JP2011198540A - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
JP2011198540A
JP2011198540A JP2010062207A JP2010062207A JP2011198540A JP 2011198540 A JP2011198540 A JP 2011198540A JP 2010062207 A JP2010062207 A JP 2010062207A JP 2010062207 A JP2010062207 A JP 2010062207A JP 2011198540 A JP2011198540 A JP 2011198540A
Authority
JP
Japan
Prior art keywords
refractive index
organic
layer
thin film
control layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010062207A
Other languages
Japanese (ja)
Inventor
Takayuki Tsunoda
隆行 角田
Shoji Shuto
章志 首藤
Naoyuki Ito
尚行 伊藤
Mareyuki Ito
希之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010062207A priority Critical patent/JP2011198540A/en
Priority to KR1020110020184A priority patent/KR20110105334A/en
Priority to US13/050,656 priority patent/US8344370B2/en
Priority to CN201110065412XA priority patent/CN102194857A/en
Publication of JP2011198540A publication Critical patent/JP2011198540A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a display apparatus which can improve transmittance in a desired wavelength by using a thin silver film layer that contains 90 wt.% or more of silver and has a film thickness of thinner than 30 nm.SOLUTION: In the display apparatus having an organic EL device emitting each RGB color, an electrode on a light takeout side of the organic EL device includes a thin silver film layer 2 brought into contact with a charge transport layer 1; and a refraction index control layer 3 that is commonly placed on the organic EL device emitting each RGB color on the thin silver film layer 2 where an effective refractive index (n) represented by an expression: n=0.7 n+0.3 nis 1.4 or more and 2.3 or less. In the expression, nis the refraction index of the refraction index control layer 3 and nis the refraction index of the charge transport layer 1.

Description

本発明は、銀を90重量%以上含む薄膜を光取り出し側の電極として用いた有機EL素子が複数配列された表示装置に関する。   The present invention relates to a display device in which a plurality of organic EL elements using a thin film containing 90% by weight or more of silver as an electrode on the light extraction side are arranged.

有機EL素子は、陽極と陰極との間に発光層を含む有機化合物層を挟んだ構造を有しており、少なくとも一方の光取り出し側の電極が透明であることを要する。透明電極としては、例えば、インジウム錫酸化物(ITO)などの酸化物透明電極が一般的である。   The organic EL element has a structure in which an organic compound layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one of the light extraction side electrodes needs to be transparent. As the transparent electrode, for example, an oxide transparent electrode such as indium tin oxide (ITO) is generally used.

また透明電極として、より高い透過率と導電性の発現を目的として、金属薄膜の利用が試みられている。金属薄膜の材料としては、電気伝導率と可視光領域での透過率が高い金、銀、銅などが挙げられる。なかでも、銀は透過率の波長依存性が平坦で、かつ導電率も高いため有望である。しかし、銀は薄膜化しても、単純に透過率が向上しない。その原因の一つが、銀の局在表面プラズモン吸収である(非特許文献1参照)。   In addition, as a transparent electrode, use of a metal thin film has been attempted for the purpose of achieving higher transmittance and conductivity. Examples of the material for the metal thin film include gold, silver, and copper that have high electrical conductivity and high transmittance in the visible light region. Among these, silver is promising because the wavelength dependency of transmittance is flat and the conductivity is high. However, even if silver is thinned, the transmittance is not simply improved. One of the causes is the localized surface plasmon absorption of silver (see Non-Patent Document 1).

一般に、透過率向上のため、銀薄膜の膜厚を10nm程度にした場合、薄膜は連続な均一膜ではなく不連続なアイランド状膜となる。このアイランド状の銀粒子が、局在表面プラズモン吸収を可視光領域に有するため、銀薄膜の透過率減少という問題が生じる。   Generally, when the film thickness of the silver thin film is about 10 nm for improving the transmittance, the thin film is not a continuous uniform film but a discontinuous island film. Since the island-shaped silver particles have localized surface plasmon absorption in the visible light region, there arises a problem that the transmittance of the silver thin film is reduced.

その対策として、銀薄膜下にその膜厚以下の銀以外の金属からなる下地層を設けることでアイランド状ではなく連続した均一な銀薄膜が成膜される結果、銀単体の薄膜よりも透過特性に優れる透明導電膜積層体を作製する技術が提案されている(特許文献1参照)。   As a countermeasure, by providing an underlayer made of a metal other than silver below the thickness of the silver thin film, a continuous uniform silver thin film is formed instead of islands. Has been proposed (see Patent Document 1).

特開2008−171637号公報JP 2008-171737 A

J.J.Mock、D.R.Smith、S.Schultz著、「Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles」、Nano Letters、2003、Vol.3、No.4、p.485−491J. et al. J. et al. Mock, D.C. R. Smith, S.M. By Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles”, Nano Letters, 2003, Vol. 3, no. 4, p. 485-491

しかしながら、特許文献1のように金属からなる下地層を設けると、この下地層の膜厚が銀薄膜の膜厚以下であるとはいえ、下地層由来の透過率損失が少なからず存在してしまう。また、銀薄膜のアイランド形成を制御するという銀の成膜性制御機能を下地層が担う以上、この機能を有する金属しか下地層として選択できない。   However, when a base layer made of metal is provided as in Patent Document 1, there is not a little transmittance loss derived from the base layer even though the thickness of the base layer is less than or equal to the thickness of the silver thin film. . In addition, since the underlayer assumes the silver film formation control function of controlling the formation of the silver thin film island, only a metal having this function can be selected as the underlayer.

本発明は、上記の課題に鑑み、銀を90重量%以上含む薄膜を光取り出し側の電極として用いた有機EL素子が配列され、所望の波長における透過率を改善できる表示装置を提供することを目的とする。   In view of the above problems, the present invention provides a display device in which organic EL elements using a thin film containing 90% by weight or more of silver as an electrode on the light extraction side are arranged, and the transmittance at a desired wavelength can be improved. Objective.

上記の目的を達成すべく成された本発明の構成は以下の通りである。   The configuration of the present invention made to achieve the above object is as follows.

即ち、赤色を発する有機EL素子、緑色を発する有機EL素子及び青色を発する有機EL素子を有する表示装置において、
前記有機EL素子は、陽極と、陰極と、前記陽極と前記陰極との間に、発光層と電荷輸送層を含む有機化合物層を備え、前記陽極と前記陰極のうち、光取り出し側の電極は、前記電荷輸送層に接する、銀を90重量%以上含み、膜厚が30nm未満である銀薄膜層であり、
前記銀薄膜層の上に、前記赤色を発する有機EL素子、前記緑色を発する有機EL素子及び前記青色を発する有機EL素子に共通して配置された屈折率制御層を有し、
下式で示される有効屈折率(neff)が1.4以上2.3以下であることを特徴とする表示装置である。
That is, in a display device having an organic EL element that emits red, an organic EL element that emits green, and an organic EL element that emits blue.
The organic EL device includes an anode, a cathode, and an organic compound layer including a light emitting layer and a charge transport layer between the anode and the cathode, and the electrode on the light extraction side of the anode and the cathode is A silver thin film layer that is in contact with the charge transport layer and contains 90% by weight or more of silver and has a film thickness of less than 30 nm.
On the silver thin film layer, the organic EL element that emits red, the organic EL element that emits green, and the organic EL element that emits blue, and a refractive index control layer disposed in common.
The display device is characterized in that an effective refractive index (n eff ) represented by the following formula is 1.4 or more and 2.3 or less.

eff=0.7nu+0.3nd
u:屈折率制御層の屈折率
d:電荷輸送層の屈折率
n eff = 0.7 n u +0.3 n d
n u : refractive index of refractive index control layer n d : refractive index of charge transport layer

本発明によれば、電荷輸送層に接して銀薄膜層が成膜されており、さらに銀薄膜層の上に各色有機EL素子に共通して屈折率制御層が成膜されている。この積層構造によって有効屈折率を制御することにより、銀薄膜層のアイランド状銀粒子により発現する局在表面プラズモン吸収の吸収ピーク波長をシフトさせることができる。したがって、所望の色を発する有機EL素子の発光スペクトルと局在表面プラズモン吸収との重畳が低減され、所望の波長における透過率を改善できるという優れた効果を奏する。   According to the present invention, the silver thin film layer is formed in contact with the charge transport layer, and the refractive index control layer is formed on the silver thin film layer in common with each color organic EL element. By controlling the effective refractive index by this laminated structure, the absorption peak wavelength of localized surface plasmon absorption expressed by island-like silver particles in the silver thin film layer can be shifted. Therefore, the superimposition of the emission spectrum of the organic EL element that emits a desired color and the localized surface plasmon absorption is reduced, and an excellent effect is obtained in that the transmittance at a desired wavelength can be improved.

本発明の有機EL素子の光取り出し側の三層の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the three layers of the light extraction side of the organic EL element of this invention. 石英ガラス基板/銀薄膜の走査型電子顕微鏡(SEM)による観察結果を示す顕微鏡写真である。It is a microscope picture which shows the observation result by the scanning electron microscope (SEM) of a quartz glass substrate / silver thin film. 石英ガラス基板/銀薄膜の可視−紫外光吸収スペクトルを示す説明図である。It is explanatory drawing which shows the visible-ultraviolet light absorption spectrum of a quartz glass substrate / silver thin film. 有効屈折率(neff)に対する局在表面プラズモン吸収のピーク波長(λp)依存性を示す説明図である。It is explanatory drawing which shows the peak wavelength ((lambda) p) dependence of the localized surface plasmon absorption with respect to an effective refractive index ( neff ). 本発明の有機EL素子の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the organic EL element of this invention. 屈折率制御層なしの緑色有機EL素子からの発光スペクトルと局在表面プラズモン吸収を示す説明図である。It is explanatory drawing which shows the emission spectrum and local surface plasmon absorption from a green organic EL element without a refractive index control layer. 緑色発光スペクトル積分の有効屈折率依存性を示す説明図である。It is explanatory drawing which shows the effective refractive index dependence of green emission spectrum integration. 屈折率制御層なしの赤色有機EL素子からの発光スペクトルと局在表面プラズモン吸収を示す説明図である。It is explanatory drawing which shows the emission spectrum and localized surface plasmon absorption from a red organic EL element without a refractive index control layer. 赤色発光スペクトル積分の有効屈折率依存性を示す説明図である。It is explanatory drawing which shows the effective refractive index dependence of red emission spectrum integration. 屈折率制御層なしの青色有機EL素子からの発光スペクトルと局在表面プラズモン吸収を示す説明図である。It is explanatory drawing which shows the emission spectrum and local surface plasmon absorption from a blue organic EL element without a refractive index control layer. 青色発光スペクトル積分の有効屈折率依存性を示す説明図である。It is explanatory drawing which shows the effective refractive index dependence of blue emission spectrum integration. 本発明の表示装置の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the display apparatus of this invention. 屈折率制御層なしの表示装置からの発光スペクトルと局在表面プラズモン吸収を示す説明図である。It is explanatory drawing which shows the emission spectrum and localized surface plasmon absorption from a display apparatus without a refractive index control layer.

以下、図面を参照して、本発明の実施の形態を詳細に説明するが、本発明は本実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the embodiments.

まず、図1を参照して、本発明の有機EL素子の光取り出し側の積層構造について説明する。図1は、本発明の有機EL素子の光取り出し側の三層の断面構造を示す模式図である。図1に示すように、本発明の有機EL素子の光取り出し側では、電荷輸送層1に接して銀薄膜層2が成膜され、さらにその上に屈折率制御層3が積層された構造を有している。   First, the laminated structure on the light extraction side of the organic EL element of the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing a cross-sectional structure of three layers on the light extraction side of the organic EL element of the present invention. As shown in FIG. 1, the light extraction side of the organic EL device of the present invention has a structure in which a silver thin film layer 2 is formed in contact with the charge transport layer 1 and a refractive index control layer 3 is further laminated thereon. Have.

電荷輸送層1は、銀を90重量%以上含む銀薄膜層2の成膜に耐え得る材料であればよい。   The charge transport layer 1 may be any material that can withstand the film formation of the silver thin film layer 2 containing 90% by weight or more of silver.

銀薄膜層2は、銀を90重量%以上含む薄膜であって、例えば、真空蒸着法やスパッタリング法などの一般的な薄膜の成膜方法を用いて形成される。なお、銀薄膜層は、例えば、Pd、Cu、Mg、Au等が微量(10重量%未満)含まれていてもよい。なお、銀薄膜層2の膜厚は30nm未満が好ましく、より好ましくは5.0nm以上20nm以下の範囲が望ましい。膜厚が30nm以上では、銀粒子の局在表面プラズモン吸収が低減される代わりに、銀薄膜層2そのものの反射率が上がって透過率が悪くなるからある。   The silver thin film layer 2 is a thin film containing 90% by weight or more of silver, and is formed using a general thin film forming method such as a vacuum deposition method or a sputtering method, for example. The silver thin film layer may contain a trace amount (less than 10% by weight) of Pd, Cu, Mg, Au, and the like. The film thickness of the silver thin film layer 2 is preferably less than 30 nm, and more preferably in the range of 5.0 nm to 20 nm. If the film thickness is 30 nm or more, the local surface plasmon absorption of the silver particles is reduced, but the reflectance of the silver thin film layer 2 itself is increased and the transmittance is deteriorated.

屈折率制御層3は、有機材料、無機材料のいずれで形成してもよい。具体的な材料は後述する。   The refractive index control layer 3 may be formed of either an organic material or an inorganic material. Specific materials will be described later.

次に、図2〜図4を参照して、銀薄膜を光取り出し側の電極として使用する場合の局在表面プラズモン吸収について説明する。ここでは、電荷輸送層1の代わりに石英ガラス基板、銀薄膜層2として銀薄膜、屈折率制御層3として屈折率の異なる複数の材料を選択したサンプルを作成した。   Next, localized surface plasmon absorption when a silver thin film is used as an electrode on the light extraction side will be described with reference to FIGS. Here, a sample in which a quartz glass substrate, a silver thin film as the silver thin film layer 2, and a plurality of materials having different refractive indexes as the refractive index control layer 3 were selected instead of the charge transport layer 1 was prepared.

まず、石英ガラス基板を水、アセトン、イソプロピルアルコールで順次、超音波洗浄し、次にイソプロピルアルコールで煮沸洗浄後乾燥した。さらに、洗浄後の石英ガラス基板をUVオゾン処理した。次に、真空蒸着法により、石英ガラス基板の上に、膜厚10nmの銀薄膜層2を成膜した。   First, the quartz glass substrate was ultrasonically washed successively with water, acetone and isopropyl alcohol, then boiled and washed with isopropyl alcohol and then dried. Further, the washed quartz glass substrate was treated with UV ozone. Next, a silver thin film layer 2 having a thickness of 10 nm was formed on a quartz glass substrate by a vacuum deposition method.

図2は、上述のように作成された石英ガラス基板/銀薄膜の走査型電子顕微鏡(SEM)による観察結果を示す顕微鏡写真である。図2に示すように、銀薄膜がアイランド状の銀粒子からなっていることが観察される。   FIG. 2 is a photomicrograph showing the observation result of the quartz glass substrate / silver thin film prepared as described above by a scanning electron microscope (SEM). As shown in FIG. 2, it is observed that the silver thin film consists of island-like silver particles.

また図3は、石英ガラス基板/銀薄膜の可視−紫外光吸収スペクトルを示す説明図である。なお、可視−紫外光吸収スペクトルの測定には、Ubest V−560(日本分光株式会社製)を用いた。   FIG. 3 is an explanatory diagram showing the visible-ultraviolet light absorption spectrum of the quartz glass substrate / silver thin film. In addition, Ubest V-560 (made by JASCO Corporation) was used for the measurement of a visible-ultraviolet light absorption spectrum.

図3に示すように、屈折率制御層3がない状態の空気の場合は515nmをピーク波長とする銀薄膜の局在表面プラズモン吸収が確認できる。この吸収が銀薄膜を光取り出し側の電極として使用する際に、透過率を低減させてしまう。そのため、所望の波長での透過率を改善するため、ピーク波長をシフトさせる必要がある。   As shown in FIG. 3, in the case of air without the refractive index control layer 3, localized surface plasmon absorption of a silver thin film having a peak wavelength of 515 nm can be confirmed. This absorption reduces the transmittance when the silver thin film is used as an electrode on the light extraction side. Therefore, it is necessary to shift the peak wavelength in order to improve the transmittance at a desired wavelength.

そこで、局在表面プラズモン吸収を波長シフトさせるために、銀薄膜層2上に種々の屈折率をもった材料からなる屈折率制御層3を成膜した。屈折率制御層3として二酸化ケイ素(1.45)、酸化アルミニウム(1.76)、酸化亜鉛(1.95)、インジウム−スズ酸化物(2.1)、酸化チタン(2.71)を用いる場合は、スパッタ法により膜厚20nmで各材料を成膜した。また、フッ化リチウム(1.39)を用いる場合は、真空蒸着法により膜厚20nmのフッ化リチウム層を成膜した。なお、材料名に続く括弧内の数値は、各材料の屈折率である。   Therefore, in order to shift the wavelength of localized surface plasmon absorption, a refractive index control layer 3 made of a material having various refractive indexes was formed on the silver thin film layer 2. As the refractive index control layer 3, silicon dioxide (1.45), aluminum oxide (1.76), zinc oxide (1.95), indium-tin oxide (2.1), and titanium oxide (2.71) are used. In this case, each material was deposited with a film thickness of 20 nm by sputtering. When lithium fluoride (1.39) was used, a lithium fluoride layer having a thickness of 20 nm was formed by vacuum deposition. The numerical value in parentheses following the material name is the refractive index of each material.

また、屈折率制御層3は光取り出し効率向上のために有機EL素子で用いられる光学干渉層とは機能が異なるため、発光波長に適合するように膜厚を定める必要はない。さらに言えば、局在表面プラズモン吸収は銀粒子周囲の局所的な環境に影響を受けるため、膜厚30nm以下の薄膜で十分である。好ましくは屈折率制御層3の膜厚は、10nm以上20nm以下である。   Further, since the refractive index control layer 3 has a function different from that of the optical interference layer used in the organic EL element in order to improve the light extraction efficiency, it is not necessary to determine the film thickness to match the emission wavelength. Furthermore, since the localized surface plasmon absorption is affected by the local environment around the silver particles, a thin film having a thickness of 30 nm or less is sufficient. Preferably, the film thickness of the refractive index control layer 3 is 10 nm or more and 20 nm or less.

次に、図4は、有効屈折率(neff)に対する局在表面プラズモン吸収のピーク波長(λp)依存性を示す説明図である。 Next, FIG. 4 is an explanatory diagram showing the dependence of the localized surface plasmon absorption on the peak wavelength (λp) with respect to the effective refractive index (n eff ).

ここで有効屈折率(neff)は、銀薄膜層2を取り囲む電荷輸送層1(上記サンプルにおいては石英ガラス基板)と屈折率制御層3との双方の屈折率を考慮した値であり、下式で示される。 Here, the effective refractive index (n eff ) is a value considering the refractive indexes of both the charge transport layer 1 (in the above sample, a quartz glass substrate) surrounding the silver thin film layer 2 and the refractive index control layer 3. It is shown by the formula.

eff=αnu+(1−α)nd
u:屈折率制御層3の屈折率
d:電荷輸送層の屈折率(上記サンプルにおいては石英ガラス基板の屈折率)
α:重み因子
n eff = αn u + (1−α) n d
n u : refractive index of refractive index control layer 3 n d : refractive index of charge transport layer (in the above sample, refractive index of quartz glass substrate)
α: Weight factor

なお、重み因子(α)は、屈折率制御層3が銀薄膜層2の銀の塊を被覆する被覆率であり、本発明において、α=0.7である。   Note that the weighting factor (α) is a covering rate at which the refractive index control layer 3 covers the silver lump of the silver thin film layer 2, and α = 0.7 in the present invention.

図4に示すように、有効屈折率が大きくなるほど、銀薄膜の局在表面プラズモン吸収は長波長側にシフトしていく。これより、局在表面プラズモン吸収のピーク波長は銀薄膜層2の周辺層の屈折率で制御可能であることが判る。   As shown in FIG. 4, as the effective refractive index increases, the localized surface plasmon absorption of the silver thin film shifts to the longer wavelength side. This shows that the peak wavelength of localized surface plasmon absorption can be controlled by the refractive index of the peripheral layer of the silver thin film layer 2.

したがって銀薄膜を光取り出し側の電極として使用する場合は、透過させたい光のスペクトルと局在表面プラズモン吸収のスペクトルとの重畳をできうる限り少なくすればよいことになる。換言すれば、局在表面プラズモン吸収のピーク波長を透過光のスペクトルピーク波長から、短波長側もしくは長波長側の方向にシフトするように、屈折率制御層3の屈折率を調整すれば透過率改善の効果を得ることができる。   Therefore, when a silver thin film is used as an electrode on the light extraction side, it is only necessary to minimize the overlap between the spectrum of light to be transmitted and the spectrum of localized surface plasmon absorption. In other words, if the refractive index of the refractive index control layer 3 is adjusted so that the peak wavelength of localized surface plasmon absorption is shifted from the spectral peak wavelength of transmitted light toward the short wavelength side or the long wavelength side, the transmittance can be obtained. An improvement effect can be obtained.

〔有機EL素子〕
次に、本発明の有機EL素子について説明する。
[Organic EL device]
Next, the organic EL element of the present invention will be described.

尚、本例で用いた化合物を以下に示す。   The compounds used in this example are shown below.

Figure 2011198540
Figure 2011198540

〈緑色有機EL素子〉
まず、図5を参照して、本発明の緑色を発光する有機EL素子について説明する。図5は、本発明の有機EL素子の断面構造を示す模式図である。
<Green organic EL element>
First, the organic EL element that emits green light according to the present invention will be described with reference to FIG. FIG. 5 is a schematic diagram showing a cross-sectional structure of the organic EL element of the present invention.

図5に示す様に、本発明の有機EL素子は、陽極と陰極との間に、発光層と電荷輸送層を含む有機化合物層を備え、下から順にアノード電極(陽極)4、正孔注入層5、発光層6、電子輸送層1、陰極として銀薄膜層2及び屈折率制御層3が積層された構造を有する。また、この素子構造では、上側が光取り出し側であり、電子輸送層1が銀薄膜層2に接している。つまり、電子輸送層1/銀薄膜層2/屈折率制御層3の構成が図1の積層構造に対応している。   As shown in FIG. 5, the organic EL device of the present invention includes an organic compound layer including a light emitting layer and a charge transport layer between an anode and a cathode, and an anode electrode (anode) 4 and a hole injection in order from the bottom. The layer 5, the light emitting layer 6, the electron transport layer 1, and the silver thin film layer 2 and the refractive index control layer 3 as a cathode are laminated. In this element structure, the upper side is the light extraction side, and the electron transport layer 1 is in contact with the silver thin film layer 2. That is, the configuration of the electron transport layer 1 / silver thin film layer 2 / refractive index control layer 3 corresponds to the laminated structure of FIG.

アノード電極4としては、アルミニウムネオジム薄膜上に、スパッタ法によりインジウム亜鉛酸化物(IZO)を38nmの膜厚で製膜したものを用いた。これをアセトン、イソプロピルアルコールで順次、超音波洗浄し、次にイソプロピルアルコールで煮沸洗浄後乾燥した。さらに、洗浄後の透明導電性支持基板をUVオゾン処理したものを次の成膜工程に用いた。   As the anode electrode 4, an aluminum neodymium thin film formed of indium zinc oxide (IZO) with a film thickness of 38 nm by a sputtering method was used. This was ultrasonically washed successively with acetone and isopropyl alcohol, then boiled and washed with isopropyl alcohol and then dried. Further, the washed transparent conductive support substrate subjected to UV ozone treatment was used in the next film forming step.

正孔注入層5には化合物(1)を用いた。この化合物(1)を用いて、真空蒸着法により膜厚150nmの正孔輸送層5を成膜した。発光層6は、主成分として化合物(2)を用い、発光性ドーパントとして化合物(3)を用いた。これらの化合物を用いて、真空蒸着法によりそれぞれ別のボートから同時蒸着して、膜厚30nmの発光層6を成膜した。上記化合物(3)の濃度は2wt%であった。さらに、電子輸送層1として化合物(4)を用いた。この化合物を用いて、真空蒸着法により膜厚40nmの電子輸送層1を成膜した。これら化合物(1)から化合物(4)に示す化合物の蒸着時の真空度は5.0×10-5Paで、成膜速度は0.1nm/secから0.3nm/secであった。 Compound (1) was used for the hole injection layer 5. Using this compound (1), a hole transport layer 5 having a thickness of 150 nm was formed by vacuum deposition. In the light emitting layer 6, the compound (2) was used as a main component, and the compound (3) was used as a light emitting dopant. Using these compounds, a light emitting layer 6 having a thickness of 30 nm was formed by simultaneous vapor deposition from different boats by a vacuum vapor deposition method. The concentration of the compound (3) was 2 wt%. Further, the compound (4) was used as the electron transport layer 1. Using this compound, an electron transport layer 1 having a thickness of 40 nm was formed by vacuum deposition. The degree of vacuum at the time of vapor deposition of the compounds shown in these compounds (1) to (4) was 5.0 × 10 −5 Pa, and the film formation rate was 0.1 nm / sec to 0.3 nm / sec.

次に、銀薄膜層2の材料として、銀を用いた。電子輸送層1の上に、真空蒸着法により膜厚10nmの銀薄膜層2を成膜した。   Next, silver was used as a material for the silver thin film layer 2. On the electron transport layer 1, a silver thin film layer 2 having a thickness of 10 nm was formed by vacuum deposition.

さらに屈折率制御層3として、二酸化ケイ素、酸化アルミニウム、酸化亜鉛、インジウム錫酸化物(ITO)、酸化チタン、フッ化リチウム、上記化合物(4)をそれぞれ成膜する素子を作成した。二酸化ケイ素、酸化アルミニウム、酸化亜鉛、インジウム錫酸化物(ITO)、酸化チタンの場合は、スパッタ法により膜厚20nmで各材料を成膜した。また、フッ化リチウムもしくは上記化合物(4)の場合は、真空蒸着法により膜厚20nmで各材料を成膜した。なお、屈折率制御層3を設けない素子を比較試料として作成した。   Furthermore, as the refractive index control layer 3, elements for forming silicon dioxide, aluminum oxide, zinc oxide, indium tin oxide (ITO), titanium oxide, lithium fluoride, and the compound (4) were formed. In the case of silicon dioxide, aluminum oxide, zinc oxide, indium tin oxide (ITO), and titanium oxide, each material was formed with a film thickness of 20 nm by a sputtering method. In the case of lithium fluoride or the above compound (4), each material was formed into a film with a thickness of 20 nm by a vacuum deposition method. An element without the refractive index control layer 3 was prepared as a comparative sample.

得られた有機EL素子は、大気暴露によって素子劣化が起こらないように、乾燥窒素雰囲気下でその上に保護用ガラス管を被せ、アクリル樹脂系接着材を用いて封止した。   The obtained organic EL device was covered with a protective glass tube under a dry nitrogen atmosphere and sealed with an acrylic resin adhesive so that the device was not deteriorated by exposure to air.

図6は、屈折率制御層なしの緑色有機EL素子からの発光スペクトルと局在表面プラズモン吸収を示す説明図である。なお、横軸が波長、左縦軸がEL発光強度、右縦軸が局在表面プラズモン吸収の吸光度である。   FIG. 6 is an explanatory diagram showing an emission spectrum and localized surface plasmon absorption from a green organic EL element without a refractive index control layer. The horizontal axis represents the wavelength, the left vertical axis represents the EL emission intensity, and the right vertical axis represents the absorbance of the localized surface plasmon absorption.

図6に示すように、アノード電極を正極、銀薄膜を負極にして、10Vの直流電圧を印加すると、最大発光波長520nmに発光性ドーパントである上記化合物(3)に由来する緑色の発光が観測された。一方、局在表面プラズモン吸収のピーク波長は522nmである。即ち、得られた発光スペクトルは、局在表面プラズモン吸収と大部分で重畳しており、銀薄膜により発光強度が減じている。したがって、緑色光のスペクトルと銀薄膜由来の局在表面プラズモン吸収スペクトルの重畳をできうる限り少なくすればよい。つまり、局在表面プラズモン吸収を屈折率制御層でシフトさせればよいことになる。   As shown in FIG. 6, when a DC voltage of 10 V is applied with the anode electrode as the positive electrode and the silver thin film as the negative electrode, green light emission derived from the compound (3), which is a luminescent dopant, is observed at a maximum emission wavelength of 520 nm. It was done. On the other hand, the peak wavelength of localized surface plasmon absorption is 522 nm. That is, the obtained emission spectrum largely overlaps with the localized surface plasmon absorption, and the emission intensity is reduced by the silver thin film. Therefore, the superposition of the green light spectrum and the localized surface plasmon absorption spectrum derived from the silver thin film should be minimized. That is, the localized surface plasmon absorption may be shifted by the refractive index control layer.

また図7は、緑色発光スペクトル積分の有効屈折率依存性を示す説明図である。なお、発光スペクトル積分は屈折率制御層なく空気の場合、電子輸送層1が上記化合物(4)の場合(有効屈折率1.21)を1として規格化している。図7では、屈折率制御層の材料、つまり屈折率制御層の屈折率を変更することで、有効屈折率を変化させている。図4で示したように、有効屈折率が大きくなるほど局在表面プラズモン吸収は長波長側にシフトする。そのため、発光スペクトルと局在表面プラズモン吸収との重畳部分が減少し、緑色発光に対する透過率が改善され、図7に示すように、発光スペクトル積分は有効屈折率とともに増大した。   FIG. 7 is an explanatory diagram showing the effective refractive index dependence of the green emission spectrum integration. Note that the emission spectrum integration is standardized with 1 when the refractive index control layer is air and the electron transport layer 1 is the compound (4) (effective refractive index 1.21). In FIG. 7, the effective refractive index is changed by changing the material of the refractive index control layer, that is, the refractive index of the refractive index control layer. As shown in FIG. 4, the localized surface plasmon absorption shifts to the longer wavelength side as the effective refractive index increases. As a result, the overlapping portion of the emission spectrum and localized surface plasmon absorption decreased, the transmittance for green emission was improved, and the emission spectrum integral increased with the effective refractive index as shown in FIG.

その結果として、銀薄膜を光取り出し側の電極として用いて透過率が改善された緑色有機EL素子を構成するには、有効屈折率が1.4以上となるように屈折率制御層3の屈折率を調整すればよいことが判る。   As a result, in order to construct a green organic EL element with improved transmittance using a silver thin film as an electrode on the light extraction side, the refractive index of the refractive index control layer 3 is adjusted so that the effective refractive index is 1.4 or more. It can be seen that the rate should be adjusted.

〈赤色有機EL素子〉
次に、本発明の赤色を発光する有機EL素子について説明する。本発明の赤色有機EL素子の基本構造は、発光層6の主成分として化合物(5)を用い、発光性ドーパントとして化合物(6)を用いた以外は、上記緑色有機EL素子と同様である。なお、上記化合物(6)の濃度は2wt%であった。
<Red organic EL element>
Next, the organic EL element that emits red light according to the present invention will be described. The basic structure of the red organic EL device of the present invention is the same as that of the green organic EL device except that the compound (5) is used as the main component of the light emitting layer 6 and the compound (6) is used as the light emitting dopant. The concentration of the compound (6) was 2 wt%.

図8は、屈折率制御層なしの赤色有機EL素子からの発光スペクトルと局在表面プラズモン吸収を示す説明図である。図8に示すように、アノード電極を正極、銀薄膜を負極にして、10Vの直流電圧を印加すると、最大発光波長630nmに発光性ドーパントである上記化合物(6)に由来する赤色の発光が観測された。一方、局在表面プラズモン吸収のピーク波長は522nmである。即ち、得られた発光スペクトルは、局在表面プラズモン吸収の長波長側の裾と重畳しており、実施例1における緑色と比較すれば重畳が少ないとはいえ、銀薄膜により発光強度が減じている。   FIG. 8 is an explanatory diagram showing an emission spectrum and localized surface plasmon absorption from a red organic EL element without a refractive index control layer. As shown in FIG. 8, when a DC voltage of 10 V is applied with the anode electrode as the positive electrode and the silver thin film as the negative electrode, red light emission derived from the compound (6), which is a luminescent dopant, is observed at a maximum emission wavelength of 630 nm. It was done. On the other hand, the peak wavelength of localized surface plasmon absorption is 522 nm. That is, the obtained emission spectrum is superimposed on the long-wavelength side of localized surface plasmon absorption, and although the amount of superposition is small compared to the green color in Example 1, the emission intensity is reduced by the silver thin film. Yes.

また図9は、赤色発光スペクトル積分の有効屈折率依存性を示す説明図である。なお、発光スペクトル積分は屈折率制御層がなく空気の場合、電子輸送層1が上記化合物(4)の場合(有効屈折率1.21)を1として規格化している。図4に示したように、有効屈折率が大きくなるほど局在表面プラズモン吸収は長波長側にシフトする。そのため、緑色とは反対に発光スペクトルと局在表面プラズモン吸収の重畳部分が増加し、赤色発光に対する透過率が悪化した。一方、有効屈折率が小さくなるにつれ、局在表面プラズモン吸収は短波長側にシフトするため、赤色発光に対する透過率が改善され、図9に示すように、発光スペクトル積分は増大した。   FIG. 9 is an explanatory diagram showing the effective refractive index dependence of the red emission spectrum integration. Note that the emission spectrum integration is standardized with 1 when the air is without a refractive index control layer and when the electron transport layer 1 is the compound (4) (effective refractive index 1.21). As shown in FIG. 4, the localized surface plasmon absorption shifts to the longer wavelength side as the effective refractive index increases. Therefore, on the contrary to the green color, the overlapping portion of the emission spectrum and the localized surface plasmon absorption increased, and the transmittance for red light emission deteriorated. On the other hand, as the effective refractive index decreases, the localized surface plasmon absorption shifts to the short wavelength side, so that the transmittance for red light emission is improved, and the emission spectrum integration is increased as shown in FIG.

その結果として、銀薄膜を光取り出し側の電極として用いて透過率が改善された赤色有機EL素子を構成するには、有効屈折率が2.3以下となるように屈折率制御層の屈折率を調整すればよいことが判る。   As a result, in order to construct a red organic EL device with improved transmittance using a silver thin film as an electrode on the light extraction side, the refractive index of the refractive index control layer is set so that the effective refractive index is 2.3 or less. It can be seen that adjustment should be made.

〈青色有機EL素子〉
さらに、本発明の青色を発光する有機EL素子について説明する。本実施形態の青色有機EL素子の基本構造は、発光層6の主成分として化合物(7)を用い、発光性ドーパントとして化合物(8)を用いた以外は、緑色有機EL素子と同様である。なお、上記化合物(8)の濃度は2wt%であった。
<Blue organic EL element>
Further, the organic EL element that emits blue light according to the present invention will be described. The basic structure of the blue organic EL device of this embodiment is the same as that of the green organic EL device except that the compound (7) is used as the main component of the light emitting layer 6 and the compound (8) is used as the light emitting dopant. The concentration of the compound (8) was 2 wt%.

図10は、屈折率制御層なしの青色有機EL素子からの発光スペクトルと局在表面プラズモン吸収を示す説明図である。図10に示すように、アノード電極を正極、銀薄膜を負極にして、10Vの直流電圧を印加すると、最大発光波長490nmに発光性ドーパントである上記化合物(8)に由来する青色の発光が観測された。一方、局在表面プラズモン吸収のピーク波長は522nmである。即ち、得られた発光スペクトルは局在表面プラズモン吸収の短波長側の裾と重畳しており、上記緑色有機EL素子と比較すれば重畳が少ないとはいえ、銀薄膜により発光強度が減じている。   FIG. 10 is an explanatory diagram showing an emission spectrum and localized surface plasmon absorption from a blue organic EL element without a refractive index control layer. As shown in FIG. 10, when a DC voltage of 10 V is applied with the anode electrode as the positive electrode and the silver thin film as the negative electrode, blue light emission derived from the compound (8), which is a luminescent dopant, is observed at a maximum emission wavelength of 490 nm. It was done. On the other hand, the peak wavelength of localized surface plasmon absorption is 522 nm. That is, the obtained emission spectrum overlaps with the short wavelength side skirt of the localized surface plasmon absorption, and the light emission intensity is reduced by the silver thin film although the overlap is small compared with the green organic EL element. .

また図11は、青色発光スペクトル積分の有効屈折率依存性を示す説明図である。なお、発光スペクトル積分は屈折率制御層がなく空気の場合、電子輸送層1が上記化合物(4)の場合(有効屈折率1.21)を1として規格化している。図4に示したように、有効屈折率が大きくなるほど局在表面プラズモン吸収は長波長側にシフトする。そのため、発光スペクトルと局在表面プラズモン吸収との重畳部分が減少し、青色発光に対する透過率が改善され、図11に示すように、発光スペクトル積分は有効屈折率とともに増大した。   FIG. 11 is an explanatory diagram showing the effective refractive index dependence of the blue emission spectrum integration. Note that the emission spectrum integration is standardized with 1 when the air is without a refractive index control layer and when the electron transport layer 1 is the compound (4) (effective refractive index 1.21). As shown in FIG. 4, the localized surface plasmon absorption shifts to the longer wavelength side as the effective refractive index increases. As a result, the overlapping portion of the emission spectrum and the localized surface plasmon absorption decreased, the transmittance for blue emission was improved, and the emission spectrum integral increased with the effective refractive index as shown in FIG.

その結果として、銀薄膜を光取り出し側の電極として用いて透過率が改善された青色有機EL素子を構成するには、有効屈折率が1.4以上となるように屈折率制御層の屈折率を調整すればよいことが判る。   As a result, in order to construct a blue organic EL device with improved transmittance using a silver thin film as an electrode on the light extraction side, the refractive index of the refractive index control layer is set so that the effective refractive index is 1.4 or more. It can be seen that adjustment should be made.

〔表示装置〕
次に、図12及び図13を参照して、赤色、緑色、青色(RGB3色)の有機EL素子を複数配列してなる本発明の表示装置について説明する。なお、配列された赤色、緑色、青色の有機EL素子の構造及び使用した化合物はそれぞれ上述した有機EL素子と同様である。
[Display device]
Next, with reference to FIG. 12 and FIG. 13, a display device of the present invention in which a plurality of organic EL elements of red, green and blue (RGB three colors) are arranged will be described. The structures of the arranged red, green, and blue organic EL elements and the compounds used are the same as those of the organic EL elements described above.

図12は、本発明の表示装置の断面構造を示す模式図である。   FIG. 12 is a schematic view showing a cross-sectional structure of the display device of the present invention.

図12に示すように、基板10の上にアノード電極4、正孔注入層5が積層される。次に、各画素に発光色の異なる赤色発光層13、緑色発光層14、青色発光層15が塗り分けてマスク蒸着される。最後に、電子輸送層1、銀薄膜層2、屈折率制御層3が成膜されて表示装置が構成される。なお、成膜条件は、有機EL素子について説明したものと同様であるが、少なくとも屈折率制御層3は、赤色有機EL素子、緑色有機EL素子及び青色有機EL素子に共通して配置される様に成膜する。   As shown in FIG. 12, the anode electrode 4 and the hole injection layer 5 are laminated on the substrate 10. Next, the red light emitting layer 13, the green light emitting layer 14, and the blue light emitting layer 15 having different emission colors are separately applied to each pixel and mask-deposited. Finally, the electron transport layer 1, the silver thin film layer 2, and the refractive index control layer 3 are formed to form a display device. The film forming conditions are the same as those described for the organic EL element, but at least the refractive index control layer 3 is arranged in common for the red organic EL element, the green organic EL element, and the blue organic EL element. The film is formed.

上記有機EL素子の説明では、透過させたい光がそれぞれ緑色、赤色、青色の単色光であった。そのため、有効屈折率を単調に増加もしくは減少させれば、局在表面プラズモン吸収は、それぞれ単調に長波長側もしくは短波長側にシフトし、所望の波長に対する透過率改善が可能であった。   In the description of the organic EL element, the light to be transmitted is monochromatic light of green, red, and blue, respectively. Therefore, if the effective refractive index is monotonously increased or decreased, the localized surface plasmon absorption is monotonously shifted to the long wavelength side or the short wavelength side, respectively, and the transmittance for a desired wavelength can be improved.

表示装置においても、各色に対して屈折率制御層3および電子輸送層1により有効屈折率を制御して透過率を改善することは可能である。しかしながら、これを実現するには、有効屈折率を各色に対して調整するために屈折率制御層をマスク蒸着工程で塗り分けて成膜する必要があり、製造コストが高くなる。そこで、赤色、緑色、青色に共通の屈折率制御層を塗り分けなしに成膜する方が低コストである。屈折率制御層3を塗り分けなしに成膜する場合、赤色、緑色、青色の全色に対して局在表面プラズモン吸収との重畳が低減される有効屈折率となるように屈折率制御層3を選択する必要がある。   Also in the display device, it is possible to improve the transmittance by controlling the effective refractive index by the refractive index control layer 3 and the electron transport layer 1 for each color. However, in order to realize this, it is necessary to coat the refractive index control layer separately in the mask vapor deposition process in order to adjust the effective refractive index for each color, which increases the manufacturing cost. Therefore, it is cheaper to form a refractive index control layer common to red, green, and blue without coating. In the case where the refractive index control layer 3 is formed without being separately applied, the refractive index control layer 3 has an effective refractive index that reduces the overlap with localized surface plasmon absorption for all colors of red, green, and blue. It is necessary to select.

図13は、屈折率制御層なしの表示装置からの発光スペクトルと局在表面プラズモン吸収を示す説明図である。図13に示すように、局在表面プラズモン吸収は可視光にわたって広い吸収をもつが、特にそのピーク波長522nmでの吸収が大きい。そのためピーク波長を赤色発光、緑色発光、青色発光のスペクトルピーク波長からそれぞれずらせば所望の波長での透過率が改善される。   FIG. 13 is an explanatory diagram showing an emission spectrum and localized surface plasmon absorption from a display device without a refractive index control layer. As shown in FIG. 13, the localized surface plasmon absorption has a wide absorption over visible light, but the absorption at the peak wavelength of 522 nm is particularly large. Therefore, the transmittance at a desired wavelength can be improved by shifting the peak wavelength from the spectrum peak wavelengths of red light emission, green light emission, and blue light emission.

理想的には、局在表面プラズモン吸収ピーク波長を青色発光ピーク波長490nmよりも短波長にシフトさせるか、あるいは、赤色発光ピーク波長630nmよりも長波長側にシフトさせれば、全色に対して局在表面プラズモン吸収の影響を低減可能である。しかし、屈折率制御層に使用できる材料で最も低屈折率な材料は通常空気(屈折率1)であり、短波長側へのシフトには限界がある。さらに長波長側へのシフトも、同様に可視光領域に光吸収がなく高屈折率を示す材料は多くなく、屈折率2.7程度の酸化チタンが実用上の上限と考えられる。ゆえに、局在表面プラズモン吸収を可視光波長領域から完全に外すことは難しい。   Ideally, if the localized surface plasmon absorption peak wavelength is shifted to a shorter wavelength than the blue emission peak wavelength of 490 nm, or is shifted to a longer wavelength side than the red emission peak wavelength of 630 nm, it is The influence of localized surface plasmon absorption can be reduced. However, the lowest refractive index material that can be used for the refractive index control layer is usually air (refractive index 1), and there is a limit to the shift toward the short wavelength side. Furthermore, the shift to the long wavelength side is similarly limited in that there are not many materials that do not absorb light in the visible light region and show a high refractive index, and titanium oxide having a refractive index of about 2.7 is considered to be the practical upper limit. Therefore, it is difficult to completely remove localized surface plasmon absorption from the visible light wavelength region.

したがって、赤色、緑色、青色全色を考慮して透過率を改善すべき波長を決める必要がある。図13中の矢印で示した緑色発光スペクトルのピーク波長520nmから赤色発光スペクトルのピーク波長630nmまでの波長領域では、発光スペクトルの凹部がある。つまり、発光強度が相対的に低いこの波長領域に局在表面プラズモン吸収ピーク波長を存在させれば、プラズモン吸収による発光の損失が低減される。   Therefore, it is necessary to determine the wavelength at which the transmittance should be improved in consideration of all red, green, and blue colors. In the wavelength region from the peak wavelength 520 nm of the green emission spectrum to the peak wavelength 630 nm of the red emission spectrum indicated by the arrow in FIG. That is, if the localized surface plasmon absorption peak wavelength is present in this wavelength region where the emission intensity is relatively low, the loss of light emission due to plasmon absorption is reduced.

即ち、銀薄膜を光取り出し側の電極として用いて、透過率が改善されたRGB三色の有機EL素子を有する表示装置を構成するには、有効屈折率として1.4以上2.3以下となるように屈折率制御層3の屈折率を調整すればよいことが判る。   That is, in order to construct a display device having RGB three-color organic EL elements with improved transmittance using a silver thin film as an electrode on the light extraction side, the effective refractive index is 1.4 or more and 2.3 or less. It can be seen that the refractive index of the refractive index control layer 3 may be adjusted as described.

以上、本発明の好適な実施形態を説明したが、これは本発明の説明のための例示であり、本発明の要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。例えば、上記の実施形態では、光取り出し側の電極が陰極の場合について説明したが、逆の構成であってもよい。その場合には、正孔注入層が銀薄膜層に接する電荷輸送層になる。   The preferred embodiment of the present invention has been described above. However, this is merely an example for explaining the present invention, and various embodiments different from the above-described embodiment may be implemented without departing from the gist of the present invention. Can do. For example, in the above embodiment, the case where the electrode on the light extraction side is the cathode has been described, but the reverse configuration may be used. In that case, the hole injection layer becomes a charge transport layer in contact with the silver thin film layer.

1 電荷輸送層(電子輸送層)、2 銀薄膜層、3 屈折率制御層、6 発光層 1 charge transport layer (electron transport layer), 2 silver thin film layer, 3 refractive index control layer, 6 light emitting layer

Claims (2)

赤色を発する有機EL素子、緑色を発する有機EL素子及び青色を発する有機EL素子を有する表示装置において、
前記有機EL素子は、陽極と、陰極と、前記陽極と前記陰極との間に、発光層と電荷輸送層を含む有機化合物層を備え、前記陽極と前記陰極のうち、光取り出し側の電極は、前記電荷輸送層に接する、銀を90重量%以上含み、膜厚が30nm未満である銀薄膜層であり、
前記銀薄膜層の上に、前記赤色を発する有機EL素子、前記緑色を発する有機EL素子及び前記青色を発する有機EL素子に共通して配置された屈折率制御層を有し、
下式で示される有効屈折率(neff)が1.4以上2.3以下であることを特徴とする表示装置。
eff=0.7nu+0.3nd
u:屈折率制御層の屈折率
d:電荷輸送層の屈折率
In a display device having an organic EL element that emits red, an organic EL element that emits green, and an organic EL element that emits blue,
The organic EL device includes an anode, a cathode, and an organic compound layer including a light emitting layer and a charge transport layer between the anode and the cathode, and the electrode on the light extraction side of the anode and the cathode is A silver thin film layer that is in contact with the charge transport layer and contains 90% by weight or more of silver and has a film thickness of less than 30 nm.
On the silver thin film layer, the organic EL element that emits red, the organic EL element that emits green, and the organic EL element that emits blue, and a refractive index control layer disposed in common.
An effective refractive index (n eff ) represented by the following formula is 1.4 or more and 2.3 or less.
n eff = 0.7 n u +0.3 n d
n u : refractive index of refractive index control layer n d : refractive index of charge transport layer
前記屈折率制御層の膜厚が10nm以上20nm以下であることを特徴とする請求項1に記載の表示装置。   The display device according to claim 1, wherein a film thickness of the refractive index control layer is 10 nm or more and 20 nm or less.
JP2010062207A 2010-03-18 2010-03-18 Display apparatus Withdrawn JP2011198540A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010062207A JP2011198540A (en) 2010-03-18 2010-03-18 Display apparatus
KR1020110020184A KR20110105334A (en) 2010-03-18 2011-03-08 Display apparatus
US13/050,656 US8344370B2 (en) 2010-03-18 2011-03-17 Display apparatus
CN201110065412XA CN102194857A (en) 2010-03-18 2011-03-18 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062207A JP2011198540A (en) 2010-03-18 2010-03-18 Display apparatus

Publications (1)

Publication Number Publication Date
JP2011198540A true JP2011198540A (en) 2011-10-06

Family

ID=44602636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062207A Withdrawn JP2011198540A (en) 2010-03-18 2010-03-18 Display apparatus

Country Status (4)

Country Link
US (1) US8344370B2 (en)
JP (1) JP2011198540A (en)
KR (1) KR20110105334A (en)
CN (1) CN102194857A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190656A1 (en) * 2012-06-20 2013-12-27 パイオニア株式会社 Organic electroluminescence element
WO2014065084A1 (en) * 2012-10-26 2014-05-01 コニカミノルタ株式会社 Electroluminescent element and illumination device using same
WO2017212799A1 (en) * 2016-06-10 2017-12-14 コニカミノルタ株式会社 Light emitting element and method for manufacturing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042534B1 (en) * 2013-10-25 2019-11-08 엘지디스플레이 주식회사 Organic light emitting display panel and method for fabricating the same
CN106354302B (en) * 2016-08-19 2019-03-15 京东方科技集团股份有限公司 Embedded transparent touch display panel and its manufacturing method, driving method
KR20180054957A (en) * 2016-11-14 2018-05-25 삼성디스플레이 주식회사 Light emitting diode
CN108597386B (en) 2018-01-08 2020-12-29 京东方科技集团股份有限公司 Color film, micro LED device, manufacturing method of micro LED device and display device
CN111081896B (en) * 2019-12-04 2021-02-23 深圳市华星光电半导体显示技术有限公司 Display panel and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818328B2 (en) * 2003-02-20 2004-11-16 Fuji Electric Co., Ltd. Color conversion filter substrate, color conversion type multicolor organic EL display having the color conversion filter substrate, and methods of manufacturing these
JP4895490B2 (en) * 2003-09-30 2012-03-14 三洋電機株式会社 Organic EL panel
JP2004158469A (en) * 2004-03-05 2004-06-03 Casio Comput Co Ltd El device
JP4507718B2 (en) * 2004-06-25 2010-07-21 京セラ株式会社 Color organic EL display and manufacturing method thereof
JP5198861B2 (en) * 2004-08-10 2013-05-15 ケンブリッジ ディスプレイ テクノロジー リミテッド Light emitting device
KR100700013B1 (en) 2004-11-26 2007-03-26 삼성에스디아이 주식회사 Organic Electroluminescence Display Device and Fabricating Method of the same
US7791271B2 (en) * 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
CN101127379A (en) * 2006-08-16 2008-02-20 苏忠杰 Luminescent device with high extraction efficiency
JP5008486B2 (en) * 2007-07-19 2012-08-22 キヤノン株式会社 Display device
JP2009032576A (en) * 2007-07-27 2009-02-12 Rohm Co Ltd Organic el display
JP5499890B2 (en) * 2009-08-05 2014-05-21 コニカミノルタ株式会社 Organic electroluminescence device and method for manufacturing the same
KR101334529B1 (en) * 2009-10-09 2013-11-28 이데미쓰 고산 가부시키가이샤 Organic electroluminescence element
KR101983229B1 (en) * 2010-07-23 2019-05-29 삼성디스플레이 주식회사 Organic light emitting device and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190656A1 (en) * 2012-06-20 2013-12-27 パイオニア株式会社 Organic electroluminescence element
WO2014065084A1 (en) * 2012-10-26 2014-05-01 コニカミノルタ株式会社 Electroluminescent element and illumination device using same
JPWO2014065084A1 (en) * 2012-10-26 2016-09-08 コニカミノルタ株式会社 Electroluminescent device and lighting device using the electroluminescent device
WO2017212799A1 (en) * 2016-06-10 2017-12-14 コニカミノルタ株式会社 Light emitting element and method for manufacturing same

Also Published As

Publication number Publication date
KR20110105334A (en) 2011-09-26
CN102194857A (en) 2011-09-21
US8344370B2 (en) 2013-01-01
US20120056164A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP2011198540A (en) Display apparatus
US10700304B2 (en) Device including a conductive coating disposed over emissive regions and method therefor
US9748512B2 (en) See-through organic light emitting display device and method for manufacturing the same
US7531856B2 (en) Display apparatus
US20220013594A1 (en) Optoelectronic device including a light transmissive region
JP3783937B2 (en) Organic EL device
KR101241131B1 (en) Organic electro luminescent device
US10381600B2 (en) Organic electroluminescence device, illumination device, and display device
KR101065413B1 (en) Organic Light Emitted Display Device and The Fabricating Method Of The Same
TWI699022B (en) Light-emitting device, display apparatus, and illumination apparatus
KR20150042367A (en) Organic electro luminescent device and method of fabricating the same
JP2008171637A (en) Transparent conductive film laminate, organic el device using this transparent conductive film laminate, and manufacturing method of these
JP2005209651A (en) Organic electro-luminescent element and its manufacturing method
JP5378354B2 (en) Organic EL device and manufacturing method thereof
JP5963458B2 (en) LIGHT EMITTING DEVICE, IMAGE FORMING DEVICE, AND IMAGING DEVICE
WO2017043243A1 (en) Organic electroluminescence device, organic electroluminescence device manufacturing method, lighting device and display device
JP2007134099A (en) Organic electroluminescence display panel
US20210233964A1 (en) Display substrate, manufacturing method thereof, and display device
US7545096B2 (en) Trans-reflective organic electroluminescent panel and method of fabricating the same
TW591566B (en) Full color display panel and color-separating substrate thereof
JP2010272465A (en) Light emitting element and light emitting device having the same
US20190123305A1 (en) Light-emitting device
JP3724733B2 (en) ORGANIC EL LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2004281189A (en) Top face light-emitting organic electroluminescent display device and its manufacturing method
TWI501439B (en) Image display system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604