JP4497412B2 - Accident cause determination method and apparatus for transmission and distribution lines - Google Patents

Accident cause determination method and apparatus for transmission and distribution lines Download PDF

Info

Publication number
JP4497412B2
JP4497412B2 JP2004291112A JP2004291112A JP4497412B2 JP 4497412 B2 JP4497412 B2 JP 4497412B2 JP 2004291112 A JP2004291112 A JP 2004291112A JP 2004291112 A JP2004291112 A JP 2004291112A JP 4497412 B2 JP4497412 B2 JP 4497412B2
Authority
JP
Japan
Prior art keywords
accident
exceeding
difference data
data
cause
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004291112A
Other languages
Japanese (ja)
Other versions
JP2006105714A (en
Inventor
基文 片出
真一 芦谷
恒治 藤井
久征 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2004291112A priority Critical patent/JP4497412B2/en
Publication of JP2006105714A publication Critical patent/JP2006105714A/en
Application granted granted Critical
Publication of JP4497412B2 publication Critical patent/JP4497412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

本発明は、送配電線路における地絡などの故障発生時に、サージ波形の特徴から事故原因が金属接触、碍子不良などのいずれに該当するかを判別する方法に関するものである。   The present invention relates to a method for discriminating whether a cause of an accident corresponds to a metal contact or a defective insulator from the characteristics of a surge waveform when a fault such as a ground fault occurs in a transmission and distribution line.

従来、送配電線路に発生した地絡などの故障原因を判定または識別する方法として、事故発生時の零相電圧または零相電流波形の形状や周波数解析を行い、予め用意しておいた事故原因別の波形形状又は周波数成分とのパターンマッチングにより、事故原因を判別する方法が知られている。
しかし、パターンマッチングに用いる波形位置の選択や事故により異なる波形の規格化の問題、同一事故においても観測場所や事故点からの距離、事故時の位相角で周波数成分が変化してしまうなどの現象に対する処理が複雑になり、高精度の判別が困難であるという問題があった。
この種の事故原因判別方法として、下記の特許文献1および2に開示されたものがある。
Conventionally, as a method of determining or identifying the cause of a fault such as a ground fault that has occurred in a transmission / distribution line, the cause and the accident cause prepared in advance by analyzing the shape and frequency of the zero-phase voltage or zero-phase current waveform at the time of the accident A method for determining the cause of an accident by pattern matching with another waveform shape or frequency component is known.
However, there are problems such as selection of waveform positions used for pattern matching and standardization of waveforms that differ depending on the accident, frequency components change depending on the observation location, distance from the accident point, and phase angle at the time of the accident even in the same accident. There is a problem that the processing for the above becomes complicated and it is difficult to discriminate with high accuracy.
Examples of this type of accident cause determination method are disclosed in Patent Documents 1 and 2 below.

特開平11−142466号公報JP-A-11-142466 特開2000−50488号公報JP 2000-50488 A

特許文献1に開示された事故原因推定方法は、地絡事故発生時の零相電圧波形または零相電流波形を検出してデータ収録し、高調波、リサージュ、位相スペクトル、インピーダンス軌跡、実効値、波形率、波高率、歪み率などの波形解析を行い、その解析値をニューラルネットワークに入力し、事故原因を推定するものである。
特許文献2に開示された事故原因判別方法は、故障発生直後の零相電圧または零相電流の過渡現象波形をウェーブレット変換により解析し、予め用意しておいた事故原因ごとの解析データとのパターンマッチングにより事故原因を判別するものである。
The accident cause estimation method disclosed in Patent Document 1 detects a zero-phase voltage waveform or a zero-phase current waveform at the time of occurrence of a ground fault, records data, and records harmonics, Lissajous, phase spectrum, impedance locus, effective value, Waveform analysis such as waveform rate, wave height rate, and distortion rate is performed, and the analysis values are input to a neural network to estimate the cause of the accident.
The accident cause determination method disclosed in Patent Document 2 analyzes a waveform of a transient phenomenon of a zero phase voltage or a zero phase current immediately after a failure by wavelet transform, and a pattern with analysis data prepared for each accident cause prepared in advance. The cause of the accident is determined by matching.

しかしながら、前記特許文献1および2に開示されている方法にあっては、波形解析のための計算量が多いため、計算能力が高い計算機を用いなければならず、簡便に事故原因を判別することができないという問題がある。   However, in the methods disclosed in Patent Documents 1 and 2, since the amount of calculation for waveform analysis is large, a computer with high calculation capability must be used, and the cause of the accident can be easily determined. There is a problem that can not be.

本発明の目的は、高い計算能力を持つ計算機を用いることなく簡便に、かつ高精度で事故原因を判別することができる送配電線路の故障原因判別方法を提供することである。   An object of the present invention is to provide a fault cause determination method for a transmission and distribution line that can easily and accurately determine the cause of an accident without using a computer having high calculation capability.

上記の課題を解決するため、本発明は、送配電線路における地絡などの故障発生時のサージ波形の特徴を解析し、事故原因を判別する事故原因判別方法であって、
前記事故原因判別過程が、
故障発生時のサージ波形を所定周期でサンプリングし、そのサンプルデータを第1の記憶手段に記憶した後、記憶したサンプルデータを読出し、隣接するサンプリング時刻におけるサンプルデータ同士の差分を算出し、その算出した差分データを商用周波数の複数周期にわたって重ね合わせ、差分データの特徴を強調し、重ね合わせた差分データを時間軸上で複数区間の差分データに等分割し、各分割区間において所定の変化量を超えた差分データの個数を計測し、その計測値により各分割区間に出現する所定変化量を超える差分データの出現確率を算出し、算出した各分割区間の出現確率のうち所定確率を超える分割区間数を計測し、計測した所定確率を超える分割区間数と第2の記憶手段に判定基準データとして予め記憶させておいた事故原因別の所定確率を超える分割区間数とを照合し、送配電線路における地絡などの故障発生時の事故原因を判別する過程から成ることを特徴とする。
また、送配電線路における地絡などの故障発生時のサージ波形の特徴を事故原因判別装置によって解析し、事故原因を判別する事故原因判別装置であって、
故障発生時のサージ波形を所定周期でサンプリングし、そのサンプルデータを第1の記憶手段に記憶させる手段と、記憶したサンプルデータを読出し、隣接するサンプリング時刻におけるサンプルデータ同士の差分を算出する手段と、その算出した差分データを商用周波数の複数周期にわたって重ね合わせ、差分データの特徴を強調する手段と、重ね合わせた差分データを時間軸上で複数区間の差分データに等分割し、各分割区間において所定の変化量を超えた差分データの個数を計測し、その計測値により各分割区間に出現する所定変化量を超える差分データの出現確率を算出する手段と、算出した各分割区間の出現確率のうち所定確率を超える分割区間数を計測する手段と、計測した所定確率を超える分割区間数と第2の記憶手段に判定基準データとして予め記憶させておいた事故原因別の所定確率を超える分割区間数とを照合し、送配電線路における地絡などの故障発生時の事故原因を判別する手段とを備えることを特徴とする。
In order to solve the above problems, the present invention is an accident cause determination method for analyzing the characteristics of a surge waveform at the time of occurrence of a fault such as a ground fault in a transmission and distribution line , and determining the cause of the accident
The accident cause determination process
After sampling the surge waveform at the occurrence of a failure at a predetermined cycle, storing the sample data in the first storage means, reading the stored sample data, calculating the difference between the sample data at adjacent sampling times, and calculating The overlapped difference data is superimposed over a plurality of cycles of the commercial frequency, the characteristics of the difference data are emphasized, the overlapped difference data is equally divided into difference data of a plurality of sections on the time axis, and a predetermined change amount is set in each divided section. Measure the number of difference data exceeding, calculate the appearance probability of the difference data exceeding the predetermined change amount appearing in each divided section based on the measured value, and the divided section exceeding the predetermined probability among the calculated appearance probabilities of each divided section The number of divided sections exceeding the predetermined probability measured and the second storage means stored in advance as judgment reference data Causes another against the number of divided sections and more than a predetermined probability, characterized in that it consists of a process to determine the causes of accidents when a fault occurs, such as a ground fault in the TD line.
In addition, an accident cause determination device that analyzes the characteristics of a surge waveform at the time of occurrence of a fault such as a ground fault in a transmission and distribution line by an accident cause determination device and determines the cause of the accident,
Means for sampling a surge waveform at the occurrence of a failure at a predetermined period and storing the sample data in the first storage means; and means for reading the stored sample data and calculating a difference between the sample data at adjacent sampling times; The calculated difference data is overlapped over a plurality of periods of the commercial frequency, and the means for emphasizing the characteristics of the difference data, and the overlapped difference data are equally divided into difference data of a plurality of sections on the time axis, and in each divided section A means for measuring the number of difference data exceeding a predetermined change amount, calculating the appearance probability of difference data exceeding the predetermined change amount appearing in each divided section based on the measured value, and the appearance probability of each calculated divided section Of these, the means for measuring the number of divided sections exceeding a predetermined probability, the number of divided sections exceeding the measured predetermined probability, and the second storage means A means for collating the number of division sections exceeding a predetermined probability for each cause of accident stored in advance as quasi-data, and determining means of an accident when a fault such as a ground fault occurs in a transmission and distribution line To do.

本発明によれば、故障発生時のサージ波形をサンプリングする処理と、サンプルデータ同士の差分を算出する処理と、差分データを商用周波数の複数周期にわたって重ね合わせる処理と、重ね合わせた差分データを時間軸上で等分割した各分割区間において所定の変化量を超えた差分データの個数を計測し、その計測値により各分割区間に出現する所定変化量を超える差分データの出現確率を算出する処理と、算出した各分割区間の出現確率のうち所定確率を超える分割区間数を計測する処理と、計測した所定確率を超える分割区間数と第2の記憶手段に判定基準データとして予め記憶させておいた事故原因別の所定確率を超える分割区間数とを照合し、事故原因を判別する処理といった簡単なデータ処理を行うだけであるため、高い計算能力を持つ計算機を用いることなく簡便に、かつ高精度で送配電線路の事故原因を判別することができる。
従って、事故原因判別装置として、パーソナルコンピュータのような汎用の計算機を用いて送配電線路の事故原因を判別することができ、事故発生時に復旧作業を迅速に行うことが可能になる。
According to the present invention, the process of sampling the surge waveform at the time of failure occurrence, the process of calculating the difference between the sample data, the process of superposing the difference data over a plurality of cycles of the commercial frequency, and the superposed difference data as time A process of measuring the number of difference data exceeding a predetermined change amount in each divided section equally divided on the axis, and calculating the appearance probability of the difference data exceeding the predetermined change amount appearing in each divided section by the measured value; , A process of measuring the number of divided sections exceeding a predetermined probability among the calculated appearance probabilities of each divided section, and the number of divided sections exceeding the measured predetermined probability and stored in advance as determination criterion data in the second storage means Since it only needs to perform simple data processing, such as processing to determine the cause of an accident by comparing the number of divisions exceeding the predetermined probability for each accident cause It is possible to determine the causes of accidents TD line in simple manner, and with high accuracy without using a computer having a.
Therefore, it is possible to determine the cause of the accident on the transmission and distribution line using a general-purpose computer such as a personal computer as the accident cause determination device, and it is possible to quickly perform the recovery work when the accident occurs.

以下、本発明の一実施の形態について図面に基づき説明する。
図1は、本発明の事故原因判別方法を実施する事故原因判別装置の実施の形態を示すブロック図である。
本実施の形態に係る事故原因判別装置は、送配電線路1の零相電圧及び零相電流を検出する電圧・電流センサ2の出力信号を所定周期(例えば312.5KHZ)でサンプリングしてAD変換するAD変換器3と、AD変換器3から出力される事故発生時のサンプルデータをサンプルデータ記憶部4に記憶させた後、判定基準データ記憶部5に予め記憶された判定基準データと照合し、事故原因を判別するパーソナルコンピュータ(以下、PCと略記)6とから構成されている。
PC6は、入出力装置としてキーボード7、マウス8、表示装置9を備えている。また、内部にはCPU61、メモリ62を備え、メモリ62内にはサンプリング処理プログラム63、事故原因判定プログラム64が記憶されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of an accident cause determination apparatus for implementing an accident cause determination method of the present invention.
The accident cause determination apparatus according to the present embodiment samples an output signal of the voltage / current sensor 2 for detecting the zero-phase voltage and the zero-phase current of the transmission / distribution electric line 1 at a predetermined period (for example, 312.5 KHZ) and performs AD conversion. And the sample data output from the AD converter 3 at the time of occurrence of the accident is stored in the sample data storage unit 4 and then checked against the determination reference data stored in advance in the determination reference data storage unit 5 The personal computer (hereinafter abbreviated as PC) 6 for determining the cause of the accident.
The PC 6 includes a keyboard 7, a mouse 8, and a display device 9 as input / output devices. In addition, a CPU 61 and a memory 62 are provided inside, and a sampling processing program 63 and an accident cause determination program 64 are stored in the memory 62.

図2(a)は、金属接触が原因で地絡事故が発生した場合の零相電流および零相電圧波形の代表的な例を示す波形図、図2(b)は碍子不良が原因で地絡事故が発生した場合の零相電流および零相電圧波形の代表的な例を示す波形図、図3は断線被覆接触が原因で地絡事故が発生した場合の零相電流および零相電圧波形の代表的な例を示す波形図である。
なお、断線被覆接触による地絡事故とは、電線の絶縁被覆に木などが接触し、擦れ、絶縁劣化もしくは充電部が露出し、電線間もしくは支持アーム等に接触して地絡に至る事故のことである。
これらの波形図から明らかなように、事故原因別に零相電流および零相電圧の波形形状が大きく異なり、それぞれ特徴的な波形形状となっている。本発明は、この波形形状の特徴を抽出し、事故原因を判別するものである。
Fig. 2 (a) is a waveform diagram showing typical examples of zero-phase current and zero-phase voltage waveforms when a ground fault occurs due to metal contact, and Fig. 2 (b) is a diagram showing ground faults due to insulator defects. FIG. 3 is a waveform diagram showing a typical example of a zero-phase current and zero-phase voltage waveform when a fault has occurred, and FIG. 3 shows a zero-phase current and zero-phase voltage waveform when a ground fault has occurred due to a contact with a broken wire. It is a wave form diagram which shows the typical example of.
Note that a ground fault caused by a contact with a wire breakage is an accident in which wood, etc. comes into contact with the insulation of the wire and rubs, insulation deterioration or exposed live parts are exposed, and contact between the wires or the support arm etc. leads to a ground fault. That is.
As is apparent from these waveform diagrams, the waveform shapes of the zero-phase current and the zero-phase voltage differ greatly depending on the cause of the accident, and each has a characteristic waveform shape. The present invention extracts the characteristics of the waveform shape and discriminates the cause of the accident.

図4は、サンプリング処理プログラム63のサンプリング処理の手順を示すフローチャートであり、AD変換器3から出力される零相電圧または零相電流のAD変換データを所定周期で取り込み(ステップ401)、サンプルデータ記憶部4に記憶させる(ステップ402)を常時繰返している。
これにより、サンプルデータ記憶部4には零相電圧または零相電流を所定周期でサンプリングしたサンプルデータが時系列で順次格納される。
ここで、サンプリング周期は、事故発生時の波形の特徴を失わない程度の数100KHZ程度の周期、例えば312.5KHZの周期が望ましい。
FIG. 4 is a flowchart showing the sampling processing procedure of the sampling processing program 63. The AD conversion data of the zero phase voltage or the zero phase current output from the AD converter 3 is fetched at a predetermined cycle (step 401), and sample data is obtained. The process of storing in the storage unit 4 (step 402) is constantly repeated.
Thus, sample data obtained by sampling the zero-phase voltage or the zero-phase current at a predetermined cycle is sequentially stored in the sample data storage unit 4 in time series.
Here, the sampling period is preferably a period of several hundreds KHZ, such as a period of 312.5 KHZ, which does not lose the characteristics of the waveform at the time of the accident.

図5は、事故発生時に起動される事故原因判別プログラム64の処理手順を示すフローチャートである。
金属接触などを原因とする地絡事故が発生した場合、事故原因判別プログラム64がキーボード7からのコマンド等によって起動される。
起動された事故原因判別プログラム64は、まず、サンプルデータ記憶部4に格納されたサンプルデータを読出し、その中の事故発生時のサンプルデータを抽出する(ステップ501)。事故が発生していないときのサンプルデータは、理論的にはゼロの値のデータが時系列に並んだものであり、事故が発生した時のサンプルデータはゼロでない値のデータが時系列に並んだものであるので、この特徴から後者のデータ群を抽出する。
FIG. 5 is a flowchart showing a processing procedure of the accident cause determination program 64 activated when an accident occurs.
When a ground fault due to metal contact or the like occurs, the accident cause determination program 64 is activated by a command from the keyboard 7 or the like.
The activated accident cause determination program 64 first reads the sample data stored in the sample data storage unit 4 and extracts the sample data at the time of the occurrence of the accident (step 501). The sample data when no accident has occurred is theoretically a series of zero value data in time series, and the sample data at the time of an accident has non-zero value data in time series. Therefore, the latter data group is extracted from this feature.

次に、事故発生時のサンプルデータについて、例えば、隣接するサンプリング時刻におけるサンプルデータ同士で差分を算出する(ステップ502)。換言すれば、事故発生時のサンプルデータの微分データを求める。これにより、振幅変化が大きい部分のみが残る。
次に、算出した差分データを商用周波数の複数周期にわたって重ね合わせ、差分データの特徴を強調する(ステップ503)。すなわち、商用周波数の基本周期(例えば20ms)のN周期(例えばN=10)分の差分データを基本周期区間内で重ね合わせる。
事故発生時には、図2および図3に例示したような事故原因に特有の波形形状が複数周期に渡って繰返し現れるので、波形形状の特徴をさらに強調した差分データが得られる。
Next, for sample data at the time of the accident, for example, a difference is calculated between the sample data at adjacent sampling times (step 502). In other words, the differential data of the sample data at the time of the accident occurrence is obtained. As a result, only the portion where the amplitude change is large remains.
Next, the calculated difference data is superimposed over a plurality of cycles of the commercial frequency to emphasize the characteristics of the difference data (step 503). That is, the difference data for N periods (for example, N = 10) of the fundamental period (for example, 20 ms) of the commercial frequency is superimposed in the basic period section.
When an accident occurs, a waveform shape peculiar to the cause of the accident illustrated in FIG. 2 and FIG. 3 repeatedly appears over a plurality of periods, so that differential data further emphasizing the characteristics of the waveform shape can be obtained.

次に、重ね合わせた差分データを図6に示すように時間軸上で複数区間B1〜Bnの差分データに等分割し、各分割区間B1〜Bnにおいて所定の変化量δ(規格微分量)を超えた差分データの個数をカウントする(ステップ504)。
図6の例では、分割区間B1において所定変化量δを超えている重ね合わせ差分データの個数は2個である。
次に、そのカウント値により各分割区間B1〜Bnに出現する所定変化量δを超える差分データの出現確率を算出する(ステップ505)。
図6(a)の分割区間B1の例では、当該区間における重ね合わせ差分データの総数10に対し、所定変化量δを超えている重ね合わせ差分データの個数は2個であるので、その出現確率は20%ということになる。なお、図6の例は本発明を分かり易く説明するために模式的に示したものである。
Next, the overlapped difference data is equally divided into difference data of a plurality of sections B1 to Bn on the time axis as shown in FIG. 6, and a predetermined change amount δ (standard differential amount) in each divided section B1 to Bn. The number of difference data exceeding is counted (step 504).
In the example of FIG. 6, the number of overlay difference data exceeding the predetermined change amount δ in the divided section B1 is two.
Next, the appearance probability of the difference data exceeding the predetermined change amount δ appearing in each of the divided sections B1 to Bn is calculated based on the count value (step 505).
In the example of the divided section B1 in FIG. 6A, the number of overlapping difference data exceeding the predetermined change amount δ is two with respect to the total number of overlapping difference data 10 in the section. Will be 20%. Note that the example of FIG. 6 is schematically shown for easy understanding of the present invention.

次に、出現確率が所定確率X%を超える区間数をカウントする(ステップ506)。出現確率が所定確率X%を超える区間数は、波形形状が激しく変化するような事故の場合のほど大きくなる。すなわち、図2および図3の波形図から明らかなように、金属接触に起因する事故の場合の波形形状の変化が最も変化が少なく、碍子不良、断線被覆接触の順に波形形状の変化が激しくなっている。このため、断線被覆接触の場合が、所定確率X%を超える区間数が多くなる。
実験によれば、金属接触、碍子不良、断線被覆接触またはケーブル不良といった事故原因別の所定確率X%を超える区間数は分割数を50とした場合、図6(b)に示すような結果が得られている。
金属接触が原因の地絡事故では、図2(a)に示すように波形形状が正弦波形に類似し、振幅変化が激しくない。このため、所定確率X%を超える区間数は全て「0」となっている。
Next, the number of sections in which the appearance probability exceeds the predetermined probability X% is counted (step 506). The number of sections in which the appearance probability exceeds the predetermined probability X% increases as an accident in which the waveform shape changes drastically. That is, as apparent from the waveform diagrams of FIGS. 2 and 3, the change in the waveform shape in the case of an accident caused by metal contact is the least, and the change in the waveform shape becomes severe in the order of insulator failure and wire-breaking contact. ing. For this reason, in the case of the disconnection covering contact, the number of sections exceeding the predetermined probability X% increases.
According to the experiment, when the number of sections exceeding the predetermined probability X% by accident cause such as metal contact, insulator failure, disconnection covering contact or cable failure is 50, the result as shown in FIG. Has been obtained.
In a ground fault caused by metal contact, the waveform shape is similar to a sine waveform as shown in FIG. For this reason, the number of sections exceeding the predetermined probability X% is all “0”.

次に、カウントした所定確率X%を超える区間数と、判定基準データ記憶部5に判定基準データとして予め記憶させておいた事故原因別の所定確率X%を超える区間数とを照合し、事故原因を判別する(ステップ507)。そして、判別した事故原因を表示装置9に表示する(ステップ508)。
図7に、判定基準データ記憶部5に予め記憶されている判定基準データの例を示している。
なお、上記の説明においては、事故原因が3つの場合を例に挙げて説明したが、さらに多くの事故原因に区別して判別することができることは言うまでもない。
Next, the number of sections exceeding the counted predetermined probability X% is collated with the number of sections exceeding the predetermined probability X% for each accident cause stored in the determination reference data storage unit 5 in advance as the determination reference data. The cause is determined (step 507). Then, the determined cause of the accident is displayed on the display device 9 (step 508).
FIG. 7 shows an example of the determination reference data stored in advance in the determination reference data storage unit 5.
In the above description, the case where there are three accidents has been described as an example, but it is needless to say that more accident causes can be distinguished.

本発明の一実施の形態に係る事故原因判別装置の構成を示すブロック図である。It is a block diagram which shows the structure of the accident cause determination apparatus which concerns on one embodiment of this invention. 事故原因別のサージ波形の例を示す図である。It is a figure which shows the example of the surge waveform according to accident cause. 事故原因が断線被覆接触の場合のサージ波形の例を示す図である。It is a figure which shows the example of a surge waveform in case an accident cause is a disconnection coating contact. サンプリング処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of a sampling process. 事故原因判別処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of an accident cause discrimination | determination process. 重ね合わせ処理した差分データを複数の分割区間に分割した例と、所定変化率を超える差分データの出現確率が所定確率を超える分割区間数の実験データの例を示す図である。It is a figure which shows the example which divided | segmented the difference data which carried out the superimposition process into several division | segmentation areas, and the example of the experiment data of the division | segmentation area number where the appearance probability of the difference data exceeding a predetermined change rate exceeds a predetermined | prescribed probability. 判定基準データ記憶部に記憶される判定基準データの例を示す図である。It is a figure which shows the example of the criteria data memorize | stored in a criteria data storage part.

符号の説明Explanation of symbols

1 送配電線路
2 電圧・電流センサ
3 AD変換器
4 サンプルデータ記憶部
5 判定基準データ記憶部
6 パーソナルコンピュータ
61 CPU
62 メモリ
63 サンプリング処理プログラム
64 事故原因判定プログラム
DESCRIPTION OF SYMBOLS 1 Transmission / distribution electric wire 2 Voltage / current sensor 3 AD converter 4 Sample data storage part 5 Judgment reference data storage part 6 Personal computer 61 CPU
62 Memory 63 Sampling processing program 64 Accident cause determination program

Claims (2)

送配電線路における地絡などの故障発生時のサージ波形の特徴を解析し、事故原因を判別する事故原因判別方法であって、
前記事故原因判別過程が、
故障発生時のサージ波形を所定周期でサンプリングし、そのサンプルデータを第1の記憶手段に記憶した後、記憶したサンプルデータを読出し、隣接するサンプリング時刻におけるサンプルデータ同士の差分を算出し、その算出した差分データを商用周波数の複数周期にわたって重ね合わせ、差分データの特徴を強調し、重ね合わせた差分データを時間軸上で複数区間の差分データに等分割し、各分割区間において所定の変化量を超えた差分データの個数を計測し、その計測値により各分割区間に出現する所定変化量を超える差分データの出現確率を算出し、算出した各分割区間の出現確率のうち所定確率を超える分割区間数を計測し、計測した所定確率を超える分割区間数と第2の記憶手段に判定基準データとして予め記憶させておいた事故原因別の所定確率を超える分割区間数とを照合し、送配電線路における地絡などの故障発生時の事故原因を判別する過程から成ることを特徴とする送配電線路の事故原因判別方法。
An accident cause determination method that analyzes the characteristics of the surge waveform at the time of occurrence of a fault such as a ground fault in a transmission and distribution line , and determines the cause of the accident,
The accident cause determination process
After sampling the surge waveform at the occurrence of a failure at a predetermined cycle, storing the sample data in the first storage means, reading the stored sample data, calculating the difference between the sample data at adjacent sampling times, and calculating The overlapped difference data is superimposed over a plurality of cycles of the commercial frequency, the characteristics of the difference data are emphasized, the overlapped difference data is equally divided into difference data of a plurality of sections on the time axis, and a predetermined change amount is set in each divided section. Measure the number of difference data exceeding, calculate the appearance probability of the difference data exceeding the predetermined change amount appearing in each divided section based on the measured value, and the divided section exceeding the predetermined probability among the calculated appearance probabilities of each divided section The number of divided sections exceeding the predetermined probability measured and the second storage means stored in advance as judgment reference data It causes another against the number of divided sections and exceeding a predetermined probability, accident determination method of transmission and distribution lines, characterized in that it consists of a process to determine the causes of accidents when a fault occurs, such as a ground fault in the TD line.
送配電線路における地絡などの故障発生時のサージ波形の特徴を事故原因判別装置によって解析し、事故原因を判別する事故原因判別装置であって、
故障発生時のサージ波形を所定周期でサンプリングし、そのサンプルデータを第1の記憶手段に記憶させる手段と、記憶したサンプルデータを読出し、隣接するサンプリング時刻におけるサンプルデータ同士の差分を算出する手段と、その算出した差分データを商用周波数の複数周期にわたって重ね合わせ、差分データの特徴を強調する手段と、重ね合わせた差分データを時間軸上で複数区間の差分データに等分割し、各分割区間において所定の変化量を超えた差分データの個数を計測し、その計測値により各分割区間に出現する所定変化量を超える差分データの出現確率を算出する手段と、算出した各分割区間の出現確率のうち所定確率を超える分割区間数を計測する手段と、計測した所定確率を超える分割区間数と第2の記憶手段に判定基準データとして予め記憶させておいた事故原因別の所定確率を超える分割区間数とを照合し、送配電線路における地絡などの故障発生時の事故原因を判別する手段とを備えることを特徴とする送配電線路の事故原因判別装置。
An accident cause determination device that analyzes the characteristics of the surge waveform at the time of failure such as a ground fault in a transmission and distribution line by an accident cause determination device, and determines the cause of the accident,
Means for sampling a surge waveform at the occurrence of a failure at a predetermined period and storing the sample data in the first storage means; and means for reading the stored sample data and calculating a difference between the sample data at adjacent sampling times; The calculated difference data is overlapped over a plurality of periods of the commercial frequency, the means for emphasizing the characteristics of the difference data, and the overlapped difference data is equally divided into a plurality of sections of difference data on the time axis, A means for measuring the number of difference data exceeding a predetermined change amount, calculating the appearance probability of difference data exceeding the predetermined change amount appearing in each divided section based on the measured value, and the appearance probability of each calculated divided section Of these, the means for measuring the number of divided sections exceeding a predetermined probability, the number of divided sections exceeding the measured predetermined probability, and the second storage means A means for collating the number of division sections exceeding a predetermined probability for each cause of accident stored in advance as quasi-data, and determining means of an accident when a fault such as a ground fault occurs in a transmission and distribution line A device for determining the cause of accidents in transmission and distribution lines.
JP2004291112A 2004-10-04 2004-10-04 Accident cause determination method and apparatus for transmission and distribution lines Expired - Fee Related JP4497412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291112A JP4497412B2 (en) 2004-10-04 2004-10-04 Accident cause determination method and apparatus for transmission and distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291112A JP4497412B2 (en) 2004-10-04 2004-10-04 Accident cause determination method and apparatus for transmission and distribution lines

Publications (2)

Publication Number Publication Date
JP2006105714A JP2006105714A (en) 2006-04-20
JP4497412B2 true JP4497412B2 (en) 2010-07-07

Family

ID=36375638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291112A Expired - Fee Related JP4497412B2 (en) 2004-10-04 2004-10-04 Accident cause determination method and apparatus for transmission and distribution lines

Country Status (1)

Country Link
JP (1) JP4497412B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644745B2 (en) * 2009-08-04 2011-03-02 オー・エイチ・ティー株式会社 Circuit pattern inspection device
JP5401503B2 (en) * 2011-05-26 2014-01-29 東京電力株式会社 Power system fault waveform data search device and recording medium
CN103645401B (en) * 2013-12-11 2017-01-11 北京四方继保自动化股份有限公司 Power transmission line high resistance operation state recognition method based on WAMS data
JP6657984B2 (en) * 2016-01-19 2020-03-04 東京電力ホールディングス株式会社 Power system accident cause estimation device
CN106066444A (en) * 2016-06-14 2016-11-02 北京鼎科远图科技有限公司 Ground fault detection device and method based on capacitance partial pressure and big data analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217279A (en) * 1987-03-06 1988-09-09 Mitsubishi Electric Corp Abnormality detecting device for electric equipment
JPH06121454A (en) * 1992-10-06 1994-04-28 Yaskawa Electric Corp Ground fault detector
JPH10155232A (en) * 1996-11-20 1998-06-09 Chubu Electric Power Co Inc Device for judging cause of abnormality of distribution line
JP2002014136A (en) * 2000-06-30 2002-01-18 Tempearl Ind Co Ltd Method of detecting tracking short-circuit
JP2003279616A (en) * 2002-03-20 2003-10-02 Mitsubishi Electric Corp Instrument for measuring arc behavior in troubled power transmission line, and device for determining cause of trouble in power transmission line

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217279A (en) * 1987-03-06 1988-09-09 Mitsubishi Electric Corp Abnormality detecting device for electric equipment
JPH06121454A (en) * 1992-10-06 1994-04-28 Yaskawa Electric Corp Ground fault detector
JPH10155232A (en) * 1996-11-20 1998-06-09 Chubu Electric Power Co Inc Device for judging cause of abnormality of distribution line
JP2002014136A (en) * 2000-06-30 2002-01-18 Tempearl Ind Co Ltd Method of detecting tracking short-circuit
JP2003279616A (en) * 2002-03-20 2003-10-02 Mitsubishi Electric Corp Instrument for measuring arc behavior in troubled power transmission line, and device for determining cause of trouble in power transmission line

Also Published As

Publication number Publication date
JP2006105714A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
CN102016607B (en) Method and apparatus for analyzing waveform signals of a power system
James et al. Development of computer-based measurements and their application to PD pattern analysis
JP5049675B2 (en) Distribution line accident cause estimation system, method, and program
CN109375060B (en) Method for calculating fault waveform similarity of power distribution network
CN105203936A (en) Method for determining power cable partial discharge defect type based on spectral analysis
AU2007242968A1 (en) Methods and systems for detecting series arcs in electrical systems
JP2006242815A (en) Fault point location method of transmission line, fault point location device of transmission line, and fault point location program
CN109946535A (en) A kind of fault arc detection method
CN112379213B (en) Fault detection method and system
US10243343B2 (en) Systems and methods for detecting and identifying arcing based on numerical analysis
CN114252749B (en) Transformer partial discharge detection method and device based on multiple sensors
JP7378914B2 (en) Evaluation of phase-resolved partial discharge
CN110045232B (en) Method for identifying ground fault phase of neutral point non-effective grounding system
CN106597160B (en) Electronic equipment fault detection method and device
CN111308406A (en) Current transformer saturation detection method, system, medium and electronic equipment
CN113850330A (en) Power distribution network fault cause detection method based on short-time Fourier transform and convolutional neural network
JP6888346B2 (en) Partial discharge detection device and partial discharge detection method
JP4497412B2 (en) Accident cause determination method and apparatus for transmission and distribution lines
CN104833898A (en) Substation grounding grid corrosion state evaluation method using M-sequence signal current
CN112881862B (en) Three-core cable fault positioning method and device based on relative impedance spectrum
CN117668751A (en) High-low voltage power system fault diagnosis method and device
CN117168337A (en) OFDR strain edge optimization method and measurement method
CN117289087A (en) Series fault arc detection method based on CZT conversion
CN115343579B (en) Power grid fault analysis method and device and electronic equipment
JP5089142B2 (en) Accident determination device, method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4497412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees