WO2017212652A1 - Wick - Google Patents

Wick Download PDF

Info

Publication number
WO2017212652A1
WO2017212652A1 PCT/JP2016/067438 JP2016067438W WO2017212652A1 WO 2017212652 A1 WO2017212652 A1 WO 2017212652A1 JP 2016067438 W JP2016067438 W JP 2016067438W WO 2017212652 A1 WO2017212652 A1 WO 2017212652A1
Authority
WO
WIPO (PCT)
Prior art keywords
wick
liquid
cylinder
working fluid
axial direction
Prior art date
Application number
PCT/JP2016/067438
Other languages
French (fr)
Japanese (ja)
Inventor
博治 小林
三輪 真一
宏之 柴田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2016/067438 priority Critical patent/WO2017212652A1/en
Priority to JP2018522295A priority patent/JP6715925B2/en
Publication of WO2017212652A1 publication Critical patent/WO2017212652A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the technology disclosed in this specification relates to a heat pipe wick.
  • the heat pipe disclosed in Patent Document 1 Japanese Unexamined Patent Publication No. 2011-190996
  • the wick and the case are formed in a cylindrical shape.
  • the wick is made of a porous material
  • the case is made of a dense metal material.
  • a liquid flow path is formed in the internal space of the wick, and a liquid working fluid flows through the liquid flow path.
  • the case covers the outer surface of the wick.
  • a gas flow path is formed in the space between the case and the wick, and a gas working fluid flows through this gas flow path. Further, the case is heated by the heat transfer block, and heat is transferred from the case heated by the heat transfer block to the wick.
  • the present specification provides a technique capable of efficiently transferring heat to a liquid working fluid.
  • a heat pipe wick disclosed in the present specification includes a porous cylinder and a plurality of porous walls extending in the axial direction of the cylinder in the internal space of the cylinder and partitioning the internal space. ing.
  • a plurality of wall bodies partition the internal space, so that a liquid channel and a gas channel extending in the axial direction are formed in the internal space.
  • the liquid channel has one end in the axial direction opened and the other end sealed.
  • the gas flow path is sealed at one end in the axial direction and opened at the other end.
  • the working fluid of the liquid flowing through the liquid flow path is liquid by capillary action. It penetrates into the wall from the channel.
  • the liquid working fluid that has permeated the wall body receives heat from the wall body, evaporates, and changes its state to a gaseous working fluid.
  • the evaporated working fluid flows from the wall into the gas flow path and flows through the gas flow path.
  • the cross-sectional area of the liquid channel may be larger than the cross-sectional area of the gas channel in the cross section perpendicular to the axial direction of the cylinder.
  • the resistance when the liquid working fluid flows through the liquid flow path can be reduced.
  • liquid flow path is surrounded by a plurality of wall bodies and does not have to be in contact with the cylinder body.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • It is a figure which shows schematic structure of a loop heat pipe. It is sectional drawing corresponding to FIG. 4 of another Example. Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example. It is sectional drawing of the liquid flow path and gas flow path of another Example. Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example. Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example.
  • the heat pipe 1 includes a wick 2 and a case 3.
  • the heat pipe 1 is a device that transfers heat using a working fluid.
  • the wick 2 includes a wick cylinder 21 and a plurality of wall bodies 22.
  • the wick cylinder 21 is made of a porous material such as ceramics.
  • An internal space 70 is formed inside the wick cylinder 21.
  • the wick cylinder 21 is formed in a cylindrical shape. Therefore, the internal space 70 is also formed in a cylindrical shape.
  • the plurality of wall bodies 22 are formed of a porous material such as ceramics, for example, similarly to the wick cylinder 21.
  • the plurality of wall bodies 22 are arranged in the cylindrical internal space 70 of the wick cylinder 21.
  • a plurality of wall bodies 22 arranged at equal intervals in the horizontal direction (y direction) and the vertical direction (z direction)
  • both end portions of each wall body 22 are fixed to the inner peripheral surface of the wick cylinder 21.
  • the plurality of wall bodies 22 and the wick cylinder 21 are integrally formed to form a honeycomb structure.
  • the plurality of wall bodies 22 arranged in the horizontal direction and the vertical direction are combined in a lattice shape and are integrally formed.
  • the plurality of wall bodies 22 divide the internal space 70 of the wick cylinder 21 in directions (y direction and z direction) orthogonal to the axial direction (x direction) of the wick cylinder 21.
  • the plurality of wall bodies 22 divide the internal space 70, so that a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 are formed in the internal space 70.
  • four liquid channels 51 and twelve gas channels 52 are formed.
  • a plurality of liquid flow paths 51 are formed at the center of the internal space 70, and a plurality of gas flow paths 52 are formed at the peripheral edge of the internal space 70.
  • a plurality of liquid flow paths 51 are formed inside the plurality of gas flow paths 52.
  • each of the four inner spaces constitutes a liquid flow path 51
  • each of the twelve outer spaces constitutes a gas flow path 52.
  • a liquid working fluid flows through the liquid channel 51, and a gas working fluid flows through the gas channel 52.
  • the liquid flow path 51 is surrounded by the plurality of wall bodies 22 and is in contact with the plurality of wall bodies 22.
  • the liquid flow path 51 is not in contact with the wick cylinder 21.
  • the gas flow path 52 is surrounded by the plurality of wall bodies 22 and the wick cylinder body 21, and is in contact with the plurality of wall bodies 22 and the wick cylinder body 21.
  • the wall body 22 arranged in the central portion of the internal space 70 is referred to as a central wall body 22 a.
  • the central wall 22a passes through the central portion of the internal space 70.
  • the plurality of wall bodies 22 extend in the axial direction (x direction) in a cross section parallel to the axial direction (x direction) of the wick cylinder 21.
  • the plurality of wall bodies 22 extend from one end portion in the axial direction (x direction) of the wick cylinder 21 to the other end portion.
  • the plurality of liquid channels 51 and the plurality of gas channels 52 extend in the axial direction (x direction).
  • the plurality of liquid channels 51 and the plurality of gas channels 52 extend from one end of the wick cylinder 21 in the axial direction (x direction) to the other end.
  • the liquid flow channel 51 is open at one end in the axial direction of the wick cylinder 21 and is sealed at the other end by the first sealing body 41.
  • one end portion in the axial direction of the wick cylinder 21 is sealed by the second sealing body 42, and the other end portion is opened.
  • a plurality of liquid flow paths 51 are closed at the other axial end of the wick cylinder 21 (the liquid working fluid outlet side).
  • the plurality of gas flow paths 52 are closed at one end of the wick cylinder 21 in the axial direction (the inlet side of the liquid working fluid).
  • the first sealing body 41 and the second sealing body 42 are integrated with the wick cylinder 21 and the plurality of wall bodies 22.
  • the case 3 includes a case cylinder 32 and a pair of lids 31.
  • the case cylinder 32 and the pair of lid bodies 31 are made of a metal material such as copper (Cu), for example.
  • the case cylinder 32 is formed in a cylindrical shape.
  • the case cylinder 32 may be formed in a square cylinder shape.
  • the shape of the case cylinder 32 in the cross section orthogonal to the axial direction (x direction) of the case cylinder 32 is not particularly limited.
  • the case cylinder 32 is disposed outside the wick cylinder 21.
  • the case cylinder 32 covers the wick cylinder 21.
  • the inner peripheral surface of the case cylinder 32 is in close contact with the outer peripheral surface of the wick cylinder 21.
  • the pair of lids 31 are fixed to both ends of the case cylinder 32.
  • the pair of lids 31 seals the case cylinder 32.
  • the heat transfer device 80 is attached to the case 3.
  • the heat transfer device 80 is fixed to the outer peripheral surface of the case 3.
  • the heat transfer device 80 is a device that transfers heat to the case 3. Case 3 is heated by heat transfer device 80.
  • the loop heat pipe 101 including the heat pipe 1 will be described.
  • the loop heat pipe 101 includes an evaporator 111, a steam pipe 122, a condenser 112, and a liquid pipe 121.
  • the evaporator 111, the steam pipe 122, the condenser 112, and the liquid pipe 121 are connected so as to form a loop.
  • the loop heat pipe 101 includes a reservoir 125.
  • the evaporator 111 is constituted by the heat pipe 1 described above. In the evaporator 111, the liquid working fluid is heated and evaporated, and the state changes to a gaseous working fluid. The working fluid receives heat in the evaporator 111.
  • the evaporator 111 is a device that heats the working fluid.
  • the gaseous working fluid is cooled and condensed, and the state changes to a liquid working fluid.
  • the working fluid dissipates heat in the condenser 112.
  • the condenser 112 is a device that receives heat from the working fluid.
  • the liquid pipe 121 guides the liquid working fluid from the condenser 112 to the evaporator 111.
  • the upstream end of the liquid pipe 121 is connected to the condenser 112, and the downstream end is connected to the evaporator 111.
  • a liquid working fluid flows in the liquid pipe 121.
  • the steam pipe 122 guides the gaseous working fluid from the evaporator 111 to the condenser 112.
  • the upstream end of the steam pipe 122 is connected to the evaporator 111, and the downstream end is connected to the condenser 112.
  • a gaseous working fluid flows in the vapor pipe 122.
  • the reservoir 125 is installed in the liquid pipe 121. A part of the liquid working fluid flowing through the liquid pipe 121 is stored. Thus, the flow rate of the liquid working fluid flowing from the liquid pipe 121 to the evaporator 111 is adjusted.
  • the operation of the loop heat pipe 101 will be described.
  • the case 3 of the heat pipe 1 is heated, and the wick 2 is heated by the heat. Therefore, the wick cylinder 21 and the wall 22 of the wick 2 are heated.
  • the liquid working fluid that has flowed through the liquid pipe 121 is introduced from the liquid pipe 121 into the evaporator 111. That is, a liquid working fluid is introduced from the liquid pipe 121 to the heat pipe 1.
  • the liquid working fluid introduced into the heat pipe 1 flows into the plurality of liquid flow paths 51 formed in the internal space 70 of the wick cylinder 21 and flows through the liquid flow path 51.
  • the liquid working fluid flowing through the liquid channel 51 penetrates into the porous wall body 22 by capillary action.
  • the liquid working fluid When the liquid working fluid penetrates into the porous wall body 22, it receives heat from the wall body 22 and evaporates, and changes its state to a gaseous working fluid.
  • the evaporated working fluid flows into the plurality of gas flow paths 52 from the porous wall body 22 and flows through the gas flow paths 52.
  • the gaseous working fluid that has flowed through the gas flow path 52 flows out of the heat pipe 1 and flows into the steam pipe 122. That is, a gaseous working fluid flows into the vapor pipe 122 from the evaporator 111.
  • the gaseous working fluid that has flowed into the steam pipe 122 flows through the steam pipe 122 and is introduced into the condenser 112 from the steam pipe 122.
  • the gaseous working fluid introduced into the condenser 112 is condensed by releasing heat in the condenser 112, and changes to a liquid working fluid.
  • the condensed liquid working fluid flows into the liquid pipe 121 from the condenser 112 and flows through the liquid pipe 121 again. Then, the liquid working fluid that has flowed through the liquid pipe 121 is again introduced into the heat pipe 1 from the liquid pipe 121. In this way, the working fluid flows through the loop heat pipe 101 while changing its state between the liquid and the gas. Heat is transported by the working fluid.
  • the wick 2 includes the porous wall body 22 that forms the liquid channel 51 and the gas channel 52 in the internal space 70 of the wick cylinder 21.
  • the liquid working fluid flowing through the liquid channel 51 permeates from the liquid channel 51 into the porous wall body 22 by capillary action.
  • the liquid working fluid that has permeated the wall body 22 receives heat from the wall body 22 and evaporates, and changes its state to a gaseous working fluid.
  • the evaporated working fluid flows into the gas channel 52 from the porous wall body 22 and flows through the gas channel 52.
  • the liquid working fluid can easily receive heat from the wick 2. Thereby, heat can be efficiently transferred from the wick 2 to the liquid working fluid.
  • the liquid flow path 51 is surrounded by the plurality of wall bodies 22 and is not in contact with the wick cylinder 21, so that the wall body against the liquid working fluid flowing through the liquid flow path 51.
  • the heat can be efficiently transferred from 22.
  • the plurality of liquid flow paths 51 are formed in the central portion of the internal space 70 and the plurality of gas flow paths 52 are formed in the peripheral edge of the internal space 70.
  • the present invention is limited to this configuration. It is not something.
  • the liquid channel 51 and the gas channel 52 may be alternately formed in a cross section orthogonal to the axial direction (x direction) of the wick cylinder 21.
  • the plurality of liquid channels 51 and the plurality of gas channels 52 may be formed in a checkered pattern.
  • FIG. 7 in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21, a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 are alternately formed for each row. Also good.
  • each liquid channel 51 may be larger than the cross-sectional area of each gas channel 52 in a cross section orthogonal to the axial direction (x direction) of the wick cylinder 21.
  • the total cross-sectional area of the plurality of liquid flow paths 51 may be larger than the total cross-sectional area of the plurality of gas flow paths 52.
  • the wick cylinder 21 is formed in a cylindrical shape, but is not limited to this configuration.
  • the shape of the wick cylinder 21 in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21 is not particularly limited.
  • the wick cylinder 21 may be formed in a square cylinder shape.
  • the shape of the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21 is a rectangle.
  • a heat transfer device 80 is fixed to the upper surface of the wick cylinder 21.
  • the wick cylinder 21 is formed so that the upper side and the lower side of the wick cylinder 21 are longer than the side.
  • the upper side and the lower side of the wick cylinder 21 are long sides, and the side sides are short sides. According to such a configuration, the area when heat is transmitted from the heat transfer device 80 to the wick cylinder 21 can be increased, and heat can be easily transmitted. Moreover, since the length of the wick cylinder 21 in the vertical direction is short, heat can be quickly transferred in the vertical direction via the wall body 22.
  • the plurality of wall bodies 22 may be arranged concentrically and radially in a cross section orthogonal to the axial direction of the wick cylinder 21.
  • the plurality of wall bodies 22 arranged concentrically are arranged concentrically with the wick cylinder 21.
  • the plurality of wall bodies 22 extend in the circumferential direction of the wick cylinder 21.
  • the plurality of wall bodies 22 arranged radially extend from the center of the internal space 70 in the radial direction of the wick cylinder 21. In the plurality of radial walls 22, heat is quickly transmitted to the center of the internal space 70.
  • a manufacturing method of the wick 2 will be described.
  • the wick 2 is manufactured, first, water and a binder are added to the ceramic raw material powder and kneaded to prepare a kneaded clay having plasticity. Next, the prepared dough is extruded to form a honeycomb structure. As a result, a honeycomb structure including the wick cylinder 21 and the plurality of wall bodies 22 is formed.
  • a sheet is attached to one end face of the honeycomb structure, and a hole is made in a part of the sheet (a position corresponding to the end of the gas flow path 52).
  • one end surface of the honeycomb structure is immersed in a slurry containing a material of the sealing body (the first sealing body 41 and the second sealing body 42 described above).
  • the material of the sealing body is cured by drying and baking, whereby the second sealing body 42 that seals the end of the gas flow path 52 is formed.
  • a sheet is attached to the other end surface of the honeycomb structure, and a hole is formed in a part of the sheet (a position corresponding to the end of the liquid flow channel 51).
  • the other end surface of the honeycomb structure is immersed in a slurry containing the material of the sealing body.
  • the 1st sealing body 41 which seals the edge part of the liquid flow path 51 is formed by hardening the material of a sealing body by drying and baking.
  • each of the one end surface and the other end surface of the honeycomb structure is immersed in a slurry containing the material of the sealing body, and then dried and fired, whereby the second sealing body 42 and the first sealing body. 41 may be formed simultaneously.
  • Heat pipe 2 Wick 3: Case 21: Wick cylinder 22: Wall body 22a: Central wall body 31: Cover body 32: Case cylinder 41: First sealing body 42: Second sealing body 51 : Liquid channel 52: Gas channel 70: Internal space 80: Heat transfer device 101: Loop heat pipe 111: Evaporator 112: Condenser 121: Liquid pipe 122: Steam pipe 125: Reservoir

Abstract

A wick 2 that is for a heat pipe 1 and that comprises: a porous cylindrical body 21; and a plurality of porous wall bodies 22 that extend through an internal space 70 of the cylindrical body 21 in the axial direction of the cylindrical body 21 and partition the internal space 70. Liquid flow paths 51 and gas flow paths 52 that extend in the axial direction are formed in the internal space 70 as a result of the plurality of wall bodies 22 partitioning the internal space 70. The liquid flow paths 51 are open at one end in the axial direction and sealed at the other end. The gas flow paths 52 are sealed at the one end in the axial direction and open at the other end.

Description

ウィックWick
 本明細書に開示する技術は、ヒートパイプのウィックに関する。 The technology disclosed in this specification relates to a heat pipe wick.
 特許文献1(日本国特開2011-190996号公報)に開示されているヒートパイプは、ウィックとケースを備えている。ウィックとケースは筒状に形成されている。ウィックは多孔質材料から形成されており、ケースは緻密質である金属材料から形成されている。ウィックの内部空間には液体流路が形成されており、液体の作動流体がこの液体流路を流れる。ケースはウィックの外周面を覆っている。ケースとウィックの間の空間には気体流路が形成されており、気体の作動流体がこの気体流路を流れる。また、ケースは伝熱ブロックによって加熱されており、伝熱ブロックによって加熱されたケースからウィックに熱が伝達される。 The heat pipe disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2011-190996) includes a wick and a case. The wick and the case are formed in a cylindrical shape. The wick is made of a porous material, and the case is made of a dense metal material. A liquid flow path is formed in the internal space of the wick, and a liquid working fluid flows through the liquid flow path. The case covers the outer surface of the wick. A gas flow path is formed in the space between the case and the wick, and a gas working fluid flows through this gas flow path. Further, the case is heated by the heat transfer block, and heat is transferred from the case heated by the heat transfer block to the wick.
 特許文献1のヒートパイプでは、液体の作動流体が液体流路を流れると、その作動流体が毛細管現象によって多孔質のウィックに浸透してゆく。ウィックに浸透した液体の作動流体は、ケースからウィックに伝達された熱を受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、ウィックから気体流路に流入して気体流路を流れてゆく。 In the heat pipe of Patent Document 1, when a liquid working fluid flows through the liquid flow path, the working fluid penetrates into the porous wick by capillary action. The liquid working fluid that has permeated the wick receives the heat transferred from the case to the wick, evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows into the gas channel from the wick and flows through the gas channel.
 ヒートパイプでは、液体の作動流体を効率よく加熱して気体の作動流体に状態変化させることが好ましい。そのためには、ウィックから液体の作動流体に熱を効率よく伝達することが好ましい。従来のヒートパイプでは、この点で不十分なところがあった。そこで本明細書は、液体の作動流体に効率よく熱を伝達することができる技術を提供する。 In the heat pipe, it is preferable to efficiently heat the liquid working fluid to change the state to a gaseous working fluid. For this purpose, it is preferable to efficiently transfer heat from the wick to the liquid working fluid. Conventional heat pipes are insufficient in this respect. Therefore, the present specification provides a technique capable of efficiently transferring heat to a liquid working fluid.
 本明細書に開示するヒートパイプのウィックは、多孔質の筒体と、筒体の内部空間において筒体の軸方向に延びており、内部空間を仕切る多孔質の複数の壁体と、を備えている。複数の壁体が内部空間を仕切ることによって軸方向に延びる液体流路と気体流路が内部空間に形成されている。液体流路は、軸方向の一端部が開口しており、他端部が封止されている。気体流路は、軸方向の一端部が封止されており、他端部が開口している。 A heat pipe wick disclosed in the present specification includes a porous cylinder and a plurality of porous walls extending in the axial direction of the cylinder in the internal space of the cylinder and partitioning the internal space. ing. A plurality of wall bodies partition the internal space, so that a liquid channel and a gas channel extending in the axial direction are formed in the internal space. The liquid channel has one end in the axial direction opened and the other end sealed. The gas flow path is sealed at one end in the axial direction and opened at the other end.
 このような構成によれば、筒体の内部空間に液体流路と気体流路を形成する多孔質の壁体を備えているので、液体流路を流れる液体の作動流体が、毛細管現象によって液体流路から壁体に浸透してゆく。壁体に浸透した液体の作動流体は、壁体から熱を受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、壁体から気体流路に流入して気体流路を流れてゆく。このような構成によれば、壁体を備えているので、液体の作動流体がウィックに接する部分が増加し、ウィックから受熱できる部分が増加する。そのため、液体の作動流体に効率よく熱を伝達することができる。 According to such a configuration, since the porous wall body that forms the liquid flow path and the gas flow path is provided in the internal space of the cylindrical body, the working fluid of the liquid flowing through the liquid flow path is liquid by capillary action. It penetrates into the wall from the channel. The liquid working fluid that has permeated the wall body receives heat from the wall body, evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows from the wall into the gas flow path and flows through the gas flow path. According to such a configuration, since the wall body is provided, the portion where the liquid working fluid contacts the wick increases, and the portion that can receive heat from the wick increases. Therefore, heat can be efficiently transferred to the liquid working fluid.
 上記のウィックでは、筒体の軸方向に直交する断面において、液体流路の断面積が気体流路の断面積より大きくてもよい。 In the above wick, the cross-sectional area of the liquid channel may be larger than the cross-sectional area of the gas channel in the cross section perpendicular to the axial direction of the cylinder.
 このような構成によれば、液体の作動流体が液体流路を流れるときの抵抗を小さくすることができる。 According to such a configuration, the resistance when the liquid working fluid flows through the liquid flow path can be reduced.
 また、液体流路が、複数の壁体に囲まれており、筒体に接していなくてもよい。 Further, the liquid flow path is surrounded by a plurality of wall bodies and does not have to be in contact with the cylinder body.
 このような構成によれば、液体流路を流れる液体の作動流体に対して壁体から効率的に熱を伝達することができる。 According to such a configuration, heat can be efficiently transferred from the wall body to the liquid working fluid flowing in the liquid flow path.
実施例のウィックを備えるヒートパイプの概略構成を示す図である。It is a figure which shows schematic structure of a heat pipe provided with the wick of an Example. 図1のII-II断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 図2のIII-III断面図である。FIG. 3 is a sectional view taken along the line III-III in FIG. 2. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. ループヒートパイプの概略構成を示す図である。It is a figure which shows schematic structure of a loop heat pipe. 他の実施例の図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 of another Example. 更に他の実施例の図4に対応する断面図である。Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example. 更に他の実施例の液体流路と気体流路の断面図である。It is sectional drawing of the liquid flow path and gas flow path of another Example. 更に他の実施例の図4に対応する断面図である。Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example. 更に他の実施例の図4に対応する断面図である。Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example.
 以下、実施例について添付図面を参照して説明する。図1から図3に示すように、実施例に係るヒートパイプ1は、ウィック2とケース3を備えている。ヒートパイプ1は、作動流体を用いて熱を伝達する装置である。 Hereinafter, examples will be described with reference to the accompanying drawings. As shown in FIGS. 1 to 3, the heat pipe 1 according to the embodiment includes a wick 2 and a case 3. The heat pipe 1 is a device that transfers heat using a working fluid.
 ウィック2は、ウィック筒体21と複数の壁体22を備えている。ウィック筒体21は、例えばセラミックスなどの多孔質材料から形成されている。ウィック筒体21の内側には内部空間70が形成されている。ウィック筒体21は、円筒状に形成されている。よって、内部空間70も円筒状に形成されている。 The wick 2 includes a wick cylinder 21 and a plurality of wall bodies 22. The wick cylinder 21 is made of a porous material such as ceramics. An internal space 70 is formed inside the wick cylinder 21. The wick cylinder 21 is formed in a cylindrical shape. Therefore, the internal space 70 is also formed in a cylindrical shape.
 複数の壁体22は、ウィック筒体21と同様に例えばセラミックスなどの多孔質材料から形成されている。複数の壁体22は、ウィック筒体21の円筒状の内部空間70の中に配置されている。図2に示すように、ウィック筒体21の軸方向(x方向)に直交する断面において、横方向(y方向)に等間隔で並んでいる複数の壁体22と、縦方向(z方向)に等間隔で並んでいる複数の壁体22がある。ウィック筒体21の軸方向(x方向)に直交する断面において、各壁体22の両端部はウィック筒体21の内周面に固定されている。複数の壁体22とウィック筒体21は一体的に形成されており、ハニカム構造体になっている。横方向と縦方向に並んでいる複数の壁体22は、格子状に組み合わされており、一体的に形成されている。 The plurality of wall bodies 22 are formed of a porous material such as ceramics, for example, similarly to the wick cylinder 21. The plurality of wall bodies 22 are arranged in the cylindrical internal space 70 of the wick cylinder 21. As shown in FIG. 2, in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21, a plurality of wall bodies 22 arranged at equal intervals in the horizontal direction (y direction) and the vertical direction (z direction) There are a plurality of wall bodies 22 arranged at equal intervals. In the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21, both end portions of each wall body 22 are fixed to the inner peripheral surface of the wick cylinder 21. The plurality of wall bodies 22 and the wick cylinder 21 are integrally formed to form a honeycomb structure. The plurality of wall bodies 22 arranged in the horizontal direction and the vertical direction are combined in a lattice shape and are integrally formed.
 複数の壁体22は、ウィック筒体21の内部空間70をウィック筒体21の軸方向(x方向)と直交する方向(y方向とz方向)に仕切っている。複数の壁体22が内部空間70を仕切ることによって、内部空間70に複数の液体流路51と複数の気体流路52が形成されている。図2に示す例では、4個の液体流路51と12個の気体流路52が形成されている。内部空間70の中央部に複数の液体流路51が形成されており、内部空間70の周縁部に複数の気体流路52が形成されている。複数の液体流路51が複数の気体流路52より内側に形成されている。図2に示す例では、内側の4個の空間のそれぞれが液体流路51を構成しており、外側の12個の空間のそれぞれが気体流路52を構成している。液体の作動流体が液体流路51を流れ、気体の作動流体が気体流路52を流れる。 The plurality of wall bodies 22 divide the internal space 70 of the wick cylinder 21 in directions (y direction and z direction) orthogonal to the axial direction (x direction) of the wick cylinder 21. The plurality of wall bodies 22 divide the internal space 70, so that a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 are formed in the internal space 70. In the example shown in FIG. 2, four liquid channels 51 and twelve gas channels 52 are formed. A plurality of liquid flow paths 51 are formed at the center of the internal space 70, and a plurality of gas flow paths 52 are formed at the peripheral edge of the internal space 70. A plurality of liquid flow paths 51 are formed inside the plurality of gas flow paths 52. In the example shown in FIG. 2, each of the four inner spaces constitutes a liquid flow path 51, and each of the twelve outer spaces constitutes a gas flow path 52. A liquid working fluid flows through the liquid channel 51, and a gas working fluid flows through the gas channel 52.
 ウィック筒体21の軸方向に直交する断面において、液体流路51は、複数の壁体22に囲まれており、複数の壁体22に接している。液体流路51はウィック筒体21に接していない。気体流路52は、複数の壁体22とウィック筒体21に囲まれており、複数の壁体22とウィック筒体21に接している。複数の壁体22のうち、内部空間70の中央部に配置されている壁体22を中央壁体22aという。中央壁体22aは、内部空間70の中央部を通過している。 In the cross section orthogonal to the axial direction of the wick cylinder 21, the liquid flow path 51 is surrounded by the plurality of wall bodies 22 and is in contact with the plurality of wall bodies 22. The liquid flow path 51 is not in contact with the wick cylinder 21. The gas flow path 52 is surrounded by the plurality of wall bodies 22 and the wick cylinder body 21, and is in contact with the plurality of wall bodies 22 and the wick cylinder body 21. Of the plurality of wall bodies 22, the wall body 22 arranged in the central portion of the internal space 70 is referred to as a central wall body 22 a. The central wall 22a passes through the central portion of the internal space 70.
 図3に示すように、ウィック筒体21の軸方向(x方向)と平行な断面において、複数の壁体22は、前記軸方向(x方向)に延びている。複数の壁体22は、ウィック筒体21の軸方向(x方向)の一端部から他端部まで延びている。また、複数の液体流路51と複数の気体流路52は、前記軸方向(x方向)に延びている。複数の液体流路51と複数の気体流路52は、ウィック筒体21の軸方向(x方向)の一端部から他端部まで延びている。液体流路51は、ウィック筒体21の軸方向の一端部が開口しており、他端部が第1の封止体41によって封止されている。気体流路52は、ウィック筒体21の軸方向の一端部が第2の封止体42によって封止されており、他端部が開口している。図4に示すように、ウィック筒体21の軸方向の他端部(液体の作動流体の出口側)では、複数の液体流路51が閉塞している。反対に、図示しないが、ウィック筒体21の軸方向の一端部(液体の作動流体の入口側)では、複数の気体流路52が閉塞している。第1の封止体41と第2の封止体42は、ウィック筒体21と複数の壁体22と一体になっている。 As shown in FIG. 3, the plurality of wall bodies 22 extend in the axial direction (x direction) in a cross section parallel to the axial direction (x direction) of the wick cylinder 21. The plurality of wall bodies 22 extend from one end portion in the axial direction (x direction) of the wick cylinder 21 to the other end portion. The plurality of liquid channels 51 and the plurality of gas channels 52 extend in the axial direction (x direction). The plurality of liquid channels 51 and the plurality of gas channels 52 extend from one end of the wick cylinder 21 in the axial direction (x direction) to the other end. The liquid flow channel 51 is open at one end in the axial direction of the wick cylinder 21 and is sealed at the other end by the first sealing body 41. In the gas flow path 52, one end portion in the axial direction of the wick cylinder 21 is sealed by the second sealing body 42, and the other end portion is opened. As shown in FIG. 4, a plurality of liquid flow paths 51 are closed at the other axial end of the wick cylinder 21 (the liquid working fluid outlet side). On the other hand, although not shown, the plurality of gas flow paths 52 are closed at one end of the wick cylinder 21 in the axial direction (the inlet side of the liquid working fluid). The first sealing body 41 and the second sealing body 42 are integrated with the wick cylinder 21 and the plurality of wall bodies 22.
 図3に示すように、ケース3は、ケース筒体32と一対の蓋体31を備えている。ケース筒体32と一対の蓋体31は、例えば銅(Cu)などの金属材料から形成されている。ケース筒体32は、円筒状に形成されている。ケース筒体32は、角筒状に形成されていてもよい。ケース筒体32の軸方向(x方向)に直交する断面におけるケース筒体32の形状は特に限定されるものではない。ケース筒体32は、ウィック筒体21の外側に配置されている。ケース筒体32は、ウィック筒体21を覆っている。ケース筒体32の内周面がウィック筒体21の外周面と密着している。一対の蓋体31は、ケース筒体32の両端部に固定されている。一対の蓋体31は、ケース筒体32を封止している。 As shown in FIG. 3, the case 3 includes a case cylinder 32 and a pair of lids 31. The case cylinder 32 and the pair of lid bodies 31 are made of a metal material such as copper (Cu), for example. The case cylinder 32 is formed in a cylindrical shape. The case cylinder 32 may be formed in a square cylinder shape. The shape of the case cylinder 32 in the cross section orthogonal to the axial direction (x direction) of the case cylinder 32 is not particularly limited. The case cylinder 32 is disposed outside the wick cylinder 21. The case cylinder 32 covers the wick cylinder 21. The inner peripheral surface of the case cylinder 32 is in close contact with the outer peripheral surface of the wick cylinder 21. The pair of lids 31 are fixed to both ends of the case cylinder 32. The pair of lids 31 seals the case cylinder 32.
 ケース3には、伝熱装置80が取り付けられている。伝熱装置80は、ケース3の外周面に固定されている。伝熱装置80は、ケース3に熱を伝達する装置である。ケース3は伝熱装置80によって加熱される。 The heat transfer device 80 is attached to the case 3. The heat transfer device 80 is fixed to the outer peripheral surface of the case 3. The heat transfer device 80 is a device that transfers heat to the case 3. Case 3 is heated by heat transfer device 80.
 次に、上記のヒートパイプ1を備えているループヒートパイプ101について説明する。図5に示すように、ループヒートパイプ101は、蒸発器111と蒸気管122と凝縮器112と液管121を備えている。蒸発器111と蒸気管122と凝縮器112と液管121は、ループを形成するように接続されている。また、ループヒートパイプ101は、リザーバ125を備えている。 Next, the loop heat pipe 101 including the heat pipe 1 will be described. As shown in FIG. 5, the loop heat pipe 101 includes an evaporator 111, a steam pipe 122, a condenser 112, and a liquid pipe 121. The evaporator 111, the steam pipe 122, the condenser 112, and the liquid pipe 121 are connected so as to form a loop. Further, the loop heat pipe 101 includes a reservoir 125.
 蒸発器111は、上記のヒートパイプ1によって構成されている。蒸発器111では、液体の作動流体が加熱されて蒸発し、気体の作動流体に状態変化する。作動流体は蒸発器111で受熱する。蒸発器111は、作動流体を加熱する機器である。 The evaporator 111 is constituted by the heat pipe 1 described above. In the evaporator 111, the liquid working fluid is heated and evaporated, and the state changes to a gaseous working fluid. The working fluid receives heat in the evaporator 111. The evaporator 111 is a device that heats the working fluid.
 凝縮器112では、気体の作動流体が冷却されて凝縮し、液体の作動流体に状態変化する。作動流体は凝縮器112で放熱する。凝縮器112は、作動流体から受熱する機器である。 In the condenser 112, the gaseous working fluid is cooled and condensed, and the state changes to a liquid working fluid. The working fluid dissipates heat in the condenser 112. The condenser 112 is a device that receives heat from the working fluid.
 液管121は、液体の作動流体を凝縮器112から蒸発器111に案内する。液管121の上流端部が凝縮器112に接続されており、下流端部が蒸発器111に接続されている。液体の作動流体が液管121内を流れる。 The liquid pipe 121 guides the liquid working fluid from the condenser 112 to the evaporator 111. The upstream end of the liquid pipe 121 is connected to the condenser 112, and the downstream end is connected to the evaporator 111. A liquid working fluid flows in the liquid pipe 121.
 蒸気管122は、気体の作動流体を蒸発器111から凝縮器112に案内する。蒸気管122の上流端部が蒸発器111に接続されており、下流端部が凝縮器112に接続されている。気体の作動流体が蒸気管122内を流れる。 The steam pipe 122 guides the gaseous working fluid from the evaporator 111 to the condenser 112. The upstream end of the steam pipe 122 is connected to the evaporator 111, and the downstream end is connected to the condenser 112. A gaseous working fluid flows in the vapor pipe 122.
 リザーバ125は、液管121に設置されている。液管121を流れる液体の作動流体の一部を貯留する。これによって、液管121から蒸発器111に流れる液体の作動流体の流量を調整している。 The reservoir 125 is installed in the liquid pipe 121. A part of the liquid working fluid flowing through the liquid pipe 121 is stored. Thus, the flow rate of the liquid working fluid flowing from the liquid pipe 121 to the evaporator 111 is adjusted.
 次に上記のループヒートパイプ101の動作について説明する。上記のループヒートパイプ101では、ヒートパイプ1のケース3が加熱されており、その熱によってウィック2が加熱されている。したがって、ウィック2のウィック筒体21と壁体22が加熱されている。この状態で、液管121内を流れた液体の作動流体が、液管121から蒸発器111に導入される。すなわち、液体の作動流体が液管121からヒートパイプ1に導入される。ヒートパイプ1に導入された液体の作動流体は、ウィック筒体21の内部空間70に形成されている複数の液体流路51に流入して液体流路51を流れる。液体流路51を流れる液体の作動流体は、毛細管現象によって多孔質の壁体22に浸透してゆく。 Next, the operation of the loop heat pipe 101 will be described. In the loop heat pipe 101, the case 3 of the heat pipe 1 is heated, and the wick 2 is heated by the heat. Therefore, the wick cylinder 21 and the wall 22 of the wick 2 are heated. In this state, the liquid working fluid that has flowed through the liquid pipe 121 is introduced from the liquid pipe 121 into the evaporator 111. That is, a liquid working fluid is introduced from the liquid pipe 121 to the heat pipe 1. The liquid working fluid introduced into the heat pipe 1 flows into the plurality of liquid flow paths 51 formed in the internal space 70 of the wick cylinder 21 and flows through the liquid flow path 51. The liquid working fluid flowing through the liquid channel 51 penetrates into the porous wall body 22 by capillary action.
 液体の作動流体は、多孔質の壁体22に浸透すると壁体22から受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、多孔質の壁体22から複数の気体流路52に流入して気体流路52を流れる。そして、気体流路52を流れた気体の作動流体は、ヒートパイプ1から流出して蒸気管122内に流入する。すなわち、気体の作動流体が蒸発器111から蒸気管122内に流入する。 When the liquid working fluid penetrates into the porous wall body 22, it receives heat from the wall body 22 and evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows into the plurality of gas flow paths 52 from the porous wall body 22 and flows through the gas flow paths 52. The gaseous working fluid that has flowed through the gas flow path 52 flows out of the heat pipe 1 and flows into the steam pipe 122. That is, a gaseous working fluid flows into the vapor pipe 122 from the evaporator 111.
 蒸気管122内に流入した気体の作動流体は、蒸気管122内を流れて、蒸気管122から凝縮器112に導入される。凝縮器112に導入された気体の作動流体は、凝縮器112で放熱して凝縮し、液体の作動流体に状態変化する。凝縮した液体の作動流体は、凝縮器112から液管121内に流入して再び液管121内を流れる。そして、液管121内を流れた液体の作動流体は、再び液管121からヒートパイプ1に導入される。このようにして、作動流体が液体と気体の間で状態変化しながらループヒートパイプ101を循環して流れる。作動流体によって熱が輸送される。 The gaseous working fluid that has flowed into the steam pipe 122 flows through the steam pipe 122 and is introduced into the condenser 112 from the steam pipe 122. The gaseous working fluid introduced into the condenser 112 is condensed by releasing heat in the condenser 112, and changes to a liquid working fluid. The condensed liquid working fluid flows into the liquid pipe 121 from the condenser 112 and flows through the liquid pipe 121 again. Then, the liquid working fluid that has flowed through the liquid pipe 121 is again introduced into the heat pipe 1 from the liquid pipe 121. In this way, the working fluid flows through the loop heat pipe 101 while changing its state between the liquid and the gas. Heat is transported by the working fluid.
 上述の説明から明らかなように、実施例に係るウィック2は、ウィック筒体21の内部空間70に液体流路51と気体流路52を形成する多孔質の壁体22を備えている。これによって、液体流路51を流れる液体の作動流体が、毛細管現象によって液体流路51から多孔質の壁体22に浸透してゆく。壁体22に浸透した液体の作動流体は、壁体22から受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、多孔質の壁体22から気体流路52に流入して気体流路52を流れる。このような構成によれば、壁体22を備えることによって液体の作動流体がウィック2に接する部分が増加するので、液体の作動流体がウィック2から熱を受熱しやすくなる。これによって、ウィック2から液体の作動流体に効率よく熱を伝達することができる。 As is clear from the above description, the wick 2 according to the embodiment includes the porous wall body 22 that forms the liquid channel 51 and the gas channel 52 in the internal space 70 of the wick cylinder 21. As a result, the liquid working fluid flowing through the liquid channel 51 permeates from the liquid channel 51 into the porous wall body 22 by capillary action. The liquid working fluid that has permeated the wall body 22 receives heat from the wall body 22 and evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows into the gas channel 52 from the porous wall body 22 and flows through the gas channel 52. According to such a configuration, since the portion where the liquid working fluid is in contact with the wick 2 is increased by providing the wall body 22, the liquid working fluid can easily receive heat from the wick 2. Thereby, heat can be efficiently transferred from the wick 2 to the liquid working fluid.
 また、上記の構成によれば、液体流路51が複数の壁体22に囲まれており、ウィック筒体21に接していないので、液体流路51を流れる液体の作動流体に対して壁体22から効率的に熱を伝達することができる。 Further, according to the above configuration, the liquid flow path 51 is surrounded by the plurality of wall bodies 22 and is not in contact with the wick cylinder 21, so that the wall body against the liquid working fluid flowing through the liquid flow path 51. The heat can be efficiently transferred from 22.
 以上、一実施例について説明したが、具体的な態様は上記実施例に限定されるものではない。以下の説明において、上述の説明における構成と同様の構成については、同一の符号を付して説明を省略する。 As mentioned above, although one Example was described, a specific aspect is not limited to the said Example. In the following description, the same components as those described above are denoted by the same reference numerals and description thereof is omitted.
 上記の実施例では、内部空間70の中央部に複数の液体流路51が形成されており、内部空間70の周縁部に複数の気体流路52が形成されていたが、この構成に限定されるものではない。他の実施例では、図6に示すように、ウィック筒体21の軸方向(x方向)に直交する断面において、液体流路51と気体流路52が交互に形成されていてもよい。複数の液体流路51と複数の気体流路52が市松模様のように形成されていてもよい。また、図7に示すように、ウィック筒体21の軸方向(x方向)に直交する断面において、複数の液体流路51と複数の気体流路52が、一列ごとに交互に形成されていてもよい。 In the above embodiment, the plurality of liquid flow paths 51 are formed in the central portion of the internal space 70 and the plurality of gas flow paths 52 are formed in the peripheral edge of the internal space 70. However, the present invention is limited to this configuration. It is not something. In another embodiment, as shown in FIG. 6, the liquid channel 51 and the gas channel 52 may be alternately formed in a cross section orthogonal to the axial direction (x direction) of the wick cylinder 21. The plurality of liquid channels 51 and the plurality of gas channels 52 may be formed in a checkered pattern. Moreover, as shown in FIG. 7, in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21, a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 are alternately formed for each row. Also good.
 また、図8に示すように、ウィック筒体21の軸方向(x方向)に直交する断面において、各液体流路51の断面積が、各気体流路52の断面積より大きくてもよい。また、複数の液体流路51の断面積の合計が、複数の気体流路52の断面積より合計より大きくてもよい。このような構成によれば、液体の作動流体が液体流路51を流れるときの抵抗を小さくすることができる。液体の作動流体がスムーズに流れるので、ウィック2に作動流体を効率的に導入することができる。 Further, as shown in FIG. 8, the cross-sectional area of each liquid channel 51 may be larger than the cross-sectional area of each gas channel 52 in a cross section orthogonal to the axial direction (x direction) of the wick cylinder 21. Further, the total cross-sectional area of the plurality of liquid flow paths 51 may be larger than the total cross-sectional area of the plurality of gas flow paths 52. According to such a configuration, the resistance when the liquid working fluid flows through the liquid channel 51 can be reduced. Since the liquid working fluid flows smoothly, the working fluid can be efficiently introduced into the wick 2.
 上記の実施例では、ウィック筒体21が円筒状に形成されていたがこの構成に限定されるものではない。ウィック筒体21の軸方向(x方向)に直交する断面におけるウィック筒体21の形状は特に限定されるものではない。他の実施例では、図9に示すように、ウィック筒体21が角筒状に形成されていてもよい。図9では、ウィック筒体21の軸方向(x方向)に直交する断面の形状が長方形である。ウィック筒体21の上面に伝熱装置80が固定されている。図9に示す断面において、ウィック筒体21の上辺と下辺が側辺よりも長くなるように、ウィック筒体21が形成されている。ウィック筒体21の上辺と下辺が長辺であり、側辺が短辺である。このような構成によれば、伝熱装置80からウィック筒体21に熱を伝達するときの面積を広くすることができ、熱を伝達し易くすることができる。また、ウィック筒体21の上下方向の長さが短いので、壁体22を介して上下方向に熱を素早く伝達することができる。 In the above embodiment, the wick cylinder 21 is formed in a cylindrical shape, but is not limited to this configuration. The shape of the wick cylinder 21 in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21 is not particularly limited. In another embodiment, as shown in FIG. 9, the wick cylinder 21 may be formed in a square cylinder shape. In FIG. 9, the shape of the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21 is a rectangle. A heat transfer device 80 is fixed to the upper surface of the wick cylinder 21. In the cross section shown in FIG. 9, the wick cylinder 21 is formed so that the upper side and the lower side of the wick cylinder 21 are longer than the side. The upper side and the lower side of the wick cylinder 21 are long sides, and the side sides are short sides. According to such a configuration, the area when heat is transmitted from the heat transfer device 80 to the wick cylinder 21 can be increased, and heat can be easily transmitted. Moreover, since the length of the wick cylinder 21 in the vertical direction is short, heat can be quickly transferred in the vertical direction via the wall body 22.
 また、更に他の実施例では、図10に示すように、ウィック筒体21の軸方向に直交する断面において、複数の壁体22が同心円状および放射状に配置されていてもよい。図10に示す断面において、同心円状に配置されている複数の壁体22は、ウィック筒体21と同心円状に配置されている。複数の壁体22は、ウィック筒体21の周方向に延びている。また、図10に示す断面において、放射状に配置されている複数の壁体22は、内部空間70の中心部からウィック筒体21の径方向に延びている。放射状の複数の壁体22では内部空間70の中心部まで熱が速く伝わる。 In still another embodiment, as shown in FIG. 10, the plurality of wall bodies 22 may be arranged concentrically and radially in a cross section orthogonal to the axial direction of the wick cylinder 21. In the cross section shown in FIG. 10, the plurality of wall bodies 22 arranged concentrically are arranged concentrically with the wick cylinder 21. The plurality of wall bodies 22 extend in the circumferential direction of the wick cylinder 21. In the cross section shown in FIG. 10, the plurality of wall bodies 22 arranged radially extend from the center of the internal space 70 in the radial direction of the wick cylinder 21. In the plurality of radial walls 22, heat is quickly transmitted to the center of the internal space 70.
 次に、ウィック2の製造方法の一例について説明する。ウィック2の製造するときは、まず、セラミックス原料の粉末に水とバインダーを添加して混練し、可塑性を有する練土を作製する。次に、作製した練土をハニカム構造体になるように押し出し成形する。これによって、ウィック筒体21と複数の壁体22を備えるハニカム構造体が形成される。 Next, an example of a manufacturing method of the wick 2 will be described. When the wick 2 is manufactured, first, water and a binder are added to the ceramic raw material powder and kneaded to prepare a kneaded clay having plasticity. Next, the prepared dough is extruded to form a honeycomb structure. As a result, a honeycomb structure including the wick cylinder 21 and the plurality of wall bodies 22 is formed.
 次に、ハニカム構造体の一端面にシートを貼り付け、そのシートの一部(上記の気体流路52の端部に対応する位置)に孔を開ける。この状態で、ハニカム構造体の一端面を、封止体(上記の第1の封止体41と第2の封止体42)の材料を含むスラリーに浸漬する。その後、乾燥と焼成によって封止体の材料を硬化させることによって、気体流路52の端部を封止する第2の封止体42が形成される。また、上記と同様に、ハニカム構造体の他端面にシートを貼り付け、そのシートの一部(上記の液体流路51の端部に対応する位置)に孔を開ける。この状態で、ハニカム構造体の他端面を、封止体の材料を含むスラリーに浸漬する。その後、乾燥と焼成によって封止体の材料を硬化させることによって、液体流路51の端部を封止する第1の封止体41が形成される。なお、ハニカム構造体の一端面と他端面のそれぞれを封止体の材料を含むスラリーに浸漬し、その後に乾燥と焼成を行うことによって、第2の封止体42と第1の封止体41を同時に形成してもよい。 Next, a sheet is attached to one end face of the honeycomb structure, and a hole is made in a part of the sheet (a position corresponding to the end of the gas flow path 52). In this state, one end surface of the honeycomb structure is immersed in a slurry containing a material of the sealing body (the first sealing body 41 and the second sealing body 42 described above). Thereafter, the material of the sealing body is cured by drying and baking, whereby the second sealing body 42 that seals the end of the gas flow path 52 is formed. Similarly to the above, a sheet is attached to the other end surface of the honeycomb structure, and a hole is formed in a part of the sheet (a position corresponding to the end of the liquid flow channel 51). In this state, the other end surface of the honeycomb structure is immersed in a slurry containing the material of the sealing body. Then, the 1st sealing body 41 which seals the edge part of the liquid flow path 51 is formed by hardening the material of a sealing body by drying and baking. In addition, each of the one end surface and the other end surface of the honeycomb structure is immersed in a slurry containing the material of the sealing body, and then dried and fired, whereby the second sealing body 42 and the first sealing body. 41 may be formed simultaneously.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.
1   :ヒートパイプ
2   :ウィック
3   :ケース
21  :ウィック筒体
22  :壁体
22a :中央壁体
31  :蓋体
32  :ケース筒体
41  :第1の封止体
42  :第2の封止体
51  :液体流路
52  :気体流路
70  :内部空間
80  :伝熱装置
101 :ループヒートパイプ
111 :蒸発器
112 :凝縮器
121 :液管
122 :蒸気管
125 :リザーバ
1: Heat pipe 2: Wick 3: Case 21: Wick cylinder 22: Wall body 22a: Central wall body 31: Cover body 32: Case cylinder 41: First sealing body 42: Second sealing body 51 : Liquid channel 52: Gas channel 70: Internal space 80: Heat transfer device 101: Loop heat pipe 111: Evaporator 112: Condenser 121: Liquid pipe 122: Steam pipe 125: Reservoir

Claims (3)

  1.  ヒートパイプのウィックであって、
     多孔質の筒体と、
     前記筒体の内部空間において前記筒体の軸方向に延びており、前記内部空間を仕切る多孔質の複数の壁体と、を備えており、
     前記複数の壁体が前記内部空間を仕切ることによって前記軸方向に延びる液体流路と気体流路が前記内部空間に形成されており、
     前記液体流路は、前記軸方向の一端部が開口しており、他端部が封止されており、
     前記気体流路は、前記軸方向の一端部が封止されており、他端部が開口している、ウィック。
    A heat pipe wick,
    A porous cylinder;
    A plurality of porous walls that extend in the axial direction of the cylinder in the internal space of the cylinder and partition the internal space;
    A liquid channel and a gas channel extending in the axial direction by the plurality of wall bodies partitioning the internal space are formed in the internal space,
    The liquid channel has one end in the axial direction opened and the other end sealed.
    The gas flow path is a wick in which one end portion in the axial direction is sealed and the other end portion is open.
  2.  前記軸方向に直交する断面において、前記液体流路の断面積が前記気体流路の断面積より大きい、請求項1に記載のウィック。 The wick according to claim 1, wherein a cross-sectional area of the liquid channel is larger than a cross-sectional area of the gas channel in a cross section orthogonal to the axial direction.
  3.  前記液体流路が、複数の前記壁体に囲まれており、前記筒体に接していない、請求項1又は2に記載のウィック。 The wick according to claim 1 or 2, wherein the liquid channel is surrounded by a plurality of the wall bodies and is not in contact with the cylindrical body.
PCT/JP2016/067438 2016-06-10 2016-06-10 Wick WO2017212652A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/067438 WO2017212652A1 (en) 2016-06-10 2016-06-10 Wick
JP2018522295A JP6715925B2 (en) 2016-06-10 2016-06-10 Wick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067438 WO2017212652A1 (en) 2016-06-10 2016-06-10 Wick

Publications (1)

Publication Number Publication Date
WO2017212652A1 true WO2017212652A1 (en) 2017-12-14

Family

ID=60579020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067438 WO2017212652A1 (en) 2016-06-10 2016-06-10 Wick

Country Status (2)

Country Link
JP (1) JP6715925B2 (en)
WO (1) WO2017212652A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110000646A1 (en) * 2009-07-03 2011-01-06 Foxconn Technology Co., Ltd. Loop heat pipe
JP2011007365A (en) * 2009-06-23 2011-01-13 Taisei Kogyo Kk Aluminum fiber porous sintered molding and method of manufacturing the same
JP2012132613A (en) * 2010-12-21 2012-07-12 Fujitsu Ltd Loop type heat pipe and information processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450148B2 (en) * 1997-03-07 2003-09-22 三菱電機株式会社 Loop type heat pipe
JP2002181469A (en) * 2000-12-14 2002-06-26 Mitsubishi Electric Corp Looped heat pipe
JP4434677B2 (en) * 2003-09-29 2010-03-17 株式会社ウェルリサーチ Loop heat pipe evaporator
JP5906607B2 (en) * 2011-08-17 2016-04-20 富士通株式会社 Loop heat pipe and electronic device provided with the loop heat pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007365A (en) * 2009-06-23 2011-01-13 Taisei Kogyo Kk Aluminum fiber porous sintered molding and method of manufacturing the same
US20110000646A1 (en) * 2009-07-03 2011-01-06 Foxconn Technology Co., Ltd. Loop heat pipe
JP2012132613A (en) * 2010-12-21 2012-07-12 Fujitsu Ltd Loop type heat pipe and information processing apparatus

Also Published As

Publication number Publication date
JPWO2017212652A1 (en) 2019-04-04
JP6715925B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
EP2413079B1 (en) Ceramic heat exchanger and method for manufacturing same
JP5882909B2 (en) Heat exchanger, garbage processing machine including heat exchanger, and method of manufacturing heat exchanger
US20180230884A1 (en) Exhaust heat recovery device
RU2535187C1 (en) Plate heat exchanger with staggered arrangement of channels
WO2015132920A1 (en) Heat exchanger and method for manufacturing heat exchanger
WO2017212652A1 (en) Wick
CN110947258B (en) Honeycomb filter
CN110394130B (en) Thermal storage reactor
JP5881483B2 (en) Multi-channel equipment
WO2018061155A1 (en) Heat pipe
JP3955849B2 (en) Ceramic packing elements
JP2018103121A5 (en)
JP2018165580A (en) Thermal storage device
US9695724B2 (en) Honeycomb catalyst body
WO2017213087A1 (en) Heat exchanger
US20190072302A1 (en) Sorption heat transfer module
RU165848U1 (en) HEAT EXCHANGER "PIPE IN PIPE"
WO2017212646A1 (en) Wick
EP3067652B1 (en) Heat exchanger and method for exchanging heat
JP6352696B2 (en) Heat exchanger
KR101966930B1 (en) Heat exchanger using flash evaporation and steam generator having the same
JPS5920958B2 (en) Heat exchanger
JP6826969B2 (en) Heat exchanger
JP2009216274A (en) Heat storage type heat exchanger
KR102031430B1 (en) Heat Exchanger for Annealing Furnace

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522295

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904686

Country of ref document: EP

Kind code of ref document: A1