WO2017212799A1 - Light emitting element and method for manufacturing same - Google Patents

Light emitting element and method for manufacturing same Download PDF

Info

Publication number
WO2017212799A1
WO2017212799A1 PCT/JP2017/015689 JP2017015689W WO2017212799A1 WO 2017212799 A1 WO2017212799 A1 WO 2017212799A1 JP 2017015689 W JP2017015689 W JP 2017015689W WO 2017212799 A1 WO2017212799 A1 WO 2017212799A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode layer
layer
organic light
lower electrode
Prior art date
Application number
PCT/JP2017/015689
Other languages
French (fr)
Japanese (ja)
Inventor
木村 直樹
充良 内藤
賢嗣 平岩
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017212799A1 publication Critical patent/WO2017212799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to a structure of a light emitting element having a plurality of light emitting modules and a method for manufacturing the same.
  • organic EL Organic Electroluminescence: OLED
  • OLED Organic Electroluminescence
  • the organic EL has a configuration in which a pair of planar electrodes each having an organic layer on a plane sandwiched on a planar substrate is disposed. By making at least one of the planar electrodes transparent, light emitted from the organic light emitting layer is emitted to the outside via the transparent electrode. Thereby, a planar light emitter can be realized.
  • a transparent surface-emitting light source can be realized by making both of the pair of planar electrodes light transmissive.
  • a compound such as ITO, IZO, or ZnO may be used, but a metal such as silver, gold, copper, or aluminum may be formed as a thin film with a thickness of 30 nm or less.
  • Patent Document 1 divides a light emitting element into a plurality of light emitting modules on a substrate, and shortens the distance of the transparent electrode in one light emitting element. Has been proposed.
  • an insulating layer is formed on the end surface portion of the organic light emitting layer, an upper electrode layer is formed on the organic light emitting layer and the insulating layer, and the electric power of the adjacent lower electrode layer is formed.
  • Connection structure is adopted.
  • a high level of technology is required to align the height of the organic light emitting layer and the insulating layer, and a step is likely to occur between the organic light emitting layer and the insulating layer.
  • the upper electrode layer may be disconnected at the generated step.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a light emitting device having a structure capable of improving the reliability of an upper electrode layer.
  • the light emitting device includes a substrate, and a first light emitting module and a second light emitting module arranged in parallel on the substrate, wherein the first light emitting module includes the substrate.
  • a first lower electrode layer provided on the first lower electrode layer; a first organic light emitting layer provided on the first lower electrode layer; and a transparent thin film provided on the first organic light emitting layer.
  • the second light emitting module includes a second lower electrode layer provided on the transparent substrate and a second organic light emitting provided on the first electrode layer. And a second upper electrode layer formed on the second organic light emitting layer and formed of a transparent thin film, wherein the first organic light emitting layer is formed on the upper surface of the second lower electrode layer.
  • the first upper electrode layer is provided so as to extend to the overlapping region. Together provided along the upper surface of the first organic light emitting layer, and is electrically connected to the second lower electrode layer.
  • a method of manufacturing a light emitting device as described above, wherein the step of forming the first lower electrode layer and the second lower electrode layer electrically separated on the substrate, and the step of forming the second lower electrode layer A step of forming a separator on the upper surface, and on one side of the separator, the first electrode layer is provided on the first lower electrode layer so as to extend to a region overlapping the upper surface of the second lower electrode layer.
  • the first upper electrode layer is formed on the first organic light emitting layer and electrically connected to the second lower electrode layer by forming a film and separating the electrode layer by the separator. And the second And a step of the second upper electrode layer is formed on the machine-emitting layer.
  • An object of the present invention is to provide a light emitting device having a structure capable of improving the reliability of the upper electrode layer.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 4 is a cross-sectional view of the light-emitting element of Embodiment 1.
  • FIG. 3 is a partial enlarged cross-sectional view of the light emitting element of the first embodiment. It is the 1st expanded sectional view showing a subject. It is the 2nd expanded sectional view showing a subject.
  • FIG. 11 is an enlarged cross-sectional view illustrating a method for manufacturing the light emitting element in the second embodiment.
  • FIG. 1 is a plan view showing a basic configuration of the light emitting module 1
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • an anode 110 as a lower electrode, an organic light emitting layer 120, and a cathode 140 as an upper electrode are laminated in this order.
  • the anode 110, the organic light emitting layer 120, and the cathode 140 are sealed with a sealing member 150.
  • the sealing member 150 By making the sealing member 150 transparent, the whole becomes a transparent light emitter.
  • the sealing member is made opaque, it does not become a transparent light emitter, but it becomes a light emitter with a sense of depth and may be used for another usage.
  • the transparent electrode (anode) 110 is exposed to the outside to constitute the anode extraction electrode 110.
  • an anode auxiliary electrode 120x used for contact with the external electric wire L1 drawn out is provided on the anode 110.
  • the cathode 140 is provided with a cathode auxiliary electrode 120y used for contact with the external electric wire L2 drawn to the outside.
  • An insulating layer (not shown) is provided as necessary so that the anode 110 and the cathode 140 are not short-circuited.
  • the electroluminescent element is constituted by the anode 110, the organic light emitting layer 120, the cathode 140, the extraction electrode 130, and the sealing member 150.
  • the organic light emitting layer 120 emits light when a voltage is applied to the organic light emitting layer 120 using the anode 110 and the cathode 140.
  • a flexible resin base material PET resin (polyethylene terephthalate) / PEN resin (polyethylene naphthalate) / polyimide, etc.), glass, silicon, or the like may be used.
  • PET resin polyethylene terephthalate
  • PEN resin polyethylene naphthalate
  • polyimide polyimide
  • the light emitting module 1 is a transparent light emitter
  • the surface resistivity of the anode 110 and the cathode 140 are completely the same, in principle, luminance unevenness does not occur.
  • the same resistance is hardly caused by differences in materials, thicknesses, and the like, and in fact, luminance unevenness always occurs.
  • the anode auxiliary electrode 120x and the cathode auxiliary electrode 120y are provided as shown in FIG. 2, luminance unevenness in the vertical direction (the direction of arrow D in FIG. 1) can be suppressed, but the horizontal direction (in FIG. 1) Brightness unevenness in the direction of arrow W) still remains.
  • the resistance of the anode 110 is higher than the resistance of the cathode 140, the brightness decreases as the distance from the feeding point of the anode 110 increases, as indicated by the length of arrows B1 and B2 in FIG.
  • the resistance of the cathode 140 is higher than that of the anode 110, the luminance decreases as the distance from the feeding point of the cathode 140 increases.
  • Embodiment 1 Light-Emitting Element 1A
  • 3 is a cross-sectional view of the light-emitting element 1A
  • FIG. 4 is a partial enlarged cross-sectional view of the light-emitting element 1A
  • 5 and 6 are first and second enlarged cross-sectional views showing the problem.
  • the same reference number is attached
  • luminance unevenness can be reduced by forming a light emitting element by dividing the light emitting module as shown in FIG.
  • the light emitting element 1A of the present embodiment includes a transparent substrate 100, and a first light emitting module L100 and a second light emitting module L200 arranged in parallel on the transparent substrate 100.
  • a first light emitting module L100 and a second light emitting module L200 arranged in parallel on the transparent substrate 100.
  • the case where two light emitting modules are arranged will be described, but a plurality of light emitting modules can be arranged in a matrix.
  • the first light emitting module L100 includes a first anode 110A constituting a first lower electrode layer provided on the transparent substrate 100, a first organic light emitting layer 120A provided on the first anode 110A, And a first cathode 140A constituting a transparent first upper electrode layer provided on the first organic light emitting layer 120A.
  • the second light emitting module L200 includes a second anode 110B constituting a second lower electrode layer provided on the transparent substrate 100, a second organic light emitting layer 120B provided on the second anode 110B, 2 and a second cathode 140B constituting a transparent second upper electrode layer provided on the organic light emitting layer 120B.
  • first organic light emitting layer 120A is provided so as to extend to a region overlapping the upper surface of the second anode 110B, and the first cathode 140A is provided along the upper surface of the first organic light emitting layer 120A.
  • the two anodes 110B are electrically connected.
  • the first light emitting module L100 and the second light emitting module L200 are configured such that the external electric wire L1 ⁇ the first anode 110A ⁇ the first organic light emitting layer 120A ⁇ the first cathode 140A ⁇ the second anode 110B ⁇ the second organic light emitting layer 120B ⁇ A series connection having the second cathode 140B ⁇ the external electric wire L2 as a route is formed.
  • the first organic light emitting layer 120A and the second organic light emitting layer 120B emit light.
  • luminance unevenness can be reduced by dividing the light emitting module as compared with the case of FIG.
  • a thin film metal is used for the transparent first cathode 140A and the transparent second cathode 140B. In this case, it is particularly important to maintain high reliability of the electrical connection between the first light emitting module L100 and the second light emitting module L200.
  • the thickness of the thin film metal used for the first cathode 140A and the second cathode 140B is 30 nm or less, desirably 20 nm or less, and further desirably 10 nm or less in order to maintain the transmittance.
  • the configuration of the present embodiment is important in order to use a thin film metal of 20 nm or less as a cathode.
  • the configuration of the present embodiment is effective in improving the reliability.
  • a thin film metal of 20 nm or less is used for the cathode, it is considered that the film thickness unevenness of the thin film metal becomes conspicuous.
  • the thin film metal for example, aluminum (Al), silver (Ag), and calcium (Ca) are desirable.
  • gold (Au) which has an advantage that is not easily oxidized can be considered.
  • Another material is copper (Cu), which is characterized by good conductivity.
  • Other materials that have good thermal and chemical properties and are not easily oxidized at high temperatures and do not cause a chemical reaction with the substrate material include platinum, rhodium, palladium, ruthenium, iridium, and osmium.
  • An alloy using a plurality of metal materials may be used.
  • MgAg and LiAl are often used as thin film transparent metal electrodes.
  • the configuration of the present embodiment is a configuration that does not cause disconnection in the first cathode 140A and the second cathode 140B. This is effective in improving the reliability of wiring.
  • first anode 110A and the first cathode 140A are different materials
  • first anode 110A and the first cathode 140A have different resistivity
  • second anode 110B and the second cathode 140B are different materials.
  • the second anode 110B and the second cathode 140B have different resistivity.
  • ITO may be used for the first anode 110A and the second anode 110B
  • an Ag thin film may be used as the thin film metal for the first cathode 140A and the second cathode 140B.
  • the resistivity of ITO is about 1 ⁇ 10 ⁇ 6 ⁇ m to 2 ⁇ 10 ⁇ 6 ⁇ m
  • the resistivity of the Ag thin film is about 1 ⁇ 10 ⁇ 8 ⁇ m to 3 ⁇ 10 ⁇ 8 ⁇ m.
  • first organic light emitting layer 120A is provided so as to extend to a region overlapping the upper surface of second anode 110B, and first cathode 140A is And provided along the upper surface of the first organic light emitting layer 120A and electrically connected to the second anode 110B.
  • first cathode 140A using a thin film metal can be electrically and stably connected to the second anode 110B without disconnection.
  • the first organic light emitting layer 120A is not extended to a region overlapping the upper surface of the second anode 110B, and the first cathode 140A is electrically connected to the second anode 110B.
  • the first cathode 140A is partially wired on the transparent substrate 100.
  • the fixability between the thin film metal and the transparent substrate 100 is poor, so that the possibility of disconnection increases.
  • the insulating layer 200 is provided at the end of the first organic light emitting layer 120A, but the first organic light emitting layer 120A and the insulating layer are provided. High technology is required to make the height of 200 uniform. Therefore, when manufactured by a normal technique, there is a possibility that the first cathode 140A is disconnected at the stepped portion (region indicated by R2 in the drawing) generated between the first organic light emitting layer 120A and the insulating layer 200. There is.
  • the first cathode 140 ⁇ / b> A may be disconnected even at a step portion generated between the insulating layer 200 and the second anode 110 ⁇ / b> B (region indicated by R ⁇ b> 3 in the drawing).
  • the end surface of the first organic light emitting layer 120A desirably has an inclined surface TP.
  • the inclined surface TP it is possible to provide the inclined surface TP by adjusting the mask conditions when forming the first organic light emitting layer 120A. Specifically, if the distance between the transparent substrate 100 and the mask is increased, the end surface of the first organic light emitting layer 120A is blurred, and the inclined surface TP is easily formed. As another method, the same processing can be performed by increasing the thickness of the mask. As another method, the inclined surface TP can also be formed by gradually increasing the opening size of the mask used for the first organic light emitting layer 120A.
  • the first organic light emitting layer 120A is shown as a single layer, but actually, for example, a hole injection layer (HIL) / hole transport layer (HTL) / photon is used. It is comprised by the generation
  • production layer EML: Emissive Layer
  • electron transport layer ETL: Electron Transfer Layer
  • EIL Electron Injection Layer
  • anodes / photon generation layers / electron transport layers / cathodes include anodes / photon generation layers / electron transport layers / cathodes, anodes / hole transport layers / photon generation layers / electron transport layers / cathodes, anodes / hole transport layers / photon generation layers / Hole blocking layer / electron transport layer / made of cathode, anode / hole transport layer / photon generation layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode, anode / anode buffer layer / Examples include a hole transport layer / photon generation layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode.
  • the inclined surface TP by performing film formation such as vapor deposition and sputtering while the target and the transparent substrate 100 are in a non-parallel positional relationship (oblique film formation). ).
  • the angle of the inclined surface TP is preferably more gradual from the viewpoint of the connection reliability of the wiring.
  • the length of the inclined surface TP is equal to the height of the first organic light emitting layer 120A. It is good that it is 5 times or more.
  • the light-emitting element 1A in the present embodiment a configuration in which the end of the organic light-emitting layer extends to a plane region where the cathode and the anode of adjacent light-emitting modules overlap each other is adopted.
  • the organic light emitting layer plays a role like a base layer of the upper electrode using a thin film metal, and the upper electrode is not directly formed on the transparent substrate 100 which is difficult to fix, and the light emission adjacent to the upper electrode is performed.
  • the connection between the lower electrode of the module can be stabilized.
  • the upper electrode using a thin film metal is formed on the same organic light-emitting layer, so that disconnection due to the disconnection of the thin film metal can be prevented.
  • FIG. 7 is an enlarged cross-sectional view showing a method for manufacturing the light emitting element 1A.
  • the first anode 110A and the second anode 110B are formed by, for example, a method using a mask during film formation or a method using a photolithography technique.
  • the first organic light emitting layer 120A and the second organic light emitting layer 120B are also formed by, for example, a method using a mask during film formation or a method using a photolithography technique.
  • the first cathode 140A and the second cathode 140B are also formed by, for example, a method using a mask during film formation or a method using a photolithography technique.
  • the following manufacturing method is also effective in forming the first cathode 140A and the second cathode 140B.
  • the separator 300 is formed in advance on the upper surface of the second anode 110B.
  • the first organic light emitting layer 120A is formed on the first anode 110A so as to extend to a region overlapping the upper surface of the second anode 110B.
  • the second organic light emitting layer 120B is formed.
  • an electrode layer is formed on the first organic light emitting layer 120A and the second organic light emitting layer 120B, and this electrode layer is separated by the separator 300, thereby forming the first organic light emitting layer 120A.
  • the first cathode 140A electrically connected to the second organic light emitting layer 120B is formed, and the second cathode 140B is formed on the second organic light emitting layer 120B.
  • the first cathode 140A and the second cathode 140B can be patterned without using a mask, although the metal layer serving as the cathode is formed on the entire surface.
  • the process using a mask requires mask alignment, and has a demerit that the patterning configuration is limited by errors of the apparatus.
  • the insulating layer 200 may be provided in advance between the separator 300 and the second anode 110B.
  • both the separator 300 and the insulating layer 200 are formed using a photo process (exposure, etching, baking) before forming the organic light emitting layer.
  • the organic light emitting layer is not affected by the formation process of the insulating layer 200 and the separator 300.
  • the separator 300 preferably has a reverse taper (the width becomes narrower toward the second anode 110B side). This can be created by using a negative photoresist and adjusting the exposure and baking conditions.
  • the electrode layer can be reliably separated even if the height of the separator is lowered. Further, by reducing the height of the separator, the sealing member formed on the outside is not damaged by the separator.
  • the present embodiment can also be applied to top emission type organic EL light sources and inorganic EL light sources.
  • the transparent organic EL can be easily made.
  • the first cathode 140A and the second cathode 140B that are formed after the organic light emitting layer is formed have strict setting conditions such as a thermal process from the viewpoint of protecting the organic light emitting layer, and it is difficult to provide a compound-based transparent electrode such as ITO. . Since the process conditions of the thin film metal film formation are gentler than that of ITO or the like, the configuration employing the thin film metal for the first cathode 140A and the second cathode 140B is a promising in view of the manufacturing process of the transparent OLED. It is one of the real solutions. In other words, the present embodiment takes into consideration a specific manufacturing process of the transparent OLED, and is particularly effective in increasing the area.
  • the light-emitting element is a light-emitting element including a substrate and a first light-emitting module and a second light-emitting module arranged in parallel on the substrate, wherein the first light-emitting module includes the above-described first light-emitting module.
  • the second light emitting module includes a second lower electrode layer provided on the transparent substrate, and a second organic layer provided on the first electrode layer.
  • the first upper electrode layer is provided so as to extend to a region overlapping with the first upper electrode layer , Together with the provided along the top surface of the first organic light emitting layer, and is electrically connected to the second lower electrode layer.
  • the transparent first upper electrode layer and the transparent second upper electrode layer are thin film metals.
  • the thin film metal is thin film silver. In another embodiment, the thin film metal is a thin film of silver having a thickness of 30 nm or less.
  • the end surface of the first organic light emitting layer located on the upper surface of the second lower electrode layer is an inclined surface.
  • the first lower electrode layer, the second lower electrode layer, and the substrate are light transmissive.
  • first lower electrode layer and the first upper electrode layer are different materials, and the second lower electrode layer and the second upper electrode layer are different materials.
  • first lower electrode layer and the first upper electrode layer have different resistivities
  • second lower electrode layer and the second upper electrode layer have different resistivities. is there.
  • the method of manufacturing a light-emitting element according to any one of the above, wherein the first and second lower electrode layers electrically isolated on the substrate are formed. And a step of forming a separator on the upper surface of the second lower electrode layer, and on one side of the separator, on the first lower electrode layer to a region overlapping the upper surface of the second lower electrode layer Forming the first organic light emitting layer provided to extend and forming the second organic light emitting layer on the other side of the separator, the first organic light emitting layer, and the second organic light emitting layer; An electrode layer is formed on the organic light emitting layer, and the electrode layer is separated by the separator, thereby forming on the first organic light emitting layer and electrically forming the second lower electrode layer.
  • the first connected Department electrode layer is formed, and a step of the second upper electrode layer is formed on the second organic light emitting layer.
  • 1 light emitting module 1A light emitting element, 100 transparent substrate, 110 anode, 110A first anode, 110B second anode, 120 organic light emitting layer, 120A first organic light emitting layer, 120B second organic light emitting layer, 120x anode auxiliary electrode, 120y Auxiliary cathode electrode, 130 extraction electrode, 140 cathode, 140A first cathode, 140B second cathode, 150 sealing member, 200 insulating layer, 300 separator, L100 first light emitting module, L200 second light emitting module.

Abstract

In a light emitting element (1A) equipped with first and second light emitting modules, which are disposed in parallel to each other on a substrate, a first organic light emitting layer (120A) of the first light emitting module is provided such that the first organic light emitting layer extends to a region overlapping the upper surface of a second lower electrode layer (110B) of the second light emitting module, and a first upper electrode layer (140A) of the first light emitting module is provided along the upper surface of the first organic light emitting layer (120A), and is electrically connected to the second lower electrode layer (110B). With such configuration, a light emitting element, which is provided with a structure enabling to improve reliability of an upper electrode layer formed of a thin film, is provided.

Description

発光素子およびその製造方法LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
 本発明は、複数の発光モジュールを有する発光素子の構造およびその製造方法に関する。 The present invention relates to a structure of a light emitting element having a plurality of light emitting modules and a method for manufacturing the same.
 近年、有機EL(Organic Electroluminescence:OLED)などに代表される「面発光光源」が新しい灯りの形として注目されている。有機ELは、平面基板上に面上の有機層を挟持した一対の平面電極を配置する構成を取ることが多い。平面電極の少なくとも一方を透明とすることで、有機発光層で発光した光は透明電極を経由して外部に放出される。これによって平面形状の発光体を実現できる。 In recent years, “surface-emitting light sources” typified by organic EL (Organic Electroluminescence: OLED) have attracted attention as a new light form. In many cases, the organic EL has a configuration in which a pair of planar electrodes each having an organic layer on a plane sandwiched on a planar substrate is disposed. By making at least one of the planar electrodes transparent, light emitted from the organic light emitting layer is emitted to the outside via the transparent electrode. Thereby, a planar light emitter can be realized.
 一対の平面電極の両方を光透過性とすることで、透明な面発光光源を実現できることが知られている。透明電極には、ITO、IZO、ZnOなどの化合物が用いられることもあるが、銀、金、銅、アルミニウムなどの金属を30nm以下の厚みで薄膜成膜して用いることもある。 It is known that a transparent surface-emitting light source can be realized by making both of the pair of planar electrodes light transmissive. For the transparent electrode, a compound such as ITO, IZO, or ZnO may be used, but a metal such as silver, gold, copper, or aluminum may be formed as a thin film with a thickness of 30 nm or less.
 有機ELを大面積化する際には、輝度ムラが課題として発生する。有機発光層へかかる電圧は、素子への給電点から離れるにしたがって、電極内での電圧降下の影響で低くなる。透明電極は電圧が高いため、より電圧降下が大きくなり、有機発光層へかかる電圧の変動割合が顕著となって、輝度ムラが生じやすくなる。 When increasing the area of the organic EL, uneven brightness occurs as a problem. The voltage applied to the organic light emitting layer becomes lower due to the voltage drop in the electrode as the distance from the power feeding point to the element increases. Since the voltage of the transparent electrode is high, the voltage drop is further increased, and the fluctuation ratio of the voltage applied to the organic light emitting layer becomes prominent, so that uneven brightness tends to occur.
 すなわち、この課題は透明電極の電気抵抗が一般的な電極に比べて高いことに起因している。この課題を解決するため、特開2005―116193号公報(特許文献1)では、基板上で発光素子を複数の発光モジュールに分割して、一つの発光素子内における透明電極の距離を短くする構成が提案されている。 That is, this problem is caused by the fact that the electrical resistance of the transparent electrode is higher than that of a general electrode. In order to solve this problem, Japanese Patent Laid-Open No. 2005-116193 (Patent Document 1) divides a light emitting element into a plurality of light emitting modules on a substrate, and shortens the distance of the transparent electrode in one light emitting element. Has been proposed.
特開2005―116193号公報JP-A-2005-116193
 特許文献1の発光モジュールの間の領域においては、有機発光層の端面部分に絶縁層が形成され、有機発光層と絶縁層との上に上部電極層が形成され、隣接する下部電極層の電気的な接続構造が採用されている。この構成においては、現実には有機発光層と絶縁層との高さを揃えるためには高度な技術が必要となり、有機発光層と絶縁層との間に段差が生じやすい。そして、有機発光層と絶縁層の上に薄膜の上部電極層を設ける場合、発生した段部において上部電極層に断線が生じるおそれがある。 In the region between the light emitting modules of Patent Document 1, an insulating layer is formed on the end surface portion of the organic light emitting layer, an upper electrode layer is formed on the organic light emitting layer and the insulating layer, and the electric power of the adjacent lower electrode layer is formed. Connection structure is adopted. In this configuration, in reality, a high level of technology is required to align the height of the organic light emitting layer and the insulating layer, and a step is likely to occur between the organic light emitting layer and the insulating layer. When a thin upper electrode layer is provided on the organic light emitting layer and the insulating layer, the upper electrode layer may be disconnected at the generated step.
 この発明は上記課題に鑑みてなされたものであり、上部電極層の信頼性の向上を図ることを可能とした構造を備える発光素子を提供することにある。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a light emitting device having a structure capable of improving the reliability of an upper electrode layer.
 ある実施の形態に従う発光素子においては、基板と、上記基板の上に並列に配置された第1発光モジュールおよび第2発光モジュールとを備える発光素子であって、上記第1発光モジュールは、上記基板の上に設けられた第1下部電極層と、上記第1下部電極層の上に設けられた第1有機発光層と、上記第1有機発光層の上に設けられた、透明な薄膜で形成された第1上部電極層と、を含み、上記第2発光モジュールは、上記透明基板の上に設けられた第2下部電極層と、上記第1電極層の上に設けられた第2有機発光層と、上記第2有機発光層の上に設けられた、透明な薄膜で形成された第2上部電極層と、を含み、上記第1有機発光層は、上記第2下部電極層の上面に重なる領域にまで延在するように設けられ、上記第1上部電極層は、上記第1有機発光層の上面に沿って設けられるとともに、上記第2下部電極層に電気的に接続されている。 In a light emitting device according to an embodiment, the light emitting device includes a substrate, and a first light emitting module and a second light emitting module arranged in parallel on the substrate, wherein the first light emitting module includes the substrate. A first lower electrode layer provided on the first lower electrode layer; a first organic light emitting layer provided on the first lower electrode layer; and a transparent thin film provided on the first organic light emitting layer. The second light emitting module includes a second lower electrode layer provided on the transparent substrate and a second organic light emitting provided on the first electrode layer. And a second upper electrode layer formed on the second organic light emitting layer and formed of a transparent thin film, wherein the first organic light emitting layer is formed on the upper surface of the second lower electrode layer. The first upper electrode layer is provided so as to extend to the overlapping region. Together provided along the upper surface of the first organic light emitting layer, and is electrically connected to the second lower electrode layer.
 上述に記載の発光素子の製造方法であって、上記基板の上に電気的に分離された上記第1下部電極層および上記第2下部電極層を形成する工程と、上記第2下部電極層の上面にセパレータを形成する工程と、上記セパレータを挟んだ一方側において、上記第1下部電極層の上に、上記第2下部電極層の上面に重なる領域にまで延在するように設けられた上記第1有機発光層を形成するとともに、上記セパレータを挟んだ他方側において、上記第2有機発光層を形成する工程と、上記第1有機発光層および上記第2有機発光層の上に電極層を成膜し、上記電極層が上記セパレータによって分離されることで、上記第1有機発光層の上に形成されるとともに、上記第2下部電極層に電気的に接続される上記第1上部電極層が形成され、上記第2有機発光層の上に上記第2上部電極層が形成される工程と、を備える。 A method of manufacturing a light emitting device as described above, wherein the step of forming the first lower electrode layer and the second lower electrode layer electrically separated on the substrate, and the step of forming the second lower electrode layer A step of forming a separator on the upper surface, and on one side of the separator, the first electrode layer is provided on the first lower electrode layer so as to extend to a region overlapping the upper surface of the second lower electrode layer. Forming the first organic light emitting layer and forming the second organic light emitting layer on the other side of the separator; and an electrode layer on the first organic light emitting layer and the second organic light emitting layer. The first upper electrode layer is formed on the first organic light emitting layer and electrically connected to the second lower electrode layer by forming a film and separating the electrode layer by the separator. And the second And a step of the second upper electrode layer is formed on the machine-emitting layer.
 この発明は、上部電極層の信頼性の向上を図ることを可能とした構造を備える発光素子を提供することにある。 An object of the present invention is to provide a light emitting device having a structure capable of improving the reliability of the upper electrode layer.
発光モジュールの基本構成を示す平面図である。It is a top view which shows the basic composition of a light emitting module. 図1中のII-II線矢視断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 実施の形態1の発光素子の断面図である。4 is a cross-sectional view of the light-emitting element of Embodiment 1. FIG. 実施の形態1の発光素子の部分拡大断面図である。FIG. 3 is a partial enlarged cross-sectional view of the light emitting element of the first embodiment. 課題を示す第1拡大断面図である。It is the 1st expanded sectional view showing a subject. 課題を示す第2拡大断面図である。It is the 2nd expanded sectional view showing a subject. 実施の形態2における発光素子の製造方法を示す拡大断面図である。FIG. 11 is an enlarged cross-sectional view illustrating a method for manufacturing the light emitting element in the second embodiment.
 本発明に基づいた各実施の形態における発光素子について、以下、図を参照しながら説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。各実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。図においては、実際の寸法比率では記載しておらず、構造の理解を容易にするために、比率を異ならせて記載している。 Hereinafter, the light-emitting elements in the respective embodiments based on the present invention will be described with reference to the drawings. In the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. It is planned from the beginning to use a combination of the configurations in each embodiment as appropriate. In the figure, the actual dimensional ratios are not described, and the ratios are illustrated in different ratios for easy understanding of the structure.
 (基本構成:発光モジュール1)
 図1から図2を参照して、発光モジュール1の基本構成について説明する。図1は、発光モジュール1の基本構成を示す平面図、図2は、図1中のII-II線矢視断面図である。
(Basic configuration: Light emitting module 1)
The basic configuration of the light emitting module 1 will be described with reference to FIGS. FIG. 1 is a plan view showing a basic configuration of the light emitting module 1, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
 有機ELを用いた発光モジュール1の構造について説明する。透明基板100の上に下部電極として陽極110、有機発光層120、上部電極として陰極140が、この順で積層されている。陽極110、有機発光層120、および、陰極140は封止部材150で封止されている。封止部材150も透明とすることで、全体が透明な発光体となる。封止部材を不透明とした場合は、透明発光体とはならないが、奥行き感のある発光体となり、別の使用用途で使われる可能性があり得る。 The structure of the light emitting module 1 using organic EL will be described. On the transparent substrate 100, an anode 110 as a lower electrode, an organic light emitting layer 120, and a cathode 140 as an upper electrode are laminated in this order. The anode 110, the organic light emitting layer 120, and the cathode 140 are sealed with a sealing member 150. By making the sealing member 150 transparent, the whole becomes a transparent light emitter. When the sealing member is made opaque, it does not become a transparent light emitter, but it becomes a light emitter with a sense of depth and may be used for another usage.
 この発光モジュール1では、透明電極(陽極)110を外方に露出させることで、陽極の取出電極110を構成している。陽極110の上には、外部に引き出される外部電線L1とのコンタクトに用いられる陽極補助電極120xが設けられている。陰極140には、外部に引き出される外部電線L2とのコンタクトに用いられる陰極補助電極120yが設けられている。陽極110と陰極140とは短絡しないように必要に応じて絶縁層(図示省略)が設けられている。 In the light emitting module 1, the transparent electrode (anode) 110 is exposed to the outside to constitute the anode extraction electrode 110. On the anode 110, an anode auxiliary electrode 120x used for contact with the external electric wire L1 drawn out is provided. The cathode 140 is provided with a cathode auxiliary electrode 120y used for contact with the external electric wire L2 drawn to the outside. An insulating layer (not shown) is provided as necessary so that the anode 110 and the cathode 140 are not short-circuited.
 陽極110、有機発光層120、陰極140、引出電極130、および、封止部材150により電界発光素子が構成される。有機発光層120に陽極110および陰極140を用いて電圧が印加されることで、有機発光層120は発光する。 The electroluminescent element is constituted by the anode 110, the organic light emitting layer 120, the cathode 140, the extraction electrode 130, and the sealing member 150. The organic light emitting layer 120 emits light when a voltage is applied to the organic light emitting layer 120 using the anode 110 and the cathode 140.
 透明基板100には、可撓性のある樹脂基材(PET樹脂(ポリエチレンテレフタレート)/PEN樹脂(ポリエチレンナフタレート)/ポリイミド等)、ガラス、シリコン等を用いてもよい。 For the transparent substrate 100, a flexible resin base material (PET resin (polyethylene terephthalate) / PEN resin (polyethylene naphthalate) / polyimide, etc.), glass, silicon, or the like may be used.
 発光モジュール1を透明の発光体とする場合には、陽極110および陰極140の面抵抗率が完全に同一であれば、原理的には輝度ムラは発生しない。しかし、陽極110および陰極140の両方とも透明電極とした場合でも、材料、厚みなどの違いにより、同一の抵抗となることはほぼ無く、実際は必ず輝度ムラが生じる。 In the case where the light emitting module 1 is a transparent light emitter, if the surface resistivity of the anode 110 and the cathode 140 are completely the same, in principle, luminance unevenness does not occur. However, even when both the anode 110 and the cathode 140 are transparent electrodes, the same resistance is hardly caused by differences in materials, thicknesses, and the like, and in fact, luminance unevenness always occurs.
 図2に示したように陽極補助電極120x、および、陰極補助電極120yが設けられた場合、縦方向(図1中の矢印D方向)への輝度ムラは抑えられるが、横方向(図1中の矢印W方向)への輝度ムラは依然として残る。陽極110の抵抗が陰極140の抵抗よりも高い場合、図2の矢印B1、B2の長さで輝度を表しているように、陽極110の給電点から遠ざかるにしたがって輝度が低くなる。反対に、陰極140の抵抗が陽極110よりも高い場合は、陰極140の給電点から遠ざかるにしたがって輝度が低くなる。 When the anode auxiliary electrode 120x and the cathode auxiliary electrode 120y are provided as shown in FIG. 2, luminance unevenness in the vertical direction (the direction of arrow D in FIG. 1) can be suppressed, but the horizontal direction (in FIG. 1) Brightness unevenness in the direction of arrow W) still remains. When the resistance of the anode 110 is higher than the resistance of the cathode 140, the brightness decreases as the distance from the feeding point of the anode 110 increases, as indicated by the length of arrows B1 and B2 in FIG. On the other hand, when the resistance of the cathode 140 is higher than that of the anode 110, the luminance decreases as the distance from the feeding point of the cathode 140 increases.
 (実施の形態1:発光素子1A)
 図3および図4を参照して、本実施の形態における発光素子1Aの構成について説明する。図3は、発光素子1Aの断面図、図4は、発光素子1Aの部分拡大断面図である。図5および図6は、課題を示す第1および第2拡大断面図である。なお、図1に示す構成を同一部分には同一の参照番号を付して、重複する説明は繰り返さない場合がある。
Embodiment 1 Light-Emitting Element 1A
With reference to FIG. 3 and FIG. 4, the structure of the light emitting element 1A in the present embodiment will be described. 3 is a cross-sectional view of the light-emitting element 1A, and FIG. 4 is a partial enlarged cross-sectional view of the light-emitting element 1A. 5 and 6 are first and second enlarged cross-sectional views showing the problem. In addition, the same reference number is attached | subjected to the same part as the structure shown in FIG. 1, and the overlapping description may not be repeated.
 有機ELを用いて発光素子を大面積化した場合には、図1に示したような輝度ムラが顕著な問題となってくる。そこで、本実施の形態に示すように、図3のように、発光モジュールを分割することによって、発光素子を形成することで、輝度ムラを低減することが可能となる。 When the area of the light emitting element is increased using organic EL, the luminance unevenness as shown in FIG. 1 becomes a significant problem. Thus, as shown in this embodiment mode, luminance unevenness can be reduced by forming a light emitting element by dividing the light emitting module as shown in FIG.
 本実施の形態の発光素子1Aは、透明基板100と、透明基板100上の並列に配置された第1発光モジュールL100および第2発光モジュールL200とを備えている。説明の便宜上、2つの発光モジュールを並べた場合について説明するが、複数の発光モジュールをマトリクス状に複数並べることが可能である。 The light emitting element 1A of the present embodiment includes a transparent substrate 100, and a first light emitting module L100 and a second light emitting module L200 arranged in parallel on the transparent substrate 100. For convenience of explanation, the case where two light emitting modules are arranged will be described, but a plurality of light emitting modules can be arranged in a matrix.
 第1発光モジュールL100は、透明基板100の上に設けられた第1下部電極層を構成する第1陽極110Aと、この第1陽極110Aの上に設けられた第1有機発光層120Aと、この第1有機発光層120Aの上に設けられた透明の第1上部電極層を構成する第1陰極140Aとを含む。 The first light emitting module L100 includes a first anode 110A constituting a first lower electrode layer provided on the transparent substrate 100, a first organic light emitting layer 120A provided on the first anode 110A, And a first cathode 140A constituting a transparent first upper electrode layer provided on the first organic light emitting layer 120A.
 第2発光モジュールL200は、透明基板100の上に設けられた第2下部電極層を構成する第2陽極110Bと、この第2陽極110Bの上に設けられた第2有機発光層120Bと、第2有機発光層120Bの上に設けられた透明の第2上部電極層を構成する第2陰極140Bとを含む。 The second light emitting module L200 includes a second anode 110B constituting a second lower electrode layer provided on the transparent substrate 100, a second organic light emitting layer 120B provided on the second anode 110B, 2 and a second cathode 140B constituting a transparent second upper electrode layer provided on the organic light emitting layer 120B.
 さらに、第1有機発光層120Aは、第2陽極110Bの上面に重なる領域にまで延在するように設けられ、第1陰極140Aは、第1有機発光層120Aの上面沿って設けられるとともに、第2陽極110Bに電気的に接続されている。 Further, the first organic light emitting layer 120A is provided so as to extend to a region overlapping the upper surface of the second anode 110B, and the first cathode 140A is provided along the upper surface of the first organic light emitting layer 120A. The two anodes 110B are electrically connected.
 これにより、第1発光モジュールL100と第2発光モジュールL200とは、外部電線L1→第1陽極110A→第1有機発光層120A→第1陰極140A→第2陽極110B→第2有機発光層120B→第2陰極140B→外部電線L2をルートとする直列接続が形成される。外部電線L1および外部電線L2に電圧が印加されることで、第1有機発光層120Aおよび第2有機発光層120Bは発光する。 Accordingly, the first light emitting module L100 and the second light emitting module L200 are configured such that the external electric wire L1 → the first anode 110A → the first organic light emitting layer 120A → the first cathode 140A → the second anode 110B → the second organic light emitting layer 120B → A series connection having the second cathode 140B → the external electric wire L2 as a route is formed. When a voltage is applied to the external electric wire L1 and the external electric wire L2, the first organic light emitting layer 120A and the second organic light emitting layer 120B emit light.
 このように、同じサイズであっても、図1の場合に比べて、発光モジュールを分割することによって、輝度ムラの低減を可能としている。 Thus, even with the same size, luminance unevenness can be reduced by dividing the light emitting module as compared with the case of FIG.
 さらに、本実施の形態では、好ましい例として、透明の第1陰極140Aおよび透明の第2陰極140Bに薄膜金属を用いている。この場合には、特に、第1発光モジュールL100と第2発光モジュールL200との電気的接続の信頼性を高く保つことが重要となる。 Furthermore, in the present embodiment, as a preferable example, a thin film metal is used for the transparent first cathode 140A and the transparent second cathode 140B. In this case, it is particularly important to maintain high reliability of the electrical connection between the first light emitting module L100 and the second light emitting module L200.
 ここで第1陰極140Aおよび第2陰極140Bに用いる薄膜金属の厚みは、透過率を保つためには、30nm以下、望ましくは20nm以下、さらに10nm以下が望ましい。一方、より薄ければ薄いほど、接続信頼性が下がり、段切れの懸念が顕著となる。 Here, the thickness of the thin film metal used for the first cathode 140A and the second cathode 140B is 30 nm or less, desirably 20 nm or less, and further desirably 10 nm or less in order to maintain the transmittance. On the other hand, the thinner it is, the lower the connection reliability and the greater the concern about disconnection.
 特に、一般的な有機発光層の膜厚制御精度は20nm程度が限界であるので、20nm以下の薄膜金属を陰極として用いるためには、本実施の形態の構成は重要となる。ただし、20nm以上30nm以下の薄膜金属を用いる場合も、本実施の形態の構成は信頼性を向上させる点で有効である。陰極に20nm以下の薄膜金属を使用した場合、薄膜金属の膜厚ムラが顕著となることが考えられるため、実用上は5nm以上とするとよい。 Particularly, since the thickness control accuracy of a general organic light emitting layer is limited to about 20 nm, the configuration of the present embodiment is important in order to use a thin film metal of 20 nm or less as a cathode. However, even when a thin film metal of 20 nm or more and 30 nm or less is used, the configuration of the present embodiment is effective in improving the reliability. When a thin film metal of 20 nm or less is used for the cathode, it is considered that the film thickness unevenness of the thin film metal becomes conspicuous.
 薄膜金属としては、たとえば、アルミニウム(Al)、銀(Ag)、カルシウム(Ca)が望ましい。他の例では、酸化され難い利点も持つ金(Au)が考えられる。別の材料として、銅(Cu)があり、同材料は導電性がよいという特徴を持つ。 As the thin film metal, for example, aluminum (Al), silver (Ag), and calcium (Ca) are desirable. In another example, gold (Au) which has an advantage that is not easily oxidized can be considered. Another material is copper (Cu), which is characterized by good conductivity.
 その他には熱的性質や化学的性質が良く高温でも酸化されにくく基板材料との化学反応も起さない特徴がある材料として、白金・ロジウム・パラジウム・ルテニウム・イリジウム・オスミニウムなどが挙げられる。また複数の金属材料を用いた合金を用いてもよい。特にMgAgやLiAlは薄膜透明金属電極としてもよく用いられる。 Other materials that have good thermal and chemical properties and are not easily oxidized at high temperatures and do not cause a chemical reaction with the substrate material include platinum, rhodium, palladium, ruthenium, iridium, and osmium. An alloy using a plurality of metal materials may be used. In particular, MgAg and LiAl are often used as thin film transparent metal electrodes.
 また、第1陰極140Aおよび第2陰極140Bに薄膜金属を用いない場合であっても、本実施の形態の構成は、第1陰極140Aおよび第2陰極140Bに断線を発生させない構成であることから、配線の信頼性を向上させる点においては有効である。 Further, even when a thin film metal is not used for the first cathode 140A and the second cathode 140B, the configuration of the present embodiment is a configuration that does not cause disconnection in the first cathode 140A and the second cathode 140B. This is effective in improving the reliability of wiring.
 また、第1陽極110Aと第1陰極140Aとは異なる材料であり、第1陽極110Aと第1陰極140Aとは異なる抵抗率であり、第2陽極110Bと第2陰極140Bとは異なる材料であり、第2陽極110Bと第2陰極140Bとは異なる抵抗率である。 Also, the first anode 110A and the first cathode 140A are different materials, the first anode 110A and the first cathode 140A have different resistivity, and the second anode 110B and the second cathode 140B are different materials. The second anode 110B and the second cathode 140B have different resistivity.
 たとえば、第1陽極110Aおよび第2陽極110Bには、ITOを用い、第1陰極140Aおよび第2陰極140Bには、薄膜金属としてAg薄膜を用いることが挙げられる。この場合、ITOの抵抗率は、1×10-6Ωm~2×10-6Ωm程度であり、Ag薄膜の抵抗率は、1×10-8Ωm~3×10-8Ωm程度である。 For example, ITO may be used for the first anode 110A and the second anode 110B, and an Ag thin film may be used as the thin film metal for the first cathode 140A and the second cathode 140B. In this case, the resistivity of ITO is about 1 × 10 −6 Ωm to 2 × 10 −6 Ωm, and the resistivity of the Ag thin film is about 1 × 10 −8 Ωm to 3 × 10 −8 Ωm.
 図4を参照して、本実施の形態では、上記したように、第1有機発光層120Aは、第2陽極110Bの上面に重なる領域にまで延在するように設けられ、第1陰極140Aは、第1有機発光層120Aの上面に沿って設けられるとともに、第2陽極110Bに電気的に接続されている。このように構成することで、薄膜金属を用いた第1陰極140Aは断線することなく、第2陽極110Bに電気的に安定的に接続させることが可能となる。 Referring to FIG. 4, in the present embodiment, as described above, first organic light emitting layer 120A is provided so as to extend to a region overlapping the upper surface of second anode 110B, and first cathode 140A is And provided along the upper surface of the first organic light emitting layer 120A and electrically connected to the second anode 110B. With this configuration, the first cathode 140A using a thin film metal can be electrically and stably connected to the second anode 110B without disconnection.
 たとえば、図5に示すように、第1有機発光層120Aを第2陽極110Bの上面に重なる領域にまで延在させないで、第1陰極140Aを第2陽極110Bに電気的に接続させようとした場合には、第1陽極110Aと第2陽極110Bとの間に形成される段部において、第1陰極140Aは、透明基板100上に一部配線されることになるが、その箇所(図中のR1で示す領域)においては、薄膜金属と透明基板100との定着性が悪いため、断線する可能性が高くなる。 For example, as shown in FIG. 5, the first organic light emitting layer 120A is not extended to a region overlapping the upper surface of the second anode 110B, and the first cathode 140A is electrically connected to the second anode 110B. In this case, in the step formed between the first anode 110A and the second anode 110B, the first cathode 140A is partially wired on the transparent substrate 100. In the region indicated by R1), the fixability between the thin film metal and the transparent substrate 100 is poor, so that the possibility of disconnection increases.
 図6を参照して、特許文献1に開示された構成を採用した場合には、第1有機発光層120Aの端部に絶縁層200を設けているが、第1有機発光層120Aと絶縁層200との高さを揃えるには高い技術を要する。したがって、通常の技術で製造した場合には、第1有機発光層120Aと絶縁層200との間に生じた段差箇所において(図中のR2に示す領域)、第1陰極140Aが断線する可能性がある。同様に、絶縁層200と第2陽極110Bとの間に生じた段差箇所においても(図中のR3に示す領域)、第1陰極140Aが断線する可能性がある。なお、図4を再び参照して、第1有機発光層120Aの端面は、望ましくは、傾斜面TPを有しているとよい。これによって、第1有機発光層120Aの端面での第1陰極140Aの段切れを防止できる。 Referring to FIG. 6, when the configuration disclosed in Patent Document 1 is adopted, the insulating layer 200 is provided at the end of the first organic light emitting layer 120A, but the first organic light emitting layer 120A and the insulating layer are provided. High technology is required to make the height of 200 uniform. Therefore, when manufactured by a normal technique, there is a possibility that the first cathode 140A is disconnected at the stepped portion (region indicated by R2 in the drawing) generated between the first organic light emitting layer 120A and the insulating layer 200. There is. Similarly, the first cathode 140 </ b> A may be disconnected even at a step portion generated between the insulating layer 200 and the second anode 110 </ b> B (region indicated by R <b> 3 in the drawing). Referring to FIG. 4 again, the end surface of the first organic light emitting layer 120A desirably has an inclined surface TP. As a result, disconnection of the first cathode 140A at the end face of the first organic light emitting layer 120A can be prevented.
 傾斜面TPの形成については、第1有機発光層120Aの成膜時のマスク条件を整えることによって、傾斜面TPを設けることが可能である。具体的には、透明基板100とマスクとの距離を離せば、第1有機発光層120Aの端面はぼかされ、傾斜面TPを形成しやすくなる。他の方法としては、マスクの厚みを厚くすることによっても同様の加工が可能である。さらに他の方法としては、第1有機発光層120Aに用いるマスクの開口サイズを段階的に大きくすることでも、傾斜面TPを形成することができる。 Regarding the formation of the inclined surface TP, it is possible to provide the inclined surface TP by adjusting the mask conditions when forming the first organic light emitting layer 120A. Specifically, if the distance between the transparent substrate 100 and the mask is increased, the end surface of the first organic light emitting layer 120A is blurred, and the inclined surface TP is easily formed. As another method, the same processing can be performed by increasing the thickness of the mask. As another method, the inclined surface TP can also be formed by gradually increasing the opening size of the mask used for the first organic light emitting layer 120A.
 図示においては、第1有機発光層120Aは、一層で示しているが、実際には、たとえば、正孔注入層(HIL:Hole Injection Layer)/正孔輸送層(HTL:Hole Transfer Layer)/光子発生層(EML:EMissive Layer)/電子輸送層(ETL:Electron Transfer Layer)/電子注入層(EIL:Electron Injection Layer)により構成されている。 In the drawing, the first organic light emitting layer 120A is shown as a single layer, but actually, for example, a hole injection layer (HIL) / hole transport layer (HTL) / photon is used. It is comprised by the generation | occurrence | production layer (EML: Emissive Layer) / electron transport layer (ETL: Electron Transfer Layer) / electron injection layer (EIL: Electron Injection Layer).
 他には、たとえば陽極/光子発生層/電子輸送層/陰極からなるもの、陽極/正孔輸送層/光子発生層/電子輸送層/陰極からなるもの、陽極/正孔輸送層/光子発生層/正孔阻止層/電子輸送層/陰極からなるもの、陽極/正孔輸送層/光子発生層/正孔阻止層/電子輸送層/陰極バッファー層/陰極からなるもの、陽極/陽極バッファー層/正孔輸送層/光子発生層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極からなるものが挙げられる。 Other examples include anodes / photon generation layers / electron transport layers / cathodes, anodes / hole transport layers / photon generation layers / electron transport layers / cathodes, anodes / hole transport layers / photon generation layers / Hole blocking layer / electron transport layer / made of cathode, anode / hole transport layer / photon generation layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode, anode / anode buffer layer / Examples include a hole transport layer / photon generation layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode.
 したがって、マスクの大きさを各層によって変えることで、より緩やかな傾斜面TPを形成することも可能となる。 Therefore, it is possible to form a more gentle inclined surface TP by changing the size of the mask for each layer.
 また、他の製法として、ターゲットと透明基板100とが非平行の位置関係にある状態で、蒸着、スパッタなどの成膜を行うことで、傾斜面TPを設けることも可能である(斜め成膜)。傾斜面TPの角度は、配線の接続信頼性の観点で言えば、より緩やかであることが望ましく、具体的には、傾斜面TPの長さが第1有機発光層120Aの高さの1.5倍以上であるとよい。 As another manufacturing method, it is also possible to provide the inclined surface TP by performing film formation such as vapor deposition and sputtering while the target and the transparent substrate 100 are in a non-parallel positional relationship (oblique film formation). ). The angle of the inclined surface TP is preferably more gradual from the viewpoint of the connection reliability of the wiring. Specifically, the length of the inclined surface TP is equal to the height of the first organic light emitting layer 120A. It is good that it is 5 times or more.
 このように本実施の形態における発光素子1Aによれば、隣り合う発光モジュールの陰極と陽極が重なる平面領域内まで、有機発光層の端部が延出する構成を採用している。この構成によって、有機発光層が薄膜金属を用いた上部電極の下地層の様な役割を担い、上部電極が定着しづらい透明基板100上に直接製膜されることなく、上部電極と隣接する発光モジュールの下部電極との間の接続を安定させることができる。また、同一の有機発光層上に薄膜金属を用いた上部電極が成膜されることで、薄膜金属の段切れによる断線も防止することができる。 Thus, according to the light-emitting element 1A in the present embodiment, a configuration in which the end of the organic light-emitting layer extends to a plane region where the cathode and the anode of adjacent light-emitting modules overlap each other is adopted. With this configuration, the organic light emitting layer plays a role like a base layer of the upper electrode using a thin film metal, and the upper electrode is not directly formed on the transparent substrate 100 which is difficult to fix, and the light emission adjacent to the upper electrode is performed. The connection between the lower electrode of the module can be stabilized. Moreover, the upper electrode using a thin film metal is formed on the same organic light-emitting layer, so that disconnection due to the disconnection of the thin film metal can be prevented.
 (実施の形態2:発光素子1Aの製造方法)
 図7を参照して、発光素子1Aの製造方法の特徴的部分について説明する。図7は、発光素子1Aの製造方法を示す拡大断面図である。
(Embodiment 2: Manufacturing method of light emitting element 1A)
With reference to FIG. 7, the characteristic part of the manufacturing method of the light emitting element 1A will be described. FIG. 7 is an enlarged cross-sectional view showing a method for manufacturing the light emitting element 1A.
 発光素子1Aの第1発光モジュールL100および第2発光モジュールL200において、第1陽極110Aおよび第2陽極110Bは、たとえば、成膜時にマスクを用いる方法、フォトリソグラフィ技術を用いた方法により形成される。第1有機発光層120Aおよび第2有機発光層120Bについても、たとえば、成膜時にマスクを用いる方法、フォトリソグラフィ技術を用いた方法により形成される。同様に、第1陰極140Aおよび第2陰極140Bについても、たとえば、成膜時にマスクを用いる方法、フォトリソグラフィ技術を用いた方法により形成される。 In the first light emitting module L100 and the second light emitting module L200 of the light emitting element 1A, the first anode 110A and the second anode 110B are formed by, for example, a method using a mask during film formation or a method using a photolithography technique. The first organic light emitting layer 120A and the second organic light emitting layer 120B are also formed by, for example, a method using a mask during film formation or a method using a photolithography technique. Similarly, the first cathode 140A and the second cathode 140B are also formed by, for example, a method using a mask during film formation or a method using a photolithography technique.
 一方、第1陰極140Aおよび第2陰極140Bの形成においては、以下に示す製法も有効である。図7に示すように、セパレータ300を、第2陽極110Bの上面に予め形成しておく。その後、セパレータ300を挟んだ一方側において、第1陽極110Aの上に、第2陽極110Bの上面に重なる領域にまで延在するように設けられた第1有機発光層120Aを形成するとともに、セパレータ300を挟んだ他方側において、第2有機発光層120Bを形成する。 On the other hand, the following manufacturing method is also effective in forming the first cathode 140A and the second cathode 140B. As shown in FIG. 7, the separator 300 is formed in advance on the upper surface of the second anode 110B. Thereafter, on one side of the separator 300, the first organic light emitting layer 120A is formed on the first anode 110A so as to extend to a region overlapping the upper surface of the second anode 110B. On the other side of 300, the second organic light emitting layer 120B is formed.
 その後、第1有機発光層120Aおよび第2有機発光層120Bの上に電極層を成膜し、この電極層がセパレータ300によって分離されることで、第1有機発光層120Aの上に形成されるとともに、第2有機発光層120Bに電気的に接続される第1陰極140Aが形成され、第2有機発光層120Bの上に第2陰極140Bが形成される。 Thereafter, an electrode layer is formed on the first organic light emitting layer 120A and the second organic light emitting layer 120B, and this electrode layer is separated by the separator 300, thereby forming the first organic light emitting layer 120A. At the same time, the first cathode 140A electrically connected to the second organic light emitting layer 120B is formed, and the second cathode 140B is formed on the second organic light emitting layer 120B.
 この製法によれば、マスクを使用することなく、陰極となる金属層を一面成膜するにも拘らず、第1陰極140Aおよび第2陰極140Bのパターニングが行なうことができる。マスクを使うプロセスは、マスクアライメントが必要となり、パターニング構成が装置の持つ誤差の制約を受けてしまうデメリットがある。 According to this manufacturing method, the first cathode 140A and the second cathode 140B can be patterned without using a mask, although the metal layer serving as the cathode is formed on the entire surface. The process using a mask requires mask alignment, and has a demerit that the patterning configuration is limited by errors of the apparatus.
 図7に示す製法を用いた場合には、このデメリットを無くすことができ、第1有機発光層120Aと第2有機発光層120Bの間の狭窄化、つまり、非発光部の狭窄化を図ることができる。なお、第1陰極140Aと第2陰極140Bとの絶縁性を高く担保するために、セパレータ300と第2陽極110Bとの間に予め絶縁層200を設けておくとよい。 When the manufacturing method shown in FIG. 7 is used, this demerit can be eliminated, and narrowing between the first organic light emitting layer 120A and the second organic light emitting layer 120B, that is, narrowing of the non-light emitting portion is achieved. Can do. In order to ensure high insulation between the first cathode 140A and the second cathode 140B, the insulating layer 200 may be provided in advance between the separator 300 and the second anode 110B.
 作成プロセスの一例としては、セパレータ300および絶縁層200ともに、有機発光層の成膜前にフォトプロセス(露光、エッチング、ベーク)を用いて形成しておく。これにより、有機発光層は、絶縁層200およびセパレータ300の形成プロセスに影響を受けることはない。セパレータ300は、図7に示すように、逆テーパー(第2陽極110B側に向うにしたがって幅が細くなる)のついたものがよい。これはネガ型のフォトレジストを使い、露光条件、ベーク条件を調整することで作成が可能である。 As an example of the creation process, both the separator 300 and the insulating layer 200 are formed using a photo process (exposure, etching, baking) before forming the organic light emitting layer. Thereby, the organic light emitting layer is not affected by the formation process of the insulating layer 200 and the separator 300. As shown in FIG. 7, the separator 300 preferably has a reverse taper (the width becomes narrower toward the second anode 110B side). This can be created by using a negative photoresist and adjusting the exposure and baking conditions.
 逆テーパーにすることにより、セパレータの高さを低くしても確実に電極層を分離することができる。またセパレータの高さを低くすることにより、外側に形成される封止部材がセパレータによって損傷することがなくなる。 By using an inverse taper, the electrode layer can be reliably separated even if the height of the separator is lowered. Further, by reducing the height of the separator, the sealing member formed on the outside is not damaged by the separator.
 上述の実施の形態においては、透明有機EL光源を用いた場合について説明している。本実施の形態は、トップエミッションタイプの有機EL光源、無機EL光源にも適応可能である。しかしながら、基板から遠い側の電極(第1陰極140A、第2陰極140B)に薄膜金属を用いる本構成においては、透明有機ELを簡易に作ることができる構成である。 In the above-described embodiment, a case where a transparent organic EL light source is used has been described. The present embodiment can also be applied to top emission type organic EL light sources and inorganic EL light sources. However, in this configuration in which a thin film metal is used for the electrodes (the first cathode 140A and the second cathode 140B) on the side far from the substrate, the transparent organic EL can be easily made.
 有機発光層を設けた後に製膜する第1陰極140Aおよび第2陰極140Bとしては、有機発光層の保護の観点から熱プロセスなどの設定条件が厳しく、ITO等の化合物系の透明電極を設けにくい。薄膜金属成膜のプロセス条件は、ITO等に比べて、優しい条件であるため、第1陰極140Aおよび第2陰極140Bに薄膜金属を採用する構成は、透明OLEDの製造プロセスを鑑みた際の有力な現実解の一つである。すなわち、本実施の形態は透明OLEDの具体的な製造プロセスを考慮したものであり、その大面積化に際して特に有効となる。 The first cathode 140A and the second cathode 140B that are formed after the organic light emitting layer is formed have strict setting conditions such as a thermal process from the viewpoint of protecting the organic light emitting layer, and it is difficult to provide a compound-based transparent electrode such as ITO. . Since the process conditions of the thin film metal film formation are gentler than that of ITO or the like, the configuration employing the thin film metal for the first cathode 140A and the second cathode 140B is a promising in view of the manufacturing process of the transparent OLED. It is one of the real solutions. In other words, the present embodiment takes into consideration a specific manufacturing process of the transparent OLED, and is particularly effective in increasing the area.
 以上本実施の形態に従う発光素子においては、基板と、上記基板の上に並列に配置された第1発光モジュールおよび第2発光モジュールとを備える発光素子であって、上記第1発光モジュールは、上記基板の上に設けられた第1下部電極層と、上記第1下部電極層の上に設けられた第1有機発光層と、上記第1有機発光層の上に設けられた、透明な薄膜で形成された第1上部電極層と、を含み、上記第2発光モジュールは、上記透明基板の上に設けられた第2下部電極層と、上記第1電極層の上に設けられた第2有機発光層と、上記第2有機発光層の上に設けられた、透明な薄膜で形成された第2上部電極層と、を含み、上記第1有機発光層は、上記第2下部電極層の上面に重なる領域にまで延在するように設けられ、上記第1上部電極層は、上記第1有機発光層の上面に沿って設けられるとともに、上記第2下部電極層に電気的に接続されている。 As described above, the light-emitting element according to the present embodiment is a light-emitting element including a substrate and a first light-emitting module and a second light-emitting module arranged in parallel on the substrate, wherein the first light-emitting module includes the above-described first light-emitting module. A first lower electrode layer provided on the substrate, a first organic light emitting layer provided on the first lower electrode layer, and a transparent thin film provided on the first organic light emitting layer. The second light emitting module includes a second lower electrode layer provided on the transparent substrate, and a second organic layer provided on the first electrode layer. A light emitting layer and a second upper electrode layer formed on the second organic light emitting layer and formed of a transparent thin film, wherein the first organic light emitting layer is an upper surface of the second lower electrode layer. The first upper electrode layer is provided so as to extend to a region overlapping with the first upper electrode layer , Together with the provided along the top surface of the first organic light emitting layer, and is electrically connected to the second lower electrode layer.
 他の形態においては、透明の上記第1上部電極層および透明の第2上部電極層は、薄膜金属である。 In another embodiment, the transparent first upper electrode layer and the transparent second upper electrode layer are thin film metals.
 他の形態においては、上記薄膜金属は、薄膜の銀である。
 他の形態においては、上記薄膜金属は、膜厚さが30nm以下の薄膜の銀である。
In another form, the thin film metal is thin film silver.
In another embodiment, the thin film metal is a thin film of silver having a thickness of 30 nm or less.
 他の形態においては、上記第2下部電極層の上面に位置する上記第1有機発光層の端面は、傾斜面である。 In another embodiment, the end surface of the first organic light emitting layer located on the upper surface of the second lower electrode layer is an inclined surface.
 他の形態においては、上記第1下部電極層、上記第2下部電極層、および、上記基板は光透過性を有する。 In another embodiment, the first lower electrode layer, the second lower electrode layer, and the substrate are light transmissive.
 他の形態においては、上記第1下部電極層と、上記第1上部電極層と、は異なる材料であり、上記第2下部電極層と、上記第2上部電極層と、は異なる材料である。 In another embodiment, the first lower electrode layer and the first upper electrode layer are different materials, and the second lower electrode layer and the second upper electrode layer are different materials.
 他の形態においては、上記第1下部電極層と、上記第1上部電極層と、は異なる抵抗率であり、上記第2下部電極層と、上記第2上部電極層と、は異なる抵抗率である。 In another embodiment, the first lower electrode layer and the first upper electrode layer have different resistivities, and the second lower electrode layer and the second upper electrode layer have different resistivities. is there.
 他の形態においては、上述のいずれかに記載の発光素子の製造方法であって、上記基板の上に電気的に分離された上記第1下部電極層および上記第2下部電極層を形成する工程と、上記第2下部電極層の上面にセパレータを形成する工程と、上記セパレータを挟んだ一方側において、上記第1下部電極層の上に、上記第2下部電極層の上面に重なる領域にまで延在するように設けられた上記第1有機発光層を形成するとともに、上記セパレータを挟んだ他方側において、上記第2有機発光層を形成する工程と、上記第1有機発光層および上記第2有機発光層の上に電極層を成膜し、上記電極層が上記セパレータによって分離されることで、上記第1有機発光層の上に形成されるとともに、上記第2下部電極層に電気的に接続される上記第1上部電極層が形成され、上記第2有機発光層の上に上記第2上部電極層が形成される工程と、を備える。 In another embodiment, the method of manufacturing a light-emitting element according to any one of the above, wherein the first and second lower electrode layers electrically isolated on the substrate are formed. And a step of forming a separator on the upper surface of the second lower electrode layer, and on one side of the separator, on the first lower electrode layer to a region overlapping the upper surface of the second lower electrode layer Forming the first organic light emitting layer provided to extend and forming the second organic light emitting layer on the other side of the separator, the first organic light emitting layer, and the second organic light emitting layer; An electrode layer is formed on the organic light emitting layer, and the electrode layer is separated by the separator, thereby forming on the first organic light emitting layer and electrically forming the second lower electrode layer. The first connected Department electrode layer is formed, and a step of the second upper electrode layer is formed on the second organic light emitting layer.
 以上、本発明の各実施の形態における発光素子について説明したが、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 As mentioned above, although the light emitting element in each embodiment of this invention was demonstrated, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. Therefore, the scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 発光モジュール、1A 発光素子、100 透明基板、110 陽極、110A 第1陽極、110B 第2陽極、120 有機発光層、120A 第1有機発光層、120B 第2有機発光層、120x 陽極補助電極、120y 陰極補助電極、130 引出電極、140 陰極、140A 第1陰極、140B 第2陰極、150 封止部材、200 絶縁層、300 セパレータ、L100 第1発光モジュール、L200 第2発光モジュール。 1 light emitting module, 1A light emitting element, 100 transparent substrate, 110 anode, 110A first anode, 110B second anode, 120 organic light emitting layer, 120A first organic light emitting layer, 120B second organic light emitting layer, 120x anode auxiliary electrode, 120y Auxiliary cathode electrode, 130 extraction electrode, 140 cathode, 140A first cathode, 140B second cathode, 150 sealing member, 200 insulating layer, 300 separator, L100 first light emitting module, L200 second light emitting module.

Claims (9)

  1.  基板と、
     前記基板の上に並列に配置された第1発光モジュールおよび第2発光モジュールと、を備える、発光素子であって、
     前記第1発光モジュールは、
     前記基板の上に設けられた第1下部電極層と、
     前記第1下部電極層の上に設けられた第1有機発光層と、
     前記第1有機発光層の上に設けられた、透明な薄膜で形成された第1上部電極層と、を含み、
     前記第2発光モジュールは、
     前記基板の上に設けられた第2下部電極層と、
     前記第1下部電極層の上に設けられた第2有機発光層と、
     前記第2有機発光層の上に設けられた、透明な薄膜で形成された第2上部電極層と、を含み、
     前記第1有機発光層は、前記第2下部電極層の上面に重なる領域にまで延在するように設けられ、
     前記第1上部電極層は、前記第1有機発光層の上面に沿って設けられるとともに、前記第2下部電極層に電気的に接続されている、発光素子。
    A substrate,
    A light emitting device comprising a first light emitting module and a second light emitting module arranged in parallel on the substrate,
    The first light emitting module includes:
    A first lower electrode layer provided on the substrate;
    A first organic light emitting layer provided on the first lower electrode layer;
    A first upper electrode layer formed on the first organic light emitting layer and formed of a transparent thin film,
    The second light emitting module includes:
    A second lower electrode layer provided on the substrate;
    A second organic light emitting layer provided on the first lower electrode layer;
    A second upper electrode layer formed on the second organic light emitting layer and formed of a transparent thin film,
    The first organic light emitting layer is provided to extend to a region overlapping the upper surface of the second lower electrode layer,
    The light emitting device, wherein the first upper electrode layer is provided along an upper surface of the first organic light emitting layer and is electrically connected to the second lower electrode layer.
  2.  透明の前記第1上部電極層および透明の前記第2上部電極層は、薄膜金属である、請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the transparent first upper electrode layer and the transparent second upper electrode layer are thin film metals.
  3.  前記薄膜金属は、薄膜の銀である、請求項2に記載の発光素子。 The light-emitting element according to claim 2, wherein the thin-film metal is thin-film silver.
  4.  前記薄膜金属は、膜厚さが30nm以下である、請求項2または請求項3に記載の発光素子。 The light-emitting element according to claim 2 or 3, wherein the thin-film metal has a thickness of 30 nm or less.
  5.  前記第2下部電極層の上面に位置する前記第1有機発光層の端面は、傾斜面である、請求項1から請求項3のいずれか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 3, wherein an end surface of the first organic light emitting layer located on an upper surface of the second lower electrode layer is an inclined surface.
  6.  前記第1下部電極層、前記第2下部電極層、および、前記基板は光透過性を有する、請求項1から請求項3のいずれか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 3, wherein the first lower electrode layer, the second lower electrode layer, and the substrate are light transmissive.
  7.  前記第1下部電極層と、前記第1上部電極層と、は異なる材料であり、
     前記第2下部電極層と、前記第2上部電極層と、は異なる材料である、請求項1から請求項5のいずれか1項に記載の発光素子。
    The first lower electrode layer and the first upper electrode layer are different materials,
    The light emitting device according to any one of claims 1 to 5, wherein the second lower electrode layer and the second upper electrode layer are made of different materials.
  8.  前記第1下部電極層と、前記第1上部電極層と、は異なる抵抗率であり、
     前記第2下部電極層と、前記第2上部電極層と、は異なる抵抗率である、請求項1から請求項5のいずれか1項に記載の発光素子。
    The first lower electrode layer and the first upper electrode layer have different resistivity,
    The light emitting device according to any one of claims 1 to 5, wherein the second lower electrode layer and the second upper electrode layer have different resistivity.
  9.  請求項1から請求項8のいずれか1項に記載の発光素子の製造方法であって、
     前記基板の上に電気的に分離された前記第1下部電極層および前記第2下部電極層を形成する工程と、
     前記第2下部電極層の上面にセパレータを形成する工程と、
     前記セパレータを挟んだ一方側において、前記第1下部電極層の上に、前記第2下部電極層の上面に重なる領域にまで延在するように設けられた前記第1有機発光層を形成するとともに、前記セパレータを挟んだ他方側において、前記第2有機発光層を形成する工程と、
     前記第1有機発光層および前記第2有機発光層の上に電極層を成膜し、前記電極層が前記セパレータによって分離されることで、前記第1有機発光層の上に形成されるとともに、前記第2下部電極層に電気的に接続される前記第1上部電極層が形成され、前記第2有機発光層の上に前記第2上部電極層が形成される工程と、を備える、発光素子の製造方法。
    It is a manufacturing method of the light emitting element given in any 1 paragraph of Claims 1-8,
    Forming the first lower electrode layer and the second lower electrode layer electrically separated on the substrate;
    Forming a separator on the upper surface of the second lower electrode layer;
    On one side of the separator, the first organic light emitting layer is formed on the first lower electrode layer so as to extend to a region overlapping the upper surface of the second lower electrode layer. Forming the second organic light emitting layer on the other side across the separator;
    An electrode layer is formed on the first organic light emitting layer and the second organic light emitting layer, and the electrode layer is separated by the separator to be formed on the first organic light emitting layer, Forming a first upper electrode layer electrically connected to the second lower electrode layer, and forming the second upper electrode layer on the second organic light emitting layer. Manufacturing method.
PCT/JP2017/015689 2016-06-10 2017-04-19 Light emitting element and method for manufacturing same WO2017212799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016116413 2016-06-10
JP2016-116413 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017212799A1 true WO2017212799A1 (en) 2017-12-14

Family

ID=60577778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015689 WO2017212799A1 (en) 2016-06-10 2017-04-19 Light emitting element and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017212799A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071570A (en) * 2002-08-07 2004-03-04 Eastman Kodak Co Organic light emitting device and its manufacturing method
JP2011198540A (en) * 2010-03-18 2011-10-06 Canon Inc Display apparatus
WO2012102218A1 (en) * 2011-01-24 2012-08-02 株式会社日立製作所 Organic light-emitting device and method for manufacturing same
JP2012195288A (en) * 2011-03-02 2012-10-11 Semiconductor Energy Lab Co Ltd Light-emitting device and illumination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071570A (en) * 2002-08-07 2004-03-04 Eastman Kodak Co Organic light emitting device and its manufacturing method
JP2011198540A (en) * 2010-03-18 2011-10-06 Canon Inc Display apparatus
WO2012102218A1 (en) * 2011-01-24 2012-08-02 株式会社日立製作所 Organic light-emitting device and method for manufacturing same
JP2012195288A (en) * 2011-03-02 2012-10-11 Semiconductor Energy Lab Co Ltd Light-emitting device and illumination device

Similar Documents

Publication Publication Date Title
JP7201440B2 (en) Electroluminescent diode array substrate, manufacturing method thereof, and display panel
KR100890250B1 (en) Method of manufacturing a flexible device and method of manufacturing a flexible display
US20190363153A1 (en) Display device
JP6157866B2 (en) Organic electroluminescence device, lighting device and lighting system
KR20150129565A (en) Organic light emitting device and method for manufacturing the same
US20110012135A1 (en) Light-emitting device and repairing method thereof
JP2005056846A (en) Organic electroluminescence device and its manufacturing method
CN112823568A (en) Display device
KR20110039839A (en) Organic light emitting diode lighting apparatus and method for manufacturing the same
JP5986200B2 (en) Organic electroluminescence panel
US7786519B2 (en) Light emitting device and method for manufacturing the same
JPH1187052A (en) Organic electroluminescence element
JP4950850B2 (en) Organic electroluminescence device
JP2009187774A (en) Organic electroluminescent element
WO2020170433A1 (en) Display device and method for manufacturing same
WO2017212799A1 (en) Light emitting element and method for manufacturing same
US20140246658A1 (en) Organic electroluminescent device and method for manufacturing the organic electroluminescent device
US20230041278A1 (en) Display device
KR100866886B1 (en) Method for manufacturing organic light emitting diode device
JP2008311094A (en) Organic el panel
JP2019012615A (en) Organic EL display device
JP6936331B2 (en) Light emitting device
JP4752457B2 (en) Organic EL device
WO2021038664A1 (en) Display device
JP2012049062A (en) Lighting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP