「(メタ)アクリルウレタンオリゴマーBの合成」
攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、メチルイソブチルケトン500g、イソホロンジイソシアネート(IPDI)318g、メトキノン0.5g、ジオクチルスズ0.05gを仕込み窒素と酸素の混合気流下で80℃まで昇温した。次いで2−ヒドロキシエチルアクリレート182gを滴下ロートに仕込み3時間かけて等速に滴下した。その後80℃で5時間エージングしNCO%が6〜8%の時点で反応終了。片末端がイソシアネート基、もう一方の片末端がアクリレート基の(メタ)アクリルウレタンオリゴマーBを合成した。得られたオリゴマーの分子量を測定した結果、重量平均分子量で約400であり、加熱残分は50.1%であった。
"Synthesis of (meth) acrylic urethane oligomer B"
In a flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer, 500 g of methyl isobutyl ketone, 318 g of isophorone diisocyanate (IPDI), 0.5 g of methoquinone, 0.05 g of dioctyltin are charged and 80 ° C. under a mixed gas of nitrogen and oxygen. The temperature rose to the end. Then, 182 g of 2-hydroxyethyl acrylate was charged into the dropping funnel and dropped at a constant speed over 3 hours. Then, it was aged at 80 ° C. for 5 hours, and the reaction was completed when NCO% was 6 to 8%. A (meth) acrylic urethane oligomer B having an isocyanate group at one end and an acrylate group at the other end was synthesized. As a result of measuring the molecular weight of the obtained oligomer, it was about 400 in weight average molecular weight, and the heating residue was 50.1%.

「(メタ)アクリルウレタンポリマーCの合成」
攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、メチルイソブチルケトン300g三菱化学株式会社製PTMG650を265gとヘキサメチレンジイソアネート190g、ジオクチルスズ0.05gを仕込み窒素と酸素の混合気流下で80℃まで昇温しそのまま5時間反応させ、両末端イソシアネート基含有ウレタンオリゴマーを得た。次いでメトキノン0.5gを投入した後、2−ヒドロキシエチルアクリレート45gを滴下ロートに仕込み1時間かけて等速に滴下した。滴下後さらに3時間反応させた後、メチルイソブチルケトン200gにて希釈し片末端がイソシアネート基、もう一方の片末端がアクリル基の(メタ)アクリルウレタンポリマーCを合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で約7300であり加熱残分は50.2%であった。
"Synthesis of (meth) acrylic urethane polymer C"
In a flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer, 265 g of methyl isobutyl ketone 300 g PTMG 650 manufactured by Mitsubishi Chemical Corporation, 190 g of hexamethylenediisonate and 0.05 g of dioctyl tin are mixed under a mixed nitrogen and oxygen stream The reaction mixture was heated to 80 ° C. and allowed to react for 5 hours to obtain a urethane oligomer containing isocyanate groups having both ends. Next, 0.5 g of methoquinone was added, and 45 g of 2-hydroxyethyl acrylate was charged into the dropping funnel and dropped at a constant speed over 1 hour. After dropping, the reaction was further carried out for 3 hours, and the reaction was diluted with 200 g of methyl isobutyl ketone to synthesize a (meth) acrylic urethane polymer C having an isocyanate group at one end and an acrylic group at the other end. As a result of measuring the molecular weight of the obtained polymer, it was about 7300 by weight average molecular weight, and the heating residue was 50.2%.

「反応性ポリマーEの合成」
攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、水酸基含有(メタ)アクリルポリマーA700g、(メタ)アクリルウレタンオリゴマーB140g、(メタ)アクリルウレタンポリマーC100g、メトキノン0.5g、ジオクチルスズ0.05gを仕込み窒素と酸素の混合気流下で90℃まで昇温し8時間反応させた後、イソシアネート基含有アルコキシシランD(3−イソシアネートプロピルトリエトキシシラン)を50g加えさらに3時間反応させた。FT−IRにてイソシアネート基のピークが消失したことを確認しメチルイソブチルケトン135gで希釈し反応を終了した。反応性ポリマーEを合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で86000であり、加熱残分が40.2%であった。二重結合当量は1812であった。
"Synthesis of Reactive Polymer E"
In a flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer, 700 g of a hydroxyl group-containing (meth) acrylic polymer A, 140 g of a (meth) acrylic urethane oligomer B, 100 g of a (meth) acrylic urethane polymer C, 0.5 g of methoquinone, The mixture was heated to 90 ° C. in a mixed stream of nitrogen and oxygen and allowed to react for 8 hours, and then 50 g of isocyanate group-containing alkoxysilane D (3-isocyanatopropyltriethoxysilane) was added and reacted for 3 hours. It was confirmed by FT-IR that the peak of the isocyanate group disappeared and diluted with 135 g of methyl isobutyl ketone to complete the reaction. Reactive polymer E was synthesized. As a result of measuring the molecular weight of the obtained polymer, it was 86000 in weight average molecular weight, and the heating residue was 40.2%. The double bond equivalent was 1812.

[光硬化性樹脂組成物の製造]
4官能アクリレート(新中村化学(株)製、A−TMMT)30質量部、3官能アクリレート(新中村化学(株)製、A−TMPT)30質量部、反応性ポリマーE40質量部、トリアジン系紫外線吸収剤(BASF社製、TINUVIN(登録商標)479)3質量部、光重合開始剤(チバスペシャリティケミカルズ(株)製、IRGACURE(登録商標)184)5質量部、光重合開始剤(チバスペシャリティケミカルズ(株)製、IRGACURE(登録商標)819)3質量部、レベリング剤(ビックケミージャパン(株)製、BYK−350)0.6質量部、メチルエチルケトン30質量部を撹拌混合し、光硬化性樹脂組成物を得た。
[Production of Photocurable Resin Composition]
30 parts by mass of tetrafunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT) 30 parts by mass of trifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMPT) 40 parts by mass of reactive polymer E 3 parts by mass of an absorbent (BASF, TINUVIN (registered trademark) 479), 5 parts by mass of a photopolymerization initiator (Ciba Specialty Chemicals Co., Ltd., IRGACURE (registered trademark) 184), a photopolymerization initiator (Cibas Specialty Chemicals) 3 parts by mass of IRGACURE (registered trademark) 819, manufactured by Co., Ltd., 0.6 parts by mass of a leveling agent (by BYK-Chemie Japan Co., Ltd., BYK-350), 30 parts by mass of methyl ethyl ketone are stirred and mixed to obtain a photocurable resin The composition was obtained.

[積層体の製造]
透明基材フィルムとしては、公知文献(例えば米国特許第8,207,256号)に準拠して、厚さ80μmのポリイミドとシリカ粒子とを含有する樹脂基材(シリカ粒子含有量60質量%)を作製した。その透明ポリイミドフィルムを用い、前記の光硬化性樹脂組成物を乾燥膜厚5μmとなるようにバーコーターで塗工した。その後、60℃のオーブンで5分間乾燥を行い、500mj/cmのエネルギーで紫外線を照射して硬化させることで、硬化膜と基材との積層体を得た。得られた積層体のQUV試験前後の密着性を上記のとおり測定した。
結果を表1に示す。また、得られた積層体は、鉛筆硬度が2Hであり、直径6mm及び2mmについての屈曲性がそれぞれ硬化膜の内側及び外側において◎であった。
[Production of laminate]
As a transparent base film, a resin base containing a polyimide having a thickness of 80 μm and silica particles in accordance with known documents (for example, US Pat. No. 8,207,256) (silica particle content: 60% by mass) Was produced. Using the transparent polyimide film, the photocurable resin composition was coated by a bar coater so as to have a dry film thickness of 5 μm. Thereafter, drying was performed in an oven at 60 ° C. for 5 minutes, and ultraviolet rays were irradiated and cured at an energy of 500 mj / cm 2 to obtain a laminate of a cured film and a substrate. The adhesion of the obtained laminate before and after the QUV test was measured as described above.
The results are shown in Table 1. Moreover, the obtained laminate had a pencil hardness of 2H, and the bendability with respect to the diameters of 6 mm and 2 mm was ◎ on the inside and the outside of the cured film, respectively.

実施例2〜14および比較例1
実施例1において、イソシアネート基含有アルコキシシランDを表1〜3に記載のエトキシシラン基含有量となるように配合したこと、および水酸化アルミニウムやスメクタイトを表3に記載の含有量で用いたこと以外は、実施例1と同様にして硬化膜と基材との積層体を得た。得られた光硬化性膜と基材との密着性を測定した結果を表1〜3に示す。また、実施例2〜8及び比較例1において得られた積層体は、鉛筆硬度が2Hであり、直径6mm及び2mmについての屈曲性がそれぞれ硬化膜の内側及び外側において◎であった。実施例9〜14において得られた積層体は、鉛筆硬度が3Hであり、直径6mm及び2mmについての屈曲性がそれぞれ硬化膜の内側及び外側において◎であった。
Examples 2 to 14 and Comparative Example 1
In Example 1, the isocyanate group-containing alkoxysilane D was blended so as to have the ethoxysilane group content described in Tables 1 to 3 and that aluminum hydroxide and smectite were used at the contents described in Table 3 A laminate of the cured film and the base was obtained in the same manner as Example 1 except for the above. The results of measuring the adhesion between the obtained photocurable film and the substrate are shown in Tables 1 to 3. Further, the laminates obtained in Examples 2 to 8 and Comparative Example 1 had a pencil hardness of 2H, and the bendability for diameters of 6 mm and 2 mm was ◎ on the inside and the outside of the cured film, respectively. The laminates obtained in Examples 9 to 14 had a pencil hardness of 3 H, and the bendability for diameters of 6 mm and 2 mm was ◎ on the inside and the outside of the cured film, respectively.

比較例2
「水酸基含有(メタ)アクリルポリマーA2の合成」
攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、メチルイソブチルケトン300gを仕込み、窒素気流下で110℃まで昇温し、メチルメタクリレート260g、2−ヒドロキシエチルメタクリレート140g、メチルイソブチルケトン50g、アゾビスイソブチロニトリル3gの混合溶液を滴下ロートに仕込み、2時間かけて等速に滴下し、さらに同温度で1時間エージングした。次いでアゾビスイソブチロニトリル2gとメチルイソブチルケトン100gを滴下ロートに仕込み2時間かけて等速に滴下した。その後、3時間エージングしメチルイソブチルケトン150gで希釈し水酸基含有(メタ)アクリルポリマーAを合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で86,000であり、加熱残分は40.1%であった。示差走査熱量計を用いて測定したガラス転移点(Tg)は約70℃であった。
Comparative example 2
"Synthesis of hydroxyl group-containing (meth) acrylic polymer A2"
In a flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer, 300 g of methyl isobutyl ketone is charged, the temperature is raised to 110 ° C. under a nitrogen stream, and 260 g of methyl methacrylate, 140 g of 2-hydroxyethyl methacrylate, 50 g of methyl isobutyl ketone A mixed solution of 3 g of azobisisobutyronitrile was charged into a dropping funnel, dropped at a constant speed over 2 hours, and then aged for 1 hour at the same temperature. Next, 2 g of azobisisobutyronitrile and 100 g of methyl isobutyl ketone were charged into a dropping funnel and dropped at equal speed over 2 hours. Then, it was aged for 3 hours and diluted with 150 g of methyl isobutyl ketone to synthesize a hydroxyl group-containing (meth) acrylic polymer A. As a result of measuring the molecular weight of the obtained polymer, it was 86,000 in weight average molecular weight, and the heating residue was 40.1%. The glass transition point (Tg) measured using a differential scanning calorimeter was about 70 ° C.

「反応性ポリマーE2の合成」
攪拌機、滴下ロート、冷却管及び温度計を備えたフラスコに、水酸基含有(メタ)アクリルポリマーA2を700g、(メタ)アクリルウレタンオリゴマーB140g、(メタ)アクリルウレタンポリマーC100g、メトキノン0.5g、ジオクチルスズ0.05gを仕込み窒素と酸素の混合気流下で90℃まで昇温し8時間反応させた後、イソシアネート基含有アルコキシシランDを100g加えさらに3時間反応させた。FT−IRにてイソシアネート基のピークが消失したことを確認しメチルイソブチルケトン210gで希釈し反応を終了した。比較例2の反応性ポリマーE2を合成した。得られたポリマーの分子量を測定した結果、重量平均分子量で195,000であり、加熱残分が40.6%であった。二重結合当量は1933であった。
"Synthesis of Reactive Polymer E2"
700 g of hydroxyl group-containing (meth) acrylic polymer A2, 140 g of (meth) acrylic urethane oligomer B, 100 g of (meth) acrylic urethane polymer C, 0.5 g of methoquinone, 0.5 g of dioctyltin in a flask equipped with a stirrer, dropping funnel, condenser and thermometer After charging 0.05 g, the temperature was raised to 90 ° C. under a mixed flow of nitrogen and oxygen, and reacted for 8 hours, then 100 g of an alkoxy group-containing alkoxysilane D was added and reacted for 3 hours. It was confirmed by FT-IR that the peak of the isocyanate group disappeared and diluted with 210 g of methyl isobutyl ketone to complete the reaction. The reactive polymer E2 of Comparative Example 2 was synthesized. As a result of measuring the molecular weight of the obtained polymer, it was 195,000 in weight average molecular weight, and the heating residue was 40.6%. The double bond equivalent was 1933.

[光硬化性樹脂組成物及び積層体の製造]
実施例1の光硬化性樹脂組成物の調製に関し、反応性ポリマーEを用いたことに代えて反応性ポリマーE2を用いたこと以外は、実施例1と同様にして光硬化性樹脂組成物及び積層体を製造した。密着性を測定した結果を表1に示す。また、得られた積層体は、鉛筆硬度が2Hであり、直径6mm及び2mmについての屈曲性がそれぞれ硬化膜の内側及び外側において◎であった。
[Production of Photocurable Resin Composition and Laminate]
Regarding the preparation of the photocurable resin composition of Example 1, a photocurable resin composition and a photocurable resin composition in the same manner as in Example 1 except that the reactive polymer E2 was used in place of the reactive polymer E, and A laminate was produced. The results of measuring the adhesion are shown in Table 1. Moreover, the obtained laminate had a pencil hardness of 2H, and the bendability with respect to the diameters of 6 mm and 2 mm was ◎ on the inside and the outside of the cured film, respectively.

Figure 2017213217
Figure 2017213217

Figure 2017213217
Figure 2017213217

Figure 2017213217
Figure 2017213217

本発明の反応性ポリマー、光硬化性樹脂組成物および積層体は、例えばプラズマディスプレイ(PD)、液晶ディスプレイ(LCD)等の電子画像表示装置の表示画面上に設けられるハードコートフィルムに用いることができる。   The reactive polymer, the photocurable resin composition and the laminate of the present invention may be used, for example, as a hard coat film provided on a display screen of an electronic image display device such as a plasma display (PD) or liquid crystal display (LCD). it can.

Claims (15)

アルコキシシラン基および(メタ)アクリレート基を側鎖に有する反応性ポリマー。   Reactive polymer having an alkoxysilane group and a (meth) acrylate group in a side chain. (メタ)アクリレートポリマーからなる主鎖を有し、および前記側鎖としての(メタ)アクリレート基は、前記主鎖に結合したウレタンポリマーおよび/またはウレタンオリゴマーの末端に結合する、請求項1に記載の反応性ポリマー。   The main chain comprising a (meth) acrylate polymer, and the (meth) acrylate group as the side chain are attached to the terminal of the urethane polymer and / or urethane oligomer bonded to the main chain. Reactive polymers. 前記反応性ポリマーの重量平均分子量は10,000〜250,000である、請求項1または2に記載の反応性ポリマー。   The reactive polymer according to claim 1, wherein a weight average molecular weight of the reactive polymer is 10,000 to 250,000. 前記反応性ポリマーの二重結合当量は800〜125,000である、請求項1〜3のいずれかに記載の反応性ポリマー。   The reactive polymer according to any one of claims 1 to 3, wherein a double bond equivalent of the reactive polymer is 800 to 125,000. 前記(メタ)アクリレートポリマーのガラス転移点(Tg)は0〜70℃である、請求項2に記載の反応性ポリマー。   The reactive polymer according to claim 2, wherein the glass transition point (Tg) of the (meth) acrylate polymer is 0 to 70 ° C. アルコキシシラン基はエトキシシラン基である、請求項1〜5のいずれかに記載の反応性ポリマー。   The reactive polymer according to any one of claims 1 to 5, wherein the alkoxysilane group is an ethoxysilane group. 多官能(メタ)アクリレートモノマーと、請求項1〜6のいずれかに記載の反応性ポリマーと、光重合開始剤と、紫外線吸収剤とを含有する光硬化性樹脂組成物。   The photocurable resin composition containing a polyfunctional (meth) acrylate monomer, the reactive polymer in any one of Claims 1-6, a photoinitiator, and a ultraviolet absorber. 前記反応性ポリマーの含有量は、多官能(メタ)アクリレートモノマーおよび反応性ポリマーの合計100質量部に対して5〜60質量部である、請求項7に記載の光硬化性樹脂組成物。   The photocurable resin composition according to claim 7, wherein the content of the reactive polymer is 5 to 60 parts by mass with respect to a total of 100 parts by mass of the polyfunctional (meth) acrylate monomer and the reactive polymer. 前記反応性ポリマー中のアルコキシシラン基の含有量は、反応性ポリマーを基準に0質量%を超え40質量%未満である、請求項7または8に記載の光硬化性樹脂組成物。   The photocurable resin composition according to claim 7 or 8, wherein the content of the alkoxysilane group in the reactive polymer is more than 0% by mass and less than 40% by mass based on the reactive polymer. 無機化合物を更に含有する、請求項7〜9のいずれかに記載の光硬化性樹脂組成物。   The photocurable resin composition according to any one of claims 7 to 9, further comprising an inorganic compound. 柱状、板状および層状無機化合物からなる群から選択される少なくとも1種の無機化合物を含有する、請求項10に記載の光硬化性樹脂組成物。   The photocurable resin composition according to claim 10, comprising at least one inorganic compound selected from the group consisting of columnar, plate-like and layered inorganic compounds. 基材フィルムと、前記基材フィルムの少なくとも片面側に積層された、請求項7〜11のいずれかに記載の光硬化性樹脂組成物の硬化物である硬化膜とを有する、積層体。   The laminated body which has a base film and the cured film which is a hardened | cured material of the photocurable resin composition in any one of Claims 7-11 laminated | stacked on the at least single side | surface side of the said base film. 基材フィルムは、ポリイミドでできた基材フィルムである、請求項12に記載の積層体。   The laminate according to claim 12, wherein the substrate film is a substrate film made of polyimide. 積層体の製造方法であって、
(1)請求項7〜11のいずれかに記載の光硬化性樹脂組成物を基材上に塗布することにより組成物層を得る工程、および
(2)組成物層を露光することにより該組成物層を硬化させる工程
を含む、方法。
A method of manufacturing a laminate,
A process for obtaining a composition layer by applying the photocurable resin composition according to any one of claims 7 to 11 onto a substrate, and (2) the composition by exposing the composition layer Curing the object layer.
基材がポリイミドである、請求項14に記載の方法。   15. The method of claim 14, wherein the substrate is a polyimide.
JP2018521772A 2016-06-10 2017-06-08 Reactive polymers, photocurable resin compositions and laminates Active JP6962911B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016116343 2016-06-10
JP2016116343 2016-06-10
PCT/JP2017/021303 WO2017213217A1 (en) 2016-06-10 2017-06-08 Reactive polymer, photocurable resin composition, and laminate

Publications (2)

Publication Number Publication Date
JPWO2017213217A1 true JPWO2017213217A1 (en) 2019-05-16
JP6962911B2 JP6962911B2 (en) 2021-11-05

Family

ID=60578676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018521772A Active JP6962911B2 (en) 2016-06-10 2017-06-08 Reactive polymers, photocurable resin compositions and laminates

Country Status (5)

Country Link
JP (1) JP6962911B2 (en)
KR (1) KR102389723B1 (en)
CN (1) CN109312019A (en)
TW (1) TWI811192B (en)
WO (1) WO2017213217A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395262B2 (en) * 2019-03-28 2023-12-11 株式会社カネカ Curable composition and (meth)acrylic polymer
JP2022156876A (en) * 2021-03-31 2022-10-14 Tdk株式会社 Resin composite laminate, production method of resin composite laminate and stretchable device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282805A (en) * 2005-03-31 2006-10-19 Emulsion Technology Co Ltd Adhesive composition curable with ultraviolet ray
JP2009128770A (en) * 2007-11-27 2009-06-11 Nof Corp Anti-reflection film having uv absorption, and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115100B2 (en) * 2012-11-23 2017-04-19 デクセリアルズ株式会社 Photocurable composition
RU2674057C2 (en) * 2012-12-25 2018-12-04 Акцо Нобель Коатингс Интернэшнл Б.В. Coating composition, method for preparation thereof and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282805A (en) * 2005-03-31 2006-10-19 Emulsion Technology Co Ltd Adhesive composition curable with ultraviolet ray
JP2009128770A (en) * 2007-11-27 2009-06-11 Nof Corp Anti-reflection film having uv absorption, and manufacturing method thereof

Also Published As

Publication number Publication date
TWI811192B (en) 2023-08-11
CN109312019A (en) 2019-02-05
TW201815854A (en) 2018-05-01
KR20190018160A (en) 2019-02-21
KR102389723B1 (en) 2022-04-25
WO2017213217A1 (en) 2017-12-14
JP6962911B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6300838B2 (en) Plastic film
JP5519064B2 (en) Laminate and its use
WO2014030852A1 (en) Hard coating film
WO2013180512A1 (en) Hard coating composition
WO2014030848A1 (en) Hard coating film
TWI495652B (en) Curable resin compound
JP5555089B2 (en) Urethane (meth) acrylate and photocurable resin composition containing the same
JP2011051340A (en) Laminated film for forming hard coat, roll film, and curable composition for forming hard coat
JP2015108093A (en) Curable resin composition, cured article and laminate
JP2013204001A (en) Active energy ray-curable resin composition and laminate using the same
JP2017156752A (en) Hard coating film
JP2021169613A (en) Curable composition, cured article and laminate
TWI510530B (en) Method for preparing plastic film
WO2015076566A1 (en) Plastic film
JP2014151588A (en) Laminate and use thereof
JP6962911B2 (en) Reactive polymers, photocurable resin compositions and laminates
TW201624127A (en) Photo-curable resin composition and method for producing laminate using the same
WO2015115154A1 (en) Molded resin object and use thereof
JP5819481B2 (en) Urethane (meth) acrylate and photocurable resin composition containing the same
JP5892799B2 (en) Urethane (meth) acrylate that forms a cured product having elongation and excellent scratch resistance, and a photocurable resin composition containing the same
JP6903941B2 (en) Urethane (meth) acrylate oligomer
JP6938889B2 (en) Active energy ray-curable resin composition and coating agent
JP5817295B2 (en) Active energy ray-curable resin composition, cured product thereof, and film
JP7140187B2 (en) Active energy ray-curable composition and film using the same
JP7035506B2 (en) Laminated films, decorative films and articles

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6962911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250