WO2017212789A1 - Radiation image pickup device and radiation image pickup system - Google Patents

Radiation image pickup device and radiation image pickup system Download PDF

Info

Publication number
WO2017212789A1
WO2017212789A1 PCT/JP2017/015451 JP2017015451W WO2017212789A1 WO 2017212789 A1 WO2017212789 A1 WO 2017212789A1 JP 2017015451 W JP2017015451 W JP 2017015451W WO 2017212789 A1 WO2017212789 A1 WO 2017212789A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
imaging
radiation
unit
imaging apparatus
Prior art date
Application number
PCT/JP2017/015451
Other languages
French (fr)
Japanese (ja)
Inventor
慶人 佐々木
尚志郎 猿田
小林 玉樹
陽平 石田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2017212789A1 publication Critical patent/WO2017212789A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors

Definitions

  • the present invention relates to a radiation imaging apparatus and a radiation imaging system.
  • Radiation imaging devices are widely used for medical image diagnosis and nondestructive inspection.
  • a method of acquiring a plurality of radiation images of radiation having different energy components with respect to a subject using the radiation imaging apparatus and acquiring an energy subtraction image in which a specific subject portion is separated or emphasized from a difference between the acquired radiation images. are known.
  • Patent Documents 1 to 3 in order to obtain energy subtraction images, two imaging panels are used, and radiation images of radiation of two different energy components are obtained by one radiation irradiation (one-shot method) on a subject.
  • a radiation imaging apparatus for recording the above has been proposed.
  • Patent Document 2 discloses that two imaging panels are detachably fixed to a support substrate.
  • Patent Document 3 shows that a connecting member is used and a position defining portion is provided on one of the imaging panels so that the two imaging panels maintain a predetermined positional relationship.
  • JP-A-5-208000 JP 2010-101805 A Japanese Patent Laid-Open No. 3-135996
  • An object of the present invention is to provide an advantageous technique for acquiring an energy subtraction image with a single irradiation of radiation using a plurality of imaging panels in a radiation imaging apparatus.
  • a radiation imaging apparatus includes a first imaging panel, a first imaging panel, and a first imaging panel arranged such that imaging surfaces for detecting radiation overlap each other. And an adjustment unit for adjusting the relative position between the first imaging panel and the second imaging panel, the radiation imaging apparatus arranged in the housing, wherein the adjustment unit includes the first imaging panel and the second imaging panel.
  • a panel support section that supports one of the imaging panels, and a positioning section that moves the panel support section and determines a relative position between the first imaging panel and the second imaging panel.
  • the above means provides an advantageous technique for acquiring an energy subtraction image with a single radiation irradiation using a plurality of imaging panels in the radiation imaging apparatus.
  • FIG. 1B is a cross-sectional view of the radiation imaging apparatus of FIG. 1A.
  • FIG. 1B is a cross-sectional view of the radiation imaging apparatus of FIG. 1A.
  • FIG. 1B is a cross-sectional view of the radiation detection apparatus of FIG. 1A.
  • FIG. 1B is a cross-sectional view of the radiation imaging apparatus of FIG. 1A.
  • the radiation in the present invention includes a beam having energy of the same degree or more, such as X-rays, ⁇ -rays, ⁇ -rays, etc., which are beams formed by particles (including photons) emitted by radiation decay, such as X It can also include rays, particle rays, and cosmic rays.
  • FIG. 1A is a plan view of a radiation imaging apparatus 100 according to an embodiment of the present invention
  • FIGS. 2A to 2C are cross-sectional views taken along a dotted line A-A ′ in FIG. 1A.
  • the radiation imaging apparatus 100 is provided with two imaging panels 101 and 103 each having an imaging surface for detecting radiation in a housing 107.
  • the radiation imaging apparatus 100 includes two imaging panels 101 and 103 so that an energy subtraction image can be acquired by one-time radiation irradiation (one-shot method) on a subject. For this reason, in the orthogonal projection with respect to the panel 109 provided with the incident surface irradiated with the radiation 110 of the housing
  • the imaging panels 101 and 103 each include a detection unit 113 having an imaging surface 111 on which a plurality of pixels for outputting a signal corresponding to incident radiation 110 is arranged.
  • the imaging panels 101 and 103 may be direct imaging panels using conversion elements that directly convert incident radiation into electrical signals for each pixel.
  • a semiconductor material such as cadmium telluride (CdTe) or amorphous selenium (a-Se) can be used for the conversion element.
  • the imaging panels 101 and 103 are indirect imaging using a scintillator 112 that converts radiation into light and a conversion element that converts light converted by the scintillator 112 into an electrical signal.
  • a panel may be sufficient.
  • the detection elements of the respective pixels arranged on the imaging surface 111 detect light converted from radiation by the scintillator 112.
  • a conversion element such as a pn, pin, or MIS type formed using a semiconductor material such as silicon (Si) or germanium (Ge) on a substrate such as glass or plastic, and a thin film transistor (TFT) or the like.
  • TFT thin film transistor
  • the imaging panel 101 and the imaging panel 103 may be imaging panels having the same configuration or may be imaging panels having different configurations.
  • one of the imaging panels 101 and 103 may be a direct imaging panel and the other may be an indirect imaging panel.
  • the scintillator 112 may be the same between the imaging panel 101 and the imaging panel 103 or may be different.
  • the scintillator 112 may be formed directly on the imaging surface 111 by using a vapor deposition method, a printing method, or the like, or the scintillator 112 formed in advance on the base is captured by the imaging surface 111 via a coupling portion such as an adhesive. And may be pasted together.
  • an adjustment unit for adjusting the relative position between the two imaging panels is arranged in the casing 107.
  • the adjustment unit includes a panel support unit 105 that supports one of the two imaging panels, and a positioning unit 108 (described later) for moving the panel support unit 105 and determining a relative position between the two imaging panels.
  • an imaging panel supported by the panel support unit 105 is referred to as an imaging panel 101
  • an imaging panel attached to the housing 107 without the panel support unit 105 interposed therebetween is referred to as an imaging panel 103.
  • the imaging panel 101 is supported by the panel support unit 105 through the coupling unit 104, and the panel support unit 105 is attached to the housing 107 through the coupling unit 106. It is done.
  • the imaging panel 103 is attached to the housing 107 via the coupling unit 102.
  • the coupling portions 102, 104, and 106 may be organic adhesives or adhesive films. Further, by using screws or screws for the coupling portions 102, 104, 106, between the imaging panel 101 and the housing 107, between the imaging panel 103 and the panel support portion 105, and between the panel support portion 105 and the housing 107. You may fix between each.
  • the housing 107 includes a panel 109 on the incident surface side where the radiation 110 is irradiated as an exterior, and a panel 114 on the opposite side of the panel 109. Further, a support portion 116 for supporting the imaging panel 101 or the imaging panel 103 is provided between the panel 109 and the panel 114. Panel 109 and panel 114 may be integrally formed of the same material.
  • the support portion 116 may be integrally formed with the same material as the exterior of the housing 107 including the panel 109 and the panel 114, or the exterior of the housing 107 using a bonding portion such as an adhesive or a screw. And may be combined.
  • the shape of the support 116 may be a plate shape as shown in FIGS. 2A and 2B, or may be a frame shape along the exterior, for example, and may have a hole in the center.
  • the imaging panel 101 may be attached to the panel 114 via the panel support unit 105, and the imaging panel 103 may be attached to the support unit 116.
  • the imaging panel 101 may be attached to the support unit 116 via the panel support unit 105, and the imaging panel 103 may be attached to the panel 114.
  • the imaging panel 101 may be attached to one of the panel 109 and the support part 116 via the panel support part 105, and the imaging panel 103 may be attached to the other of the panel 109 and the support part 116.
  • a housing 107 shown in FIG. 2C includes a panel 109 and a panel 114 constituting an exterior, and does not have a support portion 116 unlike the housing 107 shown in FIGS. 2A and 2B.
  • the imaging panel 101 may be attached to the panel 114 via the panel support unit 105, and the imaging panel 103 may be attached to the panel 109.
  • the imaging panel 101 may be attached to the panel 109 via the panel support unit 105, and the imaging panel 103 may be attached to the panel 114.
  • the imaging panel 101 is attached to the housing 107 via the panel support unit 105, and the positioning unit 108 moves the panel support unit 105, so that the imaging panel 101 and the imaging panel 103 are relative to each other. Adjust the position. The positional deviation between the imaging panel 101 and the imaging panel 103 is corrected by the adjustment unit configured by the panel support unit 105 and the positioning unit 108.
  • the adjustment unit is configured such that the positioning unit 108 has a screw such as a micrometer head, and moves the panel support unit 105 such as a movable stage as the screw rotates. It may be. With such a configuration, the imaging panel 101 rotates about the axis extending in the direction orthogonal to the imaging surface 111 of the imaging panel 101 in the ⁇ direction, and the relative position between the imaging panel 101 and the imaging panel 103 is adjusted. Is done. Further, the positioning unit 108 may include a driving unit such as an actuator, and for example, an electric screw such as a micrometer head may be operated. For example, as shown in FIG. 1C and FIG.
  • the imaging panel 101 by using a UVW stage or the like as an adjustment unit, moving the imaging panel 101 in the X-axis and Y-axis directions parallel to the imaging surface 111, the imaging panel 101 and imaging are performed.
  • the relative position with respect to the panel 103 may be adjusted.
  • the stage part of the UVW stage can function as the panel support part 105, and the actuator that moves the stage part can function as the positioning part 108.
  • the panel support unit 105 can be moved not only in the ⁇ direction but also in the X-axis and Y-axis directions by the positioning unit 108, so that the relative position between the imaging panel 101 and the imaging panel 103 can be adjusted more precisely.
  • the positioning unit 108 may move the panel support unit 105 in the ⁇ direction.
  • the radiation imaging apparatus 100 may further include a storage unit 115 such as a memory that stores an adjustment amount for adjusting the relative position between the imaging panel 101 and the imaging panel 103. Good.
  • the positioning unit 108 may perform calibration for moving the panel support unit 105 according to the adjustment amount stored in the storage unit 115.
  • the storage unit 115 may be inside the housing 107 as shown in FIG. 1C or outside the housing 107.
  • the radiation imaging apparatus 100 includes a panel support unit 105 (adjustment unit) for each imaging panel, and the two imaging panels 101a and 101b arranged in the housing 107 are both panel support units. It may be attached to the housing 107 via 105.
  • the panel support unit 105 is arranged on both imaging panels in the configuration shown in FIG. 2C.
  • the panel support unit 105 may be arranged on both imaging panels configured in FIGS. 2A and 2B. . At least one of the imaging panels may be supported by the panel support unit 105 and attached to the housing 107.
  • the shape of the housing 107 is not limited to the shape shown in FIGS.
  • the imaging panel 103 is attached to the casing member 407a, and the imaging panel 101 is attached to the casing member 407b via the panel support unit 105.
  • the housing member 407a and the housing member 407b may be coupled by the coupling unit 401a to form the housing 107 and function as the radiation imaging apparatus 100.
  • the coupling portion 401a may couple the housing member 407a and the housing member 407b using screws, bolts, nuts, or the like, for example, using an adhesive or an adhesive film. Also good.
  • three or more imaging panels may be stacked.
  • at least one of the stacked imaging panels can be the imaging panel 101 supported by the casing 107 via the panel support unit 105.
  • an imaging panel other than one of the stacked imaging panels may be the imaging panel 101 attached to the housing 107 via the panel support unit 105.
  • the casing 107 includes a casing member 407c serving as an upper lid constituting the panel 109 on the radiation incident side side, and a lower lid constituting the panel 114 opposite to the incident plane. And a casing member 407d.
  • the imaging panel 103 is supported by the casing member 407c and the imaging panel 101 is supported by the casing member 407d via the panel support unit 105.
  • the configuration is not limited thereto.
  • the imaging panel 101 may be attached to the housing member 407c via the panel support portion 105, and the imaging panel 103 may be attached to the housing member 407d without going through the panel support portion 105.
  • the coupling portion 401b may couple the housing member 407c and the housing member 407d using an adhesive, an adhesive film, or the like, or may use a screw or the like, for example.
  • the housing 107 may be composed of a plurality of housing members in order to provide an opening for accessing the inside of the housing 107, for example.
  • the respective housing members can be coupled and fixed to each other using an adhesive, an adhesive film, a screw or the like.
  • the support method of the imaging panels 101 and 103 is not limited to the above-described configurations.
  • a support base 402a supported by the casing 107 via the coupling portion 403 is arranged in the casing 107, and the imaging panels 101 and 103 are arranged on the support base 402a.
  • the support base may not be plate-shaped as shown in FIG. 5A.
  • a frame shape along the outer edges of the imaging panels 101 and 103 may be used like a support base 402b shown in FIG. 5B.
  • one of the imaging panels 101 and 103 is attached to the housing 107 via the support bases 402a and 402b, and the other is attached to the case without the support bases 402a and 402b. 107 may be attached.
  • the imaging panels 101 and 103 can be supported independently from the housing 107, so that the relative position between the imaging panel 101 and the imaging panel 103 can be easily adjusted. Can be.
  • the positional deviation between the imaging panel 101 and the imaging panel 103 occurs not only before the product shipment of the radiation imaging apparatus 100 but also after the product shipment, for example, when an impact is applied due to the subject colliding with the radiation imaging apparatus 100. sell.
  • the adjustment using the adjustment unit including the panel support unit 105 and the positioning unit 108 can be a mechanism that can be adjusted even after product shipment.
  • the radiation imaging apparatus 100 may be irradiated with the radiation 110, and the positional deviation between the imaging panel 101 and the imaging panel 103 may be adjusted according to the radiographic images captured by the imaging panel 101 and the imaging panel 103, respectively.
  • the relative positional deviation between the imaging panel 101 and the imaging panel 103 can be obtained from the radiographic images obtained by the imaging panels 101 and 103 by arranging and imaging a subject for position adjustment. Good. Further, for example, as shown in FIG. 5A, alignment marks 501 are provided on the imaging panels 101 and 103, and relative positions between the imaging panel 101 and the imaging panel 103 are obtained from radiographic images obtained by the imaging panels 101 and 103. A typical positional deviation may be obtained. For example, a UVW stage is used as the positioning unit 108, and the radiation imaging apparatus 100 is continuously irradiated with the radiation 110. You may adjust.
  • a radiation absorbing layer 502 for absorbing a part of the radiation transmitted through the imaging panel 101 may be disposed between the imaging panel 101 and the imaging panel 103.
  • the imaging panel 103 close to the incident surface irradiated with the radiation 110 can detect low-energy radiation
  • the imaging panel 101 far from the incident surface can detect high-energy radiation.
  • the radiation absorbing layer 502 may be appropriately selected depending on the type of radiation 110 used, the configuration of the imaging panels 101 and 103, and the like.
  • the radiation absorbing layer 502 may absorb radiation uniformly in the plane.
  • a metal such as copper can be used.
  • a radiation absorbing layer may be disposed on the panel support unit 105, and for example, in the configuration illustrated in FIG. 4C, a radiation absorbing layer may be disposed on the support base 402a.
  • the panel support part 105 and the support base 402a may be made of, for example, metal and function as a radiation absorbing layer.
  • the radiation imaging system 600 includes, for example, a radiation imaging apparatus 100, a signal processing unit 603 including an image processor, a display unit 604 including a display, and a radiation source 601 for generating radiation.
  • Radiation for example, X-rays
  • the signal processing unit 603 performs predetermined signal processing using the radiographic image obtained thereby, and generates image data. This image data is displayed on the display unit 604.

Abstract

Disclosed is a radiation image pickup device wherein a first image pickup panel and a second image pickup panel, and an adjustment unit for adjusting the relative positions of the first image pickup panel and the second image pickup panel are disposed in a housing, said first image pickup panel and second image pickup panel being disposed such that respective image pickup surfaces for detecting radiation overlap each other. The adjustment unit includes: a panel supporting unit that supports the first image pickup panel or the second image pickup panel; and an aligning unit for determining the relative positions of the first image pickup panel and the second image pickup panel by moving the panel supporting unit.

Description

放射線撮像装置及び放射線撮像システムRadiation imaging apparatus and radiation imaging system
 本発明は、放射線撮像装置及び放射線撮像システムに関するものである。 The present invention relates to a radiation imaging apparatus and a radiation imaging system.
 医療画像診断や非破壊検査に放射線撮像装置が広く利用されている。この放射線撮像装置を用いて、被写体に対してエネルギ成分が異なる放射線の放射線画像を複数取得し、取得した放射線画像の差分から、特定の被写体部分を分離又は強調したエネルギサブトラクション画像を取得する方法が知られている。特許文献1~3には、エネルギサブトラクション画像を取得するために、2つの撮像パネルを用いて、被写体に対して1回の放射線照射(ワンショット法)で2つの異なるエネルギ成分の放射線の放射線画像を記録する放射線撮像装置が提案されている。特許文献2には、2つの撮像パネルを着脱可能に支持基板に固定することが示されている。特許文献3には、2つの撮像パネルが所定の位置関係を保つように、連結部材を用いることや一方の撮像パネルに位置規定部を配することが示されている。 Radiation imaging devices are widely used for medical image diagnosis and nondestructive inspection. A method of acquiring a plurality of radiation images of radiation having different energy components with respect to a subject using the radiation imaging apparatus and acquiring an energy subtraction image in which a specific subject portion is separated or emphasized from a difference between the acquired radiation images. Are known. In Patent Documents 1 to 3, in order to obtain energy subtraction images, two imaging panels are used, and radiation images of radiation of two different energy components are obtained by one radiation irradiation (one-shot method) on a subject. A radiation imaging apparatus for recording the above has been proposed. Patent Document 2 discloses that two imaging panels are detachably fixed to a support substrate. Patent Document 3 shows that a connecting member is used and a position defining portion is provided on one of the imaging panels so that the two imaging panels maintain a predetermined positional relationship.
特開平5-208000号公報JP-A-5-208000 特開2010-101805号公報JP 2010-101805 A 特開平3-135796号公報Japanese Patent Laid-Open No. 3-135996
 2つの撮像パネルを重ね合わせる際、特許文献3の方法を用いた場合でも、重ね合わせ精度や撮像パネル間の公差などによって、2つの撮像パネル間で位置ずれが起きてしまう可能性がある。また、故障による撮像パネルの交換の際や放射線撮像装置に対して衝撃が加わった場合、撮像パネル間の位置ずれが起きてしまう可能性がある。撮像パネル間で位置ずれが起きた場合、2つの撮像パネルで得られる放射線画像の差分から生成されるエネルギサブトラクション画像の画質が低下する可能性がある。 When the two imaging panels are overlapped, even when the method of Patent Document 3 is used, there is a possibility that a positional deviation occurs between the two imaging panels due to the overlay accuracy, the tolerance between the imaging panels, and the like. In addition, when the imaging panel is replaced due to a failure or when an impact is applied to the radiation imaging apparatus, there is a possibility that a positional deviation between the imaging panels occurs. When a positional shift occurs between the imaging panels, the image quality of the energy subtraction image generated from the difference between the radiographic images obtained by the two imaging panels may be deteriorated.
 本発明は、放射線撮像装置において、複数の撮像パネルを用い、1回の放射線の照射でエネルギサブトラクション画像を取得するために有利な技術を提供することを目的とする。 An object of the present invention is to provide an advantageous technique for acquiring an energy subtraction image with a single irradiation of radiation using a plurality of imaging panels in a radiation imaging apparatus.
 上記課題に鑑みて、本発明の実施形態に係る放射線撮像装置は、放射線を検出する撮像面が互いに重なるように配された第1の撮像パネル及び第2の撮像パネルと、第1の撮像パネルと第2の撮像パネルとの間の相対位置を調整するための調整部と、が筐体の中に配された放射線撮像装置であって、調整部は、第1の撮像パネル及び第2の撮像パネルのうち一方を支持するパネル支持部と、パネル支持部を移動させ、第1の撮像パネルと第2の撮像パネルとの間の相対位置を決めるための位置決め部と、を含むことを特徴とする。 In view of the above problems, a radiation imaging apparatus according to an embodiment of the present invention includes a first imaging panel, a first imaging panel, and a first imaging panel arranged such that imaging surfaces for detecting radiation overlap each other. And an adjustment unit for adjusting the relative position between the first imaging panel and the second imaging panel, the radiation imaging apparatus arranged in the housing, wherein the adjustment unit includes the first imaging panel and the second imaging panel. A panel support section that supports one of the imaging panels, and a positioning section that moves the panel support section and determines a relative position between the first imaging panel and the second imaging panel. And
 上記手段によって、放射線撮像装置において、複数の撮像パネルを用い、1回の放射線の照射でエネルギサブトラクション画像を取得するために有利な技術が提供される。 The above means provides an advantageous technique for acquiring an energy subtraction image with a single radiation irradiation using a plurality of imaging panels in the radiation imaging apparatus.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の実施形態に係る放射線撮像装置の構成例を示す平面図。 図1Aの放射線撮像装置の断面図。 図1Aの放射線撮像装置の断面図。 図1Aの放射線検出装置の断面図。 図1Aの放射線撮像装置の断面図。 本発明の実施形態に係る放射線検出装置を用いた放射線撮像システムの構成例を説明する図。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
, , The top view which shows the structural example of the radiation imaging device which concerns on embodiment of this invention. , , , , , FIG. 1B is a cross-sectional view of the radiation imaging apparatus of FIG. 1A. , FIG. 1B is a cross-sectional view of the radiation imaging apparatus of FIG. 1A. , , , FIG. 1B is a cross-sectional view of the radiation detection apparatus of FIG. 1A. , FIG. 1B is a cross-sectional view of the radiation imaging apparatus of FIG. 1A. The figure explaining the structural example of the radiation imaging system using the radiation detection apparatus which concerns on embodiment of this invention.
 以下、本発明に係る放射線撮像装置の具体的な実施形態及び実施例を、添付図面を参照して説明する。なお、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。 Hereinafter, specific embodiments and examples of the radiation imaging apparatus according to the present invention will be described with reference to the accompanying drawings. The radiation in the present invention includes a beam having energy of the same degree or more, such as X-rays, β-rays, γ-rays, etc., which are beams formed by particles (including photons) emitted by radiation decay, such as X It can also include rays, particle rays, and cosmic rays.
 図1A~5Bを参照して、本発明の実施形態による放射線撮像装置の構造について説明する。図1Aに、本発明の実施形態における放射線撮像装置100の平面図、図2A~Cに、図1Aの点線A-A’間の断面図を示す。図2A~Cに示すように、放射線撮像装置100には、筐体107の中に放射線を検出するための撮像面を備える2つの撮像パネル101、103が配される。放射線撮像装置100は、2つの撮像パネル101、103を備えることによって、被写体に対して1回の放射線の照射(ワンショット法)でエネルギサブトラクション画像の取得が可能な構成を有する。このため、筐体107の放射線110が照射される入射面を備えるパネル109に対する正射影において、2つの撮像パネル101、103は互いに撮像面が重なるように配される。 The structure of the radiation imaging apparatus according to the embodiment of the present invention will be described with reference to FIGS. 1A to 5B. FIG. 1A is a plan view of a radiation imaging apparatus 100 according to an embodiment of the present invention, and FIGS. 2A to 2C are cross-sectional views taken along a dotted line A-A ′ in FIG. 1A. As shown in FIGS. 2A to 2C, the radiation imaging apparatus 100 is provided with two imaging panels 101 and 103 each having an imaging surface for detecting radiation in a housing 107. The radiation imaging apparatus 100 includes two imaging panels 101 and 103 so that an energy subtraction image can be acquired by one-time radiation irradiation (one-shot method) on a subject. For this reason, in the orthogonal projection with respect to the panel 109 provided with the incident surface irradiated with the radiation 110 of the housing | casing 107, the two imaging panels 101 and 103 are distribute | arranged so that an imaging surface may mutually overlap.
 撮像パネル101、103は、入射する放射線110に応じた信号を出力するための複数の画素が配された撮像面111を有する検出部113をそれぞれ備える。撮像パネル101、103は、図2Eに示すように、入射した放射線を直接、電気信号に変換する変換素子を、それぞれの画素に用いた直接型の撮像パネルであってもよい。この場合、変換素子にはテルル化カドミウム(CdTe)やアモルファスセレン(a-Se)などの半導体材料が用いられうる。 The imaging panels 101 and 103 each include a detection unit 113 having an imaging surface 111 on which a plurality of pixels for outputting a signal corresponding to incident radiation 110 is arranged. As shown in FIG. 2E, the imaging panels 101 and 103 may be direct imaging panels using conversion elements that directly convert incident radiation into electrical signals for each pixel. In this case, a semiconductor material such as cadmium telluride (CdTe) or amorphous selenium (a-Se) can be used for the conversion element.
 また、撮像パネル101、103は、図2Fに示すように、放射線を光に変換するシンチレータ112と、シンチレータ112で変換された光を電気信号に変換する変換素子と、を用いた間接型の撮像パネルであってもよい。図2Fに示す構成では、撮像パネル101、103において、シンチレータ112によって放射線から変換された光を、撮像面111に配されるそれぞれの画素の検出素子が検出する。この場合、例えばガラスやプラスチックなどの基板上に、シリコン(Si)やゲルマニウム(Ge)などの半導体材料を用いて形成されたpn、pin、MIS型などの変換素子と、薄膜トランジスタ(TFT)などのスイッチ素子と、を含む複数の画素が配されうる。 In addition, as shown in FIG. 2F, the imaging panels 101 and 103 are indirect imaging using a scintillator 112 that converts radiation into light and a conversion element that converts light converted by the scintillator 112 into an electrical signal. A panel may be sufficient. In the configuration illustrated in FIG. 2F, in the imaging panels 101 and 103, the detection elements of the respective pixels arranged on the imaging surface 111 detect light converted from radiation by the scintillator 112. In this case, for example, a conversion element such as a pn, pin, or MIS type formed using a semiconductor material such as silicon (Si) or germanium (Ge) on a substrate such as glass or plastic, and a thin film transistor (TFT) or the like. And a plurality of pixels including a switch element.
 撮像パネル101と撮像パネル103とは、互いに同じ構成を有する撮像パネルであってもよいし、互いに異なる構成を有する撮像パネルであってもよい。例えば、撮像パネル101、103の一方が直接型の撮像パネルで、他方が間接型の撮像パネルであってもよい。また例えば、撮像パネル101、103が間接型の撮像パネルの場合、シンチレータ112が、撮像パネル101と撮像パネル103とで同じであってもよいし、異なっていてもよい。シンチレータ112は、撮像面111の上に直接、蒸着法や印刷法などを用いて形成してもよいし、基台上に予め形成したシンチレータ112を接着剤などの結合部を介して撮像面111と貼り合わせてもよい。 The imaging panel 101 and the imaging panel 103 may be imaging panels having the same configuration or may be imaging panels having different configurations. For example, one of the imaging panels 101 and 103 may be a direct imaging panel and the other may be an indirect imaging panel. For example, when the imaging panels 101 and 103 are indirect imaging panels, the scintillator 112 may be the same between the imaging panel 101 and the imaging panel 103 or may be different. The scintillator 112 may be formed directly on the imaging surface 111 by using a vapor deposition method, a printing method, or the like, or the scintillator 112 formed in advance on the base is captured by the imaging surface 111 via a coupling portion such as an adhesive. And may be pasted together.
 また筐体107の中には、2つの撮像パネルの間の相対位置を調整するための調整部が配される。調整部は、2つの撮像パネルのうち一方を支持するパネル支持部105と、パネル支持部105を移動させ2つの撮像パネルの間の相対位置を決めるための位置決め部108(後述する。)を含む。本明細書において、パネル支持部105によって支持される撮像パネルを撮像パネル101と示し、筐体107にパネル支持部105を介さずに取り付けられる撮像パネルを撮像パネル103と示す。具体的には、図2A~Cに示すように、撮像パネル101は、結合部104を介してパネル支持部105に支持され、パネル支持部105は、結合部106を介して筐体107に取り付けられる。また、撮像パネル103は、結合部102を介して筐体107に取り付けられる。結合部102、104、106は、有機系接着剤や接着フィルムなどであってもよい。また、結合部102、104、106にねじやビスなどを用いて、撮像パネル101と筐体107との間、撮像パネル103とパネル支持部105との間、パネル支持部105と筐体107との間を、それぞれ固定してもよい。 Also, an adjustment unit for adjusting the relative position between the two imaging panels is arranged in the casing 107. The adjustment unit includes a panel support unit 105 that supports one of the two imaging panels, and a positioning unit 108 (described later) for moving the panel support unit 105 and determining a relative position between the two imaging panels. . In this specification, an imaging panel supported by the panel support unit 105 is referred to as an imaging panel 101, and an imaging panel attached to the housing 107 without the panel support unit 105 interposed therebetween is referred to as an imaging panel 103. Specifically, as shown in FIGS. 2A to 2C, the imaging panel 101 is supported by the panel support unit 105 through the coupling unit 104, and the panel support unit 105 is attached to the housing 107 through the coupling unit 106. It is done. In addition, the imaging panel 103 is attached to the housing 107 via the coupling unit 102. The coupling portions 102, 104, and 106 may be organic adhesives or adhesive films. Further, by using screws or screws for the coupling portions 102, 104, 106, between the imaging panel 101 and the housing 107, between the imaging panel 103 and the panel support portion 105, and between the panel support portion 105 and the housing 107. You may fix between each.
 次に、撮像パネル101、103の筐体107の中で配される位置について説明する。まず、図2A、Bに示す構成について説明する。図2A、Bにおいて、筐体107は、外装として放射線110が照射される入射面の側のパネル109と、パネル109とは反対側のパネル114と、を含む。また、パネル109とパネル114との間には、撮像パネル101又は撮像パネル103を支持するための支持部116が設けられる。パネル109とパネル114とは、同一の材料で一体的に形成されていてもよい。また、支持部116は、パネル109及びパネル114を含む筐体107の外装と同じ材料で一体的に形成されていてもよいし、接着剤やねじなどの結合部を用いて筐体107の外装と結合していてもよい。また支持部116の形状は、図2A、Bのように板状であってもよいし、例えば外装に沿った枠状で、中央に穴が開いていてもよい。 Next, the positions arranged in the housing 107 of the imaging panels 101 and 103 will be described. First, the configuration shown in FIGS. 2A and 2B will be described. 2A and 2B, the housing 107 includes a panel 109 on the incident surface side where the radiation 110 is irradiated as an exterior, and a panel 114 on the opposite side of the panel 109. Further, a support portion 116 for supporting the imaging panel 101 or the imaging panel 103 is provided between the panel 109 and the panel 114. Panel 109 and panel 114 may be integrally formed of the same material. Further, the support portion 116 may be integrally formed with the same material as the exterior of the housing 107 including the panel 109 and the panel 114, or the exterior of the housing 107 using a bonding portion such as an adhesive or a screw. And may be combined. The shape of the support 116 may be a plate shape as shown in FIGS. 2A and 2B, or may be a frame shape along the exterior, for example, and may have a hole in the center.
 支持部116を有する筐体107において、図2Aに示すように、撮像パネル101がパネル支持部105を介してパネル114に取り付けられ、撮像パネル103が支持部116に取り付けられてもよい。また、図2Bに示すように、撮像パネル101がパネル支持部105を介して支持部116に取り付けられ、撮像パネル103がパネル114に取り付けられてもよい。また、不図示であるが、撮像パネル101がパネル支持部105を介してパネル109及び支持部116の一方に取り付けられ、撮像パネル103がパネル109及び支持部116の他方に取り付けられてもよい。 2A, the imaging panel 101 may be attached to the panel 114 via the panel support unit 105, and the imaging panel 103 may be attached to the support unit 116. In addition, as illustrated in FIG. 2B, the imaging panel 101 may be attached to the support unit 116 via the panel support unit 105, and the imaging panel 103 may be attached to the panel 114. Although not shown, the imaging panel 101 may be attached to one of the panel 109 and the support part 116 via the panel support part 105, and the imaging panel 103 may be attached to the other of the panel 109 and the support part 116.
 次に、図2Cに示す構成における撮像パネル101、103の筐体107の中で配される位置について説明する。図2Cに示す筐体107は、外装を構成するパネル109及びパネル114を含み、図2A、Bに示す筐体107と異なり支持部116を有さない。支持部116を有さない筐体107において、図2Cに示すように、撮像パネル101がパネル支持部105を介してパネル114に取り付けられ、撮像パネル103がパネル109に取り付けられてもよい。また、不図示であるが、撮像パネル101がパネル支持部105を介してパネル109に取り付けられ、撮像パネル103がパネル114に取り付けられてもよい。 Next, the positions arranged in the casing 107 of the imaging panels 101 and 103 in the configuration shown in FIG. 2C will be described. A housing 107 shown in FIG. 2C includes a panel 109 and a panel 114 constituting an exterior, and does not have a support portion 116 unlike the housing 107 shown in FIGS. 2A and 2B. In the housing 107 that does not include the support unit 116, as illustrated in FIG. 2C, the imaging panel 101 may be attached to the panel 114 via the panel support unit 105, and the imaging panel 103 may be attached to the panel 109. Although not shown, the imaging panel 101 may be attached to the panel 109 via the panel support unit 105, and the imaging panel 103 may be attached to the panel 114.
 ワンショット法によってサブトラクション画像を得るために、複数の撮像パネルを重ね合わせる場合、重ね合わせ精度や撮像パネル間の公差などによって、2つの撮像パネル間で位置ずれが起きてしまう可能性がある。また、故障による撮像パネルの交換の際や放射線撮像装置に対して衝撃が加わった場合、撮像パネル間の位置ずれが起きてしまう可能性がある。撮像パネル間で位置ずれが起きた場合、2つの撮像パネルで得られる放射線画像の差分から生成されるエネルギサブトラクション画像において、例えば位置ずれしたエッジ部分が強調されるなど、画質が低下する可能性がある。そこで本実施形態において、撮像パネル101が、パネル支持部105を介して筐体107に取り付けられ、位置決め部108が、パネル支持部105を移動させることによって、撮像パネル101と撮像パネル103との相対位置を調整する。パネル支持部105と位置決め部108とで構成される調整部によって、撮像パネル101と撮像パネル103との間の位置ずれが修正される。 When a plurality of imaging panels are overlapped in order to obtain a subtraction image by the one-shot method, there is a possibility that a positional deviation occurs between the two imaging panels due to overlay accuracy, tolerance between the imaging panels, and the like. In addition, when the imaging panel is replaced due to a failure or when an impact is applied to the radiation imaging apparatus, there is a possibility that a positional deviation between the imaging panels occurs. When a positional shift occurs between the imaging panels, there is a possibility that the image quality may be deteriorated in the energy subtraction image generated from the difference between the radiographic images obtained by the two imaging panels, for example, the shifted edge portion is emphasized. is there. Therefore, in the present embodiment, the imaging panel 101 is attached to the housing 107 via the panel support unit 105, and the positioning unit 108 moves the panel support unit 105, so that the imaging panel 101 and the imaging panel 103 are relative to each other. Adjust the position. The positional deviation between the imaging panel 101 and the imaging panel 103 is corrected by the adjustment unit configured by the panel support unit 105 and the positioning unit 108.
 調整部は、図1B、図3Aに示すように、位置決め部108が例えばマイクロメータヘッドなどのねじを有し、ねじの回転に伴って可動ステージなどのパネル支持部105を移動するように構成されていてもよい。このような構成によって、撮像パネル101は、撮像パネル101の撮像面111と直交する方向に延びる軸を中心にしてθ方向に回転し、撮像パネル101と撮像パネル103との間の相対位置が調整される。また、位置決め部108としてアクチュエータなどの駆動部を含み、例えば電動でマイクロメータヘッドなどのねじを動作させてもよい。例えば、図1C、図3Bに示すように、調整部としてUVWステージなどを用いて、撮像パネル101を撮像面111と平行なX軸、Y軸方向にも移動させることによって、撮像パネル101と撮像パネル103との間の相対位置を調整してもよい。この場合、UVWステージのステージ部がパネル支持部105として、ステージ部を動かすアクチュエータが位置決め部108として、それぞれ機能しうる。パネル支持部105が位置決め部108によって、θ方向だけでなく、X軸、Y軸方向にも移動できることによって、撮像パネル101と撮像パネル103との間の相対位置をより精密に調整できる。少なくとも、位置決め部108は、パネル支持部105をθ方向に移動できるとよい。 As shown in FIGS. 1B and 3A, the adjustment unit is configured such that the positioning unit 108 has a screw such as a micrometer head, and moves the panel support unit 105 such as a movable stage as the screw rotates. It may be. With such a configuration, the imaging panel 101 rotates about the axis extending in the direction orthogonal to the imaging surface 111 of the imaging panel 101 in the θ direction, and the relative position between the imaging panel 101 and the imaging panel 103 is adjusted. Is done. Further, the positioning unit 108 may include a driving unit such as an actuator, and for example, an electric screw such as a micrometer head may be operated. For example, as shown in FIG. 1C and FIG. 3B, by using a UVW stage or the like as an adjustment unit, moving the imaging panel 101 in the X-axis and Y-axis directions parallel to the imaging surface 111, the imaging panel 101 and imaging are performed. The relative position with respect to the panel 103 may be adjusted. In this case, the stage part of the UVW stage can function as the panel support part 105, and the actuator that moves the stage part can function as the positioning part 108. The panel support unit 105 can be moved not only in the θ direction but also in the X-axis and Y-axis directions by the positioning unit 108, so that the relative position between the imaging panel 101 and the imaging panel 103 can be adjusted more precisely. At least, the positioning unit 108 may move the panel support unit 105 in the θ direction.
 また、位置決め部108にアクチュエータを用いる場合、放射線撮像装置100が撮像パネル101と撮像パネル103との間の相対位置を調整する調整量を記憶するメモリなどの記憶部115を更に有していてもよい。例えば、放射線撮像装置100の起動時に、位置決め部108が、記憶部115に記憶された調整量に従ってパネル支持部105を移動させるキャリブレーションを行ってもよい。記憶部115は、図1Cに示すように筐体107内にあってもよいし、筐体107の外部にあってもよい。 Further, when an actuator is used for the positioning unit 108, the radiation imaging apparatus 100 may further include a storage unit 115 such as a memory that stores an adjustment amount for adjusting the relative position between the imaging panel 101 and the imaging panel 103. Good. For example, when the radiation imaging apparatus 100 is activated, the positioning unit 108 may perform calibration for moving the panel support unit 105 according to the adjustment amount stored in the storage unit 115. The storage unit 115 may be inside the housing 107 as shown in FIG. 1C or outside the housing 107.
 図2A~Cに示すように、パネル支持部105(調整部)は、筐体107内に1つだけ配されるとは限らない。図2Dに示すように、放射線撮像装置100が、パネル支持部105(調整部)を撮像パネルごとに有し、筐体107内に配された2つの撮像パネル101a、101bが、ともにパネル支持部105を介して筐体107に取り付けられてもよい。図2Dは、図2Cに示す構成に対して、両方の撮像パネルにパネル支持部105を配したが、図2A、Bに示す構成の撮像パネルの両方にパネル支持部105を配してもよい。少なくとも一方の撮像パネルが、パネル支持部105によって支持され、筐体107に取り付けられればよい。 As shown in FIGS. 2A to 2C, only one panel support unit 105 (adjustment unit) is not necessarily arranged in the housing 107. As shown in FIG. 2D, the radiation imaging apparatus 100 includes a panel support unit 105 (adjustment unit) for each imaging panel, and the two imaging panels 101a and 101b arranged in the housing 107 are both panel support units. It may be attached to the housing 107 via 105. In FIG. 2D, the panel support unit 105 is arranged on both imaging panels in the configuration shown in FIG. 2C. However, the panel support unit 105 may be arranged on both imaging panels configured in FIGS. 2A and 2B. . At least one of the imaging panels may be supported by the panel support unit 105 and attached to the housing 107.
 筐体107の形状は、図2A~Cに示す形状に限られるものではない。例えば図4Aに示すように、撮像パネル103が筐体部材407aに取り付けられ、撮像パネル101がパネル支持部105を介して筐体部材407bに取り付けられる。更に筐体部材407aと筐体部材407bとが、結合部401aによって結合することによって筐体107を構成し、放射線撮像装置100として機能してもよい。結合部401aは、図4Aに示すように、ねじやボルト及びナットなどを用いて筐体部材407aと筐体部材407bとを結合してもよいし、例えば、接着剤や接着フィルムなどを用いてもよい。図4Aに示す構成を用いることによって、撮像パネル101、103の何れかに故障や不具合が起こった場合、故障や不具合の起こった撮像パネルだけを容易に取り換えることができる。 The shape of the housing 107 is not limited to the shape shown in FIGS. For example, as illustrated in FIG. 4A, the imaging panel 103 is attached to the casing member 407a, and the imaging panel 101 is attached to the casing member 407b via the panel support unit 105. Further, the housing member 407a and the housing member 407b may be coupled by the coupling unit 401a to form the housing 107 and function as the radiation imaging apparatus 100. As shown in FIG. 4A, the coupling portion 401a may couple the housing member 407a and the housing member 407b using screws, bolts, nuts, or the like, for example, using an adhesive or an adhesive film. Also good. By using the configuration shown in FIG. 4A, when a failure or malfunction occurs in any of the imaging panels 101 and 103, only the imaging panel in which the malfunction or malfunction occurs can be easily replaced.
 また例えば、図4Aに示す構成において、3つ以上の撮像パネルを積層してもよい。この場合、積層された撮像パネルのうち少なくとも1つ以上が、パネル支持部105を介して筐体107に支持される撮像パネル101でありうる。例えば、積層した撮像パネルのうち1つ以外の撮像パネルが、パネル支持部105を介して筐体107に取り付けられる撮像パネル101であってもよい。 For example, in the configuration shown in FIG. 4A, three or more imaging panels may be stacked. In this case, at least one of the stacked imaging panels can be the imaging panel 101 supported by the casing 107 via the panel support unit 105. For example, an imaging panel other than one of the stacked imaging panels may be the imaging panel 101 attached to the housing 107 via the panel support unit 105.
 また、図4Bに示すように、筐体107が、放射線110の入射面の側のパネル109を構成する上蓋となる筐体部材407cと、入射面と反対側のパネル114を構成する下蓋となる筐体部材407dと、によって構成されていてもよい。図4Bに示す構成では、筐体部材407cに撮像パネル103が支持され、筐体部材407dに撮像パネル101がパネル支持部105を介して支持されるが、これに限られるものではない。例えば、筐体部材407cに撮像パネル101がパネル支持部105を介して取り付けられ、筐体部材407dに撮像パネル103がパネル支持部105を介さずに取り付けられてもよい。結合部401bは、図4Bに示すように、接着剤や接着フィルムなどを用いて筐体部材407cと筐体部材407dとを結合してもよいし、また例えば、ねじなどを用いてもよい。 As shown in FIG. 4B, the casing 107 includes a casing member 407c serving as an upper lid constituting the panel 109 on the radiation incident side side, and a lower lid constituting the panel 114 opposite to the incident plane. And a casing member 407d. In the configuration illustrated in FIG. 4B, the imaging panel 103 is supported by the casing member 407c and the imaging panel 101 is supported by the casing member 407d via the panel support unit 105. However, the configuration is not limited thereto. For example, the imaging panel 101 may be attached to the housing member 407c via the panel support portion 105, and the imaging panel 103 may be attached to the housing member 407d without going through the panel support portion 105. As shown in FIG. 4B, the coupling portion 401b may couple the housing member 407c and the housing member 407d using an adhesive, an adhesive film, or the like, or may use a screw or the like, for example.
 ここで、図2A~Cに示す各構成においても、例えば筐体107の内部にアクセスするための開口を設けるために、筐体107が複数の筐体部材から構成されてもよい。この場合も、それぞれの筐体部材は、接着剤や接着フィルム、ねじなどを用いて互いに結合、固定されうる。 Here, also in each configuration shown in FIGS. 2A to 2C, the housing 107 may be composed of a plurality of housing members in order to provide an opening for accessing the inside of the housing 107, for example. Also in this case, the respective housing members can be coupled and fixed to each other using an adhesive, an adhesive film, a screw or the like.
 撮像パネル101、103の支持方法は、上述の各構成に限られるものではない。例えば、図4Cに示すように、筐体107の中に結合部403を介して筐体107によって支持された支持基台402aを配し、支持基台402aに撮像パネル101、103を配してもよい。また、支持基台は、図5Aに示すように、板状でなくてもよい。例えば、図5Bに示す支持基台402bのように、撮像パネル101、103の外縁に沿った枠状であってもよい。また、支持基台402a、402bを用いる場合、撮像パネル101、103のうち一方を支持基台402a、402bを介して筐体107に取り付け、他方を支持基台402a、402bを介さずに筐体107に取り付けてもよい。図4C、Dに示される構成を用いることによって、撮像パネル101、103を筐体107から独立させた状態で支持できるため、撮像パネル101と撮像パネル103との間の相対位置の調整がしやすくなりうる。 The support method of the imaging panels 101 and 103 is not limited to the above-described configurations. For example, as shown in FIG. 4C, a support base 402a supported by the casing 107 via the coupling portion 403 is arranged in the casing 107, and the imaging panels 101 and 103 are arranged on the support base 402a. Also good. Further, the support base may not be plate-shaped as shown in FIG. 5A. For example, a frame shape along the outer edges of the imaging panels 101 and 103 may be used like a support base 402b shown in FIG. 5B. When the support bases 402a and 402b are used, one of the imaging panels 101 and 103 is attached to the housing 107 via the support bases 402a and 402b, and the other is attached to the case without the support bases 402a and 402b. 107 may be attached. By using the configuration shown in FIGS. 4C and 4D, the imaging panels 101 and 103 can be supported independently from the housing 107, so that the relative position between the imaging panel 101 and the imaging panel 103 can be easily adjusted. Can be.
 撮像パネル101と撮像パネル103との位置ずれは、放射線撮像装置100の製品出荷前だけでなく、例えば放射線撮像装置100に被検体が衝突することによって衝撃が加わった場合など、製品出荷後にも起こりうる。このため、パネル支持部105及び位置決め部108を含む調整部を用いた調整は、製品出荷後も調整できる機構でありうる。例えば、放射線撮像装置100に放射線110を照射し、撮像パネル101と撮像パネル103とでそれぞれ撮像された放射線画像に応じて、撮像パネル101と撮像パネル103との位置ずれを調整してもよい。例えば、位置調整用の被写体を配し撮像することによって、それぞれの撮像パネル101、103で得られた放射線画像から、撮像パネル101と撮像パネル103との間の相対的な位置ずれを求めてもよい。また例えば、図5Aに示すように、撮像パネル101、103にそれぞれアライメントマーク501を設け、それぞれの撮像パネル101、103で得られた放射線画像から、撮像パネル101と撮像パネル103との間の相対的な位置ずれを求めてもよい。例えば位置決め部108としてUVWステージを用い、連続的に放射線110を放射線撮像装置100に照射し、動画像を確認しながらUVWステージを外部から操作し、撮像パネル101と撮像パネル103との相対位置を調整してもよい。 The positional deviation between the imaging panel 101 and the imaging panel 103 occurs not only before the product shipment of the radiation imaging apparatus 100 but also after the product shipment, for example, when an impact is applied due to the subject colliding with the radiation imaging apparatus 100. sell. For this reason, the adjustment using the adjustment unit including the panel support unit 105 and the positioning unit 108 can be a mechanism that can be adjusted even after product shipment. For example, the radiation imaging apparatus 100 may be irradiated with the radiation 110, and the positional deviation between the imaging panel 101 and the imaging panel 103 may be adjusted according to the radiographic images captured by the imaging panel 101 and the imaging panel 103, respectively. For example, the relative positional deviation between the imaging panel 101 and the imaging panel 103 can be obtained from the radiographic images obtained by the imaging panels 101 and 103 by arranging and imaging a subject for position adjustment. Good. Further, for example, as shown in FIG. 5A, alignment marks 501 are provided on the imaging panels 101 and 103, and relative positions between the imaging panel 101 and the imaging panel 103 are obtained from radiographic images obtained by the imaging panels 101 and 103. A typical positional deviation may be obtained. For example, a UVW stage is used as the positioning unit 108, and the radiation imaging apparatus 100 is continuously irradiated with the radiation 110. You may adjust.
 また、図5Bに示すように、撮像パネル101と撮像パネル103との間に、撮像パネル101を透過した放射線の一部を吸収するための放射線吸収層502が配されてもよい。放射線撮像装置100において、放射線110が照射される入射面に近い撮像パネル103は低エネルギの放射線を検出し、入射面から離れた撮像パネル101は高エネルギの放射線を検出しうる。撮像パネル103を透過した放射線のうち低エネルギの放射線を放射線吸収層502によって吸収することで、放射線撮像装置100のエネルギ分解能を高めることができる。放射線吸収層502は、使用する放射線110の種類や撮像パネル101、103の構成などによって適宜選択すればよい。放射線吸収層502は、面内で均一に放射線を吸収してもよい。放射線吸収層502には、例えば、銅などの金属が用いられうる。また例えば、図2Cに示す構成において、パネル支持部105に放射線吸収層を配してもよいし、また例えば、図4Cに示す構成において、支持基台402aに放射線吸収層を配してもよい。また、これらの場合、パネル支持部105や支持基台402aが、例えば金属によって形成され、放射線吸収層として機能してもよい。 Further, as shown in FIG. 5B, a radiation absorbing layer 502 for absorbing a part of the radiation transmitted through the imaging panel 101 may be disposed between the imaging panel 101 and the imaging panel 103. In the radiation imaging apparatus 100, the imaging panel 103 close to the incident surface irradiated with the radiation 110 can detect low-energy radiation, and the imaging panel 101 far from the incident surface can detect high-energy radiation. By absorbing low-energy radiation among the radiation transmitted through the imaging panel 103 by the radiation absorption layer 502, the energy resolution of the radiation imaging apparatus 100 can be increased. The radiation absorbing layer 502 may be appropriately selected depending on the type of radiation 110 used, the configuration of the imaging panels 101 and 103, and the like. The radiation absorbing layer 502 may absorb radiation uniformly in the plane. For the radiation absorbing layer 502, for example, a metal such as copper can be used. Further, for example, in the configuration shown in FIG. 2C, a radiation absorbing layer may be disposed on the panel support unit 105, and for example, in the configuration illustrated in FIG. 4C, a radiation absorbing layer may be disposed on the support base 402a. . In these cases, the panel support part 105 and the support base 402a may be made of, for example, metal and function as a radiation absorbing layer.
 以下、図6を参照しながら本発明の放射線撮像装置100が組み込まれた放射線撮像システム600を例示的に説明する。放射線撮像システム600は、例えば、放射線撮像装置100と、イメージプロセッサなどを含む信号処理部603と、ディプレイなどを含む表示部604と、放射線を発生させるための放射線源601とを含む。放射線源601から発せられた放射線(例えばX線)は、被写体602を透過し、被写体602の体内の情報を含む放射線が、本実施形態の放射線撮像装置100によって検出される。これによって得られた放射線画像を用いて、例えば、信号処理部603は、所定の信号処理を行い、画像データを生成する。この画像データは、表示部604に表示される。 Hereinafter, a radiation imaging system 600 in which the radiation imaging apparatus 100 of the present invention is incorporated will be exemplarily described with reference to FIG. The radiation imaging system 600 includes, for example, a radiation imaging apparatus 100, a signal processing unit 603 including an image processor, a display unit 604 including a display, and a radiation source 601 for generating radiation. Radiation (for example, X-rays) emitted from the radiation source 601 passes through the subject 602, and radiation including information in the body of the subject 602 is detected by the radiation imaging apparatus 100 of the present embodiment. For example, the signal processing unit 603 performs predetermined signal processing using the radiographic image obtained thereby, and generates image data. This image data is displayed on the display unit 604.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年6月7日提出の日本国特許出願特願2016-113801を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-113801 filed on June 7, 2016, the entire contents of which are incorporated herein by reference.

Claims (12)

  1.  放射線を検出する撮像面が互いに重なるように配された第1の撮像パネル及び第2の撮像パネルと、前記第1の撮像パネルと前記第2の撮像パネルとの間の相対位置を調整するための調整部と、が筐体の中に配された放射線撮像装置であって、
     前記調整部は、
      前記第1の撮像パネル及び前記第2の撮像パネルのうち一方を支持するパネル支持部と、
      前記パネル支持部を移動させ、前記第1の撮像パネルと前記第2の撮像パネルとの間の相対位置を決めるための位置決め部と、を含むことを特徴とする放射線撮像装置。
    In order to adjust the relative position between the first imaging panel and the second imaging panel, and the first imaging panel and the second imaging panel arranged so that the imaging surfaces for detecting radiation overlap each other. A radiographic imaging device arranged in a housing,
    The adjustment unit is
    A panel support portion for supporting one of the first imaging panel and the second imaging panel;
    A radiation imaging apparatus comprising: a positioning unit configured to move the panel support unit and determine a relative position between the first imaging panel and the second imaging panel.
  2.  前記筐体は、第1のパネル及び第2のパネルを含む外装と、前記第1のパネルと前記第2のパネルとの間に配された支持部と、を含み、
     前記第1の撮像パネルが、前記パネル支持部を介して前記第1のパネル及び前記支持部のうち一方に取り付けられ、前記第2の撮像パネルが、前記第1のパネル及び前記支持部のうち他方に取り付けられることを特徴とする請求項1に記載の放射線撮像装置。
    The housing includes an exterior including a first panel and a second panel, and a support portion disposed between the first panel and the second panel,
    The first imaging panel is attached to one of the first panel and the support through the panel support, and the second imaging panel is out of the first panel and the support The radiation imaging apparatus according to claim 1, wherein the radiation imaging apparatus is attached to the other.
  3.  前記筐体は、第1のパネル及び第2のパネルを含む外装を備え、
     前記第1の撮像パネルが、前記パネル支持部を介して前記第1のパネル及び前記第2のパネルのうち一方に取り付けられ、前記第2の撮像パネルが、前記第1のパネル及び前記第2のパネルのうち他方に取り付けられることを特徴とする請求項1に記載の放射線撮像装置。
    The housing includes an exterior including a first panel and a second panel,
    The first imaging panel is attached to one of the first panel and the second panel via the panel support, and the second imaging panel is the first panel and the second panel. The radiation imaging apparatus according to claim 1, wherein the radiation imaging apparatus is attached to the other of the panels.
  4.  前記筐体は、前記パネル支持部を介して前記第1の撮像パネルが取り付けられる第1の筐体部材と、前記第2の撮像パネルが取り付けられる第2の筐体部材と、を含み、
     前記第1の筐体部材と前記第2の筐体部材とは、結合部によって互いに結合されることを特徴とする請求項1に記載の放射線撮像装置。
    The housing includes a first housing member to which the first imaging panel is attached via the panel support portion, and a second housing member to which the second imaging panel is attached.
    The radiation imaging apparatus according to claim 1, wherein the first casing member and the second casing member are coupled to each other by a coupling unit.
  5.  前記放射線撮像装置は、前記筐体の中に結合部を介して前記筐体に支持される支持基台を更に含み、
     前記第1の撮像パネルが、前記パネル支持部を介して前記支持基台に取り付けられ、前記第2の撮像パネルが、前記支持基台に取り付けられることを特徴とする請求項1に記載の放射線撮像装置。
    The radiation imaging apparatus further includes a support base supported by the casing through a coupling portion in the casing,
    The radiation according to claim 1, wherein the first imaging panel is attached to the support base via the panel support portion, and the second imaging panel is attached to the support base. Imaging device.
  6.  前記第2の撮像パネルを透過した放射線が、前記第1の撮像パネルに入射することを特徴とする請求項2乃至5の何れか1項に記載の放射線撮像装置。 The radiation imaging apparatus according to any one of claims 2 to 5, wherein the radiation transmitted through the second imaging panel is incident on the first imaging panel.
  7.  前記放射線撮像装置は、前記第1の撮像パネルと前記第2の撮像パネルとの間の相対位置を調整するための第2の調整部を更に有し、
     前記第2の調整部は、
      前記第2の撮像パネルを支持する第2のパネル支持部と、
      前記第2のパネル支持部を移動させ、前記第1の撮像パネルと前記第2の撮像パネルとの間の相対位置を決めるための第2の位置決め部と、を含むことを特徴とする請求項2乃至6の何れか1項に記載の放射線撮像装置。
    The radiation imaging apparatus further includes a second adjustment unit for adjusting a relative position between the first imaging panel and the second imaging panel,
    The second adjustment unit includes:
    A second panel support unit for supporting the second imaging panel;
    And a second positioning unit configured to move the second panel support and determine a relative position between the first imaging panel and the second imaging panel. The radiation imaging apparatus according to any one of 2 to 6.
  8.  前記位置決め部は、少なくとも、前記第1の撮像パネル及び前記第2の撮像パネルのうち支持する撮像パネルの前記撮像面と直交する方向に延びる軸を中心にして前記パネル支持部を回転させることを特徴とする請求項1乃至7の何れか1項に記載の放射線撮像装置。 The positioning unit rotates at least the panel support unit about an axis extending in a direction perpendicular to the imaging surface of the imaging panel to be supported among the first imaging panel and the second imaging panel. The radiation imaging apparatus according to claim 1, wherein the radiation imaging apparatus is characterized.
  9.  前記位置決め部が、ねじを有し、
     前記ねじの回転に伴って、前記パネル支持部が移動するように構成されることを特徴とする請求項1乃至8の何れか1項に記載の放射線撮像装置。
    The positioning part has a screw;
    The radiation imaging apparatus according to claim 1, wherein the panel support unit is configured to move with the rotation of the screw.
  10.  前記位置決め部が、前記パネル支持部を移動させるアクチュエータを含むことを特徴とする請求項1乃至9の何れか1項に記載の放射線撮像装置。 The radiation imaging apparatus according to claim 1, wherein the positioning unit includes an actuator that moves the panel support unit.
  11.  前記放射線撮像装置は、前記第1の撮像パネルと前記第2の撮像パネルとの間の相対位置を調整する調整量を記憶する記憶部を更に含み、
     前記放射線撮像装置の起動時に、前記位置決め部が、前記記憶部に記憶された前記調整量に従って前記パネル支持部を移動させることを特徴とする請求項10に記載の放射線撮像装置。
    The radiation imaging apparatus further includes a storage unit that stores an adjustment amount for adjusting a relative position between the first imaging panel and the second imaging panel;
    The radiation imaging apparatus according to claim 10, wherein, when the radiation imaging apparatus is activated, the positioning unit moves the panel support unit according to the adjustment amount stored in the storage unit.
  12.  請求項1乃至11の何れか1項に記載の放射線撮像装置と、
     前記放射線撮像装置からの信号を処理する信号処理部と、を備えることを特徴とする放射線撮像システム。
    The radiation imaging apparatus according to any one of claims 1 to 11,
    A radiation imaging system comprising: a signal processing unit that processes a signal from the radiation imaging apparatus.
PCT/JP2017/015451 2016-06-07 2017-04-17 Radiation image pickup device and radiation image pickup system WO2017212789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-113801 2016-06-07
JP2016113801A JP2017219416A (en) 2016-06-07 2016-06-07 Radiation imaging apparatus and radiation imaging system

Publications (1)

Publication Number Publication Date
WO2017212789A1 true WO2017212789A1 (en) 2017-12-14

Family

ID=60577711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015451 WO2017212789A1 (en) 2016-06-07 2017-04-17 Radiation image pickup device and radiation image pickup system

Country Status (2)

Country Link
JP (1) JP2017219416A (en)
WO (1) WO2017212789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116350251A (en) * 2023-01-03 2023-06-30 赛诺威盛医疗科技(扬州)有限公司 Alignment adjusting device for CT detector crystal and crystal module collimator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806585B2 (en) * 2017-02-08 2021-01-06 キヤノン株式会社 Radiation imaging device and imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221277A (en) * 1987-03-10 1988-09-14 Toshiba Corp Radiation detector for energy subtraction
JP2008079727A (en) * 2006-09-26 2008-04-10 Fujifilm Corp Radiographic image information photographing equipment
JP2010080636A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Radiation detecting element
JP2011137804A (en) * 2009-12-04 2011-07-14 Fujifilm Corp Radiation imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221277A (en) * 1987-03-10 1988-09-14 Toshiba Corp Radiation detector for energy subtraction
JP2008079727A (en) * 2006-09-26 2008-04-10 Fujifilm Corp Radiographic image information photographing equipment
JP2010080636A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Radiation detecting element
JP2011137804A (en) * 2009-12-04 2011-07-14 Fujifilm Corp Radiation imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116350251A (en) * 2023-01-03 2023-06-30 赛诺威盛医疗科技(扬州)有限公司 Alignment adjusting device for CT detector crystal and crystal module collimator

Also Published As

Publication number Publication date
JP2017219416A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
NL2020012B1 (en) Active pixel radiation detector array and use thereof
US8067743B2 (en) Imaging apparatus and radiation imaging apparatus
JP5693173B2 (en) Radiation detection apparatus and radiation detection system
US20130308755A1 (en) Radiation detection apparatus and radiation detection system
CN102428388B (en) Detector array with pre-focused anti-scatter grid
JP6609105B2 (en) Radiation imaging apparatus and radiation imaging system
JP2013152160A (en) Radiation imaging device and radiation imaging system
JP2010056396A (en) X-ray detection element
US10353083B2 (en) Monolithic digital x-ray detector stack with energy resolution
JP2010101805A (en) Radiographic imaging device
JP5836679B2 (en) Radiation imaging apparatus and radiation imaging system
WO2017212789A1 (en) Radiation image pickup device and radiation image pickup system
JP4162030B2 (en) Radiation detector
JP2017200522A (en) Radiation imaging device and radiation imaging system
US20120181438A1 (en) Radiation detecting apparatus, radiation detecting system, and method of manufacturing radiation detecting apparatus
JP2016156719A (en) Radiation detector
JP2005283262A (en) Two-dimensional image detector
US8822930B2 (en) Flat image detector and method for the generation of medical digital images
JP2012013682A (en) Radiographic image photographing device
JP6719324B2 (en) Radiation imaging apparatus and radiation imaging system
JP6377101B2 (en) Radiation detection apparatus and radiation detection system
JP4622670B2 (en) Two-dimensional radiation detector
JP2019152483A (en) Radiation imaging apparatus and radiation imaging system
WO2018159112A1 (en) Radiation imaging device and radiation imaging system
JP2014032124A (en) Radiation imaging apparatus and radiation imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809971

Country of ref document: EP

Kind code of ref document: A1