WO2017212809A1 - Terminal crimp quality evaluation device and quality evaluation method - Google Patents

Terminal crimp quality evaluation device and quality evaluation method Download PDF

Info

Publication number
WO2017212809A1
WO2017212809A1 PCT/JP2017/016174 JP2017016174W WO2017212809A1 WO 2017212809 A1 WO2017212809 A1 WO 2017212809A1 JP 2017016174 W JP2017016174 W JP 2017016174W WO 2017212809 A1 WO2017212809 A1 WO 2017212809A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
determination
areas
defective
terminal crimping
Prior art date
Application number
PCT/JP2017/016174
Other languages
French (fr)
Japanese (ja)
Inventor
洋志 草野
後藤 淳
山川 健司
矢野 哲也
Original Assignee
新明和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新明和工業株式会社 filed Critical 新明和工業株式会社
Priority to CN201780017292.1A priority Critical patent/CN108780974B/en
Publication of WO2017212809A1 publication Critical patent/WO2017212809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • H01R43/048Crimping apparatus or processes

Definitions

  • the present invention relates to a terminal crimping pass / fail judgment device and a pass / fail judgment method for judging whether or not a terminal is satisfactorily crimped to an end of an electric wire.
  • a terminal crimping device for crimping a terminal to an end of an electric wire is used in the manufacture of a wire harness or the like.
  • An electric wire with a terminal whose terminal is not crimped well is a defective product. Therefore, it is desired to inspect whether or not the terminal is favorably crimped during terminal crimping. Therefore, conventionally, a terminal crimping quality determination device that determines whether or not a terminal is crimped to the end of an electric wire has been used.
  • Patent Document 1 describes a pass / fail judgment device that detects a pressure received by a base plate of a terminal crimping device with a pressure sensor and judges pass / fail of terminal crimping based on the pressure.
  • a non-defective product In the pass / fail judgment apparatus, first, a non-defective product generates a pressure waveform representing a change in pressure with respect to the elapsed time of the terminal crimping process.
  • this pressure waveform is referred to as a reference waveform.
  • inspection waveform the pressure waveform of the inspection product
  • the inspection waveform is compared with the reference waveform. Whether the inspection product is a non-defective product or a defective product is determined based on whether or not the difference is larger than a predetermined value.
  • the reference waveform is set as follows. That is, first, a pressure waveform is prepared when good terminal crimping is performed using a plurality of electric wires and terminals.
  • the wire and the terminal in which the terminal crimping is performed well are referred to as a non-defective sample.
  • an average of the pressure waveforms of the plurality of non-defective samples is used as a reference waveform.
  • ⁇ 3 ⁇ is set as a threshold from the reference waveform.
  • the pressure waveform is sampled at predetermined time intervals. When the ratio of the number of times exceeding the threshold to the total number of samplings exceeds the allowable value, it is determined as defective.
  • Patent Document 2 describes a quality determination device that takes into account a plurality of modes of defective crimping.
  • the quality determination apparatus described in Patent Document 2 one point in time at which the difference between the inspection waveform and the reference waveform is the largest is specified in advance for each crimping failure mode. Then, at each of a plurality of time points corresponding to a plurality of modes, it is determined whether or not the difference between the pressure value of the inspection waveform and the pressure value of the reference waveform exceeds a predetermined value (tolerance).
  • Patent Document 2 lists 6 ⁇ (X) / AVE (X) and (good product average ⁇ defective product average) / 2 as specific examples of tolerances. Note that ⁇ (X) and AVE (X) are the standard deviation and the average value of the non-defective samples, respectively.
  • the value (threshold value) that serves as a reference for pass / fail judgment is set based on how far the average value of the non-defective samples is deviated.
  • the threshold variations in defective products are not taken into consideration. However, even if the average value of defective products is the same, if the degree of variation of defective products is different, the possibility that a defective product is regarded as a non-defective product will be different.
  • FIG. 27A and FIG. 27B are diagrams showing an example in which the average value of good products, the standard deviation of good products, and the average value of defective products are the same, but the standard deviation of defective products is different.
  • 27B has a larger variation of defective products and a larger standard deviation than FIG. 27A.
  • the threshold value is set based on the average value of the non-defective products, or the average value and the standard deviation, the threshold values are the same in the examples of FIGS. 27A and 27B.
  • the tolerance D (average of good products ⁇ average of defective products) / 2.
  • the tolerance D 6 ⁇ (X) / AVE (X).
  • FIG. 27B exceeds the threshold is higher than that of the defective product in FIG. 27A. That is, it can be seen that FIG. 27B has a higher possibility that a defective product is mistaken for a non-defective product.
  • the conventional quality determination device cannot take into account such a difference in variation.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a terminal crimping pass / fail judgment device and a pass / fail judgment method capable of performing non-defective product judgment with higher accuracy.
  • a terminal crimping quality determination device includes a pressure waveform acquisition unit that acquires a pressure waveform representing a relationship between a degree of progress of terminal crimping by a terminal crimping device and a pressure generated in the terminal crimping device, and the pressure waveform.
  • An area area calculation unit that calculates an area area, which is an area of a portion surrounded by the pressure waveform, divided into a plurality of areas according to the progress of terminal crimping, and one or two included in the plurality of areas
  • a determination area extraction unit that extracts a determination area using the above areas, an average value and a standard deviation of a plurality of non-defective samples in the determination area, and an average of the area areas of a plurality of defective samples in the determination area
  • the threshold setting unit that sets the threshold based on the value and the standard deviation, By comparing the area area in the judgment area of the serial test article and the said threshold value, and a, and a judging section that judges acceptability of terminal crimping of the article to be inspected.
  • the threshold value used as a criterion for determining whether or not terminal crimping is good is the average value and standard deviation of the area areas of the non-defective samples in the determination area, and the area area of the multiple defective samples in the determination area. It is set based on the average value and the standard deviation. Therefore, the threshold value can be set in consideration of the non-defective product variation in addition to the non-defective product average value, non-defective product variation, and defective product average value. Therefore, it is possible to reduce the possibility of misidentifying a defective product as a non-defective product, and to perform quality determination with higher accuracy.
  • the above pass / fail judgment device performs calculation for each area having a certain width, not at one point in time of the pressure waveform. Therefore, it is not necessary to perform calculation for every enormous number of time points, and the calculation time can be shortened. In addition, since it is difficult to be affected by sudden disturbance (noise), it is possible to suppress a decrease in determination accuracy due to the disturbance.
  • the determination area extraction unit includes an average value and standard deviation of area areas of non-defective samples in each area, and an average value and standard deviation of area areas of defective samples in each area, And an effective area selection unit that selects one or more areas from the plurality of areas as an effective area, and a determination area determination unit that determines the determination area using the effective area. ing.
  • the determination area can be determined using the selected effective area. Therefore, a good product and a defective product can be distinguished relatively clearly, and a quality determination with high accuracy can be performed.
  • the determination area extraction unit includes an average value ⁇ OK of the non-defective sample area area in each area, a standard deviation ⁇ OK of the non-defective sample area area, an area area of the defective sample, It has an area-specific calculation unit that calculates an average value ⁇ NG and a standard deviation ⁇ NG of the area area of the defective product sample, and the effective area selection unit is ⁇ NG when m and n are one or more real numbers.
  • an area where it is easy to distinguish good products from defective products can be selected as an effective area.
  • a non-defective product and a defective product can be distinguished relatively clearly, and high-accuracy determination can be performed.
  • an area where it is easy to distinguish good products from defective products can be selected as an effective area.
  • a non-defective product and a defective product can be distinguished relatively clearly, and high-accuracy determination can be performed.
  • an area where it is easy to distinguish good products from defective products can be selected as an effective area.
  • a non-defective product and a defective product can be distinguished relatively clearly, and high-accuracy determination can be performed.
  • the effective area selection unit is configured to select one area having the largest value of the first variable as the effective area among the plurality of areas.
  • the determination area determination unit is configured to use the effective area as a determination area.
  • the determination area can be determined quickly and easily.
  • the effective area selection unit is configured to select two or more areas having a larger value of the first variable as the effective area among the plurality of areas.
  • the determination area determination unit is configured to determine a determination area using the two or more effective areas.
  • the determination area is determined using a plurality of effective areas, a more advanced determination is possible.
  • the effective area selection unit in the plurality of areas, at least in the order of the value of the first variable, or in the order of small standard deviation of the area area of the defective product sample, It is configured to select two or more areas as effective areas.
  • the determination area determination unit weights the selected effective area, and then determines a determination area from the combination area and a combination area generation unit that generates a combination area formed by combining the weighted effective areas.
  • a combination area determination unit is configured to select two or more areas as effective areas.
  • the effective area selection unit includes at least a first area having a value of the first variable, a second area having the second largest value, and a third value among the plurality of areas.
  • the third area larger than the second area is selected as the effective area.
  • the determination area determination unit includes a combination area obtained by adding the first area and the second area, a combination area obtained by adding the first area and the third area, the second area, and the third area.
  • a combination area creating unit for creating a plurality of combination areas including a combination area obtained by adding together the first area, the second area, and the third area, and a non-defective product in each combination area Based on the average value and standard deviation of the area area of the sample and the average value and standard deviation of the area area of the defective sample in each combination area, any one of the plurality of combination areas is used as a determination area And an area determination unit.
  • the determination area determination unit includes an average value ⁇ OK of the non-defective sample area area in each combination area, a standard deviation ⁇ OK of the non-defective sample area, and an area area of the defective sample. It has an average value mu NG, and a different combination area calculation unit that calculates a standard deviation sigma NG with an area of defective samples.
  • a combination area that is more easily distinguished from a non-defective product and a defective product can be set as the determination area. Therefore, a good product and a defective product can be clearly distinguished, and a higher-accuracy determination can be made.
  • the non-defective product and the defective product can be clearly distinguished, and the quality determination can be performed with higher accuracy.
  • the non-defective product and the defective product can be clearly distinguished, and the quality determination can be performed with higher accuracy.
  • the combination area creation unit weights at least the first area, the second area, and the third area when creating the plurality of combination areas. It is configured.
  • the combination area creation unit is configured to perform weighting such that the weighting increases as the standard deviation decreases.
  • the combination area creating unit is configured to perform weighting such that the weighting increases as the degree of separation increases.
  • the determination area extraction unit sets one or more areas as the effective area in order of increasing standard deviation value of the area area of the defective product among the plurality of areas.
  • An effective area selection unit to select; and a determination area determination unit that determines the determination area using the effective area.
  • an area with less variation in the distribution of defective samples can be selected as an effective area. Thereby, a favorable quality determination can be performed.
  • the threshold setting unit includes an average value area ⁇ d OK of non-defective samples in the determination area, an area area standard deviation ⁇ d OK of non-defective samples, and an average area area of defective samples.
  • the terminal crimping apparatus includes an anvil on which an end of a wire and a terminal are placed, a crimper that can approach and separate from the anvil, and the crimper in the anvil. And an electric actuator for approaching and separating from the actuator.
  • the progress of the terminal crimping is any one of elapsed time, the position of the crimper, the travel distance of the crimper, the speed of the crimper, the acceleration of the crimper, the current supplied to the actuator, and the operating position of the actuator. It is.
  • a good pressure waveform can be obtained, and whether or not the terminal crimping is good can be suitably determined.
  • each pressure waveform when a good product sample, a defective product sample, and a test product are crimped to terminals can be accurately aligned and compared according to the degree of progress of terminal crimping. The determination can be suitably performed.
  • a terminal crimping apparatus performs terminal crimping of a plurality of non-defective samples and a plurality of defective samples, and the degree of progress of terminal crimping of each sample and the pressure generated in the terminal crimping apparatus.
  • a pressure waveform representing the relationship between the pressure waveform and the pressure waveform of each sample is divided into a plurality of areas according to the degree of terminal crimping, and an area of an area surrounded by the pressure waveform is determined for each area.
  • the present invention it is possible to provide a terminal crimping quality determination device and a quality determination method capable of performing a quality determination with higher accuracy.
  • FIG. 1 is a front view of the terminal crimping apparatus.
  • FIG. 2 is a side view of the terminal crimping apparatus.
  • FIG. 3 is a block diagram of the quality determination device.
  • FIG. 4 is a functional block diagram of the CPU.
  • FIG. 5 is a flowchart of a threshold setting method.
  • FIG. 6A is a plan view of a non-defective sample.
  • FIG. 6B is a plan view of a defective product sample.
  • FIG. 6C is a plan view of another defective sample.
  • FIG. 6D is a plan view of another defective sample. It is a figure showing a pressure waveform and a divided area. It is a figure showing the normal distribution data of each sample in each area.
  • the terminal crimping quality determination device (hereinafter simply referred to as “quality judgment device”) indicates whether or not the terminal is crimped well when the terminal crimping device crimps the terminal to the end of the electric wire. It is a device for judging.
  • FIG. 1 is a front view of the terminal crimping device 1
  • FIG. 2 is a side view of the terminal crimping device 1.
  • the terminal crimping device 1 includes an anvil 2, a crimper 3 that can be raised and lowered, and a motor 4 that raises and lowers the crimper 3.
  • the motor 4 is configured by a servo motor that can detect the rotational position of the motor 4.
  • the type of the motor 4 is not particularly limited, and may be a motor other than the servo motor.
  • the motor 4 is an example of an electric actuator that moves the crimper 3 toward and away from the anvil 2.
  • the actuator is not limited to the motor 4. Any actuator that can move the crimper 3 up and down can be used as the actuator.
  • a terminal supply device 5 is arranged on the side of the anvil 2.
  • the terminal supply device 5 is configured to sequentially supply a terminal group 11 formed by connecting a plurality of terminals 10 toward the anvil 2.
  • the terminal 10 is separated from the adjacent terminal 10 by the crimper 3 and is crimped to the electric wire 12.
  • the motor 4, the crimper 3, and the anvil 2 constitute a crimping portion that crimps the terminal 10 to the electric wire 12 by applying pressure to the terminal 10.
  • a pressure sensor 21 that detects the pressure generated in the crimping portion is provided.
  • the pressure sensor 21 is configured by a piezoelectric element connected to the anvil 2.
  • the specific configuration of the pressure sensor 21 is not limited at all. Not only a piezoelectric element but any sensor capable of detecting pressure can be suitably used.
  • the pressure sensor 21 may be directly connected to the anvil 2, but is indirectly connected in the present embodiment. That is, another member is interposed between the pressure sensor 21 and the anvil 2.
  • the “connection” includes both a case of being directly connected and a case of being indirectly connected via another member.
  • the pressure sensor 21 should just be arrange
  • the pressure sensor 21 may be connected to the crimper 3, for example.
  • the pressure sensor 21 is electrically connected to the controller 20.
  • “electrically connected” means connected so as to be communicable by wire or wirelessly.
  • the controller 20 may be a microcomputer built in the terminal crimping apparatus 1 or a computer (for example, a personal computer) disposed outside the terminal crimping apparatus 1.
  • the pressure sensor 21 and the controller 20 are connected by an electric wire.
  • the pressure sensor 21 is configured to output a voltage value or a current value corresponding to the magnitude of the pressure.
  • the controller 20 detects the pressure generated in the crimping part based on the voltage or current value received from the pressure sensor 21.
  • terminal crimping apparatus 1 As mentioned above, although the structure of the terminal crimping apparatus 1 was demonstrated, said terminal crimping apparatus 1 is only an example.
  • the terminal crimping device to which the quality determination device according to the present invention is applied is not limited at all.
  • the quality determination device according to the present invention is applicable to various known terminal crimping devices.
  • the quality determination device 100 includes the pressure sensor 21, the A / D converter 22, the controller 20, and the display 26.
  • the pass / fail determination apparatus 100 may further include an external memory 27 such as a hard disk.
  • the controller 20 includes a CPU 30, a ROM 24, and a RAM 25.
  • a servo amplifier 8 is connected to the motor 4, and the servo amplifier 8 is connected to a controller 20.
  • FIG. 4 is a functional block diagram of the CPU 30. Although details will be described later, the CPU 30 functions as a pressure waveform acquisition unit 40, an area area calculation unit 50, a determination area extraction unit 60, a threshold setting unit 70, and a determination unit 80 when executing processing to be described later.
  • the determination area extraction unit 60 includes an effective area selection unit 61, an area calculation unit 62, and a determination area determination unit 63.
  • the determination area determination unit 63 includes a combination area creation unit 64, a combination area calculation unit 65, and a combination area determination unit 66.
  • the threshold setting unit 70 includes a determination area calculation unit 71 and a threshold determination unit 72.
  • the pressure waveform acquisition unit 40, the area area calculation unit 50, the determination area extraction unit 60, the threshold setting unit 70, and the determination unit 80 are respectively a pressure waveform acquisition processor, an area area calculation processor, and a determination. It can be read as an area extraction processor, a threshold setting processor, or a determination processor.
  • the effective area selection unit 61, the area calculation unit 62, and the determination area determination unit 63 can be read as an effective area selection processor, an area calculation processor, and a determination area determination processor, respectively.
  • the combination area creation unit 64, the combination area calculation unit 65, and the combination area determination unit 66 can be read as a combination area generation processor, a combination area calculation processor, and a combination area determination processor, respectively.
  • the determination area calculation unit 71 and the threshold value determination unit 72 can be read as a determination area calculation processor and a threshold value determination processor, respectively.
  • the pass / fail determination apparatus 100 determines whether the terminal crimping is good or not based on whether or not a predetermined detection value (area area of a determination area described later) exceeds a predetermined threshold when the terminal crimping of the inspection product is performed. judge. First, a threshold setting method will be described.
  • FIG. 5 is a flowchart of a threshold setting method.
  • step S1 a plurality of sets of electric wires 12 and terminals 10 are prepared.
  • the wire 12 used for setting the threshold and the terminal 10 crimped to the end of the wire 12 are referred to as “sample”.
  • step S1 a plurality of non-defective samples and a plurality of defective samples are prepared.
  • a non-defective sample refers to a pair of electric wires 12 and terminals 10 that are well crimped.
  • a defective product sample refers to a set of electric wires 12 and terminals 10 that are not crimped well.
  • FIG. 6A represents a good sample. In the non-defective sample, the insulation barrel 10 a of the terminal 10 is crimped to the coating 12 a of the electric wire 12, and the wire barrel 10 b of the terminal 10 is crimped to the core 12 b of the electric wire 12.
  • FIGS. 6B to 6D show examples of defective samples.
  • FIGS. 6B to 6D there are various modes of the crimping failure of the terminal 10.
  • FIG. 6B shows a defective sample (so-called core wire spillage) in which some core wires 12b of the electric wires 12 are not crimped to the wire barrel 10b.
  • FIG. 6C shows a defective sample (so-called core wire drop) in which the core wire 12b of the electric wire 12 is not crimped to the wire barrel 10b but is crimped to the insulation barrel 10a.
  • FIG. 6D shows a defective sample (so-called coating bite) in which the coating 12a of the electric wire 12 is crimped to the wire barrel 10b.
  • a plurality of defective product samples are prepared for each aspect of defective crimping.
  • step S2 the terminal crimping process is performed on the non-defective product sample and the defective product sample using the terminal crimping device 1. And a pressure waveform is acquired about each sample (refer FIG. 7).
  • the pressure waveform is a waveform representing a change in the pressure P detected by the pressure sensor 21 with respect to the progress of the terminal crimping process by the terminal crimping apparatus 1.
  • the elapsed time t of the terminal crimping process is used as a variable representing the progress of the terminal crimping process.
  • the variable is not limited to the elapsed time t of the terminal crimping process as long as it can represent the progress of the terminal crimping process.
  • CPU30 functions as the pressure waveform acquisition part 40.
  • FIG. The acquired pressure waveform is stored in the RAM 25 as a sample waveform.
  • the RAM 25 is an example of a sample waveform storage unit that stores pressure waveforms of a good product sample and a defective product sample.
  • the sample waveform storage unit is not limited to the RAM 25 but may be the external memory 27 or the like.
  • step S3 the pressure waveform of each sample is divided into a plurality of areas for each elapsed time.
  • the pressure waveform is divided into ten areas A1, A2, A3, A4,.
  • the number of area divisions is not particularly limited.
  • the width of each area may or may not be constant.
  • the CPU 30 functions as a pressure waveform dividing unit (not shown) when dividing the pressure waveform.
  • CPU30 calculates the area (henceforth an area area) of the part enclosed by a pressure waveform for every area. For example, in area A4, the area of the region surrounded by point P1, point P2, point P3, and point P4 is the area area.
  • the CPU 30 functions as the area area calculation unit 50 when calculating the area area of each area.
  • step S4 the area area of the non-defective sample and the area area of the defective sample of each aspect are totaled for every area.
  • step S2 a plurality of non-defective sample pressure waveforms and a plurality of non-defective sample pressure waveforms are acquired. Therefore, data of probability distribution (normal distribution) as shown in FIG. 8 is obtained for each area for each of the non-defective product sample and the defective product sample of each aspect.
  • the CPU 30 calculates the average value ⁇ OK of the non-defective samples, the standard deviation ⁇ OK of the non-defective samples, the average value ⁇ NG of the defective samples of each aspect, and the standard deviation ⁇ NG of the defective samples of each aspect.
  • the CPU 30 functions as the area-specific calculation unit 62.
  • FIGS. 9 to 18 are diagrams comparing the normal distribution of the non-defective samples in the areas A1 to A10 with the normal distribution of the defective samples in a predetermined mode, respectively.
  • the difference between the area area of the non-defective sample and the area area of the defective sample is small, for example, as shown in FIG. 10, the normal distribution of the non-defective sample and the normal distribution of the defective sample tend to approach each other.
  • the difference between the area area of the non-defective sample and the area area of the defective sample is large, for example, as shown in FIG. 14, the normal distribution of the non-defective sample and the normal distribution of the defective sample tend to be separated.
  • the portion where the normal distribution of the non-defective sample and the normal distribution of the defective sample overlap is a portion where it is difficult to distinguish whether it is a good product or a defective product. In other words, even a defective product may be misidentified as a non-defective product.
  • the normal distribution of non-defective samples and the normal distribution of defective samples are separated, it is easy to distinguish good products from defective products.
  • an area where the normal distribution of the non-defective product sample and the normal distribution of the defective product sample are small is selected, and the pass / fail determination is performed using the selected area.
  • the area selected in this way is referred to as an effective area.
  • step S5 the CPU 30 selects an effective area.
  • An area where the normal distribution of the non-defective samples and the normal distribution of the defective samples are separated is suitable as an effective area. Therefore, an area where the normal distribution of the non-defective samples and the normal distribution of the defective samples are most separated may be selected as the effective area.
  • the normal distribution of non-defective samples and the normal distribution of defective samples may overlap. In that case, it is difficult to distinguish good products from defective products using only one area.
  • the overlap between the normal distribution of the non-defective samples and the normal distribution of the defective samples can be reduced or the overlap can be eliminated.
  • a plurality of areas are selected as effective areas so that there is no overlap between the normal distribution of the non-defective samples and the normal distribution of the defective samples, or the overlap is as small as possible.
  • combination area the added area
  • the area having the highest degree of separation, the second largest area, and the third largest area are selected as effective areas.
  • C [( ⁇ OK ⁇ m ⁇ ⁇ OK ) ⁇ ( ⁇ NG + n ⁇ ⁇ NG )] / ( ⁇ OK ⁇ NG ).
  • areas A5, A6, and A7 are selected as effective areas.
  • the CPU 30 functions as the effective area selection unit 61 when selecting an effective area.
  • step S6 when the effective areas A5 to A7 are combined, weighting is performed such that the smaller the data variation is, the larger the weight is.
  • K5 k / ⁇ 5
  • k is a constant value
  • ⁇ 5, ⁇ 6, and ⁇ 7 are standard deviations of non-defective samples in the effective areas A5, A6, and A7, respectively.
  • ⁇ 5, ⁇ 6, and ⁇ 7 may be standard deviations of defective samples in the effective areas A5, A6, and A7, respectively.
  • K5 ⁇ K6 ⁇ K7 the above weighting coefficient is an example, and the specific method of weighting is not particularly limited.
  • the effective area may be weighted so that the weighting increases as the degree of separation increases.
  • step S7 a combination area is created by combining effective areas after weighting.
  • combination areas A5 + A6, A6 + A7, A7 + A5, A5 + A6 + A7 are created for the effective areas A5, A6, A7 after weighting.
  • the CPU 30 functions as the combination area creation unit 64 when weighting the effective area and creating the combination area.
  • the CPU 30 calculates, for each combination area, the average value ⁇ OK of the non-defective samples, the standard deviation ⁇ OK of the non-defective samples, the average value ⁇ NG of the defective samples of each aspect, and the standard deviation ⁇ NG of the defective samples of each aspect. calculate.
  • the CPU 30 functions as the combination area calculation unit 65.
  • FIG. 21, FIG. 22, and FIG. 23 are diagrams showing normal distributions of non-defective samples and defective samples in combination areas A5 + A6, A6 + A7, A5 + A7, and A5 + A6 + A7, respectively.
  • step S8 a combination area that is most suitable for quality determination is determined as a determination area.
  • the degree of separation of each of the combination areas A5 + A6, A6 + A7, A5 + A7, A5 + A6 + A7 created in step S7 is calculated, and the one with the largest degree of separation is set as the determination area.
  • the combination area with the highest degree of separation is A6 + A7. Therefore, the combination area A6 + A7 is a determination area.
  • the CPU 30 functions as a combination area determination unit 66 when determining a determination area from a plurality of combination areas.
  • a threshold E is set from the normal distribution of the non-defective samples and the defective samples in the determination area (see FIG. 24).
  • the CPU 30 functions as the threshold setting unit 70.
  • the threshold value E can be a boundary value that separates a good product sample and a defective product sample.
  • the specific setting method of the threshold value E is not limited at all.
  • the average value of the non-defective sample area area in the determination area is ⁇ d OK
  • the standard deviation of the non-defective sample area is ⁇ d OK
  • the defective sample area area is the average value [mu] d NG
  • a standard deviation with an area of defective samples is taken as .sigma.d NG
  • CPU30 functions as a determination area calculation unit 71.
  • a predetermined value between ( ⁇ d OK + q ⁇ ⁇ d OK ) can be set as the threshold value E.
  • p and q are one or more real numbers (for example, natural numbers).
  • a predetermined value between ( ⁇ d NG ⁇ 3 ⁇ d NG ) and ( ⁇ d OK + 3 ⁇ d OK ) may be used as the threshold value E.
  • ( ⁇ d NG ⁇ p ⁇ ⁇ d NG ) may be set as the threshold value E.
  • the threshold E may be ( ⁇ d OK + q ⁇ ⁇ d OK ).
  • the CPU 30 functions as the threshold value determination unit 72 when determining the threshold value.
  • the threshold value E which is a criterion for pass / fail judgment.
  • the set threshold value E is stored in the RAM 25 or the external memory 27.
  • the pressure waveform, the normal distribution of the non-defective product and the defective product in each area, the average value, the standard deviation, and the like may be displayed on the display 26.
  • the pass / fail judgment by the pass / fail judgment apparatus 100 is performed as follows (see FIG. 25).
  • the set of the electric wires 12 and the terminals 10 that are the objects of the pass / fail judgment are referred to as inspection products.
  • the pass / fail determination apparatus 100 receives a signal from the pressure sensor 21 when the terminal crimping apparatus 1 performs terminal crimping of the inspection product, and acquires a pressure waveform of the inspection product (step S11). Then, this pressure waveform is divided into areas A1 to A10 (step S12). Next, the effective areas A5 to A7 are selected (step S13), and the effective areas A5 to A7 are weighted in the same manner as described above (step S14).
  • the determination area A6 + A7 is extracted, and the area area of the determination area A6 + A7 is set. Calculate (step S15). Then, the size of the area of the determination area A6 + A7 for the inspection product and the threshold value E are compared (step S16). If the area of the inspection product determination area A6 + A7 exceeds the threshold value E, the inspection product is determined to be defective (step S17). On the other hand, if the area of the inspection product determination area A6 + A7 is equal to or less than the threshold value E, the inspection product is determined to be a non-defective product (step S18).
  • the CPU 30 functions as the determination unit 80 when performing the processes of steps S11 to S18.
  • the area area of the determination area A6 + A7 of the inspection product is the threshold value E.
  • the inspection product is determined to be a non-defective product in the following cases. However, if the average value of the area area of the non-defective sample is larger than the average value of the area area of the defective sample in the judgment area, the inspection product is good if the area area of the judgment area of the inspection product is greater than or equal to the threshold value. If it is smaller than the threshold value, it is determined as a defective product.
  • the determination result is displayed on the display 26, for example. Thereby, the user can easily recognize whether or not the terminal crimping of the inspection product has been performed satisfactorily.
  • the determination result notification method is not limited to display on the display 26.
  • the pass / fail determination device 100 may include a speaker and output a sound from the speaker to notify the pass / fail determination result of terminal crimping.
  • the terminal crimping device 1 performs terminal crimping of a plurality of non-defective samples and a plurality of defective samples, and the threshold value is automatically set based on the data. Set.
  • the accuracy of pass / fail judgment depends on the intuition and experience of the person, and human error may occur.
  • such a human error does not occur because the threshold is automatically set based on objective data.
  • the threshold value is automatically set based on the data of the non-defective product sample and the defective product sample, so that it is possible to use a newly generated singularity.
  • the threshold value E which is a criterion for pass / fail judgment of terminal crimping, is the average value and standard deviation of the area areas of a plurality of non-defective samples in the judgment area, and a plurality of faults in the judgment area. It is set based on the average value and standard deviation of the area area of the non-defective samples. Therefore, the threshold value E can be set in consideration of the variation of defective products in addition to the average value of non-defective products, the variation of non-defective products, and the average value of defective products. Therefore, it is possible to reduce the possibility of misidentifying a defective product as a non-defective product, and to perform quality determination with higher accuracy.
  • the threshold value E is not particularly limited, a predetermined value between ( ⁇ d OK ⁇ p ⁇ ⁇ d OK ) and ( ⁇ d NG + q ⁇ ⁇ d NG ) is set as the threshold value E in the present embodiment. Thereby, the quality determination with high accuracy can be performed.
  • the quality determination apparatus 100 calculates the average value and the standard deviation of the non-defective product samples and the defective product samples for each area having a certain width. Therefore, the prior art (for example, see the above-mentioned Patent Document 2) that specifies a time (in other words, a single time point) where the difference between the non-defective product sample and the defective product sample is the largest, and uses a section around that time as a determination area. ) Has the following advantages. First, in this embodiment, an area area is calculated for each predetermined number of predetermined areas, and a difference between a pass / fail sample and a defective product sample is calculated based on the area area.
  • the pressure waveform is divided into a plurality of areas A1 to A10, and the areas A5 to A7 in which the good and defective products can be easily distinguished among the areas A1 to A10 are effective areas. Choose as. Then, the determination area is determined using the effective areas A5 to A7. Therefore, a good product and a defective product can be distinguished relatively clearly, and a quality determination with high accuracy can be performed.
  • the areas A5 to A7 having a high degree of separation are selected as the effective areas from the plurality of areas A1 to A10. Therefore, a good product and a defective product can be clearly distinguished, and a high / defective judgment can be performed with high accuracy.
  • a plurality of combination areas are created by appropriately adding the effective areas A5 to A7, and the average value and standard deviation of the area areas of the non-defective samples in each combination area are calculated.
  • the determination area is determined based on the average value and standard deviation of the area areas of the defective product samples in each combination area. Since it is possible to use the judgment area as an area where it is easier to distinguish between non-defective products and defective products than the effective areas A5 to A7, it is possible to more clearly distinguish between non-defective products and defective products, and pass / fail with higher accuracy. Judgment can be made.
  • an area having a high degree of separation is selected as a determination area from among a plurality of combination areas. Therefore, a good product and a defective product can be clearly distinguished, and a high / defective judgment can be performed with high accuracy.
  • weighting when combining the effective areas A5 to A7, weighting is performed so as to create a combination area that can more clearly distinguish non-defective products from defective products. .
  • weighting is performed such that the weighting increases as the standard deviation decreases, or the weighting increases as the separation degree increases. Therefore, a more suitable combination area can be created, and thus a more suitable determination area can be obtained. Therefore, it is possible to perform pass / fail judgment with higher accuracy.
  • step S5 three effective areas A5 to A7 are selected from all the areas A1 to A10, and a determination area is extracted from a plurality of combination areas obtained by appropriately combining these effective areas A5 to A7. It was. However, as described above, of all the areas A1 to A10, one area where the normal distribution of the non-defective samples and the normal distribution of the defective samples are most separated is selected as the effective area, and the effective area is determined as the determination area.
  • a variable for indicating the degree of separation between the normal distribution of the non-defective samples and the normal distribution of the defective samples is determined, and an area where the value of the third variable is equal to or greater than a predetermined value is selected as an effective area.
  • An area having the largest value of the third variable in the case where there is one effective area where the value of the third variable is equal to or greater than a predetermined value) may be extracted as the determination area.
  • step S4A it is determined whether there is an area where the value of the third variable is equal to or greater than a predetermined value (step S4A). If the determination result is YES, the value of the third variable May be selected as an effective area (step S4B), and the effective area may be set as a determination area (step S4C). If the determination result of step S4A is NO, the processes after step S5 may be performed. The above process can be performed by the CPU 30.
  • three areas are selected as effective areas.
  • the number of effective areas to be selected is not limited to three.
  • the number of effective areas may be four or more. Even in this case, an area obtained by appropriately adding two or more effective areas can be used as a combination area.
  • the elapsed time t of the terminal crimping process is used as a variable representing the progress of terminal crimping.
  • the variable representing the progress of the terminal crimping process is not limited to the elapsed time t. Any variable that can uniquely identify the progress of the terminal crimping process can be used.
  • Terminal crimping is performed by moving the crimper 3.
  • the crimper 3 is driven by a motor 4. For this reason, for example, based on the position or moving distance of the crimper 3, the speed of the crimper 3, the acceleration of the crimper 3, the current supplied to the motor 4, or the rotational position of the motor 4 (actuation position of the actuator), Can be uniquely identified.
  • the first variable used when selecting the effective area is the degree of separation.
  • the first variable is not limited to the degree of separation.
  • an arbitrary variable indicating the degree of separation of the normal distribution of the area area between the non-defective product sample and the defective product sample can be used.
  • B ( ⁇ NG ⁇ n ⁇ ⁇ NG ) ⁇ ( ⁇ OK + m ⁇ ⁇ OK ) when ⁇ NG > ⁇ OK
  • a variable whose value increases as B ( ⁇ OK ⁇ n ⁇ ⁇ OK ) ⁇ ( ⁇ NG + m ⁇ ⁇ NG ) when ⁇ OK > ⁇ NG can be used.
  • the second variable used when determining the determination area is the degree of separation.
  • the second variable is not limited to the degree of separation.
  • an arbitrary variable indicating the degree of separation of the normal distribution of the area area between the non-defective product sample and the defective product sample can be used.
  • B ( ⁇ NG ⁇ r ⁇ ⁇ NG ) ⁇ ( ⁇ OK + s ⁇ ⁇ OK ) when ⁇ NG > ⁇ OK
  • a variable whose value increases as B ( ⁇ OK ⁇ r ⁇ ⁇ OK ) ⁇ ( ⁇ NG + s ⁇ ⁇ NG ) when ⁇ OK > ⁇ NG.
  • the method for selecting an effective area is not limited to the method of the above embodiment.
  • the effective area selection unit may be configured to select one or two or more areas as the effective area from the plurality of areas in ascending order of the standard deviation value of the area area of the defective product sample.
  • the determination area determination unit may be configured to determine the determination area using these effective areas. As a result, an area with less variation in the distribution of defective product samples can be selected as an effective area, and a good / bad determination can be made.
  • an effective area select a plurality of areas in descending order of the value of the first variable, and further select one or more areas from the plurality of areas in ascending order of ⁇ NG. These may be effective areas.
  • a plurality of areas are selected in descending order of the value of the first variable and n is a real number of 1 or more,
  • One or two or more areas may be selected in order from the smallest value of ⁇ n ⁇ ⁇ NG )
  • an area in which the probability distribution between the non-defective product sample and the defective product sample is large and the variation in the distribution of the defective product sample is smaller can be selected as an effective area, and a good / non-defective determination can be performed.
  • weighting may or may not be performed when combining effective areas.
  • the effective area selection unit selects at least two areas as the effective area from the plurality of areas in order of at least the first variable value or in ascending order of standard deviation of the area area of the defective product sample. It may be configured.
  • the combination area creation unit is configured to create a combination area formed by combining the weighted effective areas after weighting the selected effective area, and the combination area determination unit determines the determination area from the combination areas. May be configured to determine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • General Factory Administration (AREA)

Abstract

This quality evaluation device (100) comprises: a pressure waveform acquisition unit (40) for acquiring the pressure waveform during terminal crimping; an area surface size calculation unit (50) dividing the pressure waveform into a plurality of areas to calculate an area surface size for each of the areas; an evaluation area extraction unit (60) using one or more areas contained in the plurality of areas to extract an evaluation area; a threshold value setting unit (70) setting a threshold value on the basis of a mean value and a standard deviation of the area surface sizes from a plurality of quality product samples and defective product samples in the evaluation area; and an evaluation unit (80) for comparing, when the terminal crimping of a product being examined has been performed by a terminal crimping device, the threshold value and the area surface size in the evaluation area of the product being examined, thereby determining the quality of the terminal crimping on the product being examined.

Description

端子圧着の良否判定装置および良否判定方法Terminal crimping quality determination device and quality determination method
 本発明は、電線の端部に端子が良好に圧着されたか否かを判定する端子圧着の良否判定装置および良否判定方法に関する。 The present invention relates to a terminal crimping pass / fail judgment device and a pass / fail judgment method for judging whether or not a terminal is satisfactorily crimped to an end of an electric wire.
 従来から、ワイヤハーネスの製造等において、電線の端部に端子を圧着する端子圧着装置が用いられている。端子が良好に圧着されなかった端子付き電線は不良品となる。そのため、端子圧着の際に、端子が良好に圧着されたか否かを検査することが望まれる。そこで従来から、電線の端部に端子が良好に圧着されたか否かを判定する端子圧着の良否判定装置が利用されている。特許文献1には、端子圧着装置のベース板が受ける圧力を圧力センサにより検出し、その圧力に基づいて端子圧着の良否を判定する良否判定装置が記載されている。上記良否判定装置では、まず、良品について、端子圧着処理の経過時間に対する圧力の変化を表す圧力波形を生成する。以下、この圧力波形を基準波形という。そして、検査品の圧力波形(以下、検査波形という)と基準波形とを比較する。それらの差が予め定めた値よりも大きいか否かに基づいて、検査品が良品か不良品かを判定する。 Conventionally, a terminal crimping device for crimping a terminal to an end of an electric wire is used in the manufacture of a wire harness or the like. An electric wire with a terminal whose terminal is not crimped well is a defective product. Therefore, it is desired to inspect whether or not the terminal is favorably crimped during terminal crimping. Therefore, conventionally, a terminal crimping quality determination device that determines whether or not a terminal is crimped to the end of an electric wire has been used. Patent Document 1 describes a pass / fail judgment device that detects a pressure received by a base plate of a terminal crimping device with a pressure sensor and judges pass / fail of terminal crimping based on the pressure. In the pass / fail judgment apparatus, first, a non-defective product generates a pressure waveform representing a change in pressure with respect to the elapsed time of the terminal crimping process. Hereinafter, this pressure waveform is referred to as a reference waveform. Then, the pressure waveform of the inspection product (hereinafter referred to as inspection waveform) is compared with the reference waveform. Whether the inspection product is a non-defective product or a defective product is determined based on whether or not the difference is larger than a predetermined value.
 上記良否判定装置では、基準波形は以下のように設定される。すなわち、まず、複数の電線および端子を用いて良好な端子圧着を行ったときの圧力波形を用意する。以下、端子圧着が良好に行われた電線および端子のことを、良品サンプルという。そして、それら複数の良品サンプルの圧力波形の平均を基準波形とする。また、それらの標準偏差をσとしたときに、基準波形から±3σを閾値として設定する。検査時には、所定時間間隔毎に圧力波形をサンプリングする。閾値を超えた回数の全サンプリング数に対する割合が許容値を超えた場合に、不良と判定する。 In the above pass / fail judgment device, the reference waveform is set as follows. That is, first, a pressure waveform is prepared when good terminal crimping is performed using a plurality of electric wires and terminals. Hereinafter, the wire and the terminal in which the terminal crimping is performed well are referred to as a non-defective sample. Then, an average of the pressure waveforms of the plurality of non-defective samples is used as a reference waveform. When the standard deviation is σ, ± 3σ is set as a threshold from the reference waveform. At the time of inspection, the pressure waveform is sampled at predetermined time intervals. When the ratio of the number of times exceeding the threshold to the total number of samplings exceeds the allowable value, it is determined as defective.
 特許文献2には、圧着不良の複数の態様を考慮した良否判定装置が記載されている。特許文献2に記載された良否判定装置では、圧着不良の態様毎に、検査波形と基準波形との差が最も大きくなる時点を予め一つ特定しておく。そして、複数の態様に対応する複数の時点のそれぞれにおいて、検査波形の圧力値と基準波形の圧力値との差が、所定値(公差)を超えたか否かを判定する。特許文献2には、公差の具体例として、6σ(X)/AVE(X)、および、(良品平均-不良品平均)/2が挙げられている。なお、σ(X)、AVE(X)は、それぞれ良品サンプルの標準偏差、平均値である。 Patent Document 2 describes a quality determination device that takes into account a plurality of modes of defective crimping. In the quality determination apparatus described in Patent Document 2, one point in time at which the difference between the inspection waveform and the reference waveform is the largest is specified in advance for each crimping failure mode. Then, at each of a plurality of time points corresponding to a plurality of modes, it is determined whether or not the difference between the pressure value of the inspection waveform and the pressure value of the reference waveform exceeds a predetermined value (tolerance). Patent Document 2 lists 6σ (X) / AVE (X) and (good product average−defective product average) / 2 as specific examples of tolerances. Note that σ (X) and AVE (X) are the standard deviation and the average value of the non-defective samples, respectively.
特開2005-135820号公報JP 2005-135820 A 特開2014-56796号公報JP 2014-56796 A
 特許文献1および2の良否判定装置では、良否判定の基準となる値(閾値)は、良品サンプルの平均値からどれだけずれているかに基づいて設定されている。閾値の設定にあたって、不良品のばらつきは考慮されていない。ところが、たとえ不良品の平均値が同じであっても、不良品のばらつき度合いが異なると、不良品が良品と見なされる可能性は異なることとなる。 In the pass / fail judgment devices of Patent Documents 1 and 2, the value (threshold value) that serves as a reference for pass / fail judgment is set based on how far the average value of the non-defective samples is deviated. In setting the threshold, variations in defective products are not taken into consideration. However, even if the average value of defective products is the same, if the degree of variation of defective products is different, the possibility that a defective product is regarded as a non-defective product will be different.
 図27Aおよび図27Bは、良品の平均値、良品の標準偏差、および不良品の平均値は同じであるが、不良品の標準偏差が異なる場合の例を示す図である。図27Bの方が図27Aよりも不良品のばらつきが大きく、標準偏差が大きい。閾値は良品の平均値、または平均値および標準偏差に基づいて設定されるので、図27Aおよび図27Bの例において閾値は等しい。なお、ここでは、公差D=(良品平均-不良品平均)/2としている。ただし、公差D=6σ(X)/AVE(X)であっても同様である。この例では、図27Bの不良品の方が、図27Aの不良品よりも、閾値を超える割合が多いことが分かる。すなわち、図27Bの方が、不良品が良品と誤認される可能性が高いことが分かる。従来の良否判定装置では、このようなばらつきの相違を考慮することができなかった。 FIG. 27A and FIG. 27B are diagrams showing an example in which the average value of good products, the standard deviation of good products, and the average value of defective products are the same, but the standard deviation of defective products is different. 27B has a larger variation of defective products and a larger standard deviation than FIG. 27A. Since the threshold value is set based on the average value of the non-defective products, or the average value and the standard deviation, the threshold values are the same in the examples of FIGS. 27A and 27B. Here, the tolerance D = (average of good products−average of defective products) / 2. However, the same applies to the tolerance D = 6σ (X) / AVE (X). In this example, it can be seen that the ratio of the defective product in FIG. 27B exceeds the threshold is higher than that of the defective product in FIG. 27A. That is, it can be seen that FIG. 27B has a higher possibility that a defective product is mistaken for a non-defective product. The conventional quality determination device cannot take into account such a difference in variation.
 本発明はかかる点に鑑みてなされたものであり、その目的は、より精度の高い良品判定を行うことができる端子圧着の良否判定装置および良否判定方法を提供することである。 The present invention has been made in view of such a point, and an object of the present invention is to provide a terminal crimping pass / fail judgment device and a pass / fail judgment method capable of performing non-defective product judgment with higher accuracy.
 本発明に係る端子圧着の良否判定装置は、端子圧着装置による端子圧着の進行度合いと前記端子圧着装置に発生する圧力との関係を表す圧力波形を取得する圧力波形取得部と、前記圧力波形を端子圧着の進行度合いにより複数のエリアに分割し、前記圧力波形により囲まれる部分の面積であるエリア面積をエリア毎に算出するエリア面積算出部と、前記複数のエリアに含まれる1つまたは2つ以上のエリアを用いて判定エリアを抽出する判定エリア抽出部と、前記判定エリアにおける複数の良品サンプルのエリア面積の平均値および標準偏差と、前記判定エリアにおける複数の不良品サンプルのエリア面積の平均値および標準偏差と、に基づいて閾値を設定する閾値設定部と、前記端子圧着装置により検査品の端子圧着が行われたときに、前記検査品の前記判定エリアにおけるエリア面積と前記閾値とを比較することにより、前記検査品の端子圧着の良否を判定する判定部と、を備えている。 A terminal crimping quality determination device according to the present invention includes a pressure waveform acquisition unit that acquires a pressure waveform representing a relationship between a degree of progress of terminal crimping by a terminal crimping device and a pressure generated in the terminal crimping device, and the pressure waveform. An area area calculation unit that calculates an area area, which is an area of a portion surrounded by the pressure waveform, divided into a plurality of areas according to the progress of terminal crimping, and one or two included in the plurality of areas A determination area extraction unit that extracts a determination area using the above areas, an average value and a standard deviation of a plurality of non-defective samples in the determination area, and an average of the area areas of a plurality of defective samples in the determination area When the terminal crimping of the inspection product is performed by the terminal crimping device, the threshold setting unit that sets the threshold based on the value and the standard deviation, By comparing the area area in the judgment area of the serial test article and the said threshold value, and a, and a judging section that judges acceptability of terminal crimping of the article to be inspected.
 上記良否判定装置によれば、端子圧着の良否判定の基準となる閾値は、判定エリアにおける複数の良品サンプルのエリア面積の平均値および標準偏差と、判定エリアにおける複数の不良品サンプルのエリア面積の平均値および標準偏差とに基づいて設定される。よって、良品の平均値、良品のばらつき、および不良品の平均値に加え、不良品のばらつきをも考慮した上で、閾値を設定することができる。よって、不良品を良品と誤認する可能性を低減することができ、より精度の高い良否判定を行うことができる。 According to the pass / fail determination apparatus, the threshold value used as a criterion for determining whether or not terminal crimping is good is the average value and standard deviation of the area areas of the non-defective samples in the determination area, and the area area of the multiple defective samples in the determination area. It is set based on the average value and the standard deviation. Therefore, the threshold value can be set in consideration of the non-defective product variation in addition to the non-defective product average value, non-defective product variation, and defective product average value. Therefore, it is possible to reduce the possibility of misidentifying a defective product as a non-defective product, and to perform quality determination with higher accuracy.
 また、上記良否判定装置は、圧力波形の一時点ではなく、ある程度の幅を有するエリア毎に計算を行う。そのため、膨大な数の時点毎に計算を行うことは不要であり、計算時間を短縮することができる。また、突発的に生じる外乱(ノイズ)の影響を受けにくいので、外乱による判定精度の低下を抑制することができる。 In addition, the above pass / fail judgment device performs calculation for each area having a certain width, not at one point in time of the pressure waveform. Therefore, it is not necessary to perform calculation for every enormous number of time points, and the calculation time can be shortened. In addition, since it is difficult to be affected by sudden disturbance (noise), it is possible to suppress a decrease in determination accuracy due to the disturbance.
 本発明の好ましい一態様によれば、前記判定エリア抽出部は、前記各エリアの良品サンプルのエリア面積の平均値および標準偏差と前記各エリアの不良品サンプルのエリア面積の平均値および標準偏差とに基づいて、前記複数のエリアから1つまたは2つ以上のエリアを有効エリアとして選択する有効エリア選択部と、前記有効エリアを用いて前記判定エリアを決定する判定エリア決定部と、を有している。 According to a preferred aspect of the present invention, the determination area extraction unit includes an average value and standard deviation of area areas of non-defective samples in each area, and an average value and standard deviation of area areas of defective samples in each area, And an effective area selection unit that selects one or more areas from the plurality of areas as an effective area, and a determination area determination unit that determines the determination area using the effective area. ing.
 上記態様によれば、良品サンプルおよび不良品サンプルのエリア面積の平均値および標準偏差に基づいて、良品と不良品との区別が付きやすいエリアを有効エリアとして選択することができる。そして、選択された有効エリアを用いて判定エリアを決定することができる。よって、良品と不良品とを比較的明確に区別することができ、精度の高い良否判定を行うことができる。 According to the above aspect, based on the average value and the standard deviation of the area areas of the non-defective samples and the defective samples, it is possible to select an area where it is easy to distinguish between non-defective products and defective products as an effective area. The determination area can be determined using the selected effective area. Therefore, a good product and a defective product can be distinguished relatively clearly, and a quality determination with high accuracy can be performed.
 本発明の好ましい一態様によれば、前記判定エリア抽出部は、前記各エリアの良品サンプルのエリア面積の平均値μOK、良品サンプルのエリア面積の標準偏差σOK、不良品サンプルのエリア面積の平均値μNG、および不良品サンプルのエリア面積の標準偏差σNGを算出するエリア別算出部を有し、前記有効エリア選択部は、m、nを1以上の実数としたときに、μNG>μOKのときのB=(μNG-n×σNG)-(μOK+m×σOK)、または、μOK>μNGのときのB=(μOK-n×σOK)-(μNG+m×σNG)が大きくなるほど値が大きくなる第1変数に基づいて、前記複数のエリアから1つまたは2つ以上のエリアを有効エリアとして選択するように構成されている。 According to a preferred aspect of the present invention, the determination area extraction unit includes an average value μ OK of the non-defective sample area area in each area, a standard deviation σ OK of the non-defective sample area area, an area area of the defective sample, It has an area-specific calculation unit that calculates an average value μ NG and a standard deviation σ NG of the area area of the defective product sample, and the effective area selection unit is μ NG when m and n are one or more real numbers. > μ OK B = (μ NG -n × σ NG) when the - (μ OK + m × σ OK), or, μ OK> μ B = ( μ OK -n × σ OK) when the NG - ( One or more areas are selected as effective areas from the plurality of areas based on a first variable whose value increases as (μ NG + m × σ NG ) increases.
 上記態様によれば、良品と不良品との区別が付きやすいエリアを有効エリアとして選択することができる。良品と不良品とを比較的明確に区別することができ、精度の高い良否判定を行うことができる。 According to the above aspect, an area where it is easy to distinguish good products from defective products can be selected as an effective area. A non-defective product and a defective product can be distinguished relatively clearly, and high-accuracy determination can be performed.
 本発明の好ましい一態様によれば、前記第1変数は、μNG>μOKのときの分離度=[(μNG-n×σNG)-(μOK+m×σOK)]/(μNG-μOK)、または、μOK>μNGのときの分離度=[(μOK-n×σOK)-(μNG+m×σNG)]/(μOK-μNG)である。 According to a preferred aspect of the present invention, the first variable is the degree of separation when μ NG > μ OK = [(μ NG −n × σ NG ) − (μ OK + m × σ OK )] / (μ NG− μ OK ) or separation degree when μ OK > μ NG = [(μ OK −n × σ OK ) − (μ NG + m × σ NG )] / (μ OK −μ NG ).
 上記態様によれば、良品と不良品との区別が付きやすいエリアを有効エリアとして選択することができる。良品と不良品とを比較的明確に区別することができ、精度の高い良否判定を行うことができる。 According to the above aspect, an area where it is easy to distinguish good products from defective products can be selected as an effective area. A non-defective product and a defective product can be distinguished relatively clearly, and high-accuracy determination can be performed.
 本発明の好ましい一態様によれば、m=n=3である。 According to a preferred aspect of the present invention, m = n = 3.
 上記態様によれば、良品と不良品との区別が付きやすいエリアを有効エリアとして選択することができる。良品と不良品とを比較的明確に区別することができ、精度の高い良否判定を行うことができる。 According to the above aspect, an area where it is easy to distinguish good products from defective products can be selected as an effective area. A non-defective product and a defective product can be distinguished relatively clearly, and high-accuracy determination can be performed.
 本発明の好ましい一態様によれば、前記有効エリア選択部は、前記複数のエリアのうち、前記第1変数の値が最も大きい1つのエリアを有効エリアとして選択するように構成されている。前記判定エリア決定部は、前記有効エリアを判定エリアとするように構成されている。 According to a preferred aspect of the present invention, the effective area selection unit is configured to select one area having the largest value of the first variable as the effective area among the plurality of areas. The determination area determination unit is configured to use the effective area as a determination area.
 上記態様によれば、判定エリアを迅速かつ簡単に決定することができる。 According to the above aspect, the determination area can be determined quickly and easily.
 本発明の好ましい一態様によれば、前記有効エリア選択部は、前記複数のエリアのうち、前記第1変数の値がより大きい2つ以上のエリアを有効エリアとして選択するように構成されている。前記判定エリア決定部は、前記2つ以上の有効エリアを用いて判定エリアを決定するように構成されている。 According to a preferred aspect of the present invention, the effective area selection unit is configured to select two or more areas having a larger value of the first variable as the effective area among the plurality of areas. . The determination area determination unit is configured to determine a determination area using the two or more effective areas.
 上記態様によれば、複数の有効エリアを用いて判定エリアを決定するので、より高度な判定が可能となる。 According to the above aspect, since the determination area is determined using a plurality of effective areas, a more advanced determination is possible.
 本発明の好ましい一態様によれば、前記有効エリア選択部は、前記複数のエリアのうち、少なくとも前記第1変数の値が大きい順に、または、不良品サンプルのエリア面積の標準偏差の小さい順に、2つ以上のエリアを有効エリアとして選択するように構成されている。前記判定エリア決定部は、選択された有効エリアに対して重み付けを行った後、重み付けされた有効エリアを組み合わせてなる組合せエリアを作成する組合せエリア作成部と、前記組合せエリアから判定エリアを決定する組合せエリア決定部と、を有している。 According to a preferred aspect of the present invention, the effective area selection unit, in the plurality of areas, at least in the order of the value of the first variable, or in the order of small standard deviation of the area area of the defective product sample, It is configured to select two or more areas as effective areas. The determination area determination unit weights the selected effective area, and then determines a determination area from the combination area and a combination area generation unit that generates a combination area formed by combining the weighted effective areas. A combination area determination unit.
 上記態様によれば、更に良好な良否判定を行うことができる。 According to the above aspect, it is possible to perform better quality determination.
 本発明の好ましい一態様によれば、前記有効エリア選択部は、前記複数のエリアのうち、少なくとも前記第1変数の値が1番目に大きい第1エリア、2番目に大きい第2エリア、3番目に大きい第3エリアを有効エリアとして選択するように構成されている。前記判定エリア決定部は、前記第1エリアと前記第2エリアとを足し合わせた組合せエリア、前記第1エリアと前記第3エリアとを足し合わせた組合せエリア、前記第2エリアと前記第3エリアとを足し合わせた組合せエリア、前記第1エリアと前記第2エリアと前記第3エリアとを足し合わせた組合せエリアを含む複数の組合せエリアを作成する組合せエリア作成部と、前記各組合せエリアの良品サンプルのエリア面積の平均値および標準偏差と前記各組合せエリアの不良品サンプルのエリア面積の平均値および標準偏差とに基づいて、前記複数の組合せエリアのうちいずれか1つを判定エリアとする組合せエリア決定部と、を有している。 According to a preferred aspect of the present invention, the effective area selection unit includes at least a first area having a value of the first variable, a second area having the second largest value, and a third value among the plurality of areas. The third area larger than the second area is selected as the effective area. The determination area determination unit includes a combination area obtained by adding the first area and the second area, a combination area obtained by adding the first area and the third area, the second area, and the third area. A combination area creating unit for creating a plurality of combination areas including a combination area obtained by adding together the first area, the second area, and the third area, and a non-defective product in each combination area Based on the average value and standard deviation of the area area of the sample and the average value and standard deviation of the area area of the defective sample in each combination area, any one of the plurality of combination areas is used as a determination area And an area determination unit.
 上記態様によれば、複数の有効エリアを適宜足し合わせることにより、1つ1つの有効エリアよりも良品と不良品との区別が付きやすいエリアを作成することができ、そのようなエリアを判定エリアとすることができる。よって、良品と不良品とをより明確に区別することができ、より一層精度の高い良否判定を行うことができる。 According to the above aspect, by appropriately adding a plurality of effective areas, it is possible to create an area in which a good product and a defective product can be more easily distinguished than each effective area. It can be. Therefore, the good product and the defective product can be more clearly distinguished, and the quality determination can be performed with higher accuracy.
 本発明の好ましい一態様によれば、前記判定エリア決定部は、前記各組合せエリアの良品サンプルのエリア面積の平均値μOK、良品サンプルのエリア面積の標準偏差σOK、不良品サンプルのエリア面積の平均値μNG、および不良品サンプルのエリア面積の標準偏差σNGを算出する組合せエリア別算出部を有している。前記組合せエリア決定部は、r、sを1以上の実数としたときに、前記組合せエリア作成部が作成した複数の組合せエリアのうち、μNG>μOKのときのB=(μNG-r×σNG)-(μOK+s×σOK)、または、μOK>μNGのときのB=(μOK-r×σOK)-(μNG+s×σNG)が大きくなるほど大きくなる第2変数の値が最も大きい組合せエリアを、前記判定エリアとするように構成されている。 According to a preferred aspect of the present invention, the determination area determination unit includes an average value μ OK of the non-defective sample area area in each combination area, a standard deviation σ OK of the non-defective sample area, and an area area of the defective sample. It has an average value mu NG, and a different combination area calculation unit that calculates a standard deviation sigma NG with an area of defective samples. The combination area determination unit sets B = (μ NG −r when μ NG > μ OK among a plurality of combination areas created by the combination area creation unit when r and s are real numbers of 1 or more. × σ NG ) − (μ OK + s × σ OK ) or B = (μ OK −r × σ OK ) − (μ NG + s × σ NG ) when μ OK > μ NG The combination area having the largest value of the two variables is configured as the determination area.
 上記態様によれば、複数の組合せエリアのうち、良品と不良品との区別がより付きやすい組合せエリアを判定エリアとすることができる。よって、良品と不良品とを明確に区別することができ、より精度の高い良否判定を行うことができる。 According to the above aspect, among the plurality of combination areas, a combination area that is more easily distinguished from a non-defective product and a defective product can be set as the determination area. Therefore, a good product and a defective product can be clearly distinguished, and a higher-accuracy determination can be made.
 本発明の好ましい一態様によれば、前記第2変数は、μNG>μOKのときの分離度=[(μNG-r×σNG)-(μOK+s×σOK)]/(μNG-μOK)、または、μOK>μNGのときの分離度=[(μOK-r×σOK)-(μNG+s×σNG)]/(μOK-μNG)である。 According to a preferred aspect of the present invention, the second variable is the degree of separation when μ NG > μ OK = [(μ NG −r × σ NG ) − (μ OK + s × σ OK )] / (μ NG− μ OK ), or separation degree when μ OK > μ NG = [(μ OK −r × σ OK ) − (μ NG + s × σ NG )] / (μ OK −μ NG ).
 上記態様によれば、良品と不良品とを明確に区別することができ、より精度の高い良否判定を行うことができる。 According to the above aspect, the non-defective product and the defective product can be clearly distinguished, and the quality determination can be performed with higher accuracy.
 本発明の好ましい一態様によれば、r=s=3である。 According to a preferred aspect of the present invention, r = s = 3.
 上記態様によれば、良品と不良品とを明確に区別することができ、より精度の高い良否判定を行うことができる。 According to the above aspect, the non-defective product and the defective product can be clearly distinguished, and the quality determination can be performed with higher accuracy.
 本発明の好ましい一態様によれば、前記組合せエリア作成部は、前記複数の組合せエリアを作成する際に、少なくとも前記第1エリア、前記第2エリア、前記第3エリアに対し重み付けを行うように構成されている。 According to a preferred aspect of the present invention, the combination area creation unit weights at least the first area, the second area, and the third area when creating the plurality of combination areas. It is configured.
 上記態様によれば、組合せエリアを作成する際に、良品と不良品との区別がより付きやすい組合せエリアを作成することができる。よって、良品と不良品とを明確に区別することができ、より精度の高い良否判定を行うことができる。 According to the above aspect, when creating a combination area, it is possible to create a combination area that is more easily distinguished from non-defective products and defective products. Therefore, a good product and a defective product can be clearly distinguished, and a higher-accuracy determination can be made.
 本発明の好ましい一態様によれば、前記組合せエリア作成部は、標準偏差が小さいほど重み付けが大きくなるような重み付けを行うように構成されている。 According to a preferred aspect of the present invention, the combination area creation unit is configured to perform weighting such that the weighting increases as the standard deviation decreases.
 上記態様によれば、良品と不良品との区別がより付きやすい組合せエリアを作成することができる。 According to the above aspect, it is possible to create a combination area where a good product and a defective product are more easily distinguished.
 本発明の好ましい一態様によれば、前記組合せエリア作成部は、分離度が大きいほど重み付けが大きくなるような重み付けを行うように構成されている。 According to a preferred aspect of the present invention, the combination area creating unit is configured to perform weighting such that the weighting increases as the degree of separation increases.
 上記態様によれば、良品と不良品との区別がより付きやすい組合せエリアを作成することができる。 According to the above aspect, it is possible to create a combination area where a good product and a defective product are more easily distinguished.
 本発明の好ましい一態様によれば、前記判定エリア抽出部は、前記複数のエリアのうち、不良品サンプルのエリア面積の標準偏差の値が小さい順に1つまたは2つ以上のエリアを有効エリアとして選択する有効エリア選択部と、前記有効エリアを用いて前記判定エリアを決定する判定エリア決定部と、を有している。 According to a preferred aspect of the present invention, the determination area extraction unit sets one or more areas as the effective area in order of increasing standard deviation value of the area area of the defective product among the plurality of areas. An effective area selection unit to select; and a determination area determination unit that determines the determination area using the effective area.
 上記態様によれば、不良品サンプルの分布のばらつきがより少ないエリアを、有効エリアとして選択することができる。これにより、良好な良否判定を行うことができる。 According to the above aspect, an area with less variation in the distribution of defective samples can be selected as an effective area. Thereby, a favorable quality determination can be performed.
 本発明の好ましい一態様によれば、前記閾値設定部は、前記判定エリアにおける良品サンプルのエリア面積の平均値μdOK、良品サンプルのエリア面積の標準偏差σdOK、不良品サンプルのエリア面積の平均値μdNG、および不良品サンプルのエリア面積の標準偏差σdNGを算出する判定エリア算出部と、p、qを1以上の実数としたときに、μdNG>μdOKかつ(μdNG-p×σdNG)>(μdOK+q×σdOK)のときの(μdNG-p×σdNG)と(μdOK+q×σdOK)との間の所定値、または、μdOK>μdNGかつ(μdOK-p×σdOK)>(μNG+q×σdNG)のときの(μdOK-p×σdOK)と(μdNG+q×σdNG)との間の所定値を、閾値として決定する閾値決定部と、を有している。 According to a preferred aspect of the present invention, the threshold setting unit includes an average value area μd OK of non-defective samples in the determination area, an area area standard deviation σd OK of non-defective samples, and an average area area of defective samples. A determination area calculation unit for calculating the value μd NG and the standard deviation σd NG of the area area of the defective product sample, and when p and q are real numbers of 1 or more, μd NG > μd OK and (μd NG −p × A predetermined value between (μd NG −p × σd NG ) and (μd OK + q × σd OK ) when σd NG )> (μd OK + q × σd OK ), or μd OK > μd NG and (μd Threshold value that determines a predetermined value as a threshold value between (μd OK −p × σd OK ) and (μd NG + q × σd NG ) when OK− p × σd OK )> (μ NG + q × σd NG ) Decision Part.
 上記態様によれば、良品と不良品との区別が付きやすい閾値を設定することができる。このような閾値を用いることにより、良品と不良品とを明確に区別することができ、精度の高い良否判定を行うことができる。 According to the above aspect, it is possible to set a threshold value that is easy to distinguish good products from defective products. By using such a threshold value, it is possible to clearly distinguish a non-defective product from a defective product, and it is possible to perform a quality determination with high accuracy.
 本発明の好ましい一態様によれば、前記端子圧着装置は、電線の端部および端子が載置されるアンビルと、前記アンビルに対して接近および離反が可能なクリンパと、前記クリンパを前記アンビルに対して接近および離反させる電動式のアクチュエータと、を有している。前記端子圧着の進行度合いは、経過時間、前記クリンパの位置、前記クリンパの移動距離、前記クリンパの速度、前記クリンパの加速度、前記アクチュエータに供給される電流、前記アクチュエータの作動位置のいずれか一つである。 According to a preferred aspect of the present invention, the terminal crimping apparatus includes an anvil on which an end of a wire and a terminal are placed, a crimper that can approach and separate from the anvil, and the crimper in the anvil. And an electric actuator for approaching and separating from the actuator. The progress of the terminal crimping is any one of elapsed time, the position of the crimper, the travel distance of the crimper, the speed of the crimper, the acceleration of the crimper, the current supplied to the actuator, and the operating position of the actuator. It is.
 上記態様によれば、良好な圧力波形を得ることができ、端子圧着の良否判定を好適に行うことができる。更に、良品サンプルや不良品サンプル及び検査品を端子圧着した際のそれぞれの圧力波形を、互いの端子圧着の進行度合いに合わせて精度よく位置合わせし、対比させることができるので、端子圧着の良否判定を好適に行うことができる。 According to the above aspect, a good pressure waveform can be obtained, and whether or not the terminal crimping is good can be suitably determined. In addition, each pressure waveform when a good product sample, a defective product sample, and a test product are crimped to terminals can be accurately aligned and compared according to the degree of progress of terminal crimping. The determination can be suitably performed.
 本発明に係る端子圧着の良否判定方法は、端子圧着装置により複数の良品サンプルおよび複数の不良品サンプルの端子圧着を行い、前記各サンプルの端子圧着の進行度合いと前記端子圧着装置に発生する圧力との関係を表す圧力波形を取得するステップと、前記各サンプルの前記圧力波形を端子圧着の進行度合いにより複数のエリアに分割し、前記圧力波形により囲まれる部分の面積であるエリア面積をエリア毎に算出するステップと、前記各エリアの良品サンプルのエリア面積の平均値および標準偏差と、前記各エリアの不良品サンプルのエリア面積の平均値および標準偏差とを算出するステップと、前記良品サンプルおよび前記不良品サンプルのエリア面積の平均値および標準偏差に基づいて、前記複数のエリアから1つまたは2つ以上のエリアを有効エリアとして選択するステップと、前記有効エリアを用いて判定エリアを抽出するステップと、前記判定エリアにおける前記良品サンプルおよび前記不良品サンプルのエリア面積の平均値および標準偏差に基づいて閾値を設定するステップと、前記端子圧着装置により検査品の端子圧着を行い、前記検査品の前記判定エリアにおけるエリア面積と前記閾値とを比較することにより、前記検査品の端子圧着の良否を判定するステップと、を含んでいる。 In the terminal crimping quality determination method according to the present invention, a terminal crimping apparatus performs terminal crimping of a plurality of non-defective samples and a plurality of defective samples, and the degree of progress of terminal crimping of each sample and the pressure generated in the terminal crimping apparatus. A pressure waveform representing the relationship between the pressure waveform and the pressure waveform of each sample is divided into a plurality of areas according to the degree of terminal crimping, and an area of an area surrounded by the pressure waveform is determined for each area. Calculating the average value and standard deviation of the area areas of the non-defective samples in each area, calculating the average value and standard deviation of the area areas of the defective samples in each area, and the non-defective samples and Based on the average value and standard deviation of the area area of the defective sample, one or two or more from the plurality of areas A step of selecting the area as an effective area, a step of extracting a determination area using the effective area, and a threshold based on an average value and a standard deviation of the area areas of the good sample and the defective sample in the determination area And determining the quality of the terminal crimping of the inspection product by comparing the area of the inspection product in the determination area with the threshold value. And steps.
 本発明によれば、より精度の高い良品判定を行うことができる端子圧着の良否判定装置および良否判定方法を提供することができる。 According to the present invention, it is possible to provide a terminal crimping quality determination device and a quality determination method capable of performing a quality determination with higher accuracy.
図1は端子圧着装置の正面図である。FIG. 1 is a front view of the terminal crimping apparatus. 図2は端子圧着装置の側面図である。FIG. 2 is a side view of the terminal crimping apparatus. 図3は良否判定装置のブロック図である。FIG. 3 is a block diagram of the quality determination device. 図4はCPUの機能ブロック図である。FIG. 4 is a functional block diagram of the CPU. 図5は閾値の設定方法のフローチャートである。FIG. 5 is a flowchart of a threshold setting method. 図6Aは良品サンプルの平面図である。FIG. 6A is a plan view of a non-defective sample. 図6Bは不良品サンプルの平面図である。FIG. 6B is a plan view of a defective product sample. 図6Cは他の不良品サンプルの平面図である。FIG. 6C is a plan view of another defective sample. 図6Dは他の不良品サンプルの平面図である。FIG. 6D is a plan view of another defective sample. 圧力波形および分割エリアを表す図である。It is a figure showing a pressure waveform and a divided area. 各エリアにおける各サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of each sample in each area. エリアA1における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in area A1. エリアA2における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and the defective product sample in area A2. エリアA3における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in area A3. エリアA4における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in area A4. エリアA5における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and the defective product sample in area A5. エリアA6における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in area A6. エリアA7における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in area A7. エリアA8における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and the defective product sample in area A8. エリアA9における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in area A9. エリアA10における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in area A10. 分離度C=B/AのうちのAおよびBの説明図である。It is explanatory drawing of A and B of separation degree C = B / A. 組合せエリアA5+A6における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in combination area A5 + A6. 組合せエリアA6+A7における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in combination area A6 + A7. 組合せエリアA5+A7における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and defective product sample in combination area A5 + A7. 組合せエリアA5+A6+A7における良品サンプルおよび不良品サンプルの正規分布データを表す図である。It is a figure showing the normal distribution data of the non-defective product sample and the defective product sample in combination area A5 + A6 + A7. 判定エリアにおける閾値を表す図である。It is a figure showing the threshold value in a determination area. 実施形態に係る端子圧着の良否判定方法のフローチャートである。It is a flowchart of the quality determination method of the terminal crimping which concerns on embodiment. 他の実施形態に係る端子圧着の良否判定方法のフローチャートである。It is a flowchart of the quality determination method of the terminal crimping which concerns on other embodiment. 良品および不良品の確率分布と閾値との関係を表す図である。It is a figure showing the relationship between the probability distribution of a good article and defective goods, and a threshold value. 良品および不良品の確率分布と閾値との関係を表す図である。It is a figure showing the relationship between the probability distribution of a good article and inferior goods, and a threshold value.
 以下、本発明の実施の形態について説明する。本実施形態に係る端子圧着の良否判定装置(以下、単に「良否判定装置」という)は、端子圧着装置が電線の端部に端子を圧着したときに、端子が良好に圧着されたか否かを判定する装置である。 Hereinafter, embodiments of the present invention will be described. The terminal crimping quality determination device according to the present embodiment (hereinafter simply referred to as “quality judgment device”) indicates whether or not the terminal is crimped well when the terminal crimping device crimps the terminal to the end of the electric wire. It is a device for judging.
 (端子圧着装置の構成)
 まず、図1および図2を参照しながら、端子圧着装置1の構成について説明する。図1は端子圧着装置1の正面図、図2は端子圧着装置1の側面図である。端子圧着装置1は、アンビル2と、昇降可能なクリンパ3と、クリンパ3を昇降させるモータ4とを備えている。モータ4は、モータ4の回転位置を検出可能なサーボモータにより構成されている。ただし、モータ4の種類は特に限定されず、サーボモータ以外のモータであってもよい。モータ4は、アンビル2に対しクリンパ3を接近および離反させる電動式のアクチュエータの一例である。しかし、アクチュエータはモータ4に限定される訳ではない。アクチュエータとして、クリンパ3を昇降可能な任意のアクチュエータを用いることができる。
(Configuration of terminal crimping device)
First, the configuration of the terminal crimping device 1 will be described with reference to FIGS. 1 and 2. FIG. 1 is a front view of the terminal crimping device 1, and FIG. 2 is a side view of the terminal crimping device 1. The terminal crimping device 1 includes an anvil 2, a crimper 3 that can be raised and lowered, and a motor 4 that raises and lowers the crimper 3. The motor 4 is configured by a servo motor that can detect the rotational position of the motor 4. However, the type of the motor 4 is not particularly limited, and may be a motor other than the servo motor. The motor 4 is an example of an electric actuator that moves the crimper 3 toward and away from the anvil 2. However, the actuator is not limited to the motor 4. Any actuator that can move the crimper 3 up and down can be used as the actuator.
 図1に示すように、アンビル2の側方には、端子供給装置5が配置されている。端子供給装置5は、複数の端子10が繋がってなる端子群11をアンビル2に向けて順次供給するように構成されている。クリンパ3とアンビル2との間に電線12および端子10を配置した状態でクリンパ3が下降すると、端子10はクリンパ3により、隣の端子10から切り離されると共に、電線12に圧着される。本実施形態では、モータ4、クリンパ3、およびアンビル2は、端子10に圧力を加えることによって端子10を電線12に圧着させる圧着部を構成している。 As shown in FIG. 1, a terminal supply device 5 is arranged on the side of the anvil 2. The terminal supply device 5 is configured to sequentially supply a terminal group 11 formed by connecting a plurality of terminals 10 toward the anvil 2. When the crimper 3 is lowered with the electric wire 12 and the terminal 10 disposed between the crimper 3 and the anvil 2, the terminal 10 is separated from the adjacent terminal 10 by the crimper 3 and is crimped to the electric wire 12. In the present embodiment, the motor 4, the crimper 3, and the anvil 2 constitute a crimping portion that crimps the terminal 10 to the electric wire 12 by applying pressure to the terminal 10.
 電線12の端部に端子10を圧着する際に、圧着部には圧力が生じる。本実施形態では、圧着部に発生する圧力を検出する圧力センサ21が設けられている。ここでは圧力センサ21は、アンビル2に接続された圧電素子により構成されている。ただし、圧力センサ21の具体的構成は何ら限定されない。圧電素子に限らず、圧力を検出し得る任意のセンサを好適に用いることができる。圧力センサ21はアンビル2に直接接続されていてもよいが、本実施形態では間接的に接続されている。すなわち、圧力センサ21とアンビル2との間に、他の部材が介在している。本明細書では特に限定しない限り、「接続」には、直接接続されている場合と、他の部材を介して間接的に接続されている場合との両方が含まれる。また、圧力センサ21は、圧着部のいずれかの箇所に発生する圧力を検出するように配置されていればよく、必ずしもアンビル2に接続されている必要はない。圧力センサ21は、例えば、クリンパ3に接続されていてもよい。また、端子圧着に伴って発生する圧力を検出できる限り、圧着部以外の箇所に接続されていてもよい。 When the terminal 10 is crimped to the end of the electric wire 12, pressure is generated in the crimped portion. In the present embodiment, a pressure sensor 21 that detects the pressure generated in the crimping portion is provided. Here, the pressure sensor 21 is configured by a piezoelectric element connected to the anvil 2. However, the specific configuration of the pressure sensor 21 is not limited at all. Not only a piezoelectric element but any sensor capable of detecting pressure can be suitably used. The pressure sensor 21 may be directly connected to the anvil 2, but is indirectly connected in the present embodiment. That is, another member is interposed between the pressure sensor 21 and the anvil 2. Unless specifically limited in the present specification, the “connection” includes both a case of being directly connected and a case of being indirectly connected via another member. Moreover, the pressure sensor 21 should just be arrange | positioned so that the pressure which generate | occur | produces in any location of a crimping | compression-bonding part may be detected, and does not necessarily need to be connected to the anvil 2. The pressure sensor 21 may be connected to the crimper 3, for example. Moreover, as long as the pressure which generate | occur | produces with terminal crimping is detectable, you may connect to places other than a crimping | compression-bonding part.
 圧力センサ21は、コントローラ20に電気的に接続されている。なお、「電気的に接続されている」とは、有線または無線により通信可能に接続されていることを意味する。コントローラ20は、端子圧着装置1に内蔵されたマイクロコンピュータであってもよく、端子圧着装置1の外部に配置されたコンピュータ(例えばパーソナルコンピュータ)であってもよい。本実施形態では、圧力センサ21とコントローラ20とは、電線により接続されている。圧力センサ21は、圧力を受けると、その圧力の大きさに応じた電圧値または電流値を出力するように構成されている。コントローラ20は、圧力センサ21から受ける電圧または電流の値に基づいて、圧着部に発生した圧力を検出する。 The pressure sensor 21 is electrically connected to the controller 20. Note that “electrically connected” means connected so as to be communicable by wire or wirelessly. The controller 20 may be a microcomputer built in the terminal crimping apparatus 1 or a computer (for example, a personal computer) disposed outside the terminal crimping apparatus 1. In the present embodiment, the pressure sensor 21 and the controller 20 are connected by an electric wire. When pressure is received, the pressure sensor 21 is configured to output a voltage value or a current value corresponding to the magnitude of the pressure. The controller 20 detects the pressure generated in the crimping part based on the voltage or current value received from the pressure sensor 21.
 以上、端子圧着装置1の構成を説明したが、上記の端子圧着装置1は一例に過ぎない。本発明に係る良否判定装置が適用される端子圧着装置は、何ら限定されない。本発明に係る良否判定装置は、公知の各種の端子圧着装置に適用可能である。 As mentioned above, although the structure of the terminal crimping apparatus 1 was demonstrated, said terminal crimping apparatus 1 is only an example. The terminal crimping device to which the quality determination device according to the present invention is applied is not limited at all. The quality determination device according to the present invention is applicable to various known terminal crimping devices.
 (良否判定装置の構成)
 次に、良否判定装置100の構成について説明する。図3に示すように、本実施形態に係る良否判定装置100は、前述の圧力センサ21と、A/D変換器22と、コントローラ20と、ディスプレイ26とを備えている。良否判定装置100は、ハードディスクなどの外部メモリ27を更に備えていてもよい。コントローラ20は、CPU30と、ROM24と、RAM25とを含んでいる。モータ4にはサーボアンプ8が接続され、サーボアンプ8はコントローラ20に接続されている。
(Configuration of pass / fail judgment device)
Next, the configuration of the pass / fail determination apparatus 100 will be described. As shown in FIG. 3, the quality determination device 100 according to the present embodiment includes the pressure sensor 21, the A / D converter 22, the controller 20, and the display 26. The pass / fail determination apparatus 100 may further include an external memory 27 such as a hard disk. The controller 20 includes a CPU 30, a ROM 24, and a RAM 25. A servo amplifier 8 is connected to the motor 4, and the servo amplifier 8 is connected to a controller 20.
 図4は、CPU30の機能ブロック図である。詳細については後述するが、CPU30は後述する処理を実行する際に、圧力波形取得部40、エリア面積算出部50、判定エリア抽出部60、閾値設定部70、および判定部80として機能する。判定エリア抽出部60は、有効エリア選択部61、エリア別算出部62、および判定エリア決定部63を有している。判定エリア決定部63は、組合せエリア作成部64、組合せエリア別算出部65、および組合せエリア決定部66を含んでいる。閾値設定部70は、判定エリア算出部71および閾値決定部72を有している。上記各部はCPU30によって実現されるので、圧力波形取得部40、エリア面積算出部50、判定エリア抽出部60、閾値設定部70、判定部80は、それぞれ圧力波形取得プロセッサ、エリア面積算出プロセッサ、判定エリア抽出プロセッサ、閾値設定プロセッサ、判定プロセッサと読み替えることができる。また、有効エリア選択部61、エリア別算出部62、判定エリア決定部63は、それぞれ有効エリア選択プロセッサ、エリア別算出プロセッサ、判定エリア決定プロセッサと読み替えることができる。組合せエリア作成部64、組合せエリア別算出部65、組合せエリア決定部66は、それぞれ組合せエリア作成プロセッサ、組合せエリア別算出プロセッサ、組合せエリア決定プロセッサと読み替えることができる。判定エリア算出部71、閾値決定部72は、それぞれ判定エリア算出プロセッサ、閾値決定プロセッサと読み替えることができる。 FIG. 4 is a functional block diagram of the CPU 30. Although details will be described later, the CPU 30 functions as a pressure waveform acquisition unit 40, an area area calculation unit 50, a determination area extraction unit 60, a threshold setting unit 70, and a determination unit 80 when executing processing to be described later. The determination area extraction unit 60 includes an effective area selection unit 61, an area calculation unit 62, and a determination area determination unit 63. The determination area determination unit 63 includes a combination area creation unit 64, a combination area calculation unit 65, and a combination area determination unit 66. The threshold setting unit 70 includes a determination area calculation unit 71 and a threshold determination unit 72. Since each of the above units is realized by the CPU 30, the pressure waveform acquisition unit 40, the area area calculation unit 50, the determination area extraction unit 60, the threshold setting unit 70, and the determination unit 80 are respectively a pressure waveform acquisition processor, an area area calculation processor, and a determination. It can be read as an area extraction processor, a threshold setting processor, or a determination processor. The effective area selection unit 61, the area calculation unit 62, and the determination area determination unit 63 can be read as an effective area selection processor, an area calculation processor, and a determination area determination processor, respectively. The combination area creation unit 64, the combination area calculation unit 65, and the combination area determination unit 66 can be read as a combination area generation processor, a combination area calculation processor, and a combination area determination processor, respectively. The determination area calculation unit 71 and the threshold value determination unit 72 can be read as a determination area calculation processor and a threshold value determination processor, respectively.
 (良否判定方法)
 次に、良否判定装置100が行う良否判定の方法について説明する。良否判定装置100は、検査品の端子圧着が行われたときに、所定の検出値(後述する判定エリアのエリア面積)が予め定めた閾値を超えたか否かに基づいて、端子圧着の良否を判定する。始めに、閾値の設定方法について説明する。
(Pass / fail judgment method)
Next, a quality determination method performed by the quality determination apparatus 100 will be described. The pass / fail determination apparatus 100 determines whether the terminal crimping is good or not based on whether or not a predetermined detection value (area area of a determination area described later) exceeds a predetermined threshold when the terminal crimping of the inspection product is performed. judge. First, a threshold setting method will be described.
 図5は、閾値の設定方法のフローチャートである。まず、ステップS1において、複数組の電線12および端子10を準備する。本明細書では、閾値の設定のために用いられる電線12およびその電線12の端部に圧着される端子10のことを「サンプル」ということとする。ステップS1では、複数の良品サンプルと、複数の不良品サンプルとを準備する。 FIG. 5 is a flowchart of a threshold setting method. First, in step S1, a plurality of sets of electric wires 12 and terminals 10 are prepared. In this specification, the wire 12 used for setting the threshold and the terminal 10 crimped to the end of the wire 12 are referred to as “sample”. In step S1, a plurality of non-defective samples and a plurality of defective samples are prepared.
 良品サンプルとは、良好に圧着される一組の電線12および端子10のことをいう。不良品サンプルとは、良好に圧着されない一組の電線12および端子10のことをいう。図6Aは良品サンプルを表す。良品サンプルでは、端子10のインシュレーションバレル10aが電線12の被覆12aに圧着され、端子10のワイヤバレル10bが電線12の芯線12bに圧着されている。 A non-defective sample refers to a pair of electric wires 12 and terminals 10 that are well crimped. A defective product sample refers to a set of electric wires 12 and terminals 10 that are not crimped well. FIG. 6A represents a good sample. In the non-defective sample, the insulation barrel 10 a of the terminal 10 is crimped to the coating 12 a of the electric wire 12, and the wire barrel 10 b of the terminal 10 is crimped to the core 12 b of the electric wire 12.
 図6B~図6Dは不良品サンプルの例を表す。例えば図6B~図6Dに示すように、端子10の圧着不良には様々な態様がある。図6Bは、電線12の一部の芯線12bがワイヤバレル10bに圧着されていない不良品サンプル(いわゆる芯線こぼれ)を表している。図6Cは、電線12の芯線12bがワイヤバレル10bに圧着されておらず、インシュレーションバレル10aに圧着されている不良品サンプル(いわゆる芯線下がり)を表している。図6Dは、電線12の被覆12aがワイヤバレル10bに圧着された不良品サンプル(いわゆる被覆噛み)を表している。本実施形態では、圧着不良の態様毎に複数の不良品サンプルを準備する。 6B to 6D show examples of defective samples. For example, as shown in FIGS. 6B to 6D, there are various modes of the crimping failure of the terminal 10. FIG. 6B shows a defective sample (so-called core wire spillage) in which some core wires 12b of the electric wires 12 are not crimped to the wire barrel 10b. FIG. 6C shows a defective sample (so-called core wire drop) in which the core wire 12b of the electric wire 12 is not crimped to the wire barrel 10b but is crimped to the insulation barrel 10a. FIG. 6D shows a defective sample (so-called coating bite) in which the coating 12a of the electric wire 12 is crimped to the wire barrel 10b. In this embodiment, a plurality of defective product samples are prepared for each aspect of defective crimping.
 次に、ステップS2において、端子圧着装置1を用いて、良品サンプルおよび不良品サンプルに対し端子圧着処理を行う。そして、各サンプルについて、圧力波形を取得する(図7参照)。ここで圧力波形とは、端子圧着装置1による端子圧着処理の進行度合いに対する、圧力センサ21により検出される圧力Pの変化を表す波形のことである。本実施形態では、端子圧着処理の進行度合いを表す変数として、端子圧着処理の経過時間tが用いられる。ただし、上記変数は端子圧着処理の進行度合いを表すことができるものであれば足り、端子圧着処理の経過時間tに限られない。なお、ステップS2の処理を行うとき、CPU30は圧力波形取得部40として機能する。取得した圧力波形は、サンプル波形としてRAM25に記憶される。RAM25は、良品サンプルおよび不良品サンプルの圧力波形を記憶するサンプル波形記憶部の一例である。ただし、サンプル波形記憶部はRAM25に限らず、外部メモリ27等であってもよい。 Next, in step S2, the terminal crimping process is performed on the non-defective product sample and the defective product sample using the terminal crimping device 1. And a pressure waveform is acquired about each sample (refer FIG. 7). Here, the pressure waveform is a waveform representing a change in the pressure P detected by the pressure sensor 21 with respect to the progress of the terminal crimping process by the terminal crimping apparatus 1. In the present embodiment, the elapsed time t of the terminal crimping process is used as a variable representing the progress of the terminal crimping process. However, the variable is not limited to the elapsed time t of the terminal crimping process as long as it can represent the progress of the terminal crimping process. In addition, when performing the process of step S2, CPU30 functions as the pressure waveform acquisition part 40. FIG. The acquired pressure waveform is stored in the RAM 25 as a sample waveform. The RAM 25 is an example of a sample waveform storage unit that stores pressure waveforms of a good product sample and a defective product sample. However, the sample waveform storage unit is not limited to the RAM 25 but may be the external memory 27 or the like.
 ステップS3では、図7に示すように、各サンプルの圧力波形を経過時間毎に複数のエリアに分割する。ここでは、圧力波形を10個のエリアA1、A2、A3、A4、・・・、A10に分割することとする。なお、エリアの分割数は特に限定されない。各エリアの幅(本実施形態では時間幅)は一定であってもよく、一定でなくてもよい。CPU30は、圧力波形を分割する際、圧力波形分割部(図示せず)として機能する。次に、CPU30は、エリア毎に、圧力波形により囲まれる部分の面積(以下、エリア面積という)を算出する。例えば、エリアA4では、点P1、点P2、点P3、および点P4によって囲まれる領域の面積がエリア面積となる。CPU30は、各エリアのエリア面積を算出する際、エリア面積算出部50として機能する。 In step S3, as shown in FIG. 7, the pressure waveform of each sample is divided into a plurality of areas for each elapsed time. Here, the pressure waveform is divided into ten areas A1, A2, A3, A4,. The number of area divisions is not particularly limited. The width of each area (time width in the present embodiment) may or may not be constant. The CPU 30 functions as a pressure waveform dividing unit (not shown) when dividing the pressure waveform. Next, CPU30 calculates the area (henceforth an area area) of the part enclosed by a pressure waveform for every area. For example, in area A4, the area of the region surrounded by point P1, point P2, point P3, and point P4 is the area area. The CPU 30 functions as the area area calculation unit 50 when calculating the area area of each area.
 次に、ステップS4に進み、エリア毎に、良品サンプルのエリア面積および各態様の不良品サンプルのエリア面積を集計する。ステップS2において、良品サンプルの圧力波形および各態様の不良品サンプルの圧力波形は、それぞれ複数取得されている。そのため、良品サンプルおよび各態様の不良品サンプルのそれぞれについて、エリア毎に、図8に示すような確率分布(正規分布)のデータが得られる。CPU30は、エリア毎に、良品サンプルの平均値μOK、良品サンプルの標準偏差σOK、各態様の不良品サンプルの平均値μNG、各態様の不良品サンプルの標準偏差σNGを算出する。この際、CPU30はエリア別算出部62として機能する。 Next, it progresses to step S4 and the area area of the non-defective sample and the area area of the defective sample of each aspect are totaled for every area. In step S2, a plurality of non-defective sample pressure waveforms and a plurality of non-defective sample pressure waveforms are acquired. Therefore, data of probability distribution (normal distribution) as shown in FIG. 8 is obtained for each area for each of the non-defective product sample and the defective product sample of each aspect. For each area, the CPU 30 calculates the average value μ OK of the non-defective samples, the standard deviation σ OK of the non-defective samples, the average value μ NG of the defective samples of each aspect, and the standard deviation σ NG of the defective samples of each aspect. At this time, the CPU 30 functions as the area-specific calculation unit 62.
 図9~図18は、それぞれエリアA1~A10における良品サンプルの正規分布と所定の態様の不良品サンプルの正規分布とを比較した図である。良品サンプルのエリア面積と不良品サンプルのエリア面積との差が小さい場合、例えば図10に示すように、良品サンプルの正規分布と不良品サンプルの正規分布とが近づく傾向が見られる。逆に、良品サンプルのエリア面積と不良品サンプルのエリア面積との差が大きい場合、例えば図14に示すように、良品サンプルの正規分布と不良品サンプルの正規分布とが離れる傾向が見られる。良品サンプルのエリア面積と不良品サンプルのエリア面積との差が大きいほど、不良品サンプルの正規分布は良品サンプルの正規分布から分離する。良品サンプルの正規分布と不良品サンプルの正規分布とが重なる部分は、良品か不良品かの区別がし難い部分である。言い換えると、不良品であっても良品と誤認されるおそれがある部分である。一方、良品サンプルの正規分布と不良品サンプルの正規分布とが分離している場合、良品と不良品との区別が容易となる。そこで、本実施形態に係る良否判定装置100では、良品サンプルの正規分布と不良品サンプルの正規分布との重なりが少ないエリアを選択し、選択したエリアを利用して良否判定を行う。なお、以下では、このようにして選択されるエリアを有効エリアという。 FIGS. 9 to 18 are diagrams comparing the normal distribution of the non-defective samples in the areas A1 to A10 with the normal distribution of the defective samples in a predetermined mode, respectively. When the difference between the area area of the non-defective sample and the area area of the defective sample is small, for example, as shown in FIG. 10, the normal distribution of the non-defective sample and the normal distribution of the defective sample tend to approach each other. On the other hand, when the difference between the area area of the non-defective sample and the area area of the defective sample is large, for example, as shown in FIG. 14, the normal distribution of the non-defective sample and the normal distribution of the defective sample tend to be separated. The larger the difference between the area area of the non-defective sample and the area area of the defective sample, the more the normal distribution of the defective sample is separated from the normal distribution of the non-defective sample. The portion where the normal distribution of the non-defective sample and the normal distribution of the defective sample overlap is a portion where it is difficult to distinguish whether it is a good product or a defective product. In other words, even a defective product may be misidentified as a non-defective product. On the other hand, when the normal distribution of non-defective samples and the normal distribution of defective samples are separated, it is easy to distinguish good products from defective products. Therefore, in the pass / fail determination apparatus 100 according to the present embodiment, an area where the normal distribution of the non-defective product sample and the normal distribution of the defective product sample are small is selected, and the pass / fail determination is performed using the selected area. Hereinafter, the area selected in this way is referred to as an effective area.
 ステップS5では、CPU30が有効エリアの選択を行う。良品サンプルの正規分布と不良品サンプルの正規分布とが分離しているエリアは、有効エリアとして好適である。そこで、良品サンプルの正規分布と不良品サンプルの正規分布とが最も分離しているエリアを有効エリアとして選択してもよい。しかし、全てのエリアにおいて、良品サンプルの正規分布と不良品サンプルの正規分布とが重なっている場合もある。その場合、1つのエリアだけでは、良品と不良品とを区別することが難しい。ところが、複数のエリアを組み合わせることにより、良品サンプルの正規分布と不良品サンプルの正規分布との重なりをより少なくすることができ、または、重なりをなくすことができる。そこで、本実施形態では、良品サンプルの正規分布と不良品サンプルの正規分布との重なりがなくなるように、または、重なりができるだけ少なくなるように、有効エリアとして複数のエリアを選択し、それらを適宜足し合わせたエリア(以下、組合せエリアという)を考える。 In step S5, the CPU 30 selects an effective area. An area where the normal distribution of the non-defective samples and the normal distribution of the defective samples are separated is suitable as an effective area. Therefore, an area where the normal distribution of the non-defective samples and the normal distribution of the defective samples are most separated may be selected as the effective area. However, in all areas, the normal distribution of non-defective samples and the normal distribution of defective samples may overlap. In that case, it is difficult to distinguish good products from defective products using only one area. However, by combining a plurality of areas, the overlap between the normal distribution of the non-defective samples and the normal distribution of the defective samples can be reduced or the overlap can be eliminated. Therefore, in the present embodiment, a plurality of areas are selected as effective areas so that there is no overlap between the normal distribution of the non-defective samples and the normal distribution of the defective samples, or the overlap is as small as possible. Consider the added area (hereinafter referred to as combination area).
 本実施形態では、全エリアのうち、分離度が1番目に大きいエリア、2番目に大きいエリア、3番目に大きいエリアを有効エリアとして選択する。ただし、有効エリアの選択方法は特に限定されない。なお、分離度Cは、m、nを1以上の実数(例えば自然数)としたときに、μNG>μOKのときには、C=B/A=[(μNG-m×σNG)-(μOK+n×σOK)]/(μNG-μOK)で定義され(図19参照)、μOK>μNGのときには、C=[(μOK-m×σOK)-(μNG+n×σNG)]/(μOK-μNG)で定義される。本実施形態では、m=n=3とする。ここでは、エリアA5、A6、A7が有効エリアとして選択される。CPU30は、有効エリアを選択する際に、有効エリア選択部61として機能する。 In the present embodiment, of all the areas, the area having the highest degree of separation, the second largest area, and the third largest area are selected as effective areas. However, the method for selecting the effective area is not particularly limited. The degree of separation C is such that m = n is a real number (eg, a natural number) of 1 or more, and when μ NG > μ OK , C = B / A = [(μ NG −m × σ NG ) − ( μ OK + n × σ OK )] / (μ NG −μ OK ) (see FIG. 19), and when μ OK > μ NG , C = [(μ OK −m × σ OK ) − (μ NG + n × σ NG )] / (μ OK −μ NG ). In the present embodiment, m = n = 3. Here, areas A5, A6, and A7 are selected as effective areas. The CPU 30 functions as the effective area selection unit 61 when selecting an effective area.
 有効エリアA5~A7から組合せエリアを作成する際に、有効エリアA5~A7のデータをそのまま用いることも勿論可能である。しかし、図13~図15から分かるように、有効エリアA5~A7の中でも、相対的に、良品サンプルまたは不良品サンプルの正規分布のばらつきが大きいものと小さいものとが存在する。ばらつきが小さいデータほど誤差が発生しにくいので、良否判定にとって好ましい。そこで本実施形態では、ステップS6において、有効エリアA5~A7の組合せに際して、データのばらつきの小さいものほど重み付けが大きくなるような重み付けを行う。有効エリアA5、A6、A7の重み付け係数をそれぞれK5、K6、K7とすると、本実施形態では、K5=k/σ5、K6=k/σ6、K7=k/σ7に設定される。ここで、kは一定値であり、σ5、σ6、σ7は、それぞれ有効エリアA5、A6、A7における良品サンプルの標準偏差である。なお、σ5、σ6、σ7は、それぞれ有効エリアA5、A6、A7における不良品サンプルの標準偏差としてもよい。本実施形態では、K5<K6<K7となる。ただし、上記の重み付け係数は一例であり、重み付けの具体的手法は特に限定されない。例えば、分離度が大きいほど重み付けが大きくなるように、有効エリアの重み付けを行ってもよい。 Of course, when creating the combination area from the effective areas A5 to A7, it is possible to use the data of the effective areas A5 to A7 as they are. However, as can be seen from FIG. 13 to FIG. 15, among the effective areas A5 to A7, there are relatively large and small variations in the normal distribution of the non-defective samples or defective samples. Since data with less variation is less likely to cause errors, it is preferable for quality determination. Therefore, in the present embodiment, in step S6, when the effective areas A5 to A7 are combined, weighting is performed such that the smaller the data variation is, the larger the weight is. Assuming that the weighting coefficients of the effective areas A5, A6, and A7 are K5, K6, and K7, respectively, in this embodiment, K5 = k / σ5, K6 = k / σ6, and K7 = k / σ7 are set. Here, k is a constant value, and σ5, σ6, and σ7 are standard deviations of non-defective samples in the effective areas A5, A6, and A7, respectively. Note that σ5, σ6, and σ7 may be standard deviations of defective samples in the effective areas A5, A6, and A7, respectively. In the present embodiment, K5 <K6 <K7. However, the above weighting coefficient is an example, and the specific method of weighting is not particularly limited. For example, the effective area may be weighted so that the weighting increases as the degree of separation increases.
 ステップS7では、重み付けを行った後の有効エリアを組合せることにより、組合せエリアを作成する。ここでは、重み付けを行った後の有効エリアA5、A6、A7を対象として、組合せエリアA5+A6、A6+A7、A7+A5、A5+A6+A7を作成する。CPU30は、有効エリアの重み付けを行う際、および、組合せエリアを作成する際に、組合せエリア作成部64として機能する。次に、CPU30は、組合せエリア毎に良品サンプルの平均値μOK、良品サンプルの標準偏差σOK、各態様の不良品サンプルの平均値μNG、各態様の不良品サンプルの標準偏差σNGを算出する。この際、CPU30は、組合せエリア別算出部65として機能する。図20、図21、図22、図23は、それぞれ組合せエリアA5+A6、A6+A7、A5+A7、A5+A6+A7における良品サンプルおよび不良品サンプルの正規分布を示す図である。 In step S7, a combination area is created by combining effective areas after weighting. Here, combination areas A5 + A6, A6 + A7, A7 + A5, A5 + A6 + A7 are created for the effective areas A5, A6, A7 after weighting. The CPU 30 functions as the combination area creation unit 64 when weighting the effective area and creating the combination area. Next, the CPU 30 calculates, for each combination area, the average value μ OK of the non-defective samples, the standard deviation σ OK of the non-defective samples, the average value μ NG of the defective samples of each aspect, and the standard deviation σ NG of the defective samples of each aspect. calculate. At this time, the CPU 30 functions as the combination area calculation unit 65. 20, FIG. 21, FIG. 22, and FIG. 23 are diagrams showing normal distributions of non-defective samples and defective samples in combination areas A5 + A6, A6 + A7, A5 + A7, and A5 + A6 + A7, respectively.
 次に、ステップS8に進み、組合せエリアの中から最も良否判定に適したものを判定エリアとして決定する。本実施形態では、ステップS7で作成した組合せエリアA5+A6、A6+A7、A5+A7、A5+A6+A7のそれぞれの分離度を算出し、分離度の最も大きいものを判定エリアとする。ここでは、分離度が最も大きい組合せエリアはA6+A7である。そのため、組合せエリアA6+A7が判定エリアとなる。CPU30は、複数の組合せエリアの中から判定エリアを決定する際、組合せエリア決定部66として機能する。 Next, the process proceeds to step S8, and a combination area that is most suitable for quality determination is determined as a determination area. In the present embodiment, the degree of separation of each of the combination areas A5 + A6, A6 + A7, A5 + A7, A5 + A6 + A7 created in step S7 is calculated, and the one with the largest degree of separation is set as the determination area. Here, the combination area with the highest degree of separation is A6 + A7. Therefore, the combination area A6 + A7 is a determination area. The CPU 30 functions as a combination area determination unit 66 when determining a determination area from a plurality of combination areas.
 次に、ステップS9に進み、判定エリアにおける良品サンプルおよび不良品サンプルの正規分布から、閾値Eを設定する(図24参照)。この際、CPU30は閾値設定部70として機能する。閾値Eは、良品サンプルと不良品サンプルとを分ける境界値となり得るものである。閾値Eの具体的な設定方法は何ら限定されないが、例えば、判定エリアにおける良品サンプルのエリア面積の平均値をμdOK、良品サンプルのエリア面積の標準偏差をσdOK、不良品サンプルのエリア面積の平均値をμdNG、不良品サンプルのエリア面積の標準偏差をσdNGとしたときに(なお、このときにCPU30は判定エリア算出部71として機能する。)、(μdNG-p×σdNG)と(μdOK+q×σdOK)との間の所定値を、閾値Eとして設定することができる。なお、p、qは1以上の実数(例えば自然数)である。例えば、(μdNG-3σdNG)と(μdOK+3σdOK)との間の所定値を閾値Eとしてもよい。また、(μdNG-p×σdNG)を閾値Eとしてもよい。例えば、閾値E=μdNG-3σdNGとしてもよく、閾値E=μdNG-6σdNGとしてもよい。(μdOK+q×σdOK)を閾値Eとしてもよい。例えば、閾値E=μdOK+3σdOKとしてもよく、閾値E=μdOK+6σdOKとしてもよい。CPU30は、閾値を決定する際、閾値決定部72として機能する。 Next, proceeding to step S9, a threshold E is set from the normal distribution of the non-defective samples and the defective samples in the determination area (see FIG. 24). At this time, the CPU 30 functions as the threshold setting unit 70. The threshold value E can be a boundary value that separates a good product sample and a defective product sample. The specific setting method of the threshold value E is not limited at all. For example, the average value of the non-defective sample area area in the determination area is μd OK , the standard deviation of the non-defective sample area is σd OK , and the defective sample area area is the average value [mu] d NG, a standard deviation with an area of defective samples is taken as .sigma.d NG (Note that in this case CPU30 functions as a determination area calculation unit 71.), (μd NG -p × σd NG) And a predetermined value between (μd OK + q × σd OK ) can be set as the threshold value E. Note that p and q are one or more real numbers (for example, natural numbers). For example, a predetermined value between (μd NG −3σd NG ) and (μd OK + 3σd OK ) may be used as the threshold value E. Further, (μd NG −p × σd NG ) may be set as the threshold value E. For example, the threshold value E = μd NG −3σd NG may be set, or the threshold value E = μd NG −6σd NG may be set. The threshold E may be (μd OK + q × σd OK ). For example, the threshold value E = μd OK + 3σd OK may be set, or the threshold value E = μd OK + 6σd OK may be set. The CPU 30 functions as the threshold value determination unit 72 when determining the threshold value.
 以上のようにして、良否判定の基準となる閾値Eが設定される。設定された閾値Eは、RAM25または外部メモリ27に保存される。なお、上記のステップにおいて、圧力波形や各エリアの良品および不良品の正規分布、平均値および標準偏差などをディスプレイ26に表示するようにしてもよい。 As described above, the threshold value E, which is a criterion for pass / fail judgment, is set. The set threshold value E is stored in the RAM 25 or the external memory 27. In the above step, the pressure waveform, the normal distribution of the non-defective product and the defective product in each area, the average value, the standard deviation, and the like may be displayed on the display 26.
 良否判定装置100による良否判定は以下のようにして行われる(図25参照)。ここでは、良否判定の対象となる1組の電線12および端子10のことを検査品という。良否判定装置100は、端子圧着装置1が検査品の端子圧着を行う際に、圧力センサ21からの信号を受け、検査品の圧力波形を取得する(ステップS11)。そして、この圧力波形をエリアA1~A10に分割する(ステップS12)。次に、有効エリアA5~A7を選択し(ステップS13)、有効エリアA5~A7に前述と同様の重み付けを行った後(ステップS14)、判定エリアA6+A7を抽出し、判定エリアA6+A7のエリア面積を算出する(ステップS15)。そして、検査品の判定エリアA6+A7のエリア面積と閾値Eとの大小を比較する(ステップS16)。検査品の判定エリアA6+A7のエリア面積が閾値Eを超える場合、検査品を不良品と判定する(ステップS17)。一方、検査品の判定エリアA6+A7のエリア面積が閾値E以下の場合、検査品を良品と判定する(ステップS18)。CPU30は、上記ステップS11~S18の処理を行う際、判定部80として機能する。 The pass / fail judgment by the pass / fail judgment apparatus 100 is performed as follows (see FIG. 25). Here, the set of the electric wires 12 and the terminals 10 that are the objects of the pass / fail judgment are referred to as inspection products. The pass / fail determination apparatus 100 receives a signal from the pressure sensor 21 when the terminal crimping apparatus 1 performs terminal crimping of the inspection product, and acquires a pressure waveform of the inspection product (step S11). Then, this pressure waveform is divided into areas A1 to A10 (step S12). Next, the effective areas A5 to A7 are selected (step S13), and the effective areas A5 to A7 are weighted in the same manner as described above (step S14). Then, the determination area A6 + A7 is extracted, and the area area of the determination area A6 + A7 is set. Calculate (step S15). Then, the size of the area of the determination area A6 + A7 for the inspection product and the threshold value E are compared (step S16). If the area of the inspection product determination area A6 + A7 exceeds the threshold value E, the inspection product is determined to be defective (step S17). On the other hand, if the area of the inspection product determination area A6 + A7 is equal to or less than the threshold value E, the inspection product is determined to be a non-defective product (step S18). The CPU 30 functions as the determination unit 80 when performing the processes of steps S11 to S18.
 なお、ここでは、判定エリアA6+A7において、良品サンプルのエリア面積の平均値が不良品サンプルのエリア面積の平均値よりも小さいため(図24参照)、検査品の判定エリアA6+A7のエリア面積が閾値E以下の場合に検査品は良品と判定される。しかし、判定エリアにおいて、良品サンプルのエリア面積の平均値が不良品サンプルのエリア面積の平均値よりも大きい場合には、検査品は、検査品の判定エリアのエリア面積が閾値以上の場合に良品と判定され、閾値よりも小さい場合に不良品と判定される。 Here, in the determination area A6 + A7, since the average value of the area area of the non-defective sample is smaller than the average value of the area area of the defective sample (see FIG. 24), the area area of the determination area A6 + A7 of the inspection product is the threshold value E. The inspection product is determined to be a non-defective product in the following cases. However, if the average value of the area area of the non-defective sample is larger than the average value of the area area of the defective sample in the judgment area, the inspection product is good if the area area of the judgment area of the inspection product is greater than or equal to the threshold value. If it is smaller than the threshold value, it is determined as a defective product.
 判定結果は、例えばディスプレイ26に表示される。これにより、ユーザは検査品の端子圧着が良好に行われたか否かを容易に認識することができる。なお、判定結果の通知の方法は、ディスプレイ26による表示に限られない。例えば、良否判定装置100がスピーカを備え、そのスピーカから音声を出力することにより、端子圧着の良否判定結果を通知するようにしてもよい。 The determination result is displayed on the display 26, for example. Thereby, the user can easily recognize whether or not the terminal crimping of the inspection product has been performed satisfactorily. The determination result notification method is not limited to display on the display 26. For example, the pass / fail determination device 100 may include a speaker and output a sound from the speaker to notify the pass / fail determination result of terminal crimping.
 (実施形態の効果)
 以上のように、本実施形態に係る良否判定装置100によれば、端子圧着装置1により複数の良品サンプルおよび複数の不良品サンプルの端子圧着を行い、それらのデータに基づいて閾値を自動的に設定する。人が勘や経験に基づいて閾値を手動で設定する場合、良否判定の精度は、その人の勘や経験に依存し、人為的誤差が発生し得る。しかし、本実施形態に係る良否判定装置100によれば、客観的なデータに基づいて閾値が自動的に設定されるので、そのような人為的誤差は生じない。また、人が勘や経験に基づいて閾値を手動で設定すると、データ上に新たな特異点(良品と不良品との差が区別しやすい点)が生じた場合、その特異点を利用することはできない。しかし、本実施形態に係る良否判定装置100によれば、良品サンプルおよび不良品サンプルのデータに基づいて閾値が自動的に設定されるので、新たに生じる特異点を利用することが可能となる。
(Effect of embodiment)
As described above, according to the quality determination device 100 according to the present embodiment, the terminal crimping device 1 performs terminal crimping of a plurality of non-defective samples and a plurality of defective samples, and the threshold value is automatically set based on the data. Set. When a person manually sets a threshold based on intuition or experience, the accuracy of pass / fail judgment depends on the intuition and experience of the person, and human error may occur. However, according to the quality determination apparatus 100 according to the present embodiment, such a human error does not occur because the threshold is automatically set based on objective data. In addition, if a person manually sets a threshold based on intuition or experience, if a new singularity (a point where it is easy to distinguish the difference between a good product and a defective product) occurs in the data, use that singularity. I can't. However, according to the pass / fail determination apparatus 100 according to the present embodiment, the threshold value is automatically set based on the data of the non-defective product sample and the defective product sample, so that it is possible to use a newly generated singularity.
 本実施形態に係る良否判定装置100によれば、端子圧着の良否判定の基準となる閾値Eは、判定エリアにおける複数の良品サンプルのエリア面積の平均値および標準偏差と、判定エリアにおける複数の不良品サンプルのエリア面積の平均値および標準偏差とに基づいて設定される。よって、良品の平均値、良品のばらつき、および不良品の平均値に加え、不良品のばらつきをも考慮した上で、閾値Eを設定することができる。よって、不良品を良品と誤認する可能性を低減することができ、より精度の高い良否判定を行うことができる。 According to the pass / fail judgment apparatus 100 according to the present embodiment, the threshold value E, which is a criterion for pass / fail judgment of terminal crimping, is the average value and standard deviation of the area areas of a plurality of non-defective samples in the judgment area, and a plurality of faults in the judgment area. It is set based on the average value and standard deviation of the area area of the non-defective samples. Therefore, the threshold value E can be set in consideration of the variation of defective products in addition to the average value of non-defective products, the variation of non-defective products, and the average value of defective products. Therefore, it is possible to reduce the possibility of misidentifying a defective product as a non-defective product, and to perform quality determination with higher accuracy.
 閾値Eの具体的な値は特に限定されないが、本実施形態では、(μdOK-p×σdOK)と(μdNG+q×σdNG)との間の所定値を閾値Eとしている。これにより、精度の高い良否判定を行うことができる。 Although a specific value of the threshold value E is not particularly limited, a predetermined value between (μd OK −p × σd OK ) and (μd NG + q × σd NG ) is set as the threshold value E in the present embodiment. Thereby, the quality determination with high accuracy can be performed.
 また、本実施形態に係る良否判定装置100は、ある程度の幅を有するエリア毎に、良品サンプルおよび不良品サンプルの平均値および標準偏差を算出する。そのため、良品サンプルと不良品サンプルとの差が最も大きい時刻(言い換えると、単一の時点)を特定し、その時刻の周辺の区間を判定エリアとする従来技術(例えば、前述の特許文献2参照)に比べて、下記の利点を有する。まず、本実施形態では、予め定めた所定数のエリア毎にエリア面積を算出し、エリア面積に基づいて良否サンプルと不良品サンプルとの差を算出する。そのため、経過時間毎に良品サンプルと不良品サンプルとの差を算出する上記従来技術のように、膨大な数の時点毎に計算を行う必要はない。よって、計算時間を短縮することができる。次に、上記従来技術では、例えば不良品サンプルにおいて外乱(ノイズ)により突発的に圧力の変化が生じ、良品サンプルと不良品サンプルとの差が最も大きくなる本来の時刻とは別の時刻において、良品サンプルと不良品サンプルとの差が最も大きくなる場合があり得る。その場合、上記外乱が原因となって、良否判定の精度が低下するおそれがある。しかし、本実施形態では、エリア面積に基づいて良品サンプルと不良品サンプルとの差を算出するので、そのような外乱を緩和することができる。よって、外乱による判定精度の低下は起こりにくい。 Moreover, the quality determination apparatus 100 according to the present embodiment calculates the average value and the standard deviation of the non-defective product samples and the defective product samples for each area having a certain width. Therefore, the prior art (for example, see the above-mentioned Patent Document 2) that specifies a time (in other words, a single time point) where the difference between the non-defective product sample and the defective product sample is the largest, and uses a section around that time as a determination area. ) Has the following advantages. First, in this embodiment, an area area is calculated for each predetermined number of predetermined areas, and a difference between a pass / fail sample and a defective product sample is calculated based on the area area. Therefore, it is not necessary to perform calculation for every enormous number of time points as in the above-described conventional technique for calculating a difference between a good product sample and a defective product sample every elapsed time. Therefore, calculation time can be shortened. Next, in the above prior art, for example, in a defective product sample, a pressure change occurs suddenly due to disturbance (noise), and at a time different from the original time when the difference between the non-defective sample and the defective product sample is the largest, The difference between the good product sample and the defective product sample may be the largest. In that case, the accuracy of the pass / fail determination may be reduced due to the disturbance. However, in the present embodiment, since the difference between the non-defective product sample and the defective product sample is calculated based on the area area, such disturbance can be reduced. Therefore, a decrease in determination accuracy due to disturbance is unlikely to occur.
 本実施形態に係る良否判定装置100によれば、圧力波形を複数のエリアA1~A10に分割し、それらエリアA1~A10のうち良品と不良品との区別が付きやすいエリアA5~A7を有効エリアとして選択する。そして、有効エリアA5~A7を用いて判定エリアを決定する。よって、良品と不良品とを比較的明確に区別することができ、精度の高い良否判定を行うことができる。 According to the pass / fail judgment apparatus 100 according to the present embodiment, the pressure waveform is divided into a plurality of areas A1 to A10, and the areas A5 to A7 in which the good and defective products can be easily distinguished among the areas A1 to A10 are effective areas. Choose as. Then, the determination area is determined using the effective areas A5 to A7. Therefore, a good product and a defective product can be distinguished relatively clearly, and a quality determination with high accuracy can be performed.
 また、判定エリアに用いるエリアが1種類の不良に対し1つだけの場合、別のエリアに現れる不良品の特異点(良品との差が区別しやすい点)を有効に活用することができないが、本実施形態では複数のエリアA5~A7を有効エリアとして選択するので、複数のエリアA5~A7に現れる複数の特異点を有効に活用することができる。 In addition, when there is only one area for the determination area for one type of defect, it is not possible to effectively use a singular point of a defective product that appears in another area (a point where the difference from a good product can be easily distinguished). In this embodiment, since the plurality of areas A5 to A7 are selected as effective areas, a plurality of singular points appearing in the plurality of areas A5 to A7 can be used effectively.
 また、本実施形態に係る良否判定装置100によれば、複数のエリアA1~A10の中から、分離度の大きいエリアA5~A7を有効エリアとして選択することとしている。そのため、良品と不良品とを明確に区別することができ、精度の高い良否判定を行うことができる。 In addition, according to the quality determination device 100 according to the present embodiment, the areas A5 to A7 having a high degree of separation are selected as the effective areas from the plurality of areas A1 to A10. Therefore, a good product and a defective product can be clearly distinguished, and a high / defective judgment can be performed with high accuracy.
 また、本実施形態に係る良否判定装置100によれば、有効エリアA5~A7を適宜足し合わせてなる複数の組合せエリアを作成し、各組合せエリアの良品サンプルのエリア面積の平均値および標準偏差と、各組合せエリアの不良品サンプルのエリア面積の平均値および標準偏差とに基づいて、判定エリアを決定することとしている。各有効エリアA5~A7よりも良品と不良品との区別が付きやすいエリアを判定エリアとすることができるので、良品と不良品とをより明確に区別することができ、より一層精度の高い良否判定を行うことができる。 Further, according to the quality determination device 100 according to the present embodiment, a plurality of combination areas are created by appropriately adding the effective areas A5 to A7, and the average value and standard deviation of the area areas of the non-defective samples in each combination area are calculated. The determination area is determined based on the average value and standard deviation of the area areas of the defective product samples in each combination area. Since it is possible to use the judgment area as an area where it is easier to distinguish between non-defective products and defective products than the effective areas A5 to A7, it is possible to more clearly distinguish between non-defective products and defective products, and pass / fail with higher accuracy. Judgment can be made.
 本実施形態に係る良否判定装置100によれば、複数の組合せエリアの中から、分離度の大きいエリアを判定エリアとしている。そのため、良品と不良品とを明確に区別することができ、精度の高い良否判定を行うことができる。 According to the pass / fail determination apparatus 100 according to the present embodiment, an area having a high degree of separation is selected as a determination area from among a plurality of combination areas. Therefore, a good product and a defective product can be clearly distinguished, and a high / defective judgment can be performed with high accuracy.
 また、本実施形態に係る良否判定装置100によれば、有効エリアA5~A7を組み合わせる際に、良品と不良品とをより明確に区別できる組合せエリアを作成するように、重み付けを行うこととしている。本実施形態に係る良否判定装置100によれば、標準偏差が小さいほど重み付けが大きくなるように、または、分離度が大きいほど重み付けが大きくなるように、重み付けを行うこととしている。そのため、より好適な組合せエリアを作成することができ、ひいてはより好適な判定エリアを得ることができる。よって、更に精度の高い良否判定を行うことができる。 Further, according to the pass / fail determination apparatus 100 according to the present embodiment, when combining the effective areas A5 to A7, weighting is performed so as to create a combination area that can more clearly distinguish non-defective products from defective products. . According to the quality determination apparatus 100 according to the present embodiment, weighting is performed such that the weighting increases as the standard deviation decreases, or the weighting increases as the separation degree increases. Therefore, a more suitable combination area can be created, and thus a more suitable determination area can be obtained. Therefore, it is possible to perform pass / fail judgment with higher accuracy.
 以上、本発明の一実施形態について説明したが、本発明が前記実施形態に限られないことは勿論であり、本発明は他にも種々の形態にて実施することができる。次に、他の実施形態の例について簡単に説明する。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and the present invention can be implemented in various other forms. Next, examples of other embodiments will be briefly described.
 (他の実施形態)
 前記実施形態では、ステップS5において、全エリアA1~A10の中から3つの有効エリアA5~A7を選択し、それら有効エリアA5~A7を適宜組み合わせた複数の組合せエリアから判定エリアを抽出することとしていた。しかし、前述したように、全エリアA1~A10のうち、良品サンプルの正規分布と不良品サンプルの正規分布とが最も分離している1つのエリアを有効エリアとして選択し、その有効エリアを判定エリアとして抽出するようにしてもよい。また、良品サンプルの正規分布と不良品サンプルの正規分布との分離度合いを指標する変数(以下、第3変数という)を定め、第3変数の値が所定値以上のエリアを有効エリアとして選択してもよい。最も第3変数の値が大きいエリア(第3変数の値が所定値以上となる有効エリアが1つの場合は当該有効エリア)を判定エリアとして抽出するようにしてもよい。
(Other embodiments)
In the embodiment, in step S5, three effective areas A5 to A7 are selected from all the areas A1 to A10, and a determination area is extracted from a plurality of combination areas obtained by appropriately combining these effective areas A5 to A7. It was. However, as described above, of all the areas A1 to A10, one area where the normal distribution of the non-defective samples and the normal distribution of the defective samples are most separated is selected as the effective area, and the effective area is determined as the determination area. May be extracted as Further, a variable (hereinafter referred to as a third variable) for indicating the degree of separation between the normal distribution of the non-defective samples and the normal distribution of the defective samples is determined, and an area where the value of the third variable is equal to or greater than a predetermined value is selected as an effective area. May be. An area having the largest value of the third variable (in the case where there is one effective area where the value of the third variable is equal to or greater than a predetermined value) may be extracted as the determination area.
 また、図26に示すように、ステップS4の後、第3変数の値が所定値以上となるエリアが存在するかを判定し(ステップS4A)、判定結果がYESの場合は第3変数の値が最も大きいエリア(第3変数の値が所定値以上となるエリアが1つの場合は当該エリア)を有効エリアとして選択し(ステップS4B)、当該有効エリアを判定エリアとしてもよい(ステップS4C)。ステップS4Aの判定結果がNOの場合は、ステップS5以降の処理を行うようにしてもよい。なお、上記処理はCPU30により行うことができる。 Also, as shown in FIG. 26, after step S4, it is determined whether there is an area where the value of the third variable is equal to or greater than a predetermined value (step S4A). If the determination result is YES, the value of the third variable May be selected as an effective area (step S4B), and the effective area may be set as a determination area (step S4C). If the determination result of step S4A is NO, the processes after step S5 may be performed. The above process can be performed by the CPU 30.
 前記実施形態では、有効エリアとして3つのエリアを選択することとしていた。しかし、選択される有効エリアの数は3つに限られない。有効エリアの数は4つ以上であってもよい。その場合にも、2つ以上の有効エリアを適宜足し合わせたエリアを組合せエリアとすることができる。 In the above embodiment, three areas are selected as effective areas. However, the number of effective areas to be selected is not limited to three. The number of effective areas may be four or more. Even in this case, an area obtained by appropriately adding two or more effective areas can be used as a combination area.
 前記実施形態では、端子圧着の進行度合いを表す変数として、端子圧着処理の経過時間tを用いていた。しかし、端子圧着処理の進行度合いを表す変数は経過時間tに限られない。端子圧着処理の進行度合いを一義的に特定できる任意の変数を利用することができる。端子圧着は、クリンパ3が移動することによって行われる。クリンパ3は、モータ4によって駆動される。そのため、例えばクリンパ3の位置または移動距離、クリンパ3の速度、クリンパ3の加速度、モータ4に供給される電流、またはモータ4の回転位置(アクチュエータの作動位置)に基づいて、端子圧着の進行度合いを一義的に特定することができる。 In the above-described embodiment, the elapsed time t of the terminal crimping process is used as a variable representing the progress of terminal crimping. However, the variable representing the progress of the terminal crimping process is not limited to the elapsed time t. Any variable that can uniquely identify the progress of the terminal crimping process can be used. Terminal crimping is performed by moving the crimper 3. The crimper 3 is driven by a motor 4. For this reason, for example, based on the position or moving distance of the crimper 3, the speed of the crimper 3, the acceleration of the crimper 3, the current supplied to the motor 4, or the rotational position of the motor 4 (actuation position of the actuator), Can be uniquely identified.
 前記実施形態では、有効エリアの選択の際に用いる第1変数は分離度であった。しかし、第1変数は分離度に限定されない。第1変数として、良品サンプルと不良品サンプルとのエリア面積の正規分布の分離度合いを指標する任意の変数を用いることができる。例えば第1変数として、m、nを1以上の実数としたときに、μNG>μOKのときのB=(μNG-n×σNG)-(μOK+m×σOK)、または、μOK>μNGのときのB=(μOK-n×σOK)-(μNG+m×σNG)が大きくなるほど値が大きくなる変数を利用することができる。 In the embodiment, the first variable used when selecting the effective area is the degree of separation. However, the first variable is not limited to the degree of separation. As the first variable, an arbitrary variable indicating the degree of separation of the normal distribution of the area area between the non-defective product sample and the defective product sample can be used. For example, as the first variable, when m and n are real numbers of 1 or more, B = (μ NG −n × σ NG ) − (μ OK + m × σ OK ) when μ NG > μ OK , or A variable whose value increases as B = (μ OK −n × σ OK ) − (μ NG + m × σ NG ) when μ OK > μ NG can be used.
 また、前記実施形態では、判定エリアの決定の際に用いる第2変数は分離度であった。しかし、第2変数は分離度に限定されない。第2変数として、良品サンプルと不良品サンプルとのエリア面積の正規分布の分離度合いを指標する任意の変数を用いることができる。例えば第2変数として、r、sを1以上の実数としたときに、μNG>μOKのときのB=(μNG-r×σNG)-(μOK+s×σOK)、または、μOK>μNGのときのB=(μOK-r×σOK)-(μNG+s×σNG)が大きくなるほど値が大きくなる変数を利用することができる。 In the embodiment, the second variable used when determining the determination area is the degree of separation. However, the second variable is not limited to the degree of separation. As the second variable, an arbitrary variable indicating the degree of separation of the normal distribution of the area area between the non-defective product sample and the defective product sample can be used. For example, when r and s are real numbers of 1 or more as the second variable, B = (μ NG −r × σ NG ) − (μ OK + s × σ OK ) when μ NG > μ OK , or A variable whose value increases as B = (μ OK −r × σ OK ) − (μ NG + s × σ NG ) when μ OK > μ NG can be used.
 有効エリアの選択の手法は、前記実施形態の手法に限定されない。有効エリア選択部は、前記複数のエリアのうち、不良品サンプルのエリア面積の標準偏差の値が小さい順に1つまたは2つ以上のエリアを有効エリアとして選択するように構成されていてもよい。判定エリア決定部は、それら有効エリアを用いて判定エリアを決定するように構成されていてもよい。これにより、不良品サンプルの分布のばらつきがより少ないエリアを、有効エリアとして選択することができ、良好な良否判定を行うことができる。 The method for selecting an effective area is not limited to the method of the above embodiment. The effective area selection unit may be configured to select one or two or more areas as the effective area from the plurality of areas in ascending order of the standard deviation value of the area area of the defective product sample. The determination area determination unit may be configured to determine the determination area using these effective areas. As a result, an area with less variation in the distribution of defective product samples can be selected as an effective area, and a good / bad determination can be made.
 有効エリアの選択の際に、第1変数の値が大きい順に複数のエリアを選択し、更に、それら複数のエリアのうち、σNGの値が小さい順に1つまたは2つ以上のエリアを選択し、それらを有効エリアとしてもよい。言い換えると、第1変数の値が大きい順に複数のエリアを選択し、nを1以上の実数としたときに、それら複数のエリアの中から、|(μNG+n×σNG)-(μNG-n×σNG)|の値が小さい順に、1つまたは2つ以上のエリアを選択し、それらを有効エリアとしてもよい。これにより、良品サンプルおよび不良品サンプルの確率分布の隔たりが大きく、かつ、不良品サンプルの分布のばらつきがより少ないエリアを、有効エリアとして選択することができ、良好な良否判定を行うことができる。 When selecting an effective area, select a plurality of areas in descending order of the value of the first variable, and further select one or more areas from the plurality of areas in ascending order of σ NG. These may be effective areas. In other words, when a plurality of areas are selected in descending order of the value of the first variable and n is a real number of 1 or more, | (μ NG + n × σ NG ) − (μ NG One or two or more areas may be selected in order from the smallest value of −n × σ NG ) |, and these may be used as effective areas. As a result, an area in which the probability distribution between the non-defective product sample and the defective product sample is large and the variation in the distribution of the defective product sample is smaller can be selected as an effective area, and a good / non-defective determination can be performed. .
 前述したように、有効エリアを組み合わせる際に重み付けを行ってもよく、行わなくてもよい。重み付けを行う場合、その具体的手法は特に限定されない。有効エリア選択部は、前記複数のエリアのうち、少なくとも第1変数の値が大きい順に、または、不良品サンプルのエリア面積の標準偏差の小さい順に、2つ以上のエリアを有効エリアとして選択するように構成されていてもよい。組合せエリア作成部は、選択された有効エリアに対して重み付けを行った後、重み付けされた有効エリアを組み合わせてなる組合せエリアを作成するように構成され、組合せエリア決定部はそれら組合せエリアから判定エリアを決定するように構成されていてもよい。 As described above, weighting may or may not be performed when combining effective areas. When performing weighting, the specific method is not particularly limited. The effective area selection unit selects at least two areas as the effective area from the plurality of areas in order of at least the first variable value or in ascending order of standard deviation of the area area of the defective product sample. It may be configured. The combination area creation unit is configured to create a combination area formed by combining the weighted effective areas after weighting the selected effective area, and the combination area determination unit determines the determination area from the combination areas. May be configured to determine.
 なお、上述の各実施形態は、適宜組み合わせることができる。 Note that the above-described embodiments can be appropriately combined.
 1   端子圧着装置
 2   アンビル
 3   クリンパ
 4   モータ
 10  端子
 12  電線
 20  コントローラ
 21  圧力センサ
 40  圧力波形取得部
 50  エリア面積算出部
 60  判定エリア抽出部
 70  閾値設定部
 80  判定部
 100 良否判定装置
DESCRIPTION OF SYMBOLS 1 Terminal crimping apparatus 2 Anvil 3 Crimper 4 Motor 10 Terminal 12 Electric wire 20 Controller 21 Pressure sensor 40 Pressure waveform acquisition part 50 Area area calculation part 60 Judgment area extraction part 70 Threshold setting part 80 Judgment part 100 Pass / fail judgment apparatus

Claims (19)

  1.  端子圧着装置による端子圧着の進行度合いと前記端子圧着装置に発生する圧力との関係を表す圧力波形を取得する圧力波形取得部と、
     前記圧力波形を端子圧着の進行度合いにより複数のエリアに分割し、前記圧力波形により囲まれる部分の面積であるエリア面積をエリア毎に算出するエリア面積算出部と、
     前記複数のエリアに含まれる1つまたは2つ以上のエリアを用いて判定エリアを抽出する判定エリア抽出部と、
     前記判定エリアにおける複数の良品サンプルのエリア面積の平均値および標準偏差と、前記判定エリアにおける複数の不良品サンプルのエリア面積の平均値および標準偏差と、に基づいて閾値を設定する閾値設定部と、
     前記端子圧着装置により検査品の端子圧着が行われたときに、前記検査品の前記判定エリアにおけるエリア面積と前記閾値とを比較することにより、前記検査品の端子圧着の良否を判定する判定部と、
    を備えた端子圧着の良否判定装置。
    A pressure waveform acquisition unit that acquires a pressure waveform representing a relationship between a progress of terminal crimping by the terminal crimping device and a pressure generated in the terminal crimping device;
    An area area calculation unit that divides the pressure waveform into a plurality of areas according to the degree of progress of terminal crimping, and calculates an area area that is an area surrounded by the pressure waveform for each area;
    A determination area extraction unit that extracts a determination area using one or more areas included in the plurality of areas;
    A threshold setting unit that sets a threshold based on an average value and standard deviation of area areas of a plurality of non-defective samples in the determination area, and an average value and standard deviation of area areas of a plurality of defective samples in the determination area; ,
    When the terminal crimping of the inspection product is performed by the terminal crimping device, the determination unit that determines whether the inspection product is crimped by comparing the area with the threshold value in the determination area of the inspection product. When,
    A terminal crimping quality determination device comprising:
  2.  前記判定エリア抽出部は、
      前記各エリアの良品サンプルのエリア面積の平均値および標準偏差と前記各エリアの不良品サンプルのエリア面積の平均値および標準偏差とに基づいて、前記複数のエリアから1つまたは2つ以上のエリアを有効エリアとして選択する有効エリア選択部と、
      前記有効エリアを用いて前記判定エリアを決定する判定エリア決定部と、
    を有している、請求項1に記載の端子圧着の良否判定装置。
    The determination area extraction unit
    One or more areas from the plurality of areas based on the average value and standard deviation of the area areas of the non-defective samples in each area and the average value and standard deviation of the area areas of the defective samples in each area An effective area selection section for selecting as an effective area,
    A determination area determining unit that determines the determination area using the effective area;
    The terminal crimping quality determination device according to claim 1, comprising:
  3.  前記判定エリア抽出部は、前記各エリアの良品サンプルのエリア面積の平均値μOK、良品サンプルのエリア面積の標準偏差σOK、不良品サンプルのエリア面積の平均値μNG、および不良品サンプルのエリア面積の標準偏差σNGを算出するエリア別算出部を有し、
     前記有効エリア選択部は、m、nを1以上の実数としたときに、μNG>μOKのときのB=(μNG-n×σNG)-(μOK+m×σOK)、または、μOK>μNGのときのB=(μOK-n×σOK)-(μNG+m×σNG)が大きくなるほど値が大きくなる第1変数に基づいて、前記複数のエリアから1つまたは2つ以上のエリアを有効エリアとして選択するように構成されている、請求項2に記載の端子圧着の良否判定装置。
    The determination area extraction unit includes an average value μ OK of non-defective samples in each area, a standard deviation σ OK of non-defective sample areas, an average value of area areas of defective samples μ NG , and An area-specific calculation unit that calculates the standard deviation σ NG of the area area;
    The effective area selection unit is B = (μ NG −n × σ NG ) − (μ OK + m × σ OK ) when μ NG > μ OK , where m and n are real numbers of 1 or more, or , μ OK> μ B = ( μ OK -n × σ OK) when the NG - based on (μ NG + m × σ NG ) becomes large as the first variable value increases, one of said plurality of areas Or the quality determination apparatus of the terminal crimping of Claim 2 comprised so that two or more areas may be selected as an effective area.
  4.  前記第1変数は、μNG>μOKのときの分離度=[(μNG-n×σNG)-(μOK+m×σOK)]/(μNG-μOK)、または、μOK>μNGのときの分離度=[(μOK-n×σOK)-(μNG+m×σNG)]/(μOK-μNG)である、請求項3に記載の端子圧着の良否判定装置。 The first variable is the degree of separation when μ NG > μ OK = [(μ NG −n × σ NG ) − (μ OK + m × σ OK )] / (μ NG −μ OK ), or μ OK The degree of separation of terminal crimping according to claim 3, wherein the degree of separation when> μ NG = [(μ OK −n × σ OK ) − (μ NG + m × σ NG )] / (μ OK −μ NG ) Judgment device.
  5.  m=n=3である、請求項4に記載の端子圧着の良否判定装置。 The terminal crimping quality determination device according to claim 4, wherein m = n = 3.
  6.  前記有効エリア選択部は、前記複数のエリアのうち、前記第1変数の値が最も大きい1つのエリアを有効エリアとして選択するように構成され、
     前記判定エリア決定部は、前記有効エリアを判定エリアとするように構成されている、請求項3~5のいずれか一つに記載の端子圧着の良否判定装置。
    The effective area selection unit is configured to select, as an effective area, one area having the largest value of the first variable among the plurality of areas.
    The terminal crimping quality determination device according to any one of claims 3 to 5, wherein the determination area determination unit is configured to use the effective area as a determination area.
  7.  前記有効エリア選択部は、前記複数のエリアのうち、前記第1変数の値がより大きい2つ以上のエリアを有効エリアとして選択するように構成され、
     前記判定エリア決定部は、前記2つ以上の有効エリアを用いて判定エリアを決定するように構成されている、請求項3~5のいずれか一つに記載の端子圧着の良否判定装置。
    The effective area selection unit is configured to select, as an effective area, two or more areas having a larger value of the first variable among the plurality of areas.
    The terminal crimping quality determination device according to any one of claims 3 to 5, wherein the determination area determination unit is configured to determine a determination area using the two or more effective areas.
  8.  前記有効エリア選択部は、前記複数のエリアのうち、少なくとも前記第1変数の値が大きい順に、または、不良品サンプルのエリア面積の標準偏差の小さい順に、2つ以上のエリアを有効エリアとして選択するように構成され、
     前記判定エリア決定部は、
      選択された有効エリアに対して重み付けを行った後、重み付けされた有効エリアを組み合わせてなる組合せエリアを作成する組合せエリア作成部と、
      前記組合せエリアから判定エリアを決定する組合せエリア決定部と、
    を有している、請求項3~5のいずれか一つに記載の端子圧着の良否判定装置。
    The effective area selection unit selects two or more areas as an effective area from the plurality of areas in order of at least the value of the first variable or in ascending order of standard deviation of the area area of defective samples. Configured to
    The determination area determination unit
    A combination area creating unit for creating a combination area formed by combining the weighted effective areas after weighting the selected effective area;
    A combination area determination unit for determining a determination area from the combination area;
    The terminal crimping quality determination device according to any one of claims 3 to 5, wherein
  9.  前記有効エリア選択部は、前記複数のエリアのうち、少なくとも前記第1変数の値が1番目に大きい第1エリア、2番目に大きい第2エリア、および、3番目に大きい第3エリアを有効エリアとして選択するように構成され、
     前記判定エリア決定部は、
      前記第1エリアと前記第2エリアとを足し合わせた組合せエリア、前記第1エリアと前記第3エリアとを足し合わせた組合せエリア、前記第2エリアと前記第3エリアとを足し合わせた組合せエリア、および、前記第1エリアと前記第2エリアと前記第3エリアとを足し合わせた組合せエリアを含む複数の組合せエリアを作成する組合せエリア作成部と、
      前記各組合せエリアの良品サンプルのエリア面積の平均値および標準偏差と前記各組合せエリアの不良品サンプルのエリア面積の平均値および標準偏差とに基づいて、前記複数の組合せエリアのうちいずれか1つを判定エリアとする組合せエリア決定部と、
    を有している、請求項3~5のいずれか一つに記載の端子圧着の良否判定装置。
    The effective area selection unit selects at least a first area, a second largest second area, and a third largest third area, in which the value of the first variable is the first largest among the plurality of areas. Is configured to select as
    The determination area determination unit
    A combination area obtained by adding the first area and the second area, a combination area obtained by adding the first area and the third area, and a combination area obtained by adding the second area and the third area. A combination area creating unit that creates a plurality of combination areas including a combination area obtained by adding the first area, the second area, and the third area;
    Any one of the plurality of combination areas based on the average value and standard deviation of the area areas of the non-defective samples in each combination area and the average value and standard deviation of the area areas of the defective samples in each combination area A combination area determination unit with a determination area,
    The terminal crimping quality determination device according to any one of claims 3 to 5, wherein
  10.  前記判定エリア決定部は、前記各組合せエリアの良品サンプルのエリア面積の平均値μOK、良品サンプルのエリア面積の標準偏差σOK、不良品サンプルのエリア面積の平均値μNG、および不良品サンプルのエリア面積の標準偏差σNGを算出する組合せエリア別算出部を有し、
     前記組合せエリア決定部は、r、sを1以上の実数としたときに、前記組合せエリア作成部が作成した複数の組合せエリアのうち、μNG>μOKのときのB=(μNG-r×σNG)-(μOK+s×σOK)、または、μOK>μNGのときのB=(μOK-r×σOK)-(μNG+s×σNG)が大きくなるほど大きくなる第2変数の値が最も大きい組合せエリアを、前記判定エリアとするように構成されている、請求項9に記載の端子圧着の良否判定装置。
    The determination area determination unit includes an average value μ OK of non-defective sample area areas in each combination area, a standard deviation σ OK of non-defective sample area areas, an average value of defective area area μ NG , and a defective sample. A calculation unit for each combination area that calculates the standard deviation σ NG of the area of
    The combination area determination unit sets B = (μ NG −r when μ NG > μ OK among a plurality of combination areas created by the combination area creation unit when r and s are real numbers of 1 or more. × σ NG ) − (μ OK + s × σ OK ) or B = (μ OK −r × σ OK ) − (μ NG + s × σ NG ) when μ OK > μ NG The terminal crimping quality determination device according to claim 9, wherein a combination area having the largest value of two variables is set as the determination area.
  11.  前記第2変数は、μNG>μOKのときの分離度=[(μNG-r×σNG)-(μOK+s×σOK)]/(μNG-μOK)、または、μOK>μNGのときの分離度=[(μOK-r×σOK)-(μNG+s×σNG)]/(μOK-μNG)である、請求項10に記載の端子圧着の良否判定装置。 The second variable is the degree of separation when μ NG > μ OK = [(μ NG −r × σ NG ) − (μ OK + s × σ OK )] / (μ NG −μ OK ), or μ OK The quality of terminal crimping according to claim 10, wherein the degree of separation when> μ NG = [(μ OK −r × σ OK ) − (μ NG + s × σ NG )] / (μ OK −μ NG ) Judgment device.
  12.  r=s=3である、請求項11に記載の端子圧着の良否判定装置。 The terminal crimping quality determination device according to claim 11, wherein r = s = 3.
  13.  前記組合せエリア作成部は、前記複数の組合せエリアを作成する際に、少なくとも前記第1エリア、前記第2エリア、および前記第3エリアに対し重み付けを行うように構成されている、請求項9~12のいずれか一つに記載の端子圧着の良否判定装置。 The combination area creating unit is configured to weight at least the first area, the second area, and the third area when creating the plurality of combination areas. The terminal crimping quality determination device according to any one of 12.
  14.  前記組合せエリア作成部は、標準偏差が小さいほど重み付けが大きくなるような重み付けを行うように構成されている、請求項8または13に記載の端子圧着の良否判定装置。 The terminal crimping quality determination device according to claim 8 or 13, wherein the combination area creation unit is configured to perform weighting such that weighting increases as the standard deviation decreases.
  15.  前記組合せエリア作成部は、分離度が大きいほど重み付けが大きくなるような重み付けを行うように構成されている、請求項8、13、または14に記載の端子圧着の良否判定装置。 15. The terminal crimping quality determination device according to claim 8, 13, or 14, wherein the combination area creation unit is configured to perform weighting such that weighting increases as the degree of separation increases.
  16.  前記判定エリア抽出部は、
      前記複数のエリアのうち、不良品サンプルのエリア面積の標準偏差の値が小さい順に1つまたは2つ以上のエリアを有効エリアとして選択する有効エリア選択部と、
      前記有効エリアを用いて前記判定エリアを決定する判定エリア決定部と、
    を有している、請求項1に記載の端子圧着の良否判定装置。
    The determination area extraction unit
    Among the plurality of areas, an effective area selection unit that selects one or two or more areas as an effective area in ascending order of the value of the standard deviation of the area area of the defective product sample,
    A determination area determining unit that determines the determination area using the effective area;
    The terminal crimping quality determination device according to claim 1, comprising:
  17.  前記閾値設定部は、
      前記判定エリアにおける良品サンプルのエリア面積の平均値μdOK、良品サンプルのエリア面積の標準偏差σdOK、不良品サンプルのエリア面積の平均値μdNG、および不良品サンプルのエリア面積の標準偏差σdNGを算出する判定エリア算出部と、
      p、qを1以上の実数としたときに、μdNG>μdOKかつ(μdNG-p×σdNG)>(μdOK+q×σdOK)のときの(μdNG-p×σdNG)と(μdOK+q×σdOK)との間の所定値、または、μdOK>μdNGかつ(μdOK-p×σdOK)>(μNG+q×σdNG)のときの(μdOK-p×σdOK)と(μdNG+q×σdNG)との間の所定値を、閾値として決定する閾値決定部と、
    を有している、請求項1~16のいずれか一つに記載の端子圧着の良否判定装置。
    The threshold setting unit includes:
    The average value [mu] d OK with an area of good sample in the determination area, the standard deviation .sigma.d OK with an area of good sample, the mean value [mu] d NG with an area of defective samples, and standard deviation .sigma.d NG with an area of defective samples A determination area calculation unit for calculating
    p, when with one or more of the real number q, μd NG> μd OK and (μd NG -p × σd NG) > at the time of the (μd OK + q × σd OK ) and (μd NG -p × σd NG) predetermined value between the (μd OK + q × σd OK ), or, μd OK> μd NG and (μd OK -p × σd OK) > (μ NG + q × σd NG) when the ([mu] d OK -p × a threshold value determination unit that determines a predetermined value between (σd OK ) and (μd NG + q × σd NG ) as a threshold value;
    The terminal crimping quality determination device according to any one of claims 1 to 16, further comprising:
  18.  前記端子圧着装置は、電線の端部および端子が載置されるアンビルと、前記アンビルに対して接近および離反が可能なクリンパと、前記クリンパを前記アンビルに対して接近および離反させる電動式のアクチュエータと、を有し、
     前記端子圧着の進行度合いは、経過時間、前記クリンパの位置、前記クリンパの移動距離、前記クリンパの速度、前記クリンパの加速度、前記アクチュエータに供給される電流、および、前記アクチュエータの作動位置のうちのいずれか一つである、請求項1~17のいずれか一つに記載の端子圧着の良否判定装置。
    The terminal crimping apparatus includes an anvil on which an end of a wire and a terminal are placed, a crimper that can approach and separate from the anvil, and an electric actuator that causes the crimper to approach and separate from the anvil. And having
    The progress of the terminal crimping is the elapsed time, the position of the crimper, the travel distance of the crimper, the speed of the crimper, the acceleration of the crimper, the current supplied to the actuator, and the operating position of the actuator. The terminal crimping quality determination device according to any one of claims 1 to 17, which is any one.
  19.  端子圧着装置により複数の良品サンプルおよび複数の不良品サンプルの端子圧着を行い、前記各サンプルの端子圧着の進行度合いと前記端子圧着装置に発生する圧力との関係を表す圧力波形を取得するステップと、
     前記各サンプルの前記圧力波形を端子圧着の進行度合いにより複数のエリアに分割し、前記圧力波形により囲まれる部分の面積であるエリア面積をエリア毎に算出するステップと、
     前記各エリアの良品サンプルのエリア面積の平均値および標準偏差と、前記各エリアの不良品サンプルのエリア面積の平均値および標準偏差とを算出するステップと、
     前記良品サンプルおよび前記不良品サンプルのエリア面積の平均値および標準偏差に基づいて、前記複数のエリアから1つまたは2つ以上のエリアを有効エリアとして選択するステップと、
     前記有効エリアを用いて判定エリアを抽出するステップと、
     前記判定エリアにおける前記良品サンプルおよび前記不良品サンプルのエリア面積の平均値および標準偏差に基づいて閾値を設定するステップと、
     前記端子圧着装置により検査品の端子圧着を行い、前記検査品の前記判定エリアにおけるエリア面積と前記閾値とを比較することにより、前記検査品の端子圧着の良否を判定するステップと、
    を含んだ端子圧着の良否判定方法。
    Performing terminal crimping of a plurality of non-defective samples and a plurality of defective samples by a terminal crimping device, and obtaining a pressure waveform representing a relationship between the degree of progress of terminal crimping of each sample and the pressure generated in the terminal crimping device; ,
    Dividing the pressure waveform of each sample into a plurality of areas according to the degree of progress of terminal crimping, and calculating an area area that is an area of a portion surrounded by the pressure waveform for each area;
    Calculating the average value and standard deviation of the area area of the non-defective samples in each area, and the average value and standard deviation of the area area of the defective sample in each area;
    Selecting one or more areas as an effective area from the plurality of areas based on an average value and standard deviation of area areas of the non-defective samples and the defective samples;
    Extracting a determination area using the effective area;
    Setting a threshold value based on an average value and standard deviation of the area area of the non-defective product sample and the defective product sample in the determination area;
    Performing the terminal crimping of the inspection product by the terminal crimping device, and comparing the area in the determination area of the inspection product with the threshold value, and determining the quality of the terminal crimping of the inspection product;
    For determining whether or not a terminal is crimped.
PCT/JP2017/016174 2016-06-10 2017-04-24 Terminal crimp quality evaluation device and quality evaluation method WO2017212809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780017292.1A CN108780974B (en) 2016-06-10 2017-04-24 Device and method for judging whether terminal is crimped

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016116080A JP6767176B2 (en) 2016-06-10 2016-06-10 Terminal crimping quality judgment device and quality judgment method
JP2016-116080 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017212809A1 true WO2017212809A1 (en) 2017-12-14

Family

ID=60578490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016174 WO2017212809A1 (en) 2016-06-10 2017-04-24 Terminal crimp quality evaluation device and quality evaluation method

Country Status (3)

Country Link
JP (1) JP6767176B2 (en)
CN (1) CN108780974B (en)
WO (1) WO2017212809A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353060B2 (en) * 2019-04-03 2023-09-29 株式会社フクダ Leak test method
CN110034473A (en) * 2019-05-16 2019-07-19 常州金信诺凤市通信设备有限公司 Automate connector compression bonding apparatus and its working method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087104A (en) * 1994-06-20 1996-01-12 Matsushita Electric Ind Co Ltd Threshold value deciding method for discriminating propriety
JP2001035629A (en) * 1999-07-23 2001-02-09 Yazaki Corp Method and device for judging terminal crimped condition and method for detecting worn condition of crimping die
JP2002352931A (en) * 2001-03-19 2002-12-06 Yazaki Corp Terminal pressure contact state determining method
JP2005114378A (en) * 2003-10-03 2005-04-28 Toyota Motor Corp Quality judging apparatus, quality judging program and quality judging method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297044C (en) * 2001-06-15 2007-01-24 矢崎总业株式会社 Detection method for terminal crimping state
CN201421564Y (en) * 2009-06-15 2010-03-10 鹤壁海昌专用设备有限公司 Pressure control device for terminal crimping machine
CN204333565U (en) * 2014-12-26 2015-05-13 广州国睿电子科技有限公司 A kind of compression bonding apparatus of automotive ignition line terminals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087104A (en) * 1994-06-20 1996-01-12 Matsushita Electric Ind Co Ltd Threshold value deciding method for discriminating propriety
JP2001035629A (en) * 1999-07-23 2001-02-09 Yazaki Corp Method and device for judging terminal crimped condition and method for detecting worn condition of crimping die
JP2002352931A (en) * 2001-03-19 2002-12-06 Yazaki Corp Terminal pressure contact state determining method
JP2005114378A (en) * 2003-10-03 2005-04-28 Toyota Motor Corp Quality judging apparatus, quality judging program and quality judging method

Also Published As

Publication number Publication date
JP6767176B2 (en) 2020-10-14
JP2017220417A (en) 2017-12-14
CN108780974A (en) 2018-11-09
CN108780974B (en) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2017212809A1 (en) Terminal crimp quality evaluation device and quality evaluation method
US20090289624A1 (en) Method for determining and evaluating eddy-current displays, in particular cracks, in a test object made from an electrically conductive material
JP6688962B2 (en) Judgment device, judgment method, and judgment program
JP2020064286A (en) Abnormal sound detection system, device, method, and program
US20180203052A1 (en) Wire-cable snapping symptom detection apparatus
US20150066399A1 (en) Testing Apparatus
JP4869091B2 (en) Insulation abnormality diagnosis system for electrical equipment
CN105702595A (en) Yield determination method of wafer and multivariate detection method of wafer acceptance test
US6819116B2 (en) Terminal crimped state testing method
JP2010231455A (en) Method and device for signal identification
CN113906464A (en) Process monitoring method, computer program, data processing apparatus, computer readable medium, and process monitoring apparatus
CN104678220B (en) The method of testing standardized and device that insulating materials influences on electrical contact performance
JP2014010073A (en) Deterioration inspection device and deterioration inspection method
JP2009300192A (en) Crack detecting device and crack detecting method
JP5134605B2 (en) Signal identification device
Zgarni et al. Intelligent induction motor diagnosis system: A new challenge
JP4775100B2 (en) Signal identification device
JP5525144B2 (en) Waveform determination apparatus and time axis position adjustment method in the waveform determination apparatus
Grande-Barreto et al. Half-broken bar detection using MCSA and statistical analysis
JP7343424B2 (en) Terminal crimping inspection device and method for updating standard waveforms for terminal crimping inspection
US8878561B2 (en) Screening method, screening device and program
JP4497412B2 (en) Accident cause determination method and apparatus for transmission and distribution lines
JP4469157B2 (en) Terminal crimp failure detection device
KR102402851B1 (en) Apparatus for Inspection fusing Method for for Inspection fusing
JP5018415B2 (en) Inspection method for parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809991

Country of ref document: EP

Kind code of ref document: A1