WO2017213078A1 - Gas cluster ion beam machining method and machining apparatus - Google Patents

Gas cluster ion beam machining method and machining apparatus Download PDF

Info

Publication number
WO2017213078A1
WO2017213078A1 PCT/JP2017/020805 JP2017020805W WO2017213078A1 WO 2017213078 A1 WO2017213078 A1 WO 2017213078A1 JP 2017020805 W JP2017020805 W JP 2017020805W WO 2017213078 A1 WO2017213078 A1 WO 2017213078A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
ion beam
cluster ion
gas cluster
processing
Prior art date
Application number
PCT/JP2017/020805
Other languages
French (fr)
Japanese (ja)
Inventor
谷川裕海
水金貴裕
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018522474A priority Critical patent/JPWO2017213078A1/en
Publication of WO2017213078A1 publication Critical patent/WO2017213078A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching

Definitions

  • the present invention relates to a gas cluster ion beam processing method and processing apparatus capable of precisely processing a mold and an optical element.
  • press molding using a mold or injection molding is an effective processing means.
  • the transfer surface of such a molding die is rough or the shape accuracy is poor, the surface roughness and shape accuracy of the molded product after molding are greatly deteriorated, and the performance of the molded product is lowered.
  • Patent Document 1 discloses a processing method in which the irradiation time of GCIB is controlled in accordance with the surface position of a spherical mold that is a workpiece, and the shape is created and polished by swinging for vertical irradiation.
  • Patent Document 2 the posture of a workpiece is controlled so that GCIB is perpendicularly incident at an arbitrary position on the surface of the workpiece, and a predetermined irradiation dose is applied to each position on the surface of the workpiece.
  • Patent Document 3 discloses a machining method that performs machining by controlling the posture of a workpiece so that GCIB irradiation distance is kept constant and GCIB is irradiated vertically.
  • Patent Document 4 discloses a machining method in which machining is performed by controlling the relative scanning speed of GCIB with respect to a workpiece in a swing stage. In any of the above Patent Documents 1 to 4, processing is performed while rotating the workpiece.
  • Patent Documents 1 to 4 correspond to processing when the workpiece has a rotationally symmetric shape, and can be applied as it is to processing when the workpiece has a non-rotationally symmetric shape such as a free-form surface. difficult.
  • the GCIB irradiation distance is kept constant, in the processing of a workpiece having a non-rotationally symmetric shape such as a free-form surface, the angle calculation of the swing axis becomes complicated, and the amount of control is controlled. Is not easy.
  • the present invention provides a gas cluster ion beam processing method capable of processing a target shape on a workpiece not only when the workpiece has a rotationally symmetric shape but also when the workpiece has a non-rotationally symmetric shape. Objective.
  • Another object of the present invention is to provide a gas cluster ion beam processing apparatus used in the above-described gas cluster ion beam processing method.
  • a gas cluster ion beam processing method reflecting one aspect of the present invention includes a gas cluster ion beam irradiated to a workpiece through an aperture member that squeezes the gas cluster ion beam to a predetermined size.
  • Three-dimensional translational movement of the workpiece relative to the aperture member while maintaining a constant distance between the aperture step of the aperture member and the workpiece, and an irradiation process for irradiating the workpiece with the cluster ion beam A scanning step, and in the scanning step, the relative scanning speed is controlled to achieve the processing target.
  • the irradiation process and the scanning process are performed in parallel.
  • a gas cluster ion beam processing apparatus reflecting one aspect of the present invention includes an aperture member opening for narrowing a gas cluster ion beam to a predetermined size and a workpiece.
  • a stage device that moves the workpiece relative to the aperture member in a three-dimensional translation while keeping the distance between them constant, and a gas cluster ion beam to be processed by causing the stage device to perform a three-dimensional translation.
  • a stage controller that scans the object while irradiating the object and changes the relative scanning speed of the irradiation position of the gas cluster ion beam according to the processing target.
  • FIG. 3A is a diagram for explaining the periphery of the aperture member of the GCIB irradiation apparatus in the processing apparatus of FIG. 1, and FIG. 3B is a diagram for explaining a modification of the periphery of the aperture member of FIG. 3A.
  • 4A to 4C are diagrams for explaining the scanning state of the GCIB.
  • It is a conceptual diagram explaining a shape measuring apparatus. 6A and 6B are diagrams illustrating a workpiece or the like. It is a flowchart explaining the processing method using the processing apparatus of FIG.
  • the gas cluster ion beam processing apparatus (hereinafter referred to as a processing apparatus 100) of the present embodiment processes a target shape on the surface of a workpiece WO to be described later.
  • the machining apparatus main body 10, a stage controller 96, a GCIB controller 97, and a main controller 99 are provided.
  • the processing apparatus main body 10 of the processing apparatus 100 includes a GCIB irradiation apparatus 20 and a stage apparatus 30.
  • the processing apparatus body 10 is disposed in the chamber 11.
  • the inside of the chamber 11 is depressurized by a vacuum device 12 at an appropriate degree of vacuum (for example, about 10 ⁇ 5 Pa).
  • the GCIB irradiation apparatus 20 is an apparatus that performs polishing or shape creation by etching that irradiates gas clusters using vacuum technology.
  • the GCIB irradiation device 20 includes a GCIB irradiation unit 21, a shutter 22, an aperture member 23, a shutter driving device 25, and an aperture support portion 26.
  • a GCIB beam generation gas is supplied to the GCIB irradiation apparatus 20 from a gas source (not shown) attached to the GCIB irradiation apparatus 20.
  • the beam generating gas is a gas containing a halogen element.
  • the gas containing a halogen element include F 2 , Cl 2 , Br 2 , NF 3 , SF 6 , CF 4 , SF 6 + He mixed gas, and SF 6 + Ar mixed gas.
  • a high pressure gas of about 0.1 to 1.0 MPa is supplied from the gas source.
  • the gas conditions are set as appropriate depending on the material and processing amount of the workpiece WO, which will be described later.
  • the gas pressure is For example, it is 0.4 MPa, and the irradiation dose can be, for example, about 2 ⁇ 10 16 to 2 ⁇ 10 17 ions / cm 2 .
  • the theoretical irradiation time of GCIB can be obtained by the following equation.
  • Irradiation time (irradiation dose x irradiation area x elementary charge e) / (detection ion current) Since the irradiation dose of GCIB (total amount of injected material) is proportional to the irradiation time, a very small processing depth of nano-order can be controlled by the irradiation time.
  • the GCIB irradiation dose varies depending on the position on the workpiece WO. For this reason, the irradiation time at each processing point on the workpiece WO is different, and the integrated value of the irradiation time (residence time) of the GCIB passing through each processing point on the workpiece WO is the resulting irradiation time.
  • the irradiation area is the area of the local irradiation region on the workpiece WO.
  • the detected ion current amount is a current flowing through the workpiece WO.
  • the high-pressure gas injected at supersonic speed from the gas source through the nozzle expands adiabatically, generating a gas cluster.
  • a gas cluster on the center side is selectively beamed in the chamber of the GCIB irradiation unit 21 and further ionized and accelerated to generate a gas cluster ion beam for processing (hereinafter also referred to as GCIB).
  • the particles constituting the GCIB are broken by the collision with the workpiece WO, and at that time, a multi-body collision between the cluster-constituting atoms or molecules and the workpiece-constituting atoms or molecules occurs, with respect to the surface of the workpiece WO. Therefore, the movement in the horizontal direction becomes remarkable.
  • the projections on the irradiated surface of the workpiece WO are mainly shaved, the entire irradiated surface is shaved, and flat ultra-precision polishing at the atomic size becomes possible.
  • the shutter 22 is a portion where a GCIB having a relatively large diameter collimated by the GCIB irradiation unit 21 is emitted, and turns on / off the GCIB at a desired timing.
  • the shutter 22 is opened and closed under the control of the shutter driving device 25.
  • the aperture member 23 partially shields the GCIB that irradiates the workpiece WO, and narrows the beam to a predetermined size by the circular opening 23a.
  • the aperture member 23 is supported by the aperture support 26 so that the end surface 23c on the workpiece WO side faces the workpiece WO.
  • the aperture member 23 is a thick cylindrical member having an opening 23a at the center.
  • the aperture member 23 is positioned by the aperture support portion 26 so that the irradiation axis BX of GCIB coincides with the central axis of the opening 23a.
  • the shape and size of the opening 23a are appropriately set according to the processing conditions, and the size depends on the performance of the GCIB irradiation device 20, but a local shape error portion (design shape and pre-processing before processing) on the workpiece WO. If there is a part having a difference from the shape), the area is equal to or smaller than the area, for example, a diameter of several mm to several tens of mm.
  • the end surface 23b on the GCIB irradiation unit 21 side and the end surface 23c on the workpiece WO side of the aperture member 23 are annular planes perpendicular to the irradiation axis BX of the GCIB and the center axis AX of the workpiece WO.
  • the central axis AX of the workpiece WO is a reference line of the workpiece surface Mb of the workpiece WO and corresponds to the optical axis.
  • the end surface 23c of the aperture member 23 is parallel to the bottom surface Ma of the workpiece WO when the bottom surface Ma of the workpiece WO is flat. Only GCIB that has passed through the opening 23a of the aperture member 23 is locally incident on the workpiece WO. Thereby, it is possible to precisely process the workpiece surface Mb of the workpiece WO with a local bias.
  • the aperture member 23 may be individually replaced depending on the conditions of the size and shape of the opening 23a, or an aperture changing mechanism 27 is provided as shown in FIG. 3B. It may be exchanged.
  • the aperture changing mechanism 27 shown in FIG. 3B includes a disk-shaped rotating disk 28 and a driving mechanism 29 that rotates the rotating disk 28.
  • a plurality of aperture members 23 having openings 23a having different sizes are provided on the turntable 28, and the aperture member 23 having openings 23a having a desired size can be selected by rotating the turntable 28. It has become.
  • the stage device 30 performs positioning and scanning movement of the workpiece WO.
  • the stage device 30 includes an X-axis stage 32, a Y-axis stage 33, a Z-axis stage 34, a rotation stage 35, and a swing stage 36.
  • the X-axis stage 32 and the Z-axis stage 34 are provided so as to be incorporated into a pedestal 37 of the stage apparatus 30 and indirectly move the workpiece WO in the X-axis direction or the Z-axis direction.
  • the Y-axis stage 33 is provided above the X-axis stage 32 and the Z-axis stage 34, and moves the workpiece WO indirectly in the Y-axis direction.
  • the stage device 30 performs a three-dimensional translational movement of the workpiece WO to an arbitrary position (that is, an orthogonal three-axis (XYZ axis)) by synchronizing the X-axis stage 32, the Y-axis stage 33, and the Z-axis stage 34. Move).
  • the rotary stage 35 is supported by the swing stage 36, and rotates about the rotation axis (axis parallel to the irradiation axis BX and Z axis of the GCIB), so that the XY plane (GCIB of the workpiece WO) is rotated.
  • the rotational attitude in the plane perpendicular to the irradiation axis BX is adjusted.
  • the workpiece WO On the GCIB irradiation apparatus 20 side of the rotary stage 35, the workpiece WO is attached in an aligned state.
  • the swing stage 36 is supported by a support portion 33a constituting the Y-axis stage 33, and swings or swivels around a swing axis CX (axis perpendicular to the irradiation axis BX of GCIB and parallel to the Y axis).
  • the posture or inclination of the workpiece WO is adjusted in the XZ plane (a plane parallel to the irradiation axis BX of GCIB).
  • Each of the stages 32, 33, 34, 35, and 36 is driven by an operation of a stage control unit 96 described later.
  • the workpiece WO In substantial processing of the workpiece WO, that is, relative scanning, only the X-axis stage 32, the Y-axis stage 33, and the Z-axis stage 34 are used, and the rotary stage 35 and the swing stage 36 are not used. That is, in the substantial processing, the workpiece WO is only three-dimensional translational movement. Thereby, the workpiece WO can be moved at a desired speed at a desired position in a plane parallel to the XY plane.
  • the rotary stage 35 and the swing stage 36 are adjusted so that the workpiece WO (specifically, the bottom surface Ma or the like) is in an appropriate posture with respect to the GCIB when the workpiece WO is fixed to the stage device 30. It is only used to Each stage 32, 33, 34, 35, 36 is equipped with a servo motor (not shown), a stepping motor, and the like, and is driven by a stage controller 96.
  • the workpiece WO fixed to the stage apparatus 30 has a large area compared to the GCIB beam size, and is a molding die 50 (see FIG. 6A) having a non-rotationally symmetric shape.
  • the GCIB irradiation axis BX is parallel to the center axis AX of the workpiece surface Mb of the workpiece WO by the operation of the swing stage 36 and the like.
  • the beam irradiation direction can be set with reference to the center axis AX of the workpiece WO.
  • the GCIB irradiation axis BX is such that the bottom surface Ma of the workpiece WO is a flat surface and is perpendicular to the bottom surface Ma of the workpiece WO.
  • the beam irradiation direction can be set without specifying the center axis AX of the workpiece WO.
  • the operation distance of the GCIB (distance between the aperture member 23 and the workpiece WO) is kept constant by the operation of the stage device 30, specifically the operation of the Z-axis stage 34. That is, the workpiece WO is displaced in the Z-axis direction according to the shape of the workpiece surface Mb.
  • the beam emitted from the aperture member 23 tends to expand as the distance from the processing surface Mb increases. Therefore, when the irradiation distance changes, the processing range and the processing depth change.
  • the irradiation distance is, for example, 5 mm or more and 25 mm or less.
  • the irradiation distance By setting the irradiation distance to 5 mm or more, it is possible to prevent the removed material of the processing surface Mb from adhering to the aperture member 23. Also, by setting the irradiation distance to 25 mm or less, the beam size does not spread too much, and the lateral resolution of the shape error (shape error frequency, spread in the surface direction, etc.) can be reduced.
  • the position or coordinates in the X-axis direction or Y-axis direction of the workpiece surface Mb of the workpiece WO and the position or coordinates in the GCIB irradiation direction are interlocked,
  • the GCIB and the workpiece WO can be relatively three-dimensionally translated and are raster-type scans in which the scanning speed changes according to the position, and an operation in which the irradiation distance is kept constant is possible.
  • the X-axis stage 32 and the Z-axis stage 34 are operated to simultaneously control the position of the workpiece WO in the X-axis direction and the position in the Z-axis direction.
  • the stage device 30 is controlled so that the relative scanning speed in the X-axis direction achieves the processing target of the workpiece WO (specifically, the shape error is corrected). That is, by controlling the relative scanning speed according to the processing target (specifically, the shape error amount), the processing amount is controlled by the beam stay time at the processing point.
  • the relative scanning speed is a speed at which the workpiece WO and GCIB move relatively (main scanning).
  • the relative scanning speed indicates the moving speed of the workpiece WO by the X-axis stage 32.
  • the Y-axis stage 33 is operated. That is, the Y-axis stage 33 is used for pitch feeding, and enables the workpiece WO to be processed continuously over the entire surface.
  • the Z-axis stage 34 is also operated in conjunction with the Y-axis stage 33.
  • the GCIB is relatively moved from end to end in the longitudinal direction of the workpiece WO by the X-axis stage 32, and then shifted by a predetermined distance in the Y-axis direction by the Y-axis stage 33.
  • the GCIB can scan the processing surface Mb while drawing a one-stroke writing scanning locus TK. Further, as shown in FIG.
  • the workpiece WO is displaced in the Z-axis direction by the Z-axis stage 34 interlocked according to the incident position of GCIB.
  • the irradiation surface DR is constant and the workpiece surface GCIB is uniformly irradiated two-dimensionally along the shape of Mb.
  • the GCIB scanning trajectory TK may be linear as viewed from the GCIB irradiation apparatus 20 side as shown in the figure, or may include a curve such as an arc according to the outer shape of the processing surface Mb.
  • the GCIB scanning pitch (or scanning pitch) is appropriately set according to the size of the opening 23a of the aperture member 23, the irradiation distance of the GCIB, and the like.
  • the diameter size of the opening 23a of the aperture member 23 is 5 mm, and the irradiation distance DR. Is 20 mm, the scanning pitch is about 0.1 mm.
  • the scanning pitch is preferably small, but if it is too small, the processing time increases. Further, as long as the processing is completed, the pitch may be changed instead of a constant pitch. Further, even with the same pitch, the pitch may be shifted by, for example, a half pitch.
  • a shape measuring device 40 and a shape measurement control unit 98 In addition to the processing apparatus 100, in order to measure the surface state of the processing surface Mb of the workpiece WO and the surface state of the dummy member WB for calibration, a shape measuring device 40 and a shape measurement control unit 98 (see FIG. 5).
  • the shape measuring device 40 measures a three-dimensional shape of a measurement object, and in the illustrated example, a shape measuring machine (UA3P: manufactured by Panasonic) is cited.
  • the shape measuring device 40 includes a pedestal 41, an XY axis stage 42, and a Z axis drive unit 43.
  • the Z-axis drive unit 43 is provided with an elevating unit 43a that supports the stylus PR so as to be elevable.
  • the stylus PR can be raised and lowered smoothly with high accuracy in a state where a constant load is applied to the tip.
  • the touch By appropriately operating the XY axis stage 42 and moving the workpiece WO or dummy member WB to be measured placed in alignment with the XY axis stage 42 so as to scan two-dimensionally, the touch
  • the tip of the needle PR can be moved two-dimensionally along the surface of the workpiece WO or the like.
  • the tip position of the stylus PR uses a laser interferometer (not shown) provided on the pedestal 41 so as to face the XY axis stage 42 or a laser interferometer (not shown) provided on the top of the stylus PR. Detected.
  • the shape measurement control unit 98 operates the shape measurement device 40 to measure the surface state of the workpiece WO or the like.
  • the surface shape data measured by the shape measuring device 40 is transferred from the shape measurement control unit 98 to the main control device 99 and used for creating shape correction NC data.
  • an interferometer WYKO: manufactured by Bruker
  • WYKO manufactured by Bruker
  • the stage control unit 96 enables high-precision numerical control, and drives a motor, a position sensor, and the like built in the stage device 30 under the control of the main control device 99. By doing so, each stage 32, 33, 34, 35, 36 is appropriately operated to a target state. That is, the stage control unit 96 drives the stage device 30 to adjust the position and posture of each stage 32, 33, 34, 35, 36. As shown in FIG. 4A and the like, the stage control unit 96 causes the X, Y, and Z axis stages 32, 33, and 34 to perform a three-dimensional translational movement in the substantial processing of the workpiece WO.
  • the relative scanning speed takes into account the surface inclination (angle with respect to the Z axis) at the GCIB incident position on the processing surface Mb or the GCIB incident angle.
  • the speed near the center of the workpiece WO in the longitudinal direction or the X-axis direction is slower than the speed near the outside.
  • the stage control unit 96 includes a motor driving unit 96a and a sensor driving unit 96b.
  • the motor drive unit 96a controls the operation of the motors mounted on the stages 32, 33, 34, 35, and 36.
  • the sensor driver 96b detects the position, speed, direction, and the like of each stage 32, 33, 34, 35, 36 via an encoder (not shown) and monitors the operation of the motor.
  • the GCIB control unit 97 controls the operation of the GCIB irradiation apparatus 20.
  • the GCIB control unit 97 includes a GCIB irradiation unit driving unit 97a, a shutter driving unit 97b, and an aperture driving unit 97c.
  • the GCIB irradiation unit driving unit 97a operates the GCIB irradiation unit 21 to inject GCIB to the workpiece WO side.
  • the shutter drive unit 97b controls the on / off operation of the shutter 22.
  • the aperture drive unit 97 c operates the aperture support unit 26 to adjust the position of the aperture member 23.
  • the main control device 99 comprehensively controls the processing apparatus main body 10, the stage control unit 96, the CGIB control unit 97, and the shape measurement control unit 98.
  • the main control device 99 includes an arithmetic processing unit 99a, a storage unit 99b, and an input / output unit 99c.
  • the main control device 99 operates the vacuum device 12 based on the operation of the user or the like, and adjusts the degree of vacuum in the processing apparatus main body 10.
  • the main control device 99 operates the CGIB control unit 97 to irradiate the workpiece WO with a GCIB having a desired size from the GCIB irradiation unit 21. Further, main controller 99 operates stage controller 96 to control the operation of stage device 30.
  • the input / output unit 99c receives information on the shape of the workpiece WO (specifically, target shape data of the workpiece WO (designed shape data of the workpiece WO)) by a user or the like, and saves it in the storage unit 99b. To do.
  • the storage unit 99b stores measurement data obtained by the shape measuring device 40 in addition to the above-described design shape data. Information on these shapes is a function of the position coordinates (XYZ) of the workpiece WO set at the reference position on the rotary stage 35, for example.
  • shape correction NC data creation CAM for creating shape correction NC data (machining control program) and CNC software (computer numerical control software) for executing shape correction NC data are mounted in the storage unit 99b.
  • the arithmetic processing unit 99a creates shape correction NC data from various shape data. Specifically, the arithmetic processing unit 99a reads the shape data and the like of the workpiece WO and the dummy member WB stored in the storage unit 99b, and sets each irradiation dose amount for obtaining a design shape. The relative scanning speed, pitch, etc. at the work point are calculated. The arithmetic processing unit 99a creates shape correction NC data for operating the stage device 30 based on the calculation result. The main control device 99 controls the operation of the stage device 30 by executing the shape correction NC data, and moves the workpiece WO supported by the stage device 30 in a three-dimensional translation so as to match the processing target.
  • molding die 50 comprised by the workpiece WO is for shape
  • the combiner 60 includes a screen portion 60a that is a rectangular curved plate-like member, and a rod-like support portion 60b that extends from the center of one side of the screen portion 60a.
  • the screen unit 60a includes a first optical surface 61 disposed on the viewer side and a second optical surface 62 disposed on the counter-viewer side.
  • the first optical surface 61 is, for example, a concave aspherical surface or a free curved surface.
  • the second optical surface 62 is, for example, a convex aspherical surface or a free curved surface.
  • the surface angle of the combiner 60 (the angle formed between the target portion of the tangential plane and the central axis AX) is relatively loose (specifically, 45 ° or less).
  • the first optical surface 61 is provided with a half mirror layer having a reflectance of, for example, 20 to 30% on the surface of a resin-made molding member having light transmittance.
  • the combiner 60 is incorporated in a head-up display device that is assembled around the dashboard in the vehicle.
  • the molding die 50 includes a first die 51 and a second die 52.
  • die 51 has the 1st molding surface 51a which forms the 1st optical surface 61 side of the combiner 60 which is a molded article.
  • the first molding surface 51 a has a transfer surface having a shape obtained by inverting the first optical surface 61.
  • the second mold 52 has a second molding surface 52 a that forms the second optical surface 62 of the combiner 60.
  • the second molding surface 52 a has a transfer surface having a shape obtained by inverting the second optical surface 62.
  • the first and second molding surfaces 51a and 52a may be subjected to metal plating such as electroless Ni—P plating.
  • the first and second molding surfaces 51a and 52a of the molding die 50 are mainly processed.
  • the workpiece WO processed by the processing apparatus 100 is not limited to a mold having a large area such as the molding die 50 but may be a combiner 60 itself that is a molded product.
  • the workpiece WO may be another product, for example, an optical original device or an optical element such as a mirror or a lens.
  • the workpiece surface Mb of the workpiece WO is not limited to a non-rotationally symmetric shape such as a free-form surface, and may have a rotationally symmetric shape.
  • the material of the workpiece WO is not limited to metal or resin, but may be glass or the like.
  • target shape data (design shape data) of the workpiece WO is stored in advance in the storage unit 99b by a user operation or the like.
  • processing data standard processing data and angle-dependent processing data for calibration are acquired using the dummy member WB.
  • the dummy member WB the same material as that of the workpiece WO is used.
  • the processed data is angle-dependent data with respect to the GCIB removal amount.
  • the workpiece WO can be processed without swinging by correcting the GCIB processing amount according to the surface angle of the processing point of the processing WO. Thereby, the positioning of the workpiece surface Mb of the workpiece WO and the GCIB is facilitated, and the actual machining time can be shortened.
  • the standard machining data and the angle-dependent machining data may be used if there is a ready-made database.
  • step S11 standard processing data of the dummy member WB is acquired (step S11).
  • the main control device 99 operates the GCIB control unit 97 to irradiate the GCIB from the GCIB irradiation device 20 and process the flat dummy member WB.
  • the main controller 99 operates the stage controller 96 to move the stage device 30 to which the dummy member WB is attached.
  • main controller 99 operates stage device 30 so that the incident angle of GCIB is 0 ° and the irradiation distance and the irradiation time are constant.
  • the stage device 30 aligns the central axis AX of the dummy member WB and the irradiation axis BX of the GCIB in parallel.
  • the surface shape of the dummy member WB is measured using the shape measuring device 40.
  • the processed dummy member WB is removed from the stage device 30 and then set in the shape measuring device 40.
  • the main control device 99 operates the shape measurement control unit 98 to cause the shape measurement device 40 to measure the machining shape information regarding the dummy member WB.
  • the measured machining shape information is stored in the storage unit 99b.
  • the machining shape information is computed by the computation processing unit 99a of the main controller 99, and as standard machining data, the relative scanning speed and machining depth data at the incident angle of 0 ° (or the relative scanning speed at the surface angle of 0 °) Correlation data with the GCIB processing amount) is stored in the storage unit 99b.
  • step S12 angle-dependent machining data of the dummy member WB is acquired (step S12).
  • the processing distance information of the dummy member WB is acquired using the GCIB irradiation device 20, the stage device 30, the shape measuring device 40, and the like, with the irradiation distance and the irradiation time being constant, but in step S12,
  • the incident angle of GCIB applied to the dummy member WB is changed using the swing stage 36 or the like.
  • the machining shape information measured in step S12 is arithmetically processed by the arithmetic processing unit 99a of the main control device 99, and as angle-dependent processing data, data of the processing depth when the incident angle is changed (or the GCIB processing rate). Angle-dependent data) is stored in the storage unit 99b.
  • the shape data before processing of the workpiece WO to be actually processed is acquired (step S13).
  • the main control device 99 operates the shape measurement control unit 98 and causes the shape measurement device 40 to measure shape information regarding the workpiece WO before processing.
  • the main control device 99 operates the shape measurement control unit 98 to move the XY axis stage 42 of the shape measurement device 40 over the entire processing range from the processing start point to the processing end point of the workpiece WO (in this embodiment, , The entire processing surface Mb is moved so as to scan.
  • the measured shape information is stored in the storage unit 99b.
  • the shape information is subjected to arithmetic processing by the arithmetic processing unit 99a of the main control device 99, and position coordinate and surface angle data is stored in the storage unit 99b as pre-processing shape data.
  • the surface angle data is calculated by a predetermined design formula from an approximation formula etc. of the shape before processing, and the incident angle of GCIB coincides with the surface angle based on the central axis AX.
  • the shape error data of the workpiece WO is acquired (step S14).
  • the main control device 99 reads the design shape data and the pre-processing shape data from the storage unit 99b, and the arithmetic processing unit 99a calculates the difference between the design shape data and the pre-processing shape data.
  • the calculation result is stored in the storage unit 99b as shape error data.
  • shape correction NC data for shape error correction is created (step S15).
  • the main controller 99 reads the standard machining data and angle-dependent machining data of the dummy member WB and the shape error data of the workpiece WO from the storage unit 99b, and uses the shape correction NC data creation CAM in the arithmetic processing unit 99a. Create corrected NC data.
  • the shape correction NC data is calculated using, for example, a curved surface processing algorithm. Based on the standard processing data of the dummy member WB (see step S11), it is possible to obtain the irradiation dose at each position of the GCIB for removing the substance corresponding to the error. This irradiation dose is correlated with the relative scanning speed.
  • the GCIB beam size and the processing depth within the range of the beam size (the depth from the original surface of the portion where the material on the surface of the dummy member WB has been removed by irradiation: The relationship with the GCIB processing amount) is also obtained. Further, based on the angle-dependent machining data (see step S12), the angle-dependent GCIB machining amount corresponding to the surface angle of each machining point can be calculated.
  • the angle-dependent GCIB processing amount is a GCIB processing rate corresponding to the incident angle of GCIB.
  • the GCIB processing amount corresponding to the surface angle of the processing point of the workpiece WO is corrected from the shape error data, so that the GCIB processing amount for correcting the shape error is changed for each object. It can be converted into a corrected relative scanning speed corresponding to the surface angle at the processing point. Thereby, the conditions which can be processed in the state which does not rock
  • the shape correction NC data includes position coordinates (data points) of processing points of the workpiece WO, relative scanning speed data for each data point, scanning pitch, the number of times of irradiation within the processing range, and the like. Of these, the number of irradiations has a primary meaning of dividing the processing amount when the processing amount is large, but has the meaning of reducing processing unevenness and preventing redeposition of removed matter.
  • the shape correction NC data is stored in the storage unit 99b.
  • the workpiece WO is positioned at the machining start point (step S16).
  • the workpiece WO fixed on the stage apparatus 30 is positioned with respect to the aperture member 23 of the GCIB irradiation apparatus 20.
  • the opening 23a of the aperture member 23 is positioned on the corner (or edge) of the workpiece WO to be the reference point (or processing start point).
  • alignment is performed so that the center axis AX of the workpiece WO and the irradiation axis BX of the GCIB are parallel to each other.
  • the central axis of the aperture member 23, that is, the GCIB irradiation axis BX is parallel to the central axis AX of the workpiece WO or perpendicular to the bottom surface Ma of the workpiece WO.
  • the XY position coordinates of the workpiece WO are aligned so as to coincide with the XY position coordinates of the workpiece WO measured by the shape measuring device 40.
  • step S17 GCIB irradiation and relative scanning are performed on the workpiece WO (step S17).
  • the main control device 99 causes the stage control unit 96, the GCIB control unit 97, and the like to execute the shape correction NC data read from the storage unit 99b using the CNC software.
  • the main controller 99 operates the stage controller 96 and drives the stage device 30 to move the workpiece WO relative to the GCIB.
  • the workpiece WO keeps the GCIB irradiation distance constant from the machining start point (for example, the corner of the workpiece WO) to the machining end point (the corner opposite to the machining start point).
  • the relative scanning speed (specifically, the speed in the X-axis direction) is changed so as to correct the shape error of the workpiece WO, and the three-dimensional translational movement relative to the GCIB is performed two-dimensionally. Raster type scanning is performed.
  • the main control device 99 operates the GCIB control unit 97 to drive the GCIB irradiation device 20 to irradiate the workpiece surface Mb of the workpiece WO with GCIB.
  • the GCIB draws a one-stroke writing scanning trajectory TK over the entire surface to be processed Mb at a predetermined scanning pitch.
  • the processing range by GCIB does not make a step at the boundary between the GCIB irradiation surface and the non-irradiation surface, it is desirable that the entire processing surface Mb is used even when local shape correction is performed.
  • Adjustment of the irradiation dose required for processing is performed by controlling the relative scanning speed of the workpiece WO with respect to GCIB. The portion where shape correction is not required is scanned so that the beam stay time is minimized. When the relative scanning speed is slow, the irradiation dose amount increases, and the processing amount of the portion increases. On the other hand, when the relative scanning speed is high, the irradiation dose is reduced, and the partial processing amount is reduced.
  • the irradiation dose amount at each processing point is calculated so that the total processing amount in irradiation corrects the shape error acquired in step S14. For this reason, it is possible to correct the shape error existing in the workpiece WO before processing.
  • GCIB irradiation it is desirable to repeat scanning many times so that a removed material does not deposit more than a certain amount on the irradiated surface.
  • the processing in one order (the entire processing range) from the processing start point to the processing end point of the workpiece WO is completed, and a shape error remains in the workpiece WO, and the irradiation process and scanning in step S17 again.
  • the process is performed, that is, when the predetermined number of irradiations is not reached (N in Step S18)
  • the process returns to the positioning process in Step S16, and the processing on the workpiece WO is repeated. If there is no shape error in the workpiece WO (Y in step S18), the processing is terminated. Thereby, the workpiece WO which achieved the processing target can be obtained.
  • the processing method and the processing apparatus described above with respect to GCIB reduced to a predetermined size, relative irradiation is performed so that the irradiation distance DR (distance between the aperture member 23 and the workpiece WO) is kept constant, and relative By controlling the scanning speed so as to achieve the processing target, the target shape can be formed on the workpiece WO so that the surface roughness is, for example, about PV 100 nm.
  • the irradiation distance DR constant, for example, it is possible to cover the process of forming the target shape with the processing measurement result of one kind of dummy member WB at a certain distance.
  • the workpiece WO is processed without swinging, the difficulty of positioning is reduced compared to when swinging, and the processing time can be shortened. Further, since the three-dimensional translational movement is performed at the time of relative scanning, it is possible to avoid uneven irradiation such as a portion where the beam is always irradiated as in the case of rotating the workpiece WO, and a steep step due to the rotation processing. Therefore, shape error correction is highly accurate and shape control is facilitated. Thereby, not only the workpiece WO having a rotationally symmetric shape but also the workpiece WO having a non-rotationally symmetric shape such as a free-form surface can be processed with high accuracy and efficiency.
  • a workpiece WO having a side length of 50 cm and a rectangular outer shape was used.
  • the workpiece WO has a convex shape on the center side.
  • the material of the workpiece WO is a SUS material.
  • the surface of the workpiece WO is subjected to electroless Ni—P plating.
  • the gas pressure was 0.4 MPa, and the irradiation dose was 2 ⁇ 10 16 to 2 ⁇ 10 17 ions / cm 2 .
  • the aperture member 23 is made of SUS, and the size of the opening 23a is 5 mm in diameter.
  • the above-described workpiece WO was fixed to the stage device 30, and the workpiece WO was subjected to three-dimensional translational scanning processing (linear scanning processing).
  • the stage device 30 is configured to simultaneously control the operation in the X-axis direction and the operation in the Z-axis direction and perform pitch feed in the Y-axis direction.
  • the scanning pitch was 0.1 mm.
  • the irradiation distance DR of GCIB was 20 mm.
  • the surface shape of the processing surface Mb was measured using the shape measuring device 40.
  • the shape error PV before processing was 300 nm
  • the shape error PV after processing after correcting the shape error was 100 nm, and the surface roughness was improved.
  • the processing apparatus etc. which concern on this embodiment were demonstrated, the processing apparatus etc. which concern on this invention are not restricted to said thing.
  • the shape and size of the processing surface Mb of the workpiece WO can be appropriately changed according to the application and function.
  • the workpiece WO one having a non-flat bottom Ma can be used.
  • the irradiation axis BX of GCIB is aligned with the central axis AX of the workpiece WO.
  • the shape and size of the opening 23a of the aperture member 23 can be changed as appropriate according to the shape and size of the processing surface Mb.
  • the entire processing surface Mb of the workpiece WO is processed, but a part thereof may be processed.
  • step S12 of the processing method data is acquired by changing the incident angle using one flat dummy member WB, but the data is acquired using the dummy member WB having changed incident angle. You may get it.
  • the dummy member WB is provided with a plurality of inclined surfaces.
  • an XYZ axis stage for positioning the workpiece WO with respect to the rotary stage 35 may be provided on the rotary stage 35.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

Provided is a gas cluster ion beam machining method that allows a work object to be machined into an intended shape even if the work object has a rotationally asymmetric shape. The present invention is provided with: an irradiation step for irradiating a work object (WO) with a gas cluster ion beam (GCIB) via an aperture member (23) for stopping down, to a prescribed size, the GCIB radiated on the work object (WO); and a scanning step for three-dimensionally translating the work object (WO) relative to the aperture member (23) while keeping the distance between an opening (23a) of the aperture member (23) and the work object (WO) constant, wherein the relative scanning speed is controlled so as to achieve a machining target in the scanning step.

Description

ガスクラスターイオンビーム加工方法及び加工装置Gas cluster ion beam processing method and processing apparatus
 本発明は、金型や光学素子を精密に加工することができるガスクラスターイオンビーム加工方法及び加工装置に関する。 The present invention relates to a gas cluster ion beam processing method and processing apparatus capable of precisely processing a mold and an optical element.
 光学素子等の成形品を大量生産するためには成形型を使用したプレス成形や射出成形等が有力な加工手段となっている。このような成形型の転写面が粗面であったり、形状精度が悪かったりすると、成形後の成形品の面粗さや形状精度の劣化も大きくなり、成形品の性能が低下する。 In order to mass-produce molded products such as optical elements, press molding using a mold or injection molding is an effective processing means. When the transfer surface of such a molding die is rough or the shape accuracy is poor, the surface roughness and shape accuracy of the molded product after molding are greatly deteriorated, and the performance of the molded product is lowered.
 そこで、ガスクラスターイオンビーム(GCIB)を被加工面に照射することにより、被加工面の表面粗さを改善したり、形状修正を行ったりする加工方法がある(例えば、特許文献1~4参照)。特許文献1には、被加工物である球面成形型の表面位置に応じてGCIBの照射時間を制御し、垂直照射するために揺動させて形状創成及び研磨する加工方法が開示されている。特許文献2には、GCIBが被加工物の表面上の任意の位置で垂直に入射するように被加工物の姿勢を制御し、かつ被加工物の表面の各位置に所定の照射ドーズ量でGCIBが照射されるようにGCIBの走査速度を制御して研磨する加工方法が開示されている。特許文献3には、GCIBの照射距離を一定に保ち、GCIBが垂直に照射されるように被加工物の姿勢を制御して加工する加工方法が開示されている。特許文献4には、揺動ステージにおける、被加工物に対するGCIBの相対走査速度を制御して加工する加工方法が開示されている。上記特許文献1~4のいずれも、被加工物を回転させながら加工を行っている。 Accordingly, there is a processing method for improving the surface roughness of the processing surface or correcting the shape by irradiating the processing surface with a gas cluster ion beam (GCIB) (see, for example, Patent Documents 1 to 4). ). Patent Document 1 discloses a processing method in which the irradiation time of GCIB is controlled in accordance with the surface position of a spherical mold that is a workpiece, and the shape is created and polished by swinging for vertical irradiation. In Patent Document 2, the posture of a workpiece is controlled so that GCIB is perpendicularly incident at an arbitrary position on the surface of the workpiece, and a predetermined irradiation dose is applied to each position on the surface of the workpiece. A processing method for polishing by controlling the scanning speed of GCIB so that GCIB is irradiated is disclosed. Patent Document 3 discloses a machining method that performs machining by controlling the posture of a workpiece so that GCIB irradiation distance is kept constant and GCIB is irradiated vertically. Patent Document 4 discloses a machining method in which machining is performed by controlling the relative scanning speed of GCIB with respect to a workpiece in a swing stage. In any of the above Patent Documents 1 to 4, processing is performed while rotating the workpiece.
 しかしながら、特許文献1~4の方法では、被加工物が回転対称形状を有する場合の加工に対応したものとなっており、自由曲面等の非回転対称形状の場合の加工にそのまま適用することが難しい。例えば、特許文献3の方法では、GCIBの照射距離を一定に保つものの、自由曲面等の非回転対称形状を有する被加工物の加工において、揺動軸の角度計算が煩雑となり、加工量の制御も容易でない。また、上記特許文献1~4の加工方法では、被加工物を回転させながら加工することが前提となっており、回転中心付近に急峻な段差が発生しやすくなる。 However, the methods of Patent Documents 1 to 4 correspond to processing when the workpiece has a rotationally symmetric shape, and can be applied as it is to processing when the workpiece has a non-rotationally symmetric shape such as a free-form surface. difficult. For example, in the method of Patent Document 3, although the GCIB irradiation distance is kept constant, in the processing of a workpiece having a non-rotationally symmetric shape such as a free-form surface, the angle calculation of the swing axis becomes complicated, and the amount of control is controlled. Is not easy. In the processing methods of Patent Documents 1 to 4, it is assumed that the workpiece is processed while rotating, and a steep step is likely to occur near the center of rotation.
特開2005-120393号公報JP 2005-120393 A 特開2007-321185号公報JP 2007-32185 A 特開2009-190068号公報JP 2009-190068 A 特開2009-274085号公報JP 2009-274085 A
 本発明は、被加工物が回転対称形状を有する場合だけでなく、非回転対称形状を有する場合でも、被加工物に目標形状を加工することができるガスクラスターイオンビーム加工方法を提供することを目的とする。 The present invention provides a gas cluster ion beam processing method capable of processing a target shape on a workpiece not only when the workpiece has a rotationally symmetric shape but also when the workpiece has a non-rotationally symmetric shape. Objective.
 また、本発明は、上述のガスクラスターイオンビーム加工方法に用いられるガスクラスターイオンビーム加工装置を提供することを目的とする。 Another object of the present invention is to provide a gas cluster ion beam processing apparatus used in the above-described gas cluster ion beam processing method.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したガスクラスターイオンビーム加工方法は、被加工物に照射するガスクラスターイオンビームを所定サイズに絞るアパーチャー部材を通して、ガスクラスターイオンビームを被加工物に照射する照射工程と、アパーチャー部材の開口部と被加工物との間の距離を一定に保ちつつ、被加工物をアパーチャー部材に対して相対的に3次元並進移動させる走査工程とを備え、走査工程において、相対走査速度を加工目標を達成するように制御する。なお、照射工程と走査工程とは並行して行われる。 In order to achieve at least one of the above-described objects, a gas cluster ion beam processing method reflecting one aspect of the present invention includes a gas cluster ion beam irradiated to a workpiece through an aperture member that squeezes the gas cluster ion beam to a predetermined size. Three-dimensional translational movement of the workpiece relative to the aperture member while maintaining a constant distance between the aperture step of the aperture member and the workpiece, and an irradiation process for irradiating the workpiece with the cluster ion beam A scanning step, and in the scanning step, the relative scanning speed is controlled to achieve the processing target. The irradiation process and the scanning process are performed in parallel.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したガスクラスターイオンビーム加工装置は、ガスクラスターイオンビームを所定サイズに絞るアパーチャー部材の開口部と被加工物との間の距離を一定に保ちつつ、被加工物をアパーチャー部材に対して相対的に3次元並進移動させるステージ装置と、ステージ装置に3次元並進移動を行わせることによって、ガスクラスターイオンビームを被加工物に照射しつつ走査するとともに、ガスクラスターイオンビームの照射位置の相対走査速度を加工目標に応じて変化させるステージ制御部とを備える。 In order to achieve at least one of the above-described objects, a gas cluster ion beam processing apparatus reflecting one aspect of the present invention includes an aperture member opening for narrowing a gas cluster ion beam to a predetermined size and a workpiece. A stage device that moves the workpiece relative to the aperture member in a three-dimensional translation while keeping the distance between them constant, and a gas cluster ion beam to be processed by causing the stage device to perform a three-dimensional translation. A stage controller that scans the object while irradiating the object and changes the relative scanning speed of the irradiation position of the gas cluster ion beam according to the processing target.
実施形態に係る加工装置を説明する断面概念図である。It is a section conceptual diagram explaining the processing device concerning an embodiment. 図1の加工装置のうち制御系を説明する図である。It is a figure explaining a control system among the processing apparatuses of FIG. 図3Aは、図1の加工装置のうちGCIB照射装置のアパーチャー部材周辺を説明する図であり、図3Bは、図3Aのアパーチャー部材周辺の変形例を説明する図である。3A is a diagram for explaining the periphery of the aperture member of the GCIB irradiation apparatus in the processing apparatus of FIG. 1, and FIG. 3B is a diagram for explaining a modification of the periphery of the aperture member of FIG. 3A. 図4A~4Cは、GCIBの走査状態を説明する図である。4A to 4C are diagrams for explaining the scanning state of the GCIB. 形状測定装置を説明する概念図である。It is a conceptual diagram explaining a shape measuring apparatus. 図6A及び6Bは、被加工物等を説明する図である。6A and 6B are diagrams illustrating a workpiece or the like. 図1の加工装置を用いた加工方法を説明するフローチャートである。It is a flowchart explaining the processing method using the processing apparatus of FIG.
 以下、図面を参照して、ガスクラスターイオンビーム加工方法、及び当該加工方法に用いられるガスクラスターイオンビーム加工装置の一実施形態について説明する。 Hereinafter, an embodiment of a gas cluster ion beam processing method and a gas cluster ion beam processing apparatus used for the processing method will be described with reference to the drawings.
〔GCIB加工装置〕
 図1及び図2に示すように、本実施形態のガスクラスターイオンビーム加工装置(以下、加工装置100)は、後述する被加工物WOの表面に対して目標形状の加工を行うものであり、加工装置本体10と、ステージ制御部96と、GCIB制御部97と、主制御装置99とを備える。
[GCIB processing equipment]
As shown in FIGS. 1 and 2, the gas cluster ion beam processing apparatus (hereinafter referred to as a processing apparatus 100) of the present embodiment processes a target shape on the surface of a workpiece WO to be described later. The machining apparatus main body 10, a stage controller 96, a GCIB controller 97, and a main controller 99 are provided.
 加工装置100の加工装置本体10は、GCIB照射装置20と、ステージ装置30とを備える。加工装置本体10は、チャンバー11内に配置されている。加工時において、チャンバー11内は、真空装置12によって適切な真空度(例えば、10-5Pa程度)で減圧されている。 The processing apparatus main body 10 of the processing apparatus 100 includes a GCIB irradiation apparatus 20 and a stage apparatus 30. The processing apparatus body 10 is disposed in the chamber 11. During processing, the inside of the chamber 11 is depressurized by a vacuum device 12 at an appropriate degree of vacuum (for example, about 10 −5 Pa).
 GCIB照射装置20は、真空技術を利用してガスクラスターを照射するエッチングによって研磨又は形状創成を行う装置である。GCIB照射装置20は、GCIB照射ユニット21と、シャッター22と、アパーチャー部材23と、シャッター駆動装置25と、アパーチャー支持部26とを備える。 The GCIB irradiation apparatus 20 is an apparatus that performs polishing or shape creation by etching that irradiates gas clusters using vacuum technology. The GCIB irradiation device 20 includes a GCIB irradiation unit 21, a shutter 22, an aperture member 23, a shutter driving device 25, and an aperture support portion 26.
 GCIB照射ユニット21では、GCIB照射装置20に付随する不図示のガス源から、GCIB照射装置20にGCIBのビーム発生ガスが供給される。ビーム発生ガスは、ハロゲン元素を含むガスである。これにより、除去レートを高くすることができる。ハロゲン元素を含むガスとしては、例えば、F、Cl、Br、NF、SF、CF、SF+He混合ガス、SF+Ar混合ガス等が挙げられる。ガス源からは0.1~1.0MPa程度の高圧ガスが供給されている。ガスの条件は後述する被加工物WOの材質や加工量等によって適宜設定されるが、例えばSF+He混合ガス(混合比がSF:He=1:9)を用いるとして、ガス圧は、例えば0.4MPaであり、照射ドーズ量は、例えば2×1016~2×1017ions/cm程度とすることができる。照射ドーズ量の目標値がある場合、GCIBの理論上の照射時間は、以下の式によって求めることができる。
照射時間
 =(照射ドーズ量×照射面積×電気素量e)/(検出イオン電流量)
GCIBの照射ドーズ量(注入された物質の総量)は照射時間に比例するため、照射時間によってナノオーダーという非常に小さい量の加工深さを制御することができる。なお、本実施形態では、被加工物WO上の位置によってGCIBの照射ドーズ量が変化する。このため、被加工物WO上の各被加工点における照射時間が異なっており、被加工物WOの各被加工点を通過するGCIBの照射時間(滞留時間)の積分値が結果的な照射時間となっている。また、照射面積は、アパーチャー部材23によってGCIBを絞った場合、被加工物WO上の局所的な照射領域の面積となる。検出イオン電流量は、被加工物WOに流れる電流である。
In the GCIB irradiation unit 21, a GCIB beam generation gas is supplied to the GCIB irradiation apparatus 20 from a gas source (not shown) attached to the GCIB irradiation apparatus 20. The beam generating gas is a gas containing a halogen element. Thereby, the removal rate can be increased. Examples of the gas containing a halogen element include F 2 , Cl 2 , Br 2 , NF 3 , SF 6 , CF 4 , SF 6 + He mixed gas, and SF 6 + Ar mixed gas. A high pressure gas of about 0.1 to 1.0 MPa is supplied from the gas source. The gas conditions are set as appropriate depending on the material and processing amount of the workpiece WO, which will be described later. For example, assuming that SF 6 + He mixed gas (mixing ratio is SF 6 : He = 1: 9) is used, the gas pressure is For example, it is 0.4 MPa, and the irradiation dose can be, for example, about 2 × 10 16 to 2 × 10 17 ions / cm 2 . When there is a target value of the irradiation dose, the theoretical irradiation time of GCIB can be obtained by the following equation.
Irradiation time = (irradiation dose x irradiation area x elementary charge e) / (detection ion current)
Since the irradiation dose of GCIB (total amount of injected material) is proportional to the irradiation time, a very small processing depth of nano-order can be controlled by the irradiation time. In the present embodiment, the GCIB irradiation dose varies depending on the position on the workpiece WO. For this reason, the irradiation time at each processing point on the workpiece WO is different, and the integrated value of the irradiation time (residence time) of the GCIB passing through each processing point on the workpiece WO is the resulting irradiation time. It has become. Further, when the GCIB is narrowed down by the aperture member 23, the irradiation area is the area of the local irradiation region on the workpiece WO. The detected ion current amount is a current flowing through the workpiece WO.
 ガス源からノズルを介して超音速で噴射した高圧ガスは、断熱膨張し、ガスクラスターが生成される。GCIB照射ユニット21のチャンバー内で中心側のガスクラスターが選択的にビーム化し、さらにイオン化及び加速化することで加工用のガスクラスターイオンビーム(以下ではGCIBとも呼ぶ)が生成される。GCIBを構成する粒子は、被加工物WOとの衝突によって壊れ、その際に、クラスター構成原子又は分子と被加工物構成原子又は分子との多体衝突が生じ、被加工物WOの表面に対して水平方向への運動が顕著となる。これにより、被加工物WOの照射表面における突起が主に削られつつ、照射表面全体が削られ、原子サイズでの平坦な超精密研磨が可能となる。 The high-pressure gas injected at supersonic speed from the gas source through the nozzle expands adiabatically, generating a gas cluster. A gas cluster on the center side is selectively beamed in the chamber of the GCIB irradiation unit 21 and further ionized and accelerated to generate a gas cluster ion beam for processing (hereinafter also referred to as GCIB). The particles constituting the GCIB are broken by the collision with the workpiece WO, and at that time, a multi-body collision between the cluster-constituting atoms or molecules and the workpiece-constituting atoms or molecules occurs, with respect to the surface of the workpiece WO. Therefore, the movement in the horizontal direction becomes remarkable. As a result, while the projections on the irradiated surface of the workpiece WO are mainly shaved, the entire irradiated surface is shaved, and flat ultra-precision polishing at the atomic size becomes possible.
 シャッター22は、GCIB照射ユニット21でコリメートされた比較的大きな直径を有するGCIBが射出される部分であり、GCIBを所望のタイミングでオン・オフする。シャッター22は、シャッター駆動装置25の制御によって開閉駆動される。 The shutter 22 is a portion where a GCIB having a relatively large diameter collimated by the GCIB irradiation unit 21 is emitted, and turns on / off the GCIB at a desired timing. The shutter 22 is opened and closed under the control of the shutter driving device 25.
 アパーチャー部材23は、被加工物WOを照射するGCIBを部分的に遮蔽し、円形の開口部23aによってビームを所定サイズに絞るものである。図1及び図3Aに示すように、アパーチャー部材23は、被加工物WO側の端面23cが被加工物WOに対向するようにアパーチャー支持部26に支持されている。アパーチャー部材23は、中心部に開口部23aを有する肉厚の筒状部材である。アパーチャー部材23は、アパーチャー支持部26によって、GCIBの照射軸BXが開口部23aの中心軸と一致するように位置決めされている。開口部23aの形状やサイズは、加工条件に応じて適宜設定され、そのサイズは、GCIB照射装置20の性能にもよるが、被加工物WOに局所的な形状誤差部分(設計形状と加工前形状との差がある部分)が存在する場合、その面積以下であり、例えば直径数mm~数十mmとなっている。アパーチャー部材23のGCIB照射ユニット21側の端面23b及び被加工物WO側の端面23cは、GCIBの照射軸BXや被加工物WOの中心軸AXに垂直な輪帯状の平面となっている。ここで、被加工物WOの中心軸AXとは、被加工物WOの被加工面Mbの基準線であり、光軸に相当するものである。なお、アパーチャー部材23の端面23cは、被加工物WOの底面Maが平面である場合には、被加工物WOの底面Maに平行となっている。被加工物WOには、アパーチャー部材23の開口部23aを通過したGCIBのみが局所的に入射する。これにより、被加工物WOの被加工面Mbについて局所的な偏りを持たせて精密加工することができる。 The aperture member 23 partially shields the GCIB that irradiates the workpiece WO, and narrows the beam to a predetermined size by the circular opening 23a. As shown in FIGS. 1 and 3A, the aperture member 23 is supported by the aperture support 26 so that the end surface 23c on the workpiece WO side faces the workpiece WO. The aperture member 23 is a thick cylindrical member having an opening 23a at the center. The aperture member 23 is positioned by the aperture support portion 26 so that the irradiation axis BX of GCIB coincides with the central axis of the opening 23a. The shape and size of the opening 23a are appropriately set according to the processing conditions, and the size depends on the performance of the GCIB irradiation device 20, but a local shape error portion (design shape and pre-processing before processing) on the workpiece WO. If there is a part having a difference from the shape), the area is equal to or smaller than the area, for example, a diameter of several mm to several tens of mm. The end surface 23b on the GCIB irradiation unit 21 side and the end surface 23c on the workpiece WO side of the aperture member 23 are annular planes perpendicular to the irradiation axis BX of the GCIB and the center axis AX of the workpiece WO. Here, the central axis AX of the workpiece WO is a reference line of the workpiece surface Mb of the workpiece WO and corresponds to the optical axis. The end surface 23c of the aperture member 23 is parallel to the bottom surface Ma of the workpiece WO when the bottom surface Ma of the workpiece WO is flat. Only GCIB that has passed through the opening 23a of the aperture member 23 is locally incident on the workpiece WO. Thereby, it is possible to precisely process the workpiece surface Mb of the workpiece WO with a local bias.
 アパーチャー部材23は、図3Aに示すように、開口部23aのサイズや形状の異なるものを条件に応じて個別に交換してもよいし、図3Bに示すように、アパーチャー変更機構27を設けて交換してもよい。図3Bに示すアパーチャー変更機構27は、円盤状の回転盤28と、回転盤28を回転動作させる駆動機構29とを有している。回転盤28には、大きさの異なる開口部23aを有するアパーチャー部材23が複数設けられており、回転盤28を回転させることで所望の大きさの開口部23aを有するアパーチャー部材23を選択できるようになっている。 As shown in FIG. 3A, the aperture member 23 may be individually replaced depending on the conditions of the size and shape of the opening 23a, or an aperture changing mechanism 27 is provided as shown in FIG. 3B. It may be exchanged. The aperture changing mechanism 27 shown in FIG. 3B includes a disk-shaped rotating disk 28 and a driving mechanism 29 that rotates the rotating disk 28. A plurality of aperture members 23 having openings 23a having different sizes are provided on the turntable 28, and the aperture member 23 having openings 23a having a desired size can be selected by rotating the turntable 28. It has become.
 ステージ装置30は、被加工物WOの位置決めや走査移動を行うものである。ステージ装置30は、X軸ステージ32と、Y軸ステージ33と、Z軸ステージ34と、回転ステージ35と、揺動ステージ36とを有する。図示の例では、X軸ステージ32及びZ軸ステージ34は、ステージ装置30の台座37に組み込むように設けられており、被加工物WOをX軸方向又はZ軸方向に間接的に移動させる。Y軸ステージ33は、X軸ステージ32及びZ軸ステージ34の上部に設けられており、被加工物WOをY軸方向に間接的に移動させる。ステージ装置30は、X軸ステージ32、Y軸ステージ33、及びZ軸ステージ34を同期動作させることにより、被加工物WOを任意の位置に3次元並進移動(すなわち、直交3軸(XYZ軸)移動)させることができる。回転ステージ35は、揺動ステージ36に支持されており、回転軸(GCIBの照射軸BX及びZ軸に平行な軸)を中心に回転動作することで、被加工物WOのXY面(GCIBの照射軸BXに垂直な面)内における回転姿勢を調整する。回転ステージ35のGCIB照射装置20側には、被加工物WOがアライメントされた状態で取り付けられている。揺動ステージ36は、Y軸ステージ33を構成する支持部33aに支持されており、揺動軸CX(GCIBの照射軸BXに垂直でY軸に平行な軸)を中心に揺動動作又は旋回動作することで、XZ面(GCIBの照射軸BXに平行な面)内において被加工物WOの姿勢又は傾きを調整する。各ステージ32,33,34,35,36は、後述するステージ制御部96の動作によって駆動される。被加工物WOの実質的な加工、つまり相対走査において、X軸ステージ32、Y軸ステージ33、及びZ軸ステージ34のみが使用され、回転ステージ35及び揺動ステージ36は使用されない。つまり、実質的な加工では、被加工物WOは、3次元並進移動のみとなっている。これにより、被加工物WOを、XY面に平行な面内の所望の位置において所望の速度で移動させることができる。回転ステージ35及び揺動ステージ36は、被加工物WOをステージ装置30に固定した際に、被加工物WO(具体的には、底面Ma等)がGCIBに対して適切な姿勢となるよう調整するために用いられるのみである。各ステージ32,33,34,35,36には、不図示のサーボモーター、ステッピングモーター等が搭載されており、ステージ制御部96によって駆動される。 The stage device 30 performs positioning and scanning movement of the workpiece WO. The stage device 30 includes an X-axis stage 32, a Y-axis stage 33, a Z-axis stage 34, a rotation stage 35, and a swing stage 36. In the illustrated example, the X-axis stage 32 and the Z-axis stage 34 are provided so as to be incorporated into a pedestal 37 of the stage apparatus 30 and indirectly move the workpiece WO in the X-axis direction or the Z-axis direction. The Y-axis stage 33 is provided above the X-axis stage 32 and the Z-axis stage 34, and moves the workpiece WO indirectly in the Y-axis direction. The stage device 30 performs a three-dimensional translational movement of the workpiece WO to an arbitrary position (that is, an orthogonal three-axis (XYZ axis)) by synchronizing the X-axis stage 32, the Y-axis stage 33, and the Z-axis stage 34. Move). The rotary stage 35 is supported by the swing stage 36, and rotates about the rotation axis (axis parallel to the irradiation axis BX and Z axis of the GCIB), so that the XY plane (GCIB of the workpiece WO) is rotated. The rotational attitude in the plane perpendicular to the irradiation axis BX is adjusted. On the GCIB irradiation apparatus 20 side of the rotary stage 35, the workpiece WO is attached in an aligned state. The swing stage 36 is supported by a support portion 33a constituting the Y-axis stage 33, and swings or swivels around a swing axis CX (axis perpendicular to the irradiation axis BX of GCIB and parallel to the Y axis). By operating, the posture or inclination of the workpiece WO is adjusted in the XZ plane (a plane parallel to the irradiation axis BX of GCIB). Each of the stages 32, 33, 34, 35, and 36 is driven by an operation of a stage control unit 96 described later. In substantial processing of the workpiece WO, that is, relative scanning, only the X-axis stage 32, the Y-axis stage 33, and the Z-axis stage 34 are used, and the rotary stage 35 and the swing stage 36 are not used. That is, in the substantial processing, the workpiece WO is only three-dimensional translational movement. Thereby, the workpiece WO can be moved at a desired speed at a desired position in a plane parallel to the XY plane. The rotary stage 35 and the swing stage 36 are adjusted so that the workpiece WO (specifically, the bottom surface Ma or the like) is in an appropriate posture with respect to the GCIB when the workpiece WO is fixed to the stage device 30. It is only used to Each stage 32, 33, 34, 35, 36 is equipped with a servo motor (not shown), a stepping motor, and the like, and is driven by a stage controller 96.
 ステージ装置30に固定される被加工物WOは、図示の例では、GCIBのビームサイズに比較して大面積を有し、非回転対称形状を有する成形金型50(図6A参照)となっている。揺動ステージ36等の動作により、GCIBの照射軸BXは、被加工物WOの被加工面Mbの中心軸AXに平行となっている。この場合、被加工物WOの中心軸AXを基準として、ビームの照射方向を設定することができる。また、GCIBの照射軸BXは、本実施形態の場合、被加工物WOの底面Maが平坦面であり、被加工物WOの底面Maに垂直となっている。この場合、被加工物WOの中心軸AXを特定することなくビームの照射方向を設定することができる。 In the illustrated example, the workpiece WO fixed to the stage apparatus 30 has a large area compared to the GCIB beam size, and is a molding die 50 (see FIG. 6A) having a non-rotationally symmetric shape. Yes. The GCIB irradiation axis BX is parallel to the center axis AX of the workpiece surface Mb of the workpiece WO by the operation of the swing stage 36 and the like. In this case, the beam irradiation direction can be set with reference to the center axis AX of the workpiece WO. In the present embodiment, the GCIB irradiation axis BX is such that the bottom surface Ma of the workpiece WO is a flat surface and is perpendicular to the bottom surface Ma of the workpiece WO. In this case, the beam irradiation direction can be set without specifying the center axis AX of the workpiece WO.
 ステージ装置30の動作、具体的にはZ軸ステージ34の動作により、GCIBの照射距離(アパーチャー部材23と被加工物WOとの間の距離)は、一定に保たれている。つまり、被加工面Mbの形状に応じて被加工物WOがZ軸方向に変位する。アパーチャー部材23から出たビームは、被加工面Mbから距離が離れるにつれて広がる傾向にある。そのため、照射距離が変化すると、加工範囲と加工深さとが変化する。照射距離を一定にすることにより、被加工物WOの被加工面Mb上のビームサイズの変化を低減しつつ、安定した加工を行うことができる。照射距離は、例えば5mm以上25mm以下となっている。照射距離を5mm以上とすることで、被加工面Mbの除去物がアパーチャー部材23に付着することを防ぐことができる。また、照射距離を25mm以下とすることで、ビームサイズが広がりすぎず、形状誤差の横分解能(形状誤差の周波数、面方向の広がり等)を小さくすることができる。 The operation distance of the GCIB (distance between the aperture member 23 and the workpiece WO) is kept constant by the operation of the stage device 30, specifically the operation of the Z-axis stage 34. That is, the workpiece WO is displaced in the Z-axis direction according to the shape of the workpiece surface Mb. The beam emitted from the aperture member 23 tends to expand as the distance from the processing surface Mb increases. Therefore, when the irradiation distance changes, the processing range and the processing depth change. By making the irradiation distance constant, it is possible to perform stable machining while reducing the change in the beam size on the workpiece surface Mb of the workpiece WO. The irradiation distance is, for example, 5 mm or more and 25 mm or less. By setting the irradiation distance to 5 mm or more, it is possible to prevent the removed material of the processing surface Mb from adhering to the aperture member 23. Also, by setting the irradiation distance to 25 mm or less, the beam size does not spread too much, and the lateral resolution of the shape error (shape error frequency, spread in the surface direction, etc.) can be reduced.
 ステージ装置30の動作により、被加工物WOの被加工面MbのX軸方向又はY軸方向の位置又は座標と、GCIBの照射方向(すなわちZ軸方向)の位置又は座標とを連動させて、GCIBと被加工物WOとを相対的に3次元並進移動させることができ、走査速度が位置に応じて変化するラスター型の走査であって、照射距離を一定に保った動作が可能になる。本実施形態において、主走査に関しては、例えば、X軸ステージ32及びZ軸ステージ34を動作させて、被加工物WOのX軸方向の位置とZ軸方向の位置とを同時に制御している。また、ステージ装置30は、X軸方向における相対走査速度を被加工物WOの加工目標を達成(具体的には、形状誤差を補正)するように制御されている。つまり、加工目標(具体的には、形状誤差量)に合わせて相対走査速度を制御することで、被加工点におけるビーム滞在時間で加工量を制御している。ここで、相対走査速度とは、被加工物WOとGCIBとが相対的に動く(主走査する)ときの速度である。本実施形態では、相対走査速度はX軸ステージ32による被加工物WOの移動速度を示す。副走査に関しては、Y軸ステージ33を動作させている。つまり、Y軸ステージ33は、ピッチ送りに利用されており、被加工物WOを連続的に全面加工することを可能にしている。なお、被加工面Mbの形状にもよるが、Y軸ステージ33に連動させてZ軸ステージ34も動作させる。例えば、図4Aに示すように、X軸ステージ32によって被加工物WOの長手方向の端から端までGCIBを相対的に移動させた後、Y軸ステージ33によってY軸方向に所定距離ずらした後に、X軸ステージ32によって前の走査と逆方向にGCIBを相対的に移動させることを繰り返すことで、GCIBは、一筆書きの走査軌跡TKを描いて被加工面Mb上を走査することができる。また、図4Bに示すように、被加工物WOは、GCIBの入射位置に応じて連動するZ軸ステージ34によってZ軸方向に変位するため、結果的に、照射距離DRが一定で被加工面Mbの形状に沿ってGCIBが2次元的に一様に照射されることとなる。GCIBの走査軌跡TKは、図示のようにGCIB照射装置20側からみて直線状に行ってもよいし、被加工面Mbの外形に応じて円弧のような曲線を含むものとなってもよい。GCIBの走査ピッチ(又はスキャンピッチ)は、アパーチャー部材23の開口部23aのサイズやGCIBの照射距離等によって適宜設定され、例えば、アパーチャー部材23の開口部23aの直径サイズが5mmで、照射距離DRが20mmの場合、走査ピッチは0.1mm程度となっている。走査ピッチは、小さい方が好ましいが、小さすぎると加工時間が増加する。また、加工ができていれば、常に一定のピッチでなく、ピッチを変化させてもよい。また、同じピッチでも、ピッチを例えば半ピッチずらしてもよい。 By the operation of the stage device 30, the position or coordinates in the X-axis direction or Y-axis direction of the workpiece surface Mb of the workpiece WO and the position or coordinates in the GCIB irradiation direction (that is, the Z-axis direction) are interlocked, The GCIB and the workpiece WO can be relatively three-dimensionally translated and are raster-type scans in which the scanning speed changes according to the position, and an operation in which the irradiation distance is kept constant is possible. In the present embodiment, for main scanning, for example, the X-axis stage 32 and the Z-axis stage 34 are operated to simultaneously control the position of the workpiece WO in the X-axis direction and the position in the Z-axis direction. Further, the stage device 30 is controlled so that the relative scanning speed in the X-axis direction achieves the processing target of the workpiece WO (specifically, the shape error is corrected). That is, by controlling the relative scanning speed according to the processing target (specifically, the shape error amount), the processing amount is controlled by the beam stay time at the processing point. Here, the relative scanning speed is a speed at which the workpiece WO and GCIB move relatively (main scanning). In the present embodiment, the relative scanning speed indicates the moving speed of the workpiece WO by the X-axis stage 32. For sub-scanning, the Y-axis stage 33 is operated. That is, the Y-axis stage 33 is used for pitch feeding, and enables the workpiece WO to be processed continuously over the entire surface. Although depending on the shape of the surface to be processed Mb, the Z-axis stage 34 is also operated in conjunction with the Y-axis stage 33. For example, as shown in FIG. 4A, after the GCIB is relatively moved from end to end in the longitudinal direction of the workpiece WO by the X-axis stage 32, and then shifted by a predetermined distance in the Y-axis direction by the Y-axis stage 33. By repeating the relative movement of the GCIB in the direction opposite to the previous scanning by the X-axis stage 32, the GCIB can scan the processing surface Mb while drawing a one-stroke writing scanning locus TK. Further, as shown in FIG. 4B, the workpiece WO is displaced in the Z-axis direction by the Z-axis stage 34 interlocked according to the incident position of GCIB. As a result, the irradiation surface DR is constant and the workpiece surface GCIB is uniformly irradiated two-dimensionally along the shape of Mb. The GCIB scanning trajectory TK may be linear as viewed from the GCIB irradiation apparatus 20 side as shown in the figure, or may include a curve such as an arc according to the outer shape of the processing surface Mb. The GCIB scanning pitch (or scanning pitch) is appropriately set according to the size of the opening 23a of the aperture member 23, the irradiation distance of the GCIB, and the like. For example, the diameter size of the opening 23a of the aperture member 23 is 5 mm, and the irradiation distance DR. Is 20 mm, the scanning pitch is about 0.1 mm. The scanning pitch is preferably small, but if it is too small, the processing time increases. Further, as long as the processing is completed, the pitch may be changed instead of a constant pitch. Further, even with the same pitch, the pitch may be shifted by, for example, a half pitch.
 なお、加工装置100に付随して、被加工物WOの被加工面Mbの表面状態や、キャリブレーション用のダミー部材WBの表面状態を測定するために、形状測定装置40と、形状測定制御部98とが設けられている(図5参照)。形状測定装置40は、測定対象の3次元形状測定を行うものであり、図示の例では、形状測定機(UA3P:パナソニック製)を挙げている。形状測定装置40は、台座41と、XY軸ステージ42と、Z軸駆動部43とを備える。Z軸駆動部43には、触針PRを昇降可能に支持する昇降部43aが設けられている。触針PRは、先端に一定の負荷をかけた状態で、高精度で滑らかに昇降できるようになっている。XY軸ステージ42を適宜動作させ、XY軸ステージ42にアライメントされた状態で載置された測定対象となる被加工物WO又はダミー部材WBを2次元的に走査するように移動させることで、触針PRの先端を被加工物WO等の表面に沿って2次元的に移動させることができる。この際、触針PRの先端位置は、台座41上にXY軸ステージ42に対向して設けた不図示のレーザー干渉計や、触針PRの上部に設けた不図示のレーザー干渉計を利用して検出される。形状測定制御部98は、形状測定装置40を動作させ、被加工物WO等の表面状態を測定させる。形状測定装置40で測定された表面形状のデータは、形状測定制御部98から主制御装置99に転送され、形状補正NCデータの作成に利用される。形状測定装置40としては、上述の形状測定機以外にも、例えば、干渉計(WYKO:ブルカー製)等も用いることができる。 In addition to the processing apparatus 100, in order to measure the surface state of the processing surface Mb of the workpiece WO and the surface state of the dummy member WB for calibration, a shape measuring device 40 and a shape measurement control unit 98 (see FIG. 5). The shape measuring device 40 measures a three-dimensional shape of a measurement object, and in the illustrated example, a shape measuring machine (UA3P: manufactured by Panasonic) is cited. The shape measuring device 40 includes a pedestal 41, an XY axis stage 42, and a Z axis drive unit 43. The Z-axis drive unit 43 is provided with an elevating unit 43a that supports the stylus PR so as to be elevable. The stylus PR can be raised and lowered smoothly with high accuracy in a state where a constant load is applied to the tip. By appropriately operating the XY axis stage 42 and moving the workpiece WO or dummy member WB to be measured placed in alignment with the XY axis stage 42 so as to scan two-dimensionally, the touch The tip of the needle PR can be moved two-dimensionally along the surface of the workpiece WO or the like. At this time, the tip position of the stylus PR uses a laser interferometer (not shown) provided on the pedestal 41 so as to face the XY axis stage 42 or a laser interferometer (not shown) provided on the top of the stylus PR. Detected. The shape measurement control unit 98 operates the shape measurement device 40 to measure the surface state of the workpiece WO or the like. The surface shape data measured by the shape measuring device 40 is transferred from the shape measurement control unit 98 to the main control device 99 and used for creating shape correction NC data. As the shape measuring device 40, for example, an interferometer (WYKO: manufactured by Bruker) can be used in addition to the above-described shape measuring machine.
 図1及び図2に戻って、ステージ制御部96は、高精度の数値制御を可能にするものであり、ステージ装置30に内蔵されたモーターや位置センサー等を主制御装置99の制御下で駆動することによって、各ステージ32,33,34,35,36を目的とする状態に適宜動作させる。つまり、ステージ制御部96は、ステージ装置30を駆動して、各ステージ32,33,34,35,36の位置や姿勢を調整する。ステージ制御部96は、被加工物WOの実質的な加工において、X、Y、及びZ軸ステージ32,33,34に3次元並進移動を行わせることによって、図4A等に示すように、GCIBを被加工物WOに照射しつつ走査するとともにGCIBの照射位置の相対走査速度を加工目標に応じて変化させている。さらに、後に詳述するが、相対走査速度は、被加工面MbにおけるGCIBの入射位置における表面の傾き(Z軸に対する角度)又はGCIBの入射角も考慮したものとなっている。図4Cの例では、被加工物WOの長手方向又はX軸方向の中心付近の速度が外側付近の速度より遅くなっている。 Referring back to FIGS. 1 and 2, the stage control unit 96 enables high-precision numerical control, and drives a motor, a position sensor, and the like built in the stage device 30 under the control of the main control device 99. By doing so, each stage 32, 33, 34, 35, 36 is appropriately operated to a target state. That is, the stage control unit 96 drives the stage device 30 to adjust the position and posture of each stage 32, 33, 34, 35, 36. As shown in FIG. 4A and the like, the stage control unit 96 causes the X, Y, and Z axis stages 32, 33, and 34 to perform a three-dimensional translational movement in the substantial processing of the workpiece WO. Is scanned while irradiating the workpiece WO, and the relative scanning speed of the GCIB irradiation position is changed according to the processing target. Further, as will be described in detail later, the relative scanning speed takes into account the surface inclination (angle with respect to the Z axis) at the GCIB incident position on the processing surface Mb or the GCIB incident angle. In the example of FIG. 4C, the speed near the center of the workpiece WO in the longitudinal direction or the X-axis direction is slower than the speed near the outside.
 図2に示すように、ステージ制御部96は、モーター駆動部96aと、センサー駆動部96bとを有する。モーター駆動部96aは、各ステージ32,33,34,35,36に搭載されたモーターの動作を制御する。センサー駆動部96bは、不図示のエンコーダーを介して各ステージ32,33,34,35,36の位置、速度、方向等を検出し、モーターの動作を監視する。 As shown in FIG. 2, the stage control unit 96 includes a motor driving unit 96a and a sensor driving unit 96b. The motor drive unit 96a controls the operation of the motors mounted on the stages 32, 33, 34, 35, and 36. The sensor driver 96b detects the position, speed, direction, and the like of each stage 32, 33, 34, 35, 36 via an encoder (not shown) and monitors the operation of the motor.
 GCIB制御部97は、GCIB照射装置20の動作を制御する。GCIB制御部97は、GCIB照射ユニット駆動部97aと、シャッター駆動部97bと、アパーチャー駆動部97cとを有する。GCIB照射ユニット駆動部97aは、GCIB照射ユニット21を動作させ、被加工物WO側にGCIBを射出させる。シャッター駆動部97bは、シャッター22のオン・オフ動作を制御する。アパーチャー駆動部97cは、アパーチャー支持部26を動作させ、アパーチャー部材23の位置を調整する。 The GCIB control unit 97 controls the operation of the GCIB irradiation apparatus 20. The GCIB control unit 97 includes a GCIB irradiation unit driving unit 97a, a shutter driving unit 97b, and an aperture driving unit 97c. The GCIB irradiation unit driving unit 97a operates the GCIB irradiation unit 21 to inject GCIB to the workpiece WO side. The shutter drive unit 97b controls the on / off operation of the shutter 22. The aperture drive unit 97 c operates the aperture support unit 26 to adjust the position of the aperture member 23.
 主制御装置99は、加工装置本体10、ステージ制御部96、CGIB制御部97、及び形状測定制御部98を統括的に制御している。主制御装置99は、演算処理部99aと、記憶部99bと、入出力部99cとを有する。主制御装置99は、ユーザー等の操作に基づいて、真空装置12を動作させ、加工装置本体10内の真空度を調整する。また、主制御装置99は、CGIB制御部97を動作させ、GCIB照射ユニット21から所望のサイズのGCIBを被加工物WO上に照射させる。また、主制御装置99は、ステージ制御部96を動作させ、ステージ装置30の動作を制御する。入出力部99cは、ユーザー等によって被加工物WOの形状に関する情報(具体的には、被加工物WOの目標形状データ(被加工物WOの設計形状データ))を受け取り、記憶部99bに保存する。記憶部99bには、上述の設計形状データの他に、形状測定装置40で得られた測定データ等が保存されている。これらの形状に関する情報は、例えば回転ステージ35上で基準位置にセットされた被加工物WOの位置座標(XYZ)の関数となっている。また、記憶部99bには、形状補正NCデータ(加工制御プログラム)を作成する形状補正NCデータ作成CAMや、形状補正NCデータを実行するCNCソフト(コンピューター数値制御ソフト)が実装されている。演算処理部99aは、各種形状データ等から形状補正NCデータの作成等を行う。具体的には、演算処理部99aは、記憶部99bに保存されている被加工物WOやダミー部材WBの形状データ等を読み出して、設計形状を得るための照射ドーズ量となるように、各被加工点での相対走査速度、ピッチ等を算出する。演算処理部99aは、この算出結果に基づいてステージ装置30を動作させるための形状補正NCデータを作成する。主制御装置99は、形状補正NCデータを実行することで、ステージ装置30の動作を制御し、ステージ装置30に支持された被加工物WOを加工目標に適合するように3次元並進移動させる。 The main control device 99 comprehensively controls the processing apparatus main body 10, the stage control unit 96, the CGIB control unit 97, and the shape measurement control unit 98. The main control device 99 includes an arithmetic processing unit 99a, a storage unit 99b, and an input / output unit 99c. The main control device 99 operates the vacuum device 12 based on the operation of the user or the like, and adjusts the degree of vacuum in the processing apparatus main body 10. The main control device 99 operates the CGIB control unit 97 to irradiate the workpiece WO with a GCIB having a desired size from the GCIB irradiation unit 21. Further, main controller 99 operates stage controller 96 to control the operation of stage device 30. The input / output unit 99c receives information on the shape of the workpiece WO (specifically, target shape data of the workpiece WO (designed shape data of the workpiece WO)) by a user or the like, and saves it in the storage unit 99b. To do. The storage unit 99b stores measurement data obtained by the shape measuring device 40 in addition to the above-described design shape data. Information on these shapes is a function of the position coordinates (XYZ) of the workpiece WO set at the reference position on the rotary stage 35, for example. In addition, shape correction NC data creation CAM for creating shape correction NC data (machining control program) and CNC software (computer numerical control software) for executing shape correction NC data are mounted in the storage unit 99b. The arithmetic processing unit 99a creates shape correction NC data from various shape data. Specifically, the arithmetic processing unit 99a reads the shape data and the like of the workpiece WO and the dummy member WB stored in the storage unit 99b, and sets each irradiation dose amount for obtaining a design shape. The relative scanning speed, pitch, etc. at the work point are calculated. The arithmetic processing unit 99a creates shape correction NC data for operating the stage device 30 based on the calculation result. The main control device 99 controls the operation of the stage device 30 by executing the shape correction NC data, and moves the workpiece WO supported by the stage device 30 in a three-dimensional translation so as to match the processing target.
〔被加工物〕
 以下、加工装置100を用いて加工される被加工物WOの例を説明する。図6Aに示すように、被加工物WOで構成される成形金型50は、図6Bに示すコンバイナー60を成形するためのものである。コンバイナー60は、矩形の湾曲した板状部材であるスクリーン部60aと、スクリーン部60aの一辺の中央から延びる棒状の支持部60bとを備える。スクリーン部60aは、観察者側に配置される第1光学面61と、反観察者側に配置される第2光学面62とを有する。第1光学面61は、例えば凹状の非球面又は自由曲面である。第2光学面62は、例えば凸状の非球面又は自由曲面である。コンバイナー60の面角度(接平面の対象箇所と中心軸AXとのなす角度)は比較的緩いもの(具体的には、45°以下)となっている。第1光学面61は、光透過性を有する樹脂製の成形部材の表面上に例えば20~30%の反射率を有するハーフミラー層を設けたものとなっている。コンバイナー60は、車両内のダッシュボード周辺に組み付けられるヘッドアップディスプレイ装置に組み込まれる。
[Workpiece]
Hereinafter, an example of the workpiece WO processed using the processing apparatus 100 will be described. As shown to FIG. 6A, the shaping | molding die 50 comprised by the workpiece WO is for shape | molding the combiner 60 shown to FIG. 6B. The combiner 60 includes a screen portion 60a that is a rectangular curved plate-like member, and a rod-like support portion 60b that extends from the center of one side of the screen portion 60a. The screen unit 60a includes a first optical surface 61 disposed on the viewer side and a second optical surface 62 disposed on the counter-viewer side. The first optical surface 61 is, for example, a concave aspherical surface or a free curved surface. The second optical surface 62 is, for example, a convex aspherical surface or a free curved surface. The surface angle of the combiner 60 (the angle formed between the target portion of the tangential plane and the central axis AX) is relatively loose (specifically, 45 ° or less). The first optical surface 61 is provided with a half mirror layer having a reflectance of, for example, 20 to 30% on the surface of a resin-made molding member having light transmittance. The combiner 60 is incorporated in a head-up display device that is assembled around the dashboard in the vehicle.
 図6Aに示すように、成形金型50は、第1金型51と第2金型52とを備える。第1金型51は、成形品であるコンバイナー60の第1光学面61側を形成する第1成形面51aを有する。第1成形面51aは、第1光学面61を反転させた形状を有する転写面を有する。第2金型52は、コンバイナー60の第2光学面62を形成する第2成形面52aを有する。第2成形面52aは、第2光学面62を反転させた形状を有する転写面を有する。第1及び第2成形面51a,52aには、例えば無電解Ni-Pメッキ等の金属メッキが施されていてもよい。図1の加工装置100では、成形金型50のうち、第1及び第2成形面51a,52aを主に加工の対象としている。 As shown in FIG. 6A, the molding die 50 includes a first die 51 and a second die 52. The 1st metal mold | die 51 has the 1st molding surface 51a which forms the 1st optical surface 61 side of the combiner 60 which is a molded article. The first molding surface 51 a has a transfer surface having a shape obtained by inverting the first optical surface 61. The second mold 52 has a second molding surface 52 a that forms the second optical surface 62 of the combiner 60. The second molding surface 52 a has a transfer surface having a shape obtained by inverting the second optical surface 62. The first and second molding surfaces 51a and 52a may be subjected to metal plating such as electroless Ni—P plating. In the processing apparatus 100 of FIG. 1, the first and second molding surfaces 51a and 52a of the molding die 50 are mainly processed.
 なお、加工装置100で処理される被加工物WOは、成形金型50のような大面積を有する金型に限らず、その成形品であるコンバイナー60自体でもよい。また、被加工物WOは、他の製品、例えばミラーやレンズ等の光学原器や光学素子でもよい。また、被加工物WOの被加工面Mbは、自由曲面等の非回転対称形状を有するものに限らず、回転対称形状を有するものでもよい。また、被加工物WOの材料は、金属や樹脂に限らず、ガラス等でもよい。 In addition, the workpiece WO processed by the processing apparatus 100 is not limited to a mold having a large area such as the molding die 50 but may be a combiner 60 itself that is a molded product. The workpiece WO may be another product, for example, an optical original device or an optical element such as a mirror or a lens. Further, the workpiece surface Mb of the workpiece WO is not limited to a non-rotationally symmetric shape such as a free-form surface, and may have a rotationally symmetric shape. Further, the material of the workpiece WO is not limited to metal or resin, but may be glass or the like.
〔GCIB加工方法〕
 以下、図7を参照しつつ、加工装置100を用いた加工方法について説明する。なお、主制御装置99には、ユーザー等の操作によって予め記憶部99bに被加工物WOの目標形状データ(設計形状データ)が保存されている。
[GCIB processing method]
Hereinafter, a processing method using the processing apparatus 100 will be described with reference to FIG. In the main controller 99, target shape data (design shape data) of the workpiece WO is stored in advance in the storage unit 99b by a user operation or the like.
 まず、ダミー部材WBを用いてキャリブレーションのための加工データ(標準加工データ及び角度依存加工データ)を取得する。ダミー部材WBとしては、被加工物WOと同じ材質のものを用いる。当該加工データは、GCIBの除去量に対する角度依存性データとなる。当該加工データに基づき、被加工物WOの被加工点の面角度に応じてGCIB加工量を修正することで、被加工物WOを揺動させずに加工することができる。これにより、被加工物WOの被加工面MbとGCIBとの位置決めが容易となり、実加工時間を短縮することができる。なお、標準加工データ及び角度依存加工データは、既製のデータベースがあればそれを用いてもよい。 First, processing data (standard processing data and angle-dependent processing data) for calibration are acquired using the dummy member WB. As the dummy member WB, the same material as that of the workpiece WO is used. The processed data is angle-dependent data with respect to the GCIB removal amount. Based on the processing data, the workpiece WO can be processed without swinging by correcting the GCIB processing amount according to the surface angle of the processing point of the processing WO. Thereby, the positioning of the workpiece surface Mb of the workpiece WO and the GCIB is facilitated, and the actual machining time can be shortened. Note that the standard machining data and the angle-dependent machining data may be used if there is a ready-made database.
 最初に、ダミー部材WBの標準加工データを取得する(ステップS11)。主制御装置99は、GCIB制御部97を動作させ、GCIB照射装置20からGCIBを照射させ、平板状のダミー部材WBの加工を行わせる。この際、主制御装置99は、ステージ制御部96を動作させ、ダミー部材WBを取り付けたステージ装置30を移動させる。具体的には、主制御装置99は、GCIBの入射角が0°であり、かつ照射距離と照射時間とが一定となるように、ステージ装置30を動作させている。なお、GCIBの入射角を0°とするため、ステージ装置30によって、ダミー部材WBの中心軸AXとGCIBの照射軸BXとが平行になるようにアライメントされている。加工後、形状測定装置40を用いてダミー部材WBの表面形状を測定する。加工後のダミー部材WBは、ステージ装置30から取り外され、その後、形状測定装置40にセットされる。主制御装置99は、形状測定制御部98を動作させ、形状測定装置40にダミー部材WBに関する加工形状情報を測定させる。測定された加工形状情報は、記憶部99bに保存される。当該加工形状情報は、主制御装置99の演算処理部99aで演算処理され、標準加工データとして、入射角0°における相対走査速度及び加工深さのデータ(又は面角度0°における相対走査速度とGCIB加工量との相関データ)が記憶部99bに保存される。 First, standard processing data of the dummy member WB is acquired (step S11). The main control device 99 operates the GCIB control unit 97 to irradiate the GCIB from the GCIB irradiation device 20 and process the flat dummy member WB. At this time, the main controller 99 operates the stage controller 96 to move the stage device 30 to which the dummy member WB is attached. Specifically, main controller 99 operates stage device 30 so that the incident angle of GCIB is 0 ° and the irradiation distance and the irradiation time are constant. In order to set the incident angle of GCIB to 0 °, the stage device 30 aligns the central axis AX of the dummy member WB and the irradiation axis BX of the GCIB in parallel. After processing, the surface shape of the dummy member WB is measured using the shape measuring device 40. The processed dummy member WB is removed from the stage device 30 and then set in the shape measuring device 40. The main control device 99 operates the shape measurement control unit 98 to cause the shape measurement device 40 to measure the machining shape information regarding the dummy member WB. The measured machining shape information is stored in the storage unit 99b. The machining shape information is computed by the computation processing unit 99a of the main controller 99, and as standard machining data, the relative scanning speed and machining depth data at the incident angle of 0 ° (or the relative scanning speed at the surface angle of 0 °) Correlation data with the GCIB processing amount) is stored in the storage unit 99b.
 次に、ダミー部材WBの角度依存加工データを取得する(ステップS12)。ステップS11と同様に、照射距離と照射時間とを一定として、GCIB照射装置20、ステージ装置30、及び形状測定装置40等を用いてダミー部材WBの加工形状情報を取得するが、ステップS12では、例えば揺動ステージ36等を利用してダミー部材WBに照射されるGCIBの入射角度を変化させる。ステップS12で測定された加工形状情報は、主制御装置99の演算処理部99aで演算処理され、角度依存加工データとして、入射角度を変化させたときの加工深さのデータ(又はGCIB加工レートに対する角度依存性のデータ)が記憶部99bに保存される。 Next, angle-dependent machining data of the dummy member WB is acquired (step S12). As in step S11, the processing distance information of the dummy member WB is acquired using the GCIB irradiation device 20, the stage device 30, the shape measuring device 40, and the like, with the irradiation distance and the irradiation time being constant, but in step S12, For example, the incident angle of GCIB applied to the dummy member WB is changed using the swing stage 36 or the like. The machining shape information measured in step S12 is arithmetically processed by the arithmetic processing unit 99a of the main control device 99, and as angle-dependent processing data, data of the processing depth when the incident angle is changed (or the GCIB processing rate). Angle-dependent data) is stored in the storage unit 99b.
 次に、実際に加工する被加工物WOの加工前形状データを取得する(ステップS13)。主制御装置99は、形状測定制御部98を動作させ、形状測定装置40によって加工前の被加工物WOに関する形状情報を測定させる。この際、主制御装置99は、形状測定制御部98を動作させ、形状測定装置40のXY軸ステージ42を被加工物WOの加工開始点から加工終了点までの加工範囲全体(本実施形態では、被加工面Mb全面)を走査するように移動させる。測定された形状情報は、記憶部99bに保存される。当該形状情報は、主制御装置99の演算処理部99aで演算処理され、加工前形状データとして、位置座標及び面角度のデータが記憶部99bに保存される。面角度データは加工前形状の近似式等から所定の設計式によって算出され、GCIBの入射角と中心軸AXを基準とする面角度とは一致している。 Next, the shape data before processing of the workpiece WO to be actually processed is acquired (step S13). The main control device 99 operates the shape measurement control unit 98 and causes the shape measurement device 40 to measure shape information regarding the workpiece WO before processing. At this time, the main control device 99 operates the shape measurement control unit 98 to move the XY axis stage 42 of the shape measurement device 40 over the entire processing range from the processing start point to the processing end point of the workpiece WO (in this embodiment, , The entire processing surface Mb is moved so as to scan. The measured shape information is stored in the storage unit 99b. The shape information is subjected to arithmetic processing by the arithmetic processing unit 99a of the main control device 99, and position coordinate and surface angle data is stored in the storage unit 99b as pre-processing shape data. The surface angle data is calculated by a predetermined design formula from an approximation formula etc. of the shape before processing, and the incident angle of GCIB coincides with the surface angle based on the central axis AX.
 次に、被加工物WOの形状誤差データを取得する(ステップS14)。主制御装置99は、記憶部99bから設計形状データ及び加工前形状データを読み出し、演算処理部99aで設計形状データと加工前形状データとの差を算出する。演算結果は、形状誤差データとして記憶部99bに保存される。 Next, the shape error data of the workpiece WO is acquired (step S14). The main control device 99 reads the design shape data and the pre-processing shape data from the storage unit 99b, and the arithmetic processing unit 99a calculates the difference between the design shape data and the pre-processing shape data. The calculation result is stored in the storage unit 99b as shape error data.
 次に、形状誤差補正のための形状補正NCデータを作成する(ステップS15)。主制御装置99は、記憶部99bからダミー部材WBの標準加工データ及び角度依存加工データ、並びに被加工物WOの形状誤差データを読み出し、演算処理部99aで形状補正NCデータ作成CAMを用いて形状補正NCデータを作成する。形状補正NCデータは、例えば曲面処理アルゴリズムを利用して算出される。ダミー部材WBの標準加工データ(ステップS11参照)に基づいて、誤差分の物質を除去するためのGCIBの各位置での照射ドーズ量を求めることができる。この照射ドーズ量は、相対走査速度に相関している。また、標準加工データに基づいて、GCIBのビームサイズと、このビームサイズの範囲内での加工深さ(照射によってダミー部材WBの表面の物質が除去された部分の元の表面からの深さ:GCIB加工量)との関係も得られる。また、角度依存加工データ(ステップS12参照)に基づいて、各被加工点の面角度に応じた角度依存GCIB加工量を算出できる。ここで、角度依存GCIB加工量とは、GCIBの入射角度に対応するGCIB加工レートである。この角度依存GCIB加工量に基づいて、形状誤差データから被加工物WOの被加工点の面角度に応じたGCIB加工量を修正することで、形状誤差を補正するためのGCIB加工量を各被加工点での面角度に応じた修正相対走査速度に換算することができる。これにより、被加工物WOを揺動させない状態で加工可能な条件を求めることができる。形状補正NCデータには、被加工物WOの被加工点の位置座標(データポイント)、データポイント毎の相対走査速度データ、走査ピッチ、加工範囲内における照射回数等が含まれている。これらのうち、照射回数は、第一義的には、加工量が多い場合に加工量を分割する意味があるが、加工むらを低減する意味や除去物の再堆積を防止する意味がある。形状補正NCデータは、記憶部99bに保存される。 Next, shape correction NC data for shape error correction is created (step S15). The main controller 99 reads the standard machining data and angle-dependent machining data of the dummy member WB and the shape error data of the workpiece WO from the storage unit 99b, and uses the shape correction NC data creation CAM in the arithmetic processing unit 99a. Create corrected NC data. The shape correction NC data is calculated using, for example, a curved surface processing algorithm. Based on the standard processing data of the dummy member WB (see step S11), it is possible to obtain the irradiation dose at each position of the GCIB for removing the substance corresponding to the error. This irradiation dose is correlated with the relative scanning speed. Further, based on the standard processing data, the GCIB beam size and the processing depth within the range of the beam size (the depth from the original surface of the portion where the material on the surface of the dummy member WB has been removed by irradiation: The relationship with the GCIB processing amount) is also obtained. Further, based on the angle-dependent machining data (see step S12), the angle-dependent GCIB machining amount corresponding to the surface angle of each machining point can be calculated. Here, the angle-dependent GCIB processing amount is a GCIB processing rate corresponding to the incident angle of GCIB. Based on the angle-dependent GCIB processing amount, the GCIB processing amount corresponding to the surface angle of the processing point of the workpiece WO is corrected from the shape error data, so that the GCIB processing amount for correcting the shape error is changed for each object. It can be converted into a corrected relative scanning speed corresponding to the surface angle at the processing point. Thereby, the conditions which can be processed in the state which does not rock | fluctuate the workpiece WO can be calculated | required. The shape correction NC data includes position coordinates (data points) of processing points of the workpiece WO, relative scanning speed data for each data point, scanning pitch, the number of times of irradiation within the processing range, and the like. Of these, the number of irradiations has a primary meaning of dividing the processing amount when the processing amount is large, but has the meaning of reducing processing unevenness and preventing redeposition of removed matter. The shape correction NC data is stored in the storage unit 99b.
 次に、被加工物WOを回転ステージ35にセットした後に、被加工物WOの加工開始点への位置決めを行う(ステップS16)。GCIB照射装置20のアパーチャー部材23に対して、ステージ装置30上に固定された被加工物WOを位置決めする。具体的には、加工開始前において、例えば基準点(又は加工開始点)となる被加工物WOの角部(又は縁部)上にアパーチャー部材23の開口部23aが配置されるように位置決めされる。また、被加工物WOの中心軸AXとGCIBの照射軸BXとが平行になるようにアライメントされる。つまり、アパーチャー部材23の中心軸、すなわちGCIBの照射軸BXは、被加工物WOの中心軸AXに平行であるか、被加工物WOの底面Maに垂直となっている。また、ステージ装置30において、被加工物WOのXY位置座標が形状測定装置40で測定した被加工物WOのXY位置座標と一致するようにアライメントされている。 Next, after the workpiece WO is set on the rotary stage 35, the workpiece WO is positioned at the machining start point (step S16). The workpiece WO fixed on the stage apparatus 30 is positioned with respect to the aperture member 23 of the GCIB irradiation apparatus 20. Specifically, before starting the processing, for example, the opening 23a of the aperture member 23 is positioned on the corner (or edge) of the workpiece WO to be the reference point (or processing start point). The Further, alignment is performed so that the center axis AX of the workpiece WO and the irradiation axis BX of the GCIB are parallel to each other. That is, the central axis of the aperture member 23, that is, the GCIB irradiation axis BX is parallel to the central axis AX of the workpiece WO or perpendicular to the bottom surface Ma of the workpiece WO. In the stage device 30, the XY position coordinates of the workpiece WO are aligned so as to coincide with the XY position coordinates of the workpiece WO measured by the shape measuring device 40.
 次に、被加工物WOに対してGCIB照射及び相対走査を行う(ステップS17)。この際、主制御装置99は、ステージ制御部96、GCIB制御部97等に対して、記憶部99bから読み出された形状補正NCデータをCNCソフトを用いて実行させる。主制御装置99は、ステージ制御部96を動作させ、ステージ装置30を駆動して、被加工物WOをGCIBに対して相対的に移動させる。結果的に、被加工物WOは、加工開始点(例えば、被加工物WOの角部)から加工終了点(加工開始点の対角にある角部)まで、GCIBの照射距離を一定に保ちつつ、被加工物WOの形状誤差を補正するように相対走査速度(具体的には、X軸方向の速度)を変化させて、GCIBに対して相対的に3次元並進移動、2次元的にはラスター型の走査が行われる。これと並行して、主制御装置99は、GCIB制御部97を動作させ、GCIB照射装置20を駆動して、被加工物WOの被加工面Mbに対してGCIBを照射させる。これにより、図4Aに示すように、GCIBは、所定の走査ピッチで被加工面Mbの全面に一筆書きの走査軌跡TKを描く。GCIBによる加工範囲は、GCIB照射面と非照射面との境界に段差をつけないため、局所的な形状補正を行う場合でも、被加工面Mbの全面であることが望ましい。加工に必要な照射ドーズ量の調整は、GCIBに対する被加工物WOの相対走査速度の制御によって行う。形状補正が不用の部分はビーム滞在時間が最小になるように走査する。相対走査速度が遅い場合、照射ドーズ量が多くなるため、その部分の加工量が多くなる。一方、相対走査速度が速い場合、照射ドーズ量が少なくなるため、その部分加工量が少なくなる。形状補正NCデータでは、照射における総加工量がステップS14で取得した形状誤差を修正するように各被加工点における照射ドーズ量が計算されている。そのため、加工前に被加工物WOに存在した形状誤差を修正することができる。GCIB照射は、照射表面に除去物が一定以上堆積しないように何度も走査を繰り返すことが望ましい。 Next, GCIB irradiation and relative scanning are performed on the workpiece WO (step S17). At this time, the main control device 99 causes the stage control unit 96, the GCIB control unit 97, and the like to execute the shape correction NC data read from the storage unit 99b using the CNC software. The main controller 99 operates the stage controller 96 and drives the stage device 30 to move the workpiece WO relative to the GCIB. As a result, the workpiece WO keeps the GCIB irradiation distance constant from the machining start point (for example, the corner of the workpiece WO) to the machining end point (the corner opposite to the machining start point). However, the relative scanning speed (specifically, the speed in the X-axis direction) is changed so as to correct the shape error of the workpiece WO, and the three-dimensional translational movement relative to the GCIB is performed two-dimensionally. Raster type scanning is performed. In parallel with this, the main control device 99 operates the GCIB control unit 97 to drive the GCIB irradiation device 20 to irradiate the workpiece surface Mb of the workpiece WO with GCIB. As a result, as shown in FIG. 4A, the GCIB draws a one-stroke writing scanning trajectory TK over the entire surface to be processed Mb at a predetermined scanning pitch. Since the processing range by GCIB does not make a step at the boundary between the GCIB irradiation surface and the non-irradiation surface, it is desirable that the entire processing surface Mb is used even when local shape correction is performed. Adjustment of the irradiation dose required for processing is performed by controlling the relative scanning speed of the workpiece WO with respect to GCIB. The portion where shape correction is not required is scanned so that the beam stay time is minimized. When the relative scanning speed is slow, the irradiation dose amount increases, and the processing amount of the portion increases. On the other hand, when the relative scanning speed is high, the irradiation dose is reduced, and the partial processing amount is reduced. In the shape correction NC data, the irradiation dose amount at each processing point is calculated so that the total processing amount in irradiation corrects the shape error acquired in step S14. For this reason, it is possible to correct the shape error existing in the workpiece WO before processing. In GCIB irradiation, it is desirable to repeat scanning many times so that a removed material does not deposit more than a certain amount on the irradiated surface.
 次に、被加工物WOの加工開始点から加工終了点までの一順(加工範囲全域)の加工が終了し、被加工物WOに形状誤差が残っており、再度ステップS17の照射工程及び走査工程を行う場合、つまり所定の照射回数に満たない場合(ステップS18のN)には、ステップS16の位置決め工程に戻り、被加工物WOへの加工を繰り返す。被加工物WOに形状誤差がなくなった場合(ステップS18のY)には、加工を終了する。これにより、加工目標を達成した被加工物WOを得ることができる。 Next, the processing in one order (the entire processing range) from the processing start point to the processing end point of the workpiece WO is completed, and a shape error remains in the workpiece WO, and the irradiation process and scanning in step S17 again. When the process is performed, that is, when the predetermined number of irradiations is not reached (N in Step S18), the process returns to the positioning process in Step S16, and the processing on the workpiece WO is repeated. If there is no shape error in the workpiece WO (Y in step S18), the processing is terminated. Thereby, the workpiece WO which achieved the processing target can be obtained.
 以上説明した加工方法及び加工装置によれば、所定サイズに絞ったGCIBについて、照射距離DR(アパーチャー部材23と被加工物WOとの間の距離)を一定に保つように相対走査させ、かつ相対走査速度を加工目標を達成するように制御することで、表面粗さが例えばPV100nm程度になるように、被加工物WO上に目標形状を形成することができる。照射距離DRを一定にすることで、例えばある距離における1種類のダミー部材WBの加工測定結果で目標形状を形成する工程を賄うことができる。また、被加工物WOを揺動させずに加工するため、揺動時と比較して位置決めの難易度が下がり、加工時間が短縮できる。また、相対走査に際して3次元並進移動を行うため、被加工物WOの回転動作を伴う場合のように、常にビームが照射される部分が生じるといった照射の偏りを回避でき、回転加工による急峻な段差が発生しないため、形状誤差補正が高精度となるとともに、形状制御が容易となる。これにより、回転対称形状を有する被加工物WOだけでなく、自由曲面等の非回転対称形状を有する被加工物WOに対しても精度良く効率的に表面形状を加工することができる。自由曲面の形状補正のために被加工物WOを相対走査するには、大容量データポイント数、データポイント毎の速度コントロール、及び多軸連動動作等が必要であるが、上述の加工方法を用いることで容易に上記条件を満たす。よって、自由曲面等の任意の形状に対応することができ、かつ形状誤差量に合わせて相対走査速度を制御できる。これにより、面角度が比較的緩く(具体的には45°以下)、大面積で自由曲面形状の被加工物の形状誤差を高精度に補正することができる。 According to the processing method and the processing apparatus described above, with respect to GCIB reduced to a predetermined size, relative irradiation is performed so that the irradiation distance DR (distance between the aperture member 23 and the workpiece WO) is kept constant, and relative By controlling the scanning speed so as to achieve the processing target, the target shape can be formed on the workpiece WO so that the surface roughness is, for example, about PV 100 nm. By making the irradiation distance DR constant, for example, it is possible to cover the process of forming the target shape with the processing measurement result of one kind of dummy member WB at a certain distance. Further, since the workpiece WO is processed without swinging, the difficulty of positioning is reduced compared to when swinging, and the processing time can be shortened. Further, since the three-dimensional translational movement is performed at the time of relative scanning, it is possible to avoid uneven irradiation such as a portion where the beam is always irradiated as in the case of rotating the workpiece WO, and a steep step due to the rotation processing. Therefore, shape error correction is highly accurate and shape control is facilitated. Thereby, not only the workpiece WO having a rotationally symmetric shape but also the workpiece WO having a non-rotationally symmetric shape such as a free-form surface can be processed with high accuracy and efficiency. In order to relatively scan the workpiece WO for correcting the shape of the free-form surface, a large number of data points, speed control for each data point, multi-axis interlocking operation, and the like are necessary. This easily satisfies the above conditions. Therefore, an arbitrary shape such as a free-form surface can be handled, and the relative scanning speed can be controlled in accordance with the shape error amount. Thereby, the surface angle is relatively loose (specifically, 45 ° or less), and the shape error of the workpiece having a large area and a free-form surface can be corrected with high accuracy.
〔実施例〕
 以下、上記加工方法及び加工装置100の実施例を説明する。被加工物WOとして、一辺の長さが50cmであり、外形が四角形のものを用いた。被加工物WOは、中心側が凸形状となっている。被加工物WOの材料は、SUS材である。被加工物WOの表面には、無電解Ni-Pメッキが施されている。GCIB発生ガスとして、SF+He混合ガス(混合比がSF:He=1:9)を用いた。ガス圧は0.4MPaであり、照射ドーズ量は2×1016~2×1017ions/cmとした。アパーチャー部材23は、SUS製のものを用いており、開口部23aのサイズは、直径5mmとなっている。
〔Example〕
Hereinafter, examples of the processing method and the processing apparatus 100 will be described. A workpiece WO having a side length of 50 cm and a rectangular outer shape was used. The workpiece WO has a convex shape on the center side. The material of the workpiece WO is a SUS material. The surface of the workpiece WO is subjected to electroless Ni—P plating. As GCIB generating gas, SF 6 + He mixed gas (mixing ratio SF 6 : He = 1: 9) was used. The gas pressure was 0.4 MPa, and the irradiation dose was 2 × 10 16 to 2 × 10 17 ions / cm 2 . The aperture member 23 is made of SUS, and the size of the opening 23a is 5 mm in diameter.
 上述の被加工物WOをステージ装置30に固定し、被加工物WOの3次元並進走査加工(直線走査加工)を行った。ステージ装置30は、X軸方向の動作及びZ軸方向の動作を同時制御し、Y軸方向にピッチ送りをする構成とした。走査ピッチは、0.1mmとした。GCIBの照射距離DRは20mmとした。 The above-described workpiece WO was fixed to the stage device 30, and the workpiece WO was subjected to three-dimensional translational scanning processing (linear scanning processing). The stage device 30 is configured to simultaneously control the operation in the X-axis direction and the operation in the Z-axis direction and perform pitch feed in the Y-axis direction. The scanning pitch was 0.1 mm. The irradiation distance DR of GCIB was 20 mm.
 被加工物WOの加工後、形状測定装置40を用いて被加工面Mbの表面形状を測定した。処理前の形状誤差PVは300nmであったが、形状誤差を補正して加工処理した後の形状誤差PVは100nmとなり、表面粗さが改善した。 After processing the workpiece WO, the surface shape of the processing surface Mb was measured using the shape measuring device 40. Although the shape error PV before processing was 300 nm, the shape error PV after processing after correcting the shape error was 100 nm, and the surface roughness was improved.
 以上、本実施形態に係る加工装置等について説明したが、本発明に係る加工装置等は上記のものには限られない。例えば、上記実施形態において、例えば、被加工物WOの被加工面Mbの形状や大きさは、用途や機能に応じて適宜変更することができる。また、被加工物WOは、底面Maが平坦でないものも用いることができる。この場合、GCIBの照射軸BXは、被加工物WOの中心軸AXでアライメントする。 As mentioned above, although the processing apparatus etc. which concern on this embodiment were demonstrated, the processing apparatus etc. which concern on this invention are not restricted to said thing. For example, in the above-described embodiment, for example, the shape and size of the processing surface Mb of the workpiece WO can be appropriately changed according to the application and function. Further, as the workpiece WO, one having a non-flat bottom Ma can be used. In this case, the irradiation axis BX of GCIB is aligned with the central axis AX of the workpiece WO.
 上記実施形態において、アパーチャー部材23の開口部23aの形状や大きさは、被加工面Mbの形状や大きさに応じて適宜変更することができる。 In the above embodiment, the shape and size of the opening 23a of the aperture member 23 can be changed as appropriate according to the shape and size of the processing surface Mb.
 上記実施形態において、被加工物WOの被加工面Mbの全面を加工したが、一部を加工してもよい。 In the above embodiment, the entire processing surface Mb of the workpiece WO is processed, but a part thereof may be processed.
 上記実施形態において、予備加工された被加工物WOの形状誤差を補正する加工例を挙げたが、被加工物WOに対して目標形状を最初から形成する加工を行ってもよい。 In the above-described embodiment, the example of processing for correcting the shape error of the workpiece WO that has been pre-processed has been described.
 上記実施形態において、加工方法のステップS12では、1つの平板状のダミー部材WBを用いてその入射角を変えてデータを取得しているが、入射角を変えたダミー部材WBを用いてデータを取得してもよい。この場合、ダミー部材WBは、複数の傾斜面が設けられているものを用いる。 In the above embodiment, in step S12 of the processing method, data is acquired by changing the incident angle using one flat dummy member WB, but the data is acquired using the dummy member WB having changed incident angle. You may get it. In this case, the dummy member WB is provided with a plurality of inclined surfaces.
 上記実施形態において、ダミー部材WBの加工データに関するデータベースがあれば、ステップS11,S12を毎回行う必要はない。 In the above embodiment, if there is a database related to the processing data of the dummy member WB, it is not necessary to perform steps S11 and S12 every time.
 上記実施形態において、回転ステージ35上に回転ステージ35に対する被加工物WOの位置決めを行うXYZ軸ステージを設けてもよい。 In the above embodiment, an XYZ axis stage for positioning the workpiece WO with respect to the rotary stage 35 may be provided on the rotary stage 35.

Claims (10)

  1.  被加工物に照射するガスクラスターイオンビームを所定サイズに絞るアパーチャー部材を通して、前記ガスクラスターイオンビームを前記被加工物に照射する照射工程と、
     前記アパーチャー部材の開口部と前記被加工物との間の距離を一定に保ちつつ、前記被加工物を前記アパーチャー部材に対して相対的に3次元並進移動させる走査工程と、
    を備え、
     前記走査工程において、相対走査速度を加工目標を達成するように制御するガスクラスターイオンビーム加工方法。
    An irradiation step of irradiating the workpiece with the gas cluster ion beam through an aperture member that squeezes the gas cluster ion beam to be radiated on the workpiece to a predetermined size;
    A scanning step of moving the workpiece in a three-dimensional translation relative to the aperture member while maintaining a constant distance between the opening of the aperture member and the workpiece;
    With
    In the scanning step, a gas cluster ion beam processing method for controlling a relative scanning speed so as to achieve a processing target.
  2.  前記被加工物と同じ材質のダミー部材を用いて、前記ガスクラスターイオンビームによる除去量に関する角度依存性データを取得する工程を備え、
     前記被加工物の被加工点の面角度に応じて前記ガスクラスターイオンビーム加工量を補正することで、前記被加工物を揺動させずに加工する、請求項1に記載のガスクラスターイオンビーム加工方法。
    Using a dummy member made of the same material as the workpiece, the step of obtaining angle dependency data regarding the removal amount by the gas cluster ion beam,
    2. The gas cluster ion beam according to claim 1, wherein the workpiece is processed without swinging by correcting the gas cluster ion beam machining amount in accordance with a surface angle of a workpiece point of the workpiece. Processing method.
  3.  前記走査工程において、相対走査速度を形状誤差を補正するように制御する、請求項1及び2のいずれか一項に記載のガスクラスターイオンビーム加工方法。 The gas cluster ion beam processing method according to any one of claims 1 and 2, wherein in the scanning step, a relative scanning speed is controlled to correct a shape error.
  4.  前記ガスクラスターイオンビームの照射軸は、前記被加工物の被加工面の中心軸に平行である、請求項1から3までのいずれか一項に記載のガスクラスターイオンビーム加工方法。 The gas cluster ion beam processing method according to any one of claims 1 to 3, wherein an irradiation axis of the gas cluster ion beam is parallel to a central axis of a processing surface of the workpiece.
  5.  前記ガスクラスターイオンビームの照射軸は、前記被加工物の底面に垂直である、請求項1から3までのいずれか一項に記載のガスクラスターイオンビーム加工方法。 The gas cluster ion beam processing method according to any one of claims 1 to 3, wherein an irradiation axis of the gas cluster ion beam is perpendicular to a bottom surface of the workpiece.
  6.  前記アパーチャー部材と前記被加工物との間の距離は、5mm以上25mm以下である、請求項1から5までのいずれか一項に記載のガスクラスターイオンビーム加工方法。 The gas cluster ion beam processing method according to any one of claims 1 to 5, wherein a distance between the aperture member and the workpiece is 5 mm or more and 25 mm or less.
  7.  前記被加工物の被加工面は、回転対称形状を有する、請求項1から6までのいずれか一項に記載のガスクラスターイオンビーム加工方法。 The gas cluster ion beam processing method according to any one of claims 1 to 6, wherein a processing surface of the workpiece has a rotationally symmetric shape.
  8.  前記被加工物の被加工面は、自由曲面形状を有する、請求項1から6までのいずれか一項に記載のガスクラスターイオンビーム加工方法。 The gas cluster ion beam machining method according to any one of claims 1 to 6, wherein a workpiece surface of the workpiece has a free-form surface shape.
  9.  前記ガスクラスターイオンビームの発生ガスは、ハロゲン元素を含む、請求項1から8までのいずれか一項に記載のガスクラスターイオンビーム加工方法。 The gas cluster ion beam processing method according to any one of claims 1 to 8, wherein a gas generated by the gas cluster ion beam includes a halogen element.
  10.  ガスクラスターイオンビームを所定サイズに絞るアパーチャー部材の開口部と被加工物との間の距離を一定に保ちつつ、前記被加工物を前記アパーチャー部材に対して相対的に3次元並進移動させるステージ装置と、
     前記ステージ装置に3次元並進移動を行わせることによって、前記ガスクラスターイオンビームを前記被加工物に照射しつつ走査するとともに、ガスクラスターイオンビームの照射位置の相対走査速度を加工目標に応じて変化させるステージ制御部と、
    を備えるガスクラスターイオンビーム加工装置。
    A stage device that translates the workpiece relative to the aperture member in a three-dimensional translation while maintaining a constant distance between the opening of the aperture member that narrows the gas cluster ion beam to a predetermined size and the workpiece. When,
    By causing the stage device to perform a three-dimensional translation, scanning is performed while irradiating the workpiece with the gas cluster ion beam, and the relative scanning speed of the irradiation position of the gas cluster ion beam is changed according to the processing target. A stage control unit,
    A gas cluster ion beam processing apparatus comprising:
PCT/JP2017/020805 2016-06-08 2017-06-05 Gas cluster ion beam machining method and machining apparatus WO2017213078A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018522474A JPWO2017213078A1 (en) 2016-06-08 2017-06-05 Gas cluster ion beam processing method and processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-114851 2016-06-08
JP2016114851 2016-06-08

Publications (1)

Publication Number Publication Date
WO2017213078A1 true WO2017213078A1 (en) 2017-12-14

Family

ID=60578629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020805 WO2017213078A1 (en) 2016-06-08 2017-06-05 Gas cluster ion beam machining method and machining apparatus

Country Status (2)

Country Link
JP (1) JPWO2017213078A1 (en)
WO (1) WO2017213078A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023528742A (en) * 2020-06-10 2023-07-06 エーエスエムエル ネザーランズ ビー.ブイ. Interchangeable modules for charged particle instruments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104980A (en) * 1994-10-07 1996-04-23 Res Dev Corp Of Japan Cluster ion beam sputtering device
JPH10206621A (en) * 1997-01-22 1998-08-07 Toshiba Corp Manufacture of holographic optical element
JP2007321185A (en) * 2006-05-31 2007-12-13 Olympus Corp Superprecision polishing method and superprecision polishing device by gas cluster ion beam
US7449699B1 (en) * 2006-04-20 2008-11-11 Sandia Corporation Method and apparatus for creating a topography at a surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104980A (en) * 1994-10-07 1996-04-23 Res Dev Corp Of Japan Cluster ion beam sputtering device
JPH10206621A (en) * 1997-01-22 1998-08-07 Toshiba Corp Manufacture of holographic optical element
US7449699B1 (en) * 2006-04-20 2008-11-11 Sandia Corporation Method and apparatus for creating a topography at a surface
JP2007321185A (en) * 2006-05-31 2007-12-13 Olympus Corp Superprecision polishing method and superprecision polishing device by gas cluster ion beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023528742A (en) * 2020-06-10 2023-07-06 エーエスエムエル ネザーランズ ビー.ブイ. Interchangeable modules for charged particle instruments
JP7431349B2 (en) 2020-06-10 2024-02-14 エーエスエムエル ネザーランズ ビー.ブイ. Exchangeable modules for charged particle devices
US11961698B2 (en) 2020-06-10 2024-04-16 Asml Netherlands B.V. Replaceable module for a charged particle apparatus

Also Published As

Publication number Publication date
JPWO2017213078A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
KR20160109866A (en) Apparatus and method for 3d printing
US9751171B2 (en) Method to process spectacle lens blanks
Drueding et al. Ion beam figuring of small optical components
JP2009142866A5 (en)
KR20200002795A (en) Processing method of workpiece surface using laser
CN110785279B (en) Automated calibration of an apparatus for fully parallelized additive manufacturing of workpieces with combined working areas
JP6112693B1 (en) Additive manufacturing equipment
JP2012240216A (en) Three-dimensional modeling apparatus, modeled object, and method for manufacturing modeled object
KR102108403B1 (en) Multi-axis Laser Manufacturing Machine
WO2017213078A1 (en) Gas cluster ion beam machining method and machining apparatus
Fu et al. Fabrication of three-dimensional microstructures by two-dimensional slice by slice approaching via focused ion beam milling
KR20160143286A (en) 5-axis device fabricating surface continuously based on laser scanner and control method for the device
US20080110745A1 (en) Method and Device for Ion Beam Processing of Surfaces
JP2017218641A (en) Gas cluster ion beam processing method
JP2007321185A (en) Superprecision polishing method and superprecision polishing device by gas cluster ion beam
JP6421759B2 (en) Precision polishing apparatus and method
KR102076790B1 (en) Apparatus for 3D laser cutting
KR100805524B1 (en) Apparatus and method for grinding and polishing without tilting axis
KR20170096504A (en) Apparatus for printing 3-dimensonal object based on laser scanner for large area using machining
JP2003145629A (en) Method and apparatus for photo-fabrication
JP4177300B2 (en) Electron beam surface treatment method and electron beam surface treatment apparatus
CN109982830B (en) Information processing apparatus, forming device, information processing method, and program
JP2017100309A (en) Three-dimensional molding method
JP2006026660A (en) Surface smoothing device using electron beam, and method for treating surface of metal mold
JP2017051961A (en) Laser processing device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522474

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810255

Country of ref document: EP

Kind code of ref document: A1